WorldWideScience

Sample records for below-ground biotic interactions

  1. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below ground

    NARCIS (Netherlands)

    Andreo Jimenez, B.; Ruyter-Spira, C.P.; Bouwmeester, H.J.; Lopez-Raez, J.A.

    2015-01-01

    Background Plants are exposed to ever changing and often unfavourable environmental conditions, which cause both abiotic and biotic stresses. They have evolved sophisticated mechanisms to flexibly adapt themselves to these stress conditions. To achieve such adaptation, they need to control and coord

  2. Inferring biotic interactions from proxies.

    Science.gov (United States)

    Morales-Castilla, Ignacio; Matias, Miguel G; Gravel, Dominique; Araújo, Miguel B

    2015-06-01

    Inferring biotic interactions from functional, phylogenetic and geographical proxies remains one great challenge in ecology. We propose a conceptual framework to infer the backbone of biotic interaction networks within regional species pools. First, interacting groups are identified to order links and remove forbidden interactions between species. Second, additional links are removed by examination of the geographical context in which species co-occur. Third, hypotheses are proposed to establish interaction probabilities between species. We illustrate the framework using published food-webs in terrestrial and marine systems. We conclude that preliminary descriptions of the web of life can be made by careful integration of data with theory.

  3. Plant biotic interactions

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    occurring after infestation by olive fly larvae. The last research article by Niu et al.(2016) describes a growth-promoting rhizobacterium that primes induced systemic resistance by suppressing a host R gene-targeting micro RNA pairs and activating host immune responses. This finding further supports the important roles of plant endogenous small RNAs in plant-pathogen interactions. Hailing Jin, Professor Special Issue Editor UC President’s Chair Director of Genetics, Genomics and Bioinformatics Graduate Program, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, USA doi:10.1111/jipb.12476 ©2016 Institute of Botany, Chinese Academy of Sciences REFERENCES Alagna F, Kal enbach M, Pompa A, De Marchis F, Rao R, Baldwin IT, Bonaventure G, Baldoni L (2016) Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. J Integr Plant Biol 58:413–425 Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372 da GraSca JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, Vidalakis G, Zhao H (2016) Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J Integr Plant Biol 58:373–387 Giovino A, Martinel i F, Saia S (2016) Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways. J Integr Plant Biol 58:388–396 Huang J, Yang M, Zhang X (2016) The function of smal RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327 Kaloshian I, Wal ing LL (2016) Hemipteran and dipteran pests: Effectors and plant host immune regulators. J Integr Plant Biol 58:350–361 Mermigka G, Verret F, Kalantidis K (2016) RNA silencing movement in plants. J Integr Plant Biol 58:328–342 Niu D, Xia J, Jiang C, Qi B, Ling X, Lin S, Zhang W, Guo J, Jin H, Zhao H (2016) Bacil us cereus AR156

  4. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    Science.gov (United States)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  5. Euthanasia: above ground, below ground.

    Science.gov (United States)

    Magnusson, R S

    2004-10-01

    The key to the euthanasia debate lies in how best to regulate what doctors do. Opponents of euthanasia frequently warn of the possible negative consequences of legalising physician assisted suicide and active euthanasia (PAS/AE) while ignoring the covert practice of PAS/AE by doctors and other health professionals. Against the background of survey studies suggesting that anything from 4% to 10% of doctors have intentionally assisted a patient to die, and interview evidence of the unregulated, idiosyncratic nature of underground PAS/AE, this paper assesses three alternatives to the current policy of prohibition. It argues that although legalisation may never succeed in making euthanasia perfectly safe, legalising PAS/AE may nevertheless be safer, and therefore a preferable policy alternative, to prohibition. At a minimum, debate about harm minimisation and the regulation of euthanasia needs to take account of PAS/AE wherever it is practised, both above and below ground. PMID:15467073

  6. The geographic scaling of biotic interactions

    OpenAIRE

    Araújo, Miguel B.; Rozenfeld, Alejandro

    2014-01-01

    A central tenet of ecology and biogeography is that the broad outlines of species ranges are determined by climate, whereas the effects of biotic interactions are manifested at local scales. While the first proposition is supported by ample evidence, the second is still a matter of controversy. To address this question, we develop a mathematical model that predicts the spatial overlap, i.e. co-occurrence, between pairs of species subject to all possible types of interactions. We then identify...

  7. Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: Interactions with plant species diversity and soil nitrogen availability.

    OpenAIRE

    Bloor, Juliette; Bardgett, R. D.

    2012-01-01

    Extreme drought events have the potential to cause dramatic changes in ecosystem structure and function, but the controls upon ecosystem stability to drought remain poorly understood. Here we used model systems of two commonly occurring, temperate grassland communities to investigate the shortterm interactive effects of a simulated 100-year summer drought event, soil nitrogen (N) availability and plant species diversity (low/high) on key ecosystem processes related to carbon (C) and N cycling...

  8. Biotic Interaction in Space and Time

    DEFF Research Database (Denmark)

    Schmidt, Andreas Kelager

    it is highly sensitive to the ongoing environmental change caused by humans. The main drivers for its decline are changed land-use and associated habitat loss or fragmentation, and (in more recent times) drainage, increased eutrophication and lack of appropriate management, but future climate change may...... further enhance the risk of extinction. Maculinea alcon is selected as an umbrella for conservation and numerous aspects of its biology has been studied extensively. This thesis explores the spatio-temporal impact of the tight biotic dependence in this tritrophic interaction system and integrates...

  9. Biotic interactions govern genetic adaptation to toxicants.

    Science.gov (United States)

    Becker, Jeremias Martin; Liess, Matthias

    2015-05-01

    The genetic recovery of resistant populations released from pesticide exposure is accelerated by the presence of environmental stressors. By contrast, the relevance of environmental stressors for the spread of resistance during pesticide exposure has not been studied. Moreover, the consequences of interactions between different stressors have not been considered. Here we show that stress through intraspecific competition accelerates microevolution, because it enhances fitness differences between adapted and non-adapted individuals. By contrast, stress through interspecific competition or predation reduces intraspecific competition and thereby delays microevolution. This was demonstrated in mosquito populations (Culex quinquefasciatus) that were exposed to the pesticide chlorpyrifos. Non-selective predation through harvesting and interspecific competition with Daphnia magna delayed the selection for individuals carrying the ace-1(R) resistance allele. Under non-toxic conditions, susceptible individuals without ace-1(R) prevailed. Likewise, predation delayed the reverse adaptation of the populations to a non-toxic environment, while the effect of interspecific competition was not significant. Applying a simulation model, we further identified how microevolution is generally determined by the type and degree of competition and predation. We infer that interactions with other species-especially strong in ecosystems with high biodiversity-can delay the development of pesticide resistance. PMID:25833856

  10. EDP: A computer program for analysis of biotic interactions

    Science.gov (United States)

    Gibson, Michael A.; Bolton, James C.

    1992-07-01

    Analyzing fossils for evidence of biotic interactions such as parasitism, commensalism, and predation can be accomplished using skeletal relationships (e.g. overlapping growth) on individual specimens and statistical information on populations of specimens. The latter approach provides information for use in larger scale paleocommunity analyses. This approach requires a large data set and extensive amounts of information management. The types of information that are needed include data concerning the identity of host and epibiont species, orientation of epibionts on hosts, position of encrustation, growth directions, region of occurrence, and associated fauna. We have written the Epibiont Digitizing Program (EDP) to collect the data necessary to study biotic interactions in the fossil record. The program is operator-interactive at all stages and versatile enough to allow modification depending upon the specific needs of the researcher.

  11. Location and foraging as basis for classification of biotic interactions.

    Science.gov (United States)

    Khabibullin, Viner F

    2016-06-01

    Ecologists face an overwhelming diversity of ecological relationships in natural communities. In this paper, I propose to differentiate various types of the interspecific relations on the basis of two factors: relative localization and foraging activity of interacting partners. I advocate recognition of four types of environments: internal, surface, proximate external and distant external. Then I distinguish four types of synoikia-one partner lives in different degree of proximity to another; and four types of synmensalism: one partner forages in different degree of proximity to another. Intersection of localization-based (four subtypes of synoikia) and foraging-based (four subtypes of synmensalism) rows results in 16 types of interactions. This scheme can serve as a framework that manages diverse biotic interactions in a standardized way. I have made the first step to set up nomenclature standards for terms describing interspecific interactions and hope that this will facilitate research and communication. PMID:27160993

  12. Managing biotic interactions for ecological intensification of agroecosystem

    Directory of Open Access Journals (Sweden)

    Sabrina eGaba

    2014-06-01

    Full Text Available Agriculture faces the challenge of increasing food production while simultaneously reducing the use of inputs and delivering other ecosystem services. Ecological intensification of agriculture is a paradigm shift, which has recently been proposed to meet such challenges through the manipulation of biotic interactions. While this approach opens up new possibilities, there are many constraints related to the complexity of agroecosystems that make it difficult to implement. Future advances, which are essential to guide agricultural policy, require an eco-evolutionary framework to ensure that ecological intensification is beneficial in the long term.

  13. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores

    OpenAIRE

    Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing

    2015-01-01

    Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induc...

  14. How to calculate stress in above/below ground transition

    Energy Technology Data Exchange (ETDEWEB)

    Schnackenberg, P.J.

    1976-11-01

    Stresses and deflections occur in natural gas pipe lines at the transition from the below ground (fully restrained) to the above ground (unrestrained) condition. Analysis of the stresses and deflections in transition areas, resulting from internal pressure/temperature change, is necessary in determining anchor block requirements and design. Longitudinal deflections are used to determine whether an anchor block is required. Anchor block forces required to maintain the pipe in a fully constrained condition are then determined. A brief review of the analysis that resulted in more accurate solutions for deflection and anchor block forces is presented. Sample calculations are given for line sizes up to 41-cm OD, pressure to 193 bars, and temperatures to 72/sup 0/C. (JRD)

  15. Above- and below-ground herbivory effects on below- ground plant-fungus interactions and plant-soil feedback responses

    NARCIS (Netherlands)

    Bezemer, T.M.; Putten, van der W.H.; Martens, H.; Voorde, van de T.F.J.; Mulder, P.P.J.; Kostenko, O.

    2013-01-01

    1.Feeding by insect herbivores can affect plant growth and the concentration of defense compounds in plant tissues. Since plants provide resources for soil organisms, herbivory can also influence the composition of the soil community via its effects on the plant. Soil organisms, in turn, are importa

  16. STRESS ECOLOGY IN FUCUS : ABIOTIC, BIOTIC AND GENETIC INTERACTIONS

    NARCIS (Netherlands)

    Wahl, Martin; Jormalainen, Veijo; Eriksson, Britas Klemens; Coyer, James A.; Molis, Markus; Schubert, Hendrik; Dethier, Megan; Karez, Rolf; Kruse, Inken; Lenz, Mark; Pearson, Gareth; Rohde, Sven; Wikstrom, Sofia A.; Olsen, Jeanine L.; Lesser, M

    2011-01-01

    Stress regimes defined as the synchronous or sequential action of abiotic and biotic stresses determine the performance and distribution of species. The natural patterns of stress to which species are more or less well adapted have recently started to shift and alter under the influence of global ch

  17. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems.

    Science.gov (United States)

    Fukami, Tadashi; Wardle, David A; Bellingham, Peter J; Mulder, Christa P H; Towns, David R; Yeates, Gregor W; Bonner, Karen I; Durrett, Melody S; Grant-Hoffman, Madeline N; Williamson, Wendy M

    2006-12-01

    Predators often exert multi-trophic cascading effects in terrestrial ecosystems. However, how such predation may indirectly impact interactions between above- and below-ground biota is poorly understood, despite the functional importance of these interactions. Comparison of rat-free and rat-invaded offshore islands in New Zealand revealed that predation of seabirds by introduced rats reduced forest soil fertility by disrupting sea-to-land nutrient transport by seabirds, and that fertility reduction in turn led to wide-ranging cascading effects on belowground organisms and the ecosystem processes they drive. Our data further suggest that some effects on the belowground food web were attributable to changes in aboveground plant nutrients and biomass, which were themselves related to reduced soil disturbance and fertility on invaded islands. These results demonstrate that, by disrupting across-ecosystem nutrient subsidies, predators can indirectly induce strong shifts in both above- and below-ground biota via multiple pathways, and in doing so, act as major ecosystem drivers. PMID:17118004

  18. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  19. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.

    Science.gov (United States)

    Guo, Hongyu; Zhang, Yihui; Lan, Zhenjiang; Pennings, Steven C

    2013-09-01

    Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze-free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter-temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high-latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high- and low-marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological

  20. Biotic interaction strength and the intensity of selection.

    Science.gov (United States)

    Benkman, Craig W

    2013-08-01

    Although the ecological and evolutionary impacts of species interactions have been the foci of much research, the relationship between the strength of species interactions and the intensity of selection has been investigated only rarely. I develop a simple model demonstrating how the opportunity for selection varies with interaction strength, and then use the relationship between the maximum value of the selection differential and the opportunity for selection (Arnold & Wade 1984) to evaluate how selection differentials vary in relation to species interaction strength. This model predicts an initial deceleration and then an accelerating increase in the intensity of selection with increasing strength of antagonistic interactions and with decreasing strength of mutualistic interactions. Empirical data from several studies provide support for this model. These results further support an evolutionary mechanism for some striking patterns of evolutionary diversification including the latitudinal species gradient, and should be relevant to studies of eco-evolutionary dynamics.

  1. EnviroAtlas - Below Ground Live Tree Biomass Carbon Storage for the Conterminous United States- Forested

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes the average below ground live tree root dry biomass estimate for the Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit...

  2. Below-ground herbivory in natural communities: a review emphasizing fossorial animals

    Science.gov (United States)

    Andersen, Douglas C.

    1987-01-01

    Roots, bulbs, corms, and other below-ground organs are almost universally present in communities containing vascular plants. A large and taxonomically diverse group of herbivores uses these below-ground plant parts as its sole or primary source of food. Important within this group are plant-parasitic nematodes and several fossorial taxa that affect plants through their soil-disturbing activities as well as by consuming plant tissue. The fossorial taxa are probably best exemplified by fossorial rodents, which are distributed on all continents except Australia. All other fossorial herbivores are insects. The impact of below-groud herbivory on individual plant fitness will depend upon the extent to which, and under what circumstances, the consumption of plant tissue disrupts one or more of the six functions of below-ground plant parts. Below-ground herbivory is probably more often chronic than acute. Indirect evidence suggests that plants have responded evolutionarily to herbivory by enhancing the functional capacities of below-ground organs, thus developing a degree of tolerance, and by producing compounds that serve as feeding deterrents. Many plant species respond to the removal of root tissues by increasing the growth rate of the remaining roots and initiating new roots. Soil movement and mixing by fossorial rodents infleuce the environment of other below-ground herbivores as well as that of plants and plant propagules. The relationships among the various groups of below-ground herbivores, and between below-ground herbivores and plants, are at best poorly known, yet they appear to have major roles in determining the structure and regulating the functioning of natural communities.

  3. Impacts of farming practice within organic farming systems on below-ground ecology and ecosystem function

    OpenAIRE

    Stockdale, E A; Phillips, L; Watson, C. A.

    2006-01-01

    Maintaining ecosystem function is a key issue for sustainable farming systems which contribute broadly to global ecosystem health. A focus simply on the diversity of belowground organisms is not sufficient and there is a need to consider the contribution of below-ground biological processes to the maintenance and enhancement of soil function and ecosystem services. A critical literature review on the impacts of land management practices on below-ground ecology and function shows that farm man...

  4. Uncertainty in below-ground carbon biomass for major land covers in Southeast Asia

    OpenAIRE

    Yuen, Jia Qi; Ziegler, Alan D.; Edward L Webb; Ryan, Casey M.

    2013-01-01

    Owing to difficulties associated with measuring root biomass accurately in space and time, below-ground root biomass is often calculated indirectly from above-ground biomass measurements via general allometric equations. Of concern is that general equations may not provide accurate site-specific calculations for accurate carbon stock assessments. This review comparing more than 100 root-related studies conducted in SE Asia shows highly variable and uncertain below-ground woody carbon (BGC) bi...

  5. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  6. Performance of Lychnis flos-cuculi from fragmented populations under experimental biotic interactions

    OpenAIRE

    Galeuchet, D J; Perret, C; Fischer, M.

    2005-01-01

    To study genetic effects of habitat fragmentation on plant performance and plant response to biotic interactions, we performed a greenhouse study with plants from 27 populations of the common plant Lychnis flos-cuculi differing in size, isolation, and microsatellite heterozygosity. We germinated seeds of 449 plants and grew up to nine offspring per maternal plant in single pots assigned to a factorial competition-by-pathogen infection treatment. We applied competition by sowing seeds of the g...

  7. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone.

    Science.gov (United States)

    Tingstad, Lise; Olsen, Siri Lie; Klanderud, Kari; Vandvik, Vigdis; Ohlson, Mikael

    2015-10-01

    Seedling recruitment is a critical life history stage for trees, and successful recruitment is tightly linked to both abiotic factors and biotic interactions. In order to better understand how tree species' distributions may change in response to anticipated climate change, more knowledge of the effects of complex climate and biotic interactions is needed. We conducted a seed-sowing experiment to investigate how temperature, precipitation and biotic interactions impact recruitment of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings in southern Norway. Seeds were sown into intact vegetation and experimentally created gaps. To study the combined effects of temperature and precipitation, the experiment was replicated across 12 sites, spanning a natural climate gradient from boreal to alpine and from sub-continental to oceanic. Seedling emergence and survival were assessed 12 and 16 months after sowing, respectively, and above-ground biomass and height were determined at the end of the experiment. Interestingly, very few seedlings were detected in the boreal sites, and the highest number of seedlings emerged and established in the alpine sites, indicating that low temperature did not limit seedling recruitment. Site precipitation had an overall positive effect on seedling recruitment, especially at intermediate precipitation levels. Seedling emergence, establishment and biomass were higher in gap plots compared to intact vegetation at all temperature levels. These results suggest that biotic interactions in the form of competition may be more important than temperature as a limiting factor for tree seedling recruitment in the sub- and low-alpine zone of southern Norway. PMID:26065402

  8. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    Science.gov (United States)

    Aragão, L. E. O. C.; Malhi, Y.; Metcalfe, D. B.; Silva-Espejo, J. E.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A. C. L.; Salinas, N.; Phillips, O. L.; Anderson, L. O.; Alvarez, E.; Baker, T. R.; Goncalvez, P. H.; Huamán-Ovalle, J.; Mamani-Solórzano, M.; Meir, P.; Monteagudo, A.; Patiño, S.; Peñuela, M. C.; Prieto, A.; Quesada, C. A.; Rozas-Dávila, A.; Rudas, A.; Silva, J. A., Jr.; Vásquez, R.

    2009-12-01

    The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha-1 yr-1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha-1 yr-1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha-1 yr-1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  9. Nicotiana tabacum Tsip1-Interacting Ferredoxin 1 Affects Biotic and Abiotic Stress Resistance

    OpenAIRE

    Huh, Sung Un; Lee, In-Ju; Ham, Byung-Kook; Paek, Kyung-Hee

    2012-01-01

    Tsip1, a Zn finger protein that was isolated as a direct interactor with tobacco stress-induced 1 (Tsi1), plays an important role in both biotic and abiotic stress signaling. To further understand Tsip1 function, we searched for more Tsip1-interacting proteins by yeast two-hybrid screening using a tobacco cDNA library. Screening identified a new Tsip1-interacting protein, Nicotiana tabacum Tsip1-interacting ferredoxin 1 (NtTfd1), and binding specificity was confirmed both in vitro and in vivo...

  10. Above-ground and below-ground plant responses to fertilization in two subarctic ecosystems

    NARCIS (Netherlands)

    Veen, G.F.; Sundqvist, Maja K.; Metcalfe, D.; Wilson, S.D.

    2015-01-01

    Soil nutrient supply is likely to change in the Arctic due to altered process rates associated with climate change. Here, we compare the responses of herbaceous tundra and birch forest understory to fertilization, considering both above- and below-ground responses. We added nitrogen and phosphorus t

  11. Carbon allocation below ground transfers and lipid turnover in a plant-microbial association

    Science.gov (United States)

    Radioactive tracers were used to study the carbon allocation to above ground, coarse- and fine-roots, plant tissues, mycorrhizal lipids, below-ground respiration, and to soil in a mycorrhizal association. Sorghum bicolor was grown in soil with a non mycorrhizal microbial inoculum with and without Gl...

  12. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    Directory of Open Access Journals (Sweden)

    L. E. O. C. Aragão

    2009-02-01

    Full Text Available The net primary productivity (NPP of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1 How do Amazonian forests allocate productivity among its above- and below-ground components? (2 How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error, at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  13. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    Directory of Open Access Journals (Sweden)

    L. E. O. C. Aragão

    2009-12-01

    Full Text Available The net primary productivity (NPP of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1 How do Amazonian forests allocate productivity among its above- and below-ground components? (2 How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error, at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  14. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    OpenAIRE

    L. E. O. C. Aragão; Malhi, Y.; Metcalfe, D.B; Silva-Espejo, J. E.; E. Jiménez; Navarrete, D.; Almeida, S.; Costa, A. C. L.; N. Salinas; O. L. Phillips; L. O. Anderson; Alvarez, E.; T. R. Baker; P. H. Goncalvez; J. Huamán-Ovalle

    2009-01-01

    The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quanti...

  15. Biotic interactions at hydrothermal vents: Recruitment inhibition by the mussel Bathymodiolus thermophilus

    Science.gov (United States)

    Lenihan, H. S.; Mills, S. W.; Mullineaux, L. S.; Peterson, C. H.; Fisher, C. R.; Micheli, F.

    2008-12-01

    The structure and dynamics of marine communities are regulated in part by variation in recruitment. As in other ecosystems, recruitment at deep-sea hydrothermal vents is controlled by the interplay of propagule supply and behavior, gradients in physical-chemical conditions, and biotic interactions during pre- and post-settlement periods. Recent research along the East Pacific Rise indicates that inhibition of recently settled larvae by mobile predators (mainly limpets) influences patterns of recruitment and subsequent community succession. We conducted a manipulative experiment at the same sites (˜2510 m water depth) to test whether high-density assemblages of the mussel Bathymodiolus thermophilus also inhibit recruitment. In a preliminary study, recruitment of vent invertebrates within the faunal zone dominated by B. thermophilus was strikingly different at two sites, East Wall and Worm Hole. East Wall had high densities of mussels but very low total recruitment. In contrast, Worm Hole had few mussels but high recruitment. Using the submersible Alvin, we transplanted a large number of mussels from East Wall to Worm Hole and quantified recruitment on basalt blocks placed in three treatments: (1) naturally high densities of mussels at East Wall; (2) naturally low densities of mussels at Worm Hole; and (3) high densities of transplanted mussels at Worm Hole. After 11 months, a total of 24 taxa had recruited to the basalt blocks. Recruitment was 44-60% lower in the transplanted high-density mussel patch at Worm Hole and the natural high-density patch at East Wall than within the natural low-density patch at Worm Hole. Biotic processes that may have caused the pattern of recruitment observed included predation of larvae via water filtration by mussels, larval avoidance of superior competitors, interference competition, and enhanced predation by species within the mussel-bed community. Our results indicate that biotic interactions affecting recruitment must be

  16. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.

    Science.gov (United States)

    Madritch, Michael D; Kingdon, Clayton C; Singh, Aditya; Mock, Karen E; Lindroth, Richard L; Townsend, Philip A

    2014-01-01

    Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales.

  17. The SnRK1 Energy Sensor in Plant Biotic Interactions.

    Science.gov (United States)

    Hulsmans, Sander; Rodriguez, Marianela; De Coninck, Barbara; Rolland, Filip

    2016-08-01

    Our understanding of plant biotic interactions has grown significantly in recent years with the identification of the mechanisms involved in innate immunity, hormone signaling, and secondary metabolism. The impact of such interactions on primary metabolism and the role of metabolic signals in the response of the plants, however, remain far less explored. The SnRK1 (SNF1-related kinase 1) kinases act as metabolic sensors, integrating very diverse stress conditions, and are key in maintaining energy homeostasis for growth and survival. Consistently, an important role is emerging for these kinases as regulators of biotic stress responses triggered by viral, bacterial, fungal, and oomycete infections as well as by herbivory. While this identifies SnRK1 as a promising target for directed modification or selection for more quantitative and sustainable resistance, its central function also increases the chances of unwanted side effects on growth and fitness, stressing the need for identification and in-depth characterization of the mechanisms and target processes involved. VIDEO ABSTRACT. PMID:27156455

  18. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    Science.gov (United States)

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems.

  19. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    Science.gov (United States)

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems. PMID:25420573

  20. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    Science.gov (United States)

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  1. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System.

    Science.gov (United States)

    Ho, Adrian; Angel, Roey; Veraart, Annelies J; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L E

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes.

  2. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    Science.gov (United States)

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  3. Above- and below-ground herbivory effects on below-ground plant–fungus interactions and plant–soil feedback responses

    NARCIS (Netherlands)

    Bezemer, T.M.; Van der Putten, W.H.; Martens, H.; Van de Voorde, T.F.J.; Mulder, P.P.J.; Kostenko, O.

    2013-01-01

    Summary Feeding by insect herbivores can affect plant growth and the concentration of defense compounds in plant tissues. Since plants provide resources for soil organisms, herbivory can also influence the composition of the soil community via its effects on the plant. Soil organisms, in turn, are i

  4. Niche-habitat mechanisms and biotic interactions explain the coexistence and abundance of congeneric sandgrouse species.

    Science.gov (United States)

    Benítez-López, Ana; Viñuela, Javier; Suárez, Francisco; Hervás, Israel; García, Jesús T

    2014-09-01

    Ascertaining which niche processes allow coexistence between closely related species is of special interest in ecology. We quantified variations in the environmental niches and densities of two congeneric species, the pin-tailed and the black-bellied sandgrouse (Pterocles alchata and Pterocles orientalis) in allopatry and sympatry under similar abiotic, habitat and dispersal contexts to understand their coexistence. Using principal component analysis, we defined environmental gradients (niche dimensions) including abiotic, habitat and anthropogenic variables, and calculated niche breadth, position and overlap of both species in sympatry and allopatry. Additionally, sandgrouse density was modelled as a function of the niche dimensions and the density of the other species. We found evidence that each species occupies distinct environmental niches in sympatry and in allopatry. The black-bellied sandgrouse exploits a broader range of environmental conditions (wider niche breadth) while the pin-tailed sandgrouse reaches high densities where conditions seem to match its optimum. In sympatry, both species shift their niches to intermediate positions, indicating the importance of abiotic factors in setting coexistence areas. Environmental conditions determine regional densities of pin-tailed sandgrouse whereas biotic interactions explain the density of the black-bellied sandgrouse in areas with abiotic conditions similarly conducive for both species. Highly suitable areas for the pin-tailed sandgrouse fall beyond the upper thermal limit of the black-bellied sandgrouse, leading to niche segregation and low densities for the latter. Finally, local niche shift and expansion plus possible heterospecific aggregation allow the pin-tailed sandgrouse to thrive in a priori less favourable environments. This work provides insight into how different mechanisms allow species coexistence and how species densities vary in sympatry compared to allopatry as a result of environmental

  5. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change

    NARCIS (Netherlands)

    Tomiolo, S.; Van der Putten, Wim; Tielborger, K.

    2015-01-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatica

  6. Seperating the role of biotic interactions and climate in determining adaptive response of plants to climate change

    NARCIS (Netherlands)

    Tomiolo, S.; Putten, van der W.H.; Tielbörger, K.

    2015-01-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatica

  7. Arctic ecosystem functional zones: identification and quantification using an above and below ground monitoring strategy

    Science.gov (United States)

    Hubbard, Susan S.; Ajo-Franklin, Jonathan B.; Dafflon, Baptiste; Dou, Shan; Kneafsey, Tim J.; Peterson, John E.; Tas, Neslihan; Torn, Margaret S.; Phuong Tran, Anh; Ulrich, Craig; Wainwright, Haruko; Wu, Yuxin; Wullschleger, Stan

    2015-04-01

    Although accurate prediction of ecosystem feedbacks to climate requires characterization of the properties that influence terrestrial carbon cycling, performing such characterization is challenging due to the disparity of scales involved. This is particularly true in vulnerable Arctic ecosystems, where microbial activities leading to the production of greenhouse gasses are a function of small-scale hydrological, geochemical, and thermal conditions influenced by geomorphology and seasonal dynamics. As part of the DOE Next-Generation Ecosystem Experiment (NGEE-Arctic), we are advancing two approaches to improve the characterization of complex Arctic ecosystems, with an initial application to an ice-wedge polygon dominated tundra site near Barrow, AK, USA. The first advance focuses on developing a new strategy to jointly monitor above- and below- ground properties critical for carbon cycling in the tundra. The strategy includes co-characterization of properties within the three critical ecosystem compartments: land surface (vegetation, water inundation, snow thickness, and geomorphology); active layer (peat thickness, soil moisture, soil texture, hydraulic conductivity, soil temperature, and geochemistry); and permafrost (mineral soil and ice content, nature, and distribution). Using a nested sampling strategy, a wide range of measurements have been collected at the study site over the past three years, including: above-ground imagery (LiDAR, visible, near infrared, NDVI) from various platforms, surface geophysical datasets (electrical, electromagnetic, ground penetrating radar, seismic), and point measurements (such as CO2 and methane fluxes, soil properties, microbial community composition). A subset of the coincident datasets is autonomously collected daily. Laboratory experiments and new inversion approaches are used to improve interpretation of the field geophysical datasets in terms of ecosystem properties. The new strategy has significantly advanced our ability

  8. Soil Organic Carbon and Below Ground Biomass: Development of New GLOBE Special Measurements

    Science.gov (United States)

    Levine, Elissa; Haskett, Jonathan

    1999-01-01

    A scientific consensus is building that changes in the atmospheric concentrations of radiatively active gases are changing the climate (IPCC, 1990). One of these gases CO2 has been increasing in concentration due to additions from anthropogenic sources that are primarily industrial and land use related. The soil contains a very large pool of carbon, estimated at 1550 Gt (Lal 1995) which is larger than the atmospheric and biosphere pools of carbon combined (Greenland, 1995). The flux between the soil and the atmosphere is very large, 60 Pg C/yr (Lal 1997), and is especially important because the soil can act as either a source or a sink for carbon. On any given landscape, as much as 50% of the biomass that provides the major source of carbon can be below ground. In addition, the movement of carbon in and out of the soil is mediated by the living organisms. At present, there is no widespread sampling of soil biomass in any consistent or coordinated manner. Current large scale estimates of soil carbon are limited by the number and widely dispersed nature of the data points available. A measurement of the amount of carbon in the soil would supplement existing carbon data bases as well as provide a benchmark that can be used to determine whether the soil is storing carbon or releasing it to the atmosphere. Information on the below ground biomass would be a valuable addition to our understanding of net primary productivity and standing biomass. The addition of these as special measurements within GLOBE would be unique in terms of areal extent and continuity, and make a real contribution to scientific understanding of carbon dynamics.

  9. Epiphyte-cover on seagrass (Zostera marina L. leaves impedes plant performance and radial O2 loss from the below-ground tissue

    Directory of Open Access Journals (Sweden)

    Kasper Elgetti Brodersen

    2015-08-01

    Full Text Available The O2 budget of seagrasses is a complex interaction between several sources and sinks, which is strongly regulated by light availability and mass transfer over the diffusive boundary layer (DBL surrounding the plant. Epiphyte growth on leaves may thus strongly affect the O2 availability of the seagrass plant and its capability to aerate its rhizosphere as a defence against plant toxins.We used electrochemical and fiber-optic microsensors to quantify the O2 flux, DBL and light microclimate around leaves with and without filamentous algal epiphytes. We also quantified the below-ground radial O2 loss from roots (~1 mm from the root-apex to elucidate how this below-ground oxic microzone was affected by the presence of epiphytes.Epiphyte-cover on seagrass leaves (~21% areal cover resulted in reduced light quality and quantity for photosynthesis, thus leading to reduced plant fitness. A ~4 times thicker diffusive boundary layer around leaves with epiphyte-cover impeded gas (and nutrient exchange with the surrounding water-column and thus the amount of O2 passively diffusing into the leaves in darkness. During light exposure of the leaves, radial oxygen loss from the below-ground tissue was ~2 times higher from plants without epiphyte-cover. In contrast, no O2 was detectable at the surface of the root-cap tissue of plants with epiphyte-cover during darkness, leaving the plants more susceptible to sulphide intrusion.Epiphyte growth on seagrass leaves thus negatively affects the light climate and O2 uptake in darkness, hampering the plants performance and thereby reducing the oxidation capability of its below-ground tissue.

  10. Causes of variation in biotic interaction strength and phenotypic selection along an altitudinal gradient.

    Science.gov (United States)

    Mezquida, Eduardo T; Benkman, Craig W

    2014-06-01

    Understanding the causes of variation in biotic interaction strength and phenotypic selection remains one of the outstanding goals of evolutionary ecology. Here we examine the variation in strength of interactions between two seed predators, common crossbills (Loxia curvirostra) and European red squirrels (Sciurus vulgaris), and mountain pine (Pinus uncinata) at and below tree limit in the Pyrenees, and how this translates into phenotypic selection. Seed predation by crossbills increased whereas seed predation by squirrels decreased with increasing elevation and as the canopy became more open. Overall, seed predation by crossbills averaged about twice that by squirrels, and the intensity of selection exerted by crossbills averaged between 2.6 and 7.5 times greater than by squirrels. The higher levels of seed predation by crossbills than squirrels were related to the relatively open nature of most of the forests, and the higher intensity of selection exerted by crossbills resulted from their higher levels of seed predation. However, most of the differences in selection intensity between crossbills and squirrels were the result of habitat features having a greater effect on the foraging behavior of squirrels than of crossbills, causing selection to be much lower for squirrels than for crossbills. PMID:24593660

  11. Annual grass invasion in sagebrush-steppe: The relative importance of climate, soil properties and biotic interactions

    Science.gov (United States)

    Bansal, Sheel; Sheley, Roger L.

    2016-01-01

    The invasion by winter-annual grasses (AGs) such as Bromus tectorum into sagebrush steppe throughout the western USA is a classic example of a biological invasion with multiple, interacting climate, soil and biotic factors driving the invasion, although few studies have examined all components together. Across a 6000-km2 area of the northern Great Basin, we conducted a field assessment of 100 climate, soil, and biotic (functional group abundances, diversity) factors at each of 90 sites that spanned an invasion gradient ranging from 0 to 100 % AG cover. We first determined which biotic and abiotic factors had the strongest correlative relationships with AGs and each resident functional group. We then used regression and structural equation modeling to explore how multiple ecological factors interact to influence AG abundance. Among biotic interactions, we observed negative relationships between AGs and biodiversity, perennial grass cover, resident species richness, biological soil crust cover and shrub density, whereas perennial and annual forb cover, tree cover and soil microbial biomass had no direct linkage to AG. Among abiotic factors, AG cover was strongly related to climate (increasing cover with increasing temperature and aridity), but had weak relationships with soil factors. Our structural equation model showed negative effects of perennial grasses and biodiversity on AG cover while integrating the negative effects of warmer climate and positive influence of belowground processes on resident functional groups. Our findings illustrate the relative importance of biotic interactions and climate on invasive abundance, while soil properties appear to have stronger relationships with resident biota than with invasives.

  12. Plant microRNAs: key regulators of root architecture and biotic interactions.

    Science.gov (United States)

    Couzigou, Jean-Malo; Combier, Jean-Philippe

    2016-10-01

    Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes. PMID:27292927

  13. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil

    International Nuclear Information System (INIS)

    Highlights: ► We quantify above- and below-ground CH4 fluxes in a landfill-cover soil. ► We link methanotrophic activity to estimates of CH4 loading from the waste body. ► Methane loading and emissions are highly variable in space and time. ► Eddy covariance measurements yield largest estimates of CH4 emissions. ► Potential methanotrophic activity is high at a location with substantial CH4 loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH4). However, much of the CH4 produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH4 fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH4 ingress (loading) from the waste body at selected locations. Fluxes of CH4 into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH4 concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH4 fluxes and CH4 loading were estimated from soil–gas concentration profiles in conjunction with radon measurements, and gas push–pull tests (GPPTs) were performed to quantify rates of microbial CH4 oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH4 emissions from the test section (daily mean up to ∼91,500 μmol m−2 d−1), whereas flux-chamber measurements and CH4 concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH4 (uptake up to −380 μmol m−2 d−1) during the experimental period. Methane concentration profiles also indicated strong variability in CH4 loading over short distances in the cover soil, while

  14. Ectomycorrhizal communities above and below ground and truffle productivity in a Tuber aestivum orchard

    Directory of Open Access Journals (Sweden)

    Elena Salerni

    2014-08-01

    Full Text Available Aim of study: The diversity of ectomycorrhizal fungal communities (EM above (EMFb and below (EMMt ground associated with Quercus cerris L., Q. pubescens Willd., and Pinus nigra J.F.Arnold was analyzed.Area of study: A 20 year-old orchard that produces Tuber aestivum truffles, located a few kilometers from Chiusi della Verna (latitude 43° 41’ 53’’; longitude 11° 56’ 9’’ in Tuscany (central Italy was observed.Material and Methods: This investigation combined analyses of EMFb, EMMt, T. aestivum productivity, different host trees, and statistical data on community ecology.Main results: The EM communities showed high species richness and differed slightly in relation to both the host tree and their location above or below ground, providing frequent findings of Tricholoma and Tomentella, respectively. Positive correlations were found between the number of truffles and host trees, and between the weight and number of truffles and EMFb.Research highlights: Mycorrhizal fungi and truffle production are not in competition.Key words: Fungal communities; fruiting bodies; morphotypes; Tuber aestivum; competition; Italy.

  15. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  16. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.

    Science.gov (United States)

    McCormack, M Luke; Dickie, Ian A; Eissenstat, David M; Fahey, Timothy J; Fernandez, Christopher W; Guo, Dali; Helmisaari, Heljä-Sisko; Hobbie, Erik A; Iversen, Colleen M; Jackson, Robert B; Leppälammi-Kujansuu, Jaana; Norby, Richard J; Phillips, Richard P; Pregitzer, Kurt S; Pritchard, Seth G; Rewald, Boris; Zadworny, Marcin

    2015-08-01

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.

  17. Root proliferation and seed yield in response to spatial heterogeneity of below-ground competition.

    Science.gov (United States)

    O'Brien, Erin E; Gersani, Mordechai; Brown, Joel S

    2005-11-01

    Here, we tested the predictions of a 'tragedy of the commons' model of below-ground plant competition in annual plants that experience spatial heterogeneity in their competitive environment. Under interplant competition, the model predicts that a plant should over-proliferate roots relative to what would maximize the collective yield of the plants. We predict that a plant will tailor its root proliferation to local patch conditions, restraining root production when alone and over-proliferating in the presence of other plants. A series of experiments were conducted using pairs of pea (Pisum sativum) plants occupying two or three pots in which the presence or absence of interplant root competition was varied while nutrient availability per plant was held constant. In two-pot experiments, competing plants produced more root mass and less pod mass per individual than plants grown in isolation. In three-pot experiments, peas modulated this response to conditions at the scale of individual pots. Root proliferation in the shared pot was higher compared with the exclusively occupied pot. Plants appear to display sophisticated nutrient foraging with outcomes that permit insights into interplant competition.

  18. Roots in space: a spatially explicit model for below-ground competition in plants.

    Science.gov (United States)

    O'Brien, Erin E; Brown, Joel S; Moll, Jason D

    2007-04-01

    Game theory provides an untapped framework for predicting how below-ground competition will influence root proliferation in a spatially explicit environment. We model root competition for space as an evolutionary game. In response to nutrient competition between plants, an individual's optimal strategy (the spatial distribution of root proliferation) depends on the rooting strategies of neighbouring plants. The model defines and predicts the fundamental (in the absence of competition) and realized (in the presence of competition) root space of an individual plant. Overlapping fundamental root spaces guarantee smaller, yet still overlapping, realized root spaces as individuals concede some but not all space to a neighbour's roots. Root overlap becomes an intentional consequence of the neighbouring plants playing a nutrient foraging game. Root proliferation and regions of root overlap should increase with soil fertility, decline with the distance cost of root production (e.g. soil compactness) and shift with competitive asymmetries. Seemingly erratic patterns of root proliferation and root overlap become the expected outcome of nutrient foraging games played in soils with small-scale heterogeneities in nutrient availability. PMID:17251098

  19. Quantifying below-ground nitrogen of legumes: Optimizing procedures for 15N shoot-labelling

    International Nuclear Information System (INIS)

    Quantifying below-ground nitrogen (N) of legumes is fundamental to understanding their effects on soil mineral N fertility and on the N economies of following or companion crops in legume-based rotations. Methodologies based on 15N-labelling of whole plants with subsequent measurement of 15N in recovered plant parts and in the root-zone soil have proved promising. We report four glasshouse experiments with objectives to develop appropriate protocols for in situ 15N labelling of four pulses, faba bean (Vicia faba), chickpea (Cicer arietinum), mung bean (Vigna radiata) and pigeon pea (Cajanus cajan). Treatments included 15N-urea concentration, feeding technique, leaflet/petiole position, and frequency of feeding. Nitrogen-15-labelling via the leaf-flap was best for faba bean, mung and pigeon pea, whilst petiole feeding was best for chickpea, in all cases using 0.2-mL volumes of 0.5% urea (98 atom% 15N excess). The implications of uneven enrichment of the nodulated roots because of effects of the 15N-depleted nodules when calculating root-derived N in soil are discussed. (author)

  20. Above- and below-ground responses of Calamagrostis purpurea to UV-B radiation and elevated CO{sub 2} under phosphorus limitation

    Energy Technology Data Exchange (ETDEWEB)

    Bussell, J.S.; Gwynn-Jones, D.; Griffith, G.W.; Scullion, J. (Aberystwyth Univ., IBERS, Wales (United Kingdom))

    2012-08-15

    UV-B radiation and elevated CO{sub 2} may impact rhizosphere processes through altered below-ground plant resource allocation and root exudation, changes that may have implications for nutrient acquisition. As nutrients limit plant growth in many habitats, their supply may dictate plant response under elevated CO{sub 2}. This study investigated UV-B exposure and elevated CO{sub 2} effects, including interactions, on plant growth, tissue chemistry and rooting responses relating to P acquisition. The sub-arctic grass Calamagrostis purpurea was subjected to UV-B (0 or 3.04 kJ m-2day-1) and CO{sub 2} (ambient 380 or 650 ppmv) treatments in a factorial glasshouse experiment, with sparingly soluble P (0 or 0.152 mg P per plant as FePO{sub 4}) a further factor. It was hypothesized that UV-B exposure and elevated CO{sub 2} would change plant resource allocation, with CO{sub 2} mitigating adverse responses to UV-B exposure and aiding P uptake. Plant biomass and morphology, tissue composition and rhizosphere leachate properties were measured. UV-B directly affected chemical composition of shoots and interacted with CO{sub 2} to give a greater root biomass. Elevated CO{sub 2} altered the composition of both shoots and roots and increased shoot biomass and secondary root length, while leachate pH decreased. Below-ground responses to CO{sub 2} did not affect P acquisition although P limitation progressively reduced leachate pH and increased secondary root length. Although direct plant growth, foliar composition and below-ground nutrient acquisition responses were dominated by CO{sub 2} treatments, UV-B modified these CO{sub 2} responses significantly. These interactions have implications for plant responses to future atmospheric conditions. (Author)

  1. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  2. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  3. A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary

    DEFF Research Database (Denmark)

    Blois, Jessica L.; Gotelli, Nicholas J.; Behrensmeyer, Anna K.;

    2014-01-01

    Environmental conditions, dispersal lags, and interactions among species are major factors structuring communities through time and across space. Ecologists have emphasized the importance of biotic interactions in determining local patterns of species association. In contrast, abiotic limits...... with significant patterns of taxon association. Most taxon pairs that exhibited co-occurrence patterns indicative of biotic interactions at one time did not exhibit significant associations at other times. Evidence for environmental filtering and dispersal limitation was weakest for aggregated pairs between 16...

  4. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect.

    Science.gov (United States)

    Merrill, Richard M; Gutiérrez, David; Lewis, Owen T; Gutiérrez, Javier; Díez, Sonia B; Wilson, Robert J

    2008-01-01

    1. The ranges of many species have expanded in cool regions but contracted at warm margins in response to recent climate warming, but the mechanisms behind such changes remain unclear. Particular debate concerns the roles of direct climatic limitation vs. the effects of interacting species in explaining the location of low latitude or low elevation range margins. 2. The mountains of the Sierra de Guadarrama (central Spain) include both cool and warm range margins for the black-veined white butterfly, Aporia crataegi, which has disappeared from low elevations since the 1970s without colonizing the highest elevations. 3. We found that the current upper elevation limit to A. crataegi's distribution coincided closely with that of its host plants, but that the species was absent from elevations below 900 m, even where host plants were present. The density of A. crataegi per host plant increased with elevation, but overall abundance of the species declined at high elevations where host plants were rare. 4. The flight period of A. crataegi was later at higher elevations, meaning that butterflies in higher populations flew at hotter times of year; nevertheless, daytime temperatures for the month of peak flight decreased by 6.2 degrees C per 1 km increase in elevation. 5. At higher elevations A. crataegi eggs were laid on the south side of host plants (expected to correspond to hotter microclimates), whereas at lower sites the (cooler) north side of plants was selected. Field transplant experiments showed that egg survival increased with elevation. 6. Climatic limitation is the most likely explanation for the low elevation range margin of A. crataegi, whereas the absence of host plants from high elevations sets the upper limit. This contrasts with the frequent assumption that biotic interactions typically determine warm range margins, and thermal limitation cool margins. 7. Studies that have modelled distribution changes in response to climate change may have underestimated

  5. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    Science.gov (United States)

    Faußer, Anna C.; Dušek, Jiří; Čížková, Hana; Kazda, Marian

    2016-01-01

    Wetland plants actively provide oxygen for aerobic processes in submerged tissues and the rhizosphere. The novel concomitant assessment of diurnal dynamics of oxygen and carbon dioxide concentrations under field conditions tests the whole-system interactions in plant-internal gas exchange and regulation. Oxygen concentrations ([O2]) were monitored in-situ in central culm and rhizome pith cavities of common reed (Phragmites australis) using optical oxygen sensors. The corresponding carbon dioxide concentrations ([CO2]) were assessed via gas samples from the culms. Highly dynamic diurnal courses of [O2] were recorded, which started at 6.5–13 % in the morning, increased rapidly up to 22 % during midday and declined exponentially during the night. Internal [CO2] were high in the morning (1.55–17.5 %) and decreased (0.04–0.94 %) during the rapid increase of [O2] in the culms. The observed negative correlations between [O2] and [CO2] particularly describe the below ground relationship between plant-mediated oxygen supply and oxygen use by respiration and biogeochemical processes in the rhizosphere. Furthermore, the nocturnal declining slopes of [O2] in culms and rhizomes indicated a down-regulation of the demand for oxygen in the complete below ground plant-associated system. These findings emphasize the need for measurements of plant-internal gas exchange processes under field conditions because it considers the complex interactions in the oxic-anoxic interface. PMID:27207278

  6. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption.

    Science.gov (United States)

    Faußer, Anna C; Dušek, Jiří; Čížková, Hana; Kazda, Marian

    2016-01-01

    Wetland plants actively provide oxygen for aerobic processes in submerged tissues and the rhizosphere. The novel concomitant assessment of diurnal dynamics of oxygen and carbon dioxide concentrations under field conditions tests the whole-system interactions in plant-internal gas exchange and regulation. Oxygen concentrations ([O2]) were monitored in-situ in central culm and rhizome pith cavities of common reed (Phragmites australis) using optical oxygen sensors. The corresponding carbon dioxide concentrations ([CO2]) were assessed via gas samples from the culms. Highly dynamic diurnal courses of [O2] were recorded, which started at 6.5-13 % in the morning, increased rapidly up to 22 % during midday and declined exponentially during the night. Internal [CO2] were high in the morning (1.55-17.5 %) and decreased (0.04-0.94 %) during the rapid increase of [O2] in the culms. The observed negative correlations between [O2] and [CO2] particularly describe the below ground relationship between plant-mediated oxygen supply and oxygen use by respiration and biogeochemical processes in the rhizosphere. Furthermore, the nocturnal declining slopes of [O2] in culms and rhizomes indicated a down-regulation of the demand for oxygen in the complete below ground plant-associated system. These findings emphasize the need for measurements of plant-internal gas exchange processes under field conditions because it considers the complex interactions in the oxic-anoxic interface. PMID:27207278

  7. Rhizodeposition and biotic interactions in the rhizosphere of Phaseolus vulgaris L. and Hordeum vulgare L.

    OpenAIRE

    Haase, Susan

    2008-01-01

    Biochemical processes at the soil-plant interface are largely regulated by organic and inorganic compounds released by roots and microorganisms. Several abiotic and biotic factors are suspected to stimulate rhizodeposition and, thus, contribute to enriching of the rhizosphere with plant-derived compounds. This thesis focused on the effects of two factors, (i) the elevation of atmospheric CO2 concentration accompanied by nutrient limitation in the soil and (ii) low-level root infestation by pl...

  8. Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering.

    Science.gov (United States)

    Lessard, Jean-Philippe; Weinstein, Ben G; Borregaard, Michael K; Marske, Katharine A; Martin, Danny R; McGuire, Jimmy A; Parra, Juan L; Rahbek, Carsten; Graham, Catherine H

    2016-01-01

    A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure. PMID:27277404

  9. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    OpenAIRE

    Kerbiriou, P.J.; Stomph, T.J.; Lammerts van Bueren, E.T.; Struik, P.C.

    2013-01-01

    Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grown lettuce; exploring genetic variation in such traits might contribute to strategies to select for robust cultivars, i.e., cultivars that perform well in the field, even under stress. Methods: To i...

  10. Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: A case study from Mozambique

    International Nuclear Information System (INIS)

    The need to mitigate climate change makes production of liquid biofuels a high priority. Substituting fossil fuels by biodiesel produced from Jatropha curcas has gained widespread attention as Jatropha cultivation is claimed to offer green house gas emission reductions. Farmers respond worldwide to this increasing demand by converting forests into Jatropha, but whether Jatropha-based biodiesel offers carbon savings depends on the carbon emissions that occur when land use is changed to Jatropha. This paper provides an impact assessment of a small-scale Jatropha project in Cabo Delgado, Mozambique. The paper outlines the estimated impacts on above and below-ground carbon stocks when land use is changed to increase Jatropha production. The results show that expansion of Jatropha production will most likely lead to the conversion of miombo forest areas to Jatropha, which implies a reduction in above and below-ground carbon stocks. The carbon debts created by the land use change can be repaid by replacing fossil fuels with Jatropha-based biodiesel. A repayment time of almost two centuries is found with optimistic estimates of the carbon debt, while the use of pessimistic values results in a repayment time that approaches the millennium. - Highlights: ► Demands for biofuels make production of Jatropha-based biodiesel a priority. ► Farmers in Northern Mozambique are likely to convert un-logged miombo to Jatropha. ► Converting miombo to Jatropha creates reductions in above and below-ground carbon. ► It takes 187–966 years to repay emissions from above and below-ground carbon stocks.

  11. Long-term resilience of above- and below ground ecosystem components among contrasting ecosystems.

    Science.gov (United States)

    Wardle, David A; Jonsson, Micael

    2014-07-01

    While several studies have explored how short-term ecological responses to disturbance vary among ecosystems, experimental studies of how contrasting ecosystems recover from disturbance in the longer term are few. We performed a simple long-term experiment on each of 30 contrasting forested islands in northern Sweden that vary in size; as size decreases, time since fire increases, soil fertility and ecosystem productivity declines, and plant species diversity increases. We predicted that resilience of understory plant community properties would be greatest on the larger, more productive islands, and that this would be paralleled by greater resilience of soil biotic and abiotic properties. For each island, we applied three disturbance treatments of increasing intensity to the forest understory once in 1998, i.e., light trimming, heavy trimming, and burning; a fourth treatment was an undisturbed control. We measured recovery of the understory vascular plant community annually over the following 14 years, and at that time also assessed recovery of mosses and several belowground variables. Consistent with our predictions, vascular plant whole-community variables (total cover, species richness, diversity [Shannon's H'], and community composition) recovered significantly more slowly on the smaller (least fertile) than the larger islands, but this difference was not substantial, and only noticeable in the most severely disturbed treatment. When an index of resilience was used, we were unable to detect effects of island size on the recovery of any property. We found that mosses and one shrub species (Empetrum hermaphroditum) recovered particularly slowly, and the higher abundance of this shrub on small islands was sufficient to explain any slower recovery of whole-ecosystem variables on those islands. Further, several belowground variables had not fully recovered from the most intense disturbance after 14 yr, and counter to our predictions, the degree of their recovery was

  12. Long-term resilience of above- and below ground ecosystem components among contrasting ecosystems.

    Science.gov (United States)

    Wardle, David A; Jonsson, Micael

    2014-07-01

    While several studies have explored how short-term ecological responses to disturbance vary among ecosystems, experimental studies of how contrasting ecosystems recover from disturbance in the longer term are few. We performed a simple long-term experiment on each of 30 contrasting forested islands in northern Sweden that vary in size; as size decreases, time since fire increases, soil fertility and ecosystem productivity declines, and plant species diversity increases. We predicted that resilience of understory plant community properties would be greatest on the larger, more productive islands, and that this would be paralleled by greater resilience of soil biotic and abiotic properties. For each island, we applied three disturbance treatments of increasing intensity to the forest understory once in 1998, i.e., light trimming, heavy trimming, and burning; a fourth treatment was an undisturbed control. We measured recovery of the understory vascular plant community annually over the following 14 years, and at that time also assessed recovery of mosses and several belowground variables. Consistent with our predictions, vascular plant whole-community variables (total cover, species richness, diversity [Shannon's H'], and community composition) recovered significantly more slowly on the smaller (least fertile) than the larger islands, but this difference was not substantial, and only noticeable in the most severely disturbed treatment. When an index of resilience was used, we were unable to detect effects of island size on the recovery of any property. We found that mosses and one shrub species (Empetrum hermaphroditum) recovered particularly slowly, and the higher abundance of this shrub on small islands was sufficient to explain any slower recovery of whole-ecosystem variables on those islands. Further, several belowground variables had not fully recovered from the most intense disturbance after 14 yr, and counter to our predictions, the degree of their recovery was

  13. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics

    Directory of Open Access Journals (Sweden)

    Hoeksema Jason D

    2008-05-01

    Full Text Available Abstract Background Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (Pinus muricata D. Don and one of its common ectomycorrhizal fungi (Rhizopogon occidentalis Zeller and Dodge varies in outcome, when different combinations of plant and fungal genotypes are tested under a range of different abiotic and biotic conditions. Results We used a 2 × 2 × 2 × 2 factorial experiment to test the main and interactive effects of plant lineage (two maternal seed families, fungal lineage (two spore collections, soil type (lab mix or field soil, and non-mycorrhizal microbes (with or without on the performance of plants and fungi. Ecological outcomes, as assessed by plant and fungal performance, varied widely across experimental environments, including interactions between plant or fungal lineages and soil environmental factors. Conclusion These results show the potential for selection mosaics in plant-mycorrhizal interactions, and indicate that these interactions are likely to coevolve in different ways in different environments, even when initially the genotypes of the interacting species are the same across all environments. Hence, selection mosaics may be equally as effective as genetic differences among populations in driving divergent coevolution among populations of interacting species.

  14. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate;

    2015-01-01

    Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity......-interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased...

  15. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology.

    Science.gov (United States)

    Roux, F; Bergelson, J

    2016-01-01

    In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity. PMID:27282025

  16. Does the Slow-Growth, High-Mortality Hypothesis Apply Below Ground?

    Science.gov (United States)

    Hourston, James E; Bennett, Alison E; Johnson, Scott N; Gange, Alan C

    2016-01-01

    Belowground tri-trophic study systems present a challenging environment in which to study plant-herbivore-natural enemy interactions. For this reason, belowground examples are rarely available for testing general ecological theories. To redress this imbalance, we present, for the first time, data on a belowground tri-trophic system to test the slow growth, high mortality hypothesis. We investigated whether the differing performance of entomopathogenic nematodes (EPNs) in controlling the common pest black vine weevil Otiorhynchus sulcatus could be linked to differently resistant cultivars of the red raspberry Rubus idaeus. The O. sulcatus larvae recovered from R. idaeus plants showed significantly slower growth and higher mortality on the Glen Rosa cultivar, relative to the more commercially favored Glen Ample cultivar creating a convenient system for testing this hypothesis. Heterorhabditis megidis was found to be less effective at controlling O. sulcatus than Steinernema kraussei, but conformed to the hypothesis. However, S. kraussei maintained high levels of O. sulcatus mortality regardless of how larval growth was influenced by R. idaeus cultivar. We link this to direct effects that S. kraussei had on reducing O. sulcatus larval mass, indicating potential sub-lethal effects of S. kraussei, which the slow-growth, high-mortality hypothesis does not account for. Possible origins of these sub-lethal effects of EPN infection and how they may impact on a hypothesis designed and tested with aboveground predator and parasitoid systems are discussed. PMID:27571368

  17. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean.

    Directory of Open Access Journals (Sweden)

    Loreto Naya

    Full Text Available MicroRNAs are recognized as important post-transcriptional regulators in plants. Information about the roles of miRNAs in common bean (Phaseolus vulgaris L., an agronomically important legume, is yet scant. The objective of this work was to functionally characterize the conserved miRNA: miR398b and its target Cu/Zn Superoxide Dismutase 1 (CSD1 in common bean. We experimentally validated a novel miR398 target: the stress up-regulated Nodulin 19 (Nod19. Expression analysis of miR398b and target genes -CSD1 and Nod19- in bean roots, nodules and leaves, indicated their role in copper (Cu homeostasis. In bean plants under Cu toxicity miR398b was decreased and Nod19 and CSD1, that participates in reactive oxygen species (ROS detoxification, were up-regulated. The opposite regulation was observed in Cu deficient bean plants; lower levels of CSD1 would allow Cu delivery to essential Cu-containing proteins. Composite common bean plants with transgenic roots over-expressing miR398 showed ca. 20-fold higher mature miR398b and almost negligible target transcript levels as well as increased anthocyanin content and expression of Cu-stress responsive genes, when subjected to Cu deficiency. The down-regulation of miR398b with the consequent up-regulation of its targets was observed in common bean roots during the oxidative burst resulting from short-time exposure to high Cu. A similar response occurred at early stage of bean roots inoculated with Rhizobium tropici, where an increase in ROS was observed. In addition, the miR398b down-regulation and an increase in CSD1 and Nod19 were observed in bean leaves challenged with Sclerotinia scleortiorum fungal pathogen. Transient over-expression of miR398b in Nicotiana benthamiana leaves infected with S. sclerotiorum resulted in enhanced fungal lesions. We conclude that the miR398b-mediated up-regulation of CSD and Nod19 is relevant for common bean plants to cope with oxidative stress generated in abiotic and biotic

  18. Bottom-up and top-down mechanisms indirectly mediate interactions between benthic biotic ecosystem components

    Science.gov (United States)

    Van Colen, Carl; Thrush, Simon F.; Parkes, Samantha; Harris, Rachel; Woodin, Sally A.; Wethey, David S.; Pilditch, Conrad A.; Hewitt, Judi E.; Lohrer, Andrew M.; Vincx, Magda

    2015-04-01

    The loss or decline in population size of key species can instigate a cascade of effects that have implications for interacting species, therewith impacting biodiversity and ecosystem functioning. We examined how top-down and bottom-up interactions may mediate knock-on effects of a coastal deposit-feeding clam, Macomona liliana (hereafter Macomona), on sandflat meiobenthos densities. Therefore we manipulated densities of Macomona in combination with predator exclusion and experimental shading that was expected to alter microphytobenthos biomass. We show that Macomona regulated densities of meiobenthic (38-500 μm) nematodes, copepods, polychaetes, turbellarians, and ostracodes during the three months of incubation via indirect mechanisms. Predator pressure on Macomona by eagle rays (Myliobatis tenuicaudatus) was found to have a negative effect on densities of some meiobenthic taxa. Furthermore, experimental shading resulted in the loss of a positive relation between Macomona and microphytobenthos biomass, while concurrently increasing the density of some meiobenthic taxa. We suggest that this observation can be explained by the release from bioturbation interference effects of the cockle Austrovenus stutchburyi that was found to thrive in the presence of Macomona under non-shaded conditions. Our results highlight the importance of interactions between macrofaunal bioturbation, microphyte biomass, sediment stability, and predation pressure for the structuring of benthic communities. This experiment illustrates that manipulative field experiments may be particularly suitable to study such multiple indirect mechanisms that regulate ecosystem diversity and related functioning because such approaches may best capture the complex feedbacks and processes that determine ecosystem dynamics.

  19. Study of toxicity and uptake of nanoparticles towards understanding biotic-abiotic interactions

    Science.gov (United States)

    Kosaraju, Karshak

    With the rapid growth in nanotechnology and tremendous applications the engineered nanomaterials (ENs) offer, there is increase in usage of ENs which increases their likelihood of coming in contact with biological systems which include complex beings like humans and other relatively simpler organism like bacteria and other microorganisms. The interaction between the nanomaterials (NMs) and biological systems includes the formation of protein coronas, particle wrapping, intracellular uptake and bio catalytic processes which could have biocompatible or bio adverse outcomes. Understanding these interactions allows the development of predictive relationships between structure and activity that are mainly determined by NM properties such as size, shape, surface chemistry, aggregation, and surface functionality among many others. This understanding will also provide insight towards the design and development of benign nanomaterials. The overarching goal of this dissertation is to understand the influence of the physicochemical characteristics of the NMs and their influence on their uptake and toxicity when they interact with the biological systems (cells and organs). For this purpose, thoroughly characterized NMs will be exposed to a cellular model, A549 cells (alveolar lung epithelial cells), and a mice model (CD-1 mice) through inhalational administration. The effects of NMs on the in vitro and in vivo models will be evaluated by bio- and immuno-chemical methods to understand toxicity, and a combination of analytical spectroscopic and microscopic tools to study uptake. In vivo toxicity assessment will also be performed by using electrocardiogram (ECG) measurements as a tool to study the effects of inhalation of NMs on cardiac response in mice. Through in vivo studies, a novel non-invasive method, Reserve of Refractoriness (RoR), will be introduced as a tool to study cardiotoxicity.

  20. Abiotic and biotic interactions determine whether increased colonization is beneficial or detrimental to metapopulation management.

    Science.gov (United States)

    Southwell, Darren M; Rhodes, Jonathan R; McDonald-Madden, Eve; Nicol, Sam; Helmstedt, Kate J; McCarthy, Michael A

    2016-06-01

    Increasing the colonization rate of metapopulations can improve persistence, but can also increase exposure to threats. To make good decisions, managers must understand whether increased colonization is beneficial or detrimental to metapopulation persistence. While a number of studies have examined interactions between metapopulations, colonization, and threats, they have assumed that threat dynamics respond linearly to changes in colonization. Here, we determined when to increase colonization while explicitly accounting for non-linear dependencies between a metapopulation and its threats. We developed patch occupancy metapopulation models for species susceptible to abiotic, generalist, and specialist threats and modeled the total derivative of the equilibrium proportion of patches occupied by each metapopulation with respect to the colonization rate. By using the total derivative, we developed a rule for determining when to increase metapopulation colonization. This rule was applied to a simulated metapopulation where the dynamics of each threat responded to increased colonization following a power function. Before modifying colonization, we show that managers must understand: (1) whether a metapopulation is susceptible to a threat; (2) the type of threat acting on a metapopulation; (3) which component of threat dynamics might depend on colonization, and; (4) the likely response of a threat-dependent variable to changes in colonization. The sensitivity of management decisions to these interactions increases uncertainty in conservation planning decisions.

  1. Impact of global changes and biotic interactions on food webs in lakes

    DEFF Research Database (Denmark)

    Vidal, Nicolas

    of the most studied stressors on shallow lakes so far; and it may interact with the other stressors related to global change with profound negative effects on shallow lake food webs. The aim of this thesis was to study the effects of different stressors related to global change on food web structure...... analysis of the main communities inhabiting shallow lakes. To assess the consequences of increased air temperatures, space-for-time substitution comparisons were performed of the food webs, community structure and potential cascading effects in two sets of lakes located in remote islands with similar......, accordingly, stronger cascading effects on the lower trophic levels could be traced in the Azorean lakes. However, in contrast to expectations, no effect on the trophic position of fish was found, but the shape of the food web structure was more triangular in the (cold) Faroese lakes that were also...

  2. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae).

    Science.gov (United States)

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-12-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  3. Evolutionary history and novel biotic interactions determine plant responses to elevated CO2 and nitrogen fertilization.

    Directory of Open Access Journals (Sweden)

    Rachel Wooliver

    Full Text Available A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1 native species monocultures and 2 mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both

  4. Sources of Below-Ground Respired Carbon in a Northern Minnesota Ombrotrophic Spruce Bog and the Influence of Heating Manipulations.

    Science.gov (United States)

    Guilderson, T. P.; McFarlane, K. J.; McNicol, G.; Hanson, P. J.; Chanton, J.; Wilson, R.; Bosworth, R.; Singleton, M. J.

    2015-12-01

    A significant uncertainty in future land-surface carbon budgets is the response of wetlands to climate change. A related question is the future net climate (radiative) forcing impact due to ecosystem and environmental change in wetlands. Active wetlands emit both CO2 and CH4 to the atmosphere. CH4 is, over a few decades, a much more potent greenhouse gas than CO2 whereas as a consequence of a much longer atmospheric lifetime, CO2 has a longer 'tail' to its influence. Whether wetlands are a net source or sink of atmospheric carbon under future climate change will depend on the response of the ecosystem to rising temperatures and elevated CO2. The largest uncertainty in future wetland budgets, and its climate forcing, is the stability of the large belowground carbon stocks, often in the form of peat, and the partitioning of CO2 and CH4released via ecosystem respiration. We have characterized the isotopic signatures (14,13C of CO2 and CH4, D-CH4) of the respired carbon used for the production of CO2 and CH4 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) site in the Marcell Experimental Forest, which contains replicated mesocosm manipulations including above/below ground warming and elevated CO2. Deep warming (1-2 m) was initiated in July of 2014 and above ground heating will be initiated in July 2015. Comparison of the respired CO2 and CH4with recently fixed photosynthate, below-ground peat (up to 11,000 years old), and dissolved organic carbon allow us to determine the primary substrates used by the microbial community. Control and pre-perturbed plots are characterized by the consumption and respiration of recently fixed photosynthate and recent (few years to 15 yr) carbon. Although CH4 fluxes have begun to respond to deep-heating, the source of carbon remains similar in the control and perturbed plots. Respired CO2 remains consistent with being sourced from carbon only a few years old. We will present additional data

  5. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles.

    Science.gov (United States)

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C

    2016-01-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.

  6. Simulated Sea-Level Rise Effects on the Above and Below-Ground Growth of Two Tidal Marsh Plant Species

    Science.gov (United States)

    Schile, L. M.; Callaway, J. C.; Kelly, M.

    2011-12-01

    Sea-level is expected to rise between 55 and 140 cm in the next century and is likely to have significant effects on the distribution and maintenance of tidal wetlands; however, little is known about the effects of increased sea level on Pacific coast tidal marsh vegetation. We initiated a field experiment in March 2011 to examine how increased depth and duration of inundation affect above and below-ground growth of two tidal wetland plant species: Schoenoplectus acutus and S. americanus. PVC planters, referred to as marsh organs, were installed at fixed elevations in channels at two ancient marshes in the San Francisco Bay Estuary: Browns Island and Rush Ranch. Each marsh organ structure is comprised of five rows of three six-inch PVC pipes, with each row 15cm lower than the row above, and was filled with surrounding mudflat sediment. Elevations span 60 cm and were chosen to be lower than the average current elevations of both species at each marsh to reflect projected increases in sea level. Rhizomes were collected from Browns Island, the less-saline site, and were cut to uniform sizes before planting. In every row, each species was grown individually and together. On a monthly basis, plant heights were recorded and pore-water sulfide concentration, salinity, and soil oxidation-reduction potential were measured. Schoenoplectus americanus growth and density significantly decreased with increased inundation at both sites. Schoenoplectus acutus growth was impacted more significantly at lower elevations at Rush Ranch but had little variation in density and growth across elevations at Browns Island. Salinity and sulfide concentrations varied little across elevations within a site but differed between sites. Above and belowground biomass will be collected in September 2011 to measure total annual productivity. The experiment provides basic yet crucial information on the impacts of increased inundation on tidal wetland vegetation and insight into potential changes in

  7. Influence of Solar Radiation and Biotic Interactions on Bacterial and Eukaryotic Communities Associated with Sewage Decomposition in Ambient Water - Poster

    Science.gov (United States)

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biotic...

  8. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes

    International Nuclear Information System (INIS)

    Farmers in developing countries are one of the world's largest and most efficient producers of sequestered carbon. However, measuring, monitoring and verifying how much carbon trees in smallholder farms are removing from the atmosphere has remained a great challenge in developing nations. Devising a reliable way for measuring carbon associated with trees in agricultural landscapes is essential for helping smallholder farmers benefit from emerging carbon markets. This study aimed to develop biomass equations specific to dominant eucalyptus species found in agricultural landscapes in Western Kenya. Allometric relationships were developed by regressing diameter at breast height (DBH) alone or DBH in combination with height, wood density or crown area against the biomass of 48 trees destructively sampled from a 100 km2 site. DBH alone was a significant predictor variable and estimated aboveground biomass (AGB) with over 95% accuracy. The stems, branches and leaves formed up to 74, 22 and 4% of AGB, respectively, while belowground biomass (BGB) of the harvested trees accounted for 21% of the total tree biomass, yielding an overall root-to-shoot ratio (RS) of 0.27, which varied across tree size. Total tree biomass held in live Eucalyptus trees was estimated to be 24.4 ± 0.01 Mg ha−1, equivalent to 11.7 ± 0.01 Mg of carbon per hectare. The equations presented provide useful tools for estimating tree carbon stocks of Eucalyptus in agricultural landscapes for bio-energy and carbon accounting. These equations can be applied to Eucalyptus in most agricultural systems with similar agro-ecological settings where tree growth parameters would fall within ranges comparable to the sampled population. -- Highlights: ► Equation with DBH alone estimated aboveground biomass with about 95% accuracy. ► Local generic equations overestimated above- and below-ground biomass by 10 and 48%. ► Height, wood density and crown area data did not improve model accuracy. ► Stems, roots

  9. Interactions among biotic and abiotic factors affect the reliability of tungsten microneedles puncturing in vitro and in vivo peripheral nerves: A hybrid computational approach.

    Science.gov (United States)

    Sergi, Pier Nicola; Jensen, Winnie; Yoshida, Ken

    2016-02-01

    Tungsten is an elective material to produce slender and stiff microneedles able to enter soft tissues and minimize puncture wounds. In particular, tungsten microneedles are used to puncture peripheral nerves and insert neural interfaces, bridging the gap between the nervous system and robotic devices (e.g., hand prostheses). Unfortunately, microneedles fail during the puncture process and this failure is not dependent on stiffness or fracture toughness of the constituent material. In addition, the microneedles' performances decrease during in vivo trials with respect to the in vitro ones. This further effect is independent on internal biotic effects, while it seems to be related to external biotic causes. Since the exact synergy of phenomena decreasing the in vivo reliability is still not known, this work explored the connection between in vitro and in vivo behavior of tungsten microneedles through the study of interactions between biotic and abiotic factors. A hybrid computational approach, simultaneously using theoretical relationships and in silico models of nerves, was implemented to model the change of reliability varying the microneedle diameter, and to predict in vivo performances by using in vitro reliability and local differences between in vivo and in vitro mechanical response of nerves.

  10. Physical Stress, Not Biotic Interactions, Preclude an Invasive Grass from Establishing in Forb-Dominated Salt Marshes

    OpenAIRE

    Qiang HE; Cui, Baoshan; An, Yuan

    2012-01-01

    Background Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive. Methodology and Principal Findings We ...

  11. Impacts of an invasive non-native annual weed, Impatiens glandulifera, on above- and below-ground invertebrate communities in the United Kingdom.

    Science.gov (United States)

    Tanner, Robert A; Varia, Sonal; Eschen, René; Wood, Suzy; Murphy, Sean T; Gange, Alan C

    2013-01-01

    Vegetation community composition and the above- and below-ground invertebrate communities are linked intrinsically, though few studies have assessed the impact of non-native plants on both these parts of the community together. We evaluated the differences in the above- (foliage- and ground-dwelling) and below-ground invertebrate communities in nine uninvaded plots and nine plots invaded by the annual invasive species Impatiens glandulifera, in the UK during 2007 and 2008. Over 139,000 invertebrates were identified into distinct taxa and categorised into functional feeding groups. The impact of I. glandulifera on the vegetation and invertebrate community composition was evaluated using multivariate statistics including principal response curves (PRC) and redundancy analysis (RDA). In the foliage-dwelling community, all functional feeding groups were less abundant in the invaded plots, and the species richness of Coleoptera and Heteroptera was significantly reduced. In the ground-dwelling community, herbivores, detritivores, and predators were all significantly less abundant in the invaded plots. In contrast, these functional groups in the below-ground community appeared to be largely unaffected, and even positively associated with the presence of I. glandulifera. Although the cover of I. glandulifera decreased in the invaded plots in the second year of the study, only the below-ground invertebrate community showed a significant response. These results indicate that the above- and below-ground invertebrate communities respond differently to the presence of I. glandulifera, and these community shifts can potentially lead to a habitat less biologically diverse than surrounding native communities; which could have negative impacts on higher trophic levels and ecosystem functioning. PMID:23840648

  12. Impacts of an invasive non-native annual weed, Impatiens glandulifera, on above- and below-ground invertebrate communities in the United Kingdom.

    Directory of Open Access Journals (Sweden)

    Robert A Tanner

    Full Text Available Vegetation community composition and the above- and below-ground invertebrate communities are linked intrinsically, though few studies have assessed the impact of non-native plants on both these parts of the community together. We evaluated the differences in the above- (foliage- and ground-dwelling and below-ground invertebrate communities in nine uninvaded plots and nine plots invaded by the annual invasive species Impatiens glandulifera, in the UK during 2007 and 2008. Over 139,000 invertebrates were identified into distinct taxa and categorised into functional feeding groups. The impact of I. glandulifera on the vegetation and invertebrate community composition was evaluated using multivariate statistics including principal response curves (PRC and redundancy analysis (RDA. In the foliage-dwelling community, all functional feeding groups were less abundant in the invaded plots, and the species richness of Coleoptera and Heteroptera was significantly reduced. In the ground-dwelling community, herbivores, detritivores, and predators were all significantly less abundant in the invaded plots. In contrast, these functional groups in the below-ground community appeared to be largely unaffected, and even positively associated with the presence of I. glandulifera. Although the cover of I. glandulifera decreased in the invaded plots in the second year of the study, only the below-ground invertebrate community showed a significant response. These results indicate that the above- and below-ground invertebrate communities respond differently to the presence of I. glandulifera, and these community shifts can potentially lead to a habitat less biologically diverse than surrounding native communities; which could have negative impacts on higher trophic levels and ecosystem functioning.

  13. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  14. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  15. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    OpenAIRE

    McIntosh, Anne C. S.; Ellen Macdonald, S.; Sylvie A Quideau

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and f...

  16. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  17. Above- and Belowground Trophic Interactions on Creeping Thistle (Cirsium arvense) in High- and Low-Diversity Plant Communities: Potential for Biotic Resistance?

    NARCIS (Netherlands)

    Bezemer, T.M.; Graça, O.; Rousseau, P.; Van der Putten, W.H.

    2004-01-01

    The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and aboveground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by

  18. Above- and Belowground Trophic Interactions on Creeping Thistle (Cirsium arvense) in High- and Low-Diversity Plant Communities: Potential for Biotic Resistance?

    NARCIS (Netherlands)

    Bezemer, T.M.; Graça, O.; Rousseau, P.; Putten, van der W.H.

    2004-01-01

    The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and above-ground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by

  19. Hydrothermal plume particles deconstructed: evidence of biotic and abiotic interactions in particle formation at 9N East Pacific Rise

    Science.gov (United States)

    Breier, J. A.; Toner, B.; Manganini, S. J.; German, C. R.

    2008-12-01

    We are using non-buoyant hydrothermal plume samples collected at 9° 50' N East Pacific Rise to conduct an unprecedented examination of the fine scale (μm- and nm-range) mineralogical and biogeochemical composition of hydrothermal particulates. Recent findings from studies of sinking particulate, suggest that East Pacific Rise hydrothermal particulates are inorganic/organic aggregates. We confirmed this with suspended particulate samples collected, during a 3-day moored multi-sampler deployment in the non- buoyant hydrothermal plume above Tica vent at 9° 50' N East Pacific Rise in November 2007. A combination of high energy synchrotron x-ray absorption spectroscopy and bulk and trace elemental analysis reveal that the >1 μm suspended particulates consist of inorganic Fe oxide grains in a pervasive organic C matrix with carbon K-edge spectra consistent with proteins, lipids, and polysaccharides. This aggregate structure may preserve reduced Fe phases in the presence of oxygenated seawater and alter our basic assumptions about hydrothermal particle dispersion. Scavenging, by coprecipitation and surface adsorption, of seawater nutrients and trace elements such as P, U, Mo, Cr, V, and As may also be influenced by this particulate composition. These samples were collected with a newly developed Suspended Particulate Rosette multi-sampling system designed to collect geochemical and microbial samples from rising deep-sea hydrothermal plumes to enable investigations of abiotic and biotic plume processes.

  20. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    OpenAIRE

    Faußer, Anna C.; Dušek, Jiří; Čížková, Hana; Kazda, Marian

    2016-01-01

    Plants have evolved mechanisms to provide oxygen to their parts in oxygen-free environments like wetland sediments. We measured the diurnal courses of oxygen supply to rhizomes of the common reed, a widespread wetland plant. During the day the below-ground plant parts can rely on ample oxygen, but during the night its supply to rhizomes and roots as well as to the whole assembly of associated microorganisms is limited. The key finding of the study was that during periods of low oxygen supply ...

  1. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    Science.gov (United States)

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity.

  2. Predicting species distribution and abundance responses to climate change : why it is essential to include biotic interactions across trophic levels

    NARCIS (Netherlands)

    Van der Putten, Wim H.; Macel, Mirka; Visser, Marcel E.

    2010-01-01

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biot

  3. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels

    NARCIS (Netherlands)

    Putten, van der W.H.; Macel, M.; Visser, de M.

    2010-01-01

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biot

  4. Process-based species pools reveal the hidden signature of biotic interactions amid the influence of temperature filtering

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Weinstein, Ben G.; Borregaard, Michael Krabbe;

    2016-01-01

    A persistent challenge in ecology is to tease apart the in-fluence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining spe-cies pools and permits assessment ...

  5. Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient

    OpenAIRE

    Troxler, T. G.; C. Coronado-Molina; Rondeau, D. N.; Krupa, S.; Newman, S.; Manna, M.; Price, R. M.; Sklar, F. H.

    2013-01-01

    Ecosystem nutrient cycling is often complex because nutrient dynamics within and between systems are mediated by the interaction of biological and geochemical conditions operating at different temporal and spatial scales. Vegetated patches in semiarid and wetland landscapes have been shown to exemplify some of these patterns and processes. We investigated biological and geochemical factors suggested to contribute to phosphorus (P) movement and availability along a forest-marsh gradient in an ...

  6. Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient

    OpenAIRE

    Troxler, T. G.; C. Coronado-Molina; Rondeau, D. N.; Krupa, S.; Newman, S.; Manna, M.; Price, R. M.; Sklar, F. H.

    2014-01-01

    Ecosystem nutrient cycling is often complex because nutrient dynamics within and between systems are mediated by the interaction of biological and geochemical conditions operating at different temporal and spatial scales. Vegetated patches in semiarid and wetland landscapes have been shown to exemplify some of these patterns and processes. We investigated biological and geochemical factors suggested to contribute to phosphorus (P) movement and availability along a fore...

  7. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2a, Below-ground vaults

    International Nuclear Information System (INIS)

    The US Army Engineer Waterways Experiment Station (WES) and the US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the below-ground vault (BGV) alternative method of low-level radioactive waste (LLW) disposal. A BGV is a reinforced concrete vault (floor, walls, and roof) placed underground below the frost line, and above the water table, surrounded by filter blanket and drainage zones and covered with a low permeability earth layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the BGV structure through material quality and durability considerations. Specific design review criteria have been developed in detail for seven of the eight major categories. 59 refs., 14 figs., 2 tabs

  8. Identifying qualitative effects of different grazing types on below-ground communities and function in a long-term field experiment

    DEFF Research Database (Denmark)

    Macdonald, Catriona A.; Crawley, Michael J.; Wright, Denis J.;

    2015-01-01

    Herbivory is an important modulator of plant biodiversity and productivity in grasslands, but our understanding of herbivore-induced changes on below-ground processes and communities is limited. Using a long-term (17 years) experimental site, we evaluated impacts of rabbit and invertebrate grazers...... between different taxa) were more strongly affected by invertebrate grazers than rabbits. Furthermore, our results suggest that exclusion of invertebrate grazers decreases both microbial biomass and abundance of genes associated with key biogeochemical cycles, and could thus have long-term consequences...... on some soil functions involved in carbon cycling, microbial diversity, structure and functional composition. Both rabbit and invertebrate grazing impacted soil functions and microbial community structure. All functional community measures (functions, biogeochemical cycling genes, network association...

  9. Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient

    Directory of Open Access Journals (Sweden)

    T. G. Troxler

    2013-06-01

    Full Text Available Ecosystem nutrient cycling is often complex because nutrient dynamics within and between systems are mediated by the interaction of biological and geochemical conditions operating at different temporal and spatial scales. Vegetated patches in semiarid and wetland landscapes have been shown to exemplify some of these patterns and processes. We investigated biological and geochemical factors suggested to contribute to phosphorus (P movement and availability along a forest-marsh gradient in an Everglades tree island. Our study illustrated processes that are consistent with the chemohydrodynamic nutrient (CHNT hypothesis and the trigger-transfer, pulse-reserve (TTPR model developed for semiarid systems. Comparison with the TTRP model was constructive as it elaborated several significant patterns and processes of the tree island ecosystem including: (1 concentration of the limiting resource (P in the source patch [High Head which constitutes the reserve] compared with the resource-poor landscape, (2 soil zone calcite precipitation requiring strong seasonality for evapotranspiration to promote conditions for secondary soil development and calcium phosphate reprecipitation, (3 rewetting of previously dry soils by early wet season precipitation events, and (4 antecedent conditions of the source patch including landscape position that modulated the effect of the precipitation trigger. Thus, our study showed how water availability drives soil water P dynamics and potentially stability of mineral soil P in this tree island ecosystem. In landscapes with extensive water management, these processes can be asynchronous with the seasonality of hydrologic dynamics, tipping the balance between a sink and source of a limiting nutrient.

  10. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction.

    Science.gov (United States)

    Freschet, Grégoire T; Swart, Elferra M; Cornelissen, Johannes H C

    2015-06-01

    Plants adapt phenotypically to different conditions of light and nutrient supply, supposedly in order to achieve colimitation of these resources. Their key variable of adjustment is the ratio of leaf area to root length, which relies on plant biomass allocation and organ morphology. We recorded phenotypic differences in leaf and root mass fractions (LMF, RMF), specific leaf area (SLA) and specific root length (SRL) of 12 herbaceous species grown in factorial combinations of high/low irradiance and fertilization treatments. Leaf area and root length ratios, and their components, were influenced by nonadditive effects between light and nutrient supply, and differences in the strength of plant responses were partly explained by Ellenberg's species values representing ecological optima. Changes in allocation were critical in plant responses to nutrient availability, as the RMF contribution to changes in root length was 2.5× that of the SRL. Contrastingly, morphological adjustments (SLA rather than LMF) made up the bulk of plant response to light availability. Our results suggest largely predictable differences in responses of species and groups of species to environmental change. Nevertheless, they stress the critical need to account for adjustments in below-ground mass allocation to understand the assembly and responses of communities in changing environments.

  11. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... through ubiquitination. The wide range of biotic and abiotic stresses that affect crop plants limits agricultural production....... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  12. Evaluation of carbon stocks in above- and below-ground biomass in Central Africa: case study of Lesio-louna tropical rainforest of Congo

    Science.gov (United States)

    Liu, X.; Ekoungoulou, R.; Loumeto, J. J.; Ifo, S. A.; Bocko, Y. E.; Koula, F. E.

    2014-07-01

    The study was aimed to estimate the carbon stocks of above- and below-ground biomass in Lesio-louna forest of Congo. The methodology of allometric equations was used to measure the carbon stocks of Lesio-louna natural forest. We are based precisely on the model II which is also called non-destructive method or indirect method of measuring carbon stocks. While there has been use of parameters such as the DBH and wood density. The research was done with 22 circular plots each 1256 m2. In the 22 plots studied, 19 plots are in the gallery forest and three plots in the secondary forest. Also, 22 circular plots were distributed in 5 sites studies of Lesio-louna forest, including: Inkou forest island, Iboubikro, Ngoyili, Blue lake and Ngambali. So, there are two forest types (secondary forest and gallery forest) in this forest ecosystem. In the 5 sites studied, we made measurements on a total of 347 trees with 197 trees for the class of 10-30 cm diameter, 131 trees for the class of 30-60 cm diameter and 19 trees in the diameter class > 60 cm. The results show that in the whole forest, average carbon stock for the 22 plots of the study was 168.601 t C ha-1 for AGB, or 81% and 39.551 t C ha-1 for BGB, or 19%. The total carbon stocks in all the biomass was 3395.365 t C for AGB, which is 3.395365 × 10-6 Gt C and 909.689934 t C for BGB, which was 9.09689934 × 10-7 Gt C. In this forest, the carbon stock was more important in AGB compared to BGB with respectively 3395.365 t C against 909.689934 t C. Plot10 (AGB = 363.899 t C ha-1 and BGB = 85.516 t C ha-1) was the most dominant in terms of carbon quantification in Lesio-louna.

  13. Evaluation of carbon stocks in above- and below-ground biomass in Central Africa: case study of Lesio-louna tropical rainforest of Congo

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-07-01

    Full Text Available The study was aimed to estimate the carbon stocks of above- and below-ground biomass in Lesio-louna forest of Congo. The methodology of allometric equations was used to measure the carbon stocks of Lesio-louna natural forest. We are based precisely on the model II which is also called non-destructive method or indirect method of measuring carbon stocks. While there has been use of parameters such as the DBH and wood density. The research was done with 22 circular plots each 1256 m2. In the 22 plots studied, 19 plots are in the gallery forest and three plots in the secondary forest. Also, 22 circular plots were distributed in 5 sites studies of Lesio-louna forest, including: Inkou forest island, Iboubikro, Ngoyili, Blue lake and Ngambali. So, there are two forest types (secondary forest and gallery forest in this forest ecosystem. In the 5 sites studied, we made measurements on a total of 347 trees with 197 trees for the class of 10–30 cm diameter, 131 trees for the class of 30–60 cm diameter and 19 trees in the diameter class > 60 cm. The results show that in the whole forest, average carbon stock for the 22 plots of the study was 168.601 t C ha−1 for AGB, or 81% and 39.551 t C ha−1 for BGB, or 19%. The total carbon stocks in all the biomass was 3395.365 t C for AGB, which is 3.395365 × 10–6 Gt C and 909.689934 t C for BGB, which was 9.09689934 × 10–7 Gt C. In this forest, the carbon stock was more important in AGB compared to BGB with respectively 3395.365 t C against 909.689934 t C. Plot10 (AGB = 363.899 t C ha−1 and BGB = 85.516 t C ha−1 was the most dominant in terms of carbon quantification in Lesio-louna.

  14. Effects of the 100-year most severe El Niño driven drought on above and below ground CO2 exchanges in a seasonal tropical forest

    Science.gov (United States)

    Detto, M.; Muller-Landau, H. C.; Davies, S. J.; Rubio Ramos, V. E.

    2015-12-01

    The role of environmental drivers in regulating carbon exchanges, such as the combined effects of different meteorological and hydrological factors, are still poorly understood in many tropical forests. For example, Central American tropical forests are characterized by a distinct dry season with large atmospheric evaporative demand, driven by solar radiations and sustained winds. In contrast, during the wet seasons, cloudiness results in lower radiation inputs but higher diffuse fraction, and higher water availability. Our site, Barro Colorado Island, located in Gatun Lake, Central Panama, averages 2800 mm of annual precipitation, with a pronounced dry season in Jan-Apr. Forest age varies between 100 and >400 yr. In July 2012, an eddy covariance system was installed on a 41 m tower on the top plateau of the island. In the current year (2015) the island is experiencing the most severe El Niño driven drought on record (precipitation is measured since 1921). The eddy covariance measurements show that carbon and water fluxes are strongly influenced by hydrological conditions. Prolonged dry spells during the dry season limit both above ground fluxes (ET and GPP) and below ground processes (root and microbial activities). Light use efficiency is about 30% lower during the dry season and evapotranspiration can be as 40% below potential. These decreases in ecosystem functions are driven primarily by a combination of structural (reduction in leaf area) and physiological (stomata regulation) adaptation. Similarly, soil effluxes respond strongly to hydrological conditions. In the dry season, lower soil respiration rates are spaced out by rare rain events generating large pulses. In contrast, during the wet season, frequent rain events suppress soil CO2effluxes, because of reduced diffusivity and oxygen depletion. Diurnal variation of soil respiration also suggested a potential translocation of photosynthates from leaf to roots to increase nutrient uptake during the dry

  15. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe

    Science.gov (United States)

    Chen, Dima; Lan, Zhichun; Bai, Xue; Grace, James B.; Bai, Yongfei

    2013-01-01

    Anthropogenic acid deposition–induced soil acidification is one of the major threats to biodiversity, ecosystem functioning and services. Few studies, however, have explored in detail how above-ground changes in plant species richness and productivity resulting from soil acidification are mediated by effects on below-ground biota and soil properties.

  16. Large-scale biotic interaction effects - tree cover interacts with shade toler-ance to affect distribution patterns of herb and shrub species across the Alps

    DEFF Research Database (Denmark)

    Nieto-Lugilde, Diego; Lenoir, Jonathan; Abdulhak, Sylvain;

    2012-01-01

    occurrence on light-demanding species via size-asymmetric competition for light, but a facilitative effect on shade-tolerant species. In order to compare the relative importance of tree cover, four models with different combinations of variables (climate, soil and tree cover) were run for each species. Then......, we simulated a removal experiment by comparing the elevational distribution of each species under high and low tree cover. Tree cover improved model performances and species’ response curves to a tree cover gradient varied depending on their shade tolerance, supporting the hypothesized antagonistic...... role. Results indicated that high tree cover causes range contraction, especially at the upper limit, for light-demanding species, whereas it causes shade-tolerant species to extend their range upwards and downwards. Tree cover thus drives plant-plant interactions to shape plant species distribution...

  17. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites

    NARCIS (Netherlands)

    N.S. Aratchige; I. Lesna; M.W. Sabelis

    2004-01-01

    Although odour-mediated interactions among plants, spider mites and predatory mites have been extensively studied above-ground, belowground studies are in their infancy. In this paper, we investigate whether feeding by rust mites (Aceria tulipae) cause tulip bulbs to produce odours that attract pred

  18. How to integrate geology, biology, and modern wireless technologies to assess biotic-abiotic interactions on coastal dune systems: a new multidisciplinary approach

    Science.gov (United States)

    Sarti, Giovanni; Bertoni, Duccio; Bini, Monica; Ciccarelli, Daniela; Ribolini, Adriano; Ruocco, Matteo; Pozzebon, Alessandro; Alquini, Fernanda; Giaccari, Riccardo; Tordella, Stefano

    2014-05-01

    Coastal dune systems are arguably one of the most dynamic environments because their evolution is controlled by many factors, both natural and human-related. Hence, they are often exposed to processes leading to erosion, which in turn determine serious naturalistic and economic losses. Most recent studies carried out on different dune fields worldwide emphasized the notion that a better definition of this environment needs an approach that systematically involves several disciplines, striving to merge every data collected from any individual analyses. Therefore, a new multidisciplinary method to study coastal dune systems has been conceived in order to integrate geology, biology, and modern wireless technologies. The aim of the work is threefold: i) to check the reliability of this new approach; ii) to provide a dataset as complete as ever about the factors affecting the evolution of coastal dunes; and iii) to evaluate the influence of any biotic and abiotic factors on plant communities. The experimentation site is located along the Pisa coast within the Migliarino - S. Rossore - Massaciuccoli Regional Park, a protected area where human influence is low (Tuscany, Italy). A rectangle of 100 x 200 m containing 50 grids of 20 x 20 m was established along the coastal dune systems from the coastline to the pinewood at the landward end of the backdune area. Sampling from each grid determined grain-size analysis carried out on surface sediment samples such as geologic aspects; topographic surveys performed by means of DGPS-RTK instruments; geophysical surveys conducted with a GPR equipment, which will be matched with core drilling activities; digital image analysis of high definition pictures taken by means of a remote controlled aircraft drone flying over the study area; biological data obtained by percent cover of each vascular plant species recorded in the sampling unit. Along with geologic and biologic methodologies, this research implemented the use of informatics

  19. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ines Ben Rejeb

    2014-10-01

    Full Text Available Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS. In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant’s resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways.

  20. Biotic interactions in temporal trends (1992–2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.J. [Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6 (Canada); University of Manitoba, Dept. of Soil Science, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); Stern, G.A., E-mail: gary.stern@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6 (Canada); Kidd, K.A. [University of New Brunswick, Canadian Rivers Institute and Department of Biology, Saint John, New Brunswick, Canada E2L 4E5 (Canada); Croft, M.V. [Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6 (Canada); Gewurtz, S.; Diamond, M. [University of Toronto, Department of Geography, Toronto, Ontario, Canada M5S 3G3 (Canada); Kinnear, L. [Northern Climate Exchange, Yukon Research Center, Yukon College, Whitehorse, Yukon Territory, Canada Y1A 5K4 (Canada); Roach, P. [Aboriginal Affairs and Northern Development Canada, Rm 415C - 300 Main St., Whitehorse, Yukon Territory, Canada Y1A 2B5 (Canada)

    2013-01-15

    Declines in 6 organochlorine (OC) contaminant groups; chlordane (CHL), DDT, HCH, toxaphene (CHB), PCB and chlorinated benzenes (CBz) were measured in biota of a sub-Arctic lake (Lake Laberge, YT) following the closure of a commercial fishery in 1991. This study examined morphological (length, weight, age), biochemical (lipid content, δ{sup 13}C, δ{sup 15}N), population and OC data for 9 fishes and zooplankton between 1993 and 2003 (2010 for lake trout) to investigate causes for the OC declines. Growth dilution was a major factor influencing the decrease of OCs in lake trout, round whitefish and possibly zooplankton most notably in the early 2000s. A decline in lipids of most fish species also contributed to OC declines, although no such change was evident for zooplankton. It is suspected that increases in fish populations or climate variations over the 1990s, may have contributed towards a shift in plankton community composition. From 1991 to 1999, CPUE increased for 7 of the fish species and declined for 2 others. Concurrently, the zooplankton community shifted from an abundance of C. scutifer in 1993 to dominance by D. pribilofensis in 2001. Nitrogen and carbon stable isotope data suggested that food web interactions for most fish species have not changed over time. Although concentrations of OCs have declined in many fishes, the “rate” of OC transfer (using slopes of log OC vs. nitrogen isotope ratios) through the food web was greater in 2001 than in 1993. Overall, the declines in OC concentrations in the fish from Lake Laberge occurred concurrently with changes in their growth, lipid, and abundance, suggesting that ecosystem responses to the closure of the fishery were in part responsible for the lower contaminants in these fishes. As a result of this study, the Yukon government rescinded the health advisory for limiting the consumption of fish from Lake Laberge. - Highlights: ► Organochlorine contaminants in a sub-Arctic lake were monitored post

  1. Biotic interactions in temporal trends (1992–2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory

    International Nuclear Information System (INIS)

    Declines in 6 organochlorine (OC) contaminant groups; chlordane (CHL), DDT, HCH, toxaphene (CHB), PCB and chlorinated benzenes (CBz) were measured in biota of a sub-Arctic lake (Lake Laberge, YT) following the closure of a commercial fishery in 1991. This study examined morphological (length, weight, age), biochemical (lipid content, δ13C, δ15N), population and OC data for 9 fishes and zooplankton between 1993 and 2003 (2010 for lake trout) to investigate causes for the OC declines. Growth dilution was a major factor influencing the decrease of OCs in lake trout, round whitefish and possibly zooplankton most notably in the early 2000s. A decline in lipids of most fish species also contributed to OC declines, although no such change was evident for zooplankton. It is suspected that increases in fish populations or climate variations over the 1990s, may have contributed towards a shift in plankton community composition. From 1991 to 1999, CPUE increased for 7 of the fish species and declined for 2 others. Concurrently, the zooplankton community shifted from an abundance of C. scutifer in 1993 to dominance by D. pribilofensis in 2001. Nitrogen and carbon stable isotope data suggested that food web interactions for most fish species have not changed over time. Although concentrations of OCs have declined in many fishes, the “rate” of OC transfer (using slopes of log OC vs. nitrogen isotope ratios) through the food web was greater in 2001 than in 1993. Overall, the declines in OC concentrations in the fish from Lake Laberge occurred concurrently with changes in their growth, lipid, and abundance, suggesting that ecosystem responses to the closure of the fishery were in part responsible for the lower contaminants in these fishes. As a result of this study, the Yukon government rescinded the health advisory for limiting the consumption of fish from Lake Laberge. - Highlights: ► Organochlorine contaminants in a sub-Arctic lake were monitored post-fishery closure.

  2. Uranium Isotopes Fingerprint Biotic Reduction

    OpenAIRE

    Stylo, Malgorzata Alicja; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and t...

  3. Uranium isotopes fingerprint biotic reduction

    Science.gov (United States)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  4. Smart Lighting Information System Design Based on Above and Below Ground Data%基于地上地下数据的智慧照明信息系统总体设计

    Institute of Scientific and Technical Information of China (English)

    孔繁宇; 崔健博; 邹同元; 褚鹏飞

    2015-01-01

    This paper describes the overall designed program of the smart lighting based on above and below ground data information.The system is based on the static data including data integration from comprehensive urban space on the ground and underground pipeline,basic geographic information and streetlights professional data.It is combined with dynamic monitoring data for multi-dimensional data fusion and application to meet business needs for urban lighting daily management of equipment monitoring,facilities management and production management.The target is to improve the management intelligence and information management level,and achieve the ultimate goal of energy and maintenance cost saving.%介绍了一种基于地上地下数据的智慧照明信息系统总体建设方案.该系统是以完备的地上城市空间与地下管线一体化数据、 基础地理信息数据和路灯专业数据为静态数据基础,结合动态监测数据进行多维数据融合与应用,满足城市照明日常管理过程中设备监控、 设施管理、 生产管理等各方面业务需求,提高城市照明日常管理的智能化、 信息化管理程度,最终达到节约能源和维护成本的最终目的.

  5. A literature review on biotic homogenization

    OpenAIRE

    Guangmei Wang; Jingcheng Yang; Chuangdao Jiang; Hongtao Zhao; Zhidong Zhang

    2009-01-01

    Biotic homogenization is the process whereby the genetic, taxonomic and functional similarity of two or more biotas increases over time. As a new research agenda for conservation biogeography, biotic homogenization has become a rapidly emerging topic of interest in ecology and evolution over the past decade. However, research on this topic is rare in China. Herein, we introduce the development of the concept of biotic homogenization, and then discuss methods to quantify its three components (...

  6. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    Directory of Open Access Journals (Sweden)

    Kari Klanderud

    Full Text Available We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  7. Enhanced nitrobenzene removal and column longevity by coupled abiotic and biotic processes in zero-valent iron column

    DEFF Research Database (Denmark)

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin;

    2015-01-01

    In this study, abiotic zero-valent iron (ZVI) column and biotic ZVI column were employed to investigate abiotic and biotic effects between iron and microorganisms on NB removal and column longevity. Physical removal and kinetics analysis revealed that NB was largely removed through adsorption and....../or co-precipitation and the reduction of NB to aniline (AN) via abiotic reaction in the abiotic column and via both abiotic and biotic reactions in the biotic column. Due to the interactive effect of ZVI and microorganisms, more effective iron consumption and more reactive minerals such as green rust...... and iron sulfide were found in the biotic column. This led to approximately 50% higher total NB removal and 6 times higher AN production in the biotic column as compared to the abiotic column during the entire operation. According to the NB breakthrough curves, longer stability and longer life...

  8. Abiotic vs. biotic influences on habitat selection of coexisting species: Climate change impacts?

    Science.gov (United States)

    Martin, T.E.

    2001-01-01

    Species are commonly segregated along gradients of microclimate and vegetation. I explore the question of whether segregation is the result of microhabitat partitioning (biotic effects) or choice of differing microclimates (abiotic effects). I explored this question for four ground-nesting bird species that are segregated along a microclimate and vegetation gradient in Arizona. Birds shifted position of their nests on the microhabitat and microclimate gradient in response to changing precipitation over nine years. Similarly, annual bird abundance varied with precipitation across 12 yr. Those shifts in abundance and nesting microhabitat with changing precipitation demonstrate the importance of abiotic influences on bird distributions and habitat choice. However, nest-site shifts and microhabitat use also appear to be influenced by interactions among coexisting species. Moreover, shifts in habitat use by all species caused nest predation (i.e., biotic) costs that increased with increasing distance along the microclimate gradient. These results indicate that abiotic and biotic costs can strongly interact to influence microhabitat choice and abundances of coexisting species. Global climate change impacts have been considered largely in terms of simple distributional shifts, but these results indicate that shifts can also increase biotic costs when species move into habitat types for which they are poorly adapted or that create new biotic interactions.

  9. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals

    OpenAIRE

    Muhammad Tariq; Wright, Denis J.; Bruce, Toby J. A.; Staley, Joanna T.

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to r...

  10. Biotic and abiotic variables show little redundancy in explaining tree species distributions

    DEFF Research Database (Denmark)

    Meier, Elaine S.; Kienast, Felix; Pearman, Peter B.;

    2010-01-01

    Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic var...

  11. Biotic Resources Abundance and the Corresponding Causes in Panxi Area

    Institute of Scientific and Technical Information of China (English)

    XU Yun; SU Chunjiang; LIU Xingliang; MAN Zhenchuang; LI Ping

    2006-01-01

    This paper gives a detailed introduction to the biotic resources in Panxi Area and lists the most typical biotic resources in this area. The authors of this paper adopt the biotic resource abundance evaluation index model Ri=(S0i-S1i)×S1i-1(i=1,2,3,…n) to make a quantitative calculation of the biotic resource abundance in this area, and the calculation results show that this area abounds in biotic resources. Through the analysis of the causes of abundant biotic resources in this area, the luxuriant biotic resources in Panxi Area are largely attributed to the complex and varied environment, atrocious climate in history and the introduction of alien species. The purpose of this paper is to point out that biotic resource exploitation is one of the driving forces of economic development in this area, and to emphasize the necessity of biotic resource preservation and its harmonious development with the environment.

  12. The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada.

    Science.gov (United States)

    Alofs, Karen M; Jackson, Donald A

    2015-06-01

    There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake-to-lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate.

  13. ABC transporters from Botrytis cinerea in biotic and abiotic interactions

    NARCIS (Netherlands)

    Schoonbeek, H.

    2004-01-01

    Botrytis cinereais the causal agent of grey mould disease on a wide variety of crop plants. It is relatively insensitive to natural and synthetic fungitoxic compounds. This thesis describes how ABC (ATP-binding cassette) transporters contribute to protection by actively secre

  14. Methyl salicylate production in tomato affects biotic interactions

    NARCIS (Netherlands)

    K. Ament; V. Krasikov; S. Allmann; M. Rep; F.L.W. Takken; R.C. Schuurink

    2010-01-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene enco

  15. End-Triassic nonmarine biotic events

    Institute of Scientific and Technical Information of China (English)

    Spencer G. Lucas; Lawrence H. Tanner

    2015-01-01

    The Late Triassic was a prolonged interval of elevated extinction rates and low origination rates that manifested themselves in a series of extinctions during Carnian, Norian and Rhaetian time. Most of these extinctions took place in the marine realm, particularly af-fecting radiolarians, conodonts, bivalves, ammonoids and reef-building organisms. On land, the case for a Late Triassic mass extinction is much more tenuous and has largely focused on tetrapod vertebrates (amphibians and reptiles), though some workers advocate a sudden end-Triassic (TJB) extinction of land plants. Nevertheless, an extensive literature does not identify a major extinction of land plants at the TJB, and a comprehensive review of palynological records concluded that TJB vegetation changes were non-uniform (different changes in dif-ferent places), not synchronous and not indicative of a mass extinction of land plants. Claims of a substantial perturbation of plant ecology and diversity at the TJB in East Greenland are indicative of a local change in the paleolfora largely driven by lithofacies changes resulting in changing taphonomic iflters. Plant extinctions at the TJB were palaeogeographically localized events, not global in extent. With new and more detailed stratigraphic data, the perceived TJB tetrapod extinction is mostly an artifact of coarse temporal resolution, the compiled cor-relation effect. The amphibian, archosaur and synapsid extinctions of the Late Triassic are not concentrated at the TJB, but instead occur stepwise, beginning in the Norian and extending into the Hettangian. There was a disruption of the terrestrial ecosystem across the TJB, but it was more modest than generally claimed. The ecological severity of the end-Triassic non-marine biotic events are relatively low on the global scale. Biotic turnover at the end of the Triassic was likely driven by the CAMP (Central Atlantic Magmatic Province) eruptions, which caused signiifcant environmental perturbations (cooling

  16. Preliminary Biotic Survey of Cane Creek, Calhoun County, AL

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A biotic survey of Cane Creek (Calhoun County, AL) was completed in the Fall (1992) and Winter (1993) at six sites within Cane Creek to determine the effects of...

  17. Genetic improvement of rice for biotic and abiotic stress tolerance

    OpenAIRE

    ANSARI, MAHMOOD UR RAHMAN; Shaheen, Tayyaba; BUKHARI, SHAZAI; Husnain, Tayyab

    2015-01-01

    Rice (Oryza sativa L.) is among the most important food crops that provide a staple food for nearly half of the world's population. Rice crops are prone to various types of stresses, both biotic and abiotic. Biotic stresses include insect pests, fungus, bacteria, viruses, and herbicide toxicity. Among abiotic stresses, drought, cold, and salinity are also well studied in rice. Various genes have been identified, cloned, and characterized to combat these stresses and protect rice crops. T...

  18. Function of ABA in Stomatal Defense against Biotic and Drought Stresses

    Directory of Open Access Journals (Sweden)

    Chae Woo Lim

    2015-07-01

    Full Text Available The plant hormone abscisic acid (ABA regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR/PYR-like (PYL or regulatory component of ABA receptor (RCAR family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases.

  19. Function of ABA in Stomatal Defense against Biotic and Drought Stresses.

    Science.gov (United States)

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses--especially ABA receptors--have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766

  20. Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics.

    Directory of Open Access Journals (Sweden)

    Martijn L Vandegehuchte

    Full Text Available BACKGROUND: Plants are affected by several aspects of the soil, which have the potential to exert cascading effects on the performance of herbivorous insects. The effects of biotic and abiotic soil characteristics have however mostly been investigated in isolation, leaving their relative importance largely unexplored. Such is the case for the dune grass Ammophila, whose decline under decreasing sand accretion is argued to be caused by either biotic or abiotic soil properties. METHODOLOGY/PRINCIPAL FINDINGS: By manipulating dune soils from three different regions, we decoupled the contributions of region, the abiotic and biotic soil component to the variation in characteristics of Ammophila arenaria seedlings and Schizaphis rufula aphid populations. Root mass fraction and total dry biomass of plants were affected by soil biota, although the latter effect was not consistent across regions. None of the measured plant properties were significantly affected by the abiotic soil component. Aphid population characteristics all differed between regions, irrespective of whether soil biota were present or absent. Hence these effects were due to differences in abiotic soil properties between regions. Although several chemical properties of the soil mixtures were measured, none of these were consistent with results for plant or aphid traits. CONCLUSIONS/SIGNIFICANCE: Plants were affected more strongly by soil biota than by abiotic soil properties, whereas the opposite was true for aphids. Our results thus demonstrate that the relative importance of the abiotic and biotic component of soils can differ for plants and their herbivores. The fact that not all effects of soil properties could be detected across regions moreover emphasizes the need for spatial replication in order to make sound conclusions about the generality of aboveground-belowground interactions.

  1. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    Science.gov (United States)

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  2. TOPOLOGY DESIGN OPTIMIZATION BASED ON BIOTIC BRANCH NET

    Institute of Scientific and Technical Information of China (English)

    Ding Xiaohong; Li Guojie; Yamazaki Koestu

    2005-01-01

    The biotic branch nets are extreme high-tech product. In order to achieve a certain functional objective, they can adjust their growth direction and growth velocity by according to the varying growth environment. An innovative and effective methodology of topology design optimization based on the growth mechanism of biotic branch nets is suggested, and it is applied to a layout design problem of a conductive cooling channel in a heat transfer system. The effectiveness of the method is validated by the FEM analysis.

  3. Scaled biotic disruption during early Eocene global warming events

    Directory of Open Access Journals (Sweden)

    S. J. Gibbs

    2012-11-01

    Full Text Available Late Paleocene and early Eocene hyperthermals are transient warming events associated with massive perturbations of the global carbon cycle, and are considered partial analogues for current anthropogenic climate change. Because the magnitude of carbon release varied between the events, they are natural experiments ideal for exploring the relationship between carbon cycle perturbations, climate change and biotic response. Here we quantify marine biotic variability through three million years of the early Eocene that include five hyperthermals, utilizing a method that allows us to integrate the records of different plankton groups through scenarios ranging from background to major extinction events. Our long time-series calcareous nannoplankton record indicates a scaling of biotic disruption to climate change associated with the amount of carbon released during the various hyperthermals. Critically, only the three largest hyperthermals, the Paleocene–Eocene Thermal Maximum (PETM, Eocene Thermal Maximum 2 (ETM2 and the I1 event, show above-background variance, suggesting that the magnitude of carbon input and associated climate change needs to surpass a threshold value to cause significant biotic disruption.

  4. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  5. Ecogenomics of plant resistance to biotic and abiotic stresses

    NARCIS (Netherlands)

    Davila Olivas, N.H.

    2016-01-01

    Summary

    In natural and agricultural ecosystems, plants are exposed to a wide diversity of abiotic and biotic stresses such as drought, salinity, pathogens and insect herbivores. Under natural conditions, these stresses do not occur in isolation but commonly occur simultaneo

  6. Seed dispersers, seed predators, and browsers act synergistically as biotic filters in a mosaic landscape.

    Directory of Open Access Journals (Sweden)

    Regino Zamora

    Full Text Available In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal and antagonistic (seed predation, herbivory animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees.

  7. Patterns in salt-marsh ecosystems: the role of biotic and abiotic forcings

    Science.gov (United States)

    D'Alpaos, A.; Marani, M.

    2010-12-01

    The dynamics of salt-marsh ecosystems are governed by interacting physical and biological processes, whose intertwined feedbacks critically affect the evolution. Salt marshes are characterised by complex patterns, both in their geomorphic and biological features, arising through the elaboration of a network structure driven by the tidal forcing and through the interaction between hydrodynamical, geophysical, and biological components. The complexity observed in tidal geomorphological patterns is deemed to arise from the mutual influence of biotic and abiotic components. The results from a 2D numerical model, accounting for biotic and geomorphic processes, show that the average marsh elevation within the tidal frame decreases with increasing rates of sea-level rise, decreasing sediment availability, and decreasing vegetation productivity. The spatial variability in platform elevations and biomass distribution, increases with increasing rates of sea-level rise, increasing sediment availability, and decreasing vegetation productivity. Supply-limited settings tend to develop uniform marsh surface elevations and biomass distribution, whereas supply-rich settings tend to develop sedimentation patterns characterized by large heterogeneities. Our analyses also suggest that the fate of tidal landforms and their possible geomorphological restoration should be addressed through approaches which explicitly incorporate bio-morphodynamic processes.

  8. A biotic video game smart phone kit for formal and informal biophysics education

    Science.gov (United States)

    Kim, Honesty; Lee, Seung Ah; Riedel-Kruse, Ingmar

    2015-03-01

    Novel ways for formal and informal biophysics education are important. We present a low-cost biotic game design kit that incorporates microbial organisms into an interactive gaming experience: A 3D-printable microscope containing four LEDs controlled by a joystick enable human players to provide directional light stimuli to the motile single-celled organism Euglena gracilis. These cellular behaviors are displayed on the integrated smart phone. Real time cell-tracking couples these cells into interactive biotic video game play, i.e., the human player steers Euglena to play soccer with virtual balls and goals. The player's learning curve in mastering this fun game is intrinsically coupled to develop a deeper knowledge about Euglena's cell morphology and the biophysics of its phototactic behavior. This kit is dual educational - via construction and via play - and it provides an engaging theme for a formal biophysics devices class as well as to be presented in informal outreach activities; its low cost and open soft- and hardware should enable wide adoption.

  9. Molecular Analysis of Rice CIPKs Involved in Both Biotic and Abiotic Stress Responses

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi-feng; Gu Zhi-min; LIU Feng; MA Bo-jun; ZHANG Hong-sheng

    2011-01-01

    Plant calcineurin B-like (CBL) proteins have been proposed as important Ca2+ sensors and specifically interact with CBL-interacting protein kinases (CIPKs) in plant-specific calcium signaling.Here,we identified and isolated 15 CIPK genes in a japonica rice variety Nipponbare based on the predicted sequences of rice CIPK gene family.Gene structure analysis showed that these 15 genes were divided into intron-less and intron-rich groups,and OsCIPK3 and OsCIPK24 exhibited alternative splicing in their mature process.The phylogenetic analyses indicated that rice CIPKs shared an ancestor with Arabidopsis and poplar CIPKs.Analyses of gene expression showed that these OsCIPK genes were differentially induced by biotic stresses such as bacterial blight and abiotic stresses (heavy metal such as Hg2+,high salinity,cold and ABA).Interestingly,five OsCIPK genes,OsCIPK1,2,10,11 and 12,were transcriptionally up-regulated after bacterial blight infection whereas four OsCIPK genes,OsCIPK2,10,11 and 14,were induced by all treatments,indicating that some of OsCIPK genes are involved in multiple stress response pathways in plants.Our finding suggests that CIPKs play a key role in both biotic and abiotic stress responses.

  10. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    Science.gov (United States)

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.

  11. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    Science.gov (United States)

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  12. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk

    Directory of Open Access Journals (Sweden)

    Christos eKissoudis

    2014-05-01

    Full Text Available Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signalling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signalling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, ROS and redox signalling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step towards the goal of achieving tolerance to combinatorial stress in crops.

  13. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    Science.gov (United States)

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  14. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  15. Early Triassic Marine Biotic Recovery: The Predators' Perspective

    OpenAIRE

    Scheyer, Torsten M.; Carlo Romano; Jim Jenks; Hugo Bucher

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis e...

  16. Changes in biotic and abiotic processes following mangrove clearing

    Science.gov (United States)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  17. Characterizing biotic and abiotic properties of landscape and their implications for ecohydrological processes across scales

    Science.gov (United States)

    Kumar, J.; Langford, Z.; Hoffman, F. M.

    2015-12-01

    Ecohydrological processes governing the dynamics of terrestrial ecosystems and its response and feedback to climate change occur at diverse spatial and temporal scales. To accurately capture the dynamics of ecohydrological processes in the model, its critically important to capture the subgrid scale heterogeneity of the landscape and develop scale aware process representation and parameterization. This study focused on the Arctic tundra landscape at Seward Peninsula of Alaska. Ecohydrological processes in this sensitive landscape are strongly governed by the physical and structural properties (like topography, soil, permafrost, geomorphology etc.) of the landscape, environmental conditions (like temperature, precipitation, light, radiation) and biotic conditions (vegetation, above/below biomass and organic matter, disturbance history etc.). From site to watershed to regional (scale at which models often operate), landscape is a complex mosaic of a range of biotic and abiotic properties. We have developed and applied a hierarchical characterization and classification approach to segment the landscape in distinct units which can be used to develop and parameterize process models at local scale. We also analyze how the distribution and organization of the landscape units as building blocks influence and interact with ecosystem processes across scales. Our goals is understand the landscape organization principles and their roles to inform and improve process based models of ecohydrological processes in Arctic tundra landscape.

  18. Biotic games and cloud experimentation as novel media for biophysics education

    Science.gov (United States)

    Riedel-Kruse, Ingmar; Blikstein, Paulo

    2014-03-01

    First-hand, open-ended experimentation is key for effective formal and informal biophysics education. We developed, tested and assessed multiple new platforms that enable students and children to directly interact with and learn about microscopic biophysical processes: (1) Biotic games that enable local and online play using galvano- and photo-tactic stimulation of micro-swimmers, illustrating concepts such as biased random walks, Low Reynolds number hydrodynamics, and Brownian motion; (2) an undergraduate course where students learn optics, electronics, micro-fluidics, real time image analysis, and instrument control by building biotic games; and (3) a graduate class on the biophysics of multi-cellular systems that contains a cloud experimentation lab enabling students to execute open-ended chemotaxis experiments on slimemolds online, analyze their data, and build biophysical models. Our work aims to generate the equivalent excitement and educational impact for biophysics as robotics and video games have had for mechatronics and computer science, respectively. We also discuss how scaled-up cloud experimentation systems can support MOOCs with true lab components and life-science research in general.

  19. Identifying biotic integrity and water chemistry relations in nonwadeable rivers of Wisconsin: Toward the development of nutrient criteria

    Science.gov (United States)

    Weigel, B.M.; Robertson, D.M.

    2007-01-01

    variation to interactions among the categories. In contrast, partial RDA attributed much of the explained variation to the nutrient (25%) and other water chemistry (38%) categories for the fish model. Our analyses suggest that it would be beneficial to develop criteria based upon a suite of biotic and nutrient variables simultaneously to deem waters as not meeting their designated uses. ?? 2007 Springer Science+Business Media, LLC.

  20. Identifying Biotic Integrity and Water Chemistry Relations in Nonwadeable Rivers of Wisconsin: Toward the Development of Nutrient Criteria

    Science.gov (United States)

    Weigel, Brian M.; Robertson, Dale M.

    2007-10-01

    explained variation to interactions among the categories. In contrast, partial RDA attributed much of the explained variation to the nutrient (25%) and other water chemistry (38%) categories for the fish model. Our analyses suggest that it would be beneficial to develop criteria based upon a suite of biotic and nutrient variables simultaneously to deem waters as not meeting their designated uses.

  1. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    Science.gov (United States)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  2. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    Science.gov (United States)

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry.

  3. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions.

    Science.gov (United States)

    Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M

    2016-07-01

    Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control.

  4. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    Science.gov (United States)

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry. PMID:27105420

  5. Regulation of Translation Initiation under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Ana B. Castro-Sanz

    2013-02-01

    Full Text Available Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.

  6. Combat erosion prone conditions with biotic growth mediums

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-10-01

    This article discussed methods of preserving soils in order to support remediation activities at 2 sites with sandy subsoil conditions and a lack of organic materials. An advanced hydroseeding technology was used to control erosion at the sites. Biotic Earth is a wheat straw-based hydromulch mixed with peat moss. The straw is used as an erosion control material, while the peat moss is used as an organic addition to the soil. Biotic Earth was applied at a site near James Bay where topsoil could not be salvaged. The aim of the project was to establish vegetation within a single season without the use of topsoil. The product was also used to combat the erosion challenges at a wastewater lagoon development in Manitoba that involved the protection of 70,000 m{sup 2} of eroded slopes and channels that threatened to undermine the lagoon structure. Vegetation was established on the sand beams surrounding the lagoon. Erosion control blankets were used to kick-start vegetation growth. The specialized hydroseeding proposal was selected as the lowest cost option among several alternatives. It was concluded that vegetation growth in the region was rapid and consistent through the planted areas. 12 figs.

  7. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  8. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    Science.gov (United States)

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  9. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested......, and demonstrated in public settings. We then describe INTERACT, a proposed research project that stages the robotic marionettes in a live performance. The interdisciplinary project brings humanities research to bear on scientific and technological inquiry, and culminates in the development a live performance which...

  10. Interactions

    DEFF Research Database (Denmark)

    The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as ......The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists...... also key figures in the philosophical discussions of nature and science - from philosophical tendencies like logical empiricism via critical rationalism to various neo-Kantian trends....

  11. The interplay between habitat structure and chemical contaminants on biotic responses of benthic organisms.

    Science.gov (United States)

    Mayer-Pinto, Mariana; Matias, Miguel G; Coleman, Ross A

    2016-01-01

    Habitat structure influences the diversity and distribution of organisms, potentially affecting their response to disturbances by either affecting their 'susceptibility' or through the provision of resources that can mitigate impacts of disturbances. Chemical disturbances due to contamination are associated with decreases in diversity and functioning of systems and are also likely to increase due to coastal urbanisation. Understanding how habitat structure interacts with contaminants is essential to predict and therefore manage such effects, minimising their consequences to marine systems. Here, we manipulated two structurally different habitats and exposed them to different types of contaminants. The effects of contamination and habitat structure interacted, affecting species richness. More complex experimental habitats were colonized by a greater diversity of organisms than the less complex habitats. These differences disappeared, however, when habitats were exposed to contaminants, suggesting that contaminants can override effects of habitats structure at small spatial scales. These results provide insight into the complex ways that habitat structure and contamination interact and the need to incorporate evidence of biotic responses from individual disturbances to multiple stressors. Such effects need to be taken into account when designing and planning management and conservation strategies to natural systems. PMID:27168991

  12. An Economic Valuation of Biotic Pollination Services in Georgia.

    Science.gov (United States)

    Barfield, Ashley S; Bergstrom, John C; Ferreira, Susana; Covich, Alan P; Delaplane, Keith S

    2015-04-01

    As agriculture faces documented decline in bees and other insect pollinators, empirical assessments of potential economic losses are critical for contextualizing the impacts of this decline and for prioritizing research needs. For the state of Georgia, we show that the annual economic value of biotic pollinators is substantial--US$367 million, equivalent to 13 percent of the total production value of crops studied and 3 percent of the total production value of Georgia's agricultural sector. Our unique Geographic Information Systems analysis reveals an irregular pattern of vulnerability. While the Georgia counties displaying the highest economic values of pollination are clustered in southern Georgia, those with the highest dependency on pollinators in terms of their contribution to crop production value are more dispersed throughout the state.

  13. Early Triassic marine biotic recovery: the predators' perspective.

    Directory of Open Access Journals (Sweden)

    Torsten M Scheyer

    Full Text Available Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became

  14. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2015-10-01

    The biotic ligand model (BLM) approach is used to assess metal toxicity, taking into account the competition of other cations with the free metal ions for binding to the biotic ligand sites of aquatic and soil organisms. The bioavailable fraction of metals, represented by the free metal ion, is a better measure than the total concentration for assessing their potential risk to the environment. Because BLMs are relating toxicity to the fraction of biotic ligands occupied by the metal, they can be useful for investigating factors affecting metal bioaccumulation and toxicity. In the present review, the effects of major cations on the toxicity of metals to soil and aquatic organisms were comprehensively studied by performing a meta-analysis of BLM literature data. Interactions at the binding sites were shown to be species- and metal-specific. The main factors affecting the relationships between toxicity and conditional binding constants for metal binding at the biotic ligand appeared to be Ca(2+) , Mg(2+) , and protons. Other important characteristics of the exposure medium, such as levels of dissolved organic carbon and concentrations of other cations, should also be considered to obtain a proper assessment of metal toxicity to soil and aquatic organisms.

  15. The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Blanchard, V.G.; Bouwman, R.H.M.; Lettinga, G.; Field, J.A.

    2003-01-01

    Azo dye reduction results from a combination of biotic and abiotic processes during the anaerobic treatment of dye containing effluents. Biotic processes are due to enzymatic reactions whereas the chemical reaction is due to sulfide. In this research, the relative impact of the different azo dye red

  16. A biotic Fe0-H2O system for nitrobenzene removal from groundwater

    DEFF Research Database (Denmark)

    Wu, Jinhua; Yin, Weizhao; Gu, Jingjing;

    2013-01-01

    Batch experiment was conducted to evaluate the capability of a biotic Fe0-H2O for nitrobenzene (NB) removal from groundwater. In this study, iron dosage was 0.25gL-1 throughout the whole experiment and the Fe0-H2O system was amended with 180mgL-1 VSS of mixed culture. The biotic system was tested...

  17. Associations between Ectomycorrhizal Fungi and Bacterial Needle Endophytes in Pinus radiata: Implications for Biotic Selection of Microbial Communities

    Science.gov (United States)

    Rúa, Megan A.; Wilson, Emily C.; Steele, Sarah; Munters, Arielle R.; Hoeksema, Jason D.; Frank, Anna C.

    2016-01-01

    Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic

  18. Associations between ectomycorrhizal fungi and bacterial needle endophytes in Pinus radiata: implications for biotic selection of microbial communities

    Directory of Open Access Journals (Sweden)

    Megan Arlene Rúa

    2016-03-01

    Full Text Available Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata, and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest

  19. Associations between Ectomycorrhizal Fungi and Bacterial Needle Endophytes in Pinus radiata: Implications for Biotic Selection of Microbial Communities.

    Science.gov (United States)

    Rúa, Megan A; Wilson, Emily C; Steele, Sarah; Munters, Arielle R; Hoeksema, Jason D; Frank, Anna C

    2016-01-01

    Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors - biotic or abiotic - in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic species

  20. Evidence for biotic controls on topography and soil production

    Science.gov (United States)

    Roering, Joshua J.; Marshall, Jill; Booth, Adam M.; Mort, Michele; Jin, Qusheng

    2010-09-01

    The complex interplay of biological, physical, and chemical processes in pedogenesis and hillslope evolution limits our ability to predict and interpret landscape dynamics. Here, we synthesize a suite of observations from the steep, forested Oregon Coast Range to analyze the role of trees in topographic modification and bedrock-to-soil conversion. Using topographic data derived from airborne lidar, we demonstrate that the topographic signature of forest-driven soil and bedrock disturbance is pervasive. For length scales greater than 7.5 m, the land surface is defined by ridge-valley landforms, whereas smaller scales are dominated by pit-mound features generated by the turnover of large coniferous trees. From field surveys, the volume of bedrock incorporated in overturned rootwads increases rapidly with diameter for large conifers, reflecting the highly nonlinear increase in root biomass with tree diameter. Because trees younger than 60 years detach negligible bedrock, short timber harvest intervals may limit the extent to which root systems penetrate bedrock and facilitate bedrock fracturing and biogeochemical weathering. Using ground-penetrating radar, we show that the rootwads of large trees root achieve substantial penetration (1-3 m) into shallow bedrock. The radar transects also reveal that variations in soil thickness have characteristic length scales of 1 to 5 m, consistent with the scale of large rootwads, indicating that both the landscape surface and soil-bedrock interface exhibit a biogenic imprint. In our study area, the residence time of bedrock within dense rooting zones directly below large trees is similar to the time required for trees to occupy the entire forest floor through multiple cycles of forest succession, suggesting that biological modification of shallow bedrock is ubiquitous. Given increases in erosion rate, the ability of roots to initiate soil production may decline as bedrock exhumation through the biotic zone is rapid relative to the

  1. The evolutionary ecology of biotic association in a megadiverse bivalve superfamily: sponsorship required for permanent residency in sediment.

    Directory of Open Access Journals (Sweden)

    Jingchun Li

    Full Text Available BACKGROUND: Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. METHODOLOGY/PRINCIPAL FINDINGS: Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host's bioturbation. CONCLUSIONS/SIGNIFICANCE: the formation of commensal associations by Galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (P < 0.001. Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host's burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse

  2. Biotic homogenization can decrease landscape-scale forest multifunctionality.

    Science.gov (United States)

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-29

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.

  3. Reductive transformation of carbamazepine by abiotic and biotic processes.

    Science.gov (United States)

    König, Anne; Weidauer, Cindy; Seiwert, Bettina; Reemtsma, Thorsten; Unger, Tina; Jekel, Martin

    2016-09-15

    The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests). In catalytic hydrogenation CBZ is gradually hydrogenated and nine transformation products (TPs) were detected by liquid chromatography high-resolution mass spectrometry. 10,11-Dihydro-CBZ ((2H)-CBZ) was the major stable product in these abiotic, surface catalyzed reduction processes and turned out to be not a precursor of the more hydrogenated TPs. In the biotic reduction processes the formation of (2H)-CBZ alone could not explain the observed CBZ decline. There, also traces of (6H)-CBZ and (8H)-CBZ were formed by microbes under anaerobic conditions and four phase-II metabolites of reduced CBZ could be detected and tentatively identified. Thus, the spectrum of reduction products of CBZ is more diverse than previously thought. In environmental samples CBZ removal along an anaerobic soil passage was confirmed and (2H)-CBZ was determined at one of the sites.

  4. The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems

    Science.gov (United States)

    D'Alpaos, Andrea

    2011-03-01

    Salt marshes are coastal ecosystems characterized by high biodiversity and rates of primary productivity, providing fundamental ecosystem services. Salt-marsh ecosystems are important indicators of environmental change as the dynamics are governed by interacting physical and biological processes, whose intertwined feedbacks critically affect the evolution. Settling deposition of inorganic sediment allows the platform to reach a threshold elevation for vegetation encroachment; the presence of vegetation then intensifies rates of accretion, thus, enhancing the resilience of marshes to increasing rates of sea level rise (SLR). The results from a two-dimensional numerical model, accounting for biotic and geomorphic processes, show that different morphological evolutionary regimes are followed depending on marsh biological processes. The average marsh elevation within the tidal frame decreases with increasing rates of SLR, decreasing availability of sediment, and decreasing productivity of vegetation. The spatial variability in platform elevations increases with increasing rates of SLR, increasing availability of sediment, and decreasing productivity of vegetation. Supply-limited settings tend to develop uniform marsh surface elevations, whereas supply-rich settings tend to develop patterns of sedimentation where large heterogeneities in marsh surface elevations occur. The complexity observed in tidal geomorphological patterns is deemed to arise from the mutual influence of biotic and abiotic components. The fate of tidal landforms and their possible geomorphological restoration should, thus, be addressed through approaches which explicitly incorporate bio-morphodynamic processes.

  5. Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2013-10-24

    Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes direct quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.

  6. Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes.

    Science.gov (United States)

    Glenn, J Brad; Klaine, Stephen J

    2013-09-17

    This research identified and characterized factors that influenced nanomaterial bioavailability to three aquatic plants: Azolla caroliniana Willd, Egeria densa Planch., and Myriophyllum simulans Orch. Plants were exposed to 4-, 18-, and 30-nm gold nanoparticles. Uptake was influenced by nanoparticle size, the presence of roots on the plant, and dissolved organic carbon in the media. Statistical analysis of the data also revealed that particle uptake was influenced by a 4-way (plant species, plant roots, particle size, and dissolved organic carbon) interaction suggesting nanoparticle bioavailability was a complex result of multiple parameters. Size and species dependent absorption was observed that was dependent on the presence of roots and nanoparticle size. The presence of dissolved organic carbon was found to associate with 4- and 18-nm gold nanoparticles in suspension and form a nanoparticle/organic matter complex that resulted in (1) minimized particle aggregation and (2) a decrease of nanoparticle absorption by the aquatic plants. The same effect was not observed with the 30-nm nanoparticle treatment. These results indicate that multiple factors, both biotic and abiotic, must be taken into account when predicting bioavailability of nanomaterials to aquatic plants. PMID:23947987

  7. Influence of biotic variables on invertebrate size structure and diversity in coastal wetlands of Southeastern Spain

    Science.gov (United States)

    Antón-Pardo, María; Armengol, Xavier

    2016-10-01

    Biomass and size-based estimations provide relevant information regarding ecosystem functioning and biotic interactions. Our aims were to study the effect of fish and macrophytes on the size structure of invertebrate assemblages (from rotifers to insects) in a set of coastal water bodies, estimating the biomass (total and main invertebrate groups), the biomass-size spectra (model of Pareto) and size diversity. In fishless ponds, cladoceran and ostracod biomass were higher, and they presented greater size diversity. In fish ponds, rotifer biomass presented greater proportion; while in fishless ponds, cladocerans were usually the most abundant taxa and the largest organisms. The biomass size spectra showed more irregularities in fishless ponds, due to the low densities of small taxa (rotifers and copepod juveniles) and big taxa (malacostraceans or insects). Differences is size structure and diversity were also observed between spring and summer, suggesting a higher recruitment of juveniles in spring, and thus, a higher predation pressure upon zooplankton at that moment. Macrophyte cover did not apparently influence those parameters, except for the biomass of ostracods, copepods, and insects. Therefore, predation by fish strongly affected invertebrate biomass, reflecting their selective feeding, and allowing high densities of small taxa. Predation pressure decreased size diversity, by limiting the abundance of vulnerable taxa of specific size. Seasonal changes were likely related to the spring recruitment of fish juveniles. The presence of small fish and invertebrate predator taxa among the macrophytes, restrict their role as refuges for prey invertebrates.

  8. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    Science.gov (United States)

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia. PMID:27463026

  9. The timing and pattern of biotic recovery following the end-Permian mass extinction

    Science.gov (United States)

    Chen, Zhong-Qiang; Benton, Michael J.

    2012-06-01

    The aftermath of the great end-Permian period mass extinction 252 Myr ago shows how life can recover from the loss of >90% species globally. The crisis was triggered by a number of physical environmental shocks (global warming, acid rain, ocean acidification and ocean anoxia), and some of these were repeated over the next 5-6 Myr. Ammonoids and some other groups diversified rapidly, within 1-3 Myr, but extinctions continued through the Early Triassic period. Triassic ecosystems were rebuilt stepwise from low to high trophic levels through the Early to Middle Triassic, and a stable, complex ecosystem did not re-emerge until the beginning of the Middle Triassic, 8-9 Myr after the crisis. A positive aspect of the recovery was the emergence of entirely new groups, such as marine reptiles and decapod crustaceans, as well as new tetrapods on land, including -- eventually -- dinosaurs. The stepwise recovery of life in the Triassic could have been delayed either by biotic drivers (complex multispecies interactions) or physical perturbations, or a combination of both. This is an example of the wider debate about the relative roles of intrinsic and extrinsic drivers of large-scale evolution.

  10. Biotic nitrogen fixation in the bryosphere is inhibited more by drought than warming.

    Science.gov (United States)

    Whiteley, Jonathan A; Gonzalez, Andrew

    2016-08-01

    The boreal forest is of particular interest to climate change research due to its large circumpolar distribution and accumulated soil carbon pool. Carbon uptake in this ecosystem is nitrogen (N)-limited, therefore factors affecting carbon or nitrogen dynamics in the boreal forest can have consequences for global climate. We used a 2-year field experiment to investigate the response of biotic nitrogen fixation by cyanobacteria associated with boreal forest bryophytes, in a factorial experiment combining simulated climate change with habitat fragmentation treatments. We simulated climate change conditions using open-top greenhouse chambers in the field, which increased mean and maximum temperatures, and created a precipitation gradient from ambient levels in the center to extreme drought conditions at the periphery of the chamber. The dry patches near the chamber walls exhibited almost no N-fixation, despite having similar densities of cyanobacteria (predominantly Stigonema sp.) as other patches. Rates of N-fixation were best explained by a model containing moisture, fragmentation, cyanobacteria density and time; warming was not a significant variable affecting N-fixation. There was no significant interaction between warming and fragmentation. These results suggest that cyanobacteria responded physiologically to drought by reducing N-fixation activity long before any changes in density. Ecosystem processes, such as N-fixation, can respond in the short term to environmental change much more rapidly than changes in the underlying community structure. Such rapid physiological responses may occur faster than demographic insurance effects of biodiversity. PMID:27098528

  11. Mechanosensitivity below Ground: Touch-Sensitive Smell-Producing Roots in the Shy Plant Mimosa pudica.

    Science.gov (United States)

    Musah, Rabi A; Lesiak, Ashton D; Maron, Max J; Cody, Robert B; Edwards, David; Fowble, Kristen L; Dane, A John; Long, Michael C

    2016-02-01

    The roots of the shy plant Mimosa pudica emit a cocktail of small organic and inorganic sulfur compounds and reactive intermediates into the environment, including SO2, methanesulfinic acid, pyruvic acid, lactic acid, ethanesulfinic acid, propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, phenothiazine, and thioformaldehyde, an elusive and highly unstable compound that, to our knowledge, has never before been reported to be emitted by a plant. When soil around the roots is dislodged or when seedling roots are touched, an odor is detected. The perceived odor corresponds to the emission of higher amounts of propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, and phenothiazine. The mechanosensitivity response is selective. Whereas touching the roots with soil or human skin resulted in odor detection, agitating the roots with other materials such as glass did not induce a similar response. Light and electron microscopy studies of the roots revealed the presence of microscopic sac-like root protuberances. Elemental analysis of these projections by energy-dispersive x-ray spectroscopy revealed them to contain higher levels of K(+) and Cl(-) compared with the surrounding tissue. Exposing the protuberances to stimuli that caused odor emission resulted in reductions in the levels of K(+) and Cl(-) in the touched area. The mechanistic implications of the variety of sulfur compounds observed vis-à-vis the pathways for their formation are discussed.

  12. Coupling above and below ground gas measurements to understand greenhouse gas production in the soil profile

    Science.gov (United States)

    Nickerson, Nick; Creelman, Chance

    2016-04-01

    Natural and anthropogenic changes in climate have the potential to significantly affect the Earth's natural greenhouse gas balances. To understand how these climatic changes will manifest in a complex biological, chemical and physical system, a process-based understanding of the production and consumption of greenhouse gases in soils is critical. Commonly, both chamber methods and gradient-based approaches are used to estimate greenhouse gas flux from the soil to the atmosphere. Each approach offers benefits, but not surprisingly, comes with a list of drawbacks. Chambers are easily deployed on the surface without significant disturbance to the soil, and can be easily spatially replicated. However the high costs of automated chamber systems and the inability to partition fluxes by depth are potential downfalls. The gradient method requires a good deal of disturbance for installation, however it also offers users spatiotemporally resolved flux estimates at a reasonable price point. Researchers widely recognize that the main drawback of the gradient approach is the requirement to estimate diffusivity using empirical models based on studies of specific soils or soil types. These diffusivity estimates can often be off by several orders of magnitude, yielding poor flux estimates. Employing chamber and gradient methods in unison allows for in-situ estimation of the diffusion coefficient, and therefore improves gradient-based estimates of flux. A dual-method approach yields more robust information on the temporal dynamics and depth distribution of greenhouse gas production and consumption in the soil profile. Here we present a mathematical optimization framework that allows these complimentary measurement techniques to yield more robust information than a single technique alone. We then focus on how it can be used to improve the process-based understanding of greenhouse gas production in the soil profile.

  13. Distribution of 'Candidatus Liberibacter asiaticus' Above and Below Ground in Texas Citrus.

    Science.gov (United States)

    Louzada, Eliezer S; Vazquez, Omar Ed; Braswell, W Evan; Yanev, George; Devanaboina, Madhavi; Kunta, Madhurababu

    2016-07-01

    Detection of 'Candidatus Liberibacter asiaticus' represents one of the most difficult, yet critical, steps of controlling Huanglongbing disease. Efficient detection relies on understanding the underlying distribution of bacteria within trees. To that end, we studied the distribution of 'Ca. L. asiaticus' in leaves of 'Rio Red' grapefruit trees and in roots of 'Valencia' sweet orange trees grafted onto sour orange rootstock. We performed two sets of leaf collection on grapefruit trees; the first a selective sampling targeting symptomatic leaves and their neighbors and the second a systematic collection disregarding symptomology. From uprooted orange trees, we exhaustively sampled fibrous roots. In this study, the presence of 'Ca. L. asiaticus' was detected in leaves using real-time polymerase chain reaction (PCR) targeting the 16S ribosomal gene and in roots using the rpIJ/rpIL ribosomal protein genes and was confirmed with conventional PCR and sequencing of the rpIJ/rpIL gene in both tissues. Among randomly collected leaves, 'Ca. L. asiaticus' was distributed in a patchy fashion. Detection of 'Ca. L. asiaticus' varied with leaf symptomology with symptomatic leaves showing the highest frequency (74%) followed by their neighboring asymptomatic leaves (30%), while randomly distributed asymptomatic leaves had the lowest frequency (20%). Among symptomatic leaves, we found statistically significant differences in mean number of bacterial cells with respect to both increasing distance of the leaf from the trunk and cardinal direction. The titer of 'Ca. L. asiaticus' cells was significantly greater on the north side of trees than on the south and west sides. Moreover, these directions showed different spatial distributions of 'Ca. L. asiaticus' with higher titers near the trunk on the south and west sides as opposed to further from the trunk on the north side. Similarly, we found spatial variation in 'Ca. L. asiaticus' distribution among root samples. 'Ca. L. asiaticus' was detected more frequently and bacterial abundances were higher among horizontally growing roots just under the soil surface (96%) than among deeper vertically growing roots (78%). Bacterial abundance declined slightly with distance from the trunk. These results point to paths of research that will likely prove useful to combating this devastating disease. PMID:27050571

  14. Tapping another water source: lianas' and trees' below ground competition for water

    Science.gov (United States)

    De Deurwaerder, Hannes; Hervé-Fernández, Pedro; Stahl, Clément; Bonal, Damien; Burban, Benoit; Boeckx, Pascal; Verbeeck, Hans

    2016-04-01

    Recent studies indicate that liana abundancy in the Amazon is increasing during the last decades. The dominant underlying mechanism of this liana proliferation is currently unknown. However, several hypothesis have been proposed to answer this phenomenon among which one ascribes lianas, in comparison to trees, being able to adapt better to increased drought conditions resulting from climate change. Moreover, some studies indicate lianas having a deeper root system compared to tropical trees, which would allow them to tap water from deeper soil layers and thus increases their belowground competitiveness. In order to test this hypothesis, water stable isotopes (δ2H and δ18O) were measured in precipitation, bulk soil (at different depths), stream, and xylem water from lianas and trees. This was done in two catchments with different soil texture (sand and clay) in the close vicinity of the Guyana flux tower at Paracou (French Guyana) during October 2015. According to recent studies using water stable isotopes (δ2H and δ18O) have described an ecohydrological separation of water. A mobile soil water compartment, compounded by stream and precipitation waters (or LMWL); and a low mobility or static water compartment mainly used by plants (i.e. xylem water) indicated as the "two water world hypothesis", suggesting that vegetation is using water that is not contributing to stream water. Based on this concept, we further characterized all isotopic data by estimating the precipitation offset (Pp-offset) which represents the distance between the LMWL and xylem δ2H and δ18O signature. Our results show that in both catchments, lianas and trees use different sources of water, with lianas tapping water with a significant heavier isotope signature (i.e. shallower water sources) compared to the lighter isotopic signatures observed on tropical trees (i.e. deeper water sources). Soil texture only affected tree water sources, with heavier isotopic xylem water found in trees growing in sandy soil. In addition, our results support "the two-water-world hypothesis", and show that lianas and trees on clay soils have very different Pp-offsets. This difference was not found for lianas and trees in sandy soils, suggesting that lianas and trees are using water with a different isotopic signature, therefore, distinct water sources in clay soils, but not in sandy soils. In conclusion, our study shows that xylem water from lianas has a heavier isotopic signature than those observed in trees xylem water. Therefore indicating that belowground competition for water between lianas and trees might be less strong than previously expected.

  15. Ectomycorrhizal communities above and below ground and truffle productivity in a Tuber aestivum orchard

    OpenAIRE

    Elena Salerni; Maria D'Aguanno; Pamela Leonardi; Claudia Perini

    2014-01-01

    Aim of study: The diversity of ectomycorrhizal fungal communities (EM) above (EMFb) and below (EMMt) ground associated with Quercus cerris L., Q. pubescens Willd., and Pinus nigra J.F.Arnold was analyzed.Area of study: A 20 year-old orchard that produces Tuber aestivum truffles, located a few kilometers from Chiusi della Verna (latitude 43° 41’ 53’’; longitude 11° 56’ 9’’) in Tuscany (central Italy) was observed.Material and Methods: This investigation combined analyses of EMFb, EMMt, T. aest...

  16. Equivalence in the strength of deer herbivory on above and below ground communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Reynolds, W. Nicholas; Bunn, Windy A.;

    2012-01-01

    Herbivores exert a strong influence on the species composition and richness of plant communities, but the magnitude of their effect on belowground communities remains poorly understood. While an increasing number of studies acknowledge the importance of documenting belowground effects of herbivor...

  17. Completing below-ground carbon budgets for pastures, recovering forests, and mature forests of Amazonia

    Science.gov (United States)

    Davidson, Eric A.; Nepstad, Daniel C.; Trumbore, Susan E.

    1995-01-01

    This progress report covers the following efforts initiated for the year: year-round monthly soil CO2 flux measurements were started in both primary and secondary forests and in managed and degraded pastures; root sorting and weighing has begun and all four ecosystems at Paragominas have been analyzed through samples; regional modeling of soil water dynamics and minimum rooting depth has been done and the RADAMBRASIL soils database has been digitized and a 20 year record of the precipitation for the region has been produced, along with a hydrological ('bucket-tipping') model that will run within a GIS framework; prototype tension lysimeters have been designed and installed in soil pits to begin assessing the importance of DOC as a source of organic matter in deep soils; and many publications, listed in this document, have resulted from this year's research. Two of the papers published are included with this annual report document.

  18. Information indices as a tool for quantifying development of below-ground terrestrial ecosystems

    NARCIS (Netherlands)

    Holtkamp, R.; Tobor-Kaplon, M.A.

    2007-01-01

    Information indices from ecosystem network analysis (ENA) describe the size and organization of an ecosystem and are claimed to quantify ecosystem development [Ulanowicz, R.E., 1986, Growth and Development, Springler-Verslag, New York, 203 pp.]. To date, these indices were not used to describe a gra

  19. Dosimetry of Rn-222 in the air in environments located above and below ground level

    International Nuclear Information System (INIS)

    Exposure of the general population to ionizing radiation comes mainly from natural sources. The main contribution is due to inhalation of radon (Rn-222), a gas that occurs naturally (UNSCEAR, 2000). The Rn-222 concentration in the environment is controlled by factors such as soil permeability and water content, the weather variability, materials used in the foundation and the usual positive pressure differential between the soil and the internal environment. Studies indicate that the concentration of radon shows a wide variation in the basement, ground floor and upper floors of buildings. The objective of this study is to determine radon levels in basements, ground floor and floors above ground level, at a university in the city of Sao Paulo and in one residential building in the city of Peruibe. Rn-222 measurements were performed using the method with nuclear track of solid state detectors (CR-39). The studied environments present Rn-222 concentration well below the values recommended by the International Commission on Radiological Protection, published in the 2009 document, of 300 Bq/m3 for homes and 1000 Bq/m3 for the workplace. In the residential building, the concentration of Ra-266, Th-232 and K-40 in the materials used in the building construction was also analyzed, by gamma spectrometry. The effective total dose for the resident due to external exposure was 0.8 mSv y-1, lower than the annual dose limit for the general public of 1 mSv y-1. (author)

  20. Picturing Adoption of Below-Ground Biodiversity Technologies among Smallholder Farmers around Mabira Forest, Uganda

    Directory of Open Access Journals (Sweden)

    Isabirye, BE.

    2010-01-01

    Full Text Available Faced with a multitude of soil and water amendment technologies, farmers have the task of choosing the technologies to adopt for ensuring subsistence and income sustainability. In 2008, a study to characterize the farmers was conducted around Mabira Forest, to assess the adoption of soil technologies fostering Belowground Biodiversity (BGBD. Eighty-four households (38 participating and 46 non-participants from four villages were randomly selected and interviewed. Results showed that the adoption pattern was significantly driven by farm size, labor, household size, age and wealth status of the house. Also important were farm location, gender of household head, primary occupation, soil and water conservation technologies training, land tenure, and social capital. For the few current adopters, there was a perceived increase in labor demand but overall productivity was higher, partly resulting from increased crop productivity due to soil fertility enhancement and soil structure modification. It is therefore concluded that, around Mabira forest, BGBD technologies will be adopted by farming households with sufficient land, labor and social capital.

  1. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.

  2. Device to relieve sucker rod torque below ground level in a petroleum well

    Energy Technology Data Exchange (ETDEWEB)

    Dysarz, E.D.

    1987-12-22

    An apparatus is described for use in a sucker rod string having a polished rod for relieving torque below the polished rod and inside of a well while the sucker rod string is moving up and down inside of the well, comprising: a body, the body that is suitably fastened to the lower end of the polished rod; at least one set of rollers that are suitably mounted within the body by axles, the rollers with a diameter greater than the width of the body; a lower swivel, and a guide. The guide is a tube that is square in section and is set vertically within the well.

  3. BOOTSTRAPPING AND MONTE CARLO METHODS OF POWER ANALYSIS USED TO ESTABLISH CONDITION CATEGORIES FOR BIOTIC INDICES

    Science.gov (United States)

    Biotic indices have been used ot assess biological condition by dividing index scores into condition categories. Historically the number of categories has been based on professional judgement. Alternatively, statistical methods such as power analysis can be used to determine the ...

  4. Meteoritic Versus Biotic Amino Acids: An Update on Aib and Iva

    Science.gov (United States)

    Brückner, H.; Degenkolb, T.; Fox, S.

    2016-08-01

    Biotically synthesized Aib and Iva hav been found in >1,350 structurally characterized microbial peptides. However, the structural diversity of the non-proteinogenic amino acids in CM-type meteorites is not displayed in individual fungal peptides.

  5. Biotic potential and reproductive parameters of Spodoptera eridania (Stoll) (Lepidoptera, Noctuidae) in the laboratory

    OpenAIRE

    Débora Goulart Montezano; Alexandre Specht; Daniel Ricardo Sosa-Gómez; Vânia Ferreira Roque-Specht; Neiva Monteiro de Barros

    2013-01-01

    Biotic potential and reprodutcive parameters of Spodoptera eridania (Stoll) (Lepidoptera, Noctuidae) in the laboratory: This study aimed to evaluate the biotic potential and reproductive parameters of Spodoptera eridania (Stoll, 1782) under controlled conditions (25 ± 1ºC, 70 ± 10% RH and 14 hour photophase). The longevity, pre-, post- and oviposition periods, fecundity and fertility of 15 couples was evaluated. The longevity of females (10.80 days) was not significantly higher than those of ...

  6. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    Directory of Open Access Journals (Sweden)

    Ülo eNiinemets

    2013-07-01

    Full Text Available Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase pathway (LOX products, various C6 aldehydes, alcohols and derivatives, also called green leaf volatiles associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo- and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for several abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary

  7. Biotic and abiotic factors affecting territorial and reproductive behaviour of dragonflies (Odonata)

    OpenAIRE

    KYBICOVÁ, Tereza

    2015-01-01

    Habitat selection, territorial behaviour and reproductive behaviour of dragonflies (Odonata) are discussed and biotic and abiotic factors affecting their territorial and reproductive behaviour are reviewed. The most important biotic factors are predation risk affecting larval survival and the presence of aquatic vegetation, which provides spatial structure. The review is complemented by a field study of territorial and reproductive behavior of dragonflies at an experimental site, at which the...

  8. Metabolomic changes of Brassica rapa under biotic stress

    NARCIS (Netherlands)

    Abdel-Farid Ali, Ibrahim Bayoumi

    2009-01-01

    It has been shown by this thesis that plant metabolomics is a promising tool for studying the interaction between B. rapa and pathogenic fungi. It gives a picture of the plant metabolites during the interaction. Brassica rapa has many defense related compounds such as glucosinolates, IAA, phenylprop

  9. Effects of Biotic and Abiotic Setting on a Host-Pathogen Relationship: How Environmental and Community Characteristics Influence Infection Prevalence and Intensity of Amphibian Chytrid on California's Central Coast

    OpenAIRE

    Hemingway, Valentine

    2015-01-01

    In the face of swift anthropogenic change, it is essential to examine the broad ecological context for species of concern using a variety of approaches in order to understand their interactions in a natural context. Host-pathogen relationships offer a close interaction to examine how each are acted upon by biotic and abiotic conditions. Batrachochytrium dendrobatidis, an emerging infectious disease of amphibians, has been implicated with wholesale loss and marked declines in amphibian speci...

  10. Effect of biotic and abiotic factors on diversity patterns of anthophyllous insect communities in a tropical mountain forest.

    Science.gov (United States)

    Cuartas-Hernández, S E; Gómez-Murillo, L

    2015-06-01

    The determinants of diversity are a central issue in ecology, particularly in Andean forests that are known to be a major diversity hotspot for several taxa. We examined the effect of abiotic (elevation and precipitation) and biotic (flowering plant diversity) factors considered to be decisive causal factors of diversity patterns on anthophyllous insect communities on mountain forest. Sampling was carried out in 100-m transects at eight elevational levels and during a period of 8 months. All flowering plants in the understory and their flowering visitors were recorded. Species richness and diversity were estimated for each elevation and month. Diversity of flowering plants, elevation, and precipitation were used as independent variables in multiple regressions against insect diversity. The evaluated abiotic and biotic factors had contrasting effects on insect diversity: a significant decrease on insect diversity occurred at high elevation and dry months (i.e., threshold effect), while it showed a positive relationship with flowering plant diversity through time (i.e., linear effect), but not along elevation. Rapid turnover of species of both interacting guilds was observed every 100-m altitude and month. Local insect communities were also divided functionally depending on the plant family they visit. These results indicate that each insect community is distinctive among elevations and months and that diversity of flowering plants, precipitation, and elevation influence their structure and composition. Thus, conservation strategies should involve protection of forest cover at the whole elevation gradient, in order to preserve common and exclusive components of diversity and consequently, the mosaic of plant-pollinator interactions. PMID:26013265

  11. Effect of biotic and abiotic factors on diversity patterns of anthophyllous insect communities in a tropical mountain forest.

    Science.gov (United States)

    Cuartas-Hernández, S E; Gómez-Murillo, L

    2015-06-01

    The determinants of diversity are a central issue in ecology, particularly in Andean forests that are known to be a major diversity hotspot for several taxa. We examined the effect of abiotic (elevation and precipitation) and biotic (flowering plant diversity) factors considered to be decisive causal factors of diversity patterns on anthophyllous insect communities on mountain forest. Sampling was carried out in 100-m transects at eight elevational levels and during a period of 8 months. All flowering plants in the understory and their flowering visitors were recorded. Species richness and diversity were estimated for each elevation and month. Diversity of flowering plants, elevation, and precipitation were used as independent variables in multiple regressions against insect diversity. The evaluated abiotic and biotic factors had contrasting effects on insect diversity: a significant decrease on insect diversity occurred at high elevation and dry months (i.e., threshold effect), while it showed a positive relationship with flowering plant diversity through time (i.e., linear effect), but not along elevation. Rapid turnover of species of both interacting guilds was observed every 100-m altitude and month. Local insect communities were also divided functionally depending on the plant family they visit. These results indicate that each insect community is distinctive among elevations and months and that diversity of flowering plants, precipitation, and elevation influence their structure and composition. Thus, conservation strategies should involve protection of forest cover at the whole elevation gradient, in order to preserve common and exclusive components of diversity and consequently, the mosaic of plant-pollinator interactions.

  12. Abiotic Versus Biotic Pathogens: Replicative Growth in Host Tissues Key to Discriminating Between Biotoxic Injury and Active Pathogenesis

    Science.gov (United States)

    Schuerger, Andrew C.; Ming, Douglas W.; Golden, D. C.

    2012-01-01

    Life can be defined as a self-sustaining chemical system capable of undergoing Darwinian evolution; a self-bounded, self-replicating, and self-perpetuating entity [1]. This definition should hold for terrestrial as well as extraterrestrial life-forms. Although, it is reasonable to expect that a Mars life-form would be more adaptable to Mars-like conditions than to Earth-like environments, it remains possible that negative ecological or host interactions might occur if Mars microbiota were to be inadvertently released into the terrestrial environment. A biogenic infectious agent can be defined as a self-sustaining chemical system capable of undergoing Darwinian evolution and derives its sustenance from a living cell or from the by-products of cell death. Disease can be de-fined as the detrimental alteration of one or more ordered metabolic processes in a living host caused by the continued irritation of a primary causal factor or factors; disease is a dynamic process [2]. In contrast, an injury is due to an instantaneous event; injury is not a dynamic process [2]. A causal agent of disease is defined as a pathogen, and can be either abiotic or biotic in nature. Diseases incited by biotic pathogens are the exceptions, not the norms, in terrestrial host-microbe interactions. Disease induction in a plant host can be conceptually characterized using the Disease Triangle (Fig. 1) in which disease occurs only when all host, pathogen, and environ-mental factors that contribute to the development of disease are within conducive ranges for a necessary minimum period of time. For example, plant infection and disease caused by the wheat leaf rust fungus, Puccinia recondita, occur only if virulent spores adhere to genetically susceptible host tissues for at least 4-6 hours under favorable conditions of temperature and moisture [3]. As long as one or more conditions required for disease initiation are not available, disease symptoms will not develop.

  13. Butachlor degradation in tropical soils: effect of application rate, biotic-abiotic interactions and soil conditions.

    Science.gov (United States)

    Pal, R; Das, P; Chakrabarti, K; Chakraborty, A; Chowdhury, A

    2006-01-01

    The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.

  14. Coral reefs in crisis: reversing the biotic death spiral

    OpenAIRE

    Hay, Mark E.; Rasher, Douglas B

    2010-01-01

    Coral reefs are disappearing due to global warming, overfishing, ocean acidification, pollution, and interactions of these and other stresses. Ecologically informed management of fishes that facilitate corals by suppressing seaweeds may be our best bet for bringing reefs back from the brink of extinction.

  15. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Hunkeler, Daniel; Tuxen, Nina;

    2014-01-01

    dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in 13C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation...... not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1......,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA 13C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1...

  16. Do Karst Rivers “deserve” their own biotic index? A ten years study on macrozoobenthos in Croatia

    Directory of Open Access Journals (Sweden)

    Rađa Biljana

    2010-07-01

    Full Text Available In this study we present the results of a ten year survey of the aquatic macroinvertebrate fauna along four karst rivers: Jadro, Žrnovnica, Grab and Ruda, all of them situated in the Middle Dalmatia region of Croatia, in an attempt to construct the Iliric Biotic Index, which will be more applicable for the water quality analysis than the most frequently applied biotic index in Croatia, the Italian Modification of Extended Biotic Index. The rivers geologically belong to the Dinaric karst, unique geological phenomena in Europe. Benthic macroinvertebrates were collected along each river at 15 sites by standard methods of sampling along with several physicochemical parameters, including: temperature, dissolved oxygen, carbon dioxide, alkalinity, hardness and pH. Univariate and multivariate techniques revealed differences in the macroinvertebrate community structure as well as in physicochemical parameters between the Karst rivers and continental rivers. Based on those differences, the Iliric Biotic Index was proposed as the standard of karst river water quality in Croatia in accordance with the EU Water Framework Directive. Differences between the Iliric Biotic Index and the most commonly used biotic indices in the European Community and the USA (The Biological Monitoring Working Party (B.M.W.P. scores, i.e. Extended Biotic Index, Indice Biotique, Family Biotic Index suggest that karst rivers need a new biotic index.

  17. Application of Irradiated Pro biotic Microorganism in Black Tiger Shrimp (Penaeus monodon Fabricius) Culture

    International Nuclear Information System (INIS)

    Marine shrimp culture in Thailand has been developed continuously for the past two decades. This development will ensure the highest level of shrimp quality that will be suitable for the consumption of the people in the country and also aboard. The trend of culture system emphasizes on disease prevention more than treatment which will consequently limit the application of drug and chemicals. Application of pro biotic has been one means of this prevention that are commonly practiced by shrimp farmers. This research was conducted to compare the efficacy of normal Bacillus subtilis isolate from shrimp intestine and an irradiated B. subtilis as a pro biotic in shrimp feed. It was found that overall results were quite the same. These included the broth Co-culture assay. Effects on immune functions were conducted with Penaeus monodon with initial average weight of 17 gms by feeding with 3 gms/kg feed of spore of these two pro biotic for two mouths. The results indicated that both pro biotic caused significant improvement on percent phagocytosis only at the forth week of feeding trial and the overall enhancement of bactericidal activity. However, total haemocyte count and phenoloxidase activity were not altered. Total bacterial count in shrimp intestine was also conducted during the two month trial. the results indicated significant reduction of Vibrio spp. of both pro biotic groups when compared with the control. Number of Bacillus spp. in intestine were continuously high even after pro biotic treatment had been stopped Growth rate of experiment and control shrimp was not significantly different.

  18. The abundance of biotic exoplanets and life on planets of Red Dwarf stars

    Science.gov (United States)

    Wandel, Amri; Gale, Joseph

    2016-07-01

    The Kepler mission has shown that Earthlike planets orbiting within the Habitable Zones of their host stars are common. We derive an expression for the abundance of life bearing (biotic) extra-solar-system planets (exoplanets) in terms of the (yet unknown) probability for the evolution of biotic life. This "biotic probability" may be estimated by future missions and observations, e.g. spectral analyses of the atmospheres of exoplanets, looking for biomarkers. We show that a biotic probability in the range 0.001-1 implies that a biotic planet may be expected within ~10-100 light years from Earth. Of particular interest in the search for exolife are planets orbiting Red Dwarf (RD) stars, the most frequent stellar type. Previous researches suggested that conditions on planets near RDs would be inimical to life, e.g. the Habitable Zone of RDs is small, so their habitable planets would be close enough to be tidally locked. Recent calculations show that this and other properties of RDs, presumed hostile for the evolution of life, are less severe than originally estimated. We conclude that RD planets could be hospitable for the evolution of life as we know it, not less so than planets of solar-type stars. This result, together with the large number of RDs and their Kepler planet-statistics, makes finding life on RD planets ~10-1000 times more likely than on planets of solar-type stars. Our nearest biotic RD-planet is likely to be 2-10 times closer than the nearest solar-type one.

  19. Interacting effects of insects and flooding on wood decomposition.

    Directory of Open Access Journals (Sweden)

    Michael D Ulyshen

    Full Text Available Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L. decomposition rates in both seasonally flooded and unflooded forests over a 31-month period in the southeastern United States. Wood specific gravity (based on initial wood volume was significantly lower in bolts placed in unflooded forests and for those unprotected from insects. Approximately 20.5% and 13.7% of specific gravity loss after 31 months was attributable to insect activity in flooded and unflooded forests, respectively. Importantly, minimal between-treatment differences in water content and the results from a novel test carried out separately suggest the mesh bags had no significant impact on wood mass loss beyond the exclusion of insects. Subterranean termites (Isoptera: Rhinotermitidae: Reticulitermes spp. were 5-6 times more active below-ground in unflooded forests compared to flooded forests based on wooden monitoring stakes. They were also slightly more active above-ground in unflooded forests but these differences were not statistically significant. Similarly, seasonal flooding had no detectable effect on above-ground beetle (Coleoptera richness or abundance. Although seasonal flooding strongly reduced Reticulitermes activity below-ground, it can be concluded from an insignificant interaction between forest type and exclusion treatment that reduced above-ground decomposition rates in seasonally flooded forests were due largely to suppressed microbial activity at those locations. The findings from this study indicate that southeastern U.S. arthropod communities accelerate above-ground wood decomposition significantly and to a similar extent in both flooded and unflooded forests

  20. Effects of biotic factors on net ecosystem production in forests:A review%森林净生态系统生产力及其生物影响因子研究进展

    Institute of Scientific and Technical Information of China (English)

    吴建平; 刘占锋

    2013-01-01

      在全球大气二氧化碳浓度上升的背景下,陆地生态系统碳循环及碳汇功能研究得到了广泛的关注,日益成为今后的政治和外交的重大议题之一。净生态系统生产力(net ecosystem production, NEP)是生态系统光合固定的碳与生态系统呼吸损失的碳之间的差值;或者为生态系统净的碳积累速率。NEP 的研究整合生态系统地上和地下部分,把生态系统碳循环的影响因子有机地联系了起来。当NEP为正值时,说明生态系统为碳汇,NEP为负值则表明生态系统为碳源。随着植物和土壤相互联系及其对生态系统过程研究的深入,NEP已经成为生态系统碳循环研究的核心概念之一。以森林NEP为出发点,综述了国内外的最近的 NEP 研究进展,分析了 NEP 研究的科学意义;探讨了植物群落组成/生物多样性、土壤微生物群落、大型/土壤动物和人为的管理或干扰等生物因子对NEP的影响。根据综述研究提出未来研究应在:(1)土壤生物过程、土壤食物网及其与地上部分植物/动物相互作用对NEP的影响;(2)自然林生物多样性的竞争/共存机制与生态系统碳吸存稳定性;(3)人工林固碳潜力和不同植物功能群(灌草层)对生态系统碳动态影响等方面加强,以期为全面认识生物因子对森林生态系统系统固碳现状、机制和潜力提供理论基础。%Under the background of global change, carbon cycling and carbon sequestration in terrestrial ecosystems have attracted considerable attention, which has become one of the important politic and diplomatic agendas. Net ecosystem production (NEP) is defined as the difference between ecosystem-level photosynthetic gain of carbon (gross primary production, GPP) and ecosystem loss of carbon (ecosystem respiration);or the net rate of carbon accumulation in ecosystems. NEP links above-and below-ground components which allow

  1. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS FROM UPPER MUREŞ RIVER CATCHMENT AREA USING DIFFERENT BIOTIC INDICES

    Directory of Open Access Journals (Sweden)

    Milca PETROVICI

    2012-01-01

    Full Text Available Present paper approach the issue of assessing the water quality of tributaries located in the upper basin of the river Mureş, taking into account changes in the value of biotic indices. In this sense, have been selected the next five biotic indices: Ephemeroptera Plecoptera Trichoptera index (EPT, Total Invertebrates index (T, Chironomidae index (Ch, EPT / Total invertebrates index (EPT / T, EPT / Chironomidae index (EPT / Ch and % Chironomidae index (% Chironomidae. Considering all these indices, it was found existence of a medium to best quality water in Mureş tributaries from Harghita Mountains and a good quality water which comes from the Maramureş Mountains and Transylvania Plateau.

  2. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses

    OpenAIRE

    Raman Bansal; Priyanka Mittapelly; CASSONE, BRYAN J.; Praveen Mamidala; Redinbaugh, Margaret G.; Andy Michel

    2015-01-01

    For real-time reverse transcription-PCR (qRT-PCR) in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2) in soybean under biotic str...

  3. Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?

    Science.gov (United States)

    Boyd, P. W.; Strzepek, R. F.; Ellwood, M. J.; Hutchins, D. A.; Nodder, S. D.; Twining, B. S.; Wilhelm, S. W.

    2015-07-01

    Dissolved iron supply is pivotal in setting global phytoplankton productivity and pelagic ecosystem structure. However, most studies of the role of iron have focussed on carbon biogeochemistry within pelagic ecosystems, with less effort to quantify the iron biogeochemical cycle. Here we compare mixed-layer biotic iron inventories from a low-iron (~0.06 nmol L-1) subantarctic (FeCycle study) and a seasonally high-iron (~0.6 nmol L-1) subtropical (FeCycle II study) site. Both studies were quasi-Lagrangian, and had multi-day occupation, common sampling protocols, and indirect estimates of biotic iron (from a limited range of available published biovolume/carbon/iron quotas). Biotic iron pools were comparable (~100 ± 30 pmol L-1) for low- and high-iron waters, despite a tenfold difference in dissolved iron concentrations. Consistency in biotic iron inventories (~80 ± 24 pmol L-1, largely estimated using a limited range of available quotas) was also conspicuous for three Southern Ocean polar sites. Insights into the extent to which uniformity in biotic iron inventories was driven by the need to apply common iron quotas obtained from laboratory cultures were provided from FeCycle II. The observed twofold to threefold range of iron quotas during the evolution of FeCycle II subtropical bloom was much less than reported from laboratory monocultures. Furthermore, the iron recycling efficiency varied by fourfold during FeCycle II, increasing as stocks of new iron were depleted, suggesting that quotas and iron recycling efficiencies together set biotic iron pools. Hence, site-specific differences in iron recycling efficiencies (which provide 20-50% and 90% of total iron supply in high- and low-iron waters, respectively) help offset the differences in new iron inputs between low- and high-iron sites. Future parameterization of iron in biogeochemical models must focus on the drivers of biotic iron inventories, including the differing iron requirements of the resident biota

  4. As Old as the hills: montane scorpions in Southwestern North America reveal ancient associations between biotic diversification and landscape history.

    Directory of Open Access Journals (Sweden)

    Robert W Bryson

    Full Text Available BACKGROUND: The age of lineages has become a fundamental datum in studies exploring the interaction between geological transformation and biotic diversification. However, phylogeographical studies are often biased towards lineages that are younger than the geological features of the landscapes they inhabit. A temporally deeper historical biogeography framework may be required to address episodes of biotic diversification associated with geologically older landscape changes. Signatures of such associations may be retained in the genomes of ecologically specialized (stenotopic taxa with limited vagility. In the study presented here, genetic data from montane scorpions in the Vaejovis vorhiesi group, restricted to humid rocky habitats in mountains across southwestern North America, were used to explore the relationship between scorpion diversification and regional geological history. RESULTS: Strong phylogeographical signal was evident within the vorhiesi group, with 27 geographically cohesive lineages inferred from a mitochondrial phylogeny. A time-calibrated multilocus species tree revealed a pattern of Miocene and Pliocene (the Neogene period lineage diversification. An estimated 21 out of 26 cladogenetic events probably occurred prior to the onset of the Pleistocene, 2.6 million years ago. The best-fit density-dependent model suggested diversification rate in the vorhiesi group gradually decreased through time. CONCLUSIONS: Scorpions of the vorhiesi group have had a long history in the highlands of southwestern North America. Diversification among these stenotopic scorpions appears to have occurred almost entirely within the Neogene period, and is temporally consistent with the dynamic geological history of the Basin and Range, and Colorado Plateau physiographical provinces. The persistence of separate lineages at small spatial scales suggests that a combination of ecological stenotopy and limited vagility may make these scorpions particularly

  5. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses.

    Directory of Open Access Journals (Sweden)

    Ravinder K Goyal

    Full Text Available Antimicrobial cationic peptides (AMPs are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani and abiotic stressors (dark-induced senescence, wounding and temperature stress. msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR and reactive oxygen species (ROS responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield.

  6. Quantifying Variability in Four U.S. Streams Using a Long-Term Dataset: Patterns in Biotic Endpoints

    Science.gov (United States)

    Flinders, Camille A.; McLaughlin, Douglas B.; Ragsdale, Renee L.

    2015-08-01

    Effective water resources assessment and management requires quantitative information on the variability of ambient and biological conditions in aquatic communities. Although it is understood that natural systems are variable, robust estimates of long-term variation in community-based structure and function metrics are rare in U.S. waters. We used a multi-year, seasonally sampled dataset from multiple sites ( n = 5-6) in four streams (Codorus Creek, PA; Leaf River, MS; McKenzie and Willamette Rivers, OR) to examine spatial and temporal variation in periphyton chlorophyll a, and fish and macroinvertebrate metrics commonly used in bioassessment programs. Within-site variation of macroinvertebrate metrics and benthic chlorophyll a concentration showed coefficient of variation ranging from 16 to 136 %. Scale-specific variability patterns (stream-wide, season, site, and site-season patterns) in standardized biotic endpoints showed that within-site variability patterns extended across sites with variability greatest in chlorophyll a and lowest in Hilsenhoff's Biotic Index. Across streams, variance components models showed that variance attributed to the interaction of space and time and sample variance accounted for the majority of variation in macroinvertebrate metrics and chlorophyll a, while most variation in fish metrics was attributed to sample variance. Clear temporal patterns in measured endpoints were rare and not specific to any one stream or assemblage, while apparent shifts in metric variability related to point source discharges were seen only in McKenzie River macroinvertebrate metrics in the fall. Results from this study demonstrate the need to consider and understand spatial, seasonal, and longer term variability in the development of bioassessment programs and subsequent decisions.

  7. Biotic survival in the cryobiosphere on geological scale: implication for astro/terrestrial biogeoscience

    Science.gov (United States)

    Gilichinsky, D.

    2003-04-01

    In current opinion the most fundamental aspect of any environment, the temperature regime, acts as a regulator of all of the physical-chemical reactions and forms the basis of all biological processes. Now hard data indicate the biotic survival over geological periods from subzero temperatures (down to -27oC in permafrost and to -50oC in ice) to positive one in amber and halite. All these very different environments have, nevertheless, common features: complete isolation, stability and waterproof. In such unique physical-chemical complexes, the dehydration of macromolecules and the reorganization of membrane components apparently lead to a considerable decrease or stop of metabolic activity independently of temperature. This allowed the prolonged survival of ancient microbial lineage that realize unknown possibilities of physiological and biochemical adaptation incomparably longer than any other known habitat. The ability of microorganisms to survive on geological scale within the broad limits of natural systems forces us to redefine the spatial and temporal limits of the terrestrial and extraterrestrial biospheres and suggested that universal mechanisms of such adaptation might operate for millions of years. Among new scientific directions formed on this base, the most general is the fundamental question: how long the life might be preserved and what mechanisms could ensure survival? Because the length of lifetime cannot be reproduced, this highlights the natural storages that make possible the observation of the results of biotic survival on geological scale. Of special interest is the interaction of knowledge to understanding of the limits of the deep cold biosphere as a depository of ancient active biosignatures (biogases, biominerals, pigments, lipids, enzymes, proteins, RNA/DNA fragments) and viable cells. The last are the only known a huge mass of organisms that have retained viability over geological periods and upon thawing, renew physiological activity

  8. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.

    Science.gov (United States)

    Bokhorst, Stef; Phoenix, Gareth K; Berg, Matty P; Callaghan, Terry V; Kirby-Lambert, Christopher; Bjerke, Jarle W

    2015-11-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may

  9. Macroecological signals of species interactions in the Danish avifauna

    DEFF Research Database (Denmark)

    Gotelli, N.J.; Graves, Christopher R.; Rahbek, C.

    2010-01-01

    The role of intraspecific and interspecific interactions in structuring biotic communities at fine spatial scales is well documented, but the signature of species interactions at coarser spatial scales is unclear. We present evidence that species interactions may be a significant factor in mediat...

  10. Contrasting intra-annual patterns of six biotic groups with different dispersal mode and ability in Mediterranean temporary ponds

    OpenAIRE

    Boix, Dani; Caria, Maria Carmela; Gascón, Stéphanie; Mariani, Maria Antonietta; Sala, Jordi; Ruhi, Albert; Compte Ciurana, Jordi; Bagella, Simonetta

    2015-01-01

    The temporal patterns of six biotic groups (amphibians, macroinvertebrates with active and passive dispersal mode, microcrustaceans, vascular plants and phytoplankton) and the responses of each biotic group to environmental variation (water, pond and landscape variables) were studied in a set of Sardinian temporary ponds.

  11. Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions

    NARCIS (Netherlands)

    Ionescu, Danny; Heim, Christine; Polerecky, L.; Thiel, Volker; de Beer, Dirk

    2015-01-01

    Oxidation and reduction of iron can occur through abiotic (chemical) and biotic (microbial) processes. Abiotic iron oxidation is a function of pH and O2 concentration. Biotic iron oxidation is carried out by a diverse group of bacteria, using O2 or NO3 as terminal electron acceptors. At circumneutra

  12. Development of a wireless computer vision instrument to detect biotic stress in wheat

    Science.gov (United States)

    Knowledge of soil water deficits, crop water stress, and biotic stress from disease or insect pressure is important for optimal irrigation scheduling and water management. While spectral reflectance and thermometry provide a means to quantify crop stress remotely, measurements can be cumbersome, exp...

  13. Biotic regulation of CO2 uptake-climate responses: links to vegetation proproperties

    Science.gov (United States)

    Identifying the plant traits and patterns of trait distribution in communities that are responsible for biotic regulation of CO2 uptake-climate responses remains a priority for modelling terrestrial C dynamics. We used remotely-sensed estimates of GPP from plots planted to different combinations of...

  14. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    Directory of Open Access Journals (Sweden)

    Viswanath eSankar

    2014-05-01

    Full Text Available Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.

  15. Characterization of the summer pack ice biotic community of Canada Basin

    Institute of Scientific and Technical Information of China (English)

    HE Ji anfeng; CAI Minghong; JIANG Xiaodong; CHEN Bo; YU Yong

    2005-01-01

    Summer pack ice biotic community of the Canada Basin was characterized during the Second Chinese National Arctic Research Expedition (CHINARE-2003, 20 August-5 September 2003). Bacteria, ice algae (diatoms and autotrophic flagellates) and protozoa (mainly heterotrophic flagellates) were observed throughout the whole ice column. The vertical distribufon of biotic taxa varied among sites.The integrated biomass ranged from 48.4 and 58.1 mg/m2, with an average of 55.2 mg/m2. Bacteria were the dominant of the assem-blage in pack ice, accounted for 84.1% of the integrated, and ice algae, which usually dominate the ice biotic community, constituted only 3.5% of the total. Considering the quick environmental changes of the Arctic Ocean in recent years, we suggested that quick melting of pack ice in summer was suggested, which caused such change of pack ice biotic community. The low salinity throughout the whole ice column and the continuous melting of the pack ice cumbered the formation of ice algae bloom in summer, finally resulting in the dominance of microbial food web with bacteria and heterotrophic flagellates as the most obvious characteristics. Considering the high ratio of pack ice primary production to the total found in previous studies, the quick change of pack ice community structure in summer would deeply influence the marine ecosystem of the high Arctic Ocean.

  16. Comprehensive Analysis Suggests Overlapping Expression of Rice ONAC Transcription Factors in Abiotic and Biotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Lijun Sun

    2015-02-01

    Full Text Available NAC (NAM/ATAF/CUC transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in the NAC family remain unknown. In this study, microarray data analyses revealed that a total of 63 ONAC genes exhibited overlapping expression patterns in rice under various abiotic (salt, drought, and cold and biotic (infection by fungal, bacterial, viral pathogens, and parasitic plants stresses. Thirty-eight ONAC genes exhibited overlapping expression in response to any two abiotic stresses, among which 16 of 30 selected ONAC genes were upregulated in response to exogenous ABA. Sixty-five ONAC genes showed overlapping expression patterns in response to any two biotic stresses. Results from the present study suggested that members of the ONAC genes with overlapping expression pattern may have pleiotropic biological functions in regulation of defense response against different abiotic and biotic stresses, which provide clues for further functional analysis of the ONAC genes in stress tolerance and pathogen resistance.

  17. Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses.

    Science.gov (United States)

    Sun, Lijun; Huang, Lei; Hong, Yongbo; Zhang, Huijuan; Song, Fengming; Li, Dayong

    2015-01-01

    NAC (NAM/ATAF/CUC) transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in the NAC family remain unknown. In this study, microarray data analyses revealed that a total of 63 ONAC genes exhibited overlapping expression patterns in rice under various abiotic (salt, drought, and cold) and biotic (infection by fungal, bacterial, viral pathogens, and parasitic plants) stresses. Thirty-eight ONAC genes exhibited overlapping expression in response to any two abiotic stresses, among which 16 of 30 selected ONAC genes were upregulated in response to exogenous ABA. Sixty-five ONAC genes showed overlapping expression patterns in response to any two biotic stresses. Results from the present study suggested that members of the ONAC genes with overlapping expression pattern may have pleiotropic biological functions in regulation of defense response against different abiotic and biotic stresses, which provide clues for further functional analysis of the ONAC genes in stress tolerance and pathogen resistance. PMID:25690040

  18. Ecosystem services in grassland associated with biotic and abiotic soil parameters

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Boer, H.; Hanegraaf, M.C.; Bokhorst, J.; Nierop, D.; Bloem, J.; Schouten, T.; Goede, de R.G.M.; Brussaard, L.

    2010-01-01

    Biotic soil parameters have so far seldom played a role in practical soil assessment and management of grasslands. However, the ongoing reduction of external inputs in agriculture would imply an increasing reliance on ecosystem self-regulating processes. Since soil biota play an important role in th

  19. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    Science.gov (United States)

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  20. The influences of forest stand management on biotic and abiotic risks of damage

    NARCIS (Netherlands)

    Jactel, H.; Nicoll, B.C.; Branco, M.; Gonzalez-Olabarria, J.R.; Grodzki, W.; Långström, B.; Moreira, F.; Netherer, S.; Orazio, C.; Piou, D.; Santos, H.; Schelhaas, M.J.; Tojic, K.; Vodde, F.

    2009-01-01

    • This article synthesizes and reviews the available information on the effects of forestry practices on the occurrence of biotic and abiotic hazards, as well as on stand susceptibility to these damaging agents, concentrating on mammal herbivores, pest insects, pathogenic fungi, wind and fire. • The

  1. Influence of environmental factors on biotic responses to nutrient enrichment in agricultural streams

    Science.gov (United States)

    Maret, Terry R.; Konrad, Christopher P.; Tranmer, Andrew W.

    2010-01-01

    The influence of environmental factors on biotic responses to nutrients was examined in three diverse agricultural regions of the United States. Seventy wadeable sites were selected along an agricultural land use gradient while minimizing natural variation within each region. Nutrients, habitat, algae, macroinvertebrates, and macrophyte cover were sampled during a single summer low-flow period in 2006 or 2007. Continuous stream stage and water temperature were collected at each site for 30 days prior to sampling. Wide ranges of concentrations were found for total nitrogen (TN) (0.07-9.61 mg/l) and total phosphorus (TP) (R2) for nutrients and biotic measures across all sites ranged from 0.08 to 0.32 and generally were not higher within each region. The biotic measures (RCHL, SCHL, and AQM) were combined in an index to evaluate eutrophic status across sites that could have different biotic responses to nutrient enrichment. Stepwise multiple regression identified TN, percent canopy, median riffle depth, and daily percent change in stage as significant factors for the eutrophic index (R2 = 0.50, p plant growth indicators should be used when evaluating eutrophication, especially when streams contain an abundance of macrophytes.

  2. Genetics and regulation of combined abiotic and biotic stress tolerance in tomato

    NARCIS (Netherlands)

    Kissoudis, C.

    2016-01-01

    Projections on the impact of climate change on agricultural productivity foresee prolonged and/or increased stress intensities and enlargement of a significant number of pathogens habitats. This significantly raises the occurrence probability of (new) abiotic and biotic stress combinations. With str

  3. Nutrient Concentrations and Their Relations to the Biotic Integrity of Nonwadeable Rivers in Wisconsin

    Science.gov (United States)

    Robertson, Dale M.; Weigel, Brian M.; Graczyk, David J.

    2008-01-01

    Excessive nutrient [phosphorus (P) and nitrogen (N)] input from point and nonpoint sources is frequently associated with degraded water quality in streams and rivers. Point-source discharges of nutrients are fairly constant and are controlled by the U.S. Environmental Protection Agency's (USEPA) National Pollutant Discharge Elimination System. To reduce inputs from nonpoint sources, agricultural performance standards and regulations for croplands and livestock operations are being proposed by various States. In addition, the USEPA is establishing regionally based nutrient criteria that can be refined by each State to determine whether actions are needed to improve water quality. More confidence in the environmental benefits of the proposed performance standards and nutrient criteria would be possible with improved understanding of the biotic responses to a range of nutrient concentrations in different environmental settings. To achieve this general goal, the U.S. Geological Survey and the Wisconsin Department of Natural Resources collected data from 282 streams and rivers throughout Wisconsin during 2001 through 2003 to: (1) describe how nutrient concentrations and biotic-community structure differ throughout the State, (2) determine which environmental characteristics are most strongly related to the distribution of nutrient concentrations and biotic-community structure, (3) determine reference conditions for water quality and biotic indices for streams and rivers in the State, (4) determine how the biotic communities in streams and rivers in different areas of the State respond to differences in nutrient concentrations, (5) determine the best regionalization scheme to describe the patterns in reference conditions and the corresponding responses in water quality and the biotic communities (primarily for smaller streams), and (6) develop algorithms to estimate nutrient concentrations in streams and rivers from a combination of biotic indices. The ultimate goal of

  4. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  5. The importance of biotic entrainment for base flow fluvial sediment transport

    Science.gov (United States)

    Rice, Stephen P.; Johnson, Matthew F.; Mathers, Kate; Reeds, Jake; Extence, Chris

    2016-05-01

    Sediment transport is regarded as an abiotic process driven by geophysical energy, but zoogeomorphological activity indicates that biological energy can also fuel sediment movements. It is therefore prudent to measure the contribution that biota make to sediment transport, but comparisons of abiotic and biotic sediment fluxes are rare. For a stream in the UK, the contribution of crayfish bioturbation to suspended sediment flux was compared with the amount of sediment moved by hydraulic forcing. During base flow periods, biotic fluxes can be isolated because nocturnal crayfish activity drives diel turbidity cycles, such that nighttime increases above daytime lows are attributable to sediment suspension by crayfish. On average, crayfish bioturbation contributed at least 32% (474 kg) to monthly base flow suspended sediment loads; this biotic surcharge added between 5.1 and 16.1 t (0.21 to 0.66 t km-2 yr-1) to the annual sediment yield. As anticipated, most sediment was moved by hydraulic forcing during floods and the biotic contribution from baseflow periods represented between 0.46 and 1.46% of the annual load. Crayfish activity is nonetheless an important impact during baseflow periods and the measured annual contribution may be a conservative estimate because of unusually prolonged flooding during the measurement period. In addition to direct sediment entrainment by bioturbation, crayfish burrowing supplies sediment to the channel for mobilization during floods so that the total biotic effect of crayfish is potentially greater than documented in this study. These results suggest that in rivers, during base flow periods, bioturbation can entrain significant quantities of fine sediment into suspension with implications for the aquatic ecosystem and base flow sediment fluxes. Energy from life rather than from elevation can make significant contributions to sediment fluxes.

  6. Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales

    Science.gov (United States)

    Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...

  7. How severe is the modern biotic crisis?——A comparison of global change and biotic crisis between Permian-Triassic transition and modern times

    Institute of Scientific and Technical Information of China (English)

    Hongfu YIN; Weihong HE; Shucheng XIE

    2011-01-01

    A comparison of the modern condition with the Permian-Triassic Boundary (PTB) times was made to estimate how severe the modern biotic crisis is. About the global changes, the two periods are correlative in carbon dioxide concentration and carbon isotope negative excursion, UV strengthening, temperature increase, ocean acidification, and weathering enhancement. The following tendencies of biotic crises are also correlative: acceleration of extinction rates accompanied by parabolic curve of extinction with a turning interval representing the critical crisis; decline of the three main ecosystems: reefs, tropical rain forests and marine phytoplankton. It is also interesting to note that certain leading organism in both periods undergo accelerated evolution during the crisis. The comparison shows that the modem crisis is about at the tuming point from decline to decimation. The extinction curve is now parabolic, and the extinction rate has been accelerated, but the decimation is not yet in real. This is also justified by the modem situation of the three main ecosystems. Modem biotic decline may worsen into decimation and mass extinction but may also get better and recover to ordinary evolution. Since human activities are the main cause of the deterioration of environments and organisms, mankind should be responsible and able to strive for the recovery of the crisis. For the future of mankind, Homo sapiens may become extinct, I.e.,disappear without leaving descendants, or evolve into a new and more advanced species, I.e., disappear but leave descendants. For a better future, mankind should be conscious of the facing danger and act as a whole to save biodiversity and harmonize with the environments.

  8. Predator-guided sampling reveals biotic structure in the bathypelagic.

    Science.gov (United States)

    Benoit-Bird, Kelly J; Southall, Brandon L; Moline, Mark A

    2016-02-24

    We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column.

  9. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    OpenAIRE

    Julieta Benítez-Malvido; Wesley Dáttilo; Ana Paola Martínez-Falcón; César Durán-Barrón; Jorge Valenzuela**; Sara López; Rafael Lombera

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological ...

  10. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    Science.gov (United States)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  11. The relative contribution of climatic, edaphic, and biotic drivers to risk of tree mortality from drought

    Science.gov (United States)

    March, R. G.; Moore, G. W.; Edgar, C. B.; Lawing, A. M.; Washington-Allen, R. A.

    2015-12-01

    In recorded history, the 2011 Texas Drought was comparable in severity only to a drought that occurred 300 years ago. By mid-September, 88% of the state experienced 'exceptional' conditions, with the rest experiencing 'extreme' or 'severe' drought. By recent estimates, the 2011 Texas Drought killed 6.2% of all the state's trees, at a rate nearly 9 times greater than average. The vast spatial scale and relatively uniform intensity of this drought has provided an opportunity to examine the comparative interactions among forest types, terrain, and edaphic factors across major climate gradients which in 2011 were subjected to extreme drought conditions that ultimately caused massive tree mortality. We used maximum entropy modeling (Maxent) to rank environmental landscape factors with the potential to drive drought-related tree mortality and test the assumption that the relative importance of these factors are scale-dependent. Occurrence data of dead trees were collected during the summer of 2012 from 599 field plots distributed across Texas with 30% used for model evaluation. Bioclimatic variables, ecoregions, soils characteristics, and topographic variables were modeled with drought-killed tree occurrence. Their relative contribution to the model was seen as their relative importance in driving mortality. To test determinants at a more local scale, we examined Landsat 7 scenes in East and West Texas with moderate-resolution data for the same variables above with the exception of climate. All models were significantly better than random in binomial tests of omission and receiver operating characteristic analyses. The modeled spatial distribution of probability of occurrence showed high probability of mortality in the east-central oak woodlands and the mixed pine-hardwood forest region in northeast Texas. Both regional and local models were dominated by biotic factors (ecoregion and forest type, respectively). Forest density and precipitation of driest month also

  12. River Self-Restoration: Interactions between Plants and Fluvial Processes

    Science.gov (United States)

    Gurnell, Angela

    2014-05-01

    This paper presents evidence from European rivers of the nature and consequences of plant-fluvial process interactions. While the examples are representative of different climates, riparian and aquatic plant species, and river geomorphological types, they are linked by a general conceptual model of plant-fluvial process interactions that can be adapted to local conditions. Riparian and aquatic plants both affect and respond to fluvial processes. Their above ground biomass modifies the flow field and retains sediment, whereas their below-ground biomass affects the hydraulic and mechanical properties of the substrate and consequently the moisture regime and erodibility of the land surface. At the same time plants are disturbed, removed and buried by fluvial processes. Thus the margins of river systems provide a critical zone where plants and fluvial processes interact to produce a diverse mosaic of dynamic landforms that are characteristic of naturally-functioning river ecosystems. It is important to understand these interactions between aquatic and riparian plants and fluvial processes, and to recognize how they contribute to trajectories of natural river channel recovery from human interventions. The interactions have a significant influence on river systems across space scales from individual plants to entire river corridors. Plant-scale phenomena structure patch-scale geomorphological forms and processes. Interactions between patches contribute to larger-scale and longer-term river geomorphological phenomena. Furthermore, the influence of plants varies through time as above and below ground biomass alter within the annual growth cycle, over longer-term growth trajectories, and in response to drivers of change such as climatic and hydrological fluctuations and extremes. If river management and restoration works with these natural interactions and recovery processes, outcomes have the best chance of being cost-effective and sustainable.

  13. Nutrient concentrations and their relations to the biotic integrity of wadeable streams in Wisconsin

    Science.gov (United States)

    Robertson, Dale M.; Graczyk, David J.; Garrison, Paul J.; Wang, Lizhu; LaLiberte, Gina; Bannerman, Roger

    2006-01-01

    Excessive nutrient (phosphorus and nitrogen) loss from watersheds is frequently associated with degraded water quality in streams. To reduce this loss, agricultural performance standards and regulations for croplands and livestock operations are being proposed by various States. In addition, the U.S. Environmental Protection Agency is establishing regionally based nutrient criteria that can be refined by each State to determine whether actions are needed to improve a stream's water quality. More confidence in the environmental benefits of the proposed performance standards and nutrient criteria will be possible with a better understanding of the biotic responses to a range of nutrient concentrations in different environmental settings. The U.S. Geological Survey and the Wisconsin Department of Natural Resources collected data from 240 wadeable streams throughout Wisconsin to: 1) describe how nutrient concentrations and biotic-community structure vary throughout the State; 2) determine which environmental characteristics are most strongly related to the distribution of nutrient concentrations; 3) determine reference water-quality and biotic conditions for different areas of the State; 4) determine how the biotic community of streams in different areas of the State respond to changes in nutrient concentrations; 5) determine the best regionalization scheme to describe the patterns in reference conditions and the responses in water quality and the biotic community; and 6) develop new indices to estimate nutrient concentrations in streams from a combination of biotic indices. The ultimate goal of this study is to provide the information needed to guide the development of regionally based nutrient criteria for Wisconsin streams. For total nitrogen (N) and suspended chlorophyll (SCHL) concentrations and water clarity, regional variability in reference conditions and in the responses in water quality to changes in land use are best described by subdividing wadeable streams

  14. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.

    Directory of Open Access Journals (Sweden)

    Carlos Carroll

    Full Text Available Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by

  15. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land

    Directory of Open Access Journals (Sweden)

    A. M. Makarieva

    2007-01-01

    Full Text Available In this paper the basic geophysical and ecological principles are jointly analyzed that allow the landmasses of Earth to remain moistened sufficiently for terrestrial life to be possible. 1. Under gravity, land inevitably loses water to the ocean. To keep land moistened, the gravitational water runoff must be continuously compensated by the atmospheric ocean-to-land moisture transport. Using data for five terrestrial transects of the International Geosphere Biosphere Program we show that the mean distance to which air fluxes can transport moisture over non-forested areas, does not exceed several hundred kilometers; precipitation decreases exponentially with distance from the ocean. 2. In contrast, precipitation over extensive natural forests does not depend on the distance from the ocean along several thousand kilometers, as illustrated for the Amazon and Yenisey river basins and Equatorial Africa. This points to the existence of an active biotic pump transporting atmospheric moisture inland from the ocean. 3. Physical principles of the biotic moisture pump are investigated based on the previously unstudied properties of atmospheric water vapor, which can be either in or out of aerostatic equilibrium depending on the lapse rate of air temperature. A novel physical principle is formulated according to which the low-level air moves from areas with weak evaporation to areas with more intensive evaporation. Due to the high leaf area index, natural forests maintain high evaporation fluxes, which support the ascending air motion over the forest and "suck in" moist air from the ocean, which is the essence of the biotic pump of atmospheric moisture. In the result, the gravitational runoff water losses from the optimally moistened forest soil can be fully compensated by the biotically enhanced precipitation at any distance from the ocean. 4. It is discussed how a continent-scale biotic water pump mechanism could be produced by natural selection acting on

  16. Daily variation of zooplankton abundance and evenness in the Rosana reservoir, Brazil: biotic and abiotic inferences

    Directory of Open Access Journals (Sweden)

    Érica M. Takahashi

    2014-03-01

    Full Text Available The zooplankton community presents stochastic temporal fluctuation and heterogeneous spatial variation determined by the relationships among the organisms and environmental conditions. We predicted that the temporal and spatial zooplankton distribution is heterogeneous and discrete, respectively, and that the daily variation of most abundant species is related to environmental conditions, specifically the availability of resources. Zooplankton samples were collected daily at three sampling stations in a lateral arm of the Rosana Reservoir (SP/PR. The zooplankton did not present significant differences in abundance and evenness among sampling stations, but the temporal variation of these attributes was significant. Abiotic variables and algal resource availability have significantly explained the daily variation of the most abundant species (p<0.001, however, the species distribution makes inferences on biotic relationships between them. Thus, not only the food resource availability is influential on the abundance of principal zooplankton species, but rather a set of factors (abiotic variables and biotic relationships.

  17. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  18. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population. PMID:27296141

  19. Land Use in LCIA: an absolute scale proposal for Biotic Production Potential

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo; Ibrom, Andreas; Hauschild, Michael Zwicky

    , the present study proposes a single absolute scale for the midpoint impact category (MIC) of Biotic Production Potential (BPP). It is hypothesized that, for an ecosystem in equilibrium (where NPP equals decay), such an ecosystem has reached the maximum biotic throughput subject to site-specific conditions......Environmental impacts caused by land occupation and transformation have been bypassed in many LCA studies due to soils’ multifunctionality and the interconnectedness between the ecosystem services they provide. These inherent modelling complexities have traditionally forced LCA practitioners...... and no externally added inputs. The original ecosystem (or Potential Natural Vegetation) of a certain land gives then the maximum BPP with no additional, downstream or upstream, impacts. This Natural BPP is proposed as the maximum BPP in a hypothetical Absolute Scale for LCA’s Land Use framework. It is argued...

  20. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  1. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games. PMID:25807212

  2. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis

    OpenAIRE

    Nakai, Yusuke; Fujiwara, Sumire; Kubo, Yasuyuki; Sato, Masa H.

    2013-01-01

    VOZ (vascular plant one zinc-finger protein) is a plant specific one-zinc finger type transcriptional activator, which is highly conserved through land plant evolution. We have previously shown that loss-of-function mutations in VOZ1 and VOZ2 showed increased cold and drought stress tolerances whereas decreased biotic stress resistance in Arabidopsis. Here, we demonstrate that transgenic plants overexpressing VOZ2 impairs freezing and drought stress tolerances but increases resistance to a fu...

  3. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?

    OpenAIRE

    Meharg, Caroline; Meharg, Andrew A.

    2015-01-01

    Adequate silicon fertilization greatly boosts rice yield and mitigates biotic and abiotic stress, and improves grain quality through lowering the content of cadmium and inorganic arsenic. This review on silicon dynamics in rice considers recent advances in our understanding of the role of silicon in rice, and the challenges of maintaining adequate silicon fertility within rice paddy systems. Silicon is increasingly considered as an element required for optimal plant performance, particularly ...

  4. Function of ABA in Stomatal Defense against Biotic and Drought Stresses

    OpenAIRE

    Chae Woo Lim; Woonhee Baek; Jangho Jung; Jung-Hyun Kim; Sung Chul Lee

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss....

  5. Biotic homogenization and differentiation in weed vegetation over the last 70 years

    OpenAIRE

    Šilc Urban

    2015-01-01

    Biotic homogenization is the increasing similarity of the species composition of communities over time and represents a loss of biodiversity. We analysed changes in weed vegetation over a period of 70 years by comparing three datasets (from 1939, 2002 and 2012) sampled with the same methodology. We present the results of changes in species richness, homogenization and differentiation as expanding neophytes and generalist species. The species richness of weed communitie...

  6. An evaluation of biotic ligand models predicting acute copper toxicity to Daphnia magna in wastewater effluent

    OpenAIRE

    Constantino, C.; Scrimshaw, M; Comber, S; Churchley, J.

    2011-01-01

    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 SETAC. The toxicity of Cu to Daphnia magna was investigated in a series of 48-h immobilization assays in effluents from four wastewater treatment works. The assay results were compared with median effective concentration (EC50) forecasts produced by the HydroQual biotic ligand model (BLM), the refined D. magna BLM, and a modified BLM that was constructed by integrating t...

  7. The effect of sewage effluent on trace metal speciation: implications for the biotic ligand model approach

    OpenAIRE

    Constantino, Carlos

    2013-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel University This research examined the suitability of the biotic ligand model (BLM) approach for assessing environmental risk in surface waters consisting substantially of treated sewage effluent, and the implications of its use within a compliance-based regulatory framework aimed at controlling discharges of metals into the aquatic environment. The results from a series of Daphnia magna acute copp...

  8. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Haitao Shi; Tiantian Ye; Ning Han; Hongwu Bian; Xiaodong Liu; Zhulong Chan

    2015-01-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interest-ingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcrip-tional y regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors.

  9. Effect of Mining Activities in Biotic Communities of Villa de la Paz, San Luis Potosi, Mexico

    Directory of Open Access Journals (Sweden)

    Guillermo Espinosa-Reyes

    2014-01-01

    Full Text Available Mining is one of the most important industrial activities worldwide. During its different stages numerous impacts are generated to the environment. The activities in the region have generated a great amount of mining residues, which have caused severe pollution and health effects in both human population and biotic components. The aim of this paper was to assess the impact of mining activities on biotic communities within the district of Villa de la Paz. The results showed that the concentrations of As and Pb in soil were higher than the national regulations for urban or agricultural areas. The bioavailability of these metals was certified by the presence of them in the roots of species of plants and in kidneys and livers of wild rodents. In regard to the community analysis, the sites that were located close to the mining district of Villa de la Paz registered a lower biological diversity, in both plants and wild rodents, aside from showing a change in the species composition of plant communities. The results of this study are evidence of the impact of mining on biotic communities, and the need to take into account the wildlife in the assessment of contaminated sites.

  10. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors.

  11. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia.

    Science.gov (United States)

    Ruecker, A; Weigold, P; Behrens, S; Jochmann, M; Laaks, J; Kappler, A

    2014-08-19

    Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions. PMID:25073729

  12. Biotic Homogenization Caused by the Invasion of Solidago canadensis in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-qi; ZHANG Chao-bin; MA Ling; QIANG Sheng; John A Silander; Li Li Qi

    2013-01-01

    Although studies argue that invasive species can cause biotic differentiation, some cases show that biological invasions actually decrease biodiversity through biotic homogenization. The concept of biotic homogenization through the invasion of a certain serious invasive plant species merit more studies. Hence, we used field surveys to quantitatively compare invasive populations of Solidago canadensis (SC) in China with the control sites (adjacent sites to SC present sites yet without the species) and SC native populations in the USA. We found that plant communities in SC invaded habitats shared similarities with those in SC native ranges. Bray-Curtis similarity clearly showed that the composition of plant communities in SC invaded habitats were similar to those in SC native ranges. Both in the native and introduced range, plant communities with SC present were characterized by SC being dominant, significantly lower species richness,α-diversity andβ-diversity, as well as a decrease in the correlation coefficient between geographic distance and floristic similarities. SC favors fertile and moist loam habitat, while it dominated in various habitats in China, where more than 20 different dominants should have occurred. In conclusion, serious invasive species can quickly remodel and homogenize diverse communities by dominating them.

  13. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors. PMID:25329496

  14. Benefits of Biotic Pollination for Non-Timber Forest Products and Cultivated Plants

    Directory of Open Access Journals (Sweden)

    Rehel Shiny

    2009-01-01

    Full Text Available Biodiversity supplies multiple goods and services to society and is critical for the support of livelihoods across the globe. Many indigenous people depend upon non-timber forest products (NTFP and crops for a range of goods including food, medicine, fibre and construction materials. However, the dependency of these products on biotic pollination services is poorly understood. We used the biologically and culturally diverse Nilgiri Biosphere Reserve in India to characterise the types of NTFP and crop products of 213 plant species and asses their degree of dependency on animal pollination. We found that 80 per cent of all species benefited from animal pollination in their reproduction, and that 62 per cent of crop products and 40 per cent of NTFP benefited from biotic pollination in their production. Further we identified the likely pollinating taxa documented as responsible for the production of these products, mainly bees and other insects. A lower proportion of indigenous plant products (39 per cent benefited from biotic pollination than products from introduced plants (61 per cent. We conclude that pollinators play an important role in the livelihoods of people in this region.

  15. Effect of Mining Activities in Biotic Communities of Villa de la Paz, San Luis Potosi, Mexico

    Science.gov (United States)

    Espinosa-Reyes, Guillermo; González-Mille, Donaji J.; Ilizaliturri-Hernández, César A.; Mejía-Saavedra, Jesús; Cilia-López, V. Gabriela; Costilla-Salazar, Rogelio; Díaz-Barriga, Fernando

    2014-01-01

    Mining is one of the most important industrial activities worldwide. During its different stages numerous impacts are generated to the environment. The activities in the region have generated a great amount of mining residues, which have caused severe pollution and health effects in both human population and biotic components. The aim of this paper was to assess the impact of mining activities on biotic communities within the district of Villa de la Paz. The results showed that the concentrations of As and Pb in soil were higher than the national regulations for urban or agricultural areas. The bioavailability of these metals was certified by the presence of them in the roots of species of plants and in kidneys and livers of wild rodents. In regard to the community analysis, the sites that were located close to the mining district of Villa de la Paz registered a lower biological diversity, in both plants and wild rodents, aside from showing a change in the species composition of plant communities. The results of this study are evidence of the impact of mining on biotic communities, and the need to take into account the wildlife in the assessment of contaminated sites. PMID:24592381

  16. Differences in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments.

    Science.gov (United States)

    Liao, Zhi-Yong; Zhang, Ru; Barclay, Gregor F; Feng, Yu-Long

    2013-01-01

    The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more), which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait). In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits) but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments) also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges). PMID:23977140

  17. Differences in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments.

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Liao

    Full Text Available The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more, which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait. In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges.

  18. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    Science.gov (United States)

    White, Art F.; Schulz, Marjorie S.; Vivit, Davison V.; Bullen, Tomas D.; Fitzpatrick, John A.

    2012-01-01

    Biotic/abiotic interactions between soil mineral nutrients and annual grassland vegetation are characterized for five soils in a marine terrace chronosequence near Santa Cruz, California. A Mediterranean climate, with wet winters and dry summers, controls the annual cycle of plant growth and litter decomposition, resulting in net above-ground productivities of 280–600 g m-2 yr-1. The biotic/abiotic (A/B) interface separates seasonally reversible nutrient gradients, reflecting biological cycling in the shallower soils, from downward chemical weathering gradients in the deeper soils. The A/B interface is pedologically defined by argillic clay horizons centered at soil depths of about one meter which intensify with soil age. Below these horizons, elevated solute Na/Ca, Mg/Ca and Sr/Ca ratios reflect plagioclase and smectite weathering along pore water flow paths. Above the A/B interface, lower cation ratios denote temporal variability due to seasonal plant nutrient uptake and litter leaching. Potassium and Ca exhibit no seasonal variability beneath the A/B interface, indicating closed nutrient cycling within the root zone, whereas Mg variability below the A/B interface denotes downward leakage resulting from higher inputs of marine aerosols and lower plant nutrient requirements.

  19. Mycobacterium ulcerans dynamics in aquatic ecosystems are driven by a complex interplay of abiotic and biotic factors.

    Science.gov (United States)

    Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin

    2015-01-01

    Host-parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors.

  20. X1-homologous genes family as central components in biotic and abiotic stresses response in maize (Zea mays L.).

    Science.gov (United States)

    Zhang, Zhongbao; Chen, Yajuan; Zhao, Dan; Li, Ruifen; Wang, Hongzhi; Zhang, Jiewei; Wei, Jianhua

    2014-03-01

    X1-homologous genes (XHS) encode plant specific proteins containing three basic domains (XH, XS, zf-XS). In spite of their physiological importance, systematic analyses of ZmXHS genes have not yet been explored. In this study, we isolated and characterized ten ZmXHS genes in a whole-of-genome analysis of the maize genome. A total of ten members of this family were identified in maize genome. The ten ZmXHS genes were distributed on seven maize chromosomes. Multiple alignment and motif display results revealed that most ZmXHS proteins share all the three conserved domains. Putative cis-elements involved in abiotic stress responsive, phytohormone, pollen-specific and quantitative, seed development and germination, light and circadian rhythms regulation, Ca(2+)-responsive, root hair cell-specific, and CO(2)-responsive transcriptional activation were observed in the promoters of ZmXHS genes. Yeast hybrid assay revealed that the XH domain of ZmXHS5 was necessary for interaction with itself and ZmXHS2. Microarray data showed that the ZmXHS genes had tissue-specific expression patterns in the maize developmental steps and biotic stresses response. Quantitative real-time PCR analysis results indicated that, except ZmXHS9, the other nine ZmXHS genes were induced in the seedling leaves by at least one of the four abiotic stresses applied. PMID:24676795

  1. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    Science.gov (United States)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  2. Species Interactions Among Larval Mosquitoes: Context Dependence Across Habitat Gradients

    OpenAIRE

    Juliano, Steven A.

    2009-01-01

    Biotic interactions involving mosquito larvae are context dependent, with effects of interactions on populations altered by ecological conditions. Relative impacts of competition and predation change across a gradient of habitat size and permanence. Asymmetrical competition is common and ecological context changes competitive advantage, potentially facilitating landscape-level coexistence of competitors. Predator effects on mosquito populations sometimes depend on habitat structure and on eme...

  3. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses.

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    Full Text Available For real-time reverse transcription-PCR (qRT-PCR in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2 in soybean under biotic stress from Bean pod mottle virus (BPMV, powdery mildew (PMD, soybean aphid (SBA, and two-spotted spider mite (TSSM. BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper and a web-based tool (RefFinder. Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3 values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.

  4. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses.

    Science.gov (United States)

    Bansal, Raman; Mittapelly, Priyanka; Cassone, Bryan J; Mamidala, Praveen; Redinbaugh, Margaret G; Michel, Andy

    2015-01-01

    For real-time reverse transcription-PCR (qRT-PCR) in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2) in soybean under biotic stress from Bean pod mottle virus (BPMV), powdery mildew (PMD), soybean aphid (SBA), and two-spotted spider mite (TSSM). BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3) values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.

  5. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    Science.gov (United States)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  6. Monsoonal variability in abiotic parameters in coastal waters off Trivandrum evokes press and pulse response in biotic variables

    Digital Repository Service at National Institute of Oceanography (India)

    Subina, N.S.; Bhosle, S.; Nair, S.; Lokabharathi, P.A.

    Trivandrum Coast experiences coastal upwelling during south west monsoon, which is accompanied by abiotic changes in physio-chemical parameters. The resultant biotic responses could range from an instantaneous pulse to a sustained press reaction...

  7. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns

    DEFF Research Database (Denmark)

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin;

    2016-01-01

    Abstract This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown...... that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0 mL min− 1.......6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal...

  8. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    Science.gov (United States)

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  9. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Phase I. Final report. Vol. 4

    International Nuclear Information System (INIS)

    Licensing and regulation of commercial low-level waste (CLLW) burial facilities require that anticipated risks associated with burial sites be evaluated for the life of the facility. This work reviewed the existing capability to evaluate dose to man resulting from the potential redistribution of buried radionuclides by plants and animals that we have termed biotic transport. Through biotic transport, radionuclides can be moved to locations where they can enter exposure pathways to man. We found that predictive models currently in use did not address the long-term risks resulting from the cumulative transport of radionuclides. Although reports in the literature confirm that biotic transport phenomena are common, assessments routinely ignore the associated risks or dismiss them as insignificant without quantitative evaluation. To determine the potential impacts of biotic transport, we made order-of-magnitude estimates of the dose to man for biotic transport processes at reference arid and humid CLLW disposal sites. Estimated doses to site residents after assumed loss of institutional control were comparable to dose estimates for the intruder-agricultural scenario defined in the DEIS for 10 CFR 61 (NRC). The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by order of magnitude estimates presented in this study. 17 references, 10 figures, 8 tables

  10. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Phase I. Final report. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Cadwell, L.L.; Eberhardt, L.E.; Kennedy, W.E. Jr.; Peloquin, R.A.; Simmons, M.A.

    1984-05-01

    Licensing and regulation of commercial low-level waste (CLLW) burial facilities require that anticipated risks associated with burial sites be evaluated for the life of the facility. This work reviewed the existing capability to evaluate dose to man resulting from the potential redistribution of buried radionuclides by plants and animals that we have termed biotic transport. Through biotic transport, radionuclides can be moved to locations where they can enter exposure pathways to man. We found that predictive models currently in use did not address the long-term risks resulting from the cumulative transport of radionuclides. Although reports in the literature confirm that biotic transport phenomena are common, assessments routinely ignore the associated risks or dismiss them as insignificant without quantitative evaluation. To determine the potential impacts of biotic transport, we made order-of-magnitude estimates of the dose to man for biotic transport processes at reference arid and humid CLLW disposal sites. Estimated doses to site residents after assumed loss of institutional control were comparable to dose estimates for the intruder-agricultural scenario defined in the DEIS for 10 CFR 61 (NRC). The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by order of magnitude estimates presented in this study. 17 references, 10 figures, 8 tables.

  11. Direct and indirect effects of climate on demography and early growth of Pinus sylvestris at the rear edge: changing roles of biotic and abiotic factors.

    Directory of Open Access Journals (Sweden)

    Raquel Benavides

    Full Text Available Global change triggers shifts in forest composition, with warming and aridification being particularly threatening for the populations located at the rear edge of the species distributions. This is the case of Scots pine (Pinus sylvestris in the Mediterranean Basin where uncertainties in relation to its dynamics under these changing scenarios are still high. We analysed the relative effect of climate on the recruitment patterns of Scots pine and its interactions with local biotic and abiotic variables at different spatial scales. Number of seedlings and saplings was surveyed, and their annual shoot growth measured in 96 plots located across altitudinal gradients in three different regions in the Iberian Peninsula. We found a significant influence of climate on demography and performance of recruits, with a non-linear effect of temperature on the presence of juveniles, and a positive effect of precipitation on their survival. Abundance of juveniles of P. sylvestris that underwent their first summer drought was skewed towards higher altitudes than the altitudinal mean range of the conspecific adults and the optimum elevation for seedlings' emergence. At local level, light availability did not influence juveniles' density, but it enhanced their growth. Biotic interactions were found between juveniles and the herb cover (competition and between the number of newly emerged seedlings and shrubs (facilitation. Results also highlighted the indirect effect that climate exerts over the local factors, modulating the interactions with the pre-existing vegetation that were more evident at more stressful sites. This multiscale approach improves our understanding of the dynamics of these marginal populations and some management criteria can be inferred to boost their conservation under the current global warming.

  12. QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach.

    Directory of Open Access Journals (Sweden)

    Shalabh Dixit

    Full Text Available BACKGROUND: The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L. growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY under drought stress and non-stress conditions, and tolerance of rice blast. METHODOLOGY: A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant and high-yielding indica variety Swarna (blast- and drought-susceptible through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait. RESULTS: Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population. CONCLUSIONS: This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these

  13. Background- versus event-level biotic variability: Hyperthermals of the late Paleocene and early Eocene

    Science.gov (United States)

    Gibbs, S.; Murphy, B. H.; Pälike, H.

    2009-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was an abrupt global warming event 55 million years ago (Ma) which has received much attention in recent years as an analogue for anthropogenic carbon emissions. We now know that the PETM was not unique, but was perhaps the most extreme of a number of abrupt carbon cycle perturbations throughout the late Paleocene and early Eocene. These inferred transient warming events, or ‘hyperthermals’, all have characteristic negative carbon isotope excursions (CIE). Unlike the PETM, it is currently unclear whether there was a significant biotic response to these additional CIEs, and if so, whether the amplitude of response varied systematically with excursion magnitude. Here, we present high-resolution nannofossil records from a two million year interval spanning the Paleocene-Eocene boundary at Ocean Drilling Program (ODP) Site 1209 in the paleo-subequatorial Pacific. This interval, from ~55 to 53 Ma, includes the PETM, a second hyperthermal named the Eocene Thermal Maximum 2 (ETM2 or ‘Elmo’), and a further number of smaller excursions. These data allow us to look for common biotic signatures and to document the level of assemblage variability relative to the inferred levels of environmental change associated with each CIE. We use this dataset as a case-study for investigating different statistical means of quantifying and comparing biotic responses to background and event-level perturbation. Preliminary analyses suggest that, as expected, the PETM exhibited the greatest level of assemblage variability, well above background levels, followed in order of CIE magnitude by the ETM2. Several of the smaller excursions have no significant assemblage variability above background levels, pointing to a critical threshold level of environmental perturbation.

  14. Meta-analysis: abundance, behavior, and hydraulic energy shape biotic effects on sediment transport in streams.

    Science.gov (United States)

    Albertson, L K; Allen, D C

    2015-05-01

    An increasing number of studies have emphasized the need to bridge the disciplines of ecology and geomorphology. A large number of case studies show that organisms can affect erosion, but a comprehensive understanding of biological impacts on sediment transport conditions is still lacking. We use meta-analysis to synthesize published data to quantify the effects of the abundance, body size, and behavior of organisms on erosion in streams. We also explore the influence of current velocity, discharge, and sediment grain size on the strength of biotic effects on erosion. We found that species that both increase erosion (destabilizers) and decrease erosion (stabilizers) can alter incipient sediment motion, sediment suspension, and sediment deposition above control conditions in which the organisms were not present. When abundance was directly manipulated, these biotic effects were consistently stronger in the higher abundance treatment, increasing effect sizes by 66%. Per capita effect size and per capita biomass were also consistently positively correlated. Fish and crustaceans were the most studied organisms, but aquatic insects increased the effect size by 550 x compared to other types of organisms after accounting for biomass. In streams with lower discharge and smaller grain sizes, we consistently found stronger biotic effects. Taken collectively, these findings provide synthetic evidence that biology can affect physical processes in streams, and these effects can be mediated by hydraulic energy. We suggest that future studies focus on understudied organisms, such as biofilms, conducting experiments under realistic field conditions, and developing hypotheses for the effect of biology on erosion and velocity currents in the context of restoration to better understand the forces that mediate physical disturbances in stream ecosystems.

  15. The biotic effects of large bolide impacts: size versus time and place

    Science.gov (United States)

    Walkden, Gordon; Parker, Julian

    2008-10-01

    In estimating the biotic effects of large terrestrial impacts we are reliant upon apparent crater diameter as a proxy for impact magnitude. This underlies the ‘kill-curve’ approach which graphs crater diameter directly against likely percentage losses of taxa. However, crater diameter is a complex product of syn- and post-impact processes that can be site-dependent. Furthermore, location (global positioning) and timing (moment in geological history) also strongly influence biotic effects. We examine four of our largest and best-documented Phanerozoic impacts to explore this more holistic size time place relationship. Only the c. 180 km end-Cretaceous Chicxulub crater (Mexico) links to any substantial immediate extinction and some of the worst effects stem from where it struck the planet (a continental margin carbonate platform site) and when (a time of high regional and global biodiversity). Both the c. 100 km late Triassic Manicouagan crater in NE Canada (arid continental interior, low regional and world biodiversity) and the c. 35 Ma 100 km Popigai crater, Siberia (continental arctic desert) provide much less damaging scenarios. However the c. 90 km Chesapeake Bay crater, Eastern USA (also c. 35 Ma) marks a far more sensitive (Chicxulub-like) site but it also proved relatively benign. Here the rheologically varied shallow marine target site produced an anomalously broad crater, and the scale of the impact has evidently been overestimated. We offer a new approach to the graphical prediction of biotic risk in which both crater diameter and a generalised time/place factor we term ‘vulnerability’ are variables.

  16. Biotic potential and reproductive parameters of Spodoptera eridania (Stoll (Lepidoptera, Noctuidae in the laboratory

    Directory of Open Access Journals (Sweden)

    Débora Goulart Montezano

    2013-09-01

    Full Text Available Biotic potential and reprodutcive parameters of Spodoptera eridania (Stoll (Lepidoptera, Noctuidae in the laboratory: This study aimed to evaluate the biotic potential and reproductive parameters of Spodoptera eridania (Stoll, 1782 under controlled conditions (25 ± 1ºC, 70 ± 10% RH and 14 hour photophase. The longevity, pre-, post- and oviposition periods, fecundity and fertility of 15 couples was evaluated. The longevity of females (10.80 days was not significantly higher than those of males (9.27 days. The mean durations of the pre, post and oviposition periods were 2.067, 0.600 and 8.133 days, respectively. The mean fecundity per female was 1,398 eggs and the mean fertility was 1,367.50 larvae. On average, females copulated 1.133 times. A strong positive correlation was observed between the number of mating and fecundity (r = 0.881, P <0.001. However a strong negative correlation was observed between the number of copulations and the duration of the pre-oviposition period (r = -0.826, P = 0.002 and longevity (r = -0.823, P = 0.001. The biotic potential of S. eridania was estimated at 1.894 x 10(25 individuals/female/year. The net reproductive rate (Ro was 560.531 times per generation and the mean generation time (T was 35.807 days. The intrinsic rate of increase (rm was 0.177, with a finite rate of increase (l of 1.193, per week

  17. Full-field interferometry for counting and differentiating aquatic biotic nanoparticles: from laboratory to Tara Oceans

    Science.gov (United States)

    Boccara, Martine; Fedala, Yasmina; Bryan, Catherine Venien; Bailly-Bechet, Marc; Bowler, Chris; Boccara, Albert Claude

    2016-01-01

    There is a huge abundance of viruses and membrane vesicles in seawater. We describe a new full-field, incoherently illuminated, shot-noise limited, common-path interferometric detection method that we couple with the analysis of Brownian motion to detect, quantify, and differentiate biotic nanoparticles. We validated the method with calibrated nanoparticles and homogeneous DNA or RNA viruses. The smallest virus size that we characterized with a suitable signal-to-noise ratio was around 30 nm in diameter. Analysis of Brownian motions revealed anisotropic trajectories for myoviruses.We further applied the method for vesicles detection and for analysis of coastal and oligotrophic samples from Tara Oceans circumnavigation.

  18. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress

    Science.gov (United States)

    Leterrier, Marina; Chaki, Mounira; Airaki, Morad; Valderrama, Raquel; Palma, José M; Barroso, Juan B

    2011-01-01

    During the last decade, it was established that the class III alcohol dehydrogenase (ADH3) enzyme, also known as glutathione-dependent formaldehyde dehydrogenase (FALDH; EC 1.2.1.1), catalyzes the NADH-dependent reduction of S-nitrosoglutathione (GSNO) and therefore was also designated as GSNO reductase. This finding has opened new aspects in the metabolism of nitric oxide (NO) and NO-derived molecules where GSNO is a key component. In this article, current knowledge of the involvement and potential function of this enzyme during plant development and under biotic/abiotic stress is briefly reviewed. PMID:21543898

  19. Carbon trading and carbon taxation: how to consider biotic sources and sinks

    International Nuclear Information System (INIS)

    The Kyoto Protocol (KP) to the UNFCCC includes land-use change and forestry in the carbon accounting process, limited to afforestation, reforestation and deforestation since 1990, and explicitly provides for the option of using a variety of flexibility mechanisms to meet the greenhouse gas (GHG) reduction targets stipulated in a more cost-efficient manner. Domestically, different countries might adopt different approaches to achieve their emission reduction objectives, such as carbon trading or carbon taxation, and it is not clear to date what the implications for bioenergy use, forestry, and land-use change can be expected to be. With respect to national GHG emissions trading, the main issues studied in this paper are: Should trading of fossil fuel emissions allowances be coupled with trading of biotic credits and debits? Should credits for carbon sequestration in forests be auctioned or grandfathered? Should there be a distinction between a carbon permit issued for an additional biotic sink and those issued for fossil fuel carbon emissions? Is there a difference for biotic carbon sinks and sources between one-time permits and permits that allow a continued release of GHG over some pre-specified time? Should permits be issued only for the carbon-stock changes that count under the KP? With respect to national carbon taxation schemes, two questions are investigated: Should a tax credit be given for afforestation/reforestation (and a tax debit for deforestation)? Should tax credits also be given for projects that sequester carbon but do not count under the KP (such as forest protection rather than forest management)? For both schemes a crucial point is that by the formulation chosen in the KP two different classes of forest are created (i.e. those counted and those not counted under the KP), so that the implications for land prices might be significant. From a conceptual point of view this paper addresses the above-mentioned questions and contrasts some of the major

  20. Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes.

    Science.gov (United States)

    Nguyen, Van Khanh; Hong, Sungsug; Park, Younghyun; Jo, Kyungmin; Lee, Taeho

    2015-02-01

    Two-chamber bioelectrochemical systems (BESs) have recently been developed for nitrate removal from nitrate-contaminated water. In this study, we compared the nitrate removal performance of biocathodes of BESs when using abiotic and biotic anodes. Acetate was used as electron donor in BESs with biotic anode, whereas a direct current power supply was used as energy source in BESs with abiotic anode. The nitrogen removal efficiency increased from 18.1% to 43.0% when the voltage supplied to the BES with abiotic anode increased from 0.7 V to 0.9 V, whereas no higher removal efficiency was obtained at a higher supplied voltage (1.1 V). The highest efficiency (78.0%) of autotrophic nitrogen removal was achieved when electron transfer from the biotic anode chamber of BESs was used. Unexpectedly, control of the cathode potential did not enhance nitrate removal in BESs with biotic anode. Special attention was paid to elucidate the differences of bacterial communities catalysing autotrophic denitrification in the biocathodes of BESs with abiotic and biotic anodes. Data from denaturing gradient gel electrophoresis and phylogenetic analysis suggested that denitrification in BESs with abiotic anode could be attributed to Nitratireductor sp., Shinella sp., and Dyella sp., whereas the dominant bacterial denitrifiers in BESs with biotic anode were found to be Pseudomonas sp., Curtobacterium sp., and Aeromonas sp. These results implied that biocathodes of BESs with biotic anode are more efficient than those of BESs with abiotic anode for nitrate removal from nitrate-contaminated water in practical applications.

  1. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq

    Full Text Available Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores, their parasitoids, and a dipteran species (root herbivore.We tested the hypotheses that: (1 high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2 drought stress and root herbivory change the profile of volatile organic chemicals (VOCs emitted by the host plant; (3 parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference, plant volatile emissions, parasitism success (performance, and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial

  2. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    Science.gov (United States)

    Tariq, Muhammad; Wright, Denis J; Bruce, Toby J A; Staley, Joanna T

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be

  3. Development of a wireless computer vision instrument to detect biotic stress in wheat.

    Science.gov (United States)

    Casanova, Joaquin J; O'Shaughnessy, Susan A; Evett, Steven R; Rush, Charles M

    2014-01-01

    Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM). In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV), vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32) than stressed wheat (111.34). In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014), as did the conventional camera (p wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications. PMID:25251410

  4. Population Dynamics of Vibrios in Biotic Biofilm in the Aquatic Environment of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mahmud Hasan

    2011-11-01

    Full Text Available The Vibrio sp. forming biofilm on biotic surface especially chitin and algae was investigated using artificial chitin and Anabaena variabilis from pure culture of laboratory and glued to plexiglass disc. The presence of culturable Vibrio spp. were investigated using cultural technique for TCBS agar medium after homogenization and physicochemical parameters were measured by standard techniques. The Pearson correlation coefficient applied by SPSS software. The results indicated that out of 13 sampling period, only V. cholerae O1 was isolated 7.7% sample while 30.8% samples were positive for V. cholerae non-O1, V. proteolyticus and V. mimicus from canal site. From pond ecosystem, all the chitin samples were negative for V. cholerae O1 but 15.4% were positive for V. cholerae non-O1 and V. proteolyticus and 30.8% samples were positive for V. mimicus. The biofilm formation is significantly correlated with the pH, DO and CO2 concentration present of the corresponding water. This study indicates that biotic surface like chitin and algae could function to form biofilm and the water physicochemical parameters have the relationship with the Vibrio community present in the samples.

  5. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.

    Science.gov (United States)

    Saxena, Amrita; Raghuwanshi, Richa; Singh, Harikesh Bahadur

    2015-02-01

    Trichoderma spp. have been reported to aid in imparting biotic as well as abiotic tolerance to plants. However, there are only few reports unfolding the differential ability of separate species of Trichoderma genera generally exploited for their biocontrol potential in this framework. A study was undertaken to evaluate the biocontrol potential of different Trichoderma species namely T. harzianum, T. asperellum, T. koningiopsis, T. longibrachiatum, and T. aureoviride as identified in the group of indigenous isolates from the agricultural soils of Eastern Uttar Pradesh, India. Their biocontrol potential against three major soilborne phytopathogens, i.e., Sclerotium rolfsii, Sclerotinia sclerotiorum, and Colletotrichum capsici was confirmed by dual culture plate technique. Efficient mycoparasitic ability was further assessed in all the isolates in relation to chitinase, β-1,3 glucanase, pectinase, lipase, amylase, and cellulase production while equally consistent results were obtained for their probable phosphate solubilization and indole acetic acid (IAA) production abilities. The selected isolates were further subjected to test their ability to promote plant growth, to reduce disease incidence and to tolerate biotic stress in terms of lignification pattern against S. rolfsii in chickpea plants. Among the identified Trichoderma species, excellent results were observed for T. harzianum and T. koningiopsis indicating better biocontrol potential of these species in the group and thus exhibiting perspective for their commercial exploitation.

  6. Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants.

    Science.gov (United States)

    Ding, Yi; Liu, Guangfu; Zang, Runguo; Zhang, Jian; Lu, Xinghui; Huang, Jihong

    2016-01-01

    Epiphytic vascular plants are common species in humid tropical forests. Epiphytes are influenced by abiotic and biotic variables, but little is known about the relative importance of direct and indirect effects on epiphyte distribution. We surveyed 70 transects (10 m × 50 m) along an elevation gradient (180 m-1521 m) and sampled all vascular epiphytes and trees in a typical tropical forest on Hainan Island, south China. The direct and indirect effects of abiotic factors (climatic and edaphic) and tree community characteristics on epiphytes species diversity were examined. The abundance and richness of vascular epiphytes generally showed a unimodal curve with elevation and reached maximum value at ca. 1300 m. The species composition in transects from high elevation (above 1200 m) showed a more similar assemblage. Climate explained the most variation in epiphytes species diversity followed by tree community characteristics and soil features. Overall, climate (relative humidity) and tree community characteristics (tree size represented by basal area) had the strongest direct effects on epiphyte diversity while soil variables (soil water content and available phosphorus) mainly had indirect effects. Our study suggests that air humidity is the most important abiotic while stand basal area is the most important biotic determinants of epiphyte diversity along the tropical elevational gradient.

  7. Presence of riparian vegetation increases biotic condition of fish assemblages in two Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Fabio Cop Ferreira

    2015-09-01

    Full Text Available Abstract The riparian vegetation in lakes and reservoirs is source of course wood structures such as trunks and branches and is used as sheltering, spawning and foraging habitats for fishes. The reduction of these submerged structures can thus, affect the composition and structure of fish assemblages in reservoirs. Aim To evaluate the influence of riparian vegetation on the biotic condition of fish assemblage by adapting the Reservoir Fish Assemblage Index (RFAI to two reservoirs in the Upper Paranapanema river basin, São Paulo State, Brazil. Methods The RFAI was adapted from metrics related to the functional characteristics and composition of fish assemblages through a protocol of metric selection and validation, and to its response to the presence of riparian vegetation. Results The final RFAI was composed by nine metrics, been lower in sites without riparian vegetation as consequence of the predominance of larger individuals and the percent of piscivorous and detritivorous fishes. Conclusions These results suggest that increasing shore habitat complexity in reservoirs by maintaining riparian vegetation increases fish biotic integrity.

  8. Fragrance Allergens, Overview with a Focus on Recent Developments and Understanding of Abiotic and Biotic Activation

    Directory of Open Access Journals (Sweden)

    Johanna Bråred Christensson

    2016-06-01

    Full Text Available Fragrances and fragranced formulated products are ubiquitous in society. Contact allergies to fragrance chemicals are among the most common findings when patch-testing patients with suspected allergic contact dermatitis, as well as in studies of contact allergy in the general population. The routine test materials for diagnosing fragrance allergy consist mainly of established mixes of fragrance compounds and natural extracts. The situation is more complex as several fragrance compounds have been shown to be transformed by activation inside or outside the skin via abiotic and/or biotic activation, thus increasing the risk of sensitization. For these fragrance chemicals, the parent compound is often non-allergenic or a very weak allergen, but potent sensitizers will be formed which can cause contact allergy. This review shows a series of fragrance chemicals with well-documented abiotic and/or biotic activation that are indicative and illustrative examples of the general problem. Other important aspects include new technologies such as ethosomes which may enhance both sensitization and elicitation, the effect on sensitization by the mixtures of fragrances found in commercial products and the effect of antioxidants. A contact allergy to fragrances may severely affect quality of life and many patients have multiple allergies which further impact their situation. Further experimental and clinical research is needed to increase the safety for the consumer.

  9. Pre-biotic stage of life origin under non-photosynthetic conditions

    Science.gov (United States)

    Bartsev, S. I.; Mezhevikin, V. V.

    2005-01-01

    Spontaneous assembling of a simplest bacterial cell even if all necessary molecules are present in a solution seems to be extremely rare event and from the scientific standpoint has to be considered as impossible. Therefore, a predecessor of a living cell has to be very simple for providing its self-assembling and at the same time it should be able of progressive increase in complexity. Now phase-separated particles, first of all micelles, are put forward as possible predecessors of living cell. According to the offered working concept only phase-separated particles possessing autocatalytic properties can be considered as predecessors of living cells. The first stage of evolution of these phase-separated autocatalytic systems is the appearance of pre-biotic metabolism providing synthesis of amphiphiles for formation of capsules of these systems. This synthesis is maintained by the energy of a base reaction being a component of a planet-chemical cycle. Catalytic system providing functioning of pre-biotic metabolism is based on multivariate oligomeric autocatalyst, which reproduces itself from monomers, penetrating the particles from the outside. Since the autocatalyst realizes random polymerization then a collection of other oligomers possessing different catalytic functions is produced. In the paper the functioning of multivariate oligomeric autocatalyst in flow reactor is analyzed. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  10. Biotic stress shifted structure and abundance of Enterobacteriaceae in the lettuce microbiome.

    Directory of Open Access Journals (Sweden)

    Armin Erlacher

    Full Text Available Lettuce cultivars are not only amongst the most popular vegetables eaten raw, they are also involved in severe pathogen outbreaks world-wide. While outbreaks caused by Enterobacteriaceae species are well-studied, less is known about their occurrence in natural environments as well as the impact of biotic stress. Here, we studied the ecology of the human health-relevant bacterial family Enterobacteriaceae and assessed the impact of biotic disturbances by a soil-borne phytopathogenic fungus and Gastropoda on their structure and abundance in mesocosm and pot experiments. Using a polyphasic approach including network analyses of 16S rRNA gene amplicon libraries, quantitative PCR and complementary fluorescence in situ hybridization (FISH microscopy we found substantial yet divergent Enterobacteriaceae communities. A similar spectrum of 14 genera was identified from rhizo- and phyllospheres but the abundance of Enterobacteriaceae was on average 3fold higher in phyllosphere samples. Both stress factors shifted the bacterial community of the leaf habitat, characterized by increases of species abundance and diversity. For the rhizosphere, we observed significant structural shifts of Enterobacteriaceae communities but also a high degree of resilience. These results could be confirmed by FISH microscopy but it was difficult to visualize phyllosphere communities. Additional inoculation experiments with Escherichia coli as model revealed their presence below the wax layer as well as in the endosphere of leaves. The observed presence influenced by stress factors and the endophytic life style of Enterobacteriaceae on lettuce can be an important aspect in relation to human health.

  11. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae).

    Science.gov (United States)

    Lagomarsino, Laura P; Condamine, Fabien L; Antonelli, Alexandre; Mulch, Andreas; Davis, Charles C

    2016-06-01

    The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity. PMID:26990796

  12. Development of a wireless computer vision instrument to detect biotic stress in wheat.

    Science.gov (United States)

    Casanova, Joaquin J; O'Shaughnessy, Susan A; Evett, Steven R; Rush, Charles M

    2014-09-23

    Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM). In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV), vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32) than stressed wheat (111.34). In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014), as did the conventional camera (p computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications.

  13. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.

    Science.gov (United States)

    Saxena, Amrita; Raghuwanshi, Richa; Singh, Harikesh Bahadur

    2015-02-01

    Trichoderma spp. have been reported to aid in imparting biotic as well as abiotic tolerance to plants. However, there are only few reports unfolding the differential ability of separate species of Trichoderma genera generally exploited for their biocontrol potential in this framework. A study was undertaken to evaluate the biocontrol potential of different Trichoderma species namely T. harzianum, T. asperellum, T. koningiopsis, T. longibrachiatum, and T. aureoviride as identified in the group of indigenous isolates from the agricultural soils of Eastern Uttar Pradesh, India. Their biocontrol potential against three major soilborne phytopathogens, i.e., Sclerotium rolfsii, Sclerotinia sclerotiorum, and Colletotrichum capsici was confirmed by dual culture plate technique. Efficient mycoparasitic ability was further assessed in all the isolates in relation to chitinase, β-1,3 glucanase, pectinase, lipase, amylase, and cellulase production while equally consistent results were obtained for their probable phosphate solubilization and indole acetic acid (IAA) production abilities. The selected isolates were further subjected to test their ability to promote plant growth, to reduce disease incidence and to tolerate biotic stress in terms of lignification pattern against S. rolfsii in chickpea plants. Among the identified Trichoderma species, excellent results were observed for T. harzianum and T. koningiopsis indicating better biocontrol potential of these species in the group and thus exhibiting perspective for their commercial exploitation. PMID:25205162

  14. Stomata prioritize their responses to multiple biotic and abiotic signal inputs.

    Directory of Open Access Journals (Sweden)

    Xiaobin Ou

    Full Text Available Stomata are microscopic pores in leaf epidermis that regulate gas exchange between plants and the environment. Being natural openings on the leaf surface, stomata also serve as ports for the invasion of foliar pathogenic bacteria. Each stomatal pore is enclosed by a pair of guard cells that are able to sense a wide spectrum of biotic and abiotic stresses and respond by precisely adjusting the pore width. However, it is not clear whether stomatal responses to simultaneously imposed biotic and abiotic signals are mutually dependent on each other. Here we show that a genetically engineered Escherichia coli strain DH5α could trigger stomatal closure in Vicia faba, an innate immune response that might depend on NADPH oxidase-mediated ROS burst. DH5α-induced stomatal closure could be abolished or disguised under certain environmental conditions like low [CO2], darkness, and drought, etc. Foliar spraying of high concentrations of ABA could reduce stomatal aperture in high humidity-treated faba bean plants. Consistently, the aggressive multiplication of DH5α bacteria in Vicia faba leaves under high humidity could be alleviated by exogenous application of ABA. Our data suggest that a successful colonization of bacteria on the leaf surface is correlated with stomatal aperture regulation by a specific set of environmental factors.

  15. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae).

    Science.gov (United States)

    Lagomarsino, Laura P; Condamine, Fabien L; Antonelli, Alexandre; Mulch, Andreas; Davis, Charles C

    2016-06-01

    The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity.

  16. Drivers of observed biotic homogenization in pine barrens of central Wisconsin.

    Science.gov (United States)

    Li, Daijiang; Waller, Donald

    2015-04-01

    Fire suppression throughout the 20th century greatly altered plant communities in fire-dominated systems across North America. Our ability to assess these effects over the long-term, however, is handicapped by the paucity of baseline data. Here, we used detailed baseline data from the 1950s to track changes in the over- and understory composition of pine-barrens vegetation growing on sandy, glacial lake-bed sediments in central Wisconsin. We expected fire suppression to favor succession to closed-canopy conditions, leading to decreases in shade-intolerant and fire-adapted species and consequent reductions in alpha and gamma diversity. We also expected beta diversity to decline due to increases in shade-tolerant, fire-sensitive, and exotic species. In fact, fire suppression has greatly altered the structure and composition of these pine-barrens communities over the past 54 years. Woody, wind-pollinated, and shade-tolerant species all increased in richness and abundance, as expected, with succession following fire suppression. Contrary to expectations, local and regional species richness increased by 12% and 26%, respectively, while Shannon beta diversity declined 24.1%. Increases in canopy coverage and number of native species appear to have driven this biotic homogenization. In contrast, increases in exotic species in our study did not promote biotic homogenization, reflecting their relative rarity across sites. Our findings highlight the key role fire plays in shaping the assembly of these pine-barrens communities. PMID:26230023

  17. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    Science.gov (United States)

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. PMID:25764465

  18. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Cantu, Dario

    2015-01-01

    Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i) modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii) hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA) we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups, under different

  19. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Directory of Open Access Journals (Sweden)

    Katherine C H Amrine

    Full Text Available Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups

  20. Joining NanoSIMS and STXM/NEXAFS to visualize soil biotic and abiotic processes at the nano-scale

    Science.gov (United States)

    Pett-Ridge, J.; Keiluweit, M.; Bougoure, J.; Weber, P. K.; Kleber, M.; Nico, P.

    2012-04-01

    Understanding the fate and residence time of organic matter in soils is important to natural resource management, including strategies to mitigate climate change. The time scales of carbon cycling, the relative importance of biotic and abiotic processes in organic matter stabilization in soils, and spatial factors in these processes are all critical characteristics that currently cannot be addressed by any single analytical approach. Here we demonstrate how many of these concerns can be approached by a combination of high-resolution secondary ion mass spectroscopy (NanoSIMS) and Scanning Transmission X-ray Microscopy (STXM) coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (NEXAFS). When used in concert, these analytical techniques have the capacity to yield quantitative, in situ information on the source, molecular class, and elemental quantity of organic matter. We: (i) discuss the rationale for the joined application of the two procedures, (ii) provide examples for the their combined application, (iii) point out some of the methodological caveats that warrant consideration, and (iv) provide some directions for future developmental efforts. To illustrate the synergies of this combined approach, we examined organic-mineral associations in samples from both an artificial well-defined mixture and an unconstrained natural soil decomposition experiment. Case 1 demonstrates how the joined techniques help to determine modes of interaction between 13C- and 15N-labeled microorganisms and a defined mineral phase;, in case 2 we examine the incorporation of a 15N label into mineral organic associations 12 years after application to a forest soil. This unique analytical combination, the simultaneous application of STXM/NEXAFS and NanoSIMS imaging, has the potential to contribute a mechanistic understanding of sorption, occlusion, and decomposition processes that operate at fine spatial scales in natural environments.

  1. Above- and below-ground vertebrate herbivory may each favour a different subordinate species in an aquatic plant community

    OpenAIRE

    Hidding, B.; Nolet, B.A.; de Boer, T.; De Vries, P.P.; Klaassen, M.R.J.

    2010-01-01

    At least two distinct trade-offs are thought to facilitate higher diversity in productive plant communities under herbivory. Higher investment in defence and enhanced colonization potential may both correlate with decreased competitive ability in plants. Herbivory may thus promote coexistence of plant species exhibiting divergent life history strategies. How different seasonally tied herbivore assemblages simultaneously affect plant community composition and diversity is, however, largely unk...

  2. Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above and below ground nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Allyson S.D.; McGuire, Krista L.; Sparks, Jed

    2011-04-15

    The aim of this study is to determine the influence of CO2, NO2 and nitrate deposition (NO3-) increase at the same time on tree seedlings. Experiments were conducted on sugar maple and eastern hemlock in an open field over a two year period. They were grown under ambient or elevated CO2 and NO2 and with or without wet deposition of NO3-. Results showed that the effects of one treatment can be eliminated by another treatment thus demonstrating these effects are not additive. The growth of both sugar maple and eastern hemlock was found to be similar under the influence of the three treatments and under control conditions. .

  3. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  4. The presence of a below-ground neighbour alters within-plant seed size distribution in Phaseolus vulgaris

    NARCIS (Netherlands)

    Chen, B.; During, H.J.; Vermeulen, P.J.; Anten, N.P.R.

    2014-01-01

    * Background and Aims Considerable variation in seed size commonly exists within plants, and is believed to be favoured under natural selection. This study aims to examine the extent to which seed size distribution depends on the presence of competing neighbour plants. * Methods Phaseolus vulgaris p

  5. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants.

    Science.gov (United States)

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-19

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer.

  6. Above and below ground carbon stocks in northeast Siberia tundra ecosystems: a comparison between disturbed and undisturbed areas

    Science.gov (United States)

    Weber, L. R.; Pena, H., III; Curasi, S. R.; Ramos, E.; Loranty, M. M.; Alexander, H. D.; Natali, S.

    2014-12-01

    Changes in arctic tundra vegetation have the potential to alter the regional carbon (C) budget, with feedback implications for global climate. A number of studies have documented both widespread increases in productivity as well as shifts in the dominant vegetation. In particular, shrubs have been replacing other vegetation, such as graminoids, in response to changes in their environment. Shrub expansion is thought to be facilitated by exposure of mineral soil and increased nutrient availability, which are often associated with disturbance. Such disturbances can be naturally occurring, typically associated with permafrost degradation or with direct anthropogenic causes such as infrastructure development. Mechanical disturbance associated with human development is not uncommon in tundra and will likely become more frequent as warming makes the Arctic more hospitable for resource extraction and other human activities. As such, this type of disturbance will become an increasingly important component of tundra C balance. Both increased productivity and shrub expansion have clear impacts on ecosystem C cycling through increased C uptake and aboveground (AG) storage. What is less clear, however, are the concurrent changes in belowground (BG) C storage. Here we inventoried AG and BG C stocks in disturbed and undisturbed tundra ecosystems to determine the effects of disturbance on tundra C balance. We measured differences in plant functional type, AG and BG biomass, soil C, and specific leaf area (SLA) for the dominant shrub (Salix) in 2 tundra ecosystems in northern Siberia—an undisturbed moist acidic tundra and an adjacent ecosystem that was used as a road ~50 years ago. Deciduous shrubs and grasses dominated both ecosystems, but biomass for both functional types was higher in the disturbed area. SLA was also higher inside the disturbance. Conversely, nonvascular plants and evergreen shrubs were less abundant in the disturbed area. BG plant biomass was substantially greater than AG biomass. On average, soil C pool in organic and mineral soils was higher in the disturbed areas. Our results illustrate changes in ecosystem structure and function associated with disturbance that may become increasingly important with continued climate warming and subsequent human activity in the Arctic.

  7. Relevance of biotic pathways to the long-term regulation of nuclear-waste disposal. Topical report on reference western arid low-level sites

    International Nuclear Information System (INIS)

    The purpose of the work reported here was to develop an order of magnitude estimate for the potential dose to man resulting from biotic transport mechanisms at a reference western arid low-level waste site. A description of the reference site is presented that includes the waste inventories, site characteristics and biological communities. Parameter values for biotic transport processes are based on data reported in current literature. Transport and exposure scenarios are developed for assessing biotic transport during 100 years following site closure. Calculations of radionuclide decay and waste container decomposition are made to estimate the quantities available for biotic transport. Dose to a man occupying the reference site following the 100 years of biotic transport are calculated. These dose estimates are compared to dose estimates for the intruder-agricultural scenario reported in the DEIS for 10 CFR 61 (NRC). Dose to man estimates as a result of biotic transport are estimated to be of the same order of magnitude as the dose resulting from the more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by the findings presented in this report. These results indicate that biotic transport has the potential to influence low-level waste site performance. Through biotic transport, radionuclides may be moved to locations where they can enter exposure pathways to man

  8. Relevance of biotic pathways to the long-term regulation of nuclear-waste disposal. Topical report on reference western arid low-level sites

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Cadwell, L.L.; Eberhardt, L.E.; Kennedy, W.E. Jr.; Peloquin, R.A.; Simmons, M.A.

    1982-10-01

    The purpose of the work reported here was to develop an order of magnitude estimate for the potential dose to man resulting from biotic transport mechanisms at a reference western arid low-level waste site. A description of the reference site is presented that includes the waste inventories, site characteristics and biological communities. Parameter values for biotic transport processes are based on data reported in current literature. Transport and exposure scenarios are developed for assessing biotic transport during 100 years following site closure. Calculations of radionuclide decay and waste container decomposition are made to estimate the quantities available for biotic transport. Dose to a man occupying the reference site following the 100 years of biotic transport are calculated. These dose estimates are compared to dose estimates for the intruder-agricultural scenario reported in the DEIS for 10 CFR 61 (NRC). Dose to man estimates as a result of biotic transport are estimated to be of the same order of magnitude as the dose resulting from the more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by the findings presented in this report. These results indicate that biotic transport has the potential to influence low-level waste site performance. Through biotic transport, radionuclides may be moved to locations where they can enter exposure pathways to man.

  9. A Big Bang or small bangs? Effects of biotic environment on hatching

    Directory of Open Access Journals (Sweden)

    Marina MANCA

    2008-08-01

    Full Text Available The beginning and end of diapause are two important transition points in cladoceran life history. The influence of environmental variables on the dynamics of these processes still deserves attention, especially as concerns the role of biotic factors. In this paper we focus on emergence from diapause, testing (1 whether ephippia of Daphnia obtusa Kurz can assess the presence in the water of typical planktivorous fish or ostracods, and (2 whether such an assessment results in changes in hatching strategy. Total number of hatchlings from D. obtusa ephippial eggs did not differ between the control and the treatments in which the presence of fish or ostracods could be detected (ANOVA, P = 0.884. However, hatching dynamics were different: most of the eggs hatched synchronously at day 4 (83.3% of the total hatchlings number in the control, while only a low proportion of eggs hatched on day 4 in the fish (38.3%, and ostracod treatments (24.0% of the total. Mean hatching time was longer, and variability larger, in the treatments than in the control; differences resulted statistically significant (ANOVA, P = 0.005. With respect to the control, representing a simple microcosm controlled by abiotic variables only, the treatments may be regarded as relatively complex environments, in which Daphnia is also exposed to biotic cues. Under these more complex conditions, the same number of hatchlings is obtained through different hatching dynamics. In the treatments, the first hatchlings appeared later and the hatching rate was more variable than in the control. These observations confirm previously observed patterns from laboratory experiments which tested the effect of competition and fluctuating environmental conditions (light:dark, temperature regimes on D. obtusa reproductive and demographic parameters. They are also in agreement with recently obtained evidence concerning the importance of biotic cues for hatching of ephippial eggs. Overall, the evidence

  10. Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris.

    Science.gov (United States)

    Chronopoulou, Evangelia; Madesis, Panagiotis; Tsaftaris, Athanasios; Labrou, Nikolaos E

    2014-01-01

    Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous proteins in plants that play important roles in stress tolerance and in the detoxification of toxic chemicals and metabolites. In this study, we systematically examined the catalytic diversification of a GST isoenzyme from Phaseolus vulgaris (PvGST) which is induced under biotic stress treatment (Uromyces appendiculatus infection). The full-length cDNA of this GST isoenzyme (termed PvGSTU3-3) with complete open reading frame, was isolated using RACE-RT and showed that the deduced amino acid sequence shares high homology with the tau class plant GSTs. PvGSTU3-3 catalyzes several different reactions and exhibits wide substrate specificity. Of particular importance is the finding that the enzyme shows high antioxidant catalytic function and acts as hydroperoxidase, thioltransferase, and dehydroascorbate reductase. In addition, its K m for GSH is about five to ten times lower compared to other plant GSTs, suggesting that PvGSTU3-3 is able to perform efficient catalysis under conditions where the concentration of reduced glutathione is low (e.g., oxidative stress). Its ability to conjugate GSH with isothiocyanates may provide an additional role for this enzyme to act as a regulator of the released isothiocyanates from glucosinolates as a response of biotic stress. Molecular modeling showed that PvGSTU3-3 shares the same overall fold and structural organization with other plant cytosolic GSTs, with major differences at their hydrophobic binding sites (H-sites) and some differences at the level of C-terminal domain and the linker between the C- and N-terminal domains. PvGSTU3-3, in general, exhibits restricted ability to bind xenobiotics in a nonsubstrate manner, suggesting that the biological role of PvGSTU3-3, is restricted mainly to the catalytic function. Our findings highlight the functional and catalytic diversity of plant GSTs and demonstrate their pivotal role for addressing biotic stresses in Phaseolus

  11. A comparison of different biotic indices based on benthic macro-invertebrates in italian lakes

    Directory of Open Access Journals (Sweden)

    Laura MARZIALI

    2011-02-01

    Full Text Available Benthic macroinvertebrates samples were taken from Italian lakes with different geological, morphological and chemical characteristics. Thirty-two lowland small and large lakes sampled using a grab in soft substrate were selected to develop biotic indices. Diversity indices based on species numbers - abundances and indices using species sensitivity values were compared. The lakes selected were all situated in the Alpine Ecoregion below 800 m a.s.l. and had similar chemical composition but different levels of anthropogenic pressure. Lakes with data available in different years were included as separate lakes in the analysis; littoralsublittoral samples of large lakes were also separated from profundal samples yielding a total of 41 sites for analysis. Seven different biotic indices were compared: (1 Shannon diversity index (H, (2 weighted Shannon diversity index (Hw including in the calculation a sensitivity value assigned to each species, (3 a benthic quality index based on means of three different environmental variables, measuring trophic status, weighted by species abundances (BQITS, (4 an index based on weighted means using a larger set of environmental variables (BQIENV, (5 a modified BQITS, which included both species numbers and total abundance of individuals (BQIES, (6 an index calculated according to a rarefaction method (ES, (7 an index considering indicator species based on experts judgment (BQIEJ. The indices were compared with a trophic status index (TSI constructed by joining three environmental variables: O2% saturation in the hypolimnion during summer stratification, total phosphorous and transparency during full circulation. Comparisons were also made with another environmental stress index (ENI constructed on a larger number of variables. All the biotic indices had significant correlations with both TSI and ENI. BQIES, WFD compliant and well correlated with TSI and ENI, was selected to tentatively assign the investigated lakes

  12. Regional consequences of a biotic interchange: insights from the Lessepsian invasion

    Science.gov (United States)

    Nawrot, Rafal; Albano, Paolo G.; Chattopadhyay, Devapriya; Zuschin, Martin

    2016-04-01

    The fossil record provides ample evidence of large-scale biotic interchanges and their pervasive effects on regional biotas, but mechanisms controlling such events are difficult to decipher in deep time. Massive invasion of Indo-Pacific species into the Mediterranean Sea triggered by the opening of the Suez Canal offers a unique opportunity to examine the ecological consequences of breaking down biogeographic barriers. We developed an extensive database of taxonomic composition, body size and ecological characteristics of the Red Sea and Mediterranean bivalve fauna in order to link biotic selectivity of the invasion process with its effects on the recipient biota. Shallow-water occurrence and presence outside the tropical zone in other regions are the strongest predictors of the successful transition through the Suez Canal. Subsequent establishment of alien species in the Mediterranean Sea correlates with early arrival and preference for hard substrates. Finally, large-bodied species and hard-bottom dwellers are over-represented among the invasive aliens that have reached the spread stage and impose a strong impact on native communities. Although body size is important only at the last invasion stage, alien species are significantly larger compared to native Mediterranean bivalves. This reflects biogeographic difference in the body-size distributions of the source and recipient species pools related to the recent geological history of the Mediterranean Sea. Contrary to the general expectations on the effects of temperature on average body size, continued warming of the Mediterranean Sea accelerates the entry of tropical aliens and thus indirectly leads to increase in the proportion of large-bodied species in local communities and the regional biota. Invasion-driven shifts in species composition are stronger in hard-substrate communities, which host a smaller pool of incumbent species and are more susceptible to the establishment of newcomers. Analogous differences

  13. Forest calcium depletion and biotic retention along a soil nitrogen gradient

    Science.gov (United States)

    Perakis, Steven S.; Sinkhorn, Emily R.; Catricala, Christina; Bullen, Thomas D.; Fitzpatrick, John A.; Hynicka, Justin D.; Cromack, Kermit

    2013-01-01

    High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate conifer forests in the Oregon Coast Range. We were particularly interested in whether long-term legacies of symbiotic N fixation promoted coupled N and organic P accumulation in soils, and whether biotic demands by non-fixing vegetation could conserve ecosystem base cations as N accumulated. Total soil N (0–100 cm) pools increased nearly threefold across the N gradient, leading to increased nitrate leaching, declines in soil pH from 5.8 to 4.2, 10-fold declines in soil exchangeable Ca, Mg, and K, and increased mobilization of aluminum. These results suggest that long-term N enrichment had acidified soils and depleted much of the readily weatherable base cation pool. Soil organic P increased with both soil N and C across the gradient, but soil inorganic P, biomass P, and P leaching loss did not vary with N, implying that historic symbiotic N fixation promoted soil organic P accumulation and P sufficiency for non-fixers. Even though soil pools of Ca, Mg, and K all declined as soil N increased, only Ca declined in biomass pools, suggesting the emergence of Ca deficiency at high N. Biotic conservation and tight recycling of Ca increased in response to whole-ecosystem Ca depletion, as indicated by preferential accumulation of Ca in biomass and surface soil. Our findings support a hierarchical model of coupled N–Ca cycling under long-term soil N enrichment, whereby ecosystem-level N saturation and nitrate leaching deplete readily available soil Ca, stimulating biotic Ca conservation as overall supply diminishes. We conclude that a legacy of biological N fixation can increase N

  14. Biotic and abiotic anaerobic transformations of trichloroethene and cis-1,2-dichloroethene in fractured sandstone.

    Science.gov (United States)

    Darlington, Ramona; Lehmicke, Leo; Andrachek, Richard G; Freedman, David L

    2008-06-15

    A fractured sandstone aquifer at an industrial site in southern California is contaminated with trichloroethene (TCE) and cis-1,2-dichloroethene (cis-DCE) to depths in excess of 244 m. Field monitoring data suggest that TCE is undergoing reduction to cis-DCE and that additional attenuation is occurring. However, vinyl chloride (VC) and ethene have not been detected in significant amounts, so that if transformation is occurring, a process other than reductive dechlorination must be responsible. The objective of this study was to evaluate the occurrence of biotic and abiotic transformation processes at this site for TCE, cis-DCE, and VC. Anaerobic microcosms were constructed with site groundwater and sandstone core samples. 14C-labeled compounds were used to detect transformation products (e.g., CO2 and soluble products) that are not readily identifiable by headspace analysis. The microcosms confirmed the occurrence of biotic reduction of TCE to cis-DCE, driven by electron donor in the groundwater and/or sandstone. VC and ethene were not detected. Following incubation periods up to 22 months, the distribution of 14C indicated statistically significant transformation of [14C]TCE and [14C]cis-DCE in live microcosms, to as high as 10% 14CO2 from TCE and 20% 14CO2 from cis-DCE. In autoclaved microcosms, significant transformation of [14C]TCE and [14C]cis-DCE also occurred; although some 14CO2 accumulated, the predominant 14C product was soluble and could not be stripped by N2 from an acidic solution (referred to as nonstrippable residue, or NSR). Characterization of the NSR by high-performance liquid and ion chromatography identified glycolate, acetate, and formate as significant components. These results suggest that a combination of abiotic and biotic transformation processes is responsible for attenuation of TCE and cis-DCE in the fractured sandstone aquifer. Tracking the distribution of 14C during the microcosm study was essential for observing these phenomena.

  15. Simplification of Biotic Ligand Model and Evaluation of Predicted Results%Biotic Ligand Model的简化模型及预测性能评价

    Institute of Scientific and Technical Information of China (English)

    王万宾; 陈莎; 吴敏; 苏德丽; 赵婧

    2014-01-01

    通过检索4物种(Fathead minnow、D.magna、D.pulex、Rainbow trout)在地表水中实测的铜半致死浓度(Observed_LC50),及Biotic Ligand Model(BLM)预测其半致死浓度(Predicted_LC50),得到4物种的预测精度依次为0.075、0.52、0.96、0.29,模型对Fathead minnow与Rainbow trout的预测性能较差.在此基础上,分析显示预测误差值与LA50呈指数关系,表明LA50值并非常数值.通过对BLM的LA50的校正,Fathead minnow与Rainbow trout的预测精度升为0.59、0.42.通过分析LA50与硬度的关系,发现BLM在软水环境中预测效果较差.另外,随机均匀生成500组水质参数组,通过BLM预测,筛选出4项敏感参数为DOC、pH、HCO[浓度及温度,并建立相应物种的LC50与其的多元线性关系,大大简化了生物配位模型.

  16. Evaluation of extended biotic index in watercourses by means of artificial substrates

    International Nuclear Information System (INIS)

    During 1993 and 1994 a working group of biologists operating in Region Lombardia has carried out a study to evaluate the reliability of artificial substrates in the assessment of water quality by the Extended Biotic Index. Macroinvertebrate samples were collected by means of hand net and artificial substrates (up to 3 replicates) in 22 sampling sites of 15 watercourses of different typology (river, stream, irrigation channel) and water quality. Sampling efficiency and reliability in the calculation of E.B.I. and Quality Class by 1, 2 and 3 artificial substrates with respect to hand net have been evaluated. Influence of water quality, typology and original prevailing substrate in watercourses on the performance of artificial substrates has also been investigated. Results show a good agreement with other Authors' papers, confirming that artificial substrates represent a valid alternative macroinvertebrate sampling technique when traditional hand net sampler is useless

  17. Environmental status assessment using DNA metabarcoding: towards a genetics based Marine Biotic Index (gAMBI).

    Science.gov (United States)

    Aylagas, Eva; Borja, Angel; Rodríguez-Ezpeleta, Naiara

    2014-01-01

    Marine ecosystem protection and conservation initiatives rely on the assessment of ecological integrity and health status of marine environments. The AZTI's Marine Biotic Index (AMBI), which consists on using macroinvertebrate diversity as indicator of ecosystem health, is used worldwide for this purpose. Yet, this index requires taxonomic assignment of specimens, which typically involves a time and resource consuming visual identification of each sample. DNA barcoding or metabarcoding are potential harmonized, faster and cheaper alternatives for species identification, although the suitability of these methods for easing the implementation of the AMBI is yet to be evaluated. Here, we analyze the requirements for the implementation of a genetics based AMBI (gAMBI), and show, using available sequence data, that information about presence/absence of the most frequently occurring species provides accurate AMBI values. Our results set the basics for the implementation of the gAMBI, which has direct implications for a faster and cheaper marine monitoring and health status assessment.

  18. Thermodynamic consequences of molecular crowding in information growth during pre biotic evolution

    CERN Document Server

    Mukherjee, Anita

    2009-01-01

    The work presented in this paper essentially focuses at providing a scientific theory to explain the growth of information bearing molecules (size and information contents) without the need of any enzymatic system. It infers the footprints of molecular evolution in the cell interior for a property common to all life forms. It is deducted that molecular crowding is a vital cellular trait common to the all types of cells (primitive or highly evolved). It is argued that this trait is pervasive and must have been incorporated at some stage as a common vital feature of life. If this feature has central importance it must have been part of the pre-biotic information growth of information bearing molecules. The thermodynamic consequences of molecular crowding on the growth of RNA (50-100bp long) in the absence of enzyme system were calculated.

  19. Determination of nitrated polycyclic aromatic hydrocarbons and their precursors in biotic matrices.

    Science.gov (United States)

    Dusek, Bohuslav; Hajslová, Jana; Kocourek, Vladimír

    2002-12-20

    Analytical method for the determination of ultra-trace levels of nitro-PAHs in various biotic matrices has been developed. Soxhlet extraction and/or solvent extraction enhanced by sonication were used for isolation of target analytes; GPC followed by SPE were employed for purification of crude extracts. GC-MS/NCI technique was utilised for identification/quantitation of target analytes. Performance characteristics of implemented method were obtained through thorough in-house validation procedure. The main sources of uncertainties were critically evaluated, possible strategies of their elimination/minimisation were considered and consequently employed. Examination of real-life samples of various foodstuffs (complete human diet, mate tea, pumpkin seed oil, parsley, sausages) was performed in this study. PMID:12489862

  20. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis.

    Science.gov (United States)

    Galon, Yael; Nave, Roy; Boyce, Joy M; Nachmias, Dikla; Knight, Marc R; Fromm, Hillel

    2008-03-19

    Calmodulin-binding transcription activator (CAMTA) 3 (also called SR1) is a calmodulin-binding transcription factor in Arabidopsis. Two homozygous T-DNA insertion mutants (camta3-1, camta3-2) showed enhanced spontaneous lesions. Transcriptome analysis of both mutants revealed 6 genes with attenuated expression and 99 genes with elevated expression. Of the latter, 32 genes are related to defense against pathogens (e.g. WRKY33, PR1 and chitinase). Propagation of a virulent strain of the bacterial pathogen Pseudomonas syringae and the fungal pathogen Botrytis cinerea were attenuated in both mutants. Moreover, both mutants accumulated high levels of H2O2. We suggest that CAMTA3 regulates the expression of a set of genes involved in biotic defense responses.

  1. Carnivorans at the Great American Biotic Interchange: new discoveries from the northern neotropics.

    Science.gov (United States)

    Forasiepi, Analia M; Soibelzon, Leopoldo H; Gomez, Catalina Suarez; Sánchez, Rodolfo; Quiroz, Luis I; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R

    2014-11-01

    We report two fossil procyonids, Cyonasua sp. and Chapalmalania sp., from the late Pliocene of Venezuela (Vergel Member, San Gregorio Formation) and Colombia (Ware Formation), respectively. The occurrence of these pre-Holocene procyonids outside Argentina and in the north of South America provides further information about the Great American Biotic Interchange (GABI). The new specimens are recognized in the same monophyletic group as procyonids found in the southern part of the continent, the "Cyonasua group," formed by species of Cyonasua and Chapalmalania. The phylogenetic analysis that includes the two new findings support the view that procyonids dispersed from North America in two separate events (initially, previous to the first major migration wave-GABI 1-and then within the last major migration wave-GABI 4-). This involved reciprocal lineage migrations from North to South America, and included the evolution of South American endemic forms.

  2. Disassembly and reassembly of polyhydroxyalkanoates: recycling through abiotic depolymerization and biotic repolymerization.

    Science.gov (United States)

    Myung, Jaewook; Strong, Nathaniel I; Galega, Wakuna M; Sundstrom, Eric R; Flanagan, James C A; Woo, Sung-Geun; Waymouth, Robert M; Criddle, Craig S

    2014-10-01

    An abiotic-biotic strategy for recycling of polyhydroxyalkanoates (PHAs) is evaluated. Base-catalyzed PHA depolymerization yields hydroxyacids, such as 3-hydroxybutyrate (3HB), and alkenoates, such as crotonate; catalytic thermal depolymerization yields alkenoates. Cyclic pulse addition of 3HB to triplicate bioreactors selected for an enrichment of Comamonas, Brachymonas and Acinetobacter. After each pulse, poly(3-hydroxybutyrate) (P3HB) transiently appeared: accumulation of P3HB correlated with hydrolysis of polyphosphate; consumption of P3HB correlated with polyphosphate synthesis. Cells removed from the cyclic regime and incubated with 3HB under nitrogen-limited conditions produced P3HB (molecular weight>1,000,000Da) at 50% of the cell dry weight (recycling strategy where abiotic depolymerization of waste PHAs yields feedstock for customized PHA re-synthesis appears feasible, without the need for energy-intensive feedstock purification.

  3. Anatomic and histochemical examinations for the clarification of the contribution of biotic agents to forest dieback

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S.; Horsch, F.; Filby, G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)

    1986-04-01

    In yellowed needles of firs and spruces from forest decline areas in the Southern Black Forest frequently necrotic phloem could be found, while the mesophyll cells were still intact. This first led to the assumption of a possible participation of phloemspecific pathogens (viruses, MLO). Needles suffering from atmospheric pollutants in contrast showed necroses of mesophyll cells with largely intact phloem. Identical symptoms with collapsed phloem and intact mesophyll could be observed in spruces which showed typical apical yellowing of the needles after cultivation in magnesium-free hydroponic solution. The symptoms on the yellowed needles in the higher Black Forest can therefore conclusively be explained with the there observed magnesium-deficiency. Possible interrelationships between biotic pathogens and nutritional status of the trees are discussed. In a number of yellowed, but also some green needles, fungal hyphae could be observed in the microscopical sections, preferably in the intercellulars. The significance of these fungi will further be investigated.

  4. Considerations on the Research of and Counter-measures Against Biotic Invasion

    Institute of Scientific and Technical Information of China (English)

    Su Ronghui; Lou Zhiping; Zhang Runzhi

    2002-01-01

    This article gives a brief introduction to the damage brought about by biotic invasion and its causes, and analyzes its impact on national development, ecological safety and the production of agriculture, forestry and animal husbandry. In addition, it expounds the necessity, urgency and cardinal significance in promoting related scientific research in this country. The authors stress that research work should be concentrated on the ecological effects of non-indigenous species in the light of the national demands, world research frontiers and high-tech application. That involves the process of an invasive organism's immigration and propagation, short-term evolution, latent buildup, ecological adaptation, competition and outbreak as well as the process in which the new ecosystem's original structure and functions unfold their role of rejection and assimilation.

  5. potential role of H2CN radicals in pre-biotic synthesis

    International Nuclear Information System (INIS)

    Using ab initio method, the minimum energy conformations and net charge distribution have been studied for H2CN radical isomers formed by addition of a H atom (or an electron) to HCN (or HNC) molecule. Calculations show that there are three possible isomers, namely H2CN(I), H2CN(II) and H2CN(III). The order of relative stability is (I) > (III) > (II). From quantum chemical study and the estimations in thermochemistry for the reactions (1) and (2), the possible role of H2CN radicals in pre-biotic organic synthesis has been discussed and it has been proposed that H2CN(III) radical is an important intermediate to synthesize amino acids. The results, show that HNC is also an important product in the evolution chain of biomolecules under some special conditions, such as the electric discharge for atmosphere

  6. Development of a Wireless Computer Vision Instrument to Detect Biotic Stress in Wheat

    Directory of Open Access Journals (Sweden)

    Joaquin J. Casanova

    2014-09-01

    Full Text Available Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM. In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV, vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32 than stressed wheat (111.34. In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014, as did the conventional camera (p < 0.0001. Vegetation hue obtained through a wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications.

  7. Sebkhet Karkura: an example of a semi-arid Mediterranean wetland rich in biotic sediments

    Science.gov (United States)

    Abdulsamad, Esam O.; Elbabour, Mansour M.

    2014-05-01

    Habitat wetlands in Libya may be grouped into several distinct varieties, according to climate, water supply, soils, and biotic diversity. They include coastal Sebkhas (salt marshes), karst lakes, Wadi estuaries, below sea-level desert lakes, and balat flats (playas) where the soil is saturated part of some rainy seasons forming a kind of ephemeral, shallow lakes in pre-desert areas. The most prominent, however, are the extensive coastal salt marshes. These have either organic or inorganic soils, or both, depending on their location and climate conditions. Soils common to most coastal wetlands are composed largely of inorganic material in the form of sand, silt, or clay; in addition to organic material formed by decayed plants and various biotic sediments. For the purpose of the present poster, however, Sebkhet Karkura, an extensive stretch of about 50 km square (20 km long by an average width of 2.5 km) of Sebkha/wetland formation, located about 80 km southwest of Benghazi, will serve as an example of coastal Sebkhas. Here, the sediments are consisting mostly of dark earth brown sandy silt with salt and gypsum. Pure-salt deposits are normally extracted for salt processing in the area. Loams, silt, gravel, and calcareous sand are also present. At the surface of the wetland, calcarenites are fairly common but sand-beach and sand-dunes are representing the major sediments along the coastal wetland area. The recent biotal components of these sediments are described and a number of recent small-sized benthic seashells, belonging to phylum mollusca, have been investigated along the seaside of Sabkhet Karkura and several species have been identified. It is worth noting that Sebkhet Karkura, as well as other similar coastal wetlands, currently face serious threats due to human action, especially over exploitation of their resources, urban encroachments, dredging, and solid waste dumping. Increased awareness on the part of the general public of wetland ecological values

  8. Effects of landscape and riparian condition on a fish index of biotic integrity in a large southeastern Brazil river

    Science.gov (United States)

    Environmental conditions of a large river in southeastern Brazil were assessed by evaluating fish assemblage structure (index of biotic integrity, IBI), landscape use (forest, pasture, urban area, and tributary water) and riparian condition. A survey of the 338 km-long middle rea...

  9. Impact of phenolic compounds and related enzymes in Sorghum varieties for resistance and susceptibility to biotic and abiotic stresses

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Barro, C.; Traore, A.S.; Berkel, van W.J.H.; Voragen, A.G.J.

    2005-01-01

    Contents of phenolic compounds and related enzymes before and after sorghum grain germination were compared between varieties either resistant or susceptible to biotic (sooty stripe, sorghum midge, leaf anthracnose, striga, and grain molds) and abiotic (lodging, drought resistance, and photoperiod s

  10. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal: Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Cadwell, L.L.; Kennedy, W.E. Jr.; Prohammer, L.A.; Simmons, M.A.

    1986-11-01

    The results reported here establish the relevance and propose a method for including biotic transport in the assessment and licensing process for commercial low-level waste disposal sites. Earlier work identified the biotic transport mechanisms and process scenarios linking biotic transport with dose to man, and developed models for assessment of impacts. Model modification and improvement efforts in enhancing the ability to represent soil erosion and soil transport within the trench cover. Two alternative hypotheses on plant root uptake were incorporated into the model to represent transport of radionuclides by roots that penetrate the buried waste. Enhancements were also made to the scenario for future site intruder activities. Representation of waste package decomposition in the model was confirmed as the best available alternative. Results from sensitivity analyses indicate that additional information is needed to evaluate the alternative hypotheses for plant root uptake of buried wastes. Site-specific evaluations of the contribution from biotic transport to the potential dose to man establish the relevance in the assessment process. The BIOPORT/MAXI1 computer software package is proposed for dose assessments of commercial low-level waste disposal sites.

  11. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    Science.gov (United States)

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops.

  12. The ATAF1 transcription factor: At the convergence point of ABA-dependent plant defense against biotic and abiotic stresses

    Institute of Scientific and Technical Information of China (English)

    Brigitte Mauch-Mani; Victor Flors

    2009-01-01

    @@ Because of their sessile lifestyle, plants have evolved sophisticated ways of coping with the various biotic and abiotic stresses they can encounter during their life. Their defensive reac-tions to a given stress have to be rapid and well adapted to the situation. They are the results of tightly coordinated changes at the molecular level involving the contributions of different signaling pathways.

  13. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk

    NARCIS (Netherlands)

    Kissoudis, C.; Wiel, van de C.C.M.; Visser, R.G.F.; Linden, van der C.G.

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive i

  14. Effects of biotic and abiotic factors on phenotypic partitioning of wing morphology and development in Sclerodermus pupariae (hymenoptera: bethylidae)

    Science.gov (United States)

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we examined the effects of biotic and abiotic factors including temperature, photoperiod, light intensity,...

  15. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal: Phase 2, Final report

    International Nuclear Information System (INIS)

    The results reported here establish the relevance and propose a method for including biotic transport in the assessment and licensing process for commercial low-level waste disposal sites. Earlier work identified the biotic transport mechanisms and process scenarios linking biotic transport with dose to man, and developed models for assessment of impacts. Model modification and improvement efforts in enhancing the ability to represent soil erosion and soil transport within the trench cover. Two alternative hypotheses on plant root uptake were incorporated into the model to represent transport of radionuclides by roots that penetrate the buried waste. Enhancements were also made to the scenario for future site intruder activities. Representation of waste package decomposition in the model was confirmed as the best available alternative. Results from sensitivity analyses indicate that additional information is needed to evaluate the alternative hypotheses for plant root uptake of buried wastes. Site-specific evaluations of the contribution from biotic transport to the potential dose to man establish the relevance in the assessment process. The BIOPORT/MAXI1 computer software package is proposed for dose assessments of commercial low-level waste disposal sites

  16. Influence of solar radiation and biotic interactions on bacterial and eukaryotic communities associated with sewage decomposition in ambient water

    Science.gov (United States)

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biot...

  17. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    Science.gov (United States)

    Ramu, Vemanna S; Paramanantham, Anjugam; Ramegowda, Venkategowda; Mohan-Raju, Basavaiah; Udayakumar, Makarla; Senthil-Kumar, Muthappa

    2016-01-01

    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.

  18. Environmental and biotic changes across the Permian Triassic boundary in western Tethys: The Bulla parastratotype, Italy

    Science.gov (United States)

    Farabegoli, Enzo; Perri, M. Cristina; Posenato, Renato

    2007-01-01

    The sedimentary and biotic evolution of a 190 m interval of shallow marine and lagoonal facies in the Bellerophon and Werfen formations in the Southern Alps has allowed comparison of western with eastern Tethys: Meishan D section (southern China), Salt Range (Pakistan) and Abadeh (Iran). Results are as follows: The upper part of the Bellerophon Fm. (Changhsingian changxingensis-deflecta Zone) shows only modest biotic variation connected with tectonically driven local variation and perhaps to more general climatic variation. The δ13C decrease starting in the uppermost 30 m of the Bellerophon Fm. is correlated with decrease in global organic productivity starting about 1 m below the PTB in Chinese sequences and 20 m below in the Abadeh section. This interval culminated in a regression truncated by an unconformity-paraconformity (Unconformity 1). The uppermost Bellerophon Fm. is a ca. 1 m transgressive-regressive sedimentary cycle, the informally named Bulla Mbr (Changhsingian: Early praeparvus Zone). The maximum flooding interval of this unit possibly had a slight increase in biodiversity, mainly in foraminifers, algae and brachiopods. The high increase in biodiversity previously reported may, in part, reflect abundance of biota and organic matter reworked into transgressive and regressive intervals. We suggest partial correlation of the basal unconformity of the Bulla Mbr (Unconformity 1) with the regressive uppermost Bed 24e of the Meishan D section marking the disappearance of foraminifers and algae in the eastern Tethys. We also suggest diachronous disappearance of benthic taxa in Tethys, with the Southern Alps acting like a refugium. The main extinction (first extinction phase, mainly regarding foraminifers) in the Southern Alps occurred in a thin ca. 25 cm interval including the uppermost regressive Bulla Mbr, Unconformity 2, and possibly, the basal transgressive bed of the Tesero Mbr of the Werfen Fm. This interval is correlated in part with regressive Bed 26

  19. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing

  20. An Index of Biotic Integrity for shallow streams of the Hondo River basin, Yucatan Peninsula

    International Nuclear Information System (INIS)

    An Index of Biotic Integrity (IBI) is proposed, based on the fish communities and populations in streams of the Hondo River basin, Mexico-Belize. Freshwater environments in this area are threatened by exotic fishes, eutrophication, and pesticide pollution, among other problems. This IBI should allow to identify the most vulnerable sites and eventually guide rehabilitation efforts. Data on composition, structure, and function of fish communities were evaluated. Twenty-three sites in the Mexican part of the basin were explored; a stratified sample of 13 sites was used to design the IBI, and the rest were used to test and refine the index. Thirty-four candidate indicator metrics were scanned for their correlation with an index of water and habitat quality (IWHQ), as well as for the possible influence of stream width and altitude or distance to the Hondo River mainstem. Twelve variables were selected to constitute the IBI: relative abundances of Astyanax aeneus, 'Cichlasoma' urophthalmus, Poecilia mexicana, Poecilia sp. (a new species, probably endemic to the upper Hondo River basin), Xiphophorus hellerii, and X. maculatus; relative abundances of bentholimnetic, herbivore, and sensitive species; percentage of native and tolerant species; and Pielou's evenness index. Most of the sites have a low-medium quality and integrity, showing impact due to partial channelization or to suboptimal water quality, reflected in scarcity or absence of sensitive species, frequent excess of tolerant species, occasional presence of exotics, dominance of herbivores (perhaps due to proliferation of filamentous algae), or dominance of the opportunistic species P. mexicana. The streams with better water and habitat quality are those farthest away from the river mainstem, probably because of lower human population and economical production. - Research Highlights: → An Index of Biotic Integrity based on fishes is proposed for streams of the Hondo River basin. → Twelve variables were

  1. Effect of biotic lignin decomposition on the fate of radiocesium-contaminated plant litter

    International Nuclear Information System (INIS)

    Fungi are the most important components in the fate of radionuclides deposited in forests following the Fukushima nuclear accident. Pruned woody parts and litter contain a considerable amount of radiocesium. Studies that focused on the migration of radiocesium have demonstrated that its ecological half-life is lower in the humus layer than in the deeper soil zone, suggesting a substantial contribution of litter decomposition on the mobilization of radiocesium. Furthermore, white-rot fungi appear to play a key role in the mobilization of radiocesium because they are the primary source of enzymes necessary to degrade the litter organic matter. Cell walls are the primary component of plant litter; they are composed of cellulose, hemi-cellulose, and lignin. Although cellulose is the most abundant organic compound in litter, the strength of the cell wall is limited by rigid hemi-cellulose complexes that protect the surrounding cellulose microfibrils. In the cell wall, lignin fills the spaces between cellulose and hemi-cellulose; thus, the biotic degradation of lignin could be considered a primary step in litter decomposition. The contribution of the amount of lignin on the fate of radiocesium has not been identified, which limits the possibility of predicting the effect of the bacterial community structure that determines the biodegradation activity of lignin on the vertical migration of radiocesium. Here, we directly addressed the role of lignin as controller of the distribution of radiocesium in soil-ecosystems. Radiocesium-contaminated litter samples were collected with traps set under the target stands, i.e., Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino) and Japanese cedars (Cryptomeria japonica) at Abiko (Laboratory of Environmental Science, CRIEPI) located approximately 200 km SSW from the Fukushima Daiichi Nuclear Power Plant in 2011. The litter samples were inoculated with white-rot fungi having ligno-celluloses-degrading activity, i

  2. Drinking water biotic safety of particles and bacteria attached to fines in activated carbon process

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; LIN Tao; WANG Leilei

    2007-01-01

    In this paper,the drinking water biotic safety of particles and bacteria attached to fines in activated carbon process was investigated by actual treatment process and advanced treatment pilot trial with granular activated carbon.In the experiment,the particles were detected by IBR particle calculating instrument,the activated carbon fines were counted on the basis of the most probable number (MPN) with a microscope,the total number of bacteria was analyzed between the conventional agar culture medium and the one with R2A,and the bacteria attached to activated carbon fines was resolved by the homogenization technique.The experimental results showed that the average total number of particles was 205 CNT/mL in the activated carbon effluent during a filter cycle,of which the number of particles with sizes>2μm was 77 CNT/mL more than the present particle control criterion of the American drinking water product standard (50 CNT/mL).The backwash of low density and long duration lowered particle number in the effluent.The MPN of activated carbon frees in the effluent was between 400 and 600 CNT/L,which accounted for less than 5‰ of the total particles from activated carbon filtration for a poor relative level (R2= 0.34).The microorganisms in activated carbon effluent consisted mostly of heterotrophic bacillus and the total bacteria number was five times as high as that of the inflow,i.e.the effluent from sand filter.The actual bacteria number may be truly indicated by the detection technique with R2A culture medium compared with the traditional agar cultivation.The inactivation efficiency of bacteria attached to activated carbon fines was less than 40% under 1.1 mg/L of chlorine contacting for 40 min.Results showed that the particles and bacteria attached to activated carbon fines may influence drinking water biotic safety,and that the effective control measures need to be further investigated.

  3. Effect of biotic lignin decomposition on the fate of radiocesium-contaminated plant litter

    Energy Technology Data Exchange (ETDEWEB)

    Hashida, Shin-nosuke; Yoshihara, Toshihiro [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko 1646, Abiko-shi, Chiba (Japan)

    2014-07-01

    Fungi are the most important components in the fate of radionuclides deposited in forests following the Fukushima nuclear accident. Pruned woody parts and litter contain a considerable amount of radiocesium. Studies that focused on the migration of radiocesium have demonstrated that its ecological half-life is lower in the humus layer than in the deeper soil zone, suggesting a substantial contribution of litter decomposition on the mobilization of radiocesium. Furthermore, white-rot fungi appear to play a key role in the mobilization of radiocesium because they are the primary source of enzymes necessary to degrade the litter organic matter. Cell walls are the primary component of plant litter; they are composed of cellulose, hemi-cellulose, and lignin. Although cellulose is the most abundant organic compound in litter, the strength of the cell wall is limited by rigid hemi-cellulose complexes that protect the surrounding cellulose microfibrils. In the cell wall, lignin fills the spaces between cellulose and hemi-cellulose; thus, the biotic degradation of lignin could be considered a primary step in litter decomposition. The contribution of the amount of lignin on the fate of radiocesium has not been identified, which limits the possibility of predicting the effect of the bacterial community structure that determines the biodegradation activity of lignin on the vertical migration of radiocesium. Here, we directly addressed the role of lignin as controller of the distribution of radiocesium in soil-ecosystems. Radiocesium-contaminated litter samples were collected with traps set under the target stands, i.e., Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino) and Japanese cedars (Cryptomeria japonica) at Abiko (Laboratory of Environmental Science, CRIEPI) located approximately 200 km SSW from the Fukushima Daiichi Nuclear Power Plant in 2011. The litter samples were inoculated with white-rot fungi having ligno-celluloses-degrading activity, i

  4. Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F(tox) approach.

    Science.gov (United States)

    Qiu, Hao; Vijver, Martina G; He, Erkai; Liu, Yang; Wang, Peng; Xia, Bing; Smolders, Erik; Versieren, Liske; Peijnenburg, Willie J G M

    2015-12-01

    There are only a limited number of studies that have developed appropriate models which incorporate bioavailability to estimate mixture toxicity. Here, we explored the applicability of the extended biotic ligand model (BLM) and the WHAM-F(tox) approach for predicting and interpreting mixture toxicity, with the assumption that interactions between metal ions obey the BLM theory. Seedlings of lettuce Lactuca sativa were exposed to metal mixtures (Cu-Ni, Cu-Cd, and Ni-Cd) contained in hydroponic solutions for 4 days. Inhibition to root elongation was the endpoint used to quantify the toxic response. Assuming that metal ions compete with each other for binding at a single biotic ligand, the extended BLM succeeded in predicting toxicity of three mixtures to lettuce, with more than 82% of toxicity variation explained. There were no significant differences in the values of f(mix50) (i.e., the overall amounts of metal ions bound to the biotic ligand inducing 50% effect) for the three mixture combinations, showing the possibility of extrapolating these values to other binary metal combinations. The WHAM-F(tox) approach showed a similar level of precision in estimating mixture toxicity while requiring fewer parameters than the BLM-f(mix) model. External validation of the WHAM-F(tox) approach using literature data showed its applicability for other species and other mixtures. The WHAM-F(tox) model is suitable for delineating mixture effects where the extended BLM also applies. Therefore, in case of lower data availability, we recommend the lower parameterized WHAM-F(tox) as an effective approach to incorporate bioavailability in quantifying mixture toxicity.

  5. Mercury bioaccumulation in an estuarine predator: Biotic factors, abiotic factors, and assessments of fish health.

    Science.gov (United States)

    Smylie, Meredith S; McDonough, Christopher J; Reed, Lou Ann; Shervette, Virginia R

    2016-07-01

    Estuarine wetlands are major contributors to mercury (Hg) transformation into its more toxic form, methylmercury (MeHg). Although these complex habitats are important, estuarine Hg bioaccumulation is not well understood. The longnose gar Lepisosteus osseus (L. 1758), an estuarine predator in the eastern United States, was selected to examine Hg processes due to its abundance, estuarine residence, and top predator status. This study examined variability in Hg concentrations within longnose gar muscle tissue spatially and temporally, the influence of biological factors, potential maternal transfer, and potential negative health effects on these fish. Smaller, immature fish had the highest Hg concentrations and were predominantly located in low salinity waters. Sex and diet were also important factors and Hg levels peaked in the spring. Although maternal transfer occurred in small amounts, the potential negative health effects to young gar remain unknown. Fish health as measured by fecundity and growth rate appeared to be relatively unaffected by Hg at concentrations in the present study (less than 1.3 ppm wet weight). The analysis of biotic and abiotic factors relative to tissue Hg concentrations in a single estuarine fish species provided valuable insight in Hg bioaccumulation, biomagnification, and elimination. Insights such as these can improve public health policy and environmental management decisions related to Hg pollution. PMID:27086072

  6. Unraveling Aspects of Bacillus amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani.

    Science.gov (United States)

    Srivastava, Suchi; Bist, Vidisha; Srivastava, Sonal; Singh, Poonam C; Trivedi, Prabodh K; Asif, Mehar H; Chauhan, Puneet S; Nautiyal, Chandra S

    2016-01-01

    Rhizoctonia solani is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study, an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13) is demonstrated to act as a biocontrol agent and enhance immune response against R. solani in rice by modulating various physiological, metabolic, and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post R. solani infection may be attributed to several unconventional aspects of the plants' physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a) involvement of bacterial mycolytic enzymes, (b) sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c) a delicate balance of ROS and ROS scavengers through production of proline, mannitol, and arabitol and rare sugars like fructopyranose, β-D-glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d) production of metabolites like quinazoline and expression of terpene synthase, and (e) hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in B. amyloliquefaciens (SN13) mediated sustained biotic stress tolerance in rice. PMID:27200058

  7. Multivariate classification of river sites based on abiotic and biotic data - suggestion of a robust solution

    International Nuclear Information System (INIS)

    Monitoring of aquatic biological communities has become a standard approach in surface water monitoring and a part of complex systems for assessing surface water quality. The main problem of this approach is how to relate biological communities to abiotic properties of sites and water quality classes. There are several methods used to solve this problem, including simple univariate methods such as saprobic indices or more complex multivariate methods like RIVPACS or BEAST. We are proposing a new point of view for assessing water quality - a method based on robust multivariate analysis of macrozoobenthos communities and abiotic properties of sites. There are two main components - robust true distances of sites based on several data views - biotic, static and dynamic abiotic proper ties, and selection of reference groups (i.e. quality classes). The analysed sites are compared to a reference model using their distances from reference groups' centroids and probabilistically assigned to quality classes. The method is currently being implemented in software designed for water quality analyses. (authors)

  8. Circulation of copper in the biotic compartments of a freshwater dammed reservoir

    International Nuclear Information System (INIS)

    This study concerns a chronic copper release in an aquatic ecosystem: Mirgenbach reservoir; which is characterized by high salinity, conductivity and hardness, a eutrophic state and a high temperature. To study the bioavailability of copper in the biotic compartments, the sampling covered the entire food chain (phyto- and zooplankton, macroalgae, aquatic plants, crustaceans, mollusks, and fish). Of the organisms present, the filter feeder Dreissena polymorpha, the detritivorous Bithynia tentaculata and Orconectes limosus were most contaminated by copper. The level of copper found in fish was the lowest. Body copper concentrations recorded in the present study show large variability between species even in some that are closely related. In most cases, however, the metal handling strategy, feeding habits, morphology and ecology can, at least partially, explain the metal content recorded. Pollution factors have been used to assess the state of contamination of the food chain. This study showed finally that the copper in the lake is bioavailable and bioaccumulated by organisms up to high levels and some effects of long-term toxicity of copper on benthic community and planktonic biomass were pointed out

  9. Increased biotic metabolism of the biosphere inferred from observed data and models

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A 35 year record of production and respiration in the Northern Hemisphere bas been derived from monthly records of atmospheric concentration, fossil fuel combustion, and oceanic absorption of carbon dioxide using a method developed by Hall et al. The original conclusion of Hall et al. that there was no significant change in biotic metabolism, is confirmed by measuring both production and respiration from 1958 to 1972. But the analysis of the subsequent record shows that both production and respiration have been enhanced since the early 1970s by some large scale global change, probably of human origin. Our results also show that high-latitude regions in the Northern Hemisphere are changing more than regions further south. Nevertheless, the ratio of production to respiration (P/R) remains unchanged during the time period examined. Thus, no argument can be made for net carbon storage of or release from the biosphere from this analysis, although the turnover rate of the biosphere appears to be enhanced.

  10. Increased biotic metabolism of the biosphere inferred from observed data and models

    Institute of Scientific and Technical Information of China (English)

    田汉勤[1; CharlesA.S.Hall[2; 叶琦[3

    2000-01-01

    A 35 year record ot production and respiration in tne Northern Hemisphere bas been derived from monthly records of atmospheric concentration, fossil fuel combustion, and oceanic absorption of carbon dioxide using a method developed by Hall et al. The original conclusion of Hall et al. that there was no significant change in biotic metabolism, is confirmed by measuring both production and respiration from 1958 to 1972. But the analysis of the subsequent record shows that both production and respiration have been enhanced since the early 1970s by some large scale global change, probably of human origin. Our results also show that high-latitude regions in the Northern Hemisphere are changing more than regions further south. Nevertheless, the ratio of production to respiration (P/R) remains unchanged during the time period examined. Thus, no argument can be made for net carbon storage of or release from the biosphere from this analysis, although the turnover rate of the biosphere appears to be enhanced.

  11. Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics.

    Science.gov (United States)

    Ndanga, Éliane M; Lopera, Carolina B; Bradley, Robert L; Cabral, Alexandre R

    2016-09-01

    The rhizosphere is known as the most active biogeochemical layer of the soil. Therefore, it could be a beneficial environment for biotic methane oxidation. The aim of this study was to document - by means of batch incubation tests - the kinetics of CH4 oxidation in rhizosphere soils that were previously exposed to methane. Soils from three pre-exposure to CH4 zones were sampled: the never-before pre-exposed (NEX), the moderately pre-exposed (MEX) and the very pre-exposed (VEX). For each pre-exposure zone, the rhizosphere of several plant species was collected, pre-incubated, placed in glass vials and submitted to CH4 concentrations varying from 0.5% to 10%. The time to the beginning of CH4 consumption and the CH4 oxidation rate were recorded. The results showed that the fastest CH4 consumption occurred for the very pre-exposed rhizosphere. Specifically, a statistically significant difference in CH4 oxidation half-life was found between the rhizosphere of the VEX vegetated with a mixture of different plants and the NEX vegetated with ryegrass. This difference was attributed to the combined effect of the preconditioning level and plant species as well as to the organic matter content. Regardless of the preconditioning level, the oxidation rate values obtained in this study were comparable to those reported in the reviewed literature for mature compost. PMID:27177464

  12. Unraveling Aspects of Bacillus amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani

    Science.gov (United States)

    Srivastava, Suchi; Bist, Vidisha; Srivastava, Sonal; Singh, Poonam C.; Trivedi, Prabodh K.; Asif, Mehar H.; Chauhan, Puneet S.; Nautiyal, Chandra S.

    2016-01-01

    Rhizoctonia solani is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study, an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13) is demonstrated to act as a biocontrol agent and enhance immune response against R. solani in rice by modulating various physiological, metabolic, and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post R. solani infection may be attributed to several unconventional aspects of the plants’ physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a) involvement of bacterial mycolytic enzymes, (b) sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c) a delicate balance of ROS and ROS scavengers through production of proline, mannitol, and arabitol and rare sugars like fructopyranose, β-D-glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d) production of metabolites like quinazoline and expression of terpene synthase, and (e) hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in B. amyloliquefaciens (SN13) mediated sustained biotic stress tolerance in rice. PMID:27200058

  13. Assessing the fit of biotic ligand model validation data in a risk management decision context.

    Science.gov (United States)

    McLaughlin, Douglas B

    2015-10-01

    Biotic ligand models (BLMs) have advanced the ability to predict the concentrations of metals in surface waters likely to harm aquatic organisms. BLMs have been developed for several metals including Cu, Zn, Cd, and Ag. Additionally, the US Environmental Protection Agency has published guidance on the use of a BLM to develop water quality criteria for Cu. To validate the predictive performance of many BLMs, model predictions based on test water quality have been compared with corresponding laboratory toxicity measurements. Validation results are typically described in the published literature in terms of the proportion of predicted effect concentrations that fall within a factor of 2 of measured values. In this article, an alternative is presented using a receiver operating characteristics approach and regression prediction limit analyses, quantifying the probabilities of true and false predictions of excess toxicity risk based on toxic unit calculations and a risk management threshold of 1. The approaches are applied to a published Zn BLM and 3 simulated data sets that reflect attributes of other published BLM validation data. The overall accuracy of the unified Zn BLM is estimated to be 80% to 90%, and analyses of simulated data suggest a similar level of accuracy for other published BLMs. Further application of these validation methods to other BLMs may provide more complete and transparent information on their possible predictive value when used in the management of risks due to aqueous metals. PMID:25779880

  14. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Benoît eRanty

    2016-03-01

    Full Text Available The Ca2+ ion is recognized as a crucial second messenger in signalling pathways coupling the perception of environmental stimuli to plant adaptive responses. Indeed, one of the earliest events following the perception of environmental changes (temperature, salt stress, drought, pathogen or herbivore attack is intracellular variation of free calcium concentrations. These calcium variations differ in their spatio-temporal characteristics (subcellular location, amplitude, kinetics with the nature and strength of the stimulus and, for this reason, they are considered as signatures encrypting information from the initial stimulus. This information is believed to drive a specific response by decoding via calcium-binding proteins.Based on recent examples, we illustrate how individual calcium sensors from the calcium-dependent protein kinase (CPK and calmodulin-like protein (CML families can integrate inputs from various environmental changes. Focusing on members of these two families, shown to be involved in plant responses to both abiotic and biotic stimuli, we discuss their role as key hubs and we put forward hypotheses explaining how they can drive the signalling pathways towards the appropriate plant responses.

  15. Biotic Spectrum of Chando Lake in Context of Ecological Status and Zooplankton Diversity

    Directory of Open Access Journals (Sweden)

    Anuradha Shukla

    2012-11-01

    Full Text Available Covering an area of approximate 650 ha, Chando Lake is located in South East of Basti, (U.P.. No precise study regarding its hydrobiology has been conducted. Hence, present study has been undertaken to observe its ecological status and zooplankton diversity from June 2010 to May 2012. The early mean flow in this lake relied on rains and the mean annual rain fall was recorded to be 1094 cm with in 51 average rainy days. The average value of the temperature was recorded to be 28.46°C, pH 7.38, transparency 58.52 cm, DO 6024 mg/L, free CO2 3.70 mg/L, TDS 1 52.20 mg/L, total hardness 153.69 mg/L , total alkalinity 272.44 mg/L , Nitrate 7.11 mg/L, phosphate 0.83 mg/L and chloride 34.63 mg/L. In the present study 23 species of zooplankton were noticed out of which six species belong to cladocerans, six species of copepods, four species of protozoans and seven species of rotiferans. The study of zooplankton species diversity and abundance with respect to biotic factors may assist in future planning for the management of intensive fish culture in this vast lake.

  16. Development and evaluation of the Lake Multi-biotic Integrity Index for Dongting Lake, China

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2015-06-01

    Full Text Available A Lake Multi-biotic Integrity Index (LMII for the China’s second largest interior lake (Dongting Lake was developed to assess the water quality status using algal and macroinvertebrate metrics. Algae and benthic macroinvertebrate assemblages were sampled at 10 sections across 3 subregions of Dongting Lake. We used a stepwise process to evaluate properties of candidate metrics and selected ten for the LMII: Pampean diatom index, diatom quotient, trophic diatom index, relative abundance diatoms, Margalef index of algae, percent sensitive diatoms, % facultative individuals, % Chironomidae individuals, % predators individuals, and total number of macroinvertebrate taxa. We then tested the accuracy and feasibility of the LMII by comparing the correlation with physical-chemical parameters. Evaluation of the LMII showed that it discriminated well between reference and impaired sections and was strongly related to the major chemical and physical stressors (r = 0.766, P<0.001. The re-scored results from the 10 sections showed that the water quality of western Dongting Lake was good, while that of southern Dongting Lake was relatively good and whereas that of eastern Dongting Lake was poor. The discriminatory biocriteria of the LMII are suitable for the assessment of the water quality of Dongting Lake. Additionally, more metrics belonging to habitat, hydrology, physics and chemistry should be considered into the LMII, so as to establish comprehensive assessment system which can reflect the community structure of aquatic organisms, physical and chemical characteristics of water environment, human activities, and so on.

  17. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export

    Science.gov (United States)

    Oschlies, Andreas; Schulz, Kai G.; Riebesell, Ulf; Schmittner, Andreas

    2008-12-01

    The primary impacts of anthropogenic CO2 emissions on marine biogeochemical cycles predicted so far include ocean acidification, global warming induced shifts in biogeographical provinces, and a possible negative feedback on atmospheric CO2 levels by CO2-fertilized biological production. Here we report a new potentially significant impact on the oxygen-minimum zones of the tropical oceans. Using a model of global climate, ocean circulation, and biogeochemical cycling, we extrapolate mesocosm-derived experimental findings of a pCO2-sensitive increase in biotic carbon-to-nitrogen drawdown to the global ocean. For a simulation run from the onset of the industrial revolution until A.D. 2100 under a "business-as-usual" scenario for anthropogenic CO2 emissions, our model predicts a negative feedback on atmospheric CO2 levels, which amounts to 34 Gt C by the end of this century. While this represents a small alteration of the anthropogenic perturbation of the carbon cycle, the model results reveal a dramatic 50% increase in the suboxic water volume by the end of this century in response to the respiration of excess organic carbon formed at higher CO2 levels. This is a significant expansion of the marine "dead zones" with severe implications not only for all higher life forms but also for oxygen-sensitive nutrient recycling and, hence, for oceanic nutrient inventories.

  18. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.

    Science.gov (United States)

    Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M

    2016-04-27

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551

  19. Identifying Watershed, Landscape, and Engineering Design Factors that Influence the Biotic Condition of Restored Streams

    Directory of Open Access Journals (Sweden)

    Barbara Doll

    2016-04-01

    Full Text Available Restored stream reaches at 79 sites across North Carolina were sampled for aquatic macroinvertebrates using a rapid bioassessment protocol. Morphological design parameters and geographic factors, including watershed and landscape parameters (e.g., valley slope, substrate, were also compiled for these streams. Principal component regression analyses revealed correlations between design and landscape variables with macroinvertebrate metrics. The correlations were strengthened by adding watershed variables. Ridge regression was used to find the best-fit model for predicting dominant taxa from the “pollution sensitive” orders of Ephemeroptera (mayflies, Plecoptera (stoneflies, and Trichoptera (caddisflies, or EPT taxa, resulting in coefficient weights that were most interpretable relative to site selection and design parameters. Results indicate that larger (wider streams located in the mountains and foothills where there are steeper valleys, larger substrate, and undeveloped watersheds are expected to have higher numbers of dominant EPT taxa. In addition, EPT taxa numbers are positively correlated with accessible floodplain width and negatively correlated with width-to-depth ratio and sinuosity. This study indicates that both site selection and design should be carefully considered in order to maximize the resulting biotic condition and associated potential ecological uplift of the stream.

  20. Gut Microbial Translocation in Critically Ill Children and Effects of Supplementation with Pre- and Pro Biotics

    Directory of Open Access Journals (Sweden)

    Paola Papoff

    2012-01-01

    Full Text Available Bacterial translocation as a direct cause of sepsis is an attractive hypothesis that presupposes that in specific situations bacteria cross the intestinal barrier, enter the systemic circulation, and cause a systemic inflammatory response syndrome. Critically ill children are at increased risk for bacterial translocation, particularly in the early postnatal age. Predisposing factors include intestinal obstruction, obstructive jaundice, intra-abdominal hypertension, intestinal ischemia/reperfusion injury and secondary ileus, and immaturity of the intestinal barrier per se. Despite good evidence from experimental studies to support the theory of bacterial translocation as a cause of sepsis, there is little evidence in human studies to confirm that translocation is directly correlated to bloodstream infections in critically ill children. This paper provides an overview of the gut microflora and its significance, a focus on the mechanisms employed by bacteria to gain access to the systemic circulation, and how critical illness creates a hostile environment in the gut and alters the microflora favoring the growth of pathogens that promote bacterial translocation. It also covers treatment with pre- and pro biotics during critical illness to restore the balance of microbial communities in a beneficial way with positive effects on intestinal permeability and bacterial translocation.

  1. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.

    Science.gov (United States)

    Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M

    2016-04-27

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.

  2. Impacts of biotic and abiotic stress on major quality attributing metabolites of coffee beans.

    Science.gov (United States)

    Vaddadi, Sridevi; Parvatam, Giridhar

    2015-03-01

    Biotic stress factors such as Rhizopus oligosporus and Aspergillus niger mycelial extracts and abiotic elements methyljasmonate (MJ) and salicylic acid (SA), when administered through floral spray to Coffea canephora, showed significant influence on major bioactive metabolites of beans. Up to 42% caffeine, 39% theobromine and 46% trigonelline, along with 32% cafestol and kahweol content elevation was evident under respective elicitor treatments. Over all, the surge in respective metabolites depends on elicitor stress type and concentration. Abiotic factors MJ and SA were found to be efficient at 1 to 5 microM concentration in augmenting all the metabolites, compared to R. oligosporus and A. niger spray at 0.5-2.0% wherein the response was moderate as compared to abiotic stress, however significant compared to control. Though this elevation in caffeine, theobromine, cafestol and kahweol is not warranted from quality point of view, increase in trigonelline improves coffee quality. Besides increase in metabolites, stress mediated augmentation of bioactive compounds in coffee has a wide scope for studying gene expression pattern. PMID:25895259

  3. Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Suchi eSrivastava

    2016-05-01

    Full Text Available Rhizoctonia solani (RS is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13 is demonstrated to act as a biocontrol agent and enhance immune response against RS in rice by modulating various physiological, metabolic and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post RS infection may be attributed to several unconventional aspects of the plants’ physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a involvement of bacterial mycolytic enzymes, (b sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c a delicate balance of ROS and ROS scavengers through production of proline, mannitol and arabitol and rare sugars like fructopyranose, β-d glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d production of metabolites like quinozoline and expression of terpene synthase and (e hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in Bacillus amyloliquifaciens (SN13 mediated sustained biotic stress tolerance in rice.

  4. Environmental and biotic correlates to lionfish invasion success in Bahamian coral reefs.

    Directory of Open Access Journals (Sweden)

    Andrea Anton

    Full Text Available Lionfish (Pterois volitans, venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers and was also unrelated to the abundance of medium prey fishes (total length of 5-10 cm. These relationships suggest that (1 higher-energy environments may impose intrinsic resistance against lionfish invasion, (2 habitat complexity may not facilitate the lionfish invasion process, (3 predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4 abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges.

  5. Environmental and biotic correlates to lionfish invasion success in Bahamian coral reefs.

    Science.gov (United States)

    Anton, Andrea; Simpson, Michael S; Vu, Ivana

    2014-01-01

    Lionfish (Pterois volitans), venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers) and was also unrelated to the abundance of medium prey fishes (total length of 5-10 cm). These relationships suggest that (1) higher-energy environments may impose intrinsic resistance against lionfish invasion, (2) habitat complexity may not facilitate the lionfish invasion process, (3) predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4) abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges. PMID:25184250

  6. Shedding light on the formation of the pre-biotic molecule formamide with ASAI

    CERN Document Server

    López-Sepulcre, A; Mendoza, E; Lefloch, B; Ceccarelli, C; Vastel, C; Bachiller, R; Cernicharo, J; Codella, C; Kahane, C; Kama, M; Tafalla, M

    2015-01-01

    Formamide (NH2CHO) has been proposed as a pre-biotic precursor with a key role in the emergence of life on Earth. While this molecule has been observed in space, most of its detections correspond to high-mass star-forming regions. Motivated by this lack of investigation in the low-mass regime, we searched for formamide, as well as isocyanic acid (HNCO), in 10 low- and intermediate-mass pre-stellar and protostellar objects. The present work is part of the IRAM Large Programme ASAI (Astrochemical Surveys At IRAM), which makes use of unbiased broadband spectral surveys at millimetre wavelengths. We detected HNCO in all the sources and NH2CHO in five of them. We derived their abundances and analysed them together with those reported in the literature for high-mass sources. For those sources with formamide detection, we found a tight and almost linear correlation between HNCO and NH2CHO abundances, with their ratio being roughly constant -between 3 and 10- across 6 orders of magnitude in luminosity. This suggests ...

  7. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa

    Science.gov (United States)

    Wang, Zhanchao; Liu, Quangang; Wang, Hanzeng; Zhang, Haizhen; Xu, Xuemei; Li, Chenghao; Yang, Chuanping

    2016-01-01

    Trihelix genes play important roles in plant growth and development and responses to biotic and abiotic stresses. Here, we identified 56 full-length trihelix genes in Populus trichocarpa and classified them into five groups. Most genes within a given group had similar gene structures and conserved motifs. The trihelix genes were unequally distributed across 19 different linkage groups. Fifteen paralogous pairs were identified, 14 of which have undergone segmental duplication events. Promoter cis-element analysis indicated that most trihelix genes contain stress- or phytohormone-related cis-elements. The expression profiles of the trihelix genes suggest that they are primarily expressed in leaves and roots. Quantitative real-time reverse transcription polymerase chain reaction analysis indicated that members of the trihelix gene family are significantly induced in response to osmotic, abscisic acid, salicylic acid, methyl jasmonate and pathogen infection. PtrGT10 was identified as a target gene of miR172d, which is involved in the osmotic response. Repression of PtrGT10 could increase reactive oxygen species scavenging ability and decrease cell death. This study provides novel insights into the phylogenetic relationships and functions of the P. trichocarpa trihelix genes, which will aid future functional studies investigating the divergent roles of trihelix genes belonging to other species. PMID:27782188

  8. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. A report on Tasks 1 and 2 of Phase I. [Shallow land burial

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Cadwell, L.L.; Cushing, C.E. Jr.; Harty, R.; Kennedy, W.E. Jr.; Simmons, M.A.; Soldat, J.K.; Swartzman, B.

    1982-07-01

    The purpose of the work reported here was to evaluate the relevance of biotic transport to the assessment of impacts and licensing of low-level waste disposal sites. Available computer models and their recent applications at low-level waste disposal sites are considered. Biotic transport mechanisms and processes for both terrestrial and aquatic systems are presented with examples from existing waste disposal sites. Following a proposed system for ranking radionuclides by their potential for biotic transport, recommendations for completing Phase I research are presented. To evaluate the long-term importance of biotic transport at low-level waste sites, scenarios for biotic pathways and mechanisms need to be developed. Scenarios should begin with a description of the waste form and should include a description of biotic processes and mechanisms, approximations of the magnitude of materials transported, and a linkage to processes or mechanisms in existing models. Once these scenarios are in place, existing models could be used to evaluate impacts resulting from biotic transport and to assess the relevance to site selection and licensing of low-level waste disposal sites.

  9. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. A report on Tasks 1 and 2 of Phase I

    International Nuclear Information System (INIS)

    The purpose of the work reported here was to evaluate the relevance of biotic transport to the assessment of impacts and licensing of low-level waste disposal sites. Available computer models and their recent applications at low-level waste disposal sites are considered. Biotic transport mechanisms and processes for both terrestrial and aquatic systems are presented with examples from existing waste disposal sites. Following a proposed system for ranking radionuclides by their potential for biotic transport, recommendations for completing Phase I research are presented. To evaluate the long-term importance of biotic transport at low-level waste sites, scenarios for biotic pathways and mechanisms need to be developed. Scenarios should begin with a description of the waste form and should include a description of biotic processes and mechanisms, approximations of the magnitude of materials transported, and a linkage to processes or mechanisms in existing models. Once these scenarios are in place, existing models could be used to evaluate impacts resulting from biotic transport and to assess the relevance to site selection and licensing of low-level waste disposal sites

  10. Elucidation of the role of oleosin in off-flavour generation in soymeal through supercritical CO₂ and biotic elicitor treatments.

    Science.gov (United States)

    Kumari, Sweta; Memba, Lucia Joseph; Dahuja, Anil; Vinutha, T; Saha, Supradip; Sachdev, Archana

    2016-08-15

    Defatting soybean by sophisticated oil extraction method utilising supercritical CO2 resulted in a significant decrease in the residual phospholipids (PLs) compared with soymeal obtained by conventional cold percolation method utilising hexane as the extraction solvent. Interestingly, the levels of residual PLs showed a proportionate relationship with thiobarbituric acid (TBA) number, an indicator of lipid peroxidation responsible for off-flavour generation. Furthermore, two oleosins (18 and 24 kDa) were isolated from the oil bodies extracted from soybean seeds and positively characterised for phospholipase A2 (PLA2) activity, suggesting their plausible involvement in off-flavour generation in soymeal. The treatment of soybean seeds, before oil extraction, with different concentrations of biotic elicitors such as chitosan and jasmonic acid also significantly reduced the levels of residual PLs as well as the TBA number. The biotic elicitor treatment could thus prove to be an important strategy for the reduction of off-flavour in protein-rich soymeal. PMID:27006239

  11. Biotic Iron Precipitation in Sand Filtration Systems by Gallionella ferruginea: Morphology and content of Exopolymers

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Charlotte

    to rather high pH the aeration process will result in precipitation of iron(III)oxides in sand filters built for the purpose. An alternative method for iron precipitation is biological where bacteria are actively involved in the process (Mouchet 1992, Søgaard et al. 2000). The boundary between best......(III)-precipitates consist of poorly crystallised ferrihydrite. Normally the particle size of biotic precipitated ferrihydrite is biggest. However, the most important difference between biotic and abiotic iron precipitates is the existence of exopolymers produced by iron precipitating bacteria. Amorphous iron oxides...... are present in twisted structured stalks from Gallionella ferruginea or in sheaths from Leptothrix ochracea. The exopolymers are heavily encrusted with iron oxides probably as a result of a metabolic oxidation / precipitation process performed by iron precipitating bacteria. By help of these exopolymers...

  12. The Middle Eocene Climatic Optimum (MECO) in the high latitudes of the North Atlantic: Temperature and Biotic change

    OpenAIRE

    M. Polling; Houben, A. J. P.; Firth, J; Coxall, H.; J. S. Eldrett; Schouten, S.; Reichart, G.-J.; Brinkhuis, H.

    2011-01-01

    Increasingly high resolution isotope- and novel organic geochemical proxy records have revealed that the long-term cooling trend of the middle Eocene was interrupted by a warming phase designated the Middle Eocene Climatic Optimum (MECO). It is suggested to represent an increase in sea surface temperatures of about 4°C, lasting approximately 400 kyr. The temperature evolution of the MECO is notably well-documented in the Southern Ocean. However, records of temperature- and biotic change durin...

  13. A zone-specific fish-based biotic index as a management tool for a temperate estuary (Zeeschelde, Belgium)

    OpenAIRE

    Breine, J.J.; Quataert, P.; STEVENS, M.; Ollevier, F. P; Volckaert, F.A.M.J.; Maes, J

    2009-01-01

    Fish-based indices monitor changes in surface waters and are invaluable to summarise complex information on the environment (Harrison & Whitfield, 2004). A Zone-specific fishbased multimetric Estuarine index of Biotic Integrity (Z-EBI) was developed based on a 13 year time series of fish surveys from the Zeeschelde estuary (Belgium). Sites were preclassified using indicators of anthropogenic impact. Metrics showing a monotone response with pressure classes were selected for further analysis. ...

  14. A Zone-Specific Fish-Based Biotic Index as a Management Tool for the Zeeschelde Estuary (Belgium)

    OpenAIRE

    Breine, Jan; Quataert, Paul; Stevens, Maarten; Ollevier, Frans; Volckaert, Filip; VAN DEN BERGH Ericia; MAES JOACHIM

    2010-01-01

    Fish-based indices monitor changes in surface waters and are a valuable aid in communication by summarising complex information about the environment (Harrison and Whitfield, 2004). A zone-specific fish-based multimetric estuarine index of biotic integrity (Z-EBI) was developed based on a 13 year time series of fish surveys from the Zeeschelde estuary (Belgium). Sites were pre-classified using indicators of anthropogenic impact. Metrics showing a monotone response with pressure cl...

  15. Geomicrobiological perspective on the pattern and causes of the 5-million-year Permo/Triassic biotic crisis

    Institute of Scientific and Technical Information of China (English)

    Shucheng XIE; Yongbiao WANG

    2011-01-01

    The pattern and causes of Permo/Triassic biotic crisis were mainly documented by faunal and terrestrial plant records. We reviewed herein the geomicrobiological perspective on this issue based on the reported cyanobacterial record. Two episodic cyanobacterial blooms were observed to couple with carbon isotope excursions and faunal mass extinction at Meishan section, suggestive of the presence of at least two episodic biotic crises across the Permian-Triassic boundary (PTB). The two episodes of cyanobacterial blooms, carbon isotope excursions and faunal mass extinction were, respectively, identified in several sections of the world, inferring the presence of two global changes across the PTB. Close associations among the three records (cyanobacterial bloom, shift in carbon isotope composition, and faunal extinction) were subsequently observed in three intervals in the Early Triassic, the protracted recovery period as previously thought, inferring the occurrence of more episodes of global changes.Spatiotemporal association of cyanobacterial blooms with volcanic materials in South China, and probably in South-east Asia, infers their causal relationship. Volcanism is believed to trigger the biotic crisis in several ways and to cause the close association among microbial blooms, the carbon isotope excursions and faunal mass extinctions in four intervals from the latest Permian to the Early Triassic.The major episodes of the well-known Siberian flood eruption are proposed to be responsible for the extinctions in the Early Triassic, but their synchronicity with the endPermian extinction awaits more precise dating data to confirm. Geomicrobial records are thus suggestive of a long-term episodic biotic crisis (at least four episodes)lasting from the latest Permian to the end of the Early Triassic, induced by the global volcanic eruptions and sea level changes during Pangea formation.

  16. QTLs for Tolerance of Drought and Breeding for Tolerance of Abiotic and Biotic Stress: An Integrated Approach

    OpenAIRE

    Shalabh Dixit; B Emma Huang; Ma Teresa Sta Cruz; Maturan, Paul T; Jhon Christian E Ontoy; Arvind Kumar

    2014-01-01

    BACKGROUND: The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast. METHODOLOGY: A blast-tole...

  17. Combined Effects of Soil Biotic and Abiotic Factors, Influenced by Sewage Sludge Incorporation, on the Incidence of Corn Stalk Rot

    OpenAIRE

    Ghini, Raquel; Fortes, Nara Lúcia Perondi; Juan A Navas-Cortés; Silva, Carlos Alberto; Bettiol, Wagner

    2016-01-01

    The objectives of this study were to evaluate the combined effects of soil biotic and abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two types of sewage sludge into soil in a 5-years field assay under tropical conditions and to predict the effects of these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sew...

  18. Selected Abiotic and Biotic Environmental Stress Factors Affecting Two Economically Important Sugarcane Stalk Boring Pests in the United States

    OpenAIRE

    Showler, Allan T.

    2016-01-01

    Sugarcane, Saccharum spp., in the United States is attacked by a number of different arthropod pests. The most serious among those pests are two stalk boring moths in the Family Crambidae: the sugarcane borer, Diatraea saccharalis (F.), and the Mexican rice borer, Eoreuma loftini (Dyar). The two species are affected by abiotic and biotic environmental stress factors. Water deficit and excessive soil nitrogen alter physical and physiochemical aspects of the sugarcane plant that make the crop i...

  19. Relative Importance of Biotic and Abiotic Forces on the Composition and Dynamics of a Soft-Sediment Intertidal Community.

    Science.gov (United States)

    Gerwing, Travis G; Drolet, David; Hamilton, Diana J; Barbeau, Myriam A

    2016-01-01

    Top-down, bottom-up, middle-out and abiotic factors are usually viewed as main forces structuring biological communities, although assessment of their relative importance, in a single study, is rarely done. We quantified, using multivariate methods, associations between abiotic and biotic (top-down, bottom-up and middle-out) variables and infaunal population/community variation on intertidal mudflats in the Bay of Fundy, Canada, over two years. Our analysis indicated that spatial structural factors like site and plot accounted for most of the community and population variation. Although we observed a significant relationship between the community/populations and the biotic and abiotic variables, most were of minor importance relative to the structural factors. We suggest that community and population structure were relatively uncoupled from the structuring influences of biotic and abiotic factors in this system because of high concentrations of resources that sustain high densities of infauna and limit exploitative competition. Furthermore, we hypothesize that the infaunal community primarily reflects stochastic spatial events, namely a "first come, first served" process.

  20. Rice Mitogen-activated Protein Kinase Gene Family and Its Role in Biotic and Abiotic Stress Response

    Institute of Scientific and Technical Information of China (English)

    Jai S. Rohila; Yinong Yang

    2007-01-01

    The mitogen-activated protein kinase (MARK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that the MAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stress responses. To date, a total of 17 MARK genes have been identified from the rice genome. Expression profiling, biochemical characterization and/or functional analysis were carried out with many members of the rice MARK gene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogenetic relationship and classification of rice MARK genes are discussed to facilitate a simple nomenclature and standard annotation of the rice MARK gene family. Functional data relating to biotic and abiotic stress responses are reviewed for each MARK group and show that despite overlapping in functionality, there is a certain level of functional specificity among different rice MAP kinases. The future challenges are to functionally characterize each MARK, to identify their downstream substrates and upstream kinases, and to genetically manipulate the MARK signaling pathway in rice crops for the improvement of agronomically important traits.

  1. Field evaluation of durum wheat landraces for prevailing abiotic and biotic stresses in highland rainfed regions of Iran

    Institute of Scientific and Technical Information of China (English)

    Reza Mohammadi; Behzad Sadeghzadeh; Hasan Ahmadi; Nowzar Bahrami; Ahmed Amri

    2015-01-01

    Biotic and abiotic stresses are major limiting factors for high crop productivity worldwide. A landrace collection consisting of 380 durum wheat (Triticum turgidum L. var. durum) entries originating in several countries along with four check varieties were evaluated for biotic stresses:yellow rust (Puccinia stri formis Westendorf f. sp. tritici) and wheat stem sawfly (WSS) Cephus cinctus Norton (Hymenoptera:Cephidae), and abiotic stresses:cold and drought. The main objectives were to (i) quantify phenotypic diversity and identify variation in the durum wheat landraces for the different stresses and (ii) characterize the agronomic profiles of landraces in reaction to the stresses. Significant changes in reactions of landraces to stresses were observed. Landraces resistant to each stress were identified and agronomically characterized. Percentage reduction due to the stresses varied from 11.4% (yellow rust) to 21.6% (cold stress) for 1000-kernel weight (TKW) and from 19.9 (yellow rust) to 91.9%(cold stress) for grain yield. Landraces from Asia and Europe showed enhanced genetic potential for both grain yield and cold tolerance under highland rainfed conditions of Iran. The findings showed that TKW and yield productivity could be used to assess the response of durum wheat landraces to different stresses. In conclusion, landraces showed high levels of resistance to both biotic and abiotic stresses, and selected landraces can serve in durum wheat breeding for adaptation to cold and drought-prone environments.

  2. Field evaluation of durum wheat landraces for prevailing abiotic and biotic stresses in highland rainfed regions of Iran

    Institute of Scientific and Technical Information of China (English)

    Reza; Mohammadi; Behzad; Sadeghzadeh; Hasan; Ahmadi; Nowzar; Bahrami; Ahmed; Amri

    2015-01-01

    Biotic and abiotic stresses are major limiting factors for high crop productivity worldwide. A landrace collection consisting of 380 durum wheat(Triticum turgidum L. var. durum) entries originating in several countries along with four check varieties were evaluated for biotic stresses:yellow rust(Puccinia striiformis Westendorf f. sp. tritici) and wheat stem sawfly(WSS) Cephus cinctus Norton(Hymenoptera: Cephidae), and abiotic stresses: cold and drought. The main objectives were to(i) quantify phenotypic diversity and identify variation in the durum wheat landraces for the different stresses and(ii) characterize the agronomic profiles of landraces in reaction to the stresses. Significant changes in reactions of landraces to stresses were observed.Landraces resistant to each stress were identified and agronomically characterized.Percentage reduction due to the stresses varied from 11.4%(yellow rust) to 21.6%(cold stress) for 1000-kernel weight(TKW) and from 19.9(yellow rust) to 91.9%(cold stress) for grain yield. Landraces from Asia and Europe showed enhanced genetic potential for both grain yield and cold tolerance under highland rainfed conditions of Iran. The findings showed that TKW and yield productivity could be used to assess the response of durum wheat landraces to different stresses. In conclusion, landraces showed high levels of resistance to both biotic and abiotic stresses, and selected landraces can serve in durum wheat breeding for adaptation to cold and drought-prone environments.

  3. MANAGEMENT OF THE WHITE-CLAWED CRAYFISH (AUSTROPOTAMOBIUS PALLIPES IN WESTERN FRANCE: ABIOTIC AND BIOTIC FACTORS STUDY

    Directory of Open Access Journals (Sweden)

    TROUILHE M. C.

    2003-04-01

    Full Text Available In France, the distribution of the white-clawed crayfish, Austropotamobius pallipes (Lereboullet, 1858, is restricted, fragmented and mainly located in headwaters. To preserve this indigenous species, it is necessary to characterize its ecological requirements (water and habitat quality. With this aim in view, a two-year study is being conducted in the Deux-Sèvres department (Western France since November 2002. Nine brooks from four different catchments are monitored regularly; eight of the nine brooks harbour whiteclawed crayfish populations. Two sampling sites are surveyed per brook, the first being where the crayfish population is located and the second 2 to 3 km downstream. Physicochemical parameters (18 are measured twice monthly and biotic factors are estimated twice yearly. In this study, the I.B.G.N. (Indice Biologique Global Normalisé protocol based on the determination of macroinvertebrates was used as a biotic index of biological water quality. Results of this preliminary study on two brooks (Thouet and Verdonnière show that physico-chemical and biological data considered separately do not provide reliable information about A. pallipes ecological requirements. However, the use of multivariate analyses (Principal Component Analysis to combine abiotic and biotic factors highlights a good correlation between these parameters. Organic matter appears to be a better discriminating factor than mineral matter affecting presence or absence of the whiteclawed crayfish.

  4. Using thermodynamics to assess biotic and abiotic impediments to root water uptake

    Science.gov (United States)

    Bechmann, Marcel; Hildebrandt, Anke; Kleidon, Axel

    2016-04-01

    Root water uptake has been the subject of extensive research, dealing with understanding the processes limiting transpiration and understanding strategies of plants to avoid water stress. Many of those studies use models of water flow from the soil through the plant into the atmosphere to learn about biotic and abiotic factors affecting plant water relations. One important question in this context is to identify those processes that are most limiting to water transport, and specifically whether these processes lie within the plant or the soil? Here, we propose to use a thermodynamic formulation of root water uptake to answer this question. The method allows us to separate the energy exported at the root collar into a sum of energy fluxes related to all processes along the flow path, notably including the effect of increasing water retention in drier soils. Evaluation of the several contributions allows us to identify and rank the processes by how much these impede water flow from the soil to the atmosphere. The application of this approach to a complex 3-dimensional root water uptake model reveals insights on the role of root versus soil resistances to limit water flow. We investigate the efficiency of root water uptake in an ensemble of root systems with varying root hydraulic properties. While root morphology is kept the same, root radial and axial resistances are artificially varied. Starting with entirely young systems (uptake roots, high radial, low axial conductance) we increasingly add older roots (transport roots, high axial, low radial conductance) to improve transport within root systems. This yields a range of root hydraulic architectures, where the extremes are limited either by radial uptake capacity or low capacity to transport water along the root system. We model root water uptake in this range of root systems with a 3-dimensional root water uptake model in two different soils, applying constant flux boundary conditions in a dry down experiment and

  5. An Index of Biotic Integrity for shallow streams of the Hondo River basin, Yucatan Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Schmitter-Soto, Juan J., E-mail: jschmitt@ecosur.mx; Ruiz-Cauich, Lissie E.; Herrera, Roberto L.; Gonzalez-Solis, David

    2011-01-15

    An Index of Biotic Integrity (IBI) is proposed, based on the fish communities and populations in streams of the Hondo River basin, Mexico-Belize. Freshwater environments in this area are threatened by exotic fishes, eutrophication, and pesticide pollution, among other problems. This IBI should allow to identify the most vulnerable sites and eventually guide rehabilitation efforts. Data on composition, structure, and function of fish communities were evaluated. Twenty-three sites in the Mexican part of the basin were explored; a stratified sample of 13 sites was used to design the IBI, and the rest were used to test and refine the index. Thirty-four candidate indicator metrics were scanned for their correlation with an index of water and habitat quality (IWHQ), as well as for the possible influence of stream width and altitude or distance to the Hondo River mainstem. Twelve variables were selected to constitute the IBI: relative abundances of Astyanax aeneus, 'Cichlasoma' urophthalmus, Poecilia mexicana, Poecilia sp. (a new species, probably endemic to the upper Hondo River basin), Xiphophorus hellerii, and X. maculatus; relative abundances of bentholimnetic, herbivore, and sensitive species; percentage of native and tolerant species; and Pielou's evenness index. Most of the sites have a low-medium quality and integrity, showing impact due to partial channelization or to suboptimal water quality, reflected in scarcity or absence of sensitive species, frequent excess of tolerant species, occasional presence of exotics, dominance of herbivores (perhaps due to proliferation of filamentous algae), or dominance of the opportunistic species P. mexicana. The streams with better water and habitat quality are those farthest away from the river mainstem, probably because of lower human population and economical production. - Research Highlights: {yields} An Index of Biotic Integrity based on fishes is proposed for streams of the Hondo River basin. {yields

  6. Climatic - biotic continuum - a few examples from the Pennsylvanian - Early Permian

    Science.gov (United States)

    Kossovaya, O.

    2012-04-01

    The subdivision of the Pennsylvanian Epoch based on the great difference in the biota composition and evolution. Extensive grows of the continental ice sheets near the Mississippian-Pennsylvanian (mid-Carboniferous) boundary expanded a large area comparative with Pleistocene (106 km2) (Crowley and Baum, 1991). One of the possible models is the restructuring of the oceanic circulation patterns (Saltzman, 2003). The Mid-Carboniferous boundary in the Urals demonstrates regional inconformity trigged by strong fall of the basin depth. Possibly following circulation was the reason of the positive carbon and isotope shift documented in the one of the Askyn key section of the South Urals. Renovated biota appeared far above the unconformity (Brand, Bruckschen, 2002, Kossovaya, 2009, 2010). The next level of biota replacement was found near by Mid-Pennsylvanian boundary. The isotope and microfacies fluctuations are traced in the Late Myachkovian -Kasimovian transitional in the "Kasimov quarry. The top of the Domodedovo Fm. is marked by double paleosoil profile emphasized by Microcodium crust (Leontiev, Kossovaya, 2011) and is characterized by δ 13C negative shift from +2,2 ‰ (sample Ks-23) up to - 4,4‰ (sample Ks -24) and possibly is reinforce by the presence of Microcodium. The extinction of the most of colonial rugosa (Petalaxidae) at this level in the Moscow Basin together with strong restriction of diversity of the other warm -water organisms is considered as biotic event which abiotic affinities are still not clear. The basin level fall is documented by a few erosion surfaces both in the Domodedovo and Peski Fms (Uppermost Myachkovian). Diachronic extinction embraced Perski interval. Data on stable isotope allows to propose the El-Nino scenario fro the first phase of the fauna replacement. Following diminishing of the carbon is indirectly relevant by change of carbonate to clay sedimentation at the beginning of the Voskresensk Fm. It is confirmed by low value of

  7. Abiotic and biotic controls of cryptobenthic fish assemblages across a Caribbean seascape

    Science.gov (United States)

    Harborne, A. R.; Jelks, H. L.; Smith-Vaniz, W. F.; Rocha, L. A.

    2012-12-01

    The majority of fish studies on coral reefs consider only non-cryptic species and, despite their functional importance, data on cryptic species are scarce. This study investigates inter-habitat variation in Caribbean cryptobenthic fishes by re-analysing a comprehensive data set from 58 rotenone stations around Buck Island, U.S. Virgin Islands. Boosted regression trees were used to associate the density and diversity of non-piscivorous cryptobenthic fishes, both in the entire data set and on reef habitats alone, with 14 abiotic and biotic variables. The study also models the habitat requirements of the three commonest species. Dead coral cover was the first or second most important variable in six of the eight models constructed. For example, within the entire data set, the number of species and total fish density increased approximately linearly with increasing dead coral cover. Dead coral was also important in multivariate analyses that discriminated 10 assemblages within the entire data set. On reef habitats, the number of species and total fish density increased dramatically when dead coral exceeded ~55 %. Live coral cover was typically less important for explaining variance in fish assemblages than dead coral, but live corals were important for maintaining high fish diversity. Coral species favoured by cryptobenthic species may be particularly susceptible to mortality, but dead coral may also provide abundant food and shelter for many fishes. Piscivore density was a key variable in the final models, but typically increased with increasing cryptobenthic fish diversity and abundance, suggesting both groups of fishes are responding to the same habitat variables. The density of territorial damselfishes reduced the number of cryptobenthic fish species on reef habitats. Finally, habitats delineated by standard remote sensing techniques supported distinct cryptobenthic fish assemblages, suggesting that such maps can be used as surrogates of general patterns of cryptic

  8. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  9. Biotic, abiotic, and management controls on methanol exchange above a temperate mountain grassland

    Science.gov (United States)

    HöRtnagl, Lukas; Bamberger, Ines; Graus, Martin; Ruuskanen, Taina M.; Schnitzhofer, Ralf; Müller, Markus; Hansel, Armin; Wohlfahrt, Georg

    2011-09-01

    Methanol (CH3OH) fluxes were quantified above a managed temperate mountain grassland in the Stubai Valley (Tyrol, Austria) during the growing seasons 2008 and 2009. Half-hourly methanol fluxes were calculated by means of the virtual disjunct eddy covariance (vDEC) method using three-dimensional wind data from a sonic anemometer and methanol volume mixing ratios measured with a proton transfer reaction mass spectrometer (PTR-MS). During (undisturbed) mature and growing phases, methanol fluxes exhibited a clear diurnal cycle with close-to-zero fluxes during nighttime and emissions, up to 10 nmol m-2 s-1, which followed the diurnal course of radiation and air temperature. Management events were found to represent the largest perturbations of methanol exchange at the studied grassland ecosystem: Peak emissions of 144.5 nmol m-2 s-1 were found during/after cutting of the meadow, reflecting the wounding of the plant material and subsequent depletion of the leaf internal aqueous methanol pools. After the application of organic fertilizer, elevated methanol emissions of up to 26.7 nmol m-2 s-1 were observed, likely reflecting enhanced microbial activity associated with the applied manure. Simple and multiple linear regression analyses revealed air temperature and radiation as the dominant abiotic controls, jointly explaining 47% and 70% of the variability in half-hourly and daily methanol fluxes. In contrast to published leaf-level laboratory studies, the surface conductance and the daily change in the amount of green plant area, used as ecosystem-scale proxies for stomatal conductance and growth, respectively, were found to exert only minor biotic controls on methanol exchange.

  10. Geographic variation of floral traits in Nicotiana glauca : Relationships with biotic and abiotic factors

    Science.gov (United States)

    Nattero, Julieta; Sérsic, Alicia N.; Cocucci, Andrea A.

    2011-09-01

    Geographic pattern of phenotypic variation can appear in a clinal or a mosaic fashion and can evidence adaptive or non-adaptive variation. To shed light on the mechanisms underlying this variation, we studied the relationships between geographic variation of floral traits and both biotic and abiotic factors of the hummingbird-pollinated plant, Nicotiana glauca, across its natural range. We obtained floral measures of 38 populations from an area about 1600 km long and 1050 km wide and an altitude range from 7 to over 3400 m. We used a MANOVA to detect between-population differentiations in flower traits and a DFA to determine the traits that best discriminate between populations. To test for associations between floral traits and climatic variables we used correlation analysis. We explored any possible distance-based pattern of variation (either geographic or altitudinal) in floral traits or bill length of pollinators using Mantel tests. Finally, we used a multiple regression to analyze simultaneously the effects and relative importance of abiotic predictor variables and bill length on corolla length. We found a high variation in flower traits among populations. Morphometric traits were the ones that best discriminated across populations. There was a clinal pattern of floral phenotypic variation explained by climatic factors. Differences in floral phenotypic distances were structured by altitudinal distances but not by geographic distances. Bill length of the hummingbird pollinators was structured both by altitudinal and geographic distances. Differences in bill length of hummingbird pollinators explained differences in corolla length across populations. Our findings support the assumption of flower evolution at a broad geographic scale. Floral traits seem to be structured not only by altitude but also by climatic factors.

  11. Biotic and abiotic degradation of CL-20 and RDX in soils.

    Science.gov (United States)

    Crocker, Fiona H; Thompson, Karen T; Szecsody, James E; Fredrickson, Herbert L

    2005-01-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 CL-20 degradation rates (0.068 CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils. PMID:16275722

  12. Biotic and Abiotic Degradation of CL-20 and RDX in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Fiona H.; Thompson, Karen T.; Szecsody, Jim E.; Fredrickson, Herbert L.

    2005-11-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d-1) and biologically attenuated soil controls (0.003 biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  13. 1983 biotic studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    A 27.5-square-mile portion of Yucca Mountain on and adjacent to the US Department of Energy's Nevada Test Site, Nye County, Nevada, is being considered as a potential location for a national high-level radioactive waste repository. Preliminary geologic and environmental characterization studies have been supported and more extensive studies are planned. Goals of the biotic surveys were to identify species of concern, describe major floral and faunal associations, and assess possible impacts of characterization and operational activities. Floral associations observed were characteristic of either the Mojave or Transition deserts that are widely distributed in southern Nevada. Diversity, in terms of total number of perennial species represented, was higher in Transition Desert associations than in Mojave Desert associations. Canopy coverage of associations fell within the range of reported values, but tended to be more homogeneous than expected. Annual vegetation was found to be diverse only where the frequency of Bromus rubens was low. Ground cover of winter annuals, especially annual grasses, was observed to be very dense in 1983. The threat of range fires on Yucca Mountain was high because of the increased amount of dead litter and the decreased amount of bare ground. Significant variability was observed in the distribution and relative abundance of several small mammal species between 1982 and 1983. Desert tortoise were found in low densities comparable with those observed in 1982. Evidence of recent activity, which included sighting of two live tortoises, was found in five areas on Yucca Mountain. Two of these areas have a high probability of sustaining significant impacts if a repository is constructed. Regeneration of aboveground shrub parts from root crowns was observed in areas damaged in 1982 by seismic testing with Vibroseis machines. These areas, which had been cleared to bare dirt by passage of the machines, also supported lush stands of winter annuals

  14. Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil.

    Science.gov (United States)

    Aeppli, Christoph; Nelson, Robert K; Radović, Jagoš R; Carmichael, Catherine A; Valentine, David L; Reddy, Christopher M

    2014-06-17

    Petroleum biomarkers such as hopanoids, steranes, and triaromatic steroids (TAS) are commonly used to investigate the source and fate of petroleum hydrocarbons in the environment based on the premise that these compounds are resistant to biotic and abiotic degradation. To test the validity of this premise in the context of the Deepwater Horizon disaster, we investigated changes to these biomarkers as induced by natural weathering of crude oil discharged from the Macondo Well (MW). For surface slicks collected from May to June in 2010, and other oiled samples collected on beaches in the northern Gulf of Mexico from July 2010 until August 2012, hopanoids with up to 31 carbons as well as steranes and diasteranes were not systematically affected by weathering processes. In contrast, TAS and C32- to C35-homohopanes were depleted in all samples relative to 17α(H),21β(H)-hopane (C30-hopane). Compared to MW oil, C35-homohopanes and TAS were depleted by 18 ± 10% and 36 ± 20%, respectively, in surface slicks collected from May to June 2010, and by 37 ± 9% and 67 ± 10%, respectively, in samples collected along beaches from April 2011 through August 2012. Based on patterns of relative losses of individual compounds, we hypothesize biodegradation and photooxidation as main degradation processes for homohopanes and TAS, respectively. This study highlights that (i) TAS and homohopanes can be degraded within several years following an oil spill, (ii) the use of homohopanes and TAS for oil spill forensics must account for degradation, and (iii) these compounds provide a window to parse biodegradation and photooxidation during advanced stages of oil weathering.

  15. Biotic and Sedimentologic Signals Associated with Tempestite Deposition from Baffin Bay, Texas

    Science.gov (United States)

    Van Nieuwenhuise, D. S.

    2014-12-01

    In efforts to determine hurricane frequency prior to historical records, the often used model of counting presumed washover fans as coarse-grained hurricane deposits that interfinger with fine-grained, quiet, lagoon sediments may be oversimplified. The complexities of hurricane depositional events versus the usual dynamic sedimentological processes of barrier island complexes often makes it difficult to distinguish between expected and typical migrating coarse-grained facies from true hurricane deposits. To avoid some of this potential confusion and to better recognize the frequency of strong hurricane events, it is suggested that studies be focused further inland than the washover fans and that in addition to sedimentological indicators, they include biotic and chemical discriminators as well. These results are part of a broader study examining hurricane deposition along the Texas coast. The focus of this study is on slowly accumulating algal mats near Baffin Bay, Texas, that are punctuated by known hurricane deposits. This marginal lagoonal setting is more than 16 miles away from the Padre Island shorefront. Two cores were taken in 1974 that captured sediments from Hurricane Carla (1970) and Hurricane Beulah (1967). Algal mat depositional rates are on the order of 1.25 cm per year whereas the hurricane sediments are on the order of 45 cm per event. Sediments display flood and ebb surge stages for each event. Additional cores in other parts of the coast have similar sediment accumulation rates. In general, periods of relatively quiet deposition are dominated by Cyprideis ovata and Ammonia becarrii which can tolerate the conditions of these euryhaline and algal-floored ponds. In contrast, hurricane deposits show clear evidence of additional bay and shallow marine assemblages along with coarse-grained sediments, shell and shell fragments, and significant amounts of mud settling after the retreat of the storm surge.

  16. A comparison of survey methods to evaluate macrophyte index of biotic integrity performance in Minnesota lakes

    Science.gov (United States)

    Vondracek, Bruce C.; Koch, Justine D.; Beck, Marcus W.

    2014-01-01

    Aquatic macrophytes shape trophic web dynamics, provide food and refuge for macroinvertebrates and fish, and increase nutrient retention, sediment stabilization, and water clarity. Macrophytes are well-suited as indicators of ecological health because they are immobile, relatively easy to sample and identify, and respond to anthropogenic disturbance on an ecological time scale. Aquatic plant monitoring programs can provide valuable information to water resource managers, especially in conjunction with macrophyte-based indices of biotic integrity (IBI). However, there are several current sampling designs and the precision of IBI scores has not been evaluated across different surveys. We evaluated the performance of the Minnesota macrophyte-based IBI for two survey designs; a point intercept (PI) survey and a belt transect (BT) survey. PI surveys are time intensive, especially on large lakes, whereas BT are less time intensive and have been used historically in Minnesota. Our objectives were to compare the PI surveys with BT surveys on the same lakes, and to modify the BT survey (MT survey) to improve information obtained from BT surveys. BT surveys consistently overestimated IBI scores compared to the PI method (t = 6.268, df = 60, p < 0.001). Overall IBI scores calculated from MT surveys differed significantly from PI scores, but on average, MT surveys predicted scores only 3% lower than PI scores. Implementation of the Minnesota macrophyte-based IBI through the adoption of the MT survey approach would improve sampling efficiency and enable widespread documentation of the effects of landscape change, shifts in hydrologic regimes, and other anthropogenic activities on the integrity of lacustrine systems.

  17. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  18. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    Science.gov (United States)

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems.

  19. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    Institute of Scientific and Technical Information of China (English)

    Liton Majumdar; Ankan Das; Sandip K. Chakrabarti; Sonali Chakrabarti

    2012-01-01

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge about the rate coefficients of various reactions which take place in the interstellar medium and molecular clouds.Some theoretical models of rate coefficients do exist in the literature for computing abundances of complex pre-biotic molecules.So far these have been used to study the abundances of these molecules in space.However,in order to obtain more accurate final compositions in these media,we have calculated the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory.We use these rates inside our hydro-chemical model to examine the chemical evolution and final abundances of pre-biotic species during the collapsing phase of a proto-star.We find that a significant amount of various pre-biotic molecules could be produced during the collapse phase of a proto-star.We thoroughly study the formation of these molecules via successive neutral-neutral and radical-radical/radicalmolecular reactions.We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud.We compare the formation of adenine in interstellar space using our rate-coefficients and using those obtained from existing theoretical models.Formation routes of the pre-biotic molecules are found to be highly dependent on the abundances of the reactive species and the rate coefficients involved in the reactions.The presence of grains strongly affects the abundances of the gas phase species.We also carry out a comparative study between different pathways available for the synthesis of adenine,alanine,glycine and other molecules considered in our network.Despite the huge abundances of the neutral reactive species,production of adenine is found to be strongly dominated by the radical-radical/radical-molecular reaction pathways.If all the

  20. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    Science.gov (United States)

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems. PMID:27093118

  1. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    International Nuclear Information System (INIS)

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge about the rate coefficients of various reactions which take place in the interstellar medium and molecular clouds. Some theoretical models of rate coefficients do exist in the literature for computing abundances of complex pre-biotic molecules. So far these have been used to study the abundances of these molecules in space. However, in order to obtain more accurate final compositions in these media, we have calculated the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory. We use these rates inside our hydro-chemical model to examine the chemical evolution and final abundances of pre-biotic species during the collapsing phase of a proto-star. We find that a significant amount of various pre-biotic molecules could be produced during the collapse phase of a proto-star. We thoroughly study the formation of these molecules via successive neutral-neutral and radical-radical/radical-molecular reactions. We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud. We compare the formation of adenine in interstellar space using our rate-coefficients and using those obtained from existing theoretical models. Formation routes of the pre-biotic molecules are found to be highly dependent on the abundances of the reactive species and the rate coefficients involved in the reactions. The presence of grains strongly affects the abundances of the gas phase species. We also carry out a comparative study between different pathways available for the synthesis of adenine, alanine, glycine and other molecules considered in our network. Despite the huge abundances of the neutral reactive species, production of adenine is found to be strongly dominated by the radical-radical/radical-molecular reaction pathways

  2. Differences in Competitive Ability between Plants from Nonnative and Native Populations of a Tropical Invader Relates to Adaptive Responses in Abiotic and Biotic Environments

    OpenAIRE

    Zhi-Yong Liao; Ru Zhang; Gregor F Barclay; Yu-Long Feng

    2013-01-01

    The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific ...

  3. Opportunities and challenges of indigenous biotic weather forecasting among the Borena herders of southern Ethiopia.

    Science.gov (United States)

    Ayal, Desalegn Yayeh; Desta, Solomon; Gebru, Getachew; Kinyangi, James; Recha, John; Radeny, Maren

    2015-01-01

    The practical utilization of available modern as well as traditional weather forecasting systems builds herders' resiliency capacity to climatic shocks. The precision and reliability of the forecasting system determines its creditability and acceptance by the users to be proactive in the decisions they make based on the forecasted information. It has been postulated that traditional weather forecasting systems are becoming less reliable due to repeated faulty forecasts. The study assesses the current status of the Borana traditional weather forecasting system and how traditional experts make weather forecasts based on biotic indicators such as intestinal readings, changes in plant and animal body languages. Questionnaire survey, field observations, focus group discussions and interviews with relevant key informants were employed to obtain data. Collected field data was compared with National Metrological Service Agency instrumental data for consistency. Results reveal that herders made short term weather forecasts using intestinal readings, and observed changes in plant and animal body languages. The study shows the extent how public confidence in the accuracy of indigenous weather forecasting skills has been gradually eroded overtime due to faulty forecasts. The precision and credibility of the traditional weather forecast steadily declined and led to repeated faulty predictions. Poor documentation, oral based knowledge transfer system, influence of religion and modern education, aging and extinction of traditional experts were identified as the major causes undermining the vitality of traditional climate forecast. Traditional weather foresting knowledge and skill could have some utility and also serve as a starting point to scientifically study the relationship between various signs and implied climatic events. This article recommends before traditional Borana weather forecasting system completely disappears, a remedial action should be carried out to rescue this

  4. Coral Skeleton Density Banding: Biotic Response to Changes in Sea Surface Temperature

    Science.gov (United States)

    Hill, C. A.; Sivaguru, M.; Fried, G. A.; Fouke, B. W.

    2010-12-01

    Density bands in the CaCO3 (aragonite) skeleton of scleractinian corals are commonly used as chronometers, where crystalline couplets of high and low density bands represent the span of one year. Isotopic analysis of these density bands provides a sensitive reconstructive tool for paleoclimatology and paleoecology. However, the detailed biotic mechanisms controlling coral skeleton aragonite nucleation and crystallization events and resulting skeletal growth rate remain uncertain. The coral tissue organic matrix, composed of macromolecules secreted by the calicoblastic ectoderm, is closely associated with skeletal precipitation and is itself incorporated into the skeleton. We postulate that density banding is primarily controlled by changes in the rate of aragonite crystal precipitation mediated by the coral holobiont response to changes in sea surface temperature (SST). To test this hypothesis, data were collected from coral skeleton-tissue biopsies (2.5 cm in diameter) extracted from four species of Montastraea growing on the fringing reef tract of Curacao, Netherlands Antilles. Annual mean variation in SST on Curacao range from 29o in mid-September to 26o C in late February. Samples were collected at strategic time periods spanning the 3o C annual variations in SST. Our nanometer-scale optical analyses of skeletal morphology have revealed consistent changes between high- and low-skeletal density bands, resulting in an 11% increase in the volume of aragonite precipitated in high-density skeletal bands. The re-localization and/or change in abundance of mucus, carbonic anhydrase (a molecule that catalyzes the hydration of carbon dioxide), calmodulin (a calcium-binding protein) and the change in density of gastrodermal symbiotic dinoflagellates has permitted estimates of seasonally-fluctuating carbon allocation by the coral holobiont in response to changing environmental conditions. This digital reconstruction of over 2000 images of one-micron-thick histological

  5. Opportunities and challenges of indigenous biotic weather forecasting among the Borena herders of southern Ethiopia.

    Science.gov (United States)

    Ayal, Desalegn Yayeh; Desta, Solomon; Gebru, Getachew; Kinyangi, James; Recha, John; Radeny, Maren

    2015-01-01

    The practical utilization of available modern as well as traditional weather forecasting systems builds herders' resiliency capacity to climatic shocks. The precision and reliability of the forecasting system determines its creditability and acceptance by the users to be proactive in the decisions they make based on the forecasted information. It has been postulated that traditional weather forecasting systems are becoming less reliable due to repeated faulty forecasts. The study assesses the current status of the Borana traditional weather forecasting system and how traditional experts make weather forecasts based on biotic indicators such as intestinal readings, changes in plant and animal body languages. Questionnaire survey, field observations, focus group discussions and interviews with relevant key informants were employed to obtain data. Collected field data was compared with National Metrological Service Agency instrumental data for consistency. Results reveal that herders made short term weather forecasts using intestinal readings, and observed changes in plant and animal body languages. The study shows the extent how public confidence in the accuracy of indigenous weather forecasting skills has been gradually eroded overtime due to faulty forecasts. The precision and credibility of the traditional weather forecast steadily declined and led to repeated faulty predictions. Poor documentation, oral based knowledge transfer system, influence of religion and modern education, aging and extinction of traditional experts were identified as the major causes undermining the vitality of traditional climate forecast. Traditional weather foresting knowledge and skill could have some utility and also serve as a starting point to scientifically study the relationship between various signs and implied climatic events. This article recommends before traditional Borana weather forecasting system completely disappears, a remedial action should be carried out to rescue this

  6. Study of Chemical Treatment Combined with Radiation to Prepare Biotic Elicitor for Utilization in Agriculture

    International Nuclear Information System (INIS)

    Chitosan was prepared from shrimp shell (alpha chitosan) and from squid pen (beta chitosan) with degree of deacetylation of about 70%. Degradation of chitosan in flake form by combined treatment with H2O2 and gamma Co-60 radiation was carried out. Results showed that combined treatment was highly effective for degradation of chitosan to obtain low molecular weight of 1-2 × 105. Oligochitosan was prepared by irradiation of chitosan solution of 50g/l (5%, w/v). The dose required for oligochitosan with water soluble content of more than 70% was of 32kGy and 48kGy for beta and alpha chitosan, respectively. Synergic effect of degradation of chitosan in solution with H2O2 and gamma Co-60 radiation was also investigated. The dose to obtain oligochitosan was reduced from 32kGy to 4kGy for beta chitosan and from 48kGy to 8kGy for alpha chitosan. The elicitation and growth promotion effect of oligochiotsan for sugarcane and rice were investigated. Results showed that oligochitosan with water soluble content of 70-80% (Mw~5,000-10,000) exhibited the most effective elicitation and growth promotion for plant. The optimum oligochitosan concentration by spraying was of 30 and 15ppm for sugarcane and rice, respectively. The disease index of Ustilgo scitaminea and Collectotrichum falcatum on sugarcane were reduced to 44.5 and 72.3% compared to control (100%). The productivity of sugarcane was increased about 13% (8tons/ha). The disease index of Pyricularia grisea on rice was reduced to 53.0% for leaf and 34.1% for neck of bloom compared to control (100%). The productivity of rice was increased for 11-26% (0.6-1.4 tons/ha). The obtained results indicated that oligochitosan is promising to use as a biotic elicitor for plant particularly for sugarcane and rice. The procedure for production of oligochitosan elicitor by γ- irradiation method was described. (author)

  7. Biogeography, macroecology and species’ traits mediate competitive interactions in the order Lagomorpha

    OpenAIRE

    Leach, Katie; Montgomery, W. Ian; Reid, Neil

    2015-01-01

    1. In addition to abiotic determinants, biotic factors, including competitive, interspecific interactions, limit species’ distributions. Environmental changes in human disturbance, land use and climate are predicted to have widespread impacts on interactions between species, especially in the order Lagomorpha due to the higher latitudes and more extreme environmental conditions they occupy. 2. We reviewed the published literature on interspecific interactions in the order Lagomorpha, and comp...

  8. Experimental support of the stress-gradient hypothesis in herbivore-herbivore interactions

    OpenAIRE

    Dangles, Olivier; Herrera, M; Anthelme, Fabien

    2013-01-01

    The stress-gradient hypothesis (SGH) postulates an increase in the frequency of positive species interactions at increasing amounts of stress. While the SGH has been extensively tested in plant-plant interactions along abiotic stresses, it remains unclear whether this hypothesis could apply to higher trophic levels, such as herbivores, along biotic stress gradients. To address this issue, we investigated how the interaction between two potato herbivores may change along a stress gradient crea...

  9. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland.

    Science.gov (United States)

    He, Wei; Choi, Ilhwan; Lee, Jung-Joon; Hur, Jin

    2016-02-15

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-CL(-1), respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS+BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands.

  10. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland.

    Science.gov (United States)

    He, Wei; Choi, Ilhwan; Lee, Jung-Joon; Hur, Jin

    2016-02-15

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-CL(-1), respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS+BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. PMID:26674681

  11. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore at

  12. Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. Plants are known to rapidly respond to pathogen and herbivore attack b

  13. Counting and differentiating aquatic biotic nanoparticles by full-field interferometry: from laboratory tests to Tara Oceans sample analysis

    CERN Document Server

    Boccara, Martine; Bryan, Catherine Venien; Bailly-Bechet, Marc; Bowler, Chris; Boccara, Albert Claude

    2016-01-01

    There is a huge abundance of viruses and membrane vesicles in seawater. We describe a new full-field, incoherently illuminated, shot-noise limited, common-path interferometric detection method that we couple with the analysis of Brownian motion to detect, quantify, and differentiate biotic nanoparticles. We validated the method with calibrated nanoparticles and homogeneous DNA or RNA.viruses. The smallest virus size that we characterized with a suitable signal-to-noise ratio was around 30 nm in diameter. Analysis of Brownian motions revealed anisotropic trajectories for myoviruses.We further applied the method for vesicles detection and for analysis of coastal and oligotrophic samples from Tara Oceans circumnavigation.

  14. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat

    Science.gov (United States)

    Muthusamy, Senthilkumar K.; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C.

    2016-01-01

    A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat. PMID:27446158

  15. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat.

    Science.gov (United States)

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2016-01-01

    A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat. PMID:27446158

  16. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Estimation of radiation dose to man resulting from biotic transport: the BIOPORT/MAXI1 software package. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Cadwell, L.L.; Gano, K.A.; Kennedy, W.E. Jr.; Napier, B.A.; Peloquin, R.A.; Prohammer, L.A.; Simmons, M.A.

    1985-10-01

    BIOPORT/MAXI1 is a collection of five computer codes designed to estimate the potential magnitude of the radiation dose to man resulting from biotic transport processes. Dose to man is calculated for ingestion of agricultural crops grown in contaminated soil, inhalation of resuspended radionuclides, and direct exposure to penetrating radiation resulting from the radionuclide concentrations established in the available soil surface by the biotic transport model. This document is designed as both an instructional and reference document for the BIOPORT/MAXI1 computer software package and has been written for two major audiences. The first audience includes persons concerned with the mathematical models of biological transport of commercial low-level radioactive wastes and the computer algorithms used to implement those models. The second audience includes persons concerned with exercising the computer program and exposure scenarios to obtain results for specific applications. The report contains sections describing the mathematical models, user operation of the computer programs, and program structure. Input and output for five sample problems are included. In addition, listings of the computer programs, data libraries, and dose conversion factors are provided in appendices.

  17. Habitat selection and indirect interactions in fish communities

    OpenAIRE

    Beier, Ulrika

    2013-01-01

    To increase the understanding of freshwater lake ecosystems, I have studied the habitat selection of perch (Perca fluviatilis L.), roach (Rutilus rutilus (L.)), and vendace (Coregonus albula (L.)). These fish species use the pelagic and the littoral-benthic habitats in lakes to different extents. Perch and roach are omnivorous, and perch become piscivorous at larger sizes. Vendace is a pelagic species specialized in eating zooplankton. Vendace was expected to affect biotic interactions and ha...

  18. Impact of biotic and abiotic stresses on the competitive ability of multiple herbicide resistant wild oat (Avena fatua.

    Directory of Open Access Journals (Sweden)

    Erik A Lehnhoff

    Full Text Available Ecological theory predicts that fitness costs of herbicide resistance should lead to the reduced relative abundance of resistant populations upon the cessation of herbicide use. This greenhouse research investigated the potential fitness costs of two multiple herbicide resistant (MHR wild oat (Avena fatua populations, an economically important weed that affects cereal and pulse crop production in the Northern Great Plains of North America. We compared the competitive ability of two MHR and two herbicide susceptible (HS A. fatua populations along a gradient of biotic and abiotic stresses The biotic stress was imposed by three levels of wheat (Triticum aestivum competition (0, 4, and 8 individuals pot(-1 and an abiotic stress by three nitrogen (N fertilization rates (0, 50 and 100 kg N ha(-1. Data were analyzed with linear mixed-effects models and results showed that the biomass of all A. fatua populations decreased with increasing T. aestivum competition at all N rates. Similarly, A. fatua relative growth rate (RGR decreased with increasing T. aestivum competition at the medium and high N rates but there was no response with 0 N. There were no differences between the levels of biomass or RGR of HS and MHR populations in response to T. aestivum competition. Overall, the results indicate that MHR does not confer growth-related fitness costs in these A. fatua populations, and that their relative abundance will not be diminished with respect to HS populations in the absence of herbicide treatment.

  19. Using artificial neural networks to predict the distribution of bacterial crop diseases from biotic and abiotic factors

    Directory of Open Access Journals (Sweden)

    Michael J. Watts

    2012-03-01

    Full Text Available Constructing accurate computational global distribution models is an important first step towards the understanding of bacterial crop diseases and can lead to insights into the biology of disease-causing bacteria species. We constructed artificial neural network models of the geographic distribution of six bacterial diseases of crop plants. These ANN modelled the distribution of these species from regional climatic factors and from regional assemblages of host crop plants. Multiple ANN were combined into ensembles using statistical methods. Tandem ANN, where an ANN combined the outputs of individual ANN, were also investigated. We found that for all but one species, superior accuracies were attained by methods that combined biotic and abiotic factors. These combinations were produced by both ensemble and cascaded ANN. This shows that firstly, ANN are able to model the geographic distribution of bacterial crop diseases, and secondly, that combining abiotic and biotic factors is necessary to achieve high modelling accuracies. The work reported in this paper therefore provides a basis for constructing models of the distribution of bacterial crop diseases.

  20. Scale Expansion of Community Investigations and Integration of the Effects of Abiotic and Biotic Processes on Maintenance of Species Diversity

    Directory of Open Access Journals (Sweden)

    Zhenhong Wang

    2011-01-01

    Full Text Available Information on the maintenance of diversity patterns from regional to local scales is dispersed among academic fields due to the local focus of community ecology. To better understand these patterns, the study of ecological communities needs to be expanded to larger scales and the various processes affecting them need to be integrated using a suitable quantitative method. We determined a range of communities on a flora-subregional scale in Yunnan province, China (383210.02 km2. A series of species pools were delimited from the regional to plot scales. Plant diversity was evaluated and abiotic and biotic processes identified at each pool level. The species pool effect was calculated using an innovative model, and the contribution of these processes to the maintenance of plant species diversity was determined and integrated: climate had the greatest effect at the flora-subregional scale, with historical and evolutionary processes contributing ∼11%; climate and human disturbance had the greatest effect at the local site pool scale; competition exclusion and stress limitation explained strong filtering at the successional stage pool scale; biotic processes contributed more on the local community scale than on the regional scale. Scale expansion combined with the filtering model approach solves the local problem in community ecology.

  1. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper

    Science.gov (United States)

    Kang, Won-Hee; Kim, Seungill; Lee, Hyun-Ah; Choi, Doil; Yeom, Seon-In

    2016-01-01

    The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper. We identified 33 putative Dof genes in pepper (CaDofs). To gain an overview of the CaDofs, we analyzed phylogenetic relationships, protein motifs, and evolutionary history. We divided the 33 CaDofs, containing 25 motifs, into four major groups distributed on eight chromosomes. We discovered an expansion of the CaDofs dated to a recent duplication event. Segmental duplication that occurred before the speciation of the Solanaceae lineages was predominant among the CaDofs. The global gene-expression profiling of the CaDofs by RNA-seq analysis showed distinct temporal and pathogen-specific variation during development and response to biotic stresses (two TMV strains, PepMoV, and Phytophthora capsici), suggesting functional diversity among the CaDofs. These results will provide the useful clues into the responses of Dofs in biotic stresses and promote a better understanding of their multiple function in pepper and other species. PMID:27653666

  2. TaWRKY68 responses to biotic stresses are revealed by the orthologous genes from major cereals

    Directory of Open Access Journals (Sweden)

    Bo Ding

    2014-01-01

    Full Text Available WRKY transcription factors have been extensively characterized in the past 20 years, but in wheat, studies onWRKY genes and their function are lagging behind many other species. To explore the function of wheat WRKY genes, we identified a TaWRKY68 gene from a common wheat cultivar. It encodes a protein comprising 313 amino acids which harbors 19 conserved motifs or active sites. Gene expression patterns were determined by analyzing microarray data of TaWRKY68 in wheat and of orthologous genes from maize, rice and barley using Genevestigator. TaWRKY68 orthologs were identified and clustered using DELTA-BLAST and COBALT programs available at NCBI. The results showed that these genes, which are expressed in all tissues tested, had relatively higher levels in the roots and were up-regulated in response to biotic stresses. Bioinformatics results were confirmed by RT-PCR experiments using wheat plants infected by Agrobacterium tumefaciens and Blumeria graminis, or treated with Deoxynivalenol, a Fusarium graminearum-induced mycotoxin in wheat or barley. In summary,TaWRKY68 functions differ during plant developmental stages and might be representing a hub gene function in wheat responses to various biotic stresses. It was also found that including data from major cereal genes in the bioinformatics analysis gave more accurate and comprehensive predictions of wheat gene functions.

  3. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  4. Impact of biotic and abiotic stresses on the competitive ability of multiple herbicide resistant wild oat (Avena fatua).

    Science.gov (United States)

    Lehnhoff, Erik A; Keith, Barbara K; Dyer, William E; Menalled, Fabian D

    2013-01-01

    Ecological theory predicts that fitness costs of herbicide resistance should lead to the reduced relative abundance of resistant populations upon the cessation of herbicide use. This greenhouse research investigated the potential fitness costs of two multiple herbicide resistant (MHR) wild oat (Avena fatua) populations, an economically important weed that affects cereal and pulse crop production in the Northern Great Plains of North America. We compared the competitive ability of two MHR and two herbicide susceptible (HS) A. fatua populations along a gradient of biotic and abiotic stresses The biotic stress was imposed by three levels of wheat (Triticum aestivum) competition (0, 4, and 8 individuals pot(-1)) and an abiotic stress by three nitrogen (N) fertilization rates (0, 50 and 100 kg N ha(-1)). Data were analyzed with linear mixed-effects models and results showed that the biomass of all A. fatua populations decreased with increasing T. aestivum competition at all N rates. Similarly, A. fatua relative growth rate (RGR) decreased with increasing T. aestivum competition at the medium and high N rates but there was no response with 0 N. There were no differences between the levels of biomass or RGR of HS and MHR populations in response to T. aestivum competition. Overall, the results indicate that MHR does not confer growth-related fitness costs in these A. fatua populations, and that their relative abundance will not be diminished with respect to HS populations in the absence of herbicide treatment.

  5. Fishing for Effective Conservation: Context and Biotic Variation are Keys to Understanding the Survival of Pacific Salmon after Catch-and-Release.

    Science.gov (United States)

    Raby, Graham D; Donaldson, Michael R; Hinch, Scott G; Clark, Timothy D; Eliason, Erika J; Jeffries, Kenneth M; Cook, Katrina V; Teffer, Amy; Bass, Arthur L; Miller, Kristina M; Patterson, David A; Farrell, Anthony P; Cooke, Steven J

    2015-10-01

    Acute stressors are commonly experienced by wild animals but their effects on fitness rarely are studied in the natural environment. Billions of fish are captured and released annually around the globe across all fishing sectors (e.g., recreational, commercial, subsistence). Whatever the motivation, release often occurs under the assumption of post-release survival. Yet, capture by fisheries (hereafter "fisheries-capture") is likely the most severe acute stressor experienced in the animal's lifetime, which makes the problem of physiological recovery and survival of relevance to biology and conservation. Indeed, fisheries managers require accurate estimates of mortality to better account for total mortality from fishing, while fishers desire guidance on strategies for reducing mortality and maintaining the welfare of released fish, to maximize current and future opportunities for fishing. In partnership with stakeholders, our team has extensively studied the effects of catch-and-release on Pacific salmon in both marine and freshwater environments, using biotelemetry and physiological assessments in a combined laboratory-based and field-based approach. The emergent theme is that post-release rates of mortality are consistently context-specific and can be affected by a suite of interacting biotic and abiotic factors. The fishing gear used, location of a fishery, water temperature, and handling techniques employed by fishers each can dramatically affect survival of the salmon they release. Variation among individuals, co-migrating populations, and between sexes all seem to play a role in the response of fish to capture and in their subsequent survival, potentially driven by pre-capture pathogen-load, maturation states, and inter-individual variation in responsiveness to stress. Although some of these findings are fascinating from a biological perspective, they all create unresolved challenges for managers. We summarize our findings by highlighting the patterns that

  6. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice.

    Directory of Open Access Journals (Sweden)

    V Jisha

    Full Text Available AP2/ERF-type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae. Constitutive expression of OsEREBP1 in rice driven by maize ubiquitin promoter did not affect normal plant growth. Microarray analysis revealed that over expression of OsEREBP1 caused increased expression of lipid metabolism related genes such as lipase and chloroplastic lipoxygenase as well as several genes related to jasmonate and abscisic acid biosynthesis. PR genes, transcription regulators and Aldhs (alcohol dehydrogenases implicated in abiotic stress and submergence tolerance were also upregulated in transgenic plants. Transgenic plants showed increase in endogenous levels of α-linolenate, several jasmonate derivatives and abscisic acid but not salicylic acid. Soluble modified GFP (SmGFP-tagged OsEREBP1 was localized to plastid nucleoids. Comparative analysis of non-transgenic and OsEREBP1 overexpressing genotypes revealed that OsEREBP1 attenuates disease caused by Xoo and confers drought and submergence tolerance in transgenic rice. Our results suggest that constitutive expression of OsEREBP1 activates the jasmonate and abscisic acid signalling pathways thereby priming the rice plants for enhanced survival under abiotic or biotic stress conditions. OsEREBP1 is thus, a good candidate gene for engineering plants for multiple stress tolerance.

  7. Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback

    NARCIS (Netherlands)

    Hol, W.H.G.; De Boer, W.; ten Hooven, Freddy; Van der Putten, W.H.

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivit

  8. Inclusion of biotic stress (consumer pressure) alters predictions from the stress gradient hypothesis

    NARCIS (Netherlands)

    Smit, Christian; Rietkerk, Max; Wassen, Martin J.

    2009-01-01

    The stress gradient hypothesis (SGH) predicts a shift from net negative interactions in benign environments towards net positive in harsh environments in ecological communities. While several studies found support for the SGH, others found evidence against it, leading to a debate on how nature and s

  9. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.;

    2016-01-01

    reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined...... documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE...... was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C...

  10. Processes influencing migration of bioavailable organic compounds from polymers - investigated during biotic and abiotic testing under static and non-static conditions with varying S/V-ratios

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Arvin, Erik; Albrechtsen, Hans-Jørgen

    The migration of bioavailable organic compounds (‘bioavailable migration’) from polymeric materials used for drinking water distribution was investigated by an abiotic test: Extracting materials under sterile conditions, and a biotic test: Extracting materials in presence of bacteria. Both tests....../V-ratios had any effect on the bioavailable migration in the biotic tests. Not to underestimate growth potential of polymers, investigations should thus be performed in the presence of a diverse microbial population with paired measurements of biomass in the water phase and on the material surfaces....

  11. Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback

    OpenAIRE

    Hol, W.H.G.; W. Boer; ten Hooven, Freddy; Van der Putten, W.H.

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect o...

  12. Modularity Reveals the Tendency of Arbuscular Mycorrhizal Fungi To Interact Differently with Generalist and Specialist Plant Species in Gypsum Soils

    OpenAIRE

    Torrecillas, Emma; del Mar Alguacil, Maria; Roldán, Antonio; Díaz, Gisela; Montesinos-Navarro, Alicia; Torres, Maria Pilar

    2014-01-01

    Patterns in plant–soil biota interactions could be influenced by the spatial distribution of species due to soil conditions or by the functional traits of species. Gypsum environments usually constitute a mosaic of heterogeneous soils where gypsum and nongypsum soils are imbricated at a local scale. A case study of the interactions of plants with arbuscular mycorrhizal fungi (AMF) in gypsum environments can be illustrative of patterns in biotic interactions. We hypothesized that (i) soil char...

  13. Community Interactions In Tropical Forest Restoration And Environmental Governance In The Panama Canal Watershed

    OpenAIRE

    Schweizer, Daniella

    2012-01-01

    Increased global awareness of the loss of environmental services that derive from deforestation has triggered calls to promote the recovery of tropical forests. I studied two types of community interactions in tropical forest restoration. The first two chapters present the results of applying tools from phylogenetic ecology to tropical forest restoration. I hypothesized that negative biotic interactions, driven mainly by shared deleterious symbionts, would reduce the natural recruitment of cl...

  14. Cytokinin-Induced Phenotypes in Plant-Insect Interactions: Learning from the Bacterial World

    OpenAIRE

    Giron, David; Glevarec, Gaëlle

    2014-01-01

    Recently, a renewed interest in cytokinins (CKs) has allowed the characterization of these phytohormones as key regulatory molecules in plant biotic interactions. They have been proved to be instrumental in microbe-and insect-mediated plant phenotypes that can be either beneficial or detrimental for the host-plant. In parallel, insect endosymbi-otic bacteria have emerged as key players in plant-insect interactions mediating directly or indirectly fundamental as-pects of insect nutrition, such...

  15. Biotic and abiotic dynamics of a high solid-state anaerobic digestion box-type container system.

    Science.gov (United States)

    Walter, Andreas; Probst, Maraike; Hinterberger, Stephan; Müller, Horst; Insam, Heribert

    2016-03-01

    A solid-state anaerobic digestion box-type container system for biomethane production was observed in 12 three-week batch fermentations. Reactor performance was monitored using physico-chemical analysis and the methanogenic community was identified using ANAEROCHIP-microarrays and quantitative PCR. A resilient community was found in all batches, despite variations in inoculum to substrate ratio, feedstock quality, and fluctuating reactor conditions. The consortia were dominated by mixotrophic Methanosarcina that were accompanied by hydrogenotrophic Methanobacterium, Methanoculleus, and Methanocorpusculum. The relationship between biotic and abiotic variables was investigated using bivariate correlation analysis and univariate analysis of variance. High amounts of biogas were produced in batches with high copy numbers of Methanosarcina. High copy numbers of Methanocorpusculum and extensive percolation, however, were found to negatively correlate with biogas production. Supporting these findings, a negative correlation was detected between Methanocorpusculum and Methanosarcina. Based on these results, this study suggests Methanosarcina as an indicator for well-functioning reactor performance.

  16. Oceanic archipelagos: a perspective on the geodynamics and biogeography of the World’s smallest biotic provinces

    Directory of Open Access Journals (Sweden)

    Kostas Triantis

    2016-07-01

    Full Text Available Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the island-level of specific archipelagos or single archipelagos. Recently, it was proposed that oceanic archipelagos qualify as biotic provinces, with diversity primarily reflecting a balance between speciation and extinction, with colonization having a minor role. Here we focus on major attributes of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also re-affirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity.

  17. Development of index of biotic integrity expectations for the ecoregions of Indiana. I. Central corn belt plain

    International Nuclear Information System (INIS)

    The Clean Water Act Amendments of 1987 mandate the development of biological criteria for evaluating the nation's surface waters. The requirements of Section 304(a) was implemented in Indiana to determine water resource degradation. A total of 197 headwater and wading stream sites were sampled in the Central Corn Belt Plain ecoregion in order to develop and calibrate an Index of Biotic Integrity for use in Indiana. Based on inherent variance within the ecoregion, sub-basins were established based on the concept of natural areas as recognized by Homoya et al. (1985). Site specific data; locality information; and species specific scoring criteria for tolerance classification, trophic guilds, and reproductive guilds are included in the appendix

  18. Biotic and abiotic dynamics of a high solid-state anaerobic digestion box-type container system.

    Science.gov (United States)

    Walter, Andreas; Probst, Maraike; Hinterberger, Stephan; Müller, Horst; Insam, Heribert

    2016-03-01

    A solid-state anaerobic digestion box-type container system for biomethane production was observed in 12 three-week batch fermentations. Reactor performance was monitored using physico-chemical analysis and the methanogenic community was identified using ANAEROCHIP-microarrays and quantitative PCR. A resilient community was found in all batches, despite variations in inoculum to substrate ratio, feedstock quality, and fluctuating reactor conditions. The consortia were dominated by mixotrophic Methanosarcina that were accompanied by hydrogenotrophic Methanobacterium, Methanoculleus, and Methanocorpusculum. The relationship between biotic and abiotic variables was investigated using bivariate correlation analysis and univariate analysis of variance. High amounts of biogas were produced in batches with high copy numbers of Methanosarcina. High copy numbers of Methanocorpusculum and extensive percolation, however, were found to negatively correlate with biogas production. Supporting these findings, a negative correlation was detected between Methanocorpusculum and Methanosarcina. Based on these results, this study suggests Methanosarcina as an indicator for well-functioning reactor performance. PMID:26860425

  19. Seagrass burial by dredged sediments: benthic community alteration, secondary production loss, biotic index reaction and recovery possibility.

    Science.gov (United States)

    Tu Do, V; de Montaudouin, Xavier; Blanchet, Hugues; Lavesque, Nicolas

    2012-11-01

    In 2005, dredging activities in Arcachon Bay (France) led in burying 320,000 m(2) of Zostera noltii intertidal seagrass. Recovery by macrobenthos and seagrass was monitored. Six months after works, seagrass was absent and macrobenthos drastically different from surrounding vegetated stations. Rapidly and due to sediment dispersal, disposal area was divided into a sandflat with a specific benthic community which maintained its difference until the end of the survey (2010), and a mudflat where associated fauna became similar to those in adjacent seagrass. Macrobenthic community needs 3 years to recover while seagrass needs 5 years to recover in the station impacted by mud. The secondary production loss due to works was low. In this naturally carbon enriched system, univariate biotic indices did not perform well to detect seagrass destruction and recovery. Multivariate index MISS gave more relevant conclusions and a simplified version was tested with success, at this local scale.

  20. Abiotic and biotic factors associated with tick population dynamics on a mammalian host: Ixodes hexagonus infesting otters, Lutra lutra.

    Directory of Open Access Journals (Sweden)

    Ellie Sherrard-Smith

    Full Text Available The Eurasian otter, Lutra lutra, hosts several parasites with zoonotic potential. As this semiaquatic mammal has large ranges across terrestrial, freshwater and marine habitats, it has the capacity for wide dispersion of pathogens. Despite this, parasites of otters have received relatively little attention. Here, we examine their ectoparasite load and assess whether this is influenced by abiotic or biotic variables. Climatic phenomena such as the North Atlantic Oscillation (NAO affect weather conditions in northern Europe. Consequently parasite distributions, particularly species with life stages exposed to the external environment, can be affected. We assessed the extent to which inter-annual variations in large-scale weather patterns (specifically the NAO and Central England (CE temperatures and host characteristics influenced tick prevalence and intensity. Ectoparasites consisted of a single species, the nidiculous tick Ixodes hexagonus (prevalence = 24.3%; mean intensity = 7.2; range = 1-122; on n = 820 otter hosts. The prevalence, but not intensity of infestation, was associated with high CE temperatures, while both prevalence and intensity were associated with positive phases of the NAO. Such associations indicate that I. hexagonus are most abundant when weather conditions are warmer and wetter. Ticks were more prevalent on juvenile than sub-adult or adult otters, which probably reflects the length of time the hosts spend in the holt where these ticks quest. High tick number was associated with poor host condition, so either poor condition hosts are more susceptible to ticks, or tick infestations negatively impact on host condition. Otters are clearly an important and common host for I. hexagonus, which has implications for vector-borne diseases. This work is the first to consider the impacts of long-term weather patterns on I. hexagonus and uses wild-animal cadavers to illustrate the importance of abiotic and biotic pressures impacting

  1. Benthic indicators to use in Ecological Quality classification of Mediterranean soft bottom marine ecosystems, including a new Biotic Index

    Directory of Open Access Journals (Sweden)

    N. SIMBOURA

    2012-12-01

    Full Text Available A general scheme for approaching the objective of Ecological Quality Status (EcoQ classification of zoobenthic marine ecosystems is presented. A system based on soft bottom benthic indicator species and related habitat types is suggested to be used for testing the typological definition of a given water body in the Mediterranean. Benthic indices including the Shannon-Wiener diversity index and the species richness are re-evaluated for use in classification. Ranges of values and of ecological quality categories are given for the diversity and species richness in different habitat types. A new biotic index (BENTIX is proposed based on the relative percentages of three ecological groups of species grouped according to their sensitivity or tolerance to disturbance factors and weighted proportionately to obtain a formula rendering a five step numerical scale of ecological quality classification. Its advantage against former biotic indices lies in the fact that it reduces the number of the ecological groups involved which makes it simpler and easier in its use. The Bentix index proposed is tested and validated with data from Greek and western Mediterranean ecosystems and examples are presented. Indicator species associated with specific habitat types and pollution indicator species, scored according to their degree of tolerance to pollution, are listed in a table. The Bentix index is compared and evaluated against the indices of diversity and species richness for use in classification. The advantages of the BENTIX index as a classification tool for ECoQ include independence from habitat type, sample size and taxonomic effort, high discriminative power and simplicity in its use which make it a robust, simple and effective tool for application in the Mediterranean Sea.

  2. The Andean Biotic Index (ABI): revised tolerance to pollution values for macroinvertebrate families and index performance evaluation.

    Science.gov (United States)

    Ríos-Touma, Blanca; Acosta, Raúl; Prat, Narcís

    2014-04-01

    Score-based biotic indices are widely used to evaluate the water quality of streams and rivers. Few adaptations of these indices have been done for South America because there is a lack of knowledge on macroinvertebrate taxonomy, distribution and tolerance to pollution in the region. Several areas in the Andes are densely populated and there is need for methods to assess the impact of increasing human pressures on aquatic ecosystems. Considering the unique ecological and geographical features of the Andes, macroinvertebrate indices used in other regions must be adapted with caution. Here we present a review of the literature on macroinvertebrate distribution and tolerance to pollution in Andean areas above 2,000 masl. Using these data, we propose an Andean Biotic Index (ABI), which is based on the BMWP index. In general, ABI includes fewer macroinvertebrate families than in other regions of the world where the BMWP index has been applied because altitude restricts the distribution of several families. Our review shows that in the high Andes, the tolerance of several macroinvertebrate families to pollution differs from those reported in other areas. We tested the ABI index in two basins in Ecuador and Peru, and compared it to other BMWP adaptations using the reference condition approach. The ABI index is extremely useful for detecting the general impairment of rivers but class quality boundaries should be defined independently for each basin because reference conditions may be different. The ABI is widely used in Ecuador and Peru, with high correlations with land-use pressures in several studies. The ABI index is an integral part of the new multimetric index designed for high Andean streams (IMEERA).

  3. Kinetics of selenate sorption in soil as influenced by biotic and abiotic conditions: a stirred flow-through reactor study

    International Nuclear Information System (INIS)

    This study (i) quantified the kinetics of selenate sorption and (ii) measured the influence of biotic processes in soil selenate stabilisation. Stirred flow-through reactor experiments were conducted on samples of a silty clay soil (pH = 8, Eh = 240–300 mV) from Bure (France) in both non-sterile and sterile conditions. Parameters of the proposed two-site sorption model (EK), adapted from van Genuchten and Wagenet (1989), were estimated by nonlinear regression. Fast selenate sorption on type-1 sites was moderate, with an equilibrium constant of 25.5 and 39.1 L/kg for non-sterile and sterile conditions. Rate-limited sorption on type-2 sites increased with time, and was predominant for longer periods of time in non-sterile conditions. At equilibrium, it would represent over 96% of the sorbed inventory, with mean sorption times of 17 h and 191 h for non-sterile and sterile conditions. Our results showed for Bure soil that (i) selenate sorption in flowing and mildly-oxidising conditions was strongly kinetically controlled, especially in non-sterile conditions, (ii) selenate desorption was much slower than sorption, which suggests its pseudo-irreversible stabilisation, and (iii) microbial activity increased the contribution of rate-limited sorption on type-2 sites, for which it increased sorption rate by a factor 7 but also facilitated its reversibility. This work stresses the limits of the Kd approach to represent selenate sorption in flowing conditions and supports an alternative formulation like the EK model, but also points out that biotic conditions are significant sources of variability for sorption parameters. - Highlights: • Selenate sorption was studied during stirred flow-through reactor experiments. • A two-site model of selenate sorption adequately described our observations. • Selenate sorption was strongly kinetically controlled. • Microbial activity increased the contribution of rate-limited sorption

  4. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  5. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses.

    Science.gov (United States)

    Pan, Lin-Jie; Jiang, Ling

    2014-03-01

    The WRKY transcription factor (TF) plays a very important role in the response of plants to various abiotic and biotic stresses. A local papaya database was built according to the GenBank expressed sequence tag database using the BioEdit software. Fifty-two coding sequences of Carica papaya WRKY TFs were predicted using the tBLASTn tool. The phylogenetic tree of the WRKY proteins was classified. The expression profiles of 13 selected C. papaya WRKY TF genes under stress induction were constructed by quantitative real-time polymerase chain reaction. The expression levels of these WRKY genes in response to 3 abiotic and 2 biotic stresses were evaluated. TF807.3 and TF72.14 are upregulated by low temperature; TF807.3, TF43.76, TF12.199 and TF12.62 are involved in the response to drought stress; TF9.35, TF18.51, TF72.14 and TF12.199 is involved in response to wound; TF12.199, TF807.3, TF21.156 and TF18.51 was induced by PRSV pathogen; TF72.14 and TF43.76 are upregulated by SA. The regulated expression levels of above eight genes normalized against housekeeping gene actin were significant at probability of 0.01 levels. These WRKY TFs could be related to corresponding stress resistance and selected as the candidate genes, especially, the two genes TF807.3 and TF12.199, which were regulated notably by four stresses respectively. This study may provide useful information and candidate genes for the development of transgenic stress tolerant papaya varieties.

  6. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses.

    Science.gov (United States)

    Jiang, Ling; Pan, Lin-jie

    2012-06-01

    C2H2 proteins belong to a group of transcription factors (TFs) existing as a superfamily that plays important roles in defense responses and various other physiological processes in plants. The present study aimed to screen for and identify C2H2 proteins associated with defense responses to abiotic and biotic stresses in Carica papaya L. Data were collected for 47,483 papaya-expressed sequence tags (ESTs). The full-length cDNA nucleotide sequences of 87 C2H2 proteins were predicated by BioEdit. All 91 C2H2 proteins were aligned, and a phylogenetic tree was constructed using DNAman. The expression levels of 42 C2H2 were analyzed under conditions of salt stress by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Methyl jasmonate treatment rapidly upregulated ZF(23.4) and ZF(30,912.1) by 18.6- and 21.7-fold, respectively. ZF(1.3), ZF(138.44), ZF(94.49), ZF(29.160), and ZF(20.206) were found to be downregulated after low temperature treatment at very significant levels (p papaya ringspot virus pathogen. ZF(30,912.1) was subcellularly localized in the nucleus by a transgenic fusion of pBS-ZF(30,912.1)-GFP into the protoplast of papaya. The results of the present study showed that ZF(30,912.1) could be an important TF that mediates responses to abiotic and biotic stresses in papaya.

  7. Kinetics of selenate sorption in soil as influenced by biotic and abiotic conditions: a stirred flow-through reactor study.

    Science.gov (United States)

    Garcia-Sanchez, L; Loffredo, N; Mounier, S; Martin-Garin, A; Coppin, F

    2014-12-01

    This study (i) quantified the kinetics of selenate sorption and (ii) measured the influence of biotic processes in soil selenate stabilisation. Stirred flow-through reactor experiments were conducted on samples of a silty clay soil (pH = 8, Eh = 240-300 mV) from Bure (France) in both non-sterile and sterile conditions. Parameters of the proposed two-site sorption model (EK), adapted from van Genuchten and Wagenet (1989), were estimated by nonlinear regression. Fast selenate sorption on type-1 sites was moderate, with an equilibrium constant of 25.5 and 39.1 L/kg for non-sterile and sterile conditions. Rate-limited sorption on type-2 sites increased with time, and was predominant for longer periods of time in non-sterile conditions. At equilibrium, it would represent over 96% of the sorbed inventory, with mean sorption times of 17 h and 191 h for non-sterile and sterile conditions. Our results showed for Bure soil that (i) selenate sorption in flowing and mildly-oxidising conditions was strongly kinetically controlled, especially in non-sterile conditions, (ii) selenate desorption was much slower than sorption, which suggests its pseudo-irreversible stabilisation, and (iii) microbial activity increased the contribution of rate-limited sorption on type-2 sites, for which it increased sorption rate by a factor 7 but also facilitated its reversibility. This work stresses the limits of the Kd approach to represent selenate sorption in flowing conditions and supports an alternative formulation like the EK model, but also points out that biotic conditions are significant sources of variability for sorption parameters.

  8. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    Science.gov (United States)

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress. PMID:27061745

  9. 寒武纪早期大气-海洋氧含量与生命大爆发%Atmosphere-Ocean Oxygen Levels and Biotic Explosion in the Early Cambrian

    Institute of Scientific and Technical Information of China (English)

    李超; 金承胜

    2015-01-01

    -cussed the possible relationship between the Earth environment and the biotic radiation in early Cambrian.We found that an interactions and co-evolution relationship instead of those simple unidirectional relationships emphasized by above three hypotheses should exist between the Earth environment and the biotic radiation in early Cambrian.

  10. Biotic and abiotic factors influencing growth rate and production of traps by the nematode-trapping fungus Duddingtonia flagrans when induced by Cooperia oncophora larvae

    DEFF Research Database (Denmark)

    Grønvold, J.; Wolstrup, J.; Nansen, P.;

    1999-01-01

    A series of experiments on corn meal agar was carried out to evaluate the efficacy of the nematode-trapping fungus Duddingtonia flagrans in different abiotic and biotic conditions which occur in cow pats. Above a concentration of 50 parasitic larvae (L-3) cm(-2) the fungus produced a maximum...

  11. Growth performance and resistance to Streptococcus iniae of juvenile Nile tilapia (Oreochromis niloticus) fed diets supplemented with GroBiotic - A and Brewtech Dried Brewers Yeast

    Science.gov (United States)

    This study was conducted to evaluate the effect of dietary levels of Brewtech® dried brewers yeast (BY) and GroBiotic®-A (GB) on growth performance, proximate body composition, immune response and resistance of juvenile Nile tilapia to Streptococcus iniae challenge. A practical basal (control) diet ...

  12. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.;

    2016-01-01

    was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast...

  13. Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa

    NARCIS (Netherlands)

    Knevel, IC; Lans, T; Menting, FBJ; Hertling, UM; van der Putten, WH

    2004-01-01

    Many native communities contain exotic plants that pose a major threat to indigenous vegetation and ecosystem functioning. Therefore the enemy release hypothesis (ERH) and biotic resistance hypothesis (BRH) were examined in relation to the invasiveness of the introduced dune grass Ammophila arenaria

  14. Evaluation of expression stability of candidate references genes among green and yellow pea cultivars (Pisum sativum L.) subjected to abiotic and biotic stress

    Science.gov (United States)

    Dry pea (Pisum sativum) is grown as human and animal feed throughout the world. Large yield losses in pea due to biotic and abiotic stresses compel an improved understanding of mechanisms of stress tolerance and genetic determinants conditioning these tolerances. The availability of stably expressed...

  15. Copper in the terrestrial environment: Verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils

    NARCIS (Netherlands)

    Koster, Marijke; Groot, Arthur de; Vijver, Martina G; Peijnenburg, Willie J G M

    2006-01-01

    This study was set up for validation of a regression model to predict mortality in the terrestrial earthworm Aporrectodea caliginosa following exposure to copper. This model was derived from a terrestrial biotic ligand model and incorporates the protective effects of H+ and Na+ on copper toxicity.

  16. Temporal patterns of diversity: Assessing the biotic and abiotic controls on ant assemblages

    Science.gov (United States)

    Dunn, R.R.; Parker, C.R.; Sanders, N.J.

    2007-01-01

    In this study, we use 12 months of data from 11 ant assemblages to test whether seasonal variation in ant diversity is governed by either the structuring influences of interspecific competition or environmental conditions. Because the importance of competition might vary along environmental gradients, we also test whether the signature of competition depends on elevation. We find little evidence that competition structures the seasonal patterns of activity in the ant assemblages considered, but find support for the effects of temperature on seasonal patterns of diversity, especially at low-elevation sites. Although, in general, both competition and the environment interact to structure ant assemblages, our results suggest that environmental conditions are the primary force structuring the seasonal activity of the ant assemblages studied here. ?? 2007 The Linnean Society of London.

  17. Competition increases sensitivity of wheat (Triticum aestivum to biotic plant-soil feedback.

    Directory of Open Access Journals (Sweden)

    W H Gera Hol

    Full Text Available Plant-soil feedback (PSF and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota.

  18. Local and landscape-scale biotic correlates of mistletoe distribution in Mediterranean pine forests

    Energy Technology Data Exchange (ETDEWEB)

    Roura-Pascual, N.; Brotons, L.; Garcia, D.; Zamora, R.; Caceres, M. de

    2012-11-01

    The study of the spatial patterns of species allows the examination of hypotheses on the most plausible ecological processes and factors determining their distribution. To investigate the determinants of parasite species on Mediterranean forests at regional scales, occurrence data of the European Misletoe (Viscum album) in Catalonia (NE Iberian Peninsula) were extracted from forest inventory data and combined with different types of explanatory variables by means of generalized linear mixed models. The presence of mistletoes in stands of Pinus halepensis seems to be determined by multiple factors (climatic conditions, and characteristics of the host tree and landscape structure) operating at different spatial scales, with the availability of orchards of Olea europaea in the surroundings playing a relevant role. These results suggest that host quality and landscape structure are important mediators of plant-plant and plant-animal interactions and, therefore, management of mistletoe populations should be conducted at both local (i.e. clearing of infected host trees) and landscape scales (e.g. controlling the availability of nutrient-rich food sources that attract bird dispersers). Research and management at landscape-scales are necessary to anticipate the negative consequence of land-use changes in Mediterranean forests. (Author) 38 refs.

  19. Below-ground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L. / Picea abies [L.] Karst)

    Science.gov (United States)

    The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with cont...

  20. Gradual enrichment of N-15 with humification of diets in a below-ground food web : relationship between N-15 and diet age determined using C-14

    OpenAIRE

    Hyodo, F.; I. Tayasu; Konate, S.; Tondoh, J.E.; Lavelle, Patrick; WADA, E.

    2008-01-01

    1. Stable nitrogen (N) isotope has been widely used to disentangle food webs and to infer trophic positions of organisms based on an assumption that the stepwise enrichment occurs along trophic levels. The enrichment of N-15 in soil organisms with diet humification has also been reported, but the underlying mechanism has not been fully examined. 2. To examine the effect of diet humification on N-15, we estimated the stable N isotope ratios and diet ages of earthworms and termites. These organ...

  1. The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla).

    Science.gov (United States)

    Wright, Shannon H A; Berch, Shannon M; Berbee, Mary L

    2009-04-01

    Fertilization typically reduces ectomycorrhizal diversity shortly after its application but less is known about its longer-term influence on fungal species. Long-term effects are important in forests where fertilizer is rarely applied. We compared fungal species composition in western hemlock control plots with plots last fertilized 7 years ago with nitrogen (N) or nitrogen plus phosphorus (N + P). The N + P fertilization had a significant lingering effect, increasing the tree size and foliar P content of the western hemlocks. From ectomycorrhizal roots of 24-year-old trees from northern Vancouver Island, Canada, we identified fungi from 12 samples per treatment, by amplifying, cloning, and sequencing fungal ribosomal DNA fragments, placing sequences with 97% or more identity in the same operational taxonomic unit (OTU). Diversity was high across treatments; we detected 77 fungal OTUs, 52 from ectomycorrhizal genera, among 922 clone sequences. The five most frequent OTUs were similar in abundance across treatments. Only 19 OTUs matched any of the 197 previously reported ectomycorrhizal species of western hemlock. Species composition but not diversity in nitrogen plus phosphorus plots differed significantly from control or nitrogen plots. Two Cortinarius OTUs were indicator species for nitrogen plus phosphorus plots and presence of Cortinarius cinnamomeus was correlated with control or nitrogen plots. After 7 years, fertilization history had made no detectable difference in ectomycorrhizal fungal diversity, but long-lasting changes in environment resulting from fertilization had a lingering effect on fungal ectomycorrhizal species composition. PMID:19139932

  2. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    Science.gov (United States)

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  3. Linking above- and below-ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land

    NARCIS (Netherlands)

    Korthals, G.W.; Smilauer, P.; Van Dijk, C.; Van der Putten, W.H.

    2001-01-01

    1. This study investigates the effects of experimental plant communities on different trophic levels in the soil food web of abandoned arable land. 2. In April 1996, a biodiversity experiment commenced using a continuation of agricultural crop rotation (CCR), spontaneous succession with naturally co

  4. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    Directory of Open Access Journals (Sweden)

    Paul G Matson

    Full Text Available Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor. Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only, tide (Cape Evans and New Harbor, and water mass properties (temperature and salinity during spring and early summer 2011. These collective observations showed that (1 pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007 and range of pH (Cape Evans: 0.090; Hut Point: 0.036, and (2 pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  5. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve

    Science.gov (United States)

    Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R. Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N

    2015-01-01

    Abstract Background Comprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. New information The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies – a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic

  6. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    Science.gov (United States)

    Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound. PMID:25221950

  7. Abiotic & biotic responses of the Colorado River to controlled floods at Glen Canyon Dam, Arizona, USA

    Science.gov (United States)

    Korman, Josh; Melis, Ted; Kennedy, Theodore A.

    2012-01-01

    Closure of Glen Canyon Dam reduced sand supply to the Colorado River in Grand Canyon National Park by about 94% while its operation has also eroded the park's sandbar habitats. Three controlled floods released from the dam since 1995 suggest that sandbars might be rebuilt and maintained, but only if repeated floods are timed to follow tributary sand deliveries below the dam. Monitoring data show that sandbars are dynamic and that their erosion after bar building is positively related with mean daily discharge and negatively related with tributary sand production after controlled floods. The March 2008 flood affected non-native rainbow trout abundance in the Lees Ferry tailwater, which supports a blue ribbon fishery. Downstream trout dispersal from the tailwater results in negative competitive interactions and predation on endangered humpback chub. Early survival rates of age-0 trout increased more than fourfold following the 2008 flood, and twofold in 2009, relative to prior years (2006-2007). Hatch-date analysis indicated that early survival rates were much higher for cohorts that emerged about 2 months after the 2008 flood relative to cohorts that emerged earlier that year. The 2009 survival data suggest that tailwater habitat improvements persisted for at least a year, but apparently decreased in 2010. Increased early survival rates for trout coincided with the increased availability of higher quality drifting food items after the 2008 flood owing to an increase in midges and black flies, preferred food items of rainbow trout. Repeated floods from the dam might sustainably rebuild and maintain sandbars if released when new tributary sand is available below the tailwater. Spring flooding might also sustain increased trout abundance and benefit the tailwater fishery, but also be a potential risk to humpback chub in Grand Canyon.

  8. Effects of biotic and abiotic constraints on the symbiosis between rhizobia and the tropical leguminous trees Acacia and Prosopis.

    Science.gov (United States)

    Räsänen, Leena A; Lindström, Kristina

    2003-10-01

    N2-fixing, drought tolerant and multipurpose Acacia and Prosopis species are appropriate trees for reforestation of degraded areas in arid and semiarid regions of the tropics and subtropics. Acacia and Prosopis trees form N2-fixing nodules with a wide range of rhizobia, for example African acacias mainly with Sinorhizobium sp. and Mesorhizobium sp., and Australian acacias with Bradyrhizobium sp. Although dry and hot seasons restrict formation of N2-fixing nodules on Acacia and Prosopis spp., fully grown trees and their symbiotic partners are well adapted to survive in harsh growth conditions. This review on one hand deals with major constraints of arid and semiarid soils, i.e. drought, salinity and high soil temperature, which affect growth of trees and rhizobia, and on the other hand with adaptation mechanisms by which both organisms survive through unfavourable periods. In addition, defects in infection and nodulation processes due to various abiotic and biotic constraints are reviewed. This knowledge is important when Acacia and Prosopis seedlings are used for forestation of degraded areas in arid and semiarid tropics. PMID:15242281

  9. Effects of C/N controlled periphyton based organic farming of freshwater prawn on water quality parameters and biotic factors

    Directory of Open Access Journals (Sweden)

    Md. Rezoanul Haque

    2014-08-01

    Full Text Available The effects of C:N controlled periphyton based organic farming of freshwater prawn on water quality parameters and biotic factors were investigated. The experiment had two treatments: T1 and T2 each with three replications. Stocking density was maintained at 20,000 juveniles ha-1. In T1, only commercially available prawn feed was applied and in T2, a locally formulated and prepared feed containing 24% crude protein with C:N ratio close to 20 was used, and maize flour and bamboo side shoots were provided for maintaining C:N ratio 20.Mean values of water quality parameters did not vary significantly (P>0.05 between treatments. Periphytic biomass in terms of dry matter, ash free dry matter (AFDM and chlorophyll a showed significant difference (P<0.05 among different sampling months. Individual harvesting weight, individual weight gain, specific growth rates, gross and net yields of prawn were significantly higher (P<0.05 in T2 than T1. Therefore, it was concluded that freshwater prawn might consume periphyton biomass in C:N controlled periphyton based organic farming practices resulted a significantly (P<0.05 higher production of freshwater prawn than traditional farming.

  10. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater

    Science.gov (United States)

    Schaefer, C. E.; Fuller, M. E.; Condee, C. W.; Lowey, J. M.; Hatzinger, P. B.

    2007-01-01

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate (˜ 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.

  11. Technetium Reduction and Permanent Sequestration by Abiotic and Biotic Formation of Low-Solubility Sulfide Mineral Phases

    Energy Technology Data Exchange (ETDEWEB)

    Tratnyek, Paul G. [Oregon Health & Science Univ., Beaverton, OR (United States); Tebo, Bradley M. [Oregon Health & Science Univ., Beaverton, OR (United States); Fan, Dimin [Oregon Health & Science Univ., Beaverton, OR (United States); Anitori, Roberto [Oregon Health & Science Univ., Beaverton, OR (United States); Szecsody, Jim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jansik, Danielle [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-14

    One way to minimize the mobility of the TcVII oxyanion pertechnetate (TcO4-) is to effect reduction under sulfidogenic conditions (generated abiotically by Fe0 or biotically) to form TcSx, which is significantly slower to oxidize than TcIVO2. In sediment systems, TcSx and other precipitates may oxidize more slowly due to oxygen diffusion limitations to these low permeability precipitate zones. In addition, the TcO4- reduction rate may be more rapid in the presence of sediment because of additional reductive surface phases. This project aims to provide a fundamental understanding of the feasibility of immobilization of TcO4- as TcSx in the vadose zone or groundwater by application nano zero-valent iron (nZVI), and sulfide or sulfate. Biotic batch experiments have used the sulfate-reducing bacterium (SRB) Desulfotomaculum reducens. The iron sulfide mineral mackinawite was generated under these conditions, while vivianite was formed in nZVI only controls. The sulfide/bacteria-containing system consistently reduced aqueous pertechnetate rapidly (> 95% in the first hour), a rate similar to that for the sulfide-free, nZVI only system. Reduced Tc (aged for 3 months) generated in both SRB/nZVI systems was highly resistant to reoxidation. In reduced samples, Tc was found associated with solid phases containing Fe and S (D. reducens/nZVI) or Fe (nZVI only). Experiments using D. reducens without nZVI provided some additional insights. Firstly, stationary phase cultures were able to slowly reduce pertechnetate. Secondly, addition of pertechnetate at the beginning of cell growth (lag phase) resulted in a faster rate of Tc reduction, possibly indicating a direct (e.g. enzymatic) role for D. reducens in Tc reduction. Abiotic batch experiments were conducted with Na2S as the sulfide source. Pertechnetate reduction was

  12. The role of biotic and abiotic processes in determining equilibrium states and transient dynamics in tidal bio-geomorphic systems

    Science.gov (United States)

    da Lio, C.; D'Alpaos, A.; Marani, M.

    2010-12-01

    A point model of the joint evolution of tidal landforms and biota is described and applied to explore the equilibrium states and the transient behaviour of tidal bio-geomorphic systems under varying physical and biological forcings. The model incorporates the dynamics of intertidal vegetation, benthic microbial assemblages, erosional, depositional, and sediment exchange processes, and wind-wave dynamics. Alternative stable states and punctuated equilibria emerge, characterized by possible sudden transitions of the system state, governed by vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions. Multiple stable states are suggested to result from the interplay of erosion, deposition and biostabilization, providing a simple explanation for the ubiquitous presence of the typical landforms observed in tidal environments worldwide. The explicit and dynamically-coupled description of biotic and abiotic processes thus emerges as a key requirement for realistic and predictive models of the evolution of a tidal system as a whole. The analysis of such coupled processes indicates that hysteretic switches between stable states arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and viceversa, with implications for the preservation of tidal environments under a climate change. Finally, we explore the transient behaviour of the system forced by synthetic and observed sea-level rise forcings and identify the effects of the characteristic response time of vegetation to environmental changes on the overall system dynamics.

  13. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.

    Science.gov (United States)

    Nicot, Nathalie; Hausman, Jean-François; Hoffmann, Lucien; Evers, Danièle

    2005-11-01

    Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. Real-time RT-PCR is at present the most sensitive method for the detection of low abundance mRNA. To avoid bias, real-time RT-PCR is referred to one or several internal control genes, which should not fluctuate during treatments. Here, the non-regulation of seven housekeeping genes (beta-tubulin, cyclophilin, actin, elongation factor 1-alpha (ef1alpha), 18S rRNA, adenine phosphoribosyl transferase (aprt), and cytoplasmic ribosomal protein L2) during biotic (late blight) and abiotic stresses (cold and salt stress) was tested on potato plants using geNorm software. Results from the three experimental conditions indicated that ef1alpha was the most stable among the seven tested. The expression of the other housekeeping genes tested varied upon stress. In parallel, a study of the variability of expression of hsp20.2, shown to be implicated in late blight stress, was realized. The relative quantification of the hsp20.2 gene varied according to the internal control and the number of internal controls used, thus highlighting the importance of the choice of internal controls in such experiments.

  14. The use of biotic and abiotic components of Red Sea coastal areas as indicators of ecosystem health.

    Science.gov (United States)

    Omar, Wael A; Saleh, Yousef S; Marie, Mohamed-Assem S

    2016-03-01

    A biomonitoring study was conducted using some biotic (Pomadasys hasta and Lutjanus russellii fish) and abiotic (water and sediment) components of the Red Sea coast of Hodeida, Yemen Republic along two polluted sites (Al-Dawar beach and Urj village) in comparison to a reference site (Al-Nukhailah beach). The studied fish biomarkers included hepatosomatic index (HSI), condition factor (K), scaled mass index (SMI), catalase, glutathione-S-transferase (GST), malondialdehyde (MDA), total protein and albumin. In addition, metals (Fe, Cu, Zn, Pb and Cd) concentrations in water and sediment were measured and sediment pollution assessment was carried out using contamination factor (CF), geoaccumulation index (Igeo), pollution load index (PLI) and enrichment factor (EF). The studied metals concentration in water and sediment samples showed significant increase among the polluted sites in comparison to the reference site. Sediment pollution assessment generally confirmed that Urj village was the most contaminated site followed by Al-Dawar beach. Catalase, GST and MDA proved to be the most responsive biomarkers with increased values of GST and MDA at sites influenced by agricultural, urban and industrial activities while catalase, HSI, K, SMI, total protein and albumin showed the opposite trend. This study recommends monitoring of sediment Igeo and EF values as well as SMI, catalase, GST and MDA as sensitive indicators of different anthropogenic activities and their effects on aquatic ecosystems under complex and different gradients of metal pollution. In addition, P. hasta proved to be more sensitive towards the detected pollution condition.

  15. Protein Synthesis Inhibition Activity by Strawberry Tissue Protein Extracts during Plant Life Cycle and under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Walther Faedi

    2013-07-01

    Full Text Available Ribosome-inactivating proteins (RIPs, enzymes that are widely distributed in the plant kingdom, inhibit protein synthesis by depurinating rRNA and many other polynucleotidic substrates. Although RIPs show antiviral, antifungal, and insecticidal activities, their biological and physiological roles are not completely understood. Additionally, it has been described that RIP expression is augmented under stressful conditions. In this study, we evaluated protein synthesis inhibition activity in partially purified basic proteins (hereafter referred to as RIP activity from tissue extracts of Fragaria × ananassa (strawberry cultivars with low (Dora and high (Record tolerance to root pathogens and fructification stress. Association between the presence of RIP activity and the crop management (organic or integrated soil, growth stage (quiescence, flowering, and fructification, and exogenous stress (drought were investigated. RIP activity was found in every tissue tested (roots, rhizomes, leaves, buds, flowers, and fruits and under each tested condition. However, significant differences in RIP distribution were observed depending on the soil and growth stage, and an increase in RIP activity was found in the leaves of drought-stressed plants. These results suggest that RIP expression and activity could represent a response mechanism against biotic and abiotic stresses and could be a useful tool in selecting stress-resistant strawberry genotypes.

  16. Timing of the terrestrial Permian-Triassic boundary biotic crisis:Implications from U-Pb dating of authigenic zircons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Late Permian to Early Triassic transition represents one of the most important Phanerozoic mass extinction episodes. The cause of this event is still in debate between catastrophic and gradual mechanisms. This study uses the U-Pb method on zircons from the uppermost Permian/lowermost Triassic clay deposits at Chahe (Guizhou Province, SW China) to examine time constraints for this event. The results of both this and previous studies show that the ages of Bed 68a and 68c (the upper clay bed of the terrestrial Permian-Triassic boundary (PTB)) respectively are 252.6±2.8 and 247.5±2.8 Ma. This age (within the margin of error) almost accords with the upper clay bed (Bed 28) age of Meishan and the eruption age of Tunguss Basalt, and is so far the most accurate age obtained from terrestrial PTB. The claystone of Bed 68 was formed in the earliest Triassic. The biotic crisis occurred at nearly the same time in terrestrial and marine environments during Permian-Triassic interval; however the extinction patterns and processes are different. The extinction pattern of the terrestrial plants shows a major decline at the PTB after long-term evolution, followed by a retarded extinction of the relicts in the earliest Triassic.

  17. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  18. Biotic mortality factors affecting emerald ash borer (Agrilus planipennis) are highly dependent on life stage and host tree crown condition.

    Science.gov (United States)

    Jennings, D E; Duan, J J; Shrewsbury, P M

    2015-10-01

    Emerald ash borer (EAB), Agrilus planipennis, is a serious invasive forest pest in North America responsible for killing tens to hundreds of millions of ash trees since it was accidentally introduced in the 1990 s. Although host-plant resistance and natural enemies are known to be important sources of mortality for EAB in Asia, less is known about the importance of different sources of mortality at recently colonized sites in the invaded range of EAB, and how these relate to host tree crown condition. To further our understanding of EAB population dynamics, we used a large-scale field experiment and life-table analyses to quantify the fates of EAB larvae and the relative importance of different biotic mortality factors at 12 recently colonized sites in Maryland. We found that the fates of larvae w