WorldWideScience

Sample records for behavioral sensitization induced

  1. Effects of ayahuasca on the development of ethanol-induced behavioral sensitization and on a post-sensitization treatment in mice.

    Science.gov (United States)

    Oliveira-Lima, A J; Santos, R; Hollais, A W; Gerardi-Junior, C A; Baldaia, M A; Wuo-Silva, R; Yokoyama, T S; Costa, J L; Malpezzi-Marinho, E L A; Ribeiro-Barbosa, P C; Berro, L F; Frussa-Filho, R; Marinho, E A V

    2015-04-01

    Hallucinogenic drugs were used to treat alcoholic patients in the past, and recent developments in the study of hallucinogens led to a renewal of interest regarding the application of these drugs in the treatment of addiction. In this scenario, accumulating evidence suggests that the hallucinogenic brew ayahuasca (Aya) may have therapeutic effects on substance abuse problems. We investigated the effects of Aya on spontaneous locomotor activity and ethanol(Eth)-induced hyperlocomotion and subsequent locomotor sensitization by a two-injection protocol. Additionally, we tested the effect of Aya on an 8-day counter-sensitization protocol to modify sensitized responses induced by a repeated treatment with Eth (1.8g/kg) for 8 alternate days. Aya showed high sensitivity in preventing the development of Eth-induced behavioral sensitization, attenuating it at all doses (30, 100, 200, 300 or 500 mg/kg) without modifying spontaneous locomotor activity. At the highest doses (300 and 500 mg/kg), Aya also showed selectivity to both acute and sensitized Eth responses. Finally, a counter-sensitization strategy with 100 or 300 mg/kg of Aya for 8 consecutive days after the establishment of Eth-induced behavioral sensitization was effective in blocking its subsequent expression on an Eth challenge. We demonstrated that Aya not only inhibits early behaviors associated with the initiation and development of Eth addiction, but also showed effectiveness in reversing long-term drug effects expression, inhibiting the reinstatement of Eth-induced behavioral sensitization when administered in the Eth-associated environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Contextual and behavioral control of antipsychotic sensitization induced by haloperidol and olanzapine.

    Science.gov (United States)

    Zhang, Chen; Li, Ming

    2012-02-01

    Repeated administration of haloperidol (HAL) and olanzapine (OLZ) causes a progressively enhanced disruption of the conditioned avoidance response (CAR) and a progressively enhanced inhibition of phencyclidine (PCP)-induced hyperlocomotion in rats (termed antipsychotic sensitization). Both actions are thought to reflect intrinsic antipsychotic activity. The present study examined the extent to which antipsychotic-induced sensitization in one model (e.g. CAR) can be transferred or maintained in another (e.g. PCP hyperlocomotion) as a means of investigating the contextual and behavioral controls of antipsychotic sensitization. Well-trained male Sprague-Dawley rats were first repeatedly tested in the CAR or the PCP (3.2 mg/kg, subcutaneously) hyperlocomotion model under HAL or OLZ for 5 consecutive days. Then they were switched to the other model and tested for the expression of sensitization. Finally, all rats were switched back to the original model and retested for the expression of sensitization. Repeated HAL or OLZ treatment progressively disrupted avoidance responding and decreased PCP-induced hyperlocomotion, indicating a robust sensitization. When tested in a different model, rats previously treated with HAL or OLZ did not show a stronger inhibition of CAR-induced or PCP-induced hyperlocomotion than those treated with these drugs for the first time; however, they did show such an effect when tested in the original model in which they received repeated antipsychotic treatment. These findings suggest that the expression of antipsychotic sensitization is strongly influenced by the testing environment and/or selected behavioral response under certain experimental conditions. Distinct contextual cues and behavioral responses may develop an association with unconditional drug effects through a Pavlovian conditioning process. They may also serve as occasion setters to modulate the expression of sensitized responses. As antipsychotic sensitization mimics the clinical

  3. Rapid and Persistent Suppression of Feeding Behavior Induced by Sensitization Training in "Aplysia"

    Science.gov (United States)

    Acheampong, Ama; Kelly, Kathleen; Shields-Johnson, Maria; Hajovsky, Julie; Wainwright, Marcy; Mozzachiodi, Riccardo

    2012-01-01

    In "Aplysia," noxious stimuli induce sensitization of defensive responses. However, it remains largely unknown whether such stimuli also alter nondefensive behaviors. In this study, we examined the effects of noxious stimuli on feeding. Strong electric shocks, capable of inducing sensitization, also led to the suppression of feeding. The use of…

  4. Contextual and behavioral control of antipsychotic sensitization induced by haloperidol and olanzapine

    Science.gov (United States)

    Zhang, Chen; Li, Ming

    2011-01-01

    Repeated administration of haloperidol and olanzapine causes a progressively enhanced disruption of conditioned avoidance response (CAR) and a progressively enhanced inhibition of phencyclidine (PCP)-induced hyperlocomotion in rats (termed antipsychotic sensitization). Both actions are thought to reflect intrinsic antipsychotic activity. The present study examined to the extent to which antipsychotic-induced sensitization in one model (e.g. CAR) can be transferred or maintained in another (e.g. PCP hyperlocomotion) as a means of investigating the contextual and behavioral controls of antipsychotic sensitization. Well-trained male Sprague-Dawley rats were first repeatedly tested in the CAR or PCP (3.2 mg/kg, sc) hyperlocomotion model under haloperidol or olanzapine for five consecutive days. Then they were switched to the other model and tested for the expression of sensitization. Finally, all rats were switched back to the original model and retested for the expression of sensitization. Repeated haloperidol or olanzapine treatment progressively disrupted avoidance responding and decreased PCP-induced hyperlocomotion, indicating a robust sensitization. When tested in a different model, rats previously treated with haloperidol or olanzapine did not show a stronger inhibition of CAR or PCP-induced hyperlocomotion than those treated with these drugs for the first time; however, they did show such an effect when tested in the original model in which they received repeated antipsychotic treatment. These findings suggest that the expression of antipsychotic sensitization is strongly influenced by the testing environment and/or selected behavioral response under certain experimental conditions. Distinct contextual cues and behavioral responses may enter an association with unconditional drug effects via a Pavlovian conditioning process. They may also serve as occasion-setters to modulate the expression of sensitized responses. Because antipsychotic sensitization mimics

  5. Palmitoylethanolamide attenuates cocaine-induced behavioral sensitization and conditioned place preference in mice.

    Science.gov (United States)

    Zambrana-Infantes, Emma; Rosell Del Valle, Cristina; Ladrón de Guevara-Miranda, David; Galeano, Pablo; Castilla-Ortega, Estela; Rodríguez De Fonseca, Fernando; Blanco, Eduardo; Santín, Luis Javier

    2018-03-01

    Cocaine addiction is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking behaviors. Previous studies have demonstrated that cocaine, as well as other drugs of abuse, alters the levels of lipid-based signaling molecules, such as N-acylethanolamines (NAEs). Moreover, brain levels of NAEs have shown sensitivity to cocaine self-administration and extinction training in rodents. Given this background, the aim of this study was to investigate the effects of repeated or acute administration of palmitoylethanolamide (PEA), an endogenous NAE, on psychomotor sensitization and cocaine-induced contextual conditioning. To this end, the potential ability of repeated PEA administration (1 or 10 mg/kg, i.p.) to modulate the acquisition of cocaine-induced behavioral sensitization (BS) and conditioned place preference (CPP) was assessed in male C57BL/6J mice. In addition, the expression of cocaine-induced BS and CPP following acute PEA administration were also studied. Results showed that repeated administration of both doses of PEA were able to block the acquisition of cocaine-induced BS. Furthermore, acute administration of both doses of PEA was able to abolish the expression of BS, while the highest dose also abolished the expression of cocaine-induced CPP. Taken together, these results indicate that exogenous administration of PEA attenuated psychomotor sensitization, while the effect of PEA in cocaine-induced CPP depended on whether PEA was administered repeatedly or acutely. These findings could be relevant to understand the role that NAEs play in processes underlying the development and maintenance of cocaine addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Acute total sleep deprivation potentiates amphetamine-induced locomotor-stimulant effects and behavioral sensitization in mice.

    Science.gov (United States)

    Saito, Luis P; Fukushiro, Daniela F; Hollais, André W; Mári-Kawamoto, Elisa; Costa, Jacqueline M; Berro, Laís F; Aramini, Tatiana C F; Wuo-Silva, Raphael; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2014-02-01

    It has been demonstrated that a prolonged period (48 h) of paradoxical sleep deprivation (PSD) potentiates amphetamine (AMP)-induced behavioral sensitization, an animal model of addiction-related neuroadaptations. In the present study, we examined the effects of an acute short-term deprivation of total sleep (TSD) (6h) on AMP-induced behavioral sensitization in mice and compared them to the effects of short-term PSD (6 h). Three-month-old male C57BL/6J mice underwent TSD (experiment 1-gentle handling method) or PSD (experiment 2-multiple platforms method) for 6 h. Immediately after the sleep deprivation period, mice were tested in the open field for 10 min under the effects of saline or 2.0 mg/kg AMP. Seven days later, to assess behavioral sensitization, all of the mice received a challenge injection of 2.0 mg/kg AMP and were tested in the open field for 10 min. Total, peripheral, and central locomotion, and grooming duration were measured. TSD, but not PSD, potentiated the hyperlocomotion induced by an acute injection of AMP and this effect was due to an increased locomotion in the central squares of the apparatus. Similarly, TSD facilitated the development of AMP-induced sensitization, but only in the central locomotion parameter. The data indicate that an acute period of TSD may exacerbate the behavioral effects of AMP in mice. Because sleep architecture is composed of paradoxical and slow wave sleep, and 6-h PSD had no effects on AMP-induced hyperlocomotion or sensitization, our data suggest that the deprivation of slow wave sleep plays a critical role in the mechanisms that underlie the potentiating effects of TSD on both the acute and sensitized addiction-related responses to AMP. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Post-sensitization treatment with rimonabant blocks the expression of cocaine-induced behavioral sensitization and c-Fos protein in mice.

    Science.gov (United States)

    Marinho, Eduardo A V; Oliveira-Lima, Alexandre J; Yokoyama, Thais S; Santos-Baldaia, Renan; Ribeiro, Luciana T C; Baldaia, Marilia A; da Silva, Raphael Wuo; Hollais, Andre Willian; Talhati, Fernanda; Longo, Beatriz Monteiro; Berro, Lais Fernanda; Frussa-Filho, Roberto

    2017-05-01

    CB1 receptor antagonists have been shown to prevent acute and long-term behavioral effects of cocaine. Here we evaluate the effectiveness of the CB1 receptor antagonist rimonabant to modify sensitized responses to cocaine. Mice were treated with saline or cocaine injections in a 15-day intermittent sensitization treatment and subsequently treated with either vehicle, 1 or 10mg/kg rimonabant in the drug-associated environment for 8 consecutive days. Animals were then challenged with saline and cocaine in the open-field apparatus on subsequent days to evaluate the expression of conditioned and sensitized effects to cocaine. c-Fos protein expression was evaluated in the nucleus accumbens (NAcc), ventral tegmental area (VTA), basolateral amygdala (BLA), medial prefrontal cortex (mPFC) and caudate-putamen (CPu) after the last (cocaine) challenge. Previous treatment with 10mg/kg rimonabant blocked the expression of conditioned hyperlocomotion and behavioral sensitization to cocaine, but not acute cocaine-induced hyperlocomotion. These behavioral effects were accompanied by significant changes in c-Fos expression in the brain reward system. Chronic cocaine sensitization blunted a subsequent acute cocaine-induced increase in c-Fos protein in the NAcc, effect that was reversed by previous treatment with rimonabant. Treatment with 10mg/kg rimonabant also attenuated the significant increase in c-Fos expression in the CPu, mPFC and BLA induced by previous chronic sensitization with cocaine. Our findings add to the evidence that drugs targeting CB1 receptors are good candidates for the treatment of cocaine abuse and provide further insights into the mechanisms underlying endocannabinoid signaling within the brain reward system in the context of cocaine abuse. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Testing environment shape differentially modulates baseline and nicotine-induced changes in behavior: Sex differences, hypoactivity, and behavioral sensitization.

    Science.gov (United States)

    Illenberger, J M; Mactutus, C F; Booze, R M; Harrod, S B

    2018-02-01

    In those who use nicotine, the likelihood of dependence, negative health consequences, and failed treatment outcomes differ as a function of gender. Women may be more sensitive to learning processes driven by repeated nicotine exposure that influence conditioned approach and craving. Sex differences in nicotine's influence over overt behaviors (i.e. hypoactivity or behavioral sensitization) can be examined using passive drug administration models in male and female rats. Following repeated intravenous (IV) nicotine injections, behavioral sensitization is enhanced in female rats compared to males. Nonetheless, characteristics of the testing environment also mediate rodent behavior following drug administration. The current experiment used a within-subjects design to determine if nicotine-induced changes in horizontal activity, center entries, and rearing displayed by male and female rats is detected when behavior was recorded in round vs. square chambers. Behaviors were recorded from each group (males-round: n=19; males-square: n=18; females-square: n=19; and females-round: n=19) immediately following IV injection of saline, acute nicotine, and repeated nicotine (0.05mg/kg/injection). Prior to nicotine treatment, sex differences were apparent only in round chambers. Following nicotine administration, the order of magnitude for the chamber that provided enhanced detection of hypoactivity or sensitization was contingent upon both the dependent measure under examination and the animal's biological sex. As such, round and square testing chambers provide different, and sometimes contradictory, accounts of how male and female rats respond to nicotine treatment. It is possible that a central mechanism such as stress or cue sensitivity is impacted by both drug exposure and environment to drive the sex differences observed in the current experiment. Until these complex relations are better understood, experiments considering sex differences in drug responses should balance

  9. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats.

    Science.gov (United States)

    Jerabek, Pavel; Havlickova, Tereza; Puskina, Nina; Charalambous, Chrysostomos; Lapka, Marek; Kacer, Petr; Sustkova-Fiserova, Magdalena

    2017-11-01

    An increasing number of studies over the past few years have demonstrated ghrelin's role in alcohol, cocaine and nicotine abuse. However, the role of ghrelin in opioid effects has rarely been examined. Recently we substantiated in rats that ghrelin growth hormone secretagogue receptors (GHS-R1A) appear to be involved in acute opioid-induced changes in the mesolimbic dopaminergic system associated with the reward processing. The aim of the present study was to ascertain whether a ghrelin antagonist (JMV2959) was able to inhibit morphine-induced biased conditioned place preference and challenge-morphine-induced accumbens dopaminergic sensitization and behavioral sensitization in adult male rats. In the place preference model, the rats were conditioned for 8 days with morphine (10 mg/kg s.c.). On the experimental day, JMV2959 (3 and 6 mg/kg i.p.) or saline were administered before testing. We used in vivo microdialysis to determine changes of dopamine and its metabolites in the nucleus accumbens in rats following challenge-morphine dose (5 mg/kg s.c.) with or without JMV2959 (3 and 6 mg/kg i.p.) pretreatment, administered on the 12th day of spontaneous abstinence from morphine repeated treatment (5 days, 10-40 mg/kg). Induced behavioral changes were simultaneously monitored. Pretreatment with JMV2959 significantly and dose dependently reduced the morphine-induced conditioned place preference and significantly and dose dependently reduced the challenge-morphine-induced dopaminergic sensitization and affected concentration of by-products associated with dopamine metabolism in the nucleus accumbens. JMV2959 pretreatment also significantly reduced challenge-morphine-induced behavioral sensitization. Our present data suggest that GHS-R1A antagonists deserve to be further investigated as a novel treatment strategy for opioid addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A single social defeat induces short-lasting behavioral sensitization to amphetamine

    NARCIS (Netherlands)

    de Jong, JG; Wasilewski, M; van der Vegt, BJ; Buwalda, B; Koolhaas, Jacob

    2005-01-01

    Repeated, intermittent exposure to psychostimulants or stressors results in long-lasting, progressive sensitization of the behavioral effects of a subsequent amphetamine (AMPH) challenge. Although behavioral sensitization has also been observed following a single drug pretreatment, the sensitizing

  11. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Proteasome phosphorylation regulates cocaine-induced sensitization.

    Science.gov (United States)

    Gonzales, Frankie R; Howell, Kristin K; Dozier, Lara E; Anagnostaras, Stephan G; Patrick, Gentry N

    2018-04-01

    Repeated exposure to cocaine produces structural and functional modifications at synapses from neurons in several brain regions including the nucleus accumbens. These changes are thought to underlie cocaine-induced sensitization. The ubiquitin proteasome system plays a crucial role in the remodeling of synapses and has recently been implicated in addiction-related behavior. The ATPase Rpt6 subunit of the 26S proteasome is phosphorylated by Ca 2+ /calmodulin-dependent protein kinases II alpha at ser120 which is thought to regulate proteasome activity and distribution in neurons. Here, we demonstrate that Rpt6 phosphorylation is involved in cocaine-induced locomotor sensitization. Cocaine concomitantly increases proteasome activity and Rpt6 S120 phosphorylation in cultured neurons and in various brain regions of wild type mice including the nucleus accumbens and prefrontal cortex. In contrast, cocaine does not increase proteasome activity in Rpt6 phospho-mimetic (ser120Asp) mice. Strikingly, we found a complete absence of cocaine-induced locomotor sensitization in the Rpt6 ser120Asp mice. Together, these findings suggest a critical role for Rpt6 phosphorylation and proteasome function in the regulation cocaine-induced behavioral plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents.

    Science.gov (United States)

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2008-01-01

    Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. We have investigated the role of the MMP/TIMP system in methamphetamine (METH) dependence in rodents, in which the remodeling of neural circuits may be crucial. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in MMP-2/-9/TIMP-2 activity in the brain. An antisense TIMP-2 oligonucleotide enhanced the sensitization, which was associated with a potentiation of the METH-induced release of dopamine in the nucleus accumbens (NAc). MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference (CPP), a measure of the rewarding effect of a drug, and reduced the METH-increased dopamine release in the NAc. In MMP-2- and MMP-9-deficient mice, METH-induced behavioral sensitization and CPP as well as dopamine release were attenuated. The MMP/TIMP system may be involved in METH-induced sensitization and reward by regulating extracellular dopamine levels.

  14. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  15. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  16. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization

    Science.gov (United States)

    Adkins, Daniel E.; McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Souza, Renan P.; Crowley, James J.; Sullivan, Patrick F.; van den Oord, Edwin J.C.G.; Beardsley, Patrick M.

    2014-01-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In the present study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate < 0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent methamphetamine levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. PMID:24034544

  17. Effect of melatonin on methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Black, M D; Ali, S F

    1998-06-01

    Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH-induced

  18. High levels of wheel running protect against behavioral sensitization to cocaine.

    Science.gov (United States)

    Renteria Diaz, Laura; Siontas, Dora; Mendoza, Jose; Arvanitogiannis, Andreas

    2013-01-15

    Although there is no doubt that the direct action of stimulant drugs on the brain is necessary for sensitization to their behavioral stimulating effects, several experiments indicate that drug action is often not sufficient to produce sensitization. There is considerable evidence that many individual characteristics and experiential variables can modulate the behavioral and neural changes that are seen following repeated exposure to stimulant drugs. In the work presented here, we examined whether chronic wheel running would modulate behavioral sensitization to cocaine, and whether any such influence was contingent on individual differences in wheel running. We found that a 5- or 10-week experience with wheel running protects against behavioral sensitization to cocaine but only in animals with a natural tendency to run the most. Understanding the mechanism underlying the modulating effect of wheel running on behavioral sensitization may have important implications for future studies on the link between drug-induced behavioral and neural adaptations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Radiation-induced increases in sensitivity of cataleptic behavior to haloperidol: possible involvement of prostaglandins

    International Nuclear Information System (INIS)

    Joseph, J.A.; Kandasamy, S.B.; Hunt, W.A.; Dalton, T.K.; Stevens, S.

    1988-01-01

    The effects of radiation exposure on haloperidol-induced catalepsy were examined in order to determine whether elevated prostaglandins, through an action on dopaminergic autoreceptors, could be involved in the radiation-induced increase in the potency of this neuroleptic. Cataleptic behavior was examined in animals irradiated with various doses of gamma photons (1-150 Gy) and pretreated with a subthreshold dose of haloperidol (0.1 mg/kg). This approach was chosen to maximize any synergistic effects of radiation and haloperidol. After irradiation with doses less than or equal to 30 Gy, the combined treatment of haloperidol and radiation produced catalepsy, whereas neither treatment alone had an effect. This observed catalepsy could be blocked with prior administration of indomethacin, a prostaglandin synthesis inhibitor. Animals exposed to doses of radiation less than or equal to 50 Gy and no haloperidol, however, displayed apparent catalepsy. This effect was also antagonized by indomethacin. Prostaglandins can induce catalepsy and when administered in subthreshold doses along with subthreshold doses of haloperidol, catalepsy was observed. In order to assess a possible action of prostaglandins and radiation on dopaminergic activity, the functioning of striatal dopaminergic autoreceptors was examined by determining the effects of varying concentrations of haloperidol on the K+-evoked release of dopamine from striatal slices obtained from parallel groups of animals treated as above. Results indicated that sensitivity to haloperidol increased (higher K+-evoked dopamine release) in slices from irradiated or prostaglandin-treated animals and that this increase in sensitivity was blocked by indomethacin

  20. The involvement of brain-derived neurotrophic factor in 3,4-methylenedioxymethamphetamine-induced place preference and behavioral sensitization.

    Science.gov (United States)

    Mouri, Akihiro; Noda, Yukihiro; Niwa, Minae; Matsumoto, Yurie; Mamiya, Takayoshi; Nitta, Atsumi; Yamada, Kiyofumi; Furukawa, Shoei; Iwamura, Tatsunori; Nabeshima, Toshitaka

    2017-06-30

    3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of ASF (a Compound of Traditional Chinese Medicine on Behavioral Sensitization Induced by Ethanol and Conditioned Place Preference in Mice

    Directory of Open Access Journals (Sweden)

    Da-chao Wen

    2014-01-01

    Full Text Available ASF composed by semen and epimedium herbal is a traditional plant compound that is widely used in the treatment of insomnia. Studies have shown that saponins and flavonoids contained in semen can significantly decrease the content of excitatory neurotransmitter Glu in mice. And the total flavone of YinYangHuo can increase the release of GABA in the anterior periventricular system of rat and increase the affinity of GABA for the receptors GABAA. It can be inferred that their synergism may have effect on the neurotransmitter that causes behavioral sensitization and conditioned place preference in experimental animals and affects their drinking behaviors, which is the starting point of this research. The present study found that ASF can inhibit development and expression of behavioral sensitization induced by ethanol and the development of CPP in mice. We demonstrate the inhibition of ASF on behavioral sensitization partly due to its effect on the mesolimbic neurotransmitter system, including decreasing level of DA and Glu and increasing the content of GABA. It suggested that the ASF may have pharmacological effects in the treatment of alcohol addiction.

  2. Environmental novelty and illumination modify ethanol-induced open-field behavioral effects in mice.

    Science.gov (United States)

    Fukushiro, Daniela F; Benetti, Liliane F; Josino, Fabiana S; Oliveira, Gabriela P; Fernandes, Maiara deM; Saito, Luis P; Uehara, Regina A; Wuo-Silva, Raphael; Oliveira, Camila S; Frussa-Filho, Roberto

    2010-03-01

    Both spontaneous and drug-induced animal behaviors can be modified by exposure to novel stimuli or different levels of environmental illumination. However, research into how these factors specifically impact ethanol (ETH)-induced behavioral effects is currently lacking. We aimed to investigate the effects of these two factors, considered separately or in conjunction, on ETH-induced acute hyperlocomotor effect and its sensitization in adult male Swiss mice. Mice were placed in a novel or familiar open-field under normal light (200 lx) or low light (9 lx) immediately after receiving an ip injection of either 1.8 g/kg ETH or saline (SAL). After 7 days, all animals received an ip challenge injection of 1.8 g/kg ETH, and were placed in the open-field under the same light conditions described above. Novelty increased central locomotion and decreased grooming, while low light increased grooming. Acute ETH administration increased both total and peripheral locomotion and these effects were potentiated by low light. Both low light and novelty were able to facilitate ETH-induced locomotor sensitization, which was detected by the central locomotion parameter. However, there was no synergism between the effects of these two modulating factors on ETH-induced behavioral sensitization. We conclude that both the acute behavioral effects of ETH and behavioral sensitization induced by previous administration of this drug can be critically modified by environmental factors. In addition, our study stresses the importance of using different behavioral parameters to evaluate the interaction between environmental factors and ETH effects. (c) 2009 Elsevier Inc. All rights reserved.

  3. Behavioral sensitization after repeated formaldehyde exposure in rats.

    Science.gov (United States)

    Sorg, B A; Hochstatter, T

    1999-01-01

    Multiple chemical sensitivity (MCS) is a phenomenon whereby individuals report increased sensitivity to chemicals in the environment, and attribute their sensitivities to prior exposure to the same or often structurally unrelated chemicals. A leading hypothesis suggests that MCS is akin to behavioral sensitization observed in rodents after repeated exposure to drugs of abuse or environmental stressors. Sensitization occurring within limbic circuitry of the central nervous system (CNS) may explain the multisymptom complaints in individuals with MCS. The present studies represent the continuing development of an animal model for MCS, the basis of which is the CNS sensitization hypothesis. Three behaviors were assessed in rats repeatedly exposed to formaldehyde (Form) inhalation. In the first series of experiments, rats were given high-dose Form exposure (11 parts per million [ppm]; 1 h/day x 7 days) or low-dose Form exposure (1 ppm; either 1 h/day x 7 days or 1 h/day x 5 days/week x 4 weeks). Within a few days after discontinuing daily Form, cocaine-induced locomotor activity was elevated after high-dose Form or 20 days of low-dose Form inhalation. Approximately 1 month later, cocaine-induced locomotor activity remained significantly elevated in the 20-day Form-exposed rats. The second experiment assessed whether prior exposure to Form (20 days, as above) would alter the ability to condition to an odor (orange oil) paired with footshock. The results suggested a tendency to increase the conditioned fear response to the odor but not the context of the footshock box, and a decreased tendency to extinguish the conditioned fear response to odor. The third experiment examined whether CNS sensitization to daily cocaine or stress would alter subsequent avoidance responding to odor (Form). Daily cocaine significantly elevated approach responses to Form, while daily stress pretreatment produced a trend in the opposite direction, producing greater avoidance of Form. Preliminary

  4. Importance of associative learning processes for one-trial behavioral sensitization of preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Pothier, Alexandria G; Der-Ghazarian, Taleen; Herbert, Matthew S; Kozanian, Olga O; Castellanos, Kevin A; Flores, Ana T

    2011-10-01

    During adulthood, associative learning is necessary for the expression of one-trial behavioral sensitization; however, it is uncertain whether the same associative processes are operative during the preweanling period. Two strategies were used to assess the importance of associative learning for one-trial behavioral sensitization of preweanling rats. In the initial experiments, we varied both the sequence and time interval between presentation of the conditioned stimulus (CS, novel environment) and unconditioned stimulus (US, cocaine). In the final experiment, we determined whether electroconvulsive shock-induced retrograde amnesia would disrupt one-trial behavioral sensitization. Results showed that robust-sensitized responding was apparent regardless of the sequence in which cocaine and the novel environment (the presumptive CS) were presented. Varying the time between CS and US presentation (0, 3, or 6 h) was also without effect. Results from experiment 3 showed that single or multiple electroconvulsive shock treatments did not alter the expression of the sensitized response. Therefore, these data indicated that one-trial behavioral sensitization of preweanling rats was exclusively mediated by nonassociative mechanisms and that associative processes did not modulate sensitized responding. These findings are in contrast to what is observed during adulthood, as adult rats exhibit one-trial behavioral sensitization only when associative processes are operative.

  5. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    Science.gov (United States)

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could

  6. Behavioral effects of endogenous or exogenous estradiol and progesterone on cocaine sensitization in female rats

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.F. [Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Neurociência Comportamental, Porto Alegre, RS, Brasil, Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Couto-Pereira, N.S. [Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS, Brasil, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Freese, L.; Costa, P.A.; Caletti, G.; Bisognin, K.M. [Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Neurociência Comportamental, Porto Alegre, RS, Brasil, Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Nin, M.S. [Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Neurociência Comportamental, Porto Alegre, RS, Brasil, Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Instituto Porto Alegre, Centro Metodista do Sul, Curso de Farmácia, Porto Alegre, RS, Brasil, Curso de Farmácia, Centro Metodista do Sul, Instituto Porto Alegre, Porto Alegre, RS (Brazil); Gomez, R. [Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Farmacologia, Porto Alegre, RS, Brasil, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Barros, H.M.T. [Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Neurociência Comportamental, Porto Alegre, RS, Brasil, Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2014-05-09

    Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse.

  7. Behavioral effects of endogenous or exogenous estradiol and progesterone on cocaine sensitization in female rats

    International Nuclear Information System (INIS)

    Souza, M.F.; Couto-Pereira, N.S.; Freese, L.; Costa, P.A.; Caletti, G.; Bisognin, K.M.; Nin, M.S.; Gomez, R.; Barros, H.M.T.

    2014-01-01

    Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse

  8. Behavioral Sensitization to the Disinhibition Effect of Ethanol Requires the Dopamine/Ecdysone Receptor in Drosophila

    Directory of Open Access Journals (Sweden)

    Gissel P. Aranda

    2017-08-01

    Full Text Available Male flies under the influence of ethanol display disinhibited courtship, which is augmented with repeated ethanol exposures. We have previously shown that dopamine is important for this type of ethanol-induced behavioral sensitization but the underlying mechanism is unknown. Here we report that DopEcR, an insect G-protein coupled receptor that binds to dopamine and steroid hormone ecdysone, is a major receptor mediating courtship sensitization. Upon daily ethanol administration, dumb and damb mutant males defective in D1 (dDA1/DopR1 and D5 (DAMB/DopR2 dopamine receptors, respectively, showed normal courtship sensitization; however, the DopEcR-deficient der males exhibited greatly diminished sensitization. der mutant males nevertheless developed normal tolerance to the sedative effect of ethanol, indicating a selective function of DopEcR in chronic ethanol-associated behavioral plasticity. DopEcR plays a physiological role in behavioral sensitization since courtship sensitization in der males was reinstated when DopEcR expression was induced during adulthood but not during development. When examined for the DopEcR’s functional site, the der mutant’s sensitization phenotype was fully rescued by restored DopEcR expression in the mushroom body (MB αβ and γ neurons. Consistently, we observed DopEcR immunoreactivity in the MB calyx and lobes in the wild-type Canton-S brain, which was barely detectable in the der brain. Behavioral sensitization to the locomotor-stimulant effect has been serving as a model for ethanol abuse and addiction. This is the first report elucidating the mechanism underlying behavioral sensitization to another stimulant effect of ethanol.

  9. Behavioral effects of endogenous or exogenous estradiol and progesterone on cocaine sensitization in female rats

    Directory of Open Access Journals (Sweden)

    M.F. Souza

    2014-06-01

    Full Text Available Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL, estradiol (0.05 mg/mL, progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse.

  10. Chronic exposure to MDMA (Ecstasy elicits behavioral sensitization in rats but fails to induce cross-sensitization to other psychostimulants

    Directory of Open Access Journals (Sweden)

    Swann Alan C

    2006-01-01

    Full Text Available Abstract Background The recreational use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy among adolescents and young adults has become increasingly prevalent in recent years. While evidence suggests that the long-term consequences of MDMA use include neurodegeneration to serotonergic and, possibly, dopaminergic pathways, little is known about susceptibility, such as behavioral sensitization, to MDMA. Methods The objectives of this study were to examine the dose-response characteristics of acute and chronic MDMA administration in rats and to determine whether MDMA elicits behavioral sensitization and whether it cross-sensitizes with amphetamine and methylphenidate. Adult male Sprague-Dawley rats were randomly divided into three MDMA dosage groups (2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg and a saline control group (N = 9/group. All three MDMA groups were treated for six consecutive days, followed by a 5-day washout, and subsequently re-challenged with their respective doses of MDMA (day 13. Rats were then given an additional 25-day washout period, and re-challenged (day 38 with similar MDMA doses as before followed by either 0.6 mg/kg amphetamine or 2.5 mg/kg methylphenidate on the next day (day 39. Open-field locomotor activity was recorded using a computerized automated activity monitoring system. Results Acute injection of 2.5 mg/kg MDMA showed no significant difference in locomotor activity from rats given saline (control group, while animals receiving acute 5.0 mg/kg or 10.0 mg/kg MDMA showed significant increases in locomotor activity. Rats treated chronically with 5.0 mg/kg and 10.0 mg/kg MDMA doses exhibited an augmented response, i.e., behavioral sensitization, on experimental day 13 in at least one locomotor index. On experimental day 38, all three MDMA groups demonstrated sensitization to MDMA in at least one locomotor index. Amphetamine and methylphenidate administration to MDMA-sensitized animals did not elicit any significant change

  11. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  12. First evidence that drugs of abuse produce behavioral sensitization and cross-sensitization in planarians

    Science.gov (United States)

    Rawls, Scott M.; Patil, Tavni; Yuvasheva, Ekaternia; Raffa, Robert B.

    2010-01-01

    Behavioral sensitization in mammals, including humans, is sensitive to factors such as administration route, testing environment, and pharmacokinetic confounds, unrelated to the drugs themselves, that are difficult to eliminate. Simpler animals less susceptible to these confounding influences may be advantageous substitutes for studying sensitization. We tested this hypothesis by determining if planarians display sensitization and cross-sensitization to cocaine and glutamate. Planarian hyperactivity was quantified as the number of C-like hyperkinesias during a 1-min drug exposure. Planarians exposed initially to cocaine (or glutamate) on day 1 were challenged with cocaine (or glutamate) after 2 or 6 days of abstinence. Acute cocaine or glutamate produced concentration-related hyperactivity. Cocaine or glutamate challenge after 2 and 6 days of abstinence enhanced the hyperactivity, indicating the substances produced planarian behavioral sensitization (pBS). Cross-sensitization experiments showed that cocaine produced greater hyperactivity in planarians previously exposed to glutamate than in glutamate-naïve planarians, and vice versa. Behavioral responses were pharmacologically selective because neither scopolamine nor caffeine produced pBS despite causing hyperactivity after initial administration, and acute GABA did not cause hyperactivity. Demonstration of pharmacologically-selective behavioral sensitization in planarians suggests these flatworms represent a sensitive in vivo model to study cocaine behavioral sensitization and to screen potential abuse-deterrent therapeutics. PMID:20512030

  13. Behavioral Control and Reward Sensitivity in Adolescents' Risk Taking Behavior: A Longitudinal TRAILS Study.

    Science.gov (United States)

    Peeters, Margot; Oldehinkel, Tineke; Vollebergh, Wilma

    2017-01-01

    Neurodevelopmental theories of risk behavior hypothesize that low behavioral control in combination with high reward sensitivity explains adolescents' risk behavior. However, empirical studies examining this hypothesis while including actual risk taking behavior in adolescence are lacking. In this study we tested whether the imbalance between behavioral control and reward sensitivity underlies risk taking behavior in adolescence, using a nationally representative longitudinal sample of 715 adolescents, of which 66% revealed an increased risk for mental health problems. To assess behavioral control at age 11 we used both self-report (effortful control) as well as behavioral measures of cognitive control (i.e., working memory and response inhibition). Reward sensitivity was assessed with the Bangor Gambling Task. The main finding of this study was that effortful control at age 11 was the best predictor of risk taking behavior (alcohol and cannabis use) at age 16, particularly among adolescents who were more reward sensitive. Risk taking behavior in adolescents might be explained by relatively weak behavioral control functioning combined with high sensitivity for reward.

  14. Maternal BIS Sensitivity, Overprotective Parenting, and Children’s Internalizing Behaviors

    Science.gov (United States)

    Kiel, Elizabeth J.; Maack, Danielle J.

    2012-01-01

    Although sensitivity to the Behavioral Inhibition System within Gray’s (1970) reinforcement sensitivity theory relates to individuals’ own depressive and anxious symptomatology, less is known about how parental BIS sensitivity relates to early indicators of internalizing problems in young children. Moreover, the extent to which this parental characteristic relates to parenting behavior, and children’s internalizing problems above and beyond parenting, remains unknown. The current study assessed maternal BIS sensitivity, overprotective parenting, and toddlers’ internalizing behaviors in a sample of 91 mothers while controlling for mothers’ own internalizing symptomatology. Heightened BIS sensitivity related to both overprotective parenting and internalizing behaviors. Overprotective parenting partially mediated the relation between BIS sensitivity and children’s internalizing behaviors, although BIS sensitivity maintained a marginal relation to internalizing behaviors. Maternal BIS sensitivity and toddler internalizing behaviors may represent a shared disposition towards inhibition that is somewhat accounted for by overprotective parenting. PMID:22904590

  15. Methyltestosterone-induced changes in electro-olfactogram responses and courtship behaviors of cyprinids.

    Science.gov (United States)

    Belanger, Rachelle M; Pachkowski, Melanie D; Stacey, Norm E

    2010-01-01

    In the tinfoil barb (Barbonymus schwanenfeldii; family Cyprinidae), we previously found that increased olfactory sensitivity to a female prostaglandin pheromone could induce sexual behavior display in juvenile fish treated with androgens. Here, we determined if this phenomenon is widespread among cyprinid fishes by adding 17alpha-methyltestosterone (MT) to aquaria containing juveniles of 4 cyprinid species (tinfoil barbs; redtail sharkminnows, Epalzeorhynchos bicolor; goldfish, Carassius auratus; zebrafish, Danio rerio) and then using electro-olfactogram (EOG) recordings and behavioral assays to determine if androgen treatment enhances pheromone detection and male sex behaviors. In all 4 cyprinids, MT treatment increased the magnitudes and sensitivities of EOG response to prostaglandins and, consistent with our initial study on tinfoil barbs, did not affect EOG responses to the free and conjugated steroid to which each species is most sensitive. In zebrafish, EOG responses to prostaglandins were similar in MT-treated juveniles and adult males, whereas responses of control (ethanol exposed) fish were similar to those of adult females. Finally, as previously observed in tinfoil barbs, MT treatment of juvenile redtail sharkminnows increased courtship behaviors (nuzzling and quivering) with a stimulus fish. We conclude that androgen-induced increase in olfactory responsiveness to pheromonal prostaglandins is common among the family Cyprinidae. This phenomenon will help us unravel the development of sexually dimorphic olfactory-mediated behavior.

  16. Effects of Electroacupuncture on Methamphetamine-Induced Behavioral Changes in Mice

    Directory of Open Access Journals (Sweden)

    Tsung-Jung Ho

    2017-01-01

    Full Text Available Methamphetamine (METH is a major drug of abuse worldwide, and no efficient therapeutic strategies for treating METH addiction are currently available. Continuous METH use can cause behavioral upregulation or psychosis. The dopaminergic pathways, particularly the neural circuitry from the ventral tegmental area to the nucleus accumbens (NAc, have a critical role in this behavioral stage. Acupuncture has been used for treating diseases in China for more than 2000 years. According to a World Health Organization report, acupuncture can be used to treat several functional disorders, including substance abuse. In addition, acupuncture is effective against opioids addiction. In this study, we used electroacupuncture (EA for treating METH-induced behavioral changes and investigated the possible therapeutic mechanism. Results showed that EA at the unilateral Zhubin (KI9–Taichong (LR3 significantly reduced METH-induced behavioral sensitization and conditioned place preference. In addition, both dopamine and tyrosine hydroxylase (TH levels decreased but monoamine oxidase A (MAO-A levels increased in the NAc of the METH-treated mice receiving EA compared with those not receiving EA. EA may be a useful nonpharmacological approach for treating METH-induced behavioral changes, probably because it reduces the METH-induced TH expression and dopamine levels and raises MAO-A expression in the NAc.

  17. Noise sensitivity: symptoms, health status, illness behavior and co-occurring environmental sensitivities.

    NARCIS (Netherlands)

    Baliatsas, C.; Kamp, I. van; Swart, W.; Hooiveld, M.; Yzermans, J.

    2016-01-01

    Epidemiological evidence on the symptomatic profile, health status and illness behavior of people with subjective sensitivity to noise is still scarce. Also, it is unknown to what extent noise sensitivity co-occurs with other environmental sensitivities such as multi-chemical sensitivity and

  18. Noise sensitivity: Symptoms, health status, illness behavior and co-occurring environmental sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Baliatsas, Christos, E-mail: c.baliatsas@nivel.nl [Netherlands Institute for Health Services Research (NIVEL), Utrecht (Netherlands); Kamp, Irene van, E-mail: irene.van.kamp@rivm.nl [National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Swart, Wim, E-mail: wim.swart@rivm.nl [National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Hooiveld, Mariëtte, E-mail: m.hooiveld@nivel.nl [Netherlands Institute for Health Services Research (NIVEL), Utrecht (Netherlands); Yzermans, Joris, E-mail: J.Yzermans@nivel.nl [Netherlands Institute for Health Services Research (NIVEL), Utrecht (Netherlands)

    2016-10-15

    Epidemiological evidence on the symptomatic profile, health status and illness behavior of people with subjective sensitivity to noise is still scarce. Also, it is unknown to what extent noise sensitivity co-occurs with other environmental sensitivities such as multi-chemical sensitivity and sensitivity to electromagnetic fields (EMF). A cross-sectional study performed in the Netherlands, combining self-administered questionnaires and electronic medical records of non-specific symptoms (NSS) registered by general practitioners (GP) allowed us to explore this further. The study sample consisted of 5806 participants, drawn from 21 general practices. Among participants, 722 (12.5%) responded “absolutely agree” to the statement “I am sensitive to noise”, comprising the high noise-sensitive (HNS) group. Compared to the rest of the sample, people in the HNS group reported significantly higher scores on number and duration of self-reported NSS, increased psychological distress, decreased sleep quality and general health, more negative symptom perceptions and higher prevalence of healthcare contacts, GP-registered NSS and prescriptions for antidepressants and benzodiazepines. These results remained robust after adjustment for demographic, residential and lifestyle characteristics, objectively measured nocturnal noise exposure from road-traffic and GP-registered morbidity. Co-occurrence rates with other environmental sensitivities varied between 9% and 50%. Individuals with self-declared sensitivity to noise are characterized by high prevalence of multiple NSS, poorer health status and increased illness behavior independently of noise exposure levels. Findings support the notion that different types of environmental sensitivities partly overlap. - Highlights: • People with self-reported noise sensitivity experience multiple non-specific symptoms. • They also report comparatively poorer health and increased illness behavior. • Co-occurrence with other

  19. Noise sensitivity: Symptoms, health status, illness behavior and co-occurring environmental sensitivities

    International Nuclear Information System (INIS)

    Baliatsas, Christos; Kamp, Irene van; Swart, Wim; Hooiveld, Mariëtte; Yzermans, Joris

    2016-01-01

    Epidemiological evidence on the symptomatic profile, health status and illness behavior of people with subjective sensitivity to noise is still scarce. Also, it is unknown to what extent noise sensitivity co-occurs with other environmental sensitivities such as multi-chemical sensitivity and sensitivity to electromagnetic fields (EMF). A cross-sectional study performed in the Netherlands, combining self-administered questionnaires and electronic medical records of non-specific symptoms (NSS) registered by general practitioners (GP) allowed us to explore this further. The study sample consisted of 5806 participants, drawn from 21 general practices. Among participants, 722 (12.5%) responded “absolutely agree” to the statement “I am sensitive to noise”, comprising the high noise-sensitive (HNS) group. Compared to the rest of the sample, people in the HNS group reported significantly higher scores on number and duration of self-reported NSS, increased psychological distress, decreased sleep quality and general health, more negative symptom perceptions and higher prevalence of healthcare contacts, GP-registered NSS and prescriptions for antidepressants and benzodiazepines. These results remained robust after adjustment for demographic, residential and lifestyle characteristics, objectively measured nocturnal noise exposure from road-traffic and GP-registered morbidity. Co-occurrence rates with other environmental sensitivities varied between 9% and 50%. Individuals with self-declared sensitivity to noise are characterized by high prevalence of multiple NSS, poorer health status and increased illness behavior independently of noise exposure levels. Findings support the notion that different types of environmental sensitivities partly overlap. - Highlights: • People with self-reported noise sensitivity experience multiple non-specific symptoms. • They also report comparatively poorer health and increased illness behavior. • Co-occurrence with other

  20. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence.

    Science.gov (United States)

    Beloate, Lauren N; Omrani, Azar; Adan, Roger A; Webb, Ian C; Coolen, Lique M

    2016-09-21

    Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ΔFosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ΔFosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior. Instead, CNO prevented sexual experience-induced cross-sensitization of amphetamine CPP, ΔFosB in the NAc and medial prefrontal cortex, and decreases in VTA dopamine soma size. Expression of hm4D-mCherry was specific to VTA dopamine cells and CNO blocked excitation and mating-induced cFos expression in VTA dopamine cells. These findings provide direct evidence that VTA dopamine activation is not required for initiation or performance of sexual behavior. Instead, VTA dopamine directly contributes to increased vulnerability for drug use following loss of natural reward by causing neuroplasticity in the mesolimbic pathway during the natural reward experience. Drugs of abuse act on the neural pathways that mediate natural reward learning and memory. Exposure to natural reward behaviors can alter subsequent drug-related reward. Specifically, experience with sexual behavior

  1. Behavioral control and reward sensitivity in adolescents’ risk taking behavior : A longitudinal TRAILS study

    NARCIS (Netherlands)

    Peeters, M.; Oldehinkel, Tineke; Vollebergh, W.A.M.

    2017-01-01

    Neurodevelopmental theories of risk behavior hypothesize that low behavioral control in combination with high reward sensitivity explains adolescents' risk behavior. However, empirical studies examining this hypothesis while including actual risk taking behavior in adolescence are lacking. In this

  2. Behavioral Control and Reward Sensitivity in Adolescents' Risk Taking Behavior : A Longitudinal TRAILS Study

    NARCIS (Netherlands)

    Peeters, Margot; Oldehinkel, Tineke; Vollebergh, Wilma

    2017-01-01

    Neurodevelopmental theories of risk behavior hypothesize that low behavioral control in combination with high reward sensitivity explains adolescents' risk behavior. However, empirical studies examining this hypothesis while including actual risk taking behavior in adolescence are lacking. In this

  3. The effect of developmental exposure to the fungicide triadimefon on behavioral sensitization to triadimefon during adulthood

    International Nuclear Information System (INIS)

    Reeves, Ruth; Thiruchelvam, Mona; Richfield, Eric K.; Cory-Slechta, Deborah A.

    2004-01-01

    Triadimefon (TDF) is a triazole fungicide that acts as an indirect dopamine (DA) agonist by binding to the dopamine transporter (DAT) and increasing levels of synaptic DA. Studies in this laboratory have found that repeated dosing with TDF in adult mice leads to the development and robust expression of behavioral sensitization, a response mediated by dopaminergic and glutamatergic neurotransmitter systems, and causing long-term changes in dopaminergic function. Few studies have focused on the potential for TDF to be a developmental neurotoxicant. As such, the objective of the present study was to determine whether postnatal exposure to TDF would permanently alter DA systems and thereby influence TDF-induced expression of behavioral sensitization during adulthood. Male C57BL/6 mice were dosed intraperitoneally (i.p.) with 25 mg/kg TDF (TDF25), or oil (veh) from postnatal day (PND) 8 to 21. At 8-9 weeks of age, mice were split into four groups and treated with 75 mg/kg TDF (TDF75) or vehicle twice a week for a total of seven injections, with locomotor activity measured immediately after each injection. After a 2-week withdrawal period, mice were further split into eight groups, and challenged with TDF75 or vehicle to test for the expression of behavioral sensitization. Postnatal TDF exposure attenuated both the induction and expression of TDF-induced vertical but not horizontal sensitization in adults. Postnatal TDF exposure also produced long-term decreases in basal striatal dihydroxyphenylacetic acid (DOPAC) levels and nucleus accumbens shell DAT binding. These results indicate for the first time that TDF may be considered an environmental risk factor for developmental dopaminergic neurotoxicity

  4. Less is more: prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior.

    Science.gov (United States)

    Kawa, Alex B; Bentzley, Brandon S; Robinson, Terry E

    2016-10-01

    Contemporary animal models of cocaine addiction focus on increasing the amount of drug consumption to produce addiction-like behavior. However, another critical factor is the temporal pattern of consumption, which in humans is characterized by intermittency, both within and between bouts of use. To model this, we combined prolonged access to cocaine (∼70 days in total) with an intermittent access (IntA) self-administration procedure and used behavioral economic indicators to quantify changes in motivation for cocaine. IntA produced escalation of intake, a progressive increase in cocaine demand (incentive-sensitization), and robust drug- and cue-induced reinstatement of drug-seeking behavior. We also asked whether rats that vary in their propensity to attribute incentive salience to reward cues (sign-trackers [STs] vs. goal-trackers [GTs]) vary in the development of addiction-like behavior. Although STs were more motivated to take cocaine after limited drug experience, after IntA, STs and GTs no longer differed on any measure of addiction-like behavior. Exposure to large quantities of cocaine is not necessary for escalation of intake, incentive-sensitization, or other addiction-like behaviors (IntA results in far less total cocaine consumption than 'long access' procedures). Also, the ST phenotype may increase susceptibility to addiction, not because STs are inherently susceptible to incentive-sensitization (perhaps all individuals are at risk), but because this phenotype promotes continued drug use, subjecting them to incentive-sensitization. Thus, the pharmacokinetics associated with the IntA procedure are especially effective in producing a number of addiction-like behaviors and may be valuable for studying associated neuroadaptations and for assessing individual variation in vulnerability.

  5. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.

    Science.gov (United States)

    Sutton, Blair C; Opp, Mark R

    2014-03-01

    Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased

  6. Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation.

    Science.gov (United States)

    Morón, José A; Gullapalli, Srinivas; Taylor, Chirisse; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-03-01

    Opiate addiction is a chronic, relapsing behavioral disorder where learned associations that develop between the abused opiate and the environment in which it is consumed are brought about through Pavlovian (classical) conditioning processes. However, the signaling mechanisms/pathways regulating the mechanisms that underlie the responses to opiate-associated cues or the development of sensitization as a consequence of repeated context-independent administration of opiates are unknown. In this study we examined the phosphorylation levels of various classic signaling molecules in brain regions implicated in addictive behaviors after acute and repeated morphine administration. An unbiased place conditioning protocol was used to examine changes in phosphorylation that are associated with (1) the expression of the rewarding effects of morphine and (2) the sensitization that develops to this effect. We also examined the effects of a delta-receptor antagonist on morphine-induced conditioned behavior and on the phosphorylation of classic signaling molecules in view of data showing that blockade of delta-opioid receptor (deltaOR) prevents the development of sensitization to the rewarding effects of morphine. We find that CREB phosphorylation is specifically induced upon the expression of a sensitized response to morphine-induced conditioned behavior in brain areas related to memory consolidation, such as the hippocampus and cortex. A similar effect is also observed, albeit to a lesser extent, in the case of the GluR1 subunit of AMPA glutamate receptor. These increases in the phosphorylation levels of CREB and pGluR1 are significantly blocked by pretreatment with a deltaOR antagonist. These results indicate a critical role for phospho-CREB, AMPA, and deltaOR activities in mediating the expression of a sensitized response to morphine-dependent conditioned behavior.

  7. γ-Rays-induced synthesis of hydrogels of vinyl ethers with stimuli-sensitive behavior

    International Nuclear Information System (INIS)

    Nam, I.K.; Mun, G.A.; Urkimbaeva, P.I.; Nurkeeva, Z.S.

    2003-01-01

    γ-Radiation method was applied to synthesize novel water-soluble and water-swelling polymers. Vinyl ether of ethylene glycol (VEEG), vinyl butyl (VBE) and vinyl isobutyl (VIBE) ethers were used as monomers. The synthesis of VEEG-VBE and VEEG-VIBE copolymers was carried out in a wide range of feed composition and absorbed dose. It was found that the hydrophobic-hydrophilic balance of the copolymers could be delicately varied by the copolymer composition as well as by the chemical structure of the alkyl substitute in the hydrophobic moiety. The copolymers exhibit thermo-sensitive behavior in water solutions. The value of transition temperature is considerably decreased at a higher concentration of the hydrophobic component in the copolymer composition

  8. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond.

    Science.gov (United States)

    Belda, Xavier; Fuentes, Silvia; Daviu, Nuria; Nadal, Roser; Armario, Antonio

    2015-01-01

    Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.

  9. Prenatal exposure to an NMDA receptor antagonist, MK-801 reduces density of parvalbumin-immunoreactive GABAergic neurons in the medial prefrontal cortex and enhances phencyclidine-induced hyperlocomotion but not behavioral sensitization to methamphetamine in postpubertal rats.

    Science.gov (United States)

    Abekawa, Tomohiro; Ito, Koki; Nakagawa, Shin; Koyama, Tsukasa

    2007-06-01

    Neurodevelopmental deficits of parvalbumin-immunoreactive gamma-aminobutyric acid (GABA)ergic interneurons in prefrontal cortex have been reported in schizophrenia. Glutamate influences the proliferation of this type of interneuron by an N-methyl-D-aspartate (NMDA)-receptor-mediated mechanism. The present study hypothesized that prenatal blockade of NMDA receptors would disrupt GABAergic neurodevelopment, resulting in differences in effects on behavioral responses to a noncompetitive NMDA antagonist, phencyclidine (PCP), and a dopamine releaser, methamphetamine (METH). GABAergic neurons were immunohistochemically stained with parvalbumin antibody. Psychostimulant-induced hyperlocomotion was measured using an infrared sensor. Prenatal exposure (E15-E18) to the NMDA receptor antagonist MK-801 reduced the density of parvalbumin-immunoreactive neurons in rat medial prefrontal cortex on postnatal day 63 (P63) and enhanced PCP-induced hyperlocomotion but not the acute effects of METH on P63 or the development of behavioral sensitization. Prenatal exposure to MK-801 reduced the number of parvalbumin-immunoreactive neurons even on postnatal day 35 (P35) and did not enhance PCP-induced hyperlocomotion, the acute effects of METH on P35, or the development of behavioral sensitization to METH. These findings suggest that prenatal blockade of NMDA receptors disrupts GABAergic neurodevelopment in medial prefrontal cortex, and that this disruption of GABAergic development may be related to the enhancement of the locomotion-inducing effect of PCP in postpubertal but not juvenile offspring. GABAergic deficit is unrelated to the effects of METH. This GABAergic neurodevelopmental disruption and the enhanced PCP-induced hyperlocomotion in adult offspring prenatally exposed to MK-801 may prove useful as a new model of the neurodevelopmental process of pathogenesis of treatment-resistant schizophrenia via an NMDA-receptor-mediated hypoglutamatergic mechanism.

  10. Social defeat-induced anhedonia: effects on operant sucrose-seeking behavior

    Directory of Open Access Journals (Sweden)

    Danai eRiga

    2015-08-01

    Full Text Available Reduced capacity to experience pleasure, also known as anhedonia, is a key feature of the depressive state and is associated with poor disease prognosis and treatment outcome. Various behavioral readouts (e.g. reduced sucrose intake have been employed in animal models of depression as a measure of anhedonia. However, several aspects of anhedonia are poorly represented within the repertoire of current preclinical assessments. We recently adopted the social defeat-induced persistent stress (SDPS paradigm that models a maintained depressive-like state in the rat, including social withdrawal and deficits in short-term spatial memory. Here we investigated whether SDPS elicited persistent deficits in natural reward evaluation, as part of anhedonia. We examined cue-paired operant sucrose self-administration, enabling us to study acquisition, motivation, extinction and relapse to sucrose seeking following SDPS. Furthermore, we addressed whether guanfacine, an α2-adrenergic agonist that reduces stress-triggered maladaptive behavioral responses to drugs of abuse, could relief from SDPS-induced anhedonia. SDPS, consisting of 5 social defeat episodes followed by prolonged (≥8 weeks social isolation, did not affect sucrose consumption during acquisition of self-administration. However, it strongly enhanced the motivational drive to acquire a sucrose reward in progressive ratio training. Moreover, SDPS induced initial resilience to extinction and rendered animals more sensitive to cue-induced reinstatement of sucrose-seeking. Guanfacine treatment attenuated SDPS-induced motivational overdrive and limited reinstatement of sucrose seeking, normalizing behavior to control levels. Together, our data indicate that long after the termination of stress exposure, SDPS induces guanfacine-reversible deficits in evaluation of a natural reward. Importantly, the SDPS-triggered anhedonia reflects many aspects of the human phenotype, including impaired motivation and

  11. A single exposure to immobilization causes long-lasting pituitary-adrenal and behavioral sensitization to mild stressors.

    Science.gov (United States)

    Belda, Xavier; Fuentes, Silvia; Nadal, Roser; Armario, Antonio

    2008-11-01

    We have previously reported that a single exposure to immobilization (IMO) in rats causes a long-term desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. Since there are reports showing that a single exposure to other stressors causes sensitization of the HPA response to heterotypic stressors and increases anxiety-like behavior, we studied in the present work the long-term effects of IMO on behavioral and HPA response to mild superimposed stressors. In Experiments 1 and 2, adult male Sprague-Dawley rats were subjected to 2 h of IMO and then exposed for 5 min to the elevated plus-maze (EPM) at 1, 3 or 7 days after IMO. Blood samples were taken at 15 min after initial exposure to the EPM. Increases in anxiety-like behavior and HPA responsiveness to the EPM were found at all times post-IMO. Changes in the resting levels of HPA hormones did not explain the enhanced HPA responsiveness to the EPM (Experiment 3). In Experiments 4 and 5, we studied the effects of a single exposure to a shorter session of IMO (1 h) on behavioral and HPA responses to a brief and mild session of foot-shocks done 10 days after IMO. Neither previous IMO nor exposure to shocks in control rats modified behavior in the EPM. However, a brief session of shocks in previously IMO-exposed rats dramatically increased anxiety in the EPM. HPA and freezing responses to shocks were similar in control and previous IMO groups. Therefore, a single exposure to IMO appears to induce long-lasting HPA and behavioral sensitization to mild superimposed stressors, although the two responses are likely to be at least partially independent. Long-term effects of IMO on the susceptibility to stress-induced endocrine and emotional disturbances may be relevant to the characterization of animal models of post-traumatic stress.

  12. Do sensitive parents foster kind children, or vice versa? Bidirectional influences between children's prosocial behavior and parental sensitivity.

    Science.gov (United States)

    Newton, Emily K; Laible, Deborah; Carlo, Gustavo; Steele, Joel S; McGinley, Meredith

    2014-06-01

    Bidirectional theories of social development have been around for over 40 years (Bell, 1968), yet they have been applied primarily to the study of antisocial development. In the present study, the reciprocal relationship between parenting behavior and children's socially competent behaviors were examined. Using the National Institute of Child Health and Development Study of Early Child Care data set (NICHD Early Child Care Research Network, 2005), bidirectional relationships between parental sensitivity and children's prosocial behavior were modeled using latent variables in structural equation modeling for mothers and fathers, separately. Children and their parents engaged in structured interactions when children were 54-month-olds, 3rd graders, and 5th graders, and these interactions were coded for parental sensitivity. At 3rd, 5th, and 6th grades, teachers and parents reported on children's prosocial behavior. Parental education and child gender were entered as covariates in the models. The results provide support for a bidirectional relationship between children's prosocial behavior and maternal sensitivity (but not paternal sensitivity) in middle childhood. The importance of using a bidirectional approach to examine the development of social competence is emphasized. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Neurotensin Agonist Attenuates Nicotine Potentiation to Cocaine Sensitization

    Directory of Open Access Journals (Sweden)

    Paul Fredrickson

    2014-01-01

    Full Text Available Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a “gateway drug”. Neurotensin (NT is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13 analog, blocks behavioral sensitization (an animal model for psychostimulant addiction to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  14. Behavioral cross-sensitization between testosterone and fenproporex in adolescent and adult rats.

    Science.gov (United States)

    Conceição, C Q; Engi, S A; Cruz, F C; Planeta, C S

    2017-11-17

    The abuse of psychoactive drugs is considered a global health problem. During the last years, a relevant number of studies have investigated the relationship between anabolic-androgenic steroids (AAS) and other psychoactive drugs. AAS, such as testosterone, can cause a dependence syndrome that shares many features with the classical dependence to psychoactive substances. Pre-clinical evidence shows that there are interactions between testosterone and psychoactive drugs, such as cocaine. However, few studies have been performed to investigate the effect of repeated testosterone treatment on behavioral effects of amphetamine derivatives, such as fenproporex. The purpose of the present study was to investigate the effects of repeated testosterone administration on fenproporex-induced locomotor activity in adolescent and adult rats. Adolescent male Wistar rats were injected with testosterone (10 mg/kg sc for 10 days). After 3 days, animals received an acute injection of fenproporex (3.0 mg/kg ip) and the locomotor activity was recorded during 40 min. Thirty days later, the same animals received the same treatment with testosterone followed by a fenproporex challenge injection as described above. Our results demonstrated that repeated testosterone induced behavioral sensitization to fenproporex in adolescent but not in adult rats. These findings suggest that repeated AAS treatment might increase the dependence vulnerability to amphetamine and its derivatives in adolescent rats.

  15. Applying incentive sensitization models to behavioral addiction

    DEFF Research Database (Denmark)

    Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne

    2014-01-01

    The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical...... symptoms and underlying neurobiology. We examine the relevance of this theory for Gambling Disorder and point to predictions for future studies. The theory promises a significant contribution to the understanding of behavioral addiction and opens new avenues for treatment....

  16. Differential Effects of Intermittent versus Continuous Haloperidol Treatment throughout Adolescence on Haloperidol Sensitization and Social Behavior in Adulthood

    Science.gov (United States)

    Gao, Jun; Li, Ming

    2014-01-01

    Animal work on the behavioral effects of antipsychotic treatment suggests that different dosing regimens could affect drug sensitivity differently, with an intermittent treatment regimen tending to cause a sensitization effect, while a continuous treatment causing a tolerance. In this study, we explored how haloperidol (HAL) sensitization induced throughout adolescence and tested in adulthood was differentially impacted by these two dosing regimens in the conditioned avoidance response (CAR) test. We also examined how these two dosing regiments affected social interaction and social memory in adulthood. Male adolescent Sprague-Dawley rats were treated with HAL via either osmotic minipump (HAL-0.25 CONT; 0.25 mg/kg/day, n = 14) or daily injection (HAL-0.05 INT; 0.05 mg/kg/injection/day, sc, n = 14), or sterile water (n = 14) from postnatal days (PND) 44 to 71. HAL sensitization was assessed in a challenge test in which all rats were injected with HAL (0.025 and 0.05 mg/kg, sc) on PND 80 and PND 82. Two days later, half of the rats from each group (n = 7/group) were assayed in two 4-trial social interaction tests in which a subject rat was given four 5-min social encounters with a familiar or novel juvenile rat (PND 35–40) at 10 min intervals. Another half were tested in a quinpirole-induced hyperlocomotion assay to assess the potential HAL-induced change in D2-mediated function. Results show that only the intermittent dosing group under the HAL 0.05 mg/kg challenge showed a robust sensitization effect as rats in this group made significantly fewer avoidance responses than those in the vehicle and HAL-0.25 CONT groups. Adolescent HAL treatment did not affect social behavior and social memory, as rats from all 3 groups exhibited a similar level of social interaction and showed a similar level of sensitivity to the change of social stimuli. Similarly, adolescent HAL treatment also did not produce a long-lasting change in D2 function, as all 3 groups exhibited a

  17. Behaviors induced or disrupted by complex partial seizures.

    Science.gov (United States)

    Leung, L S; Ma, J; McLachlan, R S

    2000-09-01

    We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.

  18. Environment-sensitive behavior of fluorescent molecular rotors

    Directory of Open Access Journals (Sweden)

    Theodorakis Emmanuel A

    2010-09-01

    Full Text Available Abstract Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer (TICT states upon photoexcitation. When intramolecular twisting occurs, the molecular rotor returns to the ground state either by emission of a red-shifted emission band or by nonradiative relaxation. The emission properties are strongly solvent-dependent, and the solvent viscosity is the primary determinant of the fluorescent quantum yield from the planar (non-twisted conformation. This viscosity-sensitive behavior gives rise to applications in, for example, fluid mechanics, polymer chemistry, cell physiology, and the food sciences. However, the relationship between bulk viscosity and the molecular-scale interaction of a molecular rotor with its environment are not fully understood. This review presents the pertinent theories of the rotor-solvent interaction on the molecular level and how this interaction leads to the viscosity-sensitive behavior. Furthermore, current applications of molecular rotors as microviscosity sensors are reviewed, and engineering aspects are presented on how measurement accuracy and precision can be improved.

  19. Stress Sensitization of Ethanol Withdrawal-Induced Reduction in Social Interaction: Inhibition by CRF-1 and Benzodiazepine Receptor Antagonists and a 5-HT1A-Receptor Agonist

    OpenAIRE

    Breese, George R; Knapp, Darin J; Overstreet, David H

    2004-01-01

    Repeated withdrawals from chronic ethanol sensitize the withdrawal-induced reduction in social interaction behaviors. This study determined whether stress might substitute for repeated withdrawals to facilitate withdrawal-induced anxiety-like behavior. When two 1-h periods of restraint stress were applied at 1-week intervals to rats fed control diet, social interaction was reduced upon withdrawal from a subsequent 5-day exposure to ethanol diet. Neither this ethanol exposure alone nor exposur...

  20. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  1. How victim sensitivity leads to uncooperative behavior via expectancies of injustice

    Directory of Open Access Journals (Sweden)

    Simona eMaltese

    2016-01-01

    Full Text Available According to the Sensitivity-to-mean-intentions (SeMI model, dispositional victim sensitivity involves a suspicious mindset that is activated by situational cues and guides subsequent information processing and behavior like a schema. Study 1 tested whether victim-sensitive persons are more prone to form expectancies of injustice in ambiguous situations and whether these expectancies mediate the relationship between victim sensitivity and cooperation behavior in a trust game. Results show an indirect effect of victim sensitivity on cooperation after unfair treatment (vs control condition, mediated by expectancies of injustice. In Study 2 we directly manipulated the tendency to form expectancies of injustice in ambiguous situations to test for causality. Results confirmed that the readiness to expect unjust outcomes led to lower cooperation, compared to a control condition. These findings provide direct evidence that expectancy tendencies are implicated in elevated victim sensitivity and are of theoretical and practical relevance.

  2. Radiation induced variations in photoperiod-sensitivity, thermo-sensitivity and the number of days to heading in rice

    International Nuclear Information System (INIS)

    Hsieh, S.C.

    1975-01-01

    Radiation induced semi-dwarf mutants derived from five japonica type varieties of rice were studied with regard to their photoperiod-sensitivity, thermo-sensitivity and the number of days to heading. The experiment was carried out under the natural conditions at Taipei. The coefficient of photoperiod-sensitivity and thermo-sensitivity as developed by Oka (1954) were estimated for the mutants in comparison with their original varieties. It was observed that these various physiological characters could be altered easily by mutations. Mutants showed wider ranges in both positive and negative directions than their original varieties in all physiological characters studied. Even though heading date depends on both photoperiod-sensitivity and thermo-sensitivity, it was estimated which of the two contributed more to the induced earliness in each mutant. This offers a basis for selecting early maturing lines of rice

  3. Behavioral cross-sensitization between testosterone and fenproporex in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    C.Q. Conceição

    2017-11-01

    Full Text Available The abuse of psychoactive drugs is considered a global health problem. During the last years, a relevant number of studies have investigated the relationship between anabolic-androgenic steroids (AAS and other psychoactive drugs. AAS, such as testosterone, can cause a dependence syndrome that shares many features with the classical dependence to psychoactive substances. Pre-clinical evidence shows that there are interactions between testosterone and psychoactive drugs, such as cocaine. However, few studies have been performed to investigate the effect of repeated testosterone treatment on behavioral effects of amphetamine derivatives, such as fenproporex. The purpose of the present study was to investigate the effects of repeated testosterone administration on fenproporex-induced locomotor activity in adolescent and adult rats. Adolescent male Wistar rats were injected with testosterone (10 mg/kg sc for 10 days. After 3 days, animals received an acute injection of fenproporex (3.0 mg/kg ip and the locomotor activity was recorded during 40 min. Thirty days later, the same animals received the same treatment with testosterone followed by a fenproporex challenge injection as described above. Our results demonstrated that repeated testosterone induced behavioral sensitization to fenproporex in adolescent but not in adult rats. These findings suggest that repeated AAS treatment might increase the dependence vulnerability to amphetamine and its derivatives in adolescent rats.

  4. Progesterone regulates corticosterone elevation and alterations in spatial memory and exploratory behavior induced by stress in Wistar rats

    OpenAIRE

    Diaz-Burke, Yolanda; Universidad de Guadalajara; Valencia-Alfonso, Carlos Eduardo; Netherlands Institute for Neuroscience; González-Sandoval, Claudia Elena; Universidad de Guadalajara; Huerta, Miguel; Centro Universitario de Investigaciones Biomédicas, Universidad de Colima; Trujillo, Xóchitl; Centro Universitario de Investigaciones Biomédicas, Universidad de Colima; Diaz, Lourdes; Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco; García-Estrada, Joaquín; Centro de Investigación Biomédica de Occidente, IMSS-Jalisco; Luquín, Sonia; Universidad de Guadalajara

    2010-01-01

    The hippocampus is sensitive to high levels of glucocorticoids. During stress response, it suffers biochemical and cellular changes that affect functions such as spatial memory and exploratory behavior. In this study, we analyzed the influence of the neurosteroid progesterone (PROG), on stress-induced changes in urinary corticosterone (CORT) levels, spatial memory and exploratory behavior. Castrated adult male rats were implanted with PROG or vehicle (VEHI), and then exposed to chronic stres...

  5. Behavioral sensitivity of temporally modulated striatal neurons

    Directory of Open Access Journals (Sweden)

    George ePortugal

    2011-07-01

    Full Text Available Recent investigations into the neural mechanisms that underlie temporal perception have revealed that the striatum is an important contributor to interval timing processes, and electrophysiological recording studies have shown that the firing rates of striatal neurons are modulated by the time in a trial at which an operant response is made. However, it remains unclear whether striatal firing rate modulations are related to the passage of time alone (i.e., whether temporal information is represented in an abstract manner independent of other attributes of biological importance, or whether this temporal information is embedded within striatal activity related to co-occurring contextual information, such as motor behaviors. This study evaluated these two hypotheses by recording from striatal neurons while rats performed a temporal production task. Rats were trained to respond at different nosepoke apertures for food reward under two simultaneously active reinforcement schedules: a variable-interval (VI-15 sec schedule and a fixed-interval (FI-15 sec schedule of reinforcement. Responding during a trial occurred in a sequential manner composing 3 phases; VI responding, FI responding, VI responding. The vast majority of task-sensitive striatal neurons (95% varied their firing rates associated with equivalent behaviors (e.g., periods in which their snout was held within the nosepoke across these behavioral phases, and 96% of cells varied their firing rates for the same behavior within a phase, thereby demonstrating their sensitivity to time. However, in a direct test of the abstract timing hypothesis, 91% of temporally modulated hold cells were further modulated by the overt motor behaviors associated with transitioning between nosepokes. As such, these data are inconsistent with the striatum representing time in an abstract’ manner, but support the hypothesis that temporal information is embedded within contextual and motor functions of the

  6. Mechanisms of chemotherapy-induced behavioral toxicities

    Directory of Open Access Journals (Sweden)

    Elisabeth G Vichaya

    2015-04-01

    Full Text Available While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms of chemotherapy include (i cognitive deficiencies such as problems with attention, memory and executive functioning; (ii fatigue and motivational deficit; and (iii neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  7. Differential response of nNOS knockout mice to MDMA ("ecstasy")- and methamphetamine-induced psychomotor sensitization and neurotoxicity.

    Science.gov (United States)

    Itzhak, Yossef; Anderson, Karen L; Ali, Syed F

    2004-10-01

    It has been shown that mice deficient in neuronal nitric oxide synthase (nNOS) gene are resistant to cocaine-induced psychomotor sensitization and methamphetamine (METH)-induced dopaminergic neurotoxicity. The present study was undertaken to investigate the hypothesis that nNOS has a major role in dopamine (DA)- but not serotonin (5-hydroxytryptamine; 5-HT)-mediated effects of psychostimulants. The response of nNOS knockout (KO) and wild-type (WT) mice to the psychomotor-stimulating and neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") and METH were investigated. Repeated administration of MDMA for 5 days resulted in psychomotor sensitization in both WT and nNOS KO mice, while repeated administration of METH caused psychomotor sensitization in WT but not in KO mice. Sensitization to both MDMA and METH was persistent for 40 days in WT mice, but not in nNOS KO mice. These findings suggest that the induction of psychomotor sensitization to MDMA and METH is NO independent and NO dependent, respectively, while the persistence of sensitization to both drugs is NO dependent. For the neurochemical studies, a high dose of MDMA caused marked depletion of 5-HT in several brain regions of both WT and KO mice, suggesting that the absence of the nNOS gene did not afford protection against MDMA-induced depletion of 5-HT. Striatal dopaminergic neurotoxicity caused by high doses of MDMA and METH in WT mice was partially prevented in KO mice administered with MDMA, but it was fully precluded in KO mice administered with METH. The differential response of nNOS KO mice to the behavioral and neurotoxic effects of MDMA and METH suggests that the nNOS gene is required for the expression and persistence of DA-mediated effects of METH and MDMA, while 5-HT-mediated effects of MDMA (induction of sensitization and 5-HT depletion) are not dependent on nNOS.

  8. Disclosure of sensitive behaviors across self-administered survey modes: a meta-analysis.

    Science.gov (United States)

    Gnambs, Timo; Kaspar, Kai

    2015-12-01

    In surveys, individuals tend to misreport behaviors that are in contrast to prevalent social norms or regulations. Several design features of the survey procedure have been suggested to counteract this problem; particularly, computerized surveys are supposed to elicit more truthful responding. This assumption was tested in a meta-analysis of survey experiments reporting 460 effect sizes (total N =125,672). Self-reported prevalence rates of several sensitive behaviors for which motivated misreporting has been frequently observed were compared across self-administered paper-and-pencil versus computerized surveys. The results revealed that computerized surveys led to significantly more reporting of socially undesirable behaviors than comparable surveys administered on paper. This effect was strongest for highly sensitive behaviors and surveys administered individually to respondents. Moderator analyses did not identify interviewer effects or benefits of audio-enhanced computer surveys. The meta-analysis highlighted the advantages of computerized survey modes for the assessment of sensitive topics.

  9. Sensitivity to apomorphine-induced yawning and hypothermia in rats eating standard or high-fat chow.

    Science.gov (United States)

    Baladi, Michelle G; Thomas, Yvonne M; France, Charles P

    2012-07-01

    Feeding conditions modify sensitivity to indirect- and direct-acting dopamine receptor agonists as well as the development of sensitization to these drugs. This study examined whether feeding condition affects acute sensitivity to apomorphine-induced yawning or changes in sensitivity that occur over repeated drug administration. Quinpirole-induced yawning was also evaluated to see whether sensitization to apomorphine confers cross-sensitization to quinpirole. Drug-induced yawning was measured in different groups of male Sprague Dawley rats (n = 6/group) eating high (34.3%) fat or standard (5.7% fat) chow. Five weeks of eating high-fat chow rendered otherwise drug-naïve rats more sensitive to apomorphine- (0.01-1.0 mg/kg, i.p.) and quinpirole- (0.0032-0.32 mg/kg, i.p.) induced yawning, compared with rats eating standard chow. In other rats, tested weekly with apomorphine, sensitivity to apomorphine-induced yawning increased (sensitization) similarly in rats with free access to standard or high-fat chow; conditioning to the testing environment appeared to contribute to increased yawning in both groups of rats. Food restriction decreased sensitivity to apomorphine-induced yawning across five weekly tests. Rats with free access to standard or high-fat chow and sensitized to apomorphine were cross-sensitized to quinpirole-induced yawning. The hypothermic effects of apomorphine and quinpirole were not different regardless of drug history or feeding condition. Eating high-fat chow or restricting access to food alters sensitivity to direct-acting dopamine receptor agonists (apomorphine, quinpirole), although the relative contribution of drug history and dietary conditions to sensitivity changes appears to vary among agonists.

  10. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  11. Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D(2) receptor agonists.

    Science.gov (United States)

    Nowak, Przemysław; Nitka, Dariusz; Kwieciński, Adam; Jośko, Jadwiga; Drab, Jacek; Pojda-Wilczek, Dorota; Kasperski, Jacek; Kostrzewa, Richard M; Brus, Ryszard

    2009-01-01

    To assess the possible modulatory effects of noradrenergic and serotoninergic neurons on dopaminergic neuronal activity, the noradrenergic and serotoninergic neurotoxins DSP-4 N-(2-chlorethyl)-N-ethyl-2-bromobenzylamine (50.0 mg/kg, sc) and 5,7-dihydroxytryptamine (5,7-DHT) (37.5 microg icv, half in each lateral ventricle), respectively, were administered toWistar rats on the first and third days of postnatal ontogeny, and dopamine (DA) agonist-induced behaviors were assessed in adulthood. At eight weeks, using an HPLC/ED technique, DSP-4 treatment was associated with a reduction in NE content of the corpus striatum (> 60%), hippocampus (95%), and frontal cortex (> 85%), while 5,7-DHT was associated with an 80-90% serotonin reduction in the same brain regions. DA content was unaltered in the striatum and the cortex. In the group lesioned with both DSP-4 and 5,7-DHT, quinpirole-induced (DA D(2) agonist) yawning, 7-hydroxy-DPAT-induced (DA D(3) agonist) yawning, and apomorphine-induced (non-selective DA agonist) stereotypies were enhanced. However, SKF 38393-induced (DA D(1) agonist) oral activity was reduced in the DSP-4 + 5,7-DHT group. These findings demonstrate that DA D(2)- and D(3)-agonist-induced behaviors are enhanced while DA D(1)-agonist-induced behaviors are suppressed in adult rats in which brain noradrenergic and serotoninergic innervation of the brain has largely been destroyed. This study indicates that noradrenergic and serotoninergic neurons have a great impact on the development of DA receptor reactivity (sensitivity).

  12. Ghrelin mediates stress-induced food-reward behavior in mice.

    Science.gov (United States)

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  13. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  14. Implication of cyclin-dependent kinase 5 in the development of psychological dependence on and behavioral sensitization to morphine.

    Science.gov (United States)

    Narita, Minoru; Shibasaki, Masahiro; Nagumo, Yasuyuki; Narita, Michiko; Yajima, Yoshinori; Suzuki, Tsutomu

    2005-06-01

    In the present study, we investigated the role of cyclin-dependent kinase 5 (cdk5) in the brain dynamics changed by repeated in vivo treatment with morphine. The level of phosphorylated-cdk5 was significantly increased in the cingulate cortex of mice showing the morphine-induced rewarding effect. Under these conditions, roscovitine, a cdk5 inhibitor, given intracerebroventricularly (i.c.v.) caused a dose-dependent and significant inhibition of the morphine-induced rewarding effect. In addition, the dose-response effect of the morphine-induced rewarding effect was dramatically attenuated in cdk5 heterozygous (+/-) knockout mice. Furthermore, the development of behavioral sensitization by intermittent administration of morphine was virtually abolished in cdk5 (+/-) mice. These findings suggest that the induction and/or activation of cdk5 are implicated in the development of psychological dependence on morphine.

  15. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Science.gov (United States)

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  16. Comparison of voiding function and nociceptive behavior in two rat models of cystitis induced by cyclophosphamide or acetone

    Science.gov (United States)

    Saitoh, Chikashi; Yokoyama, Hitoshi; Chancellor, Michael B.; de Groat, William C.; Yoshimura, Naoki

    2009-01-01

    Aims Nociceptive behavior and its relationship with bladder dysfunction were investigated in two cystitis models, which were induced by intraperitoneal (ip) injection of cyclophosphamide (CYP) or intravesical instillation of acetone, using freely moving, non-catheterized conscious rats. Methods Female Sprague-Dawley rats were used. Cystitis was induced by ip injection of CYP (100 and 200mg/kg) or intravesical instillation of acetone (10, 30 and 50%) via a polyethylene catheter temporarily inserted into the bladder through the urethra. Then the incidence of nociceptive behavior (immobility with decreased breathing rates) was scored. Voided urine was collected simultaneously and continuously to measure bladder capacity. The plasma extravasation in the bladder was quantified by an evans blue (EB) dye leakage technique. Results CYP (100mg/kg, ip) induced nociceptive behavior without affecting bladder capacity or EB concentration in the bladder. A higher dose of CYP (200mg/kg, ip) decreased bladder capacity and increased EB levels as well as nociceptive behavior. In contrast, intravesical instillation of acetone (30%) decreased bladder capacity and increased EB levels, but evoked nociceptive behavior less frequently compared with CYP-treated animals. In capsaicin pretreated rats, nociceptive behavior induced by CYP or acetone was reduced; however, the overall effects of CYP or acetone on bladder capacity and bladder EB levels were unaffected. Conclusions These results suggest that there is a difference in the induction process of nociceptive behavior and small bladder capacity after two different types of bladder irritation and that C-fiber sensitization is more directly involved in pain sensation than reduced bladder capacity. PMID:19618450

  17. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  18. High fat diet and food restriction differentially modify the behavioral effects of quinpirole and raclopride in rats.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2009-05-21

    Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.

  19. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  20. Women's finger sensitivity correlates with partnered sexual behavior but not solitary masturbation frequencies.

    Science.gov (United States)

    Brody, Stuart; Fischer, Agneta H; Hess, Ursula

    2008-01-01

    In a sample of 97 healthy Dutch female university students, women with greater finger tactile sensitivity (von Frey-type filaments) engaged more in partnered (but not solitary masturbation) sexual behavior. Orgasmic responses in the past 30 days were not correlated with finger sensitivity. Results are discussed in terms of differences between different sexual behaviors, as well as susceptibility to reinforcement, and psychoanalytic views of conversion hysteria.

  1. Does airborne nickel exposure induce nickel sensitization?

    Science.gov (United States)

    Mann, Eugen; Ranft, Ulrich; Eberwein, Georg; Gladtke, Dieter; Sugiri, Dorothee; Behrendt, Heidrun; Ring, Johannes; Schäfer, Torsten; Begerow, Jutta; Wittsiepe, Jürgen; Krämer, Ursula; Wilhelm, Michael

    2010-06-01

    Nickel is one of the most prevalent causes of contact allergy in the general population. This study focuses on human exposure to airborne nickel and its potential to induce allergic sensitization. The study group consisted of 309 children at school-starter age living in the West of Germany in the vicinity of two industrial sources and in a rural town without nearby point sources of nickel. An exposure assessment of nickel in ambient air was available for children in the Ruhr district using routinely monitored ambient air quality data and dispersion modelling. Internal nickel exposure was assessed by nickel concentrations in morning urine samples of the children. The observed nickel sensitization prevalence rates varied between 12.6% and 30.7%. Statistically significant associations were showed between exposure to nickel in ambient air and urinary nickel concentration as well as between urinary nickel concentration and nickel sensitization. Furthermore, an elevated prevalence of nickel sensitization was associated with exposure to increased nickel concentrations in ambient air. The observed associations support the assumption that inhaled nickel in ambient air might be a risk factor for nickel sensitization; further studies in larger collectives are necessary.

  2. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.

    Science.gov (United States)

    Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A

    2016-08-24

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing

  3. Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice.

    Science.gov (United States)

    de la Puente, Beatriz; Romero-Alejo, Elizabeth; Vela, José Miguel; Merlos, Manuel; Zamanillo, Daniel; Portillo-Salido, Enrique

    2015-01-01

    Reflex-based procedures are important measures in preclinical pain studies that evaluate stimulated behaviors. These procedures, however, are insufficient to capture the complexity of the pain experience, which is often associated with the depression of several innate behaviors. While recent studies have made efforts to evidence the suppression of some positively motivated behaviors in certain pain models, they are still far from being routinely used as readouts for analgesic screening. Here, we characterized and compared the effect of the analgesic ibuprofen (Ibu) and the stimulant, caffeine, in assays of acute pain-stimulated and pain-depressed behavior. Intraperitoneal injection of acetic acid (AA) served as a noxious stimulus to stimulate a writhing response or depress saccharin preference and locomotor activity (LMA) in mice. AA injection caused the maximum number of writhes between 5 and 20 minutes after administration, and writhing almost disappeared 1 hour later. AA-treated mice showed signs of depression-like behaviors after writhing resolution, as evidenced by reduced locomotion and saccharin preference for at least 4 and 6 hours, respectively. Depression-like behaviors resolved within 24 hours after AA administration. A dose of Ibu (40 mg/kg) - inactive to reduce AA-induced abdominal writhing - administered before or after AA injection significantly reverted pain-induced saccharin preference deficit. The same dose of Ibu also significantly reverted the AA-depressed LMA, but only when it was administered after AA injection. Caffeine restored locomotion - but not saccharin preference - in AA-treated mice, thus suggesting that the reduction in saccharin preference - but not in locomotion - was specifically sensitive to analgesics. In conclusion, AA-induced acute pain attenuated saccharin preference and LMA beyond the resolution of writhing behavior, and the changes in the expression of hedonic behavior, such as sweet taste preference, can be used as a more

  4. Free radical scavenging reverses fructose-induced salt-sensitive hypertension

    Directory of Open Access Journals (Sweden)

    Zenner ZP

    2017-12-01

    Full Text Available Zachary P Zenner, Kevin L Gordish, William H Beierwaltes Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA Abstract: We have previously reported that a moderate dietary supplementation of 20% fructose but not glucose leads to a salt-sensitive hypertension related to increased proximal sodium–hydrogen exchanger activity and increased renal sodium retention. We also found that while high salt increased renal nitric oxide formation, this was retarded in the presence of fructose intake. We hypothesized that at least part of the pathway leading to fructose-induced salt-sensitive hypertension could be due to fructose-induced formation of reactive oxygen species and inappropriate stimulation of renin secretion, all of which would contribute to an increase in blood pressure. We found that both 20% fructose intake and a high-salt diet stimulated 8-isoprostane excretion. The superoxide dismutase (SOD mimetic tempol significantly reduced this elevated excretion. Next, we placed rats on a high-salt diet (4% for 1 week in combination with normal rat chow or 20% fructose with or without chronic tempol administration. A fructose plus high-salt diet induced a rapid increase (15 mmHg in systolic blood pressure and reversed high salt suppression of plasma renin activity. Tempol treatment reversed the pressor response and restored high salt suppression of renin. We conclude that fructose-induced salt-sensitive hypertension is driven by increased renal reactive oxygen species formation associated with salt retention and an enhanced renin–angiotensin system. Keywords: reactive oxygen species, tempol, sodium, renin, oxidative stress

  5. Single prolonged stress effects on sensitization to cocaine and cocaine self-administration in rats.

    Science.gov (United States)

    Eagle, Andrew L; Singh, Robby; Kohler, Robert J; Friedman, Amy L; Liebowitz, Chelsea P; Galloway, Matthew P; Enman, Nicole M; Jutkiewicz, Emily M; Perrine, Shane A

    2015-05-01

    Posttraumatic stress disorder (PTSD) is often comorbid with substance use disorders (SUD). Single prolonged stress (SPS) is a well-validated rat model of PTSD that provides a framework to investigate drug-induced behaviors as a preclinical model of the comorbidity. We hypothesized that cocaine sensitization and self-administration would be increased following exposure to SPS. Male Sprague-Dawley rats were exposed to SPS or control treatment. After SPS, cocaine (0, 10 or 20 mg/kg, i.p.) was administered for 5 consecutive days and locomotor activity was measured. Another cohort was assessed for cocaine self-administration (0.1 or 0.32 mg/kg/i.v.) after SPS. Rats were tested for acquisition, extinction and cue-induced reinstatement behaviors. Control animals showed a dose-dependent increase in cocaine-induced locomotor activity after acute cocaine whereas SPS rats did not. Using a sub-threshold sensitization paradigm, control rats did not exhibit enhanced locomotor activity at Day 5 and therefore did not develop behavioral sensitization, as expected. However, compared to control rats on Day 5 the locomotor response to 20mg/kg repeated cocaine was greatly enhanced in SPS-treated rats, which exhibited enhanced cocaine locomotor sensitization. The effect of SPS on locomotor activity was unique in that SPS did not modify cocaine self-administration behaviors under a simple schedule of reinforcement. These data show that SPS differentially affects cocaine-mediated behaviors causing no effect to cocaine self-administration, under a simple schedule of reinforcement, but significantly augmenting cocaine locomotor sensitization. These results suggest that SPS shares common neurocircuitry with stimulant-induced plasticity, but dissociable from that underlying psychostimulant-induced reinforcement. Copyright © 2015. Published by Elsevier B.V.

  6. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    International Nuclear Information System (INIS)

    Simonsson, Carl; Stenfeldt, Anna-Lena; Karlberg, Ann-Therese; Ericson, Marica B.; Jonsson, Charlotte A.M.

    2012-01-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we have explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.

  7. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Simonsson, Carl, E-mail: carl.simonsson@chem.gu.se [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Stenfeldt, Anna-Lena; Karlberg, Ann-Therese [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Ericson, Marica B., E-mail: marica.ericson@physics.gu.se [Department of Physics, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Jonsson, Charlotte A.M. [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden)

    2012-10-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we have explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.

  8. The γ-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens.

    Science.gov (United States)

    Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan

    2012-07-10

    Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  9. Effects of haloperidol and cocaine pretreatments on brain distribution and kinetics of [11C]methamphetamine in methamphetamine sensitized dog: Application of PET to drug pharmacokinetic study

    International Nuclear Information System (INIS)

    Nakamura, Hitoshi; Hishinuma, Takanori; Tomioka, Yoshihisa; Ishiwata, Shunji; Ido, Tatsuo; Iwata, Ren; Funaki, Yoshihito; Itoh, Masatoshi; Fujiwara, Takehiko; Yanai, Kazuhiko; Sato, Mitsumoto; Numachi, Yohtaro; Yoshida, Sumiko; Mizugaki, Michinao

    1997-01-01

    Repeated administration of methamphetamine (MAP) causes behavioral sensitization in animals. We previously reported that the maximum accumulation level of [ 11 C]MAP in the MAP-sensitized dog brain was 1.4 times higher than that in the control. In behavioral studies, haloperidol (a dopamine D 2 receptor antagonist) prevents MAP-induced behavioral sensitization, and cocaine (a dopamine reuptake blocker) has the cross-behavioral sensitization with MAP. In the present study, to elucidate the relation between the MAP-induced behavioral sensitization and the pharmacokinetics of MAP, we investigated the effects of haloperidol and cocaine pretreatments on brain regional distribution and kinetics of [ 11 C]MAP using positron emission tomography (PET). A significant increase of [ 11 C]MAP uptake into the sensitized dog brain was prevented by haloperidol and cocaine pretreatments. These pharmacokinetic changes were not due to the changes in the rate of MAP metabolism. These results suggest haloperidol and cocaine can change the cerebral pharmacokinetic profile of MAP in the behavioral-sensitized dog. The variations of MAP-accumulation may affect the development or expression of MAP-induced behavioral sensitization

  10. Adjoint sensitivity analysis of the thermomechanical behavior of repositories

    International Nuclear Information System (INIS)

    Wilson, J.L.; Thompson, B.M.

    1984-01-01

    The adjoint sensitivity method is applied to thermomechanical models for the first time. The method provides an efficient and inexpensive answer to the question: how sensitive are thermomechanical predictions to assumed parameters. The answer is exact, in the sense that it yields exact derivatives of response measures to parameters, and approximate, in the sense that projections of the response fo other parameter assumptions are only first order correct. The method is applied to linear finite element models of thermomechanical behavior. Extensions to more complicated models are straight-forward but often laborious. An illustration of the method with a two-dimensional repository corridor model reveals that the chosen stress response measure was most sensitive to Poisson's ratio for the rock matrix

  11. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  12. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  13. Risk-assessment and risk-taking behavior predict potassium- and amphetamine-induced dopamine response in the dorsal striatum of rats

    Directory of Open Access Journals (Sweden)

    Sara ePalm

    2014-07-01

    Full Text Available Certain personality types and behavioral traits display high correlations to drug use and an increased level of dopamine in the reward system is a common denominator of all drugs of abuse. Dopamine response to drugs has been suggested to correlate with some of these personality types and to be a key factor influencing the predisposition to addiction. This study investigated if behavioral traits can be related to potassium- and amphetamine-induced dopamine response in the dorsal striatum, an area hypothesized to be involved in the shift from drug use to addiction. The open field and multivariate concentric square field™ tests were used to assess individual behavior in male Wistar rats. Chronoamperometric recordings were then made to study the potassium- and amphetamine-induced dopamine response in vivo. A classification based on risk-taking behavior in the open field was used for further comparisons. Risk-taking behavior was correlated between the behavioral tests and high risk takers displayed a more pronounced response to the dopamine uptake blocking effects of amphetamine. Behavioral parameters from both tests could also predict potassium- and amphetamine-induced dopamine responses showing a correlation between neurochemistry and behavior in risk-assessment and risk-taking parameters. In conclusion, the high risk-taking rats showed a more pronounced reduction of dopamine uptake in the dorsal striatum after amphetamine indicating that this area may contribute to the sensitivity of these animals to psychostimulants and proneness to addiction. Further, inherent dopamine activity was related to risk-assessment behavior, which may be of importance for decision-making and inhibitory control, key components in addiction.

  14. Distinguishing between learning and motivation in behavioral tests of the reinforcement sensitivity theory of personality.

    Science.gov (United States)

    Smillie, Luke D; Dalgleish, Len I; Jackson, Chris J

    2007-04-01

    According to Gray's (1973) Reinforcement Sensitivity Theory (RST), a Behavioral Inhibition System (BIS) and a Behavioral Activation System (BAS) mediate effects of goal conflict and reward on behavior. BIS functioning has been linked with individual differences in trait anxiety and BAS functioning with individual differences in trait impulsivity. In this article, it is argued that behavioral outputs of the BIS and BAS can be distinguished in terms of learning and motivation processes and that these can be operationalized using the Signal Detection Theory measures of response-sensitivity and response-bias. In Experiment 1, two measures of BIS-reactivity predicted increased response-sensitivity under goal conflict, whereas one measure of BAS-reactivity predicted increased response-sensitivity under reward. In Experiment 2, two measures of BIS-reactivity predicted response-bias under goal conflict, whereas a measure of BAS-reactivity predicted motivation response-bias under reward. In both experiments, impulsivity measures did not predict criteria for BAS-reactivity as traditionally predicted by RST.

  15. Effects of haloperidol and cocaine pretreatments on brain distribution and kinetics of [{sup 11}C]methamphetamine in methamphetamine sensitized dog: Application of PET to drug pharmacokinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hitoshi; Hishinuma, Takanori; Tomioka, Yoshihisa; Ishiwata, Shunji; Ido, Tatsuo; Iwata, Ren; Funaki, Yoshihito; Itoh, Masatoshi; Fujiwara, Takehiko; Yanai, Kazuhiko; Sato, Mitsumoto; Numachi, Yohtaro; Yoshida, Sumiko; Mizugaki, Michinao

    1997-02-01

    Repeated administration of methamphetamine (MAP) causes behavioral sensitization in animals. We previously reported that the maximum accumulation level of [{sup 11}C]MAP in the MAP-sensitized dog brain was 1.4 times higher than that in the control. In behavioral studies, haloperidol (a dopamine D{sub 2} receptor antagonist) prevents MAP-induced behavioral sensitization, and cocaine (a dopamine reuptake blocker) has the cross-behavioral sensitization with MAP. In the present study, to elucidate the relation between the MAP-induced behavioral sensitization and the pharmacokinetics of MAP, we investigated the effects of haloperidol and cocaine pretreatments on brain regional distribution and kinetics of [{sup 11}C]MAP using positron emission tomography (PET). A significant increase of [{sup 11}C]MAP uptake into the sensitized dog brain was prevented by haloperidol and cocaine pretreatments. These pharmacokinetic changes were not due to the changes in the rate of MAP metabolism. These results suggest haloperidol and cocaine can change the cerebral pharmacokinetic profile of MAP in the behavioral-sensitized dog. The variations of MAP-accumulation may affect the development or expression of MAP-induced behavioral sensitization.

  16. Sensitivity, Functional Analysis, and Behavior Genetics: A Response to Freeman et al.

    Science.gov (United States)

    Reiss, Steven; Havercamp, Susan M.

    1999-01-01

    Sensitivity theory divides the causes of challenging behavior into three categories, aberrant contingencies, aberrant environments, and aberrant motivation. This paper replies to criticism that sensitivity theory is circular and unsupported by empirical evidence by reporting on studies that support the theory and rejecting the idea that…

  17. Early long-term exposure with caffeine induces cross-sensitization to methylphenidate with involvement of DARPP-32 in adulthood of rats.

    Science.gov (United States)

    Boeck, Carina R; Marques, Virgínia B; Valvassori, Samira S; Constantino, Leandra C; Rosa, Daniela V F; Lima, Fabrício F; Romano-Silva, Marco A; Quevedo, João

    2009-09-01

    Chronic ingestion of caffeine causes dependence and sleep disturbance in children and adolescents. In rodents, the administration of caffeine may produce behavioral cross-sensitization to some psychostimulants, such as dopaminergic psychoactive drugs. Methylphenidate (MPH; Ritalin) is a psychostimulant used in pediatric- and adult human populations to manage the symptoms associated with attention-deficit hyperactivity disorder (ADHD). Previous studies have suggested that dopamine- and cAMP-regulated phosphoproteins of 32 kDa (DARPP-32) participate in the manifestation of behavioral activity following ingestion of caffeine or MPH. The aim of the present study was to evaluate whether long-term administration of low doses of caffeine in rodents during their adolescence induces cross-sensitization to MPH challenge in their adulthood and investigate the involvement of DARPP-32 in this model. Young rats (P25) consumed water or caffeine (0.3 g/L; mean consumption was 7.5 mg/day/kg) for 28 days. The caffeine consumption was then suspended for 14 days (washout period) when the animals received saline solution or MPH (1, 2, or 10 mg/kg) (P67) intraperitoneally. The locomotor activity of these rats was assessed using the open-field test, following which the immunocontent of DARPP-32 was evaluated in samples of their prefrontal cortex, striatum, or hippocampus. Rats chronically exposed to caffeine in their adolescent period and to inactive doses of MPH (1mg/kg) in adulthood showed augmented locomotor activity. The behavioral effect observed was accompanied by increased levels of DARPP-32 in the striatum and prefrontal cortex compared to control groups (saline or caffeine). However, no alteration caused by these treatments was noted in the hippocampus. In conclusion, chronic caffeine exposure induces likely long-term cross-sensitization to MPH in a DARPP-32-dependent pathway.

  18. PI3 kinase is involved in cocaine behavioral sensitization and its reversal with brain area specificity

    International Nuclear Information System (INIS)

    Zhang Xiuwu; Mi Jing; Wetsel, William C.; Davidson, Colin; Xiong Xieying; Chen Qiang; Ellinwood, Everett H.; Lee, Tong H.

    2006-01-01

    Phosphatidylinositol 3-kinase (PI3K) is an important signaling molecule involved in cell differentiation, proliferation, survival, and phagocytosis, and may participate in various brain functions. To determine whether it is also involved in cocaine sensitization, we measured the p85α/p110 PI3K activity in the nuclear accumbens (NAc) shell, NAc core, and prefrontal cortex (PFC) following establishment of cocaine sensitization and its subsequent reversal. Naive rats were rank-ordered and split into either daily cocaine or saline pretreatment group based on their locomotor responses to an acute cocaine injection (7.5 mg/kg, i.p.). These two groups were then injected with cocaine (40 mg/kg, s.c.) or saline for 4 consecutive days followed by 9-day withdrawal. Cocaine sensitization was subsequently reversed by 5 daily injections of the D 1 /D 2 agonist pergolide (0.1 mg/kg, s.c.) in combination with the 5-HT 3 antagonist ondansetron (0.2 mg/kg, s.c., 3.5 h after pergolide injection). After another 9-day withdrawal, behavioral cocaine sensitization and its reversal were confirmed with an acute cocaine challenge (7.5 mg/kg, i.p.), and animals were sacrificed the next day for measurement of p85α/p110 PI3K activity. Cocaine-sensitized animals exhibited increased PI3K activity in the NAc shell, and this increase was reversed by combined pergolide/ondansetron treatment, which also reversed behavioral sensitization. In the NAc core and PFC, cocaine sensitization decreased and increased the PI3K activity, respectively. These changes, in contrast to that in the NAc shell, were not normalized following the reversal of cocaine-sensitization. Interestingly, daily injections of pergolide alone in saline-pretreated animals induced PI3K changes that were similar to the cocaine sensitization-associated changes in the NAc core and PFC but not the NAc shell; furthermore, these changes in saline-pretreated animals were prevented by ondansetron given 3.5 h after pergolide. The present

  19. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    Science.gov (United States)

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    Science.gov (United States)

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  1. Effects of compositional modifications on the sensitization behavior of Fe-Cr-Mn steels

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Tortorelli, P.F.; Bell, G.E.C.

    1992-01-01

    Fe-Cr-Mn steels may possibly be used in conjuction with aqueous blankets or coolants in a fusion device. Therefore, standard chemical immersion (modified Strauss) tests were conducted to characterize the effects of compositional modifications on the thermal sensitization behavior of these steels. A good correlation among weight losses, intergranular corrosion, and cracking was found. The most effective means of decreasing their susceptibility was through reduction of the carbon concentration of these steels to 0.1%, but the sensitization resistance of Fe-Cr-Mn-0.1 C compositions was still inferior to type 304L and other similar stainless steels. Alloying additions that form stable carbides did not have a very significant influence on the sensitization behavior. (orig.)

  2. Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia.

    Directory of Open Access Journals (Sweden)

    Ching-Hua Yeh

    Full Text Available Peripheral innate immune response may induce sickness behavior through activating microglia, excessive cytokines production, and neuroinflammation. Dexmedetomidine (Dex has anti-inflammatory effect. We investigated the effects of Dex on lipopolysaccharide (LPS-induced neuroinflammation and sickness behavior in mice.BALB/c mice were intraperitoneally (i.p. injected with Dex (50 ug/kg or vehicle. One hour later, the mice were injected (i.p. with Escherichia coli LPS (0.33 mg/kg or saline (n = 6 in each group. We analyzed the food and water intake, body weight loss, and sucrose preference of the mice for 24h. We also determined microglia activation and cytokines expression in the brains of the mice. In vitro, we determine cytokines expression in LPS-treated BV-2 microglial cells with or without Dex treatment.In the Dex-pretreated mice, LPS-induced sickness behavior (anorexia, weight loss, and social withdrawal were attenuated and microglial activation was lower than vehicle control. The mRNA expression of TNF-α, MCP-1, indoleamine 2, 3 dioxygenase (IDO, caspase-3, and iNOS were increased in the brain of LPS-challenged mice, which were reduced by Dex but not vehicle.Dexmedetomidine diminished LPS-induced neuroinflammation in the mouse brain and modulated the cytokine-associated changes in sickness behavior.

  3. Amnesia induced by morphine in spatial memory retrieval inhibited in morphine-sensitized rats.

    Science.gov (United States)

    Farahmandfar, Maryam; Naghdi, Nasser; Karimian, Seyed Morteza; Kadivar, Mehdi; Zarrindast, Mohammad-Reza

    2012-05-15

    The present study investigated the effect of morphine sensitization on the impairment of spatial memory retrieval induced by acute morphine in adult male rats. Spatial memory was assessed by 2-day Morris water maze task which included training and test day. On the training day, rats were trained by a single training session of 8 trials. On the test day, a probe trial consisting of 60s free swim period without a platform and the visible test were administered. Morphine sensitization was induced by subcutaneous (s.c.) injection of morphine, once daily for 3 days followed by 5 days without drug treatment before training. The results indicated that acute administration of morphine (7.5mg/kg, s.c.) before testing impaired spatial memory on the test day. Pre-test morphine-induced amnesia decreased in morphine-sensitized (15 and 20mg/kg, s.c.) rats. Improvement in spatial memory retrieval in morphine-sensitized rats was inhibited by once daily administration of naloxone (1 and 2mg/kg, s.c.) 30 min prior to the injection of morphine for three days. The results suggest that morphine sensitization reverses the impairment of spatial memory retrieval induced by acute morphine and it is implied that mu-opioid receptors may play an important role in this effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Pramipexole-induced disruption of behavioral processes fundamental to intertemporal choice.

    Science.gov (United States)

    Johnson, Patrick S; Stein, Jeffrey S; Smits, Rochelle R; Madden, Gregory J

    2013-05-01

    Evaluating the effects of presession drug administration on intertemporal choice in nonhumans is a useful approach for identifying compounds that promote impulsive behavior in clinical populations, such as those prescribed the dopamine agonist pramipexole (PPX). Based on the results of previous studies, it is unclear whether PPX increases rats' impulsive choice or attenuates aspects of stimulus control. The present study was designed to experimentally isolate behavioral processes fundamental to intertemporal choice and challenge them pharmacologically with PPX administration. In Experiment 1, the hypothesis that PPX increases impulsive choice as a result of enhanced sensitivity to reinforcer delays was tested and disconfirmed. That is, acute PPX diminished delay sensitivity in a manner consistent with disruption of stimulus control whereas repeated PPX had no effect on delay sensitivity. Experiments 2 and 3 elaborated upon this finding by examining the effects of repeated PPX on rats' discrimination of response-reinforcer contingencies and reinforcer amounts, respectively. Accuracy of both discriminations was reduced by PPX. Collectively these results provide no support for past studies that have suggested PPX increases impulsive choice. Instead, PPX impairs stimulus control over choice behavior. The behavioral approach adopted herein could be profitably integrated with genetic and other biobehavioral models to advance our understanding of impulsive behavior associated with drug administration. © Society for the Experimental Analysis of Behavior.

  5. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  6. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  7. Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty.

    Directory of Open Access Journals (Sweden)

    Arne J Nagengast

    2010-07-01

    Full Text Available Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller or as an added value (risk-seeking controller to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.

  8. Women's finger sensitivity correlates with partnered sexual behavior but not solitary masturbation frequencies

    NARCIS (Netherlands)

    Brody, S.; Fischer, A.H.; Hess, U.

    2008-01-01

    In a sample of 97 healthy Dutch female university students, women with greater finger tactile sensitivity (von Frey-type filaments) engaged more in partnered (but not solitary masturbation) sexual behavior. Orgasmic responses in the past 30 days were not correlated with finger sensitivity. Results

  9. Identifying airway sensitizers: cytokine mRNA profiles induced by various anhydrides

    International Nuclear Information System (INIS)

    Plitnick, L.M.; Loveless, S.E.; Ladics, G.S.; Holsapple, M.P.; Smialowicz, R.J.; Woolhiser, M.R.; Anderson, P.K.; Smith, C.; Selgrade, M.J.K.

    2003-01-01

    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hypersensitivity involves CD4+ cells. By virtue of their induction of cytokines typical of CD4+ T-helper type 2 (Th2) cells--interleukin (IL)-4, 10, and 13--respiratory sensitizers may be identified and differentiated from contact sensitizers which induce Th1 cytokines (IL-2 and IFN-γ). Our previous work suggested that the ribonuclease protection assay (RPA) was useful in identifying the respiratory sensitizer, trimellitic anhydride (TMA), based on quantitative differences in Th2 cytokine mRNA as compared to the contact sensitizer dinitrochlorobenzene (DNCB). Therefore, the purpose of the studies described in this report was to expand the chemicals tested in the RPA. To this end, four acid anhydrides with known respiratory sensitization potential, TMA, maleic anhydride (MA), phthalic anhydride (PA) and hexahydrophthalic anhydride (HHPA), were tested. Although previously determined to induce immunologically equivalent responses in a local lymph node assay (LLNA), the initial dose chosen (2.5%) failed to induce Th2 cytokine mRNA expression. To determine if the lack of cytokine expression was related to dose, LLNAs were conducted at higher doses for each of the anhydrides. The highest doses evaluated (four- to six-fold higher than those used in the initial RPA) gave equivalent proliferative responses for the various anhydrides and were used for subsequent RPA testing. At these higher doses, significant increases in Th2 versus Th1 cytokine mRNA were observed for all anhydrides tested. These results suggest that the RPA has the potential to serve as a screen for the detection of LMW airway sensitizing chemicals. However, the basis for selecting immunologically equivalent doses may require some modification

  10. Sensitivity Analysis for Hydraulic Behavior of Shiraz Plain Aquifer Using PMWIN

    Directory of Open Access Journals (Sweden)

    Ahmad Reza karimipour

    2011-07-01

    Full Text Available In this study, hydraulic behavior of Shirazplain aquifer, with an area of ~300 km2, was simulated using PMWIN model. The performance of recently constructed drainage system in the plain was modeled and parameters affecting hydraulic behavior of the aquifer were analyzed. Measured rainfall and evaporation rates in the plain, recharge and discharge rates through the aqueducts, Khoshk and Chenar Rahdar rivers, as well as amount of water discharged from production wells and recharge due to returned wastewater were considered in the model. Plain hydrodynamic coefficients were estimated via calibration and sensitivity analysis of the model was performed for four important parameters. Results showed that the model is most sensitive to recharge rate and hydraulic conductivity, respectively, such that a small variation in these two parameters causes a dramatic change in hydraulic head distribution in the plain. Furthermore, specific yield coefficient influences the seasonal water level fluctuations, but the aqueducts conductance coefficient only affects the aqueduct radius of influence with little effect on the overall hydraulic behavior of the plain.

  11. Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanol.

    Science.gov (United States)

    Wagle, Mahendra; Mathur, Priya; Guo, Su

    2011-01-05

    The zebrafish camouflage response is an innate "hard-wired" behavior that offers an excellent opportunity to explore neural circuit assembly and function. Moreover, the camouflage response is sensitive to ethanol, making it a tractable system for understanding how ethanol influences neural circuit development and function. Here we report the identification of corticotropin-releasing factor (CRF) as a critical component of the camouflage response pathway. We further show that ethanol, having no direct effect on the visual sensory system or the melanocytes, acts downstream of retinal ganglion cells and requires the CRF-proopiomelanocortin pathway to exert its effect on camouflage. Treatment with ethanol, as well as alteration of light exposure that changes sensory input into the camouflage circuit, robustly modifies CRF expression in subsets of neurons. Activity of both adenylyl cyclase 5 and extracellular signal-regulated kinase (ERK) is required for such ethanol-induced or light-induced plasticity of crf expression. These results reveal an essential role of a peptidergic pathway in camouflage that is regulated by light and influenced by ethanol at concentrations relevant to abuse and anxiolysis, in a cAMP-dependent and ERK-dependent manner. We conclude that this ethanol-modulated camouflage response represents a novel and relevant system for molecular genetic dissection of a neural circuit that is regulated by light and sensitive to ethanol.

  12. Controlling noise-induced behavior of excitable networks

    International Nuclear Information System (INIS)

    Patidar, S; Pototsky, A; Janson, N B

    2009-01-01

    The paper demonstrates the possibility to control the collective behavior of a large network of excitable stochastic units, in which oscillations are induced merely by external random input. Each network element is represented by the FitzHugh-Nagumo system under the influence of noise, and the elements are coupled through the mean field. As known previously, the collective behavior of units in such a network can range from synchronous to non-synchronous spiking with a variety of states in between. We apply the Pyragas delayed feedback to the mean field of the network and demonstrate that this technique is capable of suppressing or weakening the collective synchrony, or of inducing the synchrony where it was absent. On the plane of control parameters we indicate the areas where suppression of synchrony is achieved. To explain the numerical observations on a qualitative level, we use the semi-analytic approach based on the cumulant expansion of the distribution density within Gaussian approximation. We perform bifurcation analysis of the obtained cumulant equations with delay and demonstrate that the regions of stability of its steady state have qualitatively the same structure as the regions of synchrony suppression of the original stochastic equations. We also demonstrate the delay-induced multistability in the stochastic network. These results are relevant to the control of unwanted behavior in neural networks.

  13. Cox-2 Plays a Vital Role in the Impaired Anxiety Like Behavior in Colchicine Induced Rat Model of Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Susmita Sil

    2016-01-01

    Full Text Available The anxiety status is changed along with memory impairments in intracerebroventricular colchicine injected rat model of Alzheimer Disease (cAD due to neurodegeneration, which has been indicated to be mediated by inflammation. Inducible cox-2, involved in inflammation, may have important role in the colchicine induced alteration of anxiety status. Therefore, the present study was designed to investigate the role of cox-2 on the anxiety behavior (response to novelty in an elevated open field space of cAD by inhibiting it with three different doses (10, 20, and 30 mg of etoricoxib (a cox-2 blocker in two time points (14 and 21 days. The results showed anxiolytic behavior in cAD along with lower serum corticosterone level, both of which were recovered at all the doses of etoricoxib on day 21. On day 14 all of the anxiety parameters showed similar results to that of day 21 at high doses but not at 10 mg/kg body weight. Results indicate that the parameters of anxiety were dependent on neuronal circuitries that were probably sensitive to etoricoxib induced blocking of neurodegeneration. The present study showed that anxiolytic behavior in cADr is predominantly due to cox-2 mediated neuroinflammation induced neurodegeneration in the brain.

  14. Executive function, approach sensitivity, and emotional decision making as influences on risk behaviors in young adults.

    Science.gov (United States)

    Patrick, Megan E; Blair, Clancy; Maggs, Jennifer L

    2008-05-01

    Relations among executive function, behavioral approach sensitivity, emotional decision making, and risk behaviors (alcohol use, drug use, and delinquent behavior) were examined in single female college students (N = 72). Hierarchical multiple regressions indicated a significant Approach Sensitivity x Working Memory interaction in which higher levels of alcohol use were associated with the combination of greater approach tendency and better working memory. This Approach Sensitivity x Working Memory interaction was also marginally significant for drug use and delinquency. Poor emotional decision making, as measured by a gambling task, was also associated with higher levels of alcohol use, but only for individuals low in inhibitory control. Findings point to the complexity of relations among aspects of self-regulation and personality and provide much needed data on neuropsychological correlates of risk behaviors in a nonclinical population.

  15. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    Science.gov (United States)

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-04

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Apomorphine conditioning and sensitization: the paired/unpaired treatment order as a new major determinant of drug conditioned and sensitization effects.

    Science.gov (United States)

    de Matos, Liana Wermelinger; Carey, Robert J; Carrera, Marinete Pinheiro

    2010-09-01

    Repeated treatments with psychostimulant drugs generate behavioral sensitization. In the present study we employed a paired/unpaired protocol to assess the effects of repeated apomorphine (2.0 mg/kg) treatments upon locomotion behavior. In the first experiment we assessed the effects of conditioning upon apomorphine sensitization. Neither the extinction of the conditioned response nor a counter-conditioning procedure in which we paired an inhibitory treatment (apomorphine 0.05 mg/kg) with the previously established conditioned stimulus modified the sensitization response. In the second experiment, we administered the paired/unpaired protocol in two phases. In the second phase, we reversed the paired/unpaired protocol. Following the first phase, the paired group alone exhibited conditioned locomotion in the vehicle test and a sensitization response. In the second phase, the initial unpaired group which received 5 paired apomorphine trials during the reversal phase did not develop a conditioned response but developed a potentiated sensitization response. This disassociation of the conditioned response from the sensitization response is attributed to an apomorphine anti-habituation effect that can generate a false positive Pavlovian conditioned response effect. The potentiated sensitization response induced by the treatment reversal protocol points to an important role for the sequential experience of the paired/unpaired protocol in behavioral sensitization. 2010 Elsevier Inc. All rights reserved.

  17. Effect of Maternal Depression on Child Behavior: A Sensitive Period?

    Science.gov (United States)

    Bagner, Daniel M.; Pettit, Jeremy W.; Lewinsohn, Peter M.; Seeley, John R.

    2010-01-01

    Objective: The purpose of this study was to examine the effect of maternal depression during the child's first year of life (i.e., sensitive period) on subsequent behavior problems. Method: Participants were 175 mothers participating in the Oregon Adolescent Depression Project (OADP) who met lifetime diagnostic criteria for major depressive…

  18. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  19. Curcumin reverses the depressive-like behavior and insulin resistance induced by chronic mild stress.

    Science.gov (United States)

    Shen, Ji-Duo; Wei, Yu; Li, Yu-Jie; Qiao, Jing-Yi; Li, Yu-Cheng

    2017-08-01

    Increasing evidence has demonstrated that patients with depression have a higher risk of developing type 2 diabetes. Insulin resistance has been identified as the key mechanism linking depression and diabetes. The present study established a rat model of depression complicated by insulin resistance using a 12-week exposure to chronic mild stress (CMS) and investigated the therapeutic effects of curcumin. Sucrose intake tests were used to evaluate depressive-like behaviors, and oral glucose tolerance tests (OGTT) and intraperitoneal insulin tolerance tests (IPITT) were performed to evaluate insulin sensitivity. Serum parameters were detected using commercial kits. Real-time quantitative PCR was used to examine mRNA expression. CMS rats exhibited reduced sucrose consumption, increased serum glucose, insulin, triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), non-esterified fatty acid (NEFA), glucagon, leptin, and corticosterone levels, as well as impaired insulin sensitivity. Curcumin upregulated the phosphorylation of insulin receptor substrate (IRS)-1 and protein kinase B (Akt) in the liver, enhanced insulin sensitivity, and reversed the metabolic abnormalities and depressive-like behaviors mentioned above. Moreover, curcumin increased the hepatic glycogen content by inhibiting glycogen synthase kinase (GSK)-3β and prevented gluconeogenesis by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). These results suggest that curcumin not only exerted antidepressant-like effects, but also reversed the insulin resistance and metabolic abnormalities induced by CMS. These data may provide evidence to support the potential use of curcumin against depression and/or metabolic disorders.

  20. Bidirectional effects between parenting sensitivity and child behavior: A cross-lagged analysis across middle childhood and adolescence.

    Science.gov (United States)

    Zvara, Bharathi J; Sheppard, Kelly W; Cox, Martha

    2018-04-26

    Using a longitudinal, cross-lagged design, this study examined the bidirectional relations between mothers' and fathers' sensitivity and children's externalizing (EXT) and internalizing (INT) behavior from middle childhood into adolescence. The subsample comprised families (N = 578) in which the mother and father cohabitated from the study's first time point (child age = 54 months) through Age 15 in the longitudinal NICHD Study of Early Child Care and Youth Development. Study results revealed differential patterns for mother-child and father-child relations in the full sample and separately for males and females. The full cross-lagged models revealed that child EXT behavior predicted maternal sensitivity, but not vice versa, and fathers' sensitivity and child behavior were reciprocally interrelated. There was a significant indirect pathway from early paternal sensitivity to later EXT in males, and from early maternal sensitivity to INT in females. The results point to the important roles that fathers play in child INT and EXT behaviors and important differences between males and females. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Gamma ray induced sensitization in CaSO4:Dy and competing trap model

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Kher, R.K.; Gangadharan, P.

    1979-01-01

    Gamma ray induced sensitization in CaSO 4 :Dy has been compared (by measurement of TL glow curves) for different temperatures during irradiation (25 0 , 120 0 and 250 0 C). Enhanced sensitization at elevated temperatures seems to support the competing trap model for supralinearity and sensitization in CaSO 4 :Dy. (author)

  2. Sensitivity to Change of Objectively-Derived Measures of Sedentary Behavior

    Science.gov (United States)

    Chastin, Sebastien F. M.; Winkler, Elisabeth A. H.; Eakin, Elizabeth G.; Gardiner, Paul A.; Dunstan, David W.; Owen, Neville; Healy, Genevieve N.

    2015-01-01

    The aim of this study was to examine the sensitivity to change of measures of sedentary behavior derived from body worn sensors in different intervention designs. Results from two intervention studies: "Stand up for Your Health" (pre-post home-based study with older adults not in paid employment) and "Stand Up Comcare"…

  3. Male-typical courtship, spawning behavior, and olfactory sensitivity are induced to different extents by androgens in the goldfish suggesting they are controlled by different neuroendocrine mechanisms.

    Science.gov (United States)

    Ghosal, Ratna; Sorensen, Peter W

    2016-06-01

    Male-typical reproductive behaviors vary greatly between different species of fishes with androgens playing a variety of roles that appear especially important in the gonochorist cypriniform fishes. The goldfish is an important model for the cypriniformes and while it is clear that male goldfish are fully feminized by prostaglandin F2α(PGF2α), it is not clear whether females will exhibit normal levels of male-typical reproductive behaviors as well as olfactory function when treated with androgens. To answer this question, we exposed sexually-regressed adult female goldfish to several types of androgen and monitored their tendencies to court (inspect females) and mate (spawn, or attempt to release gametes) while monitoring their olfactory sensitivity until changes in these attributes were maximized. Untreated adult males (intact) were included to determine the extent of masculinization. Treatments included the natural androgens, 11-ketotestosterone and testosterone (KT and T), administered via capsules (KT+T-implanted fish); the artificial androgen, methyltestosterone (MT), administered via capsules (MT-C); and MT administered in the fishes' water (MT-B). Male-typical olfactory sensitivity to a pheromone (15keto-PGF2α) increased in all androgen-treated groups and by week 6 was fully equivalent to that of males. Male-typical courtship behavior increased in all androgen-treated groups although slowly, and only MT-B females came to exhibit levels equivalent to those of males after 18weeks. In contrast, male-typical mating activity increased only slightly, with MT-B females reaching levels one-third that of males after 30weeks. We conclude that while androgens fully masculinize olfactory sensitivity and courtship behavior in goldfish, mating behavior is controlled by a different neuroendocrine mechanism(s) that has yet to be fully elucidated. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Development of a multiphysics model to characterize the responsive behavior of urea-sensitive hydrogel as biosensor.

    Science.gov (United States)

    Goh, K B; Li, Hua; Lam, K Y

    2017-05-15

    A remarkable feature of biomaterials is their ability to deform in response to certain external bio-stimuli. Here, a novel biochemo-electro-mechanical model is developed for the numerical characterization of the urea-sensitive hydrogel in response to the external stimulus of urea. The urea sensitivity of the hydrogel is usually characterized by the states of ionization and denaturation of the immobilized urease, as such the model includes the effect of the fixed charge groups and temperature coupled with pH on the activity of the urease. Therefore, a novel rate of reaction equation is proposed to characterize the hydrolysis of urea that accounts for both the ionization and denaturation states of the urease subject to the environmental conditions. After examination with the published experimental data, it is thus confirmed that the model can characterize well the responsive behavior of the urea-sensitive hydrogel subject to the urea stimulus, including the distribution patterns of the electrical potential and pH of the hydrogel. The results point to an innovative means for generating electrical power via the enzyme-induced pH and electrical potential gradients, when the hydrogel comes in contact with the urea-rich solution, such as human urine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. GPER activation ameliorates aortic remodeling induced by salt-sensitive hypertension.

    Science.gov (United States)

    Liu, Liu; Kashyap, Shreya; Murphy, Brennah; Hutson, Dillion D; Budish, Rebecca A; Trimmer, Emma H; Zimmerman, Margaret A; Trask, Aaron J; Miller, Kristin S; Chappell, Mark C; Lindsey, Sarah H

    2016-04-15

    The mRen2 female rat is an estrogen- and salt-sensitive model of hypertension that reflects the higher pressure and salt sensitivity associated with menopause. We previously showed that the G protein-coupled estrogen receptor (GPER) mediates estrogenic effects in this model. The current study hypothesized that GPER protects against vascular injury during salt loading. Intact mRen2 female rats were fed a normal (NS; 0.5% Na(+)) or high-salt diet (HS; 4% Na(+)) for 10 wk, which significantly increased systolic blood pressure (149 ± 5 vs. 224 ± 8 mmHg;PTreatment with the selective GPER agonist G-1 for 2 wk did not alter salt-sensitive hypertension (216 ± 4 mmHg;P> 0.05) or ex vivo vascular responses to angiotensin II or phenylephrine (P> 0.05). However, G-1 significantly attenuated salt-induced aortic remodeling assessed by media-to-lumen ratio (NS: 0.43; HS+veh: 0.89; HS+G-1: 0.61;P< 0.05). Aortic thickening was not accompanied by changes in collagen, elastin, or medial proliferation. However, HS induced increases in medial layer glycosaminoglycans (0.07 vs. 0.42 mm(2);P< 0.001) and lipid peroxidation (0.11 vs. 0.51 mm(2);P< 0.01), both of which were reduced by G-1 (0.20 mm(2)and 0.23 mm(2); both P< 0.05). We conclude that GPER's beneficial actions in the aorta of salt-loaded mRen2 females occur independently of changes in blood pressure and vasoreactivity. GPER-induced attenuation of aortic remodeling was associated with a reduction in oxidative stress and decreased accumulation of glycosaminoglycans. Endogenous activation of GPER may protect females from salt- and pressure-induced vascular damage. Copyright © 2016 the American Physiological Society.

  6. INCREASES IN ANXIETY-LIKE BEHAVIOR INDUCED BY ACUTE STRESS ARE REVERSED BY ETHANOL IN ADOLESCENT BUT NOT ADULT RATS

    OpenAIRE

    Varlinskaya, Elena I.; Spear, Linda P.

    2011-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnata...

  7. Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice

    Directory of Open Access Journals (Sweden)

    de la Puente B

    2015-10-01

    sensitive to analgesics. In conclusion, AA-induced acute pain attenuated saccharin preference and LMA beyond the resolution of writhing behavior, and the changes in the expression of hedonic behavior, such as sweet taste preference, can be used as a more sensitive and translational model to evaluate analgesics. Keywords: saccharin preference, locomotor activity, pain, writhing, analgesia, ibuprofen, caffeine

  8. An Equation-of-State Compositional In-Situ Combustion Model: A Study of Phase Behavior Sensitivity

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, M. G.; Thomsen, Per Grove

    2009-01-01

    phase behavior sensitivity for in situ combustion, a thermal oil recovery process. For the one-dimensional model we first study the sensitivity to numerical discretization errors and provide grid density guidelines for proper resolution of in situ combustion behavior. A critical condition for success...... to ignition. For a particular oil we show that the simplified approach overestimates the required air injection rate for sustained front propagation by 17% compared to the equation of state-based approach....

  9. Reward and Cognition: Integrating Reinforcement Sensitivity Theory and Social Cognitive Theory to Predict Drinking Behavior.

    Science.gov (United States)

    Hasking, Penelope; Boyes, Mark; Mullan, Barbara

    2015-01-01

    Both Reinforcement Sensitivity Theory and Social Cognitive Theory have been applied to understanding drinking behavior. We propose that theoretical relationships between these models support an integrated approach to understanding alcohol use and misuse. We aimed to test an integrated model in which the relationships between reward sensitivity and drinking behavior (alcohol consumption, alcohol-related problems, and symptoms of dependence) were mediated by alcohol expectancies and drinking refusal self-efficacy. Online questionnaires assessing the constructs of interest were completed by 443 Australian adults (M age = 26.40, sd = 1.83) in 2013 and 2014. Path analysis revealed both direct and indirect effects and implicated two pathways to drinking behavior with differential outcomes. Drinking refusal self-efficacy both in social situations and for emotional relief was related to alcohol consumption. Sensitivity to reward was associated with alcohol-related problems, but operated through expectations of increased confidence and personal belief in the ability to limit drinking in social situations. Conversely, sensitivity to punishment operated through negative expectancies and drinking refusal self-efficacy for emotional relief to predict symptoms of dependence. Two pathways relating reward sensitivity, alcohol expectancies, and drinking refusal self-efficacy may underlie social and dependent drinking, which has implications for development of intervention to limit harmful drinking.

  10. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

    Science.gov (United States)

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Mohan, Pritam; Bezbaruah, Babul Kumar

    2016-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression. Copyright © 2015. Published by Elsevier Inc.

  11. Irigenin sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells.

    Science.gov (United States)

    Xu, Ying; Gao, Cheng-Cheng; Pan, Zhen-Guo; Zhou, Chuan-Wen

    2018-02-12

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promising value for cancer therapy due to its capacity to induce apoptosis in cancer cells. Nevertheless, TRAIL therapy is greatly hampered by its resistance. Irigenin (Iri), isoflavonoids, can be isolated from the rhizome of Belamcanda chinensis, and has been shown anti-cancer properties. In this study, we explored if Iri could enhance TRAIL-regulated apoptosis in TRAIL resistant gastric cancer cells. Iri significantly potentiated TRAIL-triggered cytotoxicity. Iri alone and TRAIL alone showed no effective role in apoptosis induction, whereas combined treatment with Iri and TRAIL markedly induced apoptosis in cancer cells, as evidenced by the up-regulation of cleaved Caspase-8/-9/-3 and PARP. Additionally, the sensitization to TRAIL was along with the enhancement of pro-apoptotic proteins, including FAS-associated protein with death domain (FADD), death receptor 5 (DR5) and Bax. And suppressing FADD, DR5 and Bax by si RNA significantly reduced the apoptosis and enhanced the cell viability induced by the co-application of Iri and TRAIL. Moreover, the sensitization to TRAIL was accompanied by the decrease of Cellular-FLICE inhibitory protein (c-FLIP), Bcl-2 and Survivin. Additionally, Iri could sensitize TRAIL to produce reactive oxygen species (ROS). Pre-treatment of N-acetyl-cysteine (NAC), ROS scavenger, attenuated Iri plus TRAIL-induced apoptosis and improved cell viability. Finally, combination of Iri and TRAIL inhibited tumor growth in the xenograft model. Collectively, our present study gave new insights into the effects of Iri on potentiating TRAIL-sensitivity, and suggested that Iri could be a potential candidate for sensitizer of TRAIL-resistant cancer cell treatment. Copyright © 2018. Published by Elsevier Inc.

  12. Behavioral approach system sensitivity and risk taking interact to predict left-frontal EEG asymmetry.

    Science.gov (United States)

    Black, Chelsea L; Goldstein, Kim E; LaBelle, Denise R; Brown, Christopher W; Harmon-Jones, Eddie; Abramson, Lyn Y; Alloy, Lauren B

    2014-09-01

    The Behavioral Approach System (BAS) hypersensitivity theory of bipolar disorder (BD; Alloy & Abramson, 2010; Depue & Iacono, 1989) suggests that hyperreactivity in the BAS results in the extreme fluctuations of mood characteristic of BD. In addition to risk conferred by BAS hypersensitivity, cognitive and personality variables may play a role in determining risk. We evaluated relationships among BAS sensitivity, risk taking, and an electrophysiological correlate of approach motivation, relative left-frontal electroencephalography (EEG) asymmetry. BAS sensitivity moderated the relationship between risk taking and EEG asymmetry. More specifically, individuals who were high in BAS sensitivity showed left-frontal EEG asymmetry regardless of their level of risk-taking behavior. However, among individuals who were moderate in BAS sensitivity, risk taking was positively associated with asymmetry. These findings suggest that cognitive and personality correlates of bipolar risk may evidence unique contributions to a neural measure of trait-approach motivation. Clinical implications of these findings are discussed. Copyright © 2014. Published by Elsevier Ltd.

  13. The diagnostic adaptive behavior scale: evaluating its diagnostic sensitivity and specificity.

    Science.gov (United States)

    Balboni, Giulia; Tassé, Marc J; Schalock, Robert L; Borthwick-Duffy, Sharon A; Spreat, Scott; Thissen, David; Widaman, Keith F; Zhang, Dalun; Navas, Patricia

    2014-11-01

    The Diagnostic Adaptive Behavior Scale (DABS) was constructed with items across three domains--conceptual, social, and practical adaptive skills--and normed on a representative sample of American individuals from 4 to 21 years of age. The DABS was developed to focus its assessment around the decision point for determining the presence or absence of significant limitations of adaptive behavior for the diagnosis of Intellectual Disability (ID). The purpose of this study, which was composed of 125 individuals with and 933 without an ID-related diagnosis, was to determine the ability of the DABS to correctly identify the individuals with and without ID (i.e., sensitivity and specificity). The results indicate that the DABS sensitivity coefficients ranged from 81% to 98%, specificity coefficients ranged from 89% to 91%, and that the Area Under the Receiver Operating Characteristic Curve were excellent or good. These results indicate that the DABS has very good levels of diagnostic efficiency. Copyright © 2014. Published by Elsevier Ltd.

  14. Developing a Culturally Sensitive Lifestyle Behavior Change Program for Older Latinas.

    Science.gov (United States)

    Schwingel, Andiara; Linares, Deborah E; Gálvez, Patricia; Adamson, Brynn; Aguayo, Liliana; Bobitt, Julie; Castañeda, Yvette; Sebastião, Emerson; Marquez, David X

    2015-12-01

    Despite the burgeoning U.S. Latino population and their increased risk of chronic disease, little emphasis had been placed on developing culturally sensitive lifestyle interventions in this area. This article examines older Latinas' sociocultural context relative to health with the goal of developing a culturally sensitive health behavior intervention. Photo-elicitation indicated two emerging themes that influenced lifestyle choices: family caregiving and religion. Researchers partnered with a faith-based organization to develop and implement a 6-month lifestyle intervention for Latinas ages 50 and older: Abuelas en Acción (AEA). At completion, interviews were conducted to understand women's experiences and the influence AEA had on their lifestyles and health. Findings suggest that religious content empowered and deeply affected women; however, the intergenerational content presented significant challenges for instruction, retention, and implementation. We discuss findings in relation to the health intervention literature and provide suggestions for future interventions drawing on religion, family, and health behavior change. © The Author(s) 2015.

  15. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster.

    Science.gov (United States)

    Filošević, Ana; Al-Samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila . We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per) , Clock (Clk) , and cycle (cyc) . The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization

  16. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Ana Filošević

    2018-02-01

    Full Text Available Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per, Clock (Clk, and cycle (cyc. The locomotor sensitization that is present in timeless (tim and pigment dispersing factor (pdf mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor

  17. An Animal Model of Trichloroethylene-Induced Skin Sensitization in BALB/c Mice.

    Science.gov (United States)

    Wang, Hui; Zhang, Jia-xiang; Li, Shu-long; Wang, Feng; Zha, Wan-sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-xing

    2015-01-01

    Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-α, IFN-γ, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-α, IFN-γ, and IL-2 play an important role in the process of TCE sensitization. © The Author(s) 2015.

  18. Bystander Behavior in Bullying Situations: Basic Moral Sensitivity, Moral Disengagement and Defender Self-Efficacy

    Science.gov (United States)

    Thornberg, Robert; Jungert, Tomas

    2013-01-01

    The aim of the present study was to investigate how basic moral sensitivity in bullying, moral disengagement in bullying and defender self-efficacy were related to different bystander behaviors in bullying. Therefore, we examined pathways that linked students' basic moral sensitivity, moral disengagement, and defender self-efficacy to different…

  19. The socio-behavioral development of children with symptoms of attachment disorder: An observational study of teacher sensitivity in special education.

    Science.gov (United States)

    Spilt, Jantine L; Vervoort, Eleonora; Koenen, Anne-Katrien; Bosmans, Guy; Verschueren, Karine

    2016-09-01

    Children with Reactive Attachment Disorder (RAD) have serious socio-behavioral problems and often rely on socially abnormal, aggressive, and manipulative forms of communication. Little is known, however, about the influence of teachers on the socio-behavioral development of children with symptoms of RAD. This longitudinal study examined the influence of teacher sensitivity on the socio-behavioral development of children with symptoms of RAD across one school year. The sample included 85 Belgian children and 70 teachers from special education schools. In the previous school year, teachers rated Inhibited and Disinhibited RAD symptoms. In the next school year, teacher Sensitivity was observed in interactions with individual children in the first trimester. Teacher-rated Overt aggression, Relational aggression, and Prosocial behavior was assessed in the first, second, and third trimester. We found no effects of Sensitivity on Prosocial behavior. Also, no effects were found for children with Disinhibited RAD symptoms. For children with Inhibited RAD symptoms, increases in Overt and Relational aggression were observed when Sensitivity was low, whereas decreases were observed when Sensitivity was high. The results suggest that teacher sensitivity is associated with the socio-behavioral development of children with Inhibited RAD symptoms but not with the socio-behavioral development of children with Disinhibited RAD symptoms. Children with Reactive Attachment Disorder (RAD) exhibit socio-behavioral problems that hinder their school adjustment. These socio-behavioral problems appear relatively stable and it is not known what influence special education teachers might have on the development of these problems across a school year. This study suggests that teacher sensitivity is associated with changes in the socio-behavioral development of children with Inhibited RAD symptoms. Whereas high sensitivity was associated with improvements, low sensitivity appeared to exaggerate

  20. Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part 2. Variability of measurement parameters under toxicant-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Grillitsch, B.; Vogl, C.; Wytek, R.

    1999-12-01

    Spontaneous locomotor behavior of semiadult zebra fish (Brachydanio rerio) was recorded under sublethal short-term exposure to the anionic technical surfactant, linear alkylbenzene sulfonate (C{sub 10-13}-LAS) and cadmium in single compound tests using an automated video-monitoring and object-tracing system. Vertical position and swimming velocity in the horizontal and vertical directions were used as behavioral measurement parameters. Data were analyzed by different statistical methods. In pairwise comparisons, consistent, statistically significant, and toxicant-induced alterations of locomotor behavior were observed only for test concentrations, which also caused aspectoric symptoms of intoxication. This comparatively low sensitivity of the behavioral indication criteria was related to high variation in the measurement parameters and corresponding high, minimum detectable, statistically significant, and toxicant-induced deviations. In contrast, results obtained by regression analysis showed significant trends in locomotor activity over the range of toxicant concentrations tested. Thus, the findings support the inappropriateness of no observed effect concentrations and the lowest observed effect concentrations as summary measures of toxicity and indicate that the regression analysis approach is superior to the analysis of variance approach.

  1. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; Bruemmer, Dennis

    2011-12-01

    Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.

  2. A Sensitivity Analysis On The Springback Behavior Of The Unconstrained Bending Problem

    International Nuclear Information System (INIS)

    Meinders, T.; Konter, A.W.A.; Meijers, S.E.; Atzema, E.H.; Kappert, H.

    2005-01-01

    Sheet metal forming software is commonly used in the automotive and sheet metal sectors to support the design stage. However, the ability of the currently available software to accurately predict springback is limited. A sensitivity analysis of the springback behavior of a simple product is performed to gain more knowledge into the various factors contributing to the predictability of springback. The sensitivity analysis comprises both numerical and physical aspects and the most important results are reported in this paper

  3. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  4. Short-chain C6 ceramide sensitizes AT406-induced anti-pancreatic cancer cell activity

    International Nuclear Information System (INIS)

    Zhao, Xiaoguang; Sun, Baoyou; Zhang, Jingjing; Zhang, Ruishen; Zhang, Qing

    2016-01-01

    Our previous study has shown that AT406, a first-in-class small molecular antagonist of IAPs (inhibitor of apoptosis proteins), inhibits pancreatic cancer cell proliferation in vitro and in vivo. The aim of this research is to increase AT406's sensitivity by adding short-chain C6 ceramide. We show that co-treatment of C6 ceramide dramatically potentiated AT406-induced caspase/apoptosis activation and cytotoxicity in established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells. Reversely, caspase inhibitors largely attenuated C6 ceramide plus AT406-induced above cancer cell death. Molecularly, C6 ceramide downregulated Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. Intriguingly, C6 ceramide-mediated AT406 sensitization was nullified with Bcl-2 shRNA knockdown or pretreatment of the Bcl-2 inhibitor ABT-737. In vivo, liposomal C6 ceramide plus AT406 co-administration dramatically inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) mice. The combined anti-tumor activity was significantly more potent than either single treatment. Expressions of IAPs (cIAP1/XIAP) and Bcl-2 were downregulated in Panc-1 xenografts with the co-administration. Together, we demonstrate that C6 ceramide sensitizes AT406-mediated anti-pancreatic cancer cell activity possibly via downregulating Bcl-2. - Highlights: • C6 ceramide dramatically potentiates AT406-induced pancreatic cancer cell death. • C6 ceramide facilitates AT406-induced pancreatic cancer cell apoptosis. • C6 ceramide downregulates Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. • Liposomal C6 ceramide enhances AT406-induced anti-pancreatic cancer activity in vivo.

  5. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  6. Endogenous cholinergic neurotransmission contributes to behavioral sensitization to morphine.

    Directory of Open Access Journals (Sweden)

    Dusica Bajic

    Full Text Available Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg, a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg.

  7. mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity.

    Science.gov (United States)

    Jin, Zhe-Zhu; Wang, Wei; Fang, Di-Long; Jin, Yong-Jun

    2016-09-30

    We here tested the anti-colorectal cancer (CRC) activity by a first-in-class small molecule TRAIL inducer ONC201. The potential effect of mTOR on ONC201's actions was also examined. ONC201 induced moderate cytotoxicity against CRC cell lines (HT-29, HCT-116 and DLD-1) and primary human CRC cells. Significantly, AZD-8055, a mTOR kinase inhibitor, sensitized ONC201-induced cytotoxicity in CRC cells. Meanwhile, ONC201-induced TRAIL/death receptor-5 (DR-5) expression, caspase-8 activation and CRC cell apoptosis were also potentiated with AZD-8055 co-treatment. Reversely, TRAIL sequestering antibody RIK-2 or the caspase-8 specific inhibitor z-IETD-fmk attenuated AZD-8055 plus ONC201-induced CRC cell death. Further, mTOR kinase-dead mutation (Asp-2338-Ala) or shRNA knockdown significantly sensitized ONC201's activity in CRC cells, leading to profound cell death and apoptosis. On the other hand, expression of a constitutively-active S6K1 (T389E) attenuated ONC201-induced CRC cell apoptosis. For the mechanism study, we showed that ONC201 blocked Akt, but only slightly inhibited mTOR in CRC cells. Co-treatment with AZD-8055 also concurrently blocked mTOR activation. These results suggest that mTOR could be a primary resistance factor of ONC201 in CRC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    2008-03-01

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  9. Brief predator sound exposure elicits behavioral and neuronal long-term sensitization in the olfactory system of an insect

    DEFF Research Database (Denmark)

    Anton, S.; Evengaard, K.; Barrozo, R. B.

    2011-01-01

    later in the same way as exposure to the sex pheromone itself. The observed behavioral modification is accompanied by an increase in the sensitivity of olfactory neurons in the antennal lobe. Our data provide thus evidence for cross-modal experience-dependent plasticity not only on the behavioral level...... at the behavioral and central nervous level. Here we show that this effect is not confined to the same sensory modality: the sensitivity of olfactory neurons can also be modulated by exposure to a different sensory stimulus, i.e., a pulsed stimulus mimicking echolocating sounds from attacking insectivorous bats. We...... tested responses of preexposed male moths in a walking bioassay and recorded from neurons in the primary olfactory center, the antennal lobe. We show that brief exposure to a bat call, but not to a behaviorally irrelevant tone, increases the behavioral sensitivity of male moths to sex pheromone 24 h...

  10. Milrinone-Induced Postconditioning Requires Activation of Mitochondrial Ca2+-sensitive Potassium (mBKCa) Channels

    NARCIS (Netherlands)

    Behmenburg, Friederike; Trefz, Lara; Dorsch, Marianne; Ströthoff, Martin; Mathes, Alexander; Raupach, Annika; Heinen, André; Hollmann, Markus W.; Berger, Marc M.; Huhn, Ragnar

    2017-01-01

    Cardioprotection by postconditioning requires activation of mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa) channels. The involvement of these channels in milrinone-induced postconditioning is unknown. The authors determined whether cardioprotection by milrinone-induced

  11. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  12. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Mu Dezhi

    2010-11-01

    Full Text Available Abstract Background Glucocorticoid (GC resistance is frequently seen in acute lymphoblastic leukemia of T-cell lineage (T-ALL. In this study we investigate the potential and mechanism of using rapamycin to restore the sensitivity of GC-resistant T-ALL cells to dexamethasone (Dex treatment. Methods Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide (MTT assay. Fluorescence-activated cell sorting (FACS analysis was used to analyze apoptosis and cell cycles. Western blot analysis was performed to test the expression of the downstream effector proteins of mammalian target of rapamycin (mTOR, the cell cycle regulatory proteins, and apoptosis associated proteins. Results 10 nM rapamycin markedly increased GC sensitivity in GC-resistant T-ALL cells and this effect was mediated, at least in part, by inhibition of mTOR signaling pathway. Cell cycle arrest was associated with modulation of G1-S phase regulators. Both rapamycin and Dex can induce up-regulation of cyclin-dependent kinase (CDK inhibitors of p21 and p27 and co-treatment of rapamycin with Dex resulted in a synergistic induction of their expressions. Rapamycin did not obviously affect the expression of cyclin A, whereas Dex induced cyclin A expression. Rapamycin prevented Dex-induced expression of cyclin A. Rapamycin had a stronger inhibition of cyclin D1 expression than Dex. Rapamycin enhanced GC-induced apoptosis and this was not achieved by modulation of glucocorticoid receptor (GR expression, but synergistically up-regulation of pro-apoptotic proteins like caspase-3, Bax, and Bim, and down-regulation of anti-apoptotic protein of Mcl-1. Conclusion Our data suggests that rapamycin can effectively reverse GC resistance in T-ALL and this effect is achieved by inducing cell cycles arrested at G0/G1 phase and activating the intrinsic apoptotic program. Therefore, combination of mTOR inhibitor rapamycin with GC containing protocol might be an attracting

  13. Sex differences in behavioral and PKA cascade responses to repeated cocaine administration.

    Science.gov (United States)

    Zhou, Luyi; Sun, Wei-Lun; Weierstall, Karen; Minerly, Ana Christina; Weiner, Jan; Jenab, Shirzad; Quinones-Jenab, Vanya

    2016-10-01

    Previous studies have shown sex different patterns in behavioral responses to cocaine. Here, we used between-subject experiment design to study whether sex differences exist in the development of behavioral sensitization and tolerance to repeated cocaine, as well as the role of protein kinase A (PKA) signaling cascade in this process. Ambulatory and rearing responses were recorded in male and female rats after 1 to 14 days of administration of saline or cocaine (15 mg/kg; ip). Correspondent PKA-associated signaling in the nucleus accumbens (NAc) and caudate-putamen (CPu) was measured at each time point. Our results showed that females exhibited higher cocaine-induced behavioral responses and developed behavioral sensitization and tolerance faster than males. Whereas females developed behavioral sensitization to cocaine after 2 days and tolerance after 14 days, male rats developed sensitization after 5 days. In addition, cocaine induced a sexual dimorphic pattern in the progression of neuronal adaptations on the PKA cascade signaling in region (NAc vs. CPu) and time (days of cocaine administration)-dependent manners. In general, more PKA signaling cascade changes were found in the NAc of males on day 5 and in the CPu of females with repeated cocaine injection. In addition, in females, behavioral activities positively correlated with FosB levels in the NAc and CPu and negatively correlated with Cdk5 and p35 in the CPu, while no correlation was observed in males. Our studies suggest that repeated cocaine administration induced different patterns of behavioral and molecular responses in the PKA cascade in male and female rats.

  14. Alterations in offspring behavior induced by chronic prenatal cocaine dosing.

    Science.gov (United States)

    Smith, R F; Mattran, K M; Kurkjian, M F; Kurtz, S L

    1989-01-01

    Sperm-positive female Long-Evans hooded rats were dosed subcutaneously with 10 mg/kg/day cocaine or an equal volume of vehicle (0.9% sterile saline) from gestation day 4 (GD4) through GD18. Offspring were assessed for development of negative geotaxis, righting reflex, spontaneous alternation, and open field activity, and for adult behaviors including DRL-20 acquisition, water maze, visual discrimination, barbiturate sleep time, shuttlebox avoidance, footshock sensitivity, and tail flick latency. Cocaine dosing produced no significant effects on dam weight gain, any measure of litter size and weight, or early postnatal behavioral tests, but there were significant drug effects on development of spontaneous alternation, development of open field activity, DRL-20 acquisition, water maze performance, tail flick, and footshock sensitivity. These data suggest that chronic administration of a modest dose of cocaine during gestation in the rat alters a number of behaviors in the offspring.

  15. Drugs of abuse specifically sensitize noradrenergic and serotonergic neurons via a non-dopaminergic mechanism.

    Science.gov (United States)

    Lanteri, Christophe; Salomon, Lucas; Torrens, Yvette; Glowinski, Jacques; Tassin, Jean-Pol

    2008-06-01

    A challenge in drug dependence is to delineate long-term neurochemical modifications induced by drugs of abuse. Repeated d-amphetamine was recently shown to disrupt a mutual regulatory link between noradrenergic and serotonergic neurons, thus inducing long-term increased responses to d-amphetamine and para-chloroamphetamine, respectively. We show here that such a sensitization of noradrenergic and serotonergic neurons also occurs following repeated treatment with cocaine, morphine, or alcohol, three compounds belonging to main groups of addictive substances. In all cases, this sensitization is prevented by alpha 1b-adrenergic and 5-HT2A receptors blockade, indicating the critical role of these receptors on long-term effects of drugs of abuse. However, repeated treatments with two non-addictive antidepressants, venlafaxine, and clorimipramine, which nevertheless inhibit noradrenergic and serotonergic reuptake, do not induce noradrenergic and serotonergic neurons sensitization. Similarly, this sensitization does not occur following repeated treatments with a specific inhibitor of dopamine (DA) reuptake, GBR12783. Moreover, we show that the effects of SCH23390, a D1 receptor antagonist known to inhibit development of d-amphetamine behavioral sensitization, are due to its 5-HT2C receptor agonist property. SCH23390 blocks amphetamine-induced release of norepinephrine and RS102221, a 5-HT2C antagonist, can reverse this inhibition as well as inhibition of noradrenergic sensitization and development of behavioral sensitization induced by repeated d-amphetamine. We propose that noradrenergic/serotonergic uncoupling is a common neurochemical consequence of repeated consumption of drugs of abuse, unrelated with DA release. Our data also suggest that compounds able to restore the link between noradrenergic and serotonergic modulatory systems could represent important therapeutic targets for investigation.

  16. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    Science.gov (United States)

    Urosevic, Snezana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity (i.e., sensitivity of the behavioral approach system [BAS]) and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities)…

  17. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice.

    Science.gov (United States)

    Jeon, Se Jin; Kim, Eunji; Lee, Jin Su; Oh, Hee Kyong; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-11-01

    Schizophrenia is a chronic psychotic disorder characterized by positive, negative, and cognitive symptoms. Primary treatments for schizophrenia relieve the positive symptoms but are less effective against the negative and cognitive symptoms. In the present study, we investigated whether maslinic acid, isolated from Syzygium aromaticum (clove), can ameliorate schizophrenia-like behaviors in mice induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. After maslinic acid treatment in the MK-801 model, we examined the behavioral alteration and signaling pathways in the prefrontal cortex. Mice were treated with maslinic acid (30 mg/kg), and their behaviors were evaluated through an array of behavioral tests. The effects of maslinic acid were also examined in the signaling pathways in the prefrontal cortex. A single administration of maslinic acid blocked the MK-801-induced hyperlocomotion and reversed the MK-801-induced sensorimotor gating deficit in the acoustic startle response test. In the social novelty preference test, maslinic acid ameliorated the social behavior deficits induced by MK-801. The MK-801-induced attention and recognition memory impairments were also alleviated by a single administration of maslinic acid. Furthermore, maslinic acid normalized the phosphorylation levels of Akt-GSK-3β and ERK-CREB in the prefrontal cortex. Overall, maslinic acid ameliorated the schizophrenia-like symptoms induced by MK-801, and these effects may be partly mediated through Akt-GSK-3β and ERK-CREB activation. These findings suggest that maslinic acid could be a candidate for the treatment of several symptoms of schizophrenia, including positive symptoms, sensorimotor gating disruption, social interaction deficits, and cognitive impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Intrastriatal methylmalonic acid administration induces rotational behavior and convulsions through glutamatergic mechanisms.

    Science.gov (United States)

    de Mello, C F; Begnini, J; Jiménez-Bernal, R E; Rubin, M A; de Bastiani, J; da Costa, E; Wajner, M

    1996-05-20

    The effect of intrastriatal administration of methylmalonic acid (MMA), a metabolite that accumulates in methylmalonic aciduria, on behavior of adult male Wistar rats was investigated. After cannula placing, rats received unilateral intrastriatal injections of MMA (buffered to pH 7.4 with NaOH) or NaCl. MMA induced rotational behavior toward the contralateral side of injection and clonic convulsions in a dose-dependent manner. Rotational behavior and convulsions were prevented by intrastriatal preadministration of MK-801 and attenuated by preadministration of succinate. This study provides evidence for a participation of NMDA receptors in the MMA-induced behavioral alterations, where succinate dehydrogenase inhibition seems to have a pivotal role.

  19. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction.

    Science.gov (United States)

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-12-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems.

  20. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    Science.gov (United States)

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  1. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    A. Zago

    2012-01-01

    Full Text Available Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P 28-37 and adult (P60-67 rats received nicotine (0.4 mg/kg, sc or saline (0.9% NaCl, sc and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  2. A sensitivity analysis on the springback behavior of the Unconstrained Bending Problem

    NARCIS (Netherlands)

    Meinders, Vincent T.; Konter, A.W.A.; Meijers, S.E.; Atzema, E.H.; Kappert, H.

    2006-01-01

    Sheet metal forming software is commonly used in the automotive and sheet metal sectors to support the design stage. However, the ability of the currently available software to accurately predict springback is limited. A sensitivity analysis of the springback behavior of a simple product is

  3. The Fly Sensitizing Pigment Enhances UV Spectral Sensitivity While Preventing Polarization-Induced Artifacts

    Directory of Open Access Journals (Sweden)

    Marko Ilić

    2018-02-01

    Full Text Available Microvillar photoreceptors are intrinsically capable of detecting the orientation of e-vector of linearly polarized light. They provide most invertebrates with an additional sensory channel to detect important features of their visual environment. However, polarization sensitivity (PS of photoreceptors may lead to the detection of polarization-induced false colors and intensity contrasts. Most insect photoreceptors are thus adapted to have minimal PS. Flies have twisted rhabdomeres with microvilli rotated along the length of the ommatidia to reduce PS. The additional UV-absorbing sensitizing pigment on their opsin minimizes PS in the ultraviolet. We recorded voltage from Drosophila photoreceptors R1–6 to measure the spectral dependence of PS and found that PS in the UV is invariably negligible but can be substantial above 400 nm. Using modeling, we demonstrate that in R1–6 without the sensitizing pigment, PS in the UV (PSUV would exceed PS in the visible part of the spectrum (PSVIS by a factor PSUV/PSVIS = 1.2–1.8, as lower absorption of Rh1 rhodopsin reduces self-screening. We use polarimetric imaging of objects relevant to fly polarization vision to show that their degree of polarization outdoors is highest in the short-wavelength part of the spectrum. Thus, under natural illumination, the sensitizing pigment in R1–6 renders even those cells with high PS in the visible part unsuitable for proper polarization vision. We assume that fly ventral polarization vision can be mediated by R7 alone, with R1–6 serving as an unpolarized reference channel.

  4. BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Christina A. Wicker

    2009-01-01

    Full Text Available Pancreatic adenocarcinoma is an aggressive cancer with a greater than 95% mortality rate and short survival after diagnosis. Chemotherapeutic resistance hinders successful treatment. This resistance is often associated with mutations in codon 12 of the K-Ras gene (K-Ras 12, which is present in over 90% of all pancreatic adenocarcinomas. Codon 12 mutations maintain Ras in a constitutively active state leading to continuous cellular proliferation. Our study determined if TRAIL resistance in pancreatic adenocarcinomas with K-Ras 12 mutations could be overcome by first sensitizing the cells with Benzyl isothiocyanate (BITC. BITC is a component of cruciferous vegetables and a cell cycle inhibitor. BxPC3, MiaPaCa2 and Panc-1 human pancreatic adenocarcinoma cell lines were examined for TRAIL resistance. Our studies show BITC induced TRAIL sensitization by dual activation of both the extrinsic and intrinsic apoptotic pathways.

  5. Unique Behavioral and Neurochemical Effects Induced by Repeated Adolescent Consumption of Caffeine-Mixed Alcohol in C57BL/6 Mice.

    Directory of Open Access Journals (Sweden)

    Meridith T Robins

    Full Text Available The number of highly caffeinated products has increased dramatically in the past few years. Among these products, highly caffeinated energy drinks are the most heavily advertised and purchased, which has resulted in increased incidences of co-consumption of energy drinks with alcohol. Despite the growing number of adolescents and young adults reporting caffeine-mixed alcohol use, knowledge of the potential consequences associated with co-consumption has been limited to survey-based results and in-laboratory human behavioral testing. Here, we investigate the effect of repeated adolescent (post-natal days P35-61 exposure to caffeine-mixed alcohol in C57BL/6 mice on common drug-related behaviors such as locomotor sensitivity, drug reward and cross-sensitivity, and natural reward. To determine changes in neurological activity resulting from adolescent exposure, we monitored changes in expression of the transcription factor ΔFosB in the dopaminergic reward pathway as a sign of long-term increases in neuronal activity. Repeated adolescent exposure to caffeine-mixed alcohol exposure induced significant locomotor sensitization, desensitized cocaine conditioned place preference, decreased cocaine locomotor cross-sensitivity, and increased natural reward consumption. We also observed increased accumulation of ΔFosB in the nucleus accumbens following repeated adolescent caffeine-mixed alcohol exposure compared to alcohol or caffeine alone. Using our exposure model, we found that repeated exposure to caffeine-mixed alcohol during adolescence causes unique behavioral and neurochemical effects not observed in mice exposed to caffeine or alcohol alone. Based on similar findings for different substances of abuse, it is possible that repeated exposure to caffeine-mixed alcohol during adolescence could potentially alter or escalate future substance abuse as means to compensate for these behavioral and neurochemical alterations.

  6. Dietary supplementation with fish oil prevents high fat diet-induced enhancement of sensitivity to the locomotor stimulating effects of cocaine in adolescent female rats.

    Science.gov (United States)

    Serafine, Katherine M; Labay, Caitlin; France, Charles P

    2016-08-01

    Eating a diet high in fat can lead to obesity, chronic metabolic disease, and increased inflammation in both the central and peripheral nervous systems. Dietary supplements that are high in omega-3 polyunsaturated fatty acids can reduce or prevent these negative health consequences in rats. Eating high fat chow also increases the sensitivity of rats to behavioral effects of drugs acting on dopamine systems (e.g., cocaine), and this effect is greatest in adolescent females. The present experiment tested the hypothesis that dietary supplementation with fish oil prevents high fat chow induced increases in sensitivity to cocaine in adolescent female rats. Female Sprague-Dawley rats (post-natal day 25-27) ate standard laboratory chow (5.7% fat), high fat chow (34.4% fat), or high fat chow supplemented with fish oil (20% w/w). Cocaine dose dependently (1-17.8mg/kg) increased locomotion and induced sensitization across 6 weeks of once-weekly testing in all rats; however, these effects were greatest in rats eating high fat chow. Dietary supplementation with fish oil prevented enhanced locomotion and sensitization in rats eating high fat chow. There were no differences in inflammatory markers in plasma or the hypothalamus among dietary conditions. These results demonstrate that dietary supplementation with fish oil can prevent high fat diet-induced sensitization to cocaine, but they fail to support the view that these effects are due to changes in proinflammatory cytokines. These data add to a growing literature on the relationship between diet and drug abuse and extend the potential health benefits of fish oil to stimulant drug abuse prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A computational model that predicts behavioral sensitivity to intracortical microstimulation

    Science.gov (United States)

    Kim, Sungshin; Callier, Thierri; Bensmaia, Sliman J.

    2017-02-01

    Objective. Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural mechanisms of perception and can be used to restore sensation for patients who have lost it. While sensitivity to ICMS has previously been characterized, no systematic framework has been developed to summarize the detectability of individual ICMS pulse trains or the discriminability of pairs of pulse trains. Approach. We develop a simple simulation that describes the responses of a population of neurons to a train of electrical pulses delivered through a microelectrode. We then perform an ideal observer analysis on the simulated population responses to predict the behavioral performance of non-human primates in ICMS detection and discrimination tasks. Main results. Our computational model can predict behavioral performance across a wide range of stimulation conditions with high accuracy (R 2 = 0.97) and generalizes to novel ICMS pulse trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis for the finding that amplitude discrimination based on ICMS violates Weber’s law. Significance. The model can be used to characterize the sensitivity to ICMS across the range of perceptible and safe stimulation regimes. As such, it will be a useful tool for both neuroscience and neuroprosthetics.

  8. Specificity of Reward Sensitivity and Parasympathetic-Based Regulation among Children with Attention-Deficit/Hyperactivity and Disruptive Behavior Disorders.

    Science.gov (United States)

    Tenenbaum, Rachel B; Musser, Erica D; Raiker, Joseph S; Coles, Erika K; Gnagy, Elizabeth M; Pelham, William E

    2018-07-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with disruptionsin reward sensitivity and regulatory processes. However, it is unclear whether thesedisruptions are better explained by comorbid disruptive behavior disorder (DBD)symptomology. This study sought to examine this question using multiple levels ofanalysis (i.e., behavior, autonomic reactivity). One hundred seventeen children (aged 6 to 12 years; 72.6% male; 69 with ADHD) completed theBalloon-Analogue Risk Task (BART) to assess external reward sensitivity behaviorally.Sympathetic-based internal reward sensitivity and parasympathetic-based regulationwere indexed via cardiac pre-ejection period (PEP) and respiratory sinus arrhythmia(RSA), respectively. Children with ADHD exhibited reduced internal reward sensitivity (i.e.,lengthened PEP; F(1,112)=4.01, p=0.047) compared to healthy controls and werecharacterized by greater parasympathetic-based dysregulation (i.e., reduced RSAaugmentation F(1,112)=10.12, p=0.002). However, follow-up analyses indicated theADHD effect was better accounted for by comorbid DBD diagnoses; that is, childrenwith ADHD and comorbid ODD were characterized by reduced internal rewardsensitivity (i.e., lengthened PEP; t=2.47, p=0.046) and by parasympathetic-baseddysregulation (i.e., reduced RSA augmentation; t=3.51, p=0.002) in response to rewardwhen compared to typically developing youth. Furthermore, children with ADHD and comorbid CD exhibited greater behaviorally-based external reward sensitivity (i.e.,more total pops; F(3,110)= 5.96, p=0.001) compared to children with ADHD only (t=3.87, p=0.001) and children with ADHD and ODD (t=3.56, p=0.003). Results suggest that disruptions in sensitivity to reward may be betteraccounted for, in part, by comorbid DBD.Key Words: attention-deficit/hyperactivity disorder, autonomic nervous system,disruptive behavior disorders, reward sensitivityPowered.

  9. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  10. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish.

    Directory of Open Access Journals (Sweden)

    Xinle Li

    Full Text Available In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.

  11. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture

    OpenAIRE

    Li, Wen-Wu; Guo, Tian-Zhi; Shi, Xiaoyou; Sun, Yuan; Wei, Tzuping; Clark, David J; Kingery, Wade S

    2015-01-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glia activation and central sensitization. At 4 weeks after tibia fracture and casting ...

  12. Cocaine-induced locomotor activity in rats selectively bred for low and high voluntary running behavior.

    Science.gov (United States)

    Brown, Jacob D; Green, Caroline L; Arthur, Ian M; Booth, Frank W; Miller, Dennis K

    2015-02-01

    The rewarding effects of physical activity and abused drugs are caused by stimulation of similar brain pathways. Low (LVR) and high (HVR) voluntary running lines were developed by selectively breeding Wistar rats on running distance performance on postnatal days 28-34. We hypothesized that LVR rats would be more sensitive to the locomotor-activating effects of cocaine than HVR rats due to their lower motivation for wheel running. We investigated how selection for LVR or HVR behavior affects inherited activity responses: (a) open field activity levels, (b) habituation to an open field environment, and (c) the locomotor response to cocaine. Open field activity was measured for 80 min on three successive days (days 1-3). Data from the first 20 min were analyzed to determine novelty-induced locomotor activity (day 1) and the habituation to the environment (days 1-3). On day 3, rats were acclimated to the chamber for 20 min and then received saline or cocaine (10, 20, or 30 mg/kg) injection. Dopamine transporter (DAT) protein in the nucleus accumbens was measured via Western blot. Selecting for low and high voluntary running behavior co-selects for differences in inherent (HVR > LVR) and cocaine-induced (LVR > HVR) locomotor activity levels. The differences in the selected behavioral measures do not appear to correlate with DAT protein levels. LVR and HVR rats are an intriguing physical activity model for studying the interactions between genes related to the motivation to run, to use drugs of abuse, and to exhibit locomotor activity.

  13. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  14. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Has renewable energy induced competitive behavior in the Spanish electricity market?

    International Nuclear Information System (INIS)

    Ciarreta, Aitor; Espinosa, Maria Paz; Pizarro-Irizar, Cristina

    2017-01-01

    Recent energy policy has favored a massive introduction of Renewable Energy Sources on electricity markets, which has greatly impacted their performance. First, the electricity price has decreased as a consequence of the so-called merit-order effect. Another relevant effect is associated to the intermittent nature of Renewable Energy, which has increased the cost of ancillary services. A third and important aspect, less addressed in the literature, is the induced change in the strategic behavior of the conventional electricity producers. In principle, the entry of new generators in a concentrated market would make it more competitive and change the strategic behavior of the incumbents. We test this hypothesis for the Spanish wholesale market. While we find no significant change in behavior for Nuclear, Hydropower and Coal, a change is observed in Combined Cycle bidding strategies after the entry of renewable generators. Our analysis shows that the massive entry of Renewable Energy Sources made other generators' behavior more competitive in the short run, but the effect was not persistent. - Highlights: • The indirect effects of RES affect prices in electricity markets. • RES induced little change in Nuclear, Coal and Hydropower generation. • Combined Cycle bidding strategies have evolved to adapt to the introduction of RES. • RES made Combined Cycle's behavior more competitive in the short run. • The competitive effect induced by RES is not persistent in the long run.

  16. Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test.

    Science.gov (United States)

    Sturman, Oliver; Germain, Pierre-Luc; Bohacek, Johannes

    2018-02-16

    Stressful experiences are linked to anxiety disorders in humans. Similar effects are observed in rodent models, where anxiety is often measured in classic conflict tests such as the open-field test. Spontaneous rearing behavior, in which rodents stand on their hind legs to explore, can also be observed in this test yet is often ignored. We define two forms of rearing, supported rearing (in which the animal rears against the walls of the arena) and unsupported rearing (in which the animal rears without contacting the walls of the arena). Using an automated open-field test, we show that both rearing behaviors appear to be strongly context dependent and show clear sex differences, with females rearing less than males. We show that unsupported rearing is sensitive to acute stress, and is reduced under more averse testing conditions. Repeated testing and handling procedures lead to changes in several parameters over varying test sessions, yet unsupported rearing appears to be rather stable within a given animal. Rearing behaviors could therefore provide an additional measure of anxiety in rodents relevant for behavioral studies, as they appear to be highly sensitive to context and may be used in repeated testing designs.

  17. N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish.

    Science.gov (United States)

    Mocelin, Ricieri; Herrmann, Ana P; Marcon, Matheus; Rambo, Cassiano L; Rohden, Aline; Bevilaqua, Fernanda; de Abreu, Murilo Sander; Zanatta, Leila; Elisabetsky, Elaine; Barcellos, Leonardo J G; Lara, Diogo R; Piato, Angelo L

    2015-12-01

    Despite the recent advances in understanding the pathophysiology of anxiety disorders, the pharmacological treatments currently available are limited in efficacy and induce serious side effects. A possible strategy to achieve clinical benefits is drug repurposing, i.e., discovery of novel applications for old drugs, bringing new treatment options to the market and to the patients who need them. N-acetylcysteine (NAC), a commonly used mucolytic and paracetamol antidote, has emerged as a promising molecule for the treatment of several neuropsychiatric disorders. The mechanism of action of this drug is complex, and involves modulation of antioxidant, inflammatory, neurotrophic and glutamate pathways. Here we evaluated the effects of NAC on behavioral parameters relevant to anxiety in zebrafish. NAC did not alter behavioral parameters in the novel tank test, prevented the anxiety-like behaviors induced by an acute stressor (net chasing), and increased the time zebrafish spent in the lit side in the light/dark test. These data may indicate that NAC presents an anti-stress effect, with the potential to prevent stress-induced psychiatric disorders such as anxiety and depression. The considerable homology between mammalian and zebrafish genomes invests the current data with translational validity for the further clinical trials needed to substantiate the use of NAC in anxiety disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  19. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    International Nuclear Information System (INIS)

    Zago, A.; Leão, R.M.; Carneiro-de-Oliveira, P.E.; Marin, M.T.; Cruz, F.C.; Planeta, C.S.

    2011-01-01

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats

  20. Opiate sensitization induces FosB/ΔFosB expression in prefrontal cortical, striatal and amygdala brain regions.

    Directory of Open Access Journals (Sweden)

    Gary B Kaplan

    Full Text Available Sensitization to the effects of drugs of abuse and associated stimuli contributes to drug craving, compulsive drug use, and relapse in addiction. Repeated opiate exposure produces behavioral sensitization that is hypothesized to result from neural plasticity in specific limbic, striatal and cortical systems. ΔFosB and FosB are members of the Fos family of transcription factors that are implicated in neural plasticity in addiction. This study examined the effects of intermittent morphine treatment, associated with motor sensitization, on FosB/ΔFosB levels using quantitative immunohistochemistry. Motor sensitization was tested in C57BL/6 mice that received six intermittent pre-treatments (on days 1, 3, 5, 8, 10, 12 with either subcutaneous morphine (10 mg/kg or saline followed by a challenge injection of morphine or saline on day 16. Mice receiving repeated morphine injections demonstrated significant increases in locomotor activity on days 8, 10, and 12 of treatment (vs. day 1, consistent with development of locomotor sensitization. A morphine challenge on day 16 significantly increased locomotor activity of saline pre-treated mice and produced even larger increases in motor activity in the morphine pre-treated mice, consistent with the expression of opiate sensitization. Intermittent morphine pre-treatment on these six pre-treatment days produced a significant induction of FosB/ΔFosB, measured on day 16, in multiple brain regions including prelimbic (PL and infralimbic (IL cortex, nucleus accumbens (NAc core, dorsomedial caudate-putamen (CPU, basolateral amygdala (BLA and central nucleus of the amygdala (CNA but not in a motor cortex control region. Opiate induced sensitization may develop via Fos/ΔFosB plasticity in motivational pathways (NAc, motor outputs (CPU, and associative learning (PL, IL, BLA and stress pathways (CNA.

  1. Group cognitive-behavioral therapy for depression in Spanish: culture-sensitive manualized treatment in practice.

    Science.gov (United States)

    Aguilera, Adrian; Garza, Monica J; Muñoz, Ricardo F

    2010-08-01

    The authors applied cognitive-behavioral therapy (CBT) for depression using the Healthy Management of Reality treatment manual. This 16-week group treatment comprised four 4-week modules: thoughts (cognitive restructuring), activities (behavioral activation), people (interpersonal skills training), and health (addresses physical health and depression). They illustrated the use of the culture-sensitive treatment manuals by way of the member characteristics and clinical process of a Spanish-language CBT group for depression. They highlighted the challenges and satisfactions of working with a Spanish-speaking population in the public sector, and focused on how culture and socioeconomic status influence patients, and how to adapt treatment to these factors. Last, they demonstrated how technological advances integrate with culture-sensitive, evidence-based treatments to better serve this population and reduce disparities.

  2. The link between hypomania risk and creativity: The role of heightened behavioral activation system (BAS) sensitivity.

    Science.gov (United States)

    Kim, Bin-Na; Kwon, Seok-Man

    2017-06-01

    The relationship between bipolar disorder (BD) and creativity is well-known; however, relatively little is known about its potential mechanism. We investigated whether heightened behavioral activation system (BAS) sensitivity may mediate such relationship. Korean young adults (N=543) completed self-report questionnaires that included the Hypomanic Personality Scale (HPS), the Behavioral Activation System(BAS) Scale, the Everyday Creativity Scale (ECS), the Positive Affect and Negative Affect Schedule (PANAS), and the Altman Self-Rating Mania Scale (ASRM). Correlational, hierarchical regression and mediation analyses using bootstrap confidence intervals were conducted. As predicted, BAS sensitivity was associated with self-reported creativity as well as hypomania risk and symptoms. Even when positive affect was controlled, BAS sensitivity predicted incrementally significant variance in explaining creativity. In mediation analysis, BAS sensitivity partially mediated the relation between hypomania risk and creativity. Reliance on self-report measures in assessing creativity and usage of non-clinical sample. BAS sensitivity was related not only to mood pathology but also to creativity. As a basic affective temperament, BAS sensitivity may help explain incompatible sides of adaptation associated with BD. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    OpenAIRE

    Urošević, Snežana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity, i.e., sensitivity of the behavioral approach system (BAS), and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities) lead to these phenomena. The present study is the first longitudinal investigation of changes in reward (i.e., BAS) sensitivity in 9 to 23-year-olds a...

  4. Fast and sensitive detection of indels induced by precise gene targeting

    DEFF Research Database (Denmark)

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect...... and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect...

  5. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    Science.gov (United States)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  6. Isoflurane Anesthesia Interferes with the Expression of Cocaine-Induced Sensitization in Female Rats

    OpenAIRE

    Siegal, Nora; Dow-Edwards, Diana

    2009-01-01

    Repeated cocaine administration results in a progressive sensitization of behavior which typically occurs more readily in female rats than in males. Our recent studies of rats undergoing surgical procedures revealed that following anesthesia, females sensitized less than males receiving identical repeated cocaine injections. Since isoflurane acts primarily by increasing the effects of the inhibitory neurotransmitter γ-amino butyric acid (GABA) and reducing the effects of the excitatory amino ...

  7. Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis

    Science.gov (United States)

    Ryashko, Lev

    2018-03-01

    A phenomenon of the noise-induced oscillatory multistability in glycolysis is studied. As a basic deterministic skeleton, we consider the two-dimensional Higgins model. The noise-induced generation of mixed-mode stochastic oscillations is studied in various parametric zones. Probabilistic mechanisms of the stochastic excitability of equilibria and noise-induced splitting of randomly forced cycles are analysed by the stochastic sensitivity function technique. A parametric zone of supersensitive Canard-type cycles is localized and studied in detail. It is shown that the generation of mixed-mode stochastic oscillations is accompanied by the noise-induced transitions from order to chaos.

  8. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    Science.gov (United States)

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  9. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  10. Parenteral medium-chain triglyceride-induced neutrophil activation is not mediated by a Pertussis Toxin sensitive receptor.

    Science.gov (United States)

    Versleijen, Michelle W J; van Esterik, Joantine C J; Roelofs, Hennie M J; van Emst-de Vries, Sjenet E; Willems, Peter H G M; Wanten, Geert J A

    2009-02-01

    Lipid-induced immune modulation might contribute to the increased infection rate that is observed in patients using parenteral nutrition. We previously showed that emulsions containing medium-chain triglycerides (LCT/MCTs or pure MCTs), but not pure long-chain triglycerides (LCTs), impair neutrophil functions, modulate cell-signaling and induce neutrophil activation in vitro. It has recently been shown that medium-chain fatty acids are ligands for GPR84, a pertussis toxin (PT)-sensitive G-protein-coupled receptor (GPCR). This finding urged us to investigate whether MCT-induced neutrophil activation is mediated by PT-sensitive GPCRs. Neutrophils isolated from blood of healthy volunteers were pre-incubated with PT (0.5-1 microg/mL, 1.5 h) and analyzed for the effect of this pre-incubation on LCT/MCT (2.5 mmol/L)-dependent modulation of serum-treated zymosan (STZ)-induced intracellular Ca(2+) mobilization and on LCT/MCT (5 mmol/L)-induced expression of cell surface adhesion (CD11b) and degranulation (CD66b) markers and oxygen radical (ROS) production. PT did not inhibit the effects of LCT/MCT on the STZ-induced increase in cytosolic free Ca(2+) concentration. LCT/MCT increased ROS production to 146% of unstimulated cells. However, pre-incubation with PT did not inhibit the LCT/MCT-induced ROS production. Furthermore, the LCT/MCT-induced increase in CD11b and CD66b expression (196% and 235% of unstimulated cells, respectively) was not inhibited by pre-incubation with PT. LCT/MCT-induced neutrophil activation does not involve the action of a PT-sensitive G-protein-coupled receptor.

  11. Temperature sensitivity of the penicillin-induced autolysis mechanism in nongrowing cultures of Escherichia coli.

    OpenAIRE

    Kusser, W; Ishiguro, E E

    1987-01-01

    The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.

  12. Chronic inhibition of dopamine β-hydroxylase facilitates behavioral responses to cocaine in mice.

    Directory of Open Access Journals (Sweden)

    Meriem Gaval-Cruz

    Full Text Available The anti-alcoholism medication, disulfiram (Antabuse, decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH, the enzyme that converts dopamine (DA to norepinephrine (NE in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh -/- mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/- and Dbh -/- mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh -/- mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/- mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/- mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh -/- mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor enhance qualitatively different cocaine-induced behaviors.

  13. Chronic Inhibition of Dopamine β-Hydroxylase Facilitates Behavioral Responses to Cocaine in Mice

    Science.gov (United States)

    Gaval-Cruz, Meriem; Liles, Larry Cameron; Iuvone, Paul Michael; Weinshenker, David

    2012-01-01

    The anti-alcoholism medication, disulfiram (Antabuse), decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH), the enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh −/−) mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/−) and Dbh −/− mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh −/− mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/− mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/− mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh −/− mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor) enhance qualitatively different cocaine-induced behaviors. PMID:23209785

  14. Sensitive plant (Mimosa pudica hiding time depends on individual and state

    Directory of Open Access Journals (Sweden)

    Sarah Reed-Guy

    2017-07-01

    Full Text Available The decisions animals make to adjust their antipredator behavior to rapidly changing conditions have been well studied. Inducible defenses in plants are an antipredator behavior that acts on a longer time scale, but sensitive plants, Mimosa pudica, have a much more rapid antipredator response; they temporarily close their leaves when touched. The time they remain closed is defined as hiding time. We studied hiding time in sensitive plants and found that individual plants differed significantly in their hiding times. We then showed that the effect of individual explained substantial variation in hiding time on a short time scale. Finally, on a longer time scale, individuality persisted but the amount of variation attributed to individual decreased. We hypothesized that variation in plant condition might explain this change. We therefore manipulated sunlight availability and quantified hiding time. When deprived of light for 6 h, sensitive plants significantly shortened their hiding times. But when only half a plant was deprived of light, hiding times on the deprived half and light exposed half were not significantly different. This suggests that overall condition best explains variation in sensitive plant antipredator behavior. Just like in animals, sensitive plant antipredator behavior is condition dependent, and, just like in animals, a substantial amount of the remaining variation is explained by individual differences between plants. Thus, models designed to predict plasticity in animal behavior may be successfully applied to understand behavior in other organisms, including plants.

  15. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    Science.gov (United States)

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  16. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  17. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Papke, R L; Meyers, C; Huang, G L; de Fiebre, C M

    1997-09-12

    The alpha7 nicotinic receptor agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB; GTS-21) was investigated for its ability to: (1) activate a variety of nicotinic receptor subtypes in Xenopus oocytes; (2) improve passive avoidance and spatial Morris water task performances in mecamylamine-sensitive manners in bilaterally nucleus basalis lesioned rats; and (3) elevate high-affinity [3H]acetylcholine (ACh) and high-affinity alpha-[125I]bungarotoxin binding in rat neocortex following 2 weeks of daily injections. DMXB (100 microM) activated alpha7 homo-oligomeric receptors, without significant activity at alpha2-, alpha3- and alpha4-containing subtypes. Mecamylamine blocked rat alpha7 receptors weakly if co-administered with agonist, but much more potently when pre-applied. Bilateral ibotenic acid lesions of the nucleus basalis interfered with passive avoidance and spatial memory-related behaviors. DMXB (0.5 mg/kg, i.p.) improved passive avoidance behavior in lesioned animals in a mecamylamine-sensitive manner. DMXB (0.5 mg/kg 15 min before each session) also improved performance in the training and probe components of the Morris water task. DMXB-induced improvement in the probe component but not the training phase was mecamylamine-sensitive. [3H]ACh binding was elevated after 14 days of daily i.p. injections with 0.2 mg/kg nicotine but not after 1 mg/kg DMXB. Neither drug elevated high-affinity alpha-[125I]bungarorotoxin binding over this interval.

  18. Group Cognitive-Behavioral Therapy for Depression in Spanish: Culture-Sensitive Manualized Treatment in Practice

    Science.gov (United States)

    Aguilera, Adrian; Garza, Monica J.; Muñoz, Ricardo F.

    2014-01-01

    The authors applied cognitive-behavioral therapy (CBT) for depression using the Healthy Management of Reality treatment manual. This 16-week group treatment comprised four 4-week modules: thoughts (cognitive restructuring), activities (behavioral activation), people (interpersonal skills training), and health (addresses physical health and depression). They illustrated the use of the culture-sensitive treatment manuals by way of the member characteristics and clinical process of a Spanish-language CBT group for depression. They highlighted the challenges and satisfactions of working with a Spanish-speaking population in the public sector, and focused on how culture and socioeconomic status influence patients, and how to adapt treatment to these factors. Last, they demonstrated how technological advances integrate with culture-sensitive, evidence-based treatments to better serve this population and reduce disparities. PMID:20549680

  19. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca2+ /calmodulin-dependent protein kinase II.

    Science.gov (United States)

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.

  20. Developmental Aspects of Reaction to Positive Inducements

    Science.gov (United States)

    Lindskold, Svenn; And Others

    1970-01-01

    Probes children's behavioral sensitivity to variation in reward probability and magnitude (bribes) and suggests that preadolescent children do respond to promises of positive inducements for cooperation in a mixed-motive situation. (WY)

  1. The turmeric protective properties at ethanol-induced behavioral disorders.

    Directory of Open Access Journals (Sweden)

    Goldina I.A.

    2017-03-01

    Full Text Available The aim of the study was to determine the effect of mechanically modified turmeric extract on the parameters of orienting-exploratory behavior in mice with chronic ethanol consumption. Material and methods. Mice behavior was assessed in the "open field" test. In the both control groups the animals received water or 10% ethanol solution; in the test group — turmeric extract in 10% ethanol solution. Amount of blood mononuclear cells, thymocytes, and splenocytes were estimated. Results. Analysis of the behavioral parameters in animals after chronic exposure to ethanol showed suppression of motor and exploratory components of the behavior. In mice that received both ethanol and turmeric extract recorded behavior parameters were significantly higher than in the group of animals who received ethanol only. It was shown that the turmeric extract enhances the amount of blood immune cells. Conclusion. Mechanically modified turmeric extract possesses protective properties against ethanol-induced behavioral disorders.

  2. Stress-induced locomotor sensitization to amphetamine in adult, but not in adolescent rats, is associated with increased expression of ΔFosB in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Carneiro de Oliveira

    2016-09-01

    Full Text Available While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively were restrained for 2 hours once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p. and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats.

  3. Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin.

    Science.gov (United States)

    Nuseir, Khawla Q; Alzoubi, Karem H; Alhusban, Ahmed; Bawaane, Areej; Al-Azzani, Mohammed; Khabour, Omar F

    2017-10-01

    Pain in neonates is associated with short and long-term adverse outcomes. Data demonstrated that long-term consequences of untreated pain are linked to the plasticity of the neonate's brain. Sucrose is effective and safe for reducing painful procedures from single events. However, the mechanism of sucrose-induced analgesia is not fully understood. The role of the opioid system in this analgesia using the opioid receptor antagonist Naltrexone was investigated, plus the long-term effects on learning and memory formation during adulthood. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution and/or naltrexone were administered before the pricks. All treatments started on day one of birth and continued for two weeks. At the end of 8weeks, behavioral studies were conducted to test spatial learning and memory using radial arm water maze (RAWM), and pain threshold via foot-withdrawal response to a hot plate. The hippocampus was dissected; levels of brain derived neurotrophic factor (BDNF) and endorphins were assessed using ELISA. Acute repetitive neonatal pain increased pain sensitivity later in life, while naltrexone with sucrose decreased pain sensitivity. Naltrexone and/or sucrose prevented neonatal pain induced impairment of long-term memory, while neonatal pain decreased levels of BDNF in the hippocampus; this decrease was averted by sucrose and naltrexone. Sucrose with naltrexone significantly increased β-endorphin levels in noxiously stimulated rats. In conclusion, naltrexone and sucrose can reverse increased pain sensitivity and impaired long-term memory induced by acute repetitive neonatal pain probably by normalizing BDNF expression and increasing β-endorphin levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    Science.gov (United States)

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  5. Characterization of MMS-sensitive mutants of Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    DeLange, A.M.; Mishra, N.C.

    1982-01-01

    Several MMS-sensitive mutants of Neurospora crassa were compared with the wild-type strain for their relative sensitivities to UV, X-ray, and histidine. They were also compared for the frequency of spontaneous mutation at the loci which confer resistance to p-fluorophenylalanine. The mutants were also examined for possible defects in meiotic behavior in homozygous crosses and for any change in the inducible DNA salvage pathways. On the basis of these characterizations, the present MMS-sensitive mutants of Neurospora can be placed into three groups. On the basis of data presented, the MMS sensitivity of the first group mutants cannot be ascertained to arise from a defect in the DNA repair pathways; instead, it may stem from altered cell permeability or other pleotropic effects of the mus mutations. However, it can be suggested that the second and third group of mus mutants may indeed result from a defect in the DNA repair pathways controlled by the mus genes; this conclusion is based on their cross-sensitivity to a number of DNA-damaging agents such as MMS, UV and/or X-rays, high frequencies of spontaneous mutation and defects in meiotic behavior.

  6. Involvement of posterior cingulate cortex in ketamine-induced psychosis relevant behaviors in rats.

    Science.gov (United States)

    Ma, Jingyi; Leung, L Stan

    2018-02-15

    The involvement of posterior cingulate cortex (PCC) on ketamine-induced psychosis relevant behaviors was investigated in rats. Bilateral infusion of muscimol, a GABA A receptor agonist, into the PCC significantly antagonized ketamine-induced deficit in prepulse inhibition of a startle reflex (PPI), deficit in gating of hippocampal auditory evoked potentials, and behavioral hyperlocomotion in a dose dependent manner. Local infusion of ketamine directly into the PCC also induced a PPI deficit. Systemic injection of ketamine (3mg/kg,s.c.) induced an increase in power of electrographic activity in the gamma band (30-100Hz) in both the PCC and the hippocampus; peak theta (4-10Hz) power was not significantly altered, but peak theta frequency was increased by ketamine. In order to exclude volume conduction from the hippocampus to PCC, inactivation of the hippocampus was made by local infusion of muscimol into the hippocampus prior to ketamine administration. Muscimol in the hippocampus effectively blocked ketamine-induced increase of gamma power in the hippocampus but not in the PCC, suggesting independent generation of gamma waves in PCC and hippocampus. It is suggested that the PCC is part of the brain network mediating ketamine-induced psychosis related behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Post-liquefaction soil-structure interaction for buried structures: Sensitivity analysis studies

    International Nuclear Information System (INIS)

    Pires, J.A.; Ang, H.S.; Katayama, I.; Satoh, M.

    1993-01-01

    The post liquefaction behavior of buried conduits is analyzed and sensitivity analysis is conducted to investigate the damage potential of the forces induced in the buried lifelines following seismically induced liquefaction of the surrounding soil. Various lifeline configurations and loading conditions are considered. The loading conditions considered are: buoyancy forces and permanent ground displacements parallel to the lifeline axis. Pertinent parameters for the soil-lifeline interaction following liquefaction are identified. (author)

  8. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Li

    2016-10-01

    Full Text Available Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg, fluoxetine (20 mg/kg and pioglitazone (10 mg/kg were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy.

  9. Sensitivity analyses of seismic behavior of spent fuel dry cask storage systems

    International Nuclear Information System (INIS)

    Luk, V.K.; Spencer, B.W.; Shaukat, S.K.; Lam, I.P.; Dameron, R.A.

    2003-01-01

    Sandia National Laboratories is conducting a research project to develop a comprehensive methodology for evaluating the seismic behavior of spent fuel dry cask storage systems (DCSS) for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). A typical Independent Spent Fuel Storage Installation (ISFSI) consists of arrays of free-standing storage casks resting on concrete pads. In the safety review process of these cask systems, their seismically induced horizontal displacements and angular rotations must be quantified to determine whether casks will overturn or neighboring casks will collide during a seismic event. The ABAQUS/Explicit code is used to analyze three-dimensional coupled finite element models consisting of three submodels, which are a cylindrical cask or a rectangular module, a flexible concrete pad, and an underlying soil foundation. The coupled model includes two sets of contact surfaces between the submodels with prescribed coefficients of friction. The seismic event is described by one vertical and two horizontal components of statistically independent seismic acceleration time histories. A deconvolution procedure is used to adjust the amplitudes and frequency contents of these three-component reference surface motions before applying them simultaneously at the soil foundation base. The research project focused on examining the dynamic and nonlinear seismic behavior of the coupled model of free-standing DCSS including soil-structure interaction effects. This paper presents a subset of analysis results for a series of parametric analyses. Input variables in the parametric analyses include: designs of the cask/module, time histories of the seismic accelerations, coefficients of friction at the cask/pad interface, and material properties of the soil foundation. In subsequent research, the analysis results will be compiled and presented in nomograms to highlight the sensitivity of seismic response of DCSS to

  10. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    Science.gov (United States)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  11. Increases in anxiety-like behavior induced by acute stress are reversed by ethanol in adolescent but not adult rats.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2012-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Fear Conditioning Effects on Sensitivity to Drug Reward

    Science.gov (United States)

    2010-06-01

    motivational responses and self-administration behaviors (Robbins et al., 2008). Pavlovian conditioning mechanisms link unconditioned drug responses...model. Induction of fear conditioning is followed by measurement of sensitivity to drug reward using a conditioned place preference (CPP) model to...morphine. Conditioned drug reward is a relevant model in addiction because environmental cues (e.g. a barroom) induce craving and persistent

  13. Efficacy of the chelating agent CaEDTA in reversing lead-induced changes in behavior.

    Science.gov (United States)

    Cory-Slechta, D A; Weiss, B

    1989-01-01

    The chelating agent CaEDTA has been reported to reverse the deficits in intellectual function and performance associated with Pb (lead) exposure in children. However, such studies have not included rigorous controls for the intervention procedures per se. The experiments reported here examined reversibility of performance changes in a rat model based on behavior sensitive to low-level Pb exposure. Rats were exposed to 50 ppm sodium or Pb acetate in drinking water from weaning. Performance maintained under a Fixed-Interval schedule of food reinforcement began at 55 days of age. Following the onset of the characteristic increase in short interresponse times (IRTs) associated with low-level Pb exposure after 35 experimental sessions, Pb treatment was terminated. Animals within both the control and Pb groups were then matched on the basis of performance indices and injected daily for 5 days with either saline, 75 mg/kg or 150 mg/kg CaEDTA. Subsequent changes in F1 performance were monitored for 35-60 sessions. No consistent effects of CaEDTA were detected in control animals. CaEDTA treatment failed to reverse the behavioral effects in Pb-exposed animals. If anything, it tended to further increase the proportion of short IRTs. These data suggest that better controlled clinical studies are warranted to evaluate the efficacy of CaEDTA in reversing Pb-induced behavioral effects before its application for these purposes becomes widespread.

  14. Physical and verbal aggressive behavior and COMT genotype: Sensitivity to the environment.

    Science.gov (United States)

    Tuvblad, Catherine; Narusyte, Jurgita; Comasco, Erika; Andershed, Henrik; Andershed, Anna-Karin; Colins, Olivier F; Fanti, Kostas A; Nilsson, Kent W

    2016-07-01

    Catechol-O-methyltransferase (COMT) genotype has been implicated as a vulnerability factor for several psychiatric diseases as well as aggressive behavior, either directly, or in interaction with an adverse environment. The present study aimed at investigating the susceptibility properties of COMT genotype to adverse and favorable environment in relation to physical and verbal aggressive behavior. The COMT Val158Met polymorphism was genotyped in a Swedish population-based cohort including 1,783 individuals, ages 20-24 years (47% males). A significant three-way interaction was found, after correction for multiple testing, between COMT genotype, exposure to violence, and parent-child relationship in association with physical but not verbal aggressive behavior. Homozygous for the Val allele reported lower levels of physical aggressive behavior when they were exposed to violence and at the same time experienced a positive parent-child relationship compared to Met carriers. Thus, susceptibility properties of COMT genotype were observed in relation to physical aggressive behavior supporting the hypothesis that COMT genotypes are modifying the sensitivity to environment that confers either risk or protection for aggressive behavior. As these are novel findings, they warrant further investigation and replication in independent samples. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Reward/punishment sensitivities among internet addicts: Implications for their addictive behaviors.

    Science.gov (United States)

    Dong, Guangheng; Hu, Yanbo; Lin, Xiao

    2013-10-01

    Internet addiction disorder (IAD) has raised widespread public health concerns. In this study, we used a gambling task to simulate extreme win/lose situations to find the reward/punishment sensitivities after continuous wins and losses. FMRI data were collected from 16 IAD subjects (21.4±3.1years) and 15 healthy controls (HC, 22.1±3.6years). Group comparisons showed higher superior frontal gyrus activations after continuous wins for IAD subjects than for HC. The brain activities in IAD subjects were not disturbed by their losses. In addition, IAD participants showed decreased posterior cingulate activation compared to HC after continuous losses. These results indicated that IAD participants showed preference to win while neglecting their losses. Therefore they engaged less executive endeavor to control their frustration after continuous losses. Taken together, we concluded that IAD subjects showed enhanced sensitivity to win and decreased sensitivity to lose. This can help us understand why IAD subjects continue playing online even after noticing the severe negative consequences of their behaviors. © 2013.

  16. Methamphetamine-induced changes in the striatal dopamine pathway in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Park Sang Won

    2011-11-01

    Full Text Available Abstract Background Repeated exposure to methamphetamine (METH can cause not only neurotoxicity but also addiction. Behavioral sensitization is widely used as an animal model for the study of drug addiction. We previously reported that the μ-opioid receptor knockout mice were resistant to METH-induced behavioral sensitization but the mechanism is unknown. Methods The present study determined whether resistance of the μ-opioid receptor (μ-OR knockout mice to behavioral sensitization is due to differential expression of the stimulatory G protein α subunit (Gαs or regulators of G-protein signaling (RGS coupled to the dopamine D1 receptor. Mice received daily intraperitoneal injections of saline or METH (10 mg/kg for 7 consecutive days to induce sensitization. On day 11(following 4 abstinent days, mice were either given a test dose of METH (10 mg/kg for behavioral testing or sacrificed for neurochemical assays without additional METH treatment. Results METH challenge-induced stereotyped behaviors were significantly reduced in the μ-opioid receptor knockout mice when compared with those in wild-type mice. Neurochemical assays indicated that there is a decrease in dopamine D1 receptor ligand binding and an increase in the expression of RGS4 mRNA in the striatum of METH-treated μ-opioid receptor knockout mice but not of METH-treated wild-type mice. METH treatment had no effect on the expression of Gαs and RGS2 mRNA in the striatum of either strain of mice. Conclusions These results indicate that down-regulation of the expression of the dopamine D1 receptor and up-regulation of RGS4 mRNA expression in the striatum may contribute to the reduced response to METH-induced stereotypy behavior in μ-opioid receptor knockout mice. Our results highlight the interactions of the μ-opioid receptor system to METH-induced behavioral responses by influencing the expression of RGS of dopamine D1 receptors.

  17. Different Fear-Regulation Behaviors in Toddlerhood: Relations to Preceding Infant Negative Emotionality, Maternal Depression, and Sensitivity

    Science.gov (United States)

    Gloggler, Bettina; Pauli-Pott, Ursula

    2008-01-01

    In the study presented, the development of different fear regulation behaviors and their associations with preceding maternal sensitivity and depression is addressed. A sample of 64 mother-child pairs was examined at the children's ages of 4, 12, and 30 months. Four-month negative reactivity and 12- and 30- month behavioral inhibition and fear…

  18. Context-dependent efficacy of a counter-conditioning strategy with atypical neuroleptic drugs in mice previously sensitized to cocaine.

    Science.gov (United States)

    Oliveira-Lima, A J; Marinho, Eav; Santos-Baldaia, R; Hollais, A W; Baldaia, M A; Talhati, F; Ribeiro, L T; Wuo-Silva, R; Berro, L F; Frussa-Filho, R

    2017-02-06

    We have previously demonstrated that treatment with ziprasidone and aripiprazole selectively inhibit the development of behavioral sensitization to cocaine in mice. We now investigate their effects on a counter-conditioning strategy in mice and the importance of the treatment environment for this phenomenon. Evaluate the context-specificity of ziprasidone and aripiprazole on conditioned locomotion to cocaine and cocaine-induced hyperlocomotion and behavioral sensitization in a counter-conditioning strategy in mice. Animals were sensitized with saline or cocaine injections in the open-field apparatus in a 15-day intermittent treatment and subsequently treated with vehicle, 5mg/kg ziprasidone or 0.1mg/kg aripiprazole paired to the open-field or the home-cage for 4 alternate days. Mice were then challenged with saline and cocaine in the open-field apparatus on subsequent days. While treatment with ziprasidone decreased spontaneous locomotion and conditioned locomotion alike, treatment with aripiprazole specifically attenuated the expression of conditioned hyperlocomotion to cocaine. Ziprasidone and aripiprazole had no effects on cocaine-induced conditioned hyperlocomotion observed during saline challenge after drug withdrawal. Treatment with either ziprasidone or aripiprazole when previously given in the cocaine-paired environment attenuated the subsequent expression of behavioral sensitization to cocaine. Animals treated with aripiprazole in the open-field, but not in the home-cage, showed a blunted response to cocaine when receiving a cocaine challenge for the first time. Both neuroleptic drugs showed a context-dependent effectiveness in attenuating long-term expression of cocaine-induced behavioral sensitization when administered in the cocaine-associated environment, with aripiprazole also showing effectiveness in blocking the expression of acute cocaine effects. Copyright © 2016. Published by Elsevier Inc.

  19. The potential role of postsynaptic phospholipase C activity in synaptic facilitation and behavioral sensitization in Aplysia.

    Science.gov (United States)

    Fulton, Daniel; Condro, Michael C; Pearce, Kaycey; Glanzman, David L

    2008-07-01

    Previous findings indicate that synaptic facilitation, a cellular mechanism underlying sensitization of the siphon withdrawal response (SWR) in Aplysia, depends on a cascade of postsynaptic events, including activation of inositol triphosphate (IP3) receptors and release of Ca2+ from postsynaptic intracellular stores. These findings suggest that phospholipase C (PLC), the enzyme that catalyzes IP3 formation, may play an important role in postsynaptic signaling during facilitation and learning in Aplysia. Using the PLC inhibitor U73122, we found that PLC activity is required for synaptic facilitation following a 10-min treatment with 5-HT, as measured at 20 min after 5-HT washout. Prior work has indicated that facilitation at this time is supported primarily by postsynaptic processes. To determine whether postsynaptic PLC activity is involved in 5-HT-mediated facilitatory actions, we examined the effect of U73122 on enhancement of the response of motor neurons isolated in cell culture to glutamate, the sensory neuron transmitter. A 10-min application of 5-HT induced persistent (>40 min) enhancement of glutamate-evoked potentials (Glu-EPs) recorded from isolated motor neurons, and this enhancement was blocked by U73122. Finally, we showed that injecting U73122 into intact animals before behavioral training impaired intermediate-term sensitization, indicating that PLC activity contributes to this form of nonassociative learning.

  20. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles.

    Science.gov (United States)

    Grippo, Angela J; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks of social isolation versus paired housing. In Experiment 1, oxytocin-immunoreactive cell density was higher in the hypothalamic paraventricular nucleus (PVN) and plasma oxytocin was elevated in isolated females, but not in males. In Experiment 2, sucrose intake, used as an operational definition of hedonia, was reduced in both sexes following 4 weeks of isolation. Animals then received a resident-intruder test, and were sacrificed either 10 min later for the analysis of circulating hormones and peptides, or 2h later to examine neural activation, indexed by c-Fos expression in PVN cells immunoreactive for oxytocin or corticotropin-releasing factor (CRF). Compared to paired animals, plasma oxytocin, ACTH and corticosterone were elevated in isolated females and plasma oxytocin was elevated in isolated males, following the resident-intruder test. The proportion of cells double-labeled for c-Fos and oxytocin or c-Fos and CRF was elevated in isolated females, and the proportion of cells double-labeled for c-Fos and oxytocin was elevated in isolated males following this test. These findings suggest that social isolation induces behavioral and neuroendocrine responses relevant to depression in male and female prairie voles, although neuroendocrine responses in females may be especially sensitive to isolation.

  1. Characterization of sensitization and stress corrosion cracking behavior of stabilized stainless steels under BWR conditions

    International Nuclear Information System (INIS)

    Kilian, R.; Ilg, U.; Meier, V.; Teichmann, H.; Wachter, O.

    1995-01-01

    Stress corrosion cracking occurs if the three parameters -- material condition, tensile stress and water chemistry -- are in a critical range. In this study the material conditions especially of Ti- and Nb-stabilized steels are considered. The purpose of this work is to show the influence of the degree of sensitization of Ti- and Nb-stabilized stainless steels on stress corrosion cracking susceptibility in BWR water chemistry. This is an on-going research program. Preliminary results will be presented. Different types of stabilized, and for comparison unstabilized, stainless steels are examined in various heat treatment conditions with regard to their sensitization behavior by EPR tests (double loop) and TEM. The results are plotted in sensitization diagrams. The sensitization behavior depends on many parameters such as carbon content, stabilization element, stabilization ratio and materials history, e.g. solution heat treatment or cold working. The obtained EPR sensitization diagrams are compared with the well known sensitization diagrams from the literature, which were determined by standard IC test according to e.g. German standard DIN 50914 (equivalent to ASTM A 262, Pract. E). Based on the obtained EPR sensitization diagrams material conditions for SSRT tests were selected. The EPR values (Ir/Ia x 100%) of the tested Ti-stabilized stainless steel are in the range of ∼ 0.1--20%. The SSRT tests are carried out in high-temperature water with 0.4 ppm O 2 , a conductivity of 0.5 microS/cm and a strain rate of 1x10 -6-1 . The test temperature is 280 C. Ti-stabilized stainless steel with Ir/Ia x 100% > 1% suffered intergranular stress corrosion cracking under these conditions. The SCC tests for Nb-stabilized stainless steel are still in progress. The correlation between EPR value, chromium depletion and SSRT result will be shown for a selected material condition of sensitized Ti-stabilized stainless steel

  2. Is Hiding Foot and Mouth Disease Sensitive Behavior for Farmers? A Survey Study in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Anoma Gunarathne

    2016-02-01

    Full Text Available Foot and mouth disease (FMD has a long history in Sri Lanka and was found to be endemic in various parts of the country and constitutes a constant threat to farmers. In Sri Lanka, currently there is no regular, nationwide vaccination programme devised to control FMD. Therefore, improving farmers’ knowledge regarding distinguishing FMD from other diseases and ensuring prompt reporting of any suspicion of FMD as well as restricting movement of animals are critical activities for an effective FMD response effort. Therefore, the main purpose of this study was to clarify the relationship between farmers’ knowledge levels and their behaviors to establish a strategy to control FMD. In our study, item count technique was applied to estimate the number of farmers that under-report and sell FMD-infected animals, although to do so is prohibited by law. The following findings were observed: about 63% of farmers have very poor knowledge of routes of FMD transmission; ‘under-reporting’ was found to be a sensitive behavior and nearly 23% of the farmers were reluctant to report FMD-infected animals; and ‘selling FMD-infected animals’ is a sensitive behavior among high-level knowledge group while it is a non-sensitive behavior among the low-level knowledge group. If farmers would understand the importance of prompt reporting, they may report any suspected cases of FMD to veterinary officials. However, even if farmers report honestly, they do not want to cull FMD-infected animals. Thus, education programs should be conducted not only on FMD introduction and transmission, but also its impact. Furthermore, consumers may criticize the farmers for culling their infected animals. Hence, not only farmers, but also consumers need to be educated on the economic impact of FMD and the importance of controlling an outbreak. If farmers have a high knowledge of FMD transmission, they consider selling FMD-infected animals as a sensitive behavior. Therefore, severe

  3. Anxiety sensitivity uniquely predicts exercise behaviors in young adults seeking to increase physical activity

    NARCIS (Netherlands)

    Moshier, S.J.; Szuhany, K.L.; Hearon, B.A.; Smits, J.A.J.; Otto, M.W.

    2016-01-01

    Individuals with elevated levels of anxiety sensitivity (AS) may be motivated to avoid aversive emotional or physical states, and therefore may have greater difficulty achieving healthy behavioral change. This may be particularly true for exercise, which produces many of the somatic sensations

  4. Prenatal lipopolysaccharide induces hypothalamic dopaminergic hypoactivity and autistic-like behaviors: Repetitive self-grooming and stereotypies.

    Science.gov (United States)

    Kirsten, Thiago B; Bernardi, Maria M

    2017-07-28

    Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces social, cognitive, and communication deficits. For a complete screening of autistic-like behaviors, the objective of this study was to evaluate if our rat model also induces restricted and repetitive stereotyped behaviors. Thus, we studied the self-grooming microstructure. We also studied the neurochemistry of hypothalamus and frontal cortex, which are brain areas related to autism to better understand central mechanisms involved in our model. Prenatal LPS exposure on gestational day 9.5 increased the head washing episodes (frequency and time), as well as the total self-grooming. However, body grooming, paw/leg licking, tail/genital grooming, and circling behavior/tail chasing did not vary significantly among the groups. Moreover, prenatal LPS induced dopaminergic hypoactivity (HVA metabolite and turnover) in the hypothalamus. Therefore, our rat model induced restricted and repetitive stereotyped behaviors and the other main symptoms of autism experimentally studied in rodent models and also found in patients. The hypothalamic dopaminergic impairments seem to be associated with the autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Water spray-induced grooming is negatively correlated with depressive behavior in the forced swimming test in rats.

    Science.gov (United States)

    Shiota, Noboru; Narikiyo, Kimiya; Masuda, Akira; Aou, Shuji

    2016-05-01

    Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.

  6. Patterns of Sensitivity to Parenting and Peer Environments: Early Temperament and Adolescent Externalizing Behavior.

    Science.gov (United States)

    Tung, Irene; Noroña, Amanda N; Morgan, Julia E; Caplan, Barbara; Lee, Steve S; Baker, Bruce L

    2018-03-14

    Although parenting behavior and friendship quality predict adolescent externalizing behaviors (EBs), individual differences in temperament may differentially affect susceptibility to these factors over time. In a multi-method and multi-informant study of 141 children followed prospectively from toddlerhood to adolescence, we tested the independent and interactive associations of age 3 reactive temperament (e.g., negative emotionality) and age 13 observed parenting (i.e., positive and negative behavior) and friendship (i.e., conflict and warmth), with multi-informant ratings of age 15 aggression and rule-breaking behavior. Negative parenting predicted growth in parent-rated EB, but only for adolescents with early reactive temperament. Temperament did not affect sensitivity to positive parenting or friendship. Results are discussed in the context of differential susceptibility theory and intervention implications for adolescents. © 2018 Society for Research on Adolescence.

  7. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine

    OpenAIRE

    Xia, Yan; Portugal, George S.; Fakira, Amanda K.; Melyan, Zara; Neve, Rachael; Lee, H. Thomas; Russo, Scott J.; Liu, Jie; Morón, Jose A.

    2011-01-01

    Glutamatergic systems, including α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic...

  8. Sensitive Periods, Vasotocin-Family Peptides, and the Evolution and Development of Social Behavior

    Directory of Open Access Journals (Sweden)

    Nicole M. Baran

    2017-08-01

    Full Text Available Nonapeptides, by modulating the activity of neural circuits in specific social contexts, provide an important mechanism underlying the evolution of diverse behavioral phenotypes across vertebrate taxa. Vasotocin-family nonapeptides, in particular, have been found to be involved in behavioral plasticity and diversity in social behavior, including seasonal variation, sexual dimorphism, and species differences. Although nonapeptides have been the focus of a great deal of research over the last several decades, the vast majority of this work has focused on adults. However, behavioral diversity may also be explained by the ways in which these peptides shape neural circuits and influence social processes during development. In this review, I synthesize comparative work on vasotocin-family peptides during development and classic work on early forms of social learning in developmental psychobiology. I also summarize recent work demonstrating that early life manipulations of the nonapeptide system alter attachment, affiliation, and vocal learning in zebra finches. I thus hypothesize that vasotocin-family peptides are involved in the evolution of social behaviors through their influence on learning during sensitive periods in social development.

  9. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)

    2015-01-15

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  10. Repeated Predictable Stress Causes Resilience against Colitis-Induced Behavioral Changes in Mice

    Directory of Open Access Journals (Sweden)

    Ahmed M Hassan

    2014-11-01

    Full Text Available Inflammatory bowel disease is associated with an increased risk of mental disorders and can be exacerbated by stress. In this study which was performed with male 10-week old C57Bl/6N mice, we used dextran sulfate sodium (DSS-induced colitis to evaluate behavioral changes caused by intestinal inflammation, to assess the interaction between repeated psychological stress (water avoidance stress, WAS and colitis in modifying behavior, and to analyze neurochemical correlates of this interaction. A 7-day treatment with DSS (2 % in drinking water decreased locomotion and enhanced anxiety-like behavior in the open field test and reduced social interaction. Repeated exposure to WAS for 7 days had little influence on behavior but prevented the DSS-induced behavioral disturbances in the open field and social interaction tests. In contrast, repeated WAS did not modify colon length, colonic myeloperoxidase content and circulating proinflammatory cytokines, parameters used to assess colitis severity. DSS-induced colitis was associated with an increase in circulating neuropeptide Y (NPY, a rise in the hypothalamic expression of cyclooxygenase-2 mRNA and a decrease in the hippocampal expression of NPY mRNA, brain-derived neurotrophic factor mRNA and mineralocorticoid receptor mRNA. Repeated WAS significantly decreased the relative expression of corticotropin-releasing factor mRNA in the hippocampus. The effect of repeated WAS to blunt the DSS-evoked behavioral disturbances was associated with a rise of circulating corticosterone and an increase in the expression of hypothalamic NPY mRNA. These results show that experimental colitis leads to a particular range of behavioral alterations which can be prevented by repeated WAS, a model of predictable chronic stress, while the severity of colitis remains unabated. We conclude that the mechanisms underlying the resilience effect of repeated WAS involves hypothalamic NPY and the hypothalamic-pituitary-adrenal axis.

  11. The sensitivity of active and inactive chromatin to ionizing radiation-induced DNA strand breakage

    International Nuclear Information System (INIS)

    Chiu, S.-M.; Oleinick, N.L.

    1982-01-01

    The sensitivity of DNA in actively transcribing and inactive states has been compared with regard to γ-radiation-induced single-strand break (SSB) induction. The results indicate that chromatin organization is important in the determination of the sensitivity of cellular DNA toward γ-radiation: Not only the yield but also the rate of repair of SSB is greater in the actively transcribing genes than in the total nuclear DNA. (author)

  12. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice.

    Science.gov (United States)

    Ali, Syed Hamid; Madhana, Rajaram Mohanrao; K V, Athira; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Pitta, Sathish; Mahareddy, Jalandhar Reddy; Lahkar, Mangala

    2015-09-01

    A mouse model of depression has been recently developed by exogenous corticosterone (CORT) administration, which has shown to mimic HPA-axis induced depression-like state in animals. The present study aimed to examine the antidepressant-like effect and the possible mechanisms of resveratrol, a naturally occurring polyphenol of phytoalexin family, on depressive-like behavior induced by repeated corticosterone injections in mice. Mice were injected subcutaneously (s.c.) with 40mg/kg corticosterone (CORT) chronically for 21days. Resveratrol and fluoxetine were administered 30min prior to the CORT injection. After 21-days treatment with respective drugs, behavioral and biochemical parameters were estimated. Since brain derived neurotrophic factor (BDNF) has been implicated in antidepressant activity of many drugs, we also evaluated the effect of resveratrol on BDNF in the hippocampus. Three weeks of CORT injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test and tail suspension test. Further, there was a significant increase in serum corticosterone level and a significant decrease in hippocampus BDNF level in CORT-treated mice. Treatment of mice with resveratrol significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. These results suggest that resveratrol produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of hippocampal BDNF levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Sensitization to UV-induced apoptosis by the histone deacetylase inhibitor trichostatin A (TSA)

    International Nuclear Information System (INIS)

    Kim, Myoung Sook; Baek, Jin Hyen; Chakravarty, Devulapalli; Sidransky, David; Carrier, France

    2005-01-01

    UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin

  14. Familial factors responsible for persistent crying-induced asthma: a case report.

    Science.gov (United States)

    Weinstein, A G

    1987-10-01

    Crying behavior of the asthmatic child may induce wheezing symptoms. This may be a clinical problem for families with asthmatic children who exhibit frequent and persistent crying behavior. This case report identifies behaviors by the child and parents that may be responsible for continual crying. Child factors include (1) "spoiled" personality, (2) poor self-image, (3) biologic sensitivity to foods, medication, and environmental allergens producing irritability. Parental factors include poor disciplinary practices secondary to (1) disrupted home life, (2) guilt, and (3) overprotective behavior. Identification of these factors may be helpful in establishing clinical management strategies to reduce crying-induced asthma.

  15. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    International Nuclear Information System (INIS)

    McNeely, Samuel C.; Belshoff, Alex C.; Taylor, B. Frazier; Fan, Teresa W-M.; McCabe, Michael J.; Pinhas, Allan R.

    2008-01-01

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-π was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G 2 -phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application

  16. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  17. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    International Nuclear Information System (INIS)

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; Heras, Beatriz de las; Hortelano, Sonsoles

    2015-01-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  18. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Lee, Dong-Hyoung; Han, Sol-Chan; Kim, Tae-Hyeong; Yun, Jong-Il

    2011-12-15

    We have applied a dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) to sensitively detect concentrations of boron and lithium in aqueous solution. Sequential laser pulses from two separate Q-switched Nd:YAG lasers at 532 nm wavelength have been employed to generate laser-induced plasma on a water jet. For achieving sensitive elemental detection, the optimal timing between two laser pulses was investigated. The optimum time delay between two laser pulses for the B atomic emission lines was found to be less than 3 μs and approximately 10 μs for the Li atomic emission line. Under these optimized conditions, the detection limit was attained in the range of 0.8 ppm for boron and 0.8 ppb for lithium. In particular, the sensitivity for detecting boron by excitation of laminar liquid jet was found to be excellent by nearly 2 orders of magnitude compared with 80 ppm reported in the literature. These sensitivities of laser-induced breakdown spectroscopy are very practical for the online elemental analysis of boric acid and lithium hydroxide serving as neutron absorber and pH controller in the primary coolant water of pressurized water reactors, respectively.

  19. A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models

    Science.gov (United States)

    Brugnach, M.; Neilson, R.; Bolte, J.

    2001-12-01

    The use of process-based models as a tool for scientific inquiry is becoming increasingly relevant in ecosystem studies. Process-based models are artificial constructs that simulate the system by mechanistically mimicking the functioning of its component processes. Structurally, a process-based model can be characterized, in terms of its processes and the relationships established among them. Each process comprises a set of functional relationships among several model components (e.g., state variables, parameters and input data). While not encoded explicitly, the dynamics of the model emerge from this set of components and interactions organized in terms of processes. It is the task of the modeler to guarantee that the dynamics generated are appropriate and semantically equivalent to the phenomena being modeled. Despite the availability of techniques to characterize and understand model behavior, they do not suffice to completely and easily understand how a complex process-based model operates. For example, sensitivity analysis studies model behavior by determining the rate of change in model output as parameters or input data are varied. One of the problems with this approach is that it considers the model as a "black box", and it focuses on explaining model behavior by analyzing the relationship input-output. Since, these models have a high degree of non-linearity, understanding how the input affects an output can be an extremely difficult task. Operationally, the application of this technique may constitute a challenging task because complex process-based models are generally characterized by a large parameter space. In order to overcome some of these difficulties, we propose a method of sensitivity analysis to be applicable to complex process-based models. This method focuses sensitivity analysis at the process level, and it aims to determine how sensitive the model output is to variations in the processes. Once the processes that exert the major influence in

  20. Acupuncture suppresses reinstatement of morphine-seeking behavior induced by a complex cue in rats.

    Science.gov (United States)

    Lee, Bong Hyo; Lim, Sung Chul; Jeon, Hyeon Jeong; Kim, Jae Su; Lee, Yun Kyu; Lee, Hyun Jong; In, Sunghyun; Kim, Hee Young; Yoon, Seong Shoon; Yang, Chae Ha

    2013-08-26

    Morphine causes physical and psychological dependence for individuals after repeated-use. Above all, our previous study showed that acupuncture attenuated reinstatement of morphine-seeking behavior induced by pharmacological cue. In this study, we investigated whether acupuncture could suppress the reinstatement of morphine-seeking behavior induced by the combination of environmental and pharmacological cues and the possible neuronal involvement. Male Sprague-Dawley rats were trained to self-administer morphine (1.0 mg/kg) for 3 weeks. Following the withdrawal phase (7 days), the effects of acupuncture on reinstatement of morphine-seeking behavior were investigated. For the investigation of neuronal involvement, the GABAA receptor antagonist bicuculline and the GABAB receptor antagonist SCH 50911 were pre-treated. Morphine-seeking behavior induced by combination of re-exposure to the operant chamber and morphine injection was suppressed perfectly by acupuncture at SI5, but not at the control acupoint LI5 and this effect was blocked by pre-treatment with the GABA receptor antagonists. This study suggests that acupuncture at SI5 can be considered as a predominant therapy for the reinstatement of morphine-seeking behavior in humans. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High Behavioral Approach System (BAS) sensitivity, reward responsiveness, and goal-striving predict first onset of bipolar spectrum disorders: a prospective behavioral high-risk design.

    Science.gov (United States)

    Alloy, Lauren B; Bender, Rachel E; Whitehouse, Wayne G; Wagner, Clara A; Liu, Richard T; Grant, David A; Jager-Hyman, Shari; Molz, Ashleigh; Choi, James Y; Harmon-Jones, Eddie; Abramson, Lyn Y

    2012-05-01

    A prospective, behavioral high-risk design provided a theoretically guided examination of vulnerability to first onset of bipolar spectrum disorder based on the Behavioral Approach System (BAS) model. Adolescents (ages 14-19) at an "age of risk" for bipolar disorder onset were screened on BAS sensitivity by interviewers blind to current symptoms, lifetime history, and family history of psychopathology. Participants were selected with high versus moderate levels of BAS sensitivity and administered a lifetime diagnostic interview. Those with a bipolar spectrum disorder, psychosis, or hypomanic episode with onset prior to the BAS sensitivity assessment were excluded. High BAS (n = 171) and moderate BAS (n = 119) sensitivity participants in the final sample completed baseline measures of symptoms, goal-setting, and reward responsiveness and were followed prospectively with semistructured diagnostic interviews every 6 months. Consistent with the vulnerability hypothesis of the BAS model of bipolar disorder, high BAS participants had a greater likelihood, and shorter time to onset, of bipolar spectrum disorder than moderate BAS participants across an average of 12.8 months of follow-up (12.9% vs. 4.2%), controlling for baseline depressive and hypomanic symptoms, and family history of bipolar disorder. High reward responsiveness on a behavioral task and ambitious goal-striving for popular fame and financial success (but not impulsivity) also predicted first onset of bipolar spectrum disorder controlling for the covariates and BAS risk group, and ambitious goal-striving partially mediated the BAS risk group effect. We discuss implications of the findings for the BAS model of bipolar disorder and early intervention efforts.

  3. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage.

    Science.gov (United States)

    Pascual, María; Baliño, Pablo; Alfonso-Loeches, Silvia; Aragón, Carlos M G; Guerri, Consuelo

    2011-06-01

    Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Tanaka, Masaru; Bagosi, Zsolt; Jászberényi, Miklós

    2014-11-01

    Little is known about the action of neuropeptide AF (NPAF) on anxiety and depression. Only our previous study provides evidence that NPAF induces anxiety-like behavior in rats. Therefore, the aim of the present study was to investigate the action of NPAF on depression-like behavior and the underlying neurotransmissions in mice. In order to determine whether there are species differences between rats and mice, we have investigated the action of NPAF on anxiety-like behavior in mice as well. A modified forced swimming test (mFST) and an elevated plus maze test (EPMT) were used to investigate the depression and anxiety-related behaviors, respectively. Mice were treated with NPAF 30min prior to the tests. In the mFST, the animals were pretreated with a non-selective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2/D3/D4 dopamine receptor antagonist, haloperidol, a α1/α2β-adrenergic receptor antagonist, prazosin or a non-selective β-adrenergic receptor antagonist, propranolol 30min before the NPAF administration. In the mFST, NPAF decreased the immobility time and increased the climbing and swimming times. This action was reversed completely by methysergide and partially by atropine, whereas cyproheptadine, haloperidol, prazosin and propranolol were ineffective. In the EPMT, NPAF decreased the time spent in the arms (open/open+closed). Our results demonstrate that NPAF induces anti-depressant-like behavior in mice, which is mediated, at least in part, through 5HT2-serotonergic and muscarinic cholinergic neurotransmissions. In addition, the NPAF-induced anxiety is species-independent, since it develops also in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    International Nuclear Information System (INIS)

    Srisuttee, Ratakorn; Koh, Sang Seok; Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae; Jhun, Byung Hak; Horio, Yoshiyuki; Chung, Young-Hwa

    2012-01-01

    Highlights: ► Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. ► Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. ► Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. ► Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  6. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  7. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output.

    Science.gov (United States)

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-08-11

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.

  8. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    Science.gov (United States)

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  9. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

    International Nuclear Information System (INIS)

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  10. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  11. Anti-Inflammatory and Antioxidant Effects of Repeated Exposure to Cruciferous Allyl Nitrile in Sensitizer-Induced Ear Edema in Mice.

    Science.gov (United States)

    Tanii, Hideji; Sugitani, Kayo; Saijoh, Kiyofumi

    2016-02-29

    Skin sensitizers induce allergic reactions through the induction of reactive oxygen species. Allyl nitrile from cruciferous vegetables has been reported to induce antioxidants and phase II detoxification enzymes in various tissues. We assessed the effects of repeated exposure to allyl nitrile on sensitizer-induced allergic reactions. Mice were dosed with allyl nitrile (0-200 µmol/kg), and then received a dermal application of 1 of 3 sensitizers on the left ear or 1 of 2 vehicles on the right ear. Quantitative assessment of edema was carried out by measuring the difference in weight between the portions taken from the right and left ears. We tested enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) in ears. Repeated exposure to allyl nitrile reduced edemas induced by glutaraldehyde and by 2, 4-dinitrochlorobenzene (DNCB), but not by formaldehyde. The repeated exposure decreased levels of TBARS, a marker of oxidative stress, induced by glutaraldehyde and by DNCB, but not by formaldehyde. Allyl nitrile elevated SOD levels for the 3 sensitizers, and CAT levels for formaldehyde and DNCB. Allyl nitrile also increased GPx levels for formaldehyde and DNCB, but not for glutaraldehyde. The reduced edemas were associated with changes in oxidative stress levels and antioxidant enzymes. Repeated exposure to allyl nitrile reduced allergic reactions induced by glutaraldehyde and by DNCB, but not by formaldehyde. This reduction was associated with changes in ROS levels and antioxidant enzyme activities.

  12. Anxiety sensitivity as a predictor of broad dimensions of psychopathology after cognitive behavioral therapy for panic disorder

    Directory of Open Access Journals (Sweden)

    Ino K

    2017-07-01

    Full Text Available Keiko Ino,1 Sei Ogawa,1 Masaki Kondo,1 Risa Imai,1 Toshitaka Ii,1 Toshi A Furukawa,2 Tatsuo Akechi1 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, 2Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan Background: Panic disorder (PD is a common disease and presents with broad dimensions of psychopathology. Cognitive behavioral therapy (CBT is known to improve these broad dimensions of psychopathology in addition to PD symptoms. However, little is known about the predictors of treatment response in comorbid psychiatric symptoms after CBT for PD. Recent studies suggest that anxiety sensitivity (AS may be a key vulnerability for PD. This study aimed to examine AS as a predictor of broad dimensions of psychopathology after CBT for PD. Materials and methods: In total, 118 patients with PD were treated with manualized group CBT. We used multiple regression analysis to examine the associations between 3 Anxiety Sensitivity Index (ASI factors (physical concerns, mental incapacitation concerns, and social concerns at baseline and the subscales of the Symptom Checklist-90 Revised (SCL-90-R at endpoint. Results: Low levels of social concerns at baseline predicted low levels on 5 SCL-90-R subscales after CBT: interpersonal sensitivity, depression, hostility, paranoid ideation, and psychosis. High levels of mental incapacitation concerns significantly predicted low levels on 3 SCL-90-R subscales after treatment: interpersonal sensitivity, hostility, and paranoid ideation. Physical concerns at baseline did not predict broad dimensions of psychopathology. Conclusion: This study suggested that the social concerns and mental incapacitation concerns subscales of the ASI at baseline predicted several dimensions of psychopathology after CBT for PD. To improve comorbid psychopathology, it may be useful to

  13. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Apaijai, Nattayaporn; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2012-10-05

    Metformin is a first line drug for the treatment of type 2 diabetes mellitus (T2DM). Our previous study reported that high-fat diet (HFD) consumption caused not only peripheral and neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment. However, the effects of metformin on learning behavior and brain mitochondrial functions in HFD-induced insulin resistant rats have never been investigated. Thirty-two male Wistar rats were divided into two groups to receive either a normal diet (ND) or a high-fat diet (HFD) for 12weeks. Then, rats in each group were divided into two treatment groups to receive either vehicle or metformin (15mg/kg BW twice daily) for 21days. All rats were tested for cognitive behaviors using the Morris water maze (MWM) test, and blood samples were collected for the determination of glucose, insulin, and malondialdehyde. At the end of the study, animals were euthanized and the brain was removed for studying brain mitochondrial function and brain oxidative stress. We found that in the HFD group, metformin significantly attenuated the insulin resistant condition by improving metabolic parameters, decreasing peripheral and brain oxidative stress levels, and improving learning behavior, compared to the vehicle-treated group. Furthermore, metformin completely prevented brain mitochondrial dysfunction caused by long-term HFD consumption. Our findings suggest that metformin effectively improves peripheral insulin sensitivity, prevents brain mitochondrial dysfunction, and completely restores learning behavior, which were all impaired by long-term HFD consumption. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mehtar-Tani, Yacine [Institute of Nuclear Theory, University of Washington,Seattle, WA 98195-1550 (United States); Tywoniuk, Konrad [Theoretical Physics Department, CERN,1211 Geneva 23 (Switzerland)

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  15. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  16. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    Science.gov (United States)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-04-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  17. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    International Nuclear Information System (INIS)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-01-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  18. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine.

    Science.gov (United States)

    Xia, Yan; Portugal, George S; Fakira, Amanda K; Melyan, Zara; Neve, Rachael; Lee, H Thomas; Russo, Scott J; Liu, Jie; Morón, Jose A

    2011-11-09

    Glutamatergic systems, including AMPA receptors (AMPARs), are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic AMPAR expression in the hippocampus, a brain area that is critically involved in learning and memory. These changes could be observed 1 week after the treatment, but only when mice developed context-dependent behavioral sensitization to morphine in which morphine treatment was associated with drug administration environment. Context-dependent behavioral sensitization to morphine was also associated with increased basal synaptic transmission and disrupted hippocampal long-term potentiation (LTP), whereas these effects were less robust when morphine administration was not paired with the drug administration environment. Interestingly, some effects may be related to the prior history of morphine exposure in the drug-associated environment, since alterations of AMPAR expression, basal synaptic transmission, and LTP were observed in mice that received a saline challenge 1 week after discontinuation of morphine treatment. Furthermore, we demonstrated that phosphorylation of GluA1 AMPAR subunit plays a critical role in the acquisition and expression of context-dependent behavioral sensitization, as this behavior is blocked by a viral vector that disrupts GluA1 phosphorylation. These data provide evidence that glutamatergic signaling in the hippocampus plays an important role in context-dependent sensitization to morphine and supports further investigation of glutamate-based strategies for treating opiate addiction.

  19. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Vitamin A active metabolite, all-trans retinoic acid, induces spinal cord sensitization. II. Effects after intrathecal administration

    Science.gov (United States)

    Alique, M; Lucio, F J; Herrero, J F

    2006-01-01

    Background and purpose: In our previous study (see accompanying paper) we observed that all-trans retinoic acid (ATRA) p.o. induces changes in spinal cord neuronal responses similar to those observed in inflammation-induced sensitization. In the present study we assessed the it. effects of ATRA, and its mechanisms of action. Experimental approach: The effects of all drugs were studied after it. administration in nociceptive withdrawal reflexes using behavioural tests in awake male Wistar rats. Key results: The administration of ATRA in normal rats induced a dose-dependent enhancement of nociceptive responses to noxious mechanical and thermal stimulation, as well as responses to innocuous stimulation. The intensity of the responses was similar to that observed in non-treated animals after carrageenan-induced inflammation. The effect induced by ATRA was fully prevented by the previous administration of the retinoic acid receptor (RAR) pan-antagonist LE540 but not by the retinoid X receptor (RXR) pan-antagonist HX531, suggesting a selective action on spinal cord RARs. The COX inhibitor dexketoprofen and the interleukin-1 receptor antagonist IL-1ra inhibited ATRA effect. The results indicate that COX and interleukin-1 are involved in the effects of ATRA in the spinal cord, similar to that seen in inflammation. Conclusions and implications: In conclusion, ATRA induces changes in the spinal cord similar to those observed in inflammation. The sensitization-like effect induced by ATRA was mediated by RARs and associated with a modulation of COX-2 and interleukin-1 activities. ATRA might be involved in the mechanisms underlying the initiation and/or maintenance of sensitization in the spinal cord. PMID:16847438

  1. Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenjing; Bao Lei [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Lei Jianping, E-mail: jpl@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Tu Wenwen [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ju Huangxian, E-mail: hxju@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China)

    2012-09-26

    Highlights: Black-Right-Pointing-Pointer The near-infrared QDs are synthesized in an aqueous solution. Black-Right-Pointing-Pointer QDs-based biosensor exhibits visible-light induced cathodic photocurrent. Black-Right-Pointing-Pointer The oxygen dependency of the photocurrent is verified. Black-Right-Pointing-Pointer A photoelectrochemical strategy is established by coupling with enzymatic reaction. Black-Right-Pointing-Pointer Photoelectrochemical sensor shows high upper detection limit, acceptable stability and accuracy. - Abstract: A visible light induced photoelectrochemical biosensing platform based on oxygen-sensitive near-infrared quantum dots (NIR QDs) was developed for detection of glucose. The NIR QDs were synthesized in an aqueous solution, and characterized with scanning electron microscopy and X-ray photoelectron spectroscopy. The as-prepared NIR QDs were employed to construct oxygen-sensitive photoelectrochemical biosensor on a fluorine-doped tin oxide (FTO) electrode. The oxygen dependency of the photocurrent was investigated at as-prepared electrode, which demonstrated the signal of photocurrent is suppressed with the decreasing of oxygen. Coupling with the consumption of oxygen during enzymatic reaction, a photoelectrochemical strategy was proposed for the detection of substrate. Using glucose oxidase (GOx) as a model enzyme, that is, GOx was covalently attached to the surface of CdTe QDs, the resulting biosensor showed the sensitive response to glucose. Under the irradiation of visible light of a wavelength at 505 nm, the proposed photoelectrochemical method could detect glucose ranging from 0.1 mM to 11 mM with a detection limit of 0.04 mM. The photoelectrochemical biosensor showed a good performance with high upper detection limit, acceptable stability and accuracy, providing an alternative method for monitoring biomolecules and extending the application of near-infrared QDs.

  2. Dissociation between sensitization and learning-related neuromodulation in an aplysiid species.

    Science.gov (United States)

    Erixon, N J; Demartini, L J; Wright, W G

    1999-06-14

    Previous phylogenetic analyses of learning and memory in an opisthobranch lineage uncovered a correlation between two learning-related neuromodulatory traits and their associated behavioral phenotypes. In particular, serotonin-induced increases in sensory neuron spike duration and excitability, which are thought to underlie several facilitatory forms of learning in Aplysia, appear to have been lost over the course of evolution in a distantly related aplysiid, Dolabrifera dolabrifera. This deficit is paralleled by a behavioral deficit: individuals of Dolabrifera do not express generalized sensitization (reflex enhancement of an unhabituated response after a noxious stimulus is applied outside of the reflex receptive field) or dishabituation (reflex enhancement of a habituated reflex). The goal of the present study was to confirm and extend this correlation by testing for the neuromodulatory traits and generalized sensitization in an additional species, Phyllaplysia taylori, which is closely related to Dolabrifera. Instead, our results indicated a lack of correlation between the neuromodulatory and behavioral phenotypes. In particular, sensory neuron homologues in Phyllaplysia showed the ancestral neuromodulatory phenotype typified by Aplysia. Bath-applied 10 microM serotonin significantly increased homologue spike duration and excitability. However, when trained with the identical apparatus and protocols that produced generalized sensitization in Aplysia, individuals of Phyllaplysia showed no evidence of sensitization. Thus, this species expresses the neuromodulatory phenotype of its ancestors while appearing to express the behavioral phenotype of its near relative. These results suggests that generalized sensitization can be lost during the course of evolution in the absence of a deficit in these two neuromodulatory traits, and raises the possibility that the two traits may support some other form of behavioral plasticity in Phyllaplysia. The results also raise the

  3. Twenty Years of Research on Cytokine-Induced Sickness Behavior*

    Science.gov (United States)

    Dantzer, Robert; Kelley, Keith W.

    2007-01-01

    Cytokine-induced sickness behavior was recognized within a few years of the cloning and expression of interferon-α, IL-1 and IL-2, which occurred around the time that the first issue of Brain, Behavior, and Immunity was published in 1987. Phase I clinical trials established that injection of recombinant cytokines into cancer patients led to a variety of psychological disturbances. It was subsequently shown that physiological concentrations of proinflammatory cytokines that occur after infection act in the brain to induce common symptoms of sickness, such as loss of appetite, sleepiness, withdrawal from normal social activities, fever, aching joints and fatigue. This syndrome was defined as sickness behavior and is now recognized to be part of a motivational system that reorganizes the organism's priorities to facilitate recovery from the infection. Cytokines convey to the brain that an infection has occurred in the periphery, and this action of cytokines can occur via the traditional endocrine route via the blood or by direct neural transmission via the afferent vagus nerve. The finding that sickness behavior occurs in all mammals and birds indicates that communication between the immune system and brain has been evolutionarily conserved and forms an important physiological adaptive response that favors survival of the organism during infections. The fact that cytokines act in the brain to induce physiological adaptations that promote survival has led to the hypothesis that inappropriate, prolonged activation of the innate immune system may be involved in a number of pathological disturbances in the brain, ranging from Alzheimers' disease to stroke. Conversely, the newly-defined role of cytokines in a wide variety of systemic co-morbid conditions, ranging from chronic heart failure to obesity, may begin to explain changes in the mental state of these subjects. Indeed, the newest findings of cytokine actions in the brain offer some of the first clues about the

  4. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    Science.gov (United States)

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Total adiponectin and adiponectin multimeric complexes in relation to weight loss-induced improvements in insulin sensitivity in obese women

    DEFF Research Database (Denmark)

    Polak, J.; Kovacova, Z.; Holst, C.

    2008-01-01

    , and LMW). The HMW form was suggested to be closely associated with insulin sensitivity. This study investigated whether diet-induced changes in insulin sensitivity were associated with changes in adiponectin multimeric complexes. SUBJECTS: Twenty obese women with highest and twenty obese women with lowest...... diet induced changes in insulin sensitivity (responders and non-responders respectively), matched for weight loss (body mass index (BMI)=34.5 (s.d. 2.9) resp. 36.5 kg/m(2) (s.d. 4.0) for responders and non-responders), were selected from 292 women who underwent a 10-week low-caloric diet (LCD; 600 kcal...

  6. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  7. Ionizing radiation and nitric oxide donor sensitize Fas-induced apoptosis via up-regulation of Fas in human cervical cancer cells

    International Nuclear Information System (INIS)

    Park, In Chul; Woo, Sang Hyeok; Park, Myung Jin; Lee, Hyung Chahn; Lee Su Jae; Hong, Young Joon; Lee, Seung Hoon; Hong, Seok II; Rhee, Chang Hun

    2004-01-01

    Fas/CD95/Apo1 is a transmembrane receptor known to trigger apoptotic cell death in several cell types. In the present study, we showed that ionizing radiation (IR) and NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), sensitized Fas-induced apoptotic cell death of HeLa human cervical cancers. Suboptimal dose of IR and SNAP up-regulated cell-surface Fas antigen, detected by FACScan using FITC-anti-Fas antibody. When combined with IR or SNAP, agonistic anti-Fas antibody CH-11 resulted in marked enhancement of apoptosis. This sensitization was completely abrogated by anti-Fas neutralizing antibody ZB4. During the IR and SNAP sensitized Fas-induced apoptosis, mitochondria permeabilization, cytochrome c release, and DNA fragmentation were detected. Furthermore, combined treatment of IR and SNAP additively up-regulated the surface Fas protein expression and sensitized Fas-induced apoptosis. Our finding demonstrate that sensitization of HeLa cervical cells to Fas-mediated apoptosis by IR and NO donor is most likely due to the up-regulation of Fas expression and also provides a means with which to sensitize tumors to the killing effects of cancer therapy via the Fas receptor

  8. Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice.

    Science.gov (United States)

    Freitas, Andiara E; Bettio, Luis E B; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-04-03

    Agmatine has been recently emerged as a novel candidate to assist the conventional pharmacotherapy of depression. The acute restraint stress (ARS) is an unavoidable stress situation that may cause depressive-like behavior in rodents. In this study, we investigated the potential antidepressant-like effect of agmatine (10mg/kg, administered acutely by oral route) in the forced swimming test (FST) in non-stressed mice, as well as its ability to abolish the depressive-like behavior and hippocampal antioxidant imbalance induced by ARS. Agmatine reduced the immobility time in the mouse FST (1-100mg/kg) in non-stressed mice. ARS caused an increase in the immobility time in the FST, indicative of a depressive-like behavior, as well as hippocampal lipid peroxidation, and an increase in the activity of hippocampal superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, reduced catalase (CAT) activity and increased SOD/CAT ratio, an index of pro-oxidative conditions. Agmatine was effective to abolish the depressive-like behavior induced by ARS and to prevent the ARS-induced lipid peroxidation and changes in SOD, GR and CAT activities and in SOD/CAT activity ratio. Hippocampal levels of reduced glutathione (GSH) were not altered by any experimental condition. In conclusion, the present study shows that agmatine was able to abrogate the ARS-induced depressive-like behavior and the associated redox hippocampal imbalance observed in stressed restraint mice, suggesting that its antidepressant-like effect may be dependent on its ability to maintain the pro-/anti-oxidative homeostasis in the hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  10. Paroxetine blunts the corticosterone response to swim-induced stress and increases depressive-like behavior in a rat model of postpartum depression

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Lieblich, Stephanie E; Richardson, Robin

    2018-01-01

    Perinatal depression (PND) affects 15% of women. During the perinatal period both stress- and gonadal hormones fluctuate widely. Putatively, these fluctuations are involved in PND disease mechanisms. The serotonin system is sensitive to such hormone fluctuations, and serotonin reuptake inhibitors...... depression. In the rat model corticosterone (CORT; 40mg/kgs.c.) was administered in Sprague Dawley rats across postpartum day (PD)2 to PD14. Stress response was measured during the first exposure to the forced swim test (FST1), and depressive-like behavior was measured in both FST1 and FST2. We found...... that paroxetine completely blunted the swim stress-induced CORT response and increased depressive-like behavior in both FST1 and FST2. Our findings suggest that in the postpartum context, SSRIs compromise stress axis dynamics, which are needed for a healthy stress response. This is likely unfavorable...

  11. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    Science.gov (United States)

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    maturational parameters examined in the current study may not be sensitive enough to detect effects of a single ethanol exposure during the brain growth spurt period. Genetic deletion of AC1/8 reveals a role for these cylases in attenuating ethanol-induced behavioral effects in the neonatally-exposed adolescent. Published by Elsevier B.V.

  12. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: Cross talk between MAPK signalling pathways

    International Nuclear Information System (INIS)

    Trompezinski, Sandra; Migdal, Camille; Tailhardat, Magalie; Le Varlet, Beatrice; Courtellemont, Pascal; Haftek, Marek; Serres, Mireille

    2008-01-01

    Dendritic cells (DCs), efficient-antigen presenting cells play an important role in initiating and regulating immune responses. DC maturation following exposure to nickel or DNCB induced an up-regulation of phenotypic markers and inflammatory cytokine secretion. Early intracellular mechanisms involved in DC maturation required to be precise. To address this purpose, DCs derived from human monocytes were treated with sensitizers (nickel, DNCB or thimerosal) in comparison with an irritant (SDS). Our data confirming the up-regulation of CD86, CD54 and cytokine secretion (IL-8 and TNFα) induced by sensitizers but not by SDS, signalling transduction involved in DC maturation was investigated using these chemicals. Kinase activity measurement was assessed using two new sensitive procedures (Face TM and CBA) requiring few cells. SDS did not induce changes in signalling pathways whereas NiSO 4 , DNCB and thimerosal markedly activated p38 MAPK and JNK, in contrast Erk1/2 phosphorylation was completely inhibited by DNCB or thimerosal and only activated by nickel. A pre-treatment with p38 MAPK inhibitor (SB203580) suppressed Erk1/2 inhibition induced by DNCB or thimerosal demonstrating a direct interaction between p38 MAPK and Erk1/2. A pre-treatment with an antioxidant, N-acetyl-L-cysteine (NAC) markedly reduced Erk1/2 inhibition and p38 MAPK phosphorylation induced by DNCB and thimerosal, suggesting a direct activation of p38 MAPK via an oxidative stress and a regulation of MAPK signalling pathways depending on chemicals. Because of a high sensitivity of kinase activity measurements, these procedures will be suitable for weak or moderate sensitizer screening

  13. Dendritic cells' death induced by contact sensitizers is controlled by Nrf2 and depends on glutathione levels

    Energy Technology Data Exchange (ETDEWEB)

    El Ali, Zeina [UMR996 - Inflammation, Chemokines and Immunopathology-, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry (France); Deloménie, Claudine [IFR141 IPSIT, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry (France); Botton, Jérémie [INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Team (France); Pallardy, Marc [UMR996 - Inflammation, Chemokines and Immunopathology-, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry (France); Kerdine-Römer, Saadia, E-mail: saadia.kerdine-romer@u-psud.fr [UMR996 - Inflammation, Chemokines and Immunopathology-, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry (France)

    2017-05-01

    Dendritic cells (DC) are known to play a major role during contact allergy induced by contact sensitizers (CS). Our previous studies showed that Nrf2 was induced in DC and controlled allergic skin inflammation in mice in response to chemicals. In this work, we raised the question of the role of Nrf2 in response to a stress provoked by chemical sensitizers in DC. We used two well-described chemical sensitizers, dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA), known to have different chemical reactivity and mechanism of action. First, we performed a RT-qPCR array showing that CinA was a higher inducer of immune and detoxification genes compared to DNCB. Interestingly, in the absence of Nrf2, gene expression was dramatically affected in response to DNCB but was slightly affected in response to CinA. These observations prompted us to study DC's cell death in response to both chemicals. DNCB and CinA increased apoptotic cells and decreased living cells in the absence of Nrf2. The characterization of DC apoptosis induced by both CS involved the mitochondrial-dependent caspase pathway and was regulated via Nrf2 in response to both chemicals. Oxidative stress induced by DNCB, and leading to cell death, was regulated by Nrf2. Unlike CinA, DNCB treatment provoked a significant reduction of intracellular GSH levels and up-regulated bcl-2 gene expression, under the control of Nrf2. This work underlies that chemical reactivity may control Nrf2-dependent gene expression leading to different cytoprotective mechanisms in DC. - Highlights: • Nrf2 controls cell death induced by contact sensitizers in dendritic cells. • DNCB reduced GSH levels and up-regulated bcl-2 gene expression unlike CinA. • Chemical reactivity controls Nrf2-dependent genes having protective effect in DC.

  14. The effect of chronic stress in pregnant mothers on the responsiveness to morphine in mice: a behavioral sensitization study

    Directory of Open Access Journals (Sweden)

    zahra Nazari

    2008-10-01

    Full Text Available Nazari Z1, Sahraei H2, Sadoughi M3 1. MSc in Animal Biology (physiology trend, Lorestan Education Organization, Khorramabad, Iran 2. Assistant Professor, Department of Physiology, Faculty of Medicine, Baghyatallah University of Mesical Sciences, Tehran, Iran 3. Assistant Professor, Department of Biology, Faculty of Science, North Tehran Branch, Islamic Azad University, Tehran, Iran Abstract Background: The mechanisms which are plots for individuals willing to use Morphine are not yet recognized. Carried out researches indicated that tendency to narcotics is increased during stress or after it. In this research we studied the desire change of the second generation to morphine using induced restraint stress which is a kind of behavioral sensitization. Materials and methods: This research was a kind of experimental interferer. At first mice were crossed after insuring about their pregnancy, Sub stress was put on them using special instruments. Some of the embryos head was cut to be studied histologically. After maturing their embryos in order to clarify their left and right handedness to be studied using T-Maze and they were compared with the control group. In order to find the effectiveness of the administrated acute morphine, five groups of stressed and non-stressed were chosen Both groups were divided into five: a control (without being injected, saline, Morphine 1 mg/kg, morphine 10 mg/kg and morphine 50 mg/kg. They were studied. Movement measuring done after being injected by open filled. Mentioned groups in the previous experiment, In order to determine their previous induced sensitization, were reexamined 48 hours after being injected 1 mg/kg morphine. Results: Findings showed that the tissue thickness on the frontal cortex in stressed group was less than the control group (p<0.01 And also the number of stressed right handedness in males was less, but the number of left handedness in female ones was higher. Injection low dose morphine in

  15. Theory of Planned Behavior: Sensitivity and Specificity in Predicting Graduation and Drop-Out among College and University Students?

    Science.gov (United States)

    Fichten, Catherine S.; Amsel, Rhonda; Jorgensen, Mary; Nguyen, Mai Nhu; Budd, Jillian; King, Laura; Jorgensen, Shirley; Asuncion, Jennison

    2016-01-01

    We examined sensitivity and specificity when using the three theory of planned behavior (TPB) scales (Perceived Behavioral Control, Subjective Norms, Attitude) to predict graduation and drop-out in a longitudinal study of 252 college and university students with disabilities and in a separate cross-sectional study of a random sample of 1380…

  16. Agmatine attenuates methamphetamine-induced hyperlocomotion and stereotyped behavior in mice.

    Science.gov (United States)

    Kitanaka, Nobue; Kitanaka, Junichi; Hall, F Scott; Uhl, George R; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tanaka, Koh-ichi; Nishiyama, Nobuyoshi; Takemura, Motohiko

    2014-04-01

    We investigated whether pretreatment with the neurotransmitter/neuromodulator agmatine (decarboxylated L-arginine) affected methamphetamine (METH)-induced hyperlocomotion and stereotypy in male ICR mice. Agmatine pretreatment alone had no effects on locomotion or stereotypy, but it produced a dose-dependent attenuation of locomotion and the total incidence of stereotyped behavior induced by a low dose of METH (5 mg/kg). The stereotypy induced by this dose was predominantly characterized by stereotyped sniffing. By contrast, agmatine did not affect the total incidence of stereotypy induced by a higher dose of METH (10 mg/kg). However, the nature of stereotypy induced by this dose of METH was substantially altered; agmatine pretreatment significantly reduced stereotyped biting but significantly increased stereotyped sniffing and persistent locomotion. Agmatine pretreatment therefore appears to produce a rightward shift in the dose-response curve for METH. Pretreatment of mice with piperazine-1-carboxamidine (a putative agmatinase inhibitor) had no effect on locomotion or stereotypy induced by a low dose of METH, suggesting that endogenous agmatine may not regulate the METH action.

  17. Uncertainty and sensitivity analysis of the nuclear fuel thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Boulore, A., E-mail: antoine.boulore@cea.fr [Commissariat a l' Energie Atomique (CEA), DEN, Fuel Research Department, 13108 Saint-Paul-lez-Durance (France); Struzik, C. [Commissariat a l' Energie Atomique (CEA), DEN, Fuel Research Department, 13108 Saint-Paul-lez-Durance (France); Gaudier, F. [Commissariat a l' Energie Atomique (CEA), DEN, Systems and Structure Modeling Department, 91191 Gif-sur-Yvette (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A complete quantitative method for uncertainty propagation and sensitivity analysis is applied. Black-Right-Pointing-Pointer The thermal conductivity of UO{sub 2} is modeled as a random variable. Black-Right-Pointing-Pointer The first source of uncertainty is the linear heat rate. Black-Right-Pointing-Pointer The second source of uncertainty is the thermal conductivity of the fuel. - Abstract: In the global framework of nuclear fuel behavior simulation, the response of the models describing the physical phenomena occurring during the irradiation in reactor is mainly conditioned by the confidence in the calculated temperature of the fuel. Amongst all parameters influencing the temperature calculation in our fuel rod simulation code (METEOR V2), several sources of uncertainty have been identified as being the most sensitive: thermal conductivity of UO{sub 2}, radial distribution of power in the fuel pellet, local linear heat rate in the fuel rod, geometry of the pellet and thermal transfer in the gap. Expert judgment and inverse methods have been used to model the uncertainty of these parameters using theoretical distributions and correlation matrices. Propagation of these uncertainties in the METEOR V2 code using the URANIE framework and a Monte-Carlo technique has been performed in different experimental irradiations of UO{sub 2} fuel. At every time step of the simulated experiments, we get a temperature statistical distribution which results from the initial distributions of the uncertain parameters. We then can estimate confidence intervals of the calculated temperature. In order to quantify the sensitivity of the calculated temperature to each of the uncertain input parameters and data, we have also performed a sensitivity analysis using the Sobol' indices at first order.

  18. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    Science.gov (United States)

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Minocycline treatment ameliorates interferon-alpha-induced neurogenic defects and depression-like behaviors in mice

    Directory of Open Access Journals (Sweden)

    Lian-Shun eZheng

    2015-01-01

    Full Text Available Interferon-alpha (IFN-α is a proinflammatory cytokine that is widely used for the treatment of chronic viral hepatitis and malignancy, because of its immune-activating, antiviral, and antiproliferative properties. However, long-term IFN-α treatment frequently causes depression, which limits its clinical utility. The precise molecular and cellular mechanisms of IFN-α-induced depression are not currently understood. Neural stem cells (NSCs in the hippocampus continuously generate new neurons, and some evidence suggests that decreased neurogenesis plays a role in the neuropathology of depression. We previously reported that IFN-α treatment suppressed hippocampal neurogenesis and induced depression-like behaviors via its receptors in the brain in adult mice. However, it is unclear how systemic IFN-α administration induces IFN-α signaling in the hippocampus. In this study, we analyzed the role of microglia, immune cells in the brain, in mediating the IFN-α-induced neurogenic defects and depressive behaviors. In vitro studies demonstrated that IFN-α treatment induced the secretion of endogenous IFN-α from microglia, which suppressed NSC proliferation. In vivo treatment of adult mice with IFN-α for five weeks increased the production of proinflammatory cytokines, including IFN-α, and reduced neurogenesis in the hippocampus. Both effects were prevented by simultaneous treatment with minocycline, an inhibitor of microglial activation. Furthermore, minocycline treatment significantly suppressed IFN-α-induced depressive behaviors in mice. These results suggest that microglial activation plays a critical role in the development of IFN-α-induced depression, and that minocycline is a promising drug for the treatment of IFN-α-induced depression in patients, especially those who are low responders to conventional antidepressant treatments.

  20. Lipopolysaccharide-Induced Behavioral Alterations Are Alleviated by Sodium Phenylbutyrate via Attenuation of Oxidative Stress and Neuroinflammatory Cascade.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Lahkar, Mangala

    2016-08-01

    Oxido-nitrosative stress, neuroinflammation, and reduced level of neurotrophins are implicated in the pathophysiology of anxiety and depressive illness. A few recent studies have revealed the role of endoplasmic reticulum (ER) stress in the pathophysiology of stress and depression. The aim of the present study is to investigate the neuroprotective potential of sodium phenylbutyrate (SPB), an ER stress inhibitor against lipopolysaccharide (LPS)-induced anxiety and depressive-like behavior in Swiss albino mice. Anxiety and depressive-like behavior was induced by LPS (0.83 mg/kg; i.p.) administration. Various behavioral tests were conducted to evaluate the anxiety and depressive-like behavior in mice. Real-time PCR was employed for the detection and expression of ER stress markers (78-kDa glucose-regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Pretreatment with SPB significantly ameliorated the LPS-induced anxiety and depressive-like behavior as revealed by behavioral paradigm results. LPS-induced oxidative stress was ameliorated by SPB pretreatment in hippocampus (HC) and prefrontal cortex (PFC) region. Neuroinflammation was significantly reduced by SPB pretreatment in LPS-treated mice as evident from reduction in proinflammatory cytokines (IL-1β and TNF-α). Importantly, LPS administration significantly up-regulated the GRP78 mRNA expression level in the HC which suggests the involvement of unfolded protein response (UPR) in LPS-evoked behavioral anomalies. These results highlight the neuroprotective potential of SPB in LPS-induced anxiety and depressive illness model which may be partially due to inhibition of oxidative stress-neuroinflammatory cascade.

  1. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  2. Genetic variability of environmental sensitivity revealed by phenotypic variation in body weight and (its correlations to physiological and behavioral traits.

    Directory of Open Access Journals (Sweden)

    Delphine Lallias

    Full Text Available Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months, the plasma cortisol response to confinement stress (3 challenges and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity.

  3. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    International Nuclear Information System (INIS)

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. -- Highlights: ► IRS1 enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. ► This sensitivity is abrogated by the expression of IRS2. ► Expressing IRS1 in 32D cells increased levels of Annexin A2. ► Both IRS1 and Annexin A2 were located in cytoplasmic and membrane fractions. ► Decreasing Annexin A2 in 32D-IRS1 cells abated their sensitivity to chemotherapy.

  4. Fentanyl induces autophagy via activation of the ROS/MAPK pathway and reduces the sensitivity of cisplatin in lung cancer cells.

    Science.gov (United States)

    Yao, Jiaqi; Ma, Chi; Gao, Wei; Liang, Jinxiao; Liu, Chang; Yang, Hongfang; Yan, Qiu; Wen, Qingping

    2016-12-01

    Cancer pain is the most common complication of lung carcinoma. Opioid agonist fentanyl is widely used for relieving pain in cancer patients, and cisplatin (DDP)‑based chemotherapy is commonly used for the treatment of advanced lung cancer; these two drugs are always used together in lung carcinoma patients. However, the mechanisms and related biological pathways by which fentanyl influences cisplatin sensitivity are relatively poorly reported. Here, we found that fentanyl reduces the sensitivity of cisplatin in human lung cancer cells and induces autophagy. Fentanyl induced reactive oxygen species (ROS) generation and JNK activation. N-acetyl‑L‑cysteine is a ROS scavenger and antioxidant, and the inhibition of JNK with SP600125 prevented fentanyl‑induced autophagy. We also found that 3-methyladenine (3-MA; an autophagy inhibitor) increased the sensitivity of DDP and weakened the inhibition of fentanyl. In conclusion, fentanyl reduces the sensitivity of cisplatin in lung cancer cells through the ROS-JNK-autophagy pathway, whereas the autophagy inhibitor 3-MA may weaken this effect.

  5. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  6. Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Tao, Weiwei; Wang, Hanqing; Su, Qiang; Chen, Yanyan; Xue, Wenda; Xia, Baomei; Duan, Jinao; Chen, Gang

    2016-04-30

    The present study was designed to detect the anti-depressant effects of paeonol and the possible mechanisms in the lipopolysaccharide-induced depressive-like behavior. Open-field test(OFT), tail suspension test(TST) and forced swimming test(FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in mice hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). Our results showed that LPS significantly decreased the levels of 5-HT and NE in the hippocampus. LPS also reduced open-field activity, as well as increased immobility duration in FST and TST. Paeonol administration could effectively reverse the alterations in the concentrations of 5-HT, NE and reduce the IL-6 and TNF-α levels. Moreover, paeonol effectively downregulated brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and Nuclear factor-κB (NF-κB) in hippocampal. In conclusion, paeonol administration exhibited significant antidepressant-like effects in mice with LPS-induced depression. Copyright © 2016. Published by Elsevier Ireland Ltd.

  7. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    Science.gov (United States)

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

    Science.gov (United States)

    Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-01-01

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492

  9. Sensitization to Gliadin Induces Moderate Enteropathy and Insulitis in Nonobese Diabetic-DQ8 Mice

    Science.gov (United States)

    Galipeau, Heather J.; Rulli, Nestor E.; Jury, Jennifer; Huang, Xianxi; Araya, Romina; Murray, Joseph A.; David, Chella S.; Chirdo, Fernando G.; McCoy, Kathy D.; Verdu, Elena F.

    2012-01-01

    Celiac disease (CD) is frequently diagnosed in patients with type 1 diabetes (T1D), and T1D patients can exhibit Abs against tissue transglutaminase, the auto-antigen in CD. Thus, gliadin, the trigger in CD, has been suggested to have a role in T1D pathogenesis. The objective of this study was to investigate whether gliadin contributes to enteropathy and insulitis in NOD-DQ8 mice, an animal model that does not spontaneously develop T1D. Gliadin-sensitized NOD-DQ8 mice developed moderate enteropathy, intraepithelial lymphocytosis, and barrier dysfunction, but not insulitis. Administration of anti-CD25 mAbs before gliadin-sensitization induced partial depletion of CD25+Foxp3+ T cells and led to severe insulitis, but did not exacerbate mucosal dysfunction. CD4+ T cells isolated from pancreatic lymph nodes of mice that developed insulitis showed increased proliferation and proinflammatory cytokines after incubation with gliadin but not with BSA. CD4+ T cells isolated from nonsensitized controls did not response to gliadin or BSA. In conclusion, gliadin sensitization induced moderate enteropathy in NOD-DQ8 mice. However, insulitis development required gliadin-sensitization and partial systemic depletion of CD25+Foxp3+ T cells. This humanized murine model provides a mechanistic link to explain how the mucosal intolerance to a dietary protein can lead to insulitis in the presence of partial regulatory T cell deficiency. PMID:21911598

  10. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    Science.gov (United States)

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  11. Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P.

    Science.gov (United States)

    Smith, Ewan St John; Blass, Gregory R C; Lewin, Gary R; Park, Thomas J

    2010-05-24

    Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP) in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.

  12. Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P

    Directory of Open Access Journals (Sweden)

    Lewin Gary R

    2010-05-01

    Full Text Available Abstract Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.

  13. Environmental enrichment delays pup-induced maternal behavior in rats.

    Science.gov (United States)

    Mann, Phyllis E; Gervais, Kristen J

    2011-05-01

    Adult, virgin rats do not spontaneously display maternal behavior when exposed to foster pups. However, continuous daily exposure of the female to foster pups for about 5-7 days can induce a set of maternal behaviors similar to those shown by postpartum dams. Induction latencies depend upon a number of factors, including the stress and anxiety levels of the female. The goal of this study was to attempt to mitigate the likely stressfulness of being singly housed during testing by enriching the rat's home cage environment and to determine if the concomitant environmental change would alter the latency to express maternal behavior. In addition, the effect of varying the number of test pups used for testing was examined. Two groups of virgin Sprague-Dawley rats were first tested on the elevated plus maze after 1 week of exposure to either control (standard housing) or enriched conditions. One week later, maternal behavior testing began using one or three pups. Upon completion of maternal behavior testing, plasma corticosterone concentrations were determined following a mild stressor. The data indicate that enrichment tends to increase anxiety-like behaviors in the elevated plus maze. In addition, enrichment delayed the onset of maternal behavior irrespective of the number of test pups. There were no effects of environmental enrichment on plasma corticosterone levels following exposure to a stressor. These results indicate that what is considered a modestly enriched environment delays the expression of pup-oriented responses and does not apparently reduce stress or improve performance on all behavioral tasks. Copyright © 2011 Wiley Periodicals, Inc.

  14. Environmental enrichment reduces chronic psychosocial stress-induced anxiety and ethanol-related behaviors in mice.

    Science.gov (United States)

    Bahi, Amine

    2017-07-03

    Previous research from our laboratory has shown that exposure to chronic psychosocial stress increased voluntary ethanol consumption and preference as well as acquisition of ethanol-induced conditioned place preference (CPP) in mice. This study was done to determine whether an enriched environment could have "curative" effects on chronic psychosocial stress-induced ethanol intake and CPP. For this purpose, experimental mice "intruders" were exposed to the chronic subordinate colony (CSC) housing for 19 consecutive days in the presence of an aggressive "resident" mouse. At the end of that period, mice were tested for their anxiety-like behavior using the elevated plus maze (EPM) test then housed in a standard or enriched environment (SE or EE respectively). Anxiety and ethanol-related behaviors were investigated using the open field (OF) test, a standard two-bottle choice drinking paradigm, and the CPP procedure. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to single housed colony (SHC) controls. In addition, CSC exposure increased voluntary ethanol intake and ethanol-CPP. Interestingly, we found that EE significantly and consistently reduced anxiety and ethanol consumption and preference. However, neither tastants' (saccharin and quinine) intake nor blood ethanol metabolism were affected by EE. Finally, and most importantly, EE reduced the acquisition of CPP induced by 1.5g/kg ethanol. Taken together, these results support the hypothesis that EE can reduce voluntary ethanol intake and ethanol-induced conditioned reward and seems to be one of the strategies to reduce the behavioral deficits and the risk of anxiety-induced alcohol abuse. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats.

    Directory of Open Access Journals (Sweden)

    Thiago B Kirsten

    Full Text Available Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS, an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α, corticosterone, and brain-derived neurotrophic factor (BDNF plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.

  16. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Dai, Yao; Liu, Meilan; Tang, Wenhua; Li, Yongming; Lian, Jiqin; Lawrence, Theodore S; Xu, Liang

    2009-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  17. Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation.

    Science.gov (United States)

    Henrich, C J; Brooks, A D; Erickson, K L; Thomas, C L; Bokesch, H R; Tewary, P; Thompson, C R; Pompei, R J; Gustafson, K R; McMahon, J B; Sayers, T J

    2015-02-26

    Withanolide E, a steroidal lactone from Physalis peruviana, was found to be highly active for sensitizing renal carcinoma cells and a number of other human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Withanolide E, the most potent and least toxic of five TRAIL-sensitizing withanolides identified, enhanced death receptor-mediated apoptotic signaling by a rapid decline in the levels of cFLIP proteins. Other mechanisms by which TRAIL sensitizers have been reported to work: generation of reactive oxygen species (ROS), changes in pro-and antiapoptotic protein expression, death receptor upregulation, activation of intrinsic (mitochondrial) apoptotic pathways, ER stress, and proteasomal inhibition proved to be irrelevant to withanolide E activity. Loss of cFLIP proteins was not due to changes in expression, but rather destabilization and/or aggregation, suggesting impairment of chaperone proteins leading to degradation. Indeed, withanolide E treatment altered the stability of a number of HSP90 client proteins, but with greater apparent specificity than the well-known HSP90 inhibitor geldanamycin. As cFLIP has been reported to be an HSP90 client, this provides a potentially novel mechanism for sensitizing cells to TRAIL. Sensitization of human renal carcinoma cells to TRAIL-induced apoptosis by withanolide E and its lack of toxicity were confirmed in animal studies. Owing to its novel activity, withanolide E is a promising reagent for the analysis of mechanisms of TRAIL resistance, for understanding HSP90 function, and for further therapeutic development. In marked contrast to bortezomib, among the best currently available TRAIL sensitizers, withanolide E's more specific mechanism of action suggests minimal toxic side effects.

  18. Evidence for a high and a low sensitivity receptor site for radiation-induced vomiting in the dog

    International Nuclear Information System (INIS)

    Harding, R.K.; Hugenholtz, H.; Kucharczyk, J.

    1987-01-01

    Ablation of the area postrema (AP) has been shown to prevent radiation-induced vomiting in the dog (induced by 6-8 By /sup 60/Co γ). In other species (cat, monkey) a higher dose of radiation is necessary to elicit emesis and visceral deafferentation has been more effective than AP ablation in preventing vomiting. The AP and the dorsal motor nucleus of the vagus (DMV), an important visceral afferent terminus, are anatomically adjacent structures in the medulla oblongata. Aggressive AP ablation could affect the DMV. The author's removed the AP in 6 dogs. Previous work showed this surgery prevented vomiting following exposure to 6-8 Gy. To prove the lesion did not invade the underlying DMV, the animals were given a hypertonic saline gavage, to elicit vomiting via visceral receptors. Animals were later submitted to 15-20 Gy. Those with proved visceral afferent connections vomited. They conclude that the AP is the most sensitive site for the stimulation of radiation-induced vomiting and that a less sensitive visceral site also exists. Differences in the relative sensitivities of these 2 systems may account for published species differences

  19. Picrotoxin-induced behavioral tolerance and altered susceptibility to seizures: effects of naloxone.

    Science.gov (United States)

    Thomas, J; Nores, W L; Pariser, R

    1993-07-01

    The role of opiate mechanisms in the development of tolerance and altered susceptibility to seizures after repeated injections of picrotoxin was investigated. Independent groups of rats were pretreated with naloxone (0.3, 1.0, 3.0, and 10.0 mg/kg) or the saline vehicle and then tested for seizures induced by picrotoxin. The procedure was performed on 3 days at 1-week intervals, for a total of 3 testing days. Latencies to different types of seizures, the duration of postseizure immobility, and the number of focal seizure episodes were scored. In the vehicle-treated group, repeated picrotoxin injections led to an increased susceptibility to myoclonic and focal seizures and to decreased duration of postseizure immobility. Naloxone pretreatment significantly decreased the duration of the postseizure akinetic periods in the 1.0- and 10.0-mg/kg groups across all days, suggesting that endogenous opiates are involved in postseizure immobility and that there are interactions between opiate and picrotoxin mechanisms in some seizure-related behaviors. Naloxone did not alter the development of tolerance or sensitivity, indicating that naloxone-insensitive opiate mechanisms or nonopiate mechanisms may be involved in these processes.

  20. Fractalkine receptor (CX3CR1 deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2010-12-01

    Full Text Available Abstract Background Interactions between fractalkine (CX3CL1 and fractalkine receptor (CX3CR1 regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS. Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-. Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/- were injected with LPS (0.5 mg/kg i.p. or saline and behavior (i.e., sickness and depression-like behavior, microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO and kynurenine monooxygenase (KMO in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1

  1. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Science.gov (United States)

    2010-01-01

    Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to

  2. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsueh, Shih-Chang; Lai, Jing-Huei; Chen, Yen-Hua; Kang, Shuo-Jhen; Hsieh, Tsung-Hsun; Hoffer, Barry J.; Li, Yazhou; Greig, Nigel H.; Chiang, Yung-Hsiao

    2018-01-01

    In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development. PMID:29641447

  3. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Directory of Open Access Journals (Sweden)

    Yu-Wen Yu

    2018-04-01

    Full Text Available In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA hemi-parkinsonian (PD rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c. using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB. The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development.

  4. Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies

    Directory of Open Access Journals (Sweden)

    Anja eDietrich

    2014-10-01

    Full Text Available Behavioral and personality characteristics are factors that may jointly regulate body weight. This study explored the relationship between body mass index (BMI and self-reported behavioral and personality measures. These measures included eating behavior (based on the Three-Factor Eating Questionnaire- TFEQ (Stunkard and Messick, 1985, sensitivity to reward and punishment (based on the BIS/BAS Scales (Carver and White, 1994 and self-reported impulsivity (based on the Barratt Impulsiveness Scale-11 (Patton et al., 1995. We found an inverted U-shaped relationship between restrained eating and BMI. This relationship was moderated by the level of disinhibited eating. Independent of eating behavior, BIS and BAS responsiveness were associated with BMI in a gender-specific manner with negative relationships for men and positive relationships for women. Together, eating behavior and BIS/BAS responsiveness accounted for a substantial proportion of BMI variance (men: ~25%, women: ~32%. A direct relationship between self-reported impulsivity and BMI was not observed. In summary, our results demonstrate a system of linear and non-linear relationships between the investigated factors and BMI. Moreover, body weight status was not only associated with eating behavior (cognitive restraint and disinhibition, but also with personality factors not inherently related to an eating context (BIS/BAS. Importantly, these relationships differ between men and women.

  5. LyGDI expression in HeLa cells increased its sensitivity to radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Zhou Xinwen; Xu Yaxiang

    2006-01-01

    Objective: In order to confirm whether LyGDI has apoptotic signal transduction function and can increase the apoptotic rate of radiation-induced cell death, the lyGDI and mutant D19lyGDI gene, which constructed with the pCDNA3. 1 His A, were transfected into no-endogenous lyGDI HeLa cells. Methods Transient expressions of lyGDI and D19lyGDI in HeLa cells were analyzed by Western blot using anti-mono antibody of LyGDI and Xpress tag. Cell apoptosis was assayed with Annexin V-FITC apoptosis kit. To select stable clone, the transferred HeLa cells had been maintained in G418 medium for 3 weeks, then a cell line, which stably expressed LyGDI and mutant D19lyGDI, was selected. The selected cell line was irradiated with 12 Gy 60 Co y-rays. Caspase-3 activity of the cells was determined by Western blot and cell viability by clone-forming assay after 48 hours post-irradiation culture. Results: Western blot and Annexin V-FITC apoptotic analysis revealed that lyGDI and D19lyGDI transient expressions in HeLa cells induced apoptosis; Caspase-3 activity measurement and clone-forming assay showed that lyGDI increased sensitivity to radiation-induced cell apoptosis. Conclusions: lyGDI performs function in apoptosis signal transduction, its expression in HeLa cells can increase the sensitivity to radiation-induced cell apoptosis. (authors)

  6. Preconception paternal bisphenol A exposure induces sex-specific anxiety and depression behaviors in adult rats.

    Directory of Open Access Journals (Sweden)

    Ying Fan

    Full Text Available Bisphenol A (BPA, an environmental endocrine-disrupting compound, has drawn a great attention for its adverse effect on behavioral development. Maternal exposure to this compound has been reported to induce anxiety and depression in offspring, but the effect of its paternal exposure is rarely discussed. This study investigated whether preconception paternal BPA exposure can affect the emotions of male rats and their offspring. Eighteen adult male rats (F0 received either a vehicle or 50 μg/kg/day BPA diet for 21 weeks and were then mated with non-exposed females to produce offspring (F1. The affective behaviors of F0 and F1 rats were evaluated in the open-field test, the elevated-plus maze and the forced swimming test, and their serum corticosterone were then examined. BPA exposure induced increased anxiety behaviors along with increased serum corticosterone in F0 rats. This paternal exposure also led to increased anxiety behaviors in F1 females and aggravated depression behaviors in both sexes of F1 rats. Furthermore, only F1 females exhibited increased serum corticosterone. Overall, these data indicate that preconception paternal exposure to a low dose of BPA may induce transgenerational sex-specific impairments in the affection of adult rats.

  7. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-κB and Akt pathways

    International Nuclear Information System (INIS)

    Wang Xia; Chen Wenshu; Lin Yong

    2007-01-01

    Blockage of either nuclear factor-κB (NF-κB) or Akt sensitizes cancer cells to TNF-induced apoptosis. In this study, we investigated the undetermined effect of concurrent blockage of these two survival pathways on TNF-induced cytotoxicity in lung cancer cells. The results show that Akt contributes to TNF-induced NF-κB activation in lung cancer cells through regulating phosphorylation of the p65/RelA subunit of NF-κB. Although individually blocking IKK or Akt partially suppressed TNF-induced NF-κB activation, concurrent suppression of these pathways completely inhibited TNF-induced NF-κB activation and downstream anti-apoptotic gene expression, and synergistically potentiated TNF-induced cytotoxicity. Moreover, suppression of Akt inhibited the Akt-mediated anti-apoptotic pathway through dephosphorylation of BAD. These results indicate that concurrent suppression of NF-κB and Akt synergistically sensitizes TNF-induced cytotoxicity through blockage of distinct survival pathways downstream of NF-κB and Akt, which may be applied in lung cancer therapy

  8. The importance of input interactions in the uncertainty and sensitivity analysis of nuclear fuel behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, T., E-mail: timo.ikonen@vtt.fi; Tulkki, V.

    2014-08-15

    Highlights: • Uncertainty and sensitivity analysis of modeled nuclear fuel behavior is performed. • Burnup dependency of the uncertainties and sensitivities is characterized. • Input interactions significantly increase output uncertainties for irradiated fuel. • Identification of uncertainty sources is greatly improved with higher order methods. • Results stress the importance of using methods that take interactions into account. - Abstract: The propagation of uncertainties in a PWR fuel rod under steady-state irradiation is analyzed by computational means. A hypothetical steady-state scenario of the Three Mile Island 1 reactor fuel rod is modeled with the fuel performance FRAPCON, using realistic input uncertainties for the fabrication and model parameters, boundary conditions and material properties. The uncertainty and sensitivity analysis is performed by extensive Monte Carlo sampling of the inputs’ probability distribution and by applying correlation coefficient and Sobol’ variance decomposition analyses. The latter includes evaluation of the second order and total effect sensitivity indices, allowing the study of interactions between input variables. The results show that the interactions play a large role in the propagation of uncertainties, and first order methods such as the correlation coefficient analyses are in general insufficient for sensitivity analysis of the fuel rod. Significant improvement over the first order methods can be achieved by using higher order methods. The results also show that both the magnitude of the uncertainties and their propagation depends not only on the output in question, but also on burnup. The latter is due to onset of new phenomena (such as the fission gas release) and the gradual closure of the pellet-cladding gap with increasing burnup. Increasing burnup also affects the importance of input interactions. Interaction effects are typically highest in the moderate burnup (of the order of 10–40 MWd

  9. Environmental Enrichment Prevents Methamphetamine-Induced Spatial Memory Deficits and Obsessive-Compulsive Behavior in Rats

    Directory of Open Access Journals (Sweden)

    Samira Hajheidari

    2017-02-01

    Full Text Available Objective: This study was designed to examine the effect of environmental enrichment during methamphetamine (METH dependency and withdrawal on methamphetamine-induced spatial learning and memory deficits and obsessive-compulsive behavior.Method: Adult male Wistar rats (200 ± 10 g chronically received bi-daily doses of METH (2 mg/kg, sc, with 12 hours intervals for 14 days. Rats reared in standard (SE or enriched environment (EE during the development of dependence on METH and withdrawal. Then, they were tested for spatial learning and memory (the water maze, and obsessive-compulsive behavior as grooming behavior in METH-withdrawn rats.Results: The results revealed that the Sal/EE and METH/EE rats reared in EE spent more time in the target zone on the water maze and displayed significantly increased proximity to the platform compared to their control groups. METH withdrawn rats reared in EE displayed less grooming behavior than METH/SE group.Conclusion: Our findings revealed EE ameliorates METH-induced spatial memory deficits and obsessive-compulsive behavior in rats.

  10. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

    Science.gov (United States)

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-04-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

  11. Concurrent Validity and Sensitivity to Change of Direct Behavior Rating Single-Item Scales (DBR-SIS) within an Elementary Sample

    Science.gov (United States)

    Smith, Rhonda L.; Eklund, Katie; Kilgus, Stephen P.

    2018-01-01

    The purpose of this study was to evaluate the concurrent validity, sensitivity to change, and teacher acceptability of Direct Behavior Rating single-item scales (DBR-SIS), a brief progress monitoring measure designed to assess student behavioral change in response to intervention. Twenty-four elementary teacher-student dyads implemented a daily…

  12. Pavlovian conditioning and cross-sensitization studies raise challenges to the hypothesis that overeating is an addictive behavior.

    Science.gov (United States)

    Harb, M R; Almeida, O F X

    2014-04-29

    Elevated glucocorticoid levels and sign tracking (ST) in Pavlovian conditioning are potential biomarkers of compulsive behaviors such as addiction. As overeating is sometimes viewed as a form of addictive behavior, we hypothesized that murine Pavlovian sign trackers would have a greater propensity to overeat and develop obesity. Using a food reward in the classical conditioning paradigm, we show that ST behavior is a robust conditioned response but not a predictor of eating and growth trajectories in mice, thus challenging the view that the development of obesity and drug addiction depend on identical mechanisms. This interpretation was supported by experiments which showed that overweight mice do not display cross-sensitization to an addictive drug (morphine), and conversely, that overweight morphine-sensitized animals do not overconsume a highly rewarding food. Although the rewarding/motivational effects of both food and drugs of abuse are mediated by similar neurochemical mechanisms, obesity and drug addiction represent a summation of other dysfunctional input and output pathways that lead to the emergence of two distinct disorders, each of which would deserve a specific pharmacotherapeutic approach.

  13. Ethanol-Induced Changes in PKCε: From Cell to Behavior.

    Science.gov (United States)

    Pakri Mohamed, Rashidi M; Mokhtar, Mohd H; Yap, Ernie; Hanim, Athirah; Abdul Wahab, Norhazlina; Jaffar, Farah H F; Kumar, Jaya

    2018-01-01

    The long-term binge intake of ethanol causes neuroadaptive changes that lead to drinkers requiring higher amounts of ethanol to experience its effects. This neuroadaptation can be partly attributed to the modulation of numerous neurotransmitter receptors by the various protein kinases C (PKCs). PKCs are enzymes that control cellular activities by regulating other proteins via phosphorylation. Among the various isoforms of PKC, PKCε is the most implicated in ethanol-induced biochemical and behavioral changes. Ethanol exposure causes changes to PKCε expression and localization in various brain regions that mediate addiction-favoring plasticity. Ethanol works in conjunction with numerous upstream kinases and second messenger activators to affect cellular PKCε expression. Chauffeur proteins, such as receptors for activated C kinase (RACKs), cause the translocation of PKCε to aberrant sites and mediate ethanol-induced changes. In this article, we aim to review the following: the general structure and function of PKCε, ethanol-induced changes in PKCε expression, the regulation of ethanol-induced PKCε activities in DAG-dependent and DAG-independent environments, the mechanisms underlying PKCε-RACKε translocation in the presence of ethanol, and the existing literature on the role of PKCε in ethanol-induced neurobehavioral changes, with the goal of creating a working model upon which further research can build.

  14. Ethanol-Induced Changes in PKCε: From Cell to Behavior

    Directory of Open Access Journals (Sweden)

    Rashidi M. Pakri Mohamed

    2018-04-01

    Full Text Available The long-term binge intake of ethanol causes neuroadaptive changes that lead to drinkers requiring higher amounts of ethanol to experience its effects. This neuroadaptation can be partly attributed to the modulation of numerous neurotransmitter receptors by the various protein kinases C (PKCs. PKCs are enzymes that control cellular activities by regulating other proteins via phosphorylation. Among the various isoforms of PKC, PKCε is the most implicated in ethanol-induced biochemical and behavioral changes. Ethanol exposure causes changes to PKCε expression and localization in various brain regions that mediate addiction-favoring plasticity. Ethanol works in conjunction with numerous upstream kinases and second messenger activators to affect cellular PKCε expression. Chauffeur proteins, such as receptors for activated C kinase (RACKs, cause the translocation of PKCε to aberrant sites and mediate ethanol-induced changes. In this article, we aim to review the following: the general structure and function of PKCε, ethanol-induced changes in PKCε expression, the regulation of ethanol-induced PKCε activities in DAG-dependent and DAG-independent environments, the mechanisms underlying PKCε-RACKε translocation in the presence of ethanol, and the existing literature on the role of PKCε in ethanol-induced neurobehavioral changes, with the goal of creating a working model upon which further research can build.

  15. Radiation-induced Genomic Instability and Radiation Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  16. Tend to Compare and Tend to Be Fair: The Relationship between Social Comparison Sensitivity and Justice Sensitivity.

    Science.gov (United States)

    Zhen, Shanshan; Yu, Rongjun

    2016-01-01

    Social comparison is a prerequisite for processing fairness, although the two types of cognition may be associated with different emotions. Whereas social comparison may induce envy, the perception of unfairness may elicit anger. Yet, it remains unclear whether people who tend to have a strong sense of fairness also tend to compare themselves more with others. Here, Study 1 used a modified ultimatum game (UG) and a social comparison game (SCG) to examine the relationship between justice sensitivity and social comparison sensitivity in 51 young adults. Study 2 examined self-reported social comparison and justice sensitivity in 142 young adults. Both studies showed a positive correlation between social comparison sensitivity and justice sensitivity. We reason that social comparison and justice sensitivity have an important positive correlation in human decision-making. The rejection of self-disadvantageous inequality offers may be due to the social comparison effect, which suggests that the tendency to compare oneself with others may contribute to having a strong sense of justice. Our findings suggest that the predictions of game theory may vary depending on the social culture context and incorporating notions of fairness and social comparison tendency may be essential to better predict the actual behavior of players in social interactive situations.

  17. Tend to Compare and Tend to Be Fair: The Relationship between Social Comparison Sensitivity and Justice Sensitivity.

    Directory of Open Access Journals (Sweden)

    Shanshan Zhen

    Full Text Available Social comparison is a prerequisite for processing fairness, although the two types of cognition may be associated with different emotions. Whereas social comparison may induce envy, the perception of unfairness may elicit anger. Yet, it remains unclear whether people who tend to have a strong sense of fairness also tend to compare themselves more with others. Here, Study 1 used a modified ultimatum game (UG and a social comparison game (SCG to examine the relationship between justice sensitivity and social comparison sensitivity in 51 young adults. Study 2 examined self-reported social comparison and justice sensitivity in 142 young adults. Both studies showed a positive correlation between social comparison sensitivity and justice sensitivity. We reason that social comparison and justice sensitivity have an important positive correlation in human decision-making. The rejection of self-disadvantageous inequality offers may be due to the social comparison effect, which suggests that the tendency to compare oneself with others may contribute to having a strong sense of justice. Our findings suggest that the predictions of game theory may vary depending on the social culture context and incorporating notions of fairness and social comparison tendency may be essential to better predict the actual behavior of players in social interactive situations.

  18. Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers

    Science.gov (United States)

    Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.

    2018-04-01

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .

  19. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  20. Behavioral sensitivity to changing reinforcement contingencies in attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Alsop, Brent; Furukawa, Emi; Sowerby, Paula; Jensen, Stephanie; Moffat, Cara; Tripp, Gail

    2016-08-01

    Altered sensitivity to positive reinforcement has been hypothesized to contribute to the symptoms of attention-deficit hyperactivity disorder (ADHD). In this study, we evaluated the ability of children with and without ADHD to adapt their behavior to changing reinforcer availability. Of one hundred sixty-seven children, 97 diagnosed with ADHD completed a signal-detection task in which correct discriminations between two stimuli were associated with different frequencies of reinforcement. The response alternative associated with the higher rate of reinforcement switched twice during the task without warning. For a subset of participants, this was followed by trials for which no reinforcement was delivered, irrespective of performance. Children in both groups developed an initial bias toward the more frequently reinforced response alternative. When the response alternative associated with the higher rate of reinforcement switched, the children's response allocation (bias) followed suit, but this effect was significantly smaller for children with ADHD. When reinforcement was discontinued, only children in the control group modified their response pattern. Children with ADHD adjust their behavioral responses to changing reinforcer availability less than typically developing children, when reinforcement is intermittent and the association between an action and its consequences is uncertain. This may explain the difficulty children with ADHD have adapting their behavior to new situations, with different reinforcement contingencies, in daily life. © 2016 Association for Child and Adolescent Mental Health.

  1. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Dickenson Anthony H

    2009-02-01

    Full Text Available Abstract Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1 has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal

  2. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Science.gov (United States)

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous

  3. Complex interactions between the subject factors of biological sex and prior histories of binge-drinking and unpredictable stress influence behavioral sensitivity to alcohol and alcohol intake.

    Science.gov (United States)

    Quadir, Sema G; Guzelian, Eugenie; Palmer, Mason A; Martin, Douglas L; Kim, Jennifer; Szumlinski, Karen K

    2017-08-10

    Alcohol use disorders, affective disorders and their comorbidity are sexually dimorphic in humans. However, it is difficult to disentangle the interactions between subject factors influencing alcohol sensitivity in studies of humans. Herein, we combined murine models of unpredictable, chronic, mild stress (UCMS) and voluntary binge-drinking to examine for sex differences in the interactions between prior histories of excessive ethanol-drinking and stress upon ethanol-induced changes in motor behavior and subsequent drinking. In Experiment 1, female mice were insensitive to the UCMS-induced increase in ethanol-induced locomotion and ethanol intake under continuous alcohol-access. Experiment 2 revealed interactions between ethanol dose and sex (females>males), binge-drinking history (water>ethanol), and UCMS history (UCMS>controls), with no additive effect of a sequential prior history of both binge drinking and UCMS observed. We also observed an interaction between UCMS history and sex for righting recovery. UCMS history potentiated subsequent binge-drinking in water controls of both sexes and in male binge-drinking mice. Conversely, a prior binge-drinking history increased subsequent ethanol intake in females only, irrespective of prior UCMS history. In Experiment 3, a concurrent history of binge-drinking and UCMS did not alter ethanol intake, nor did it influence the ethanol dose-locomotor response function, but it did augment alcohol-induced sedation and reduced subsequent alcohol intake over that produced by binge-drinking alone. Thus, the subject factors of biological sex, prior stressor history and prior binge-drinking history interact in complex ways in mice to impact sensitivity to alcohol's motor-stimulating, -incoordinating and intoxicating effects, as well as to influence subsequent heavy drinking. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells

    International Nuclear Information System (INIS)

    Baumann, Jan; Wong, Jason; Sun, Yan; Conklin, Douglas S.

    2016-01-01

    HER2/neu-positive breast cancer cells have recently been shown to use a unique Warburg-like metabolism for survival and aggressive behavior. These cells exhibit increased fatty acid synthesis and storage compared to normal breast cells or other tumor cells. Disruption of this synthetic process results in apoptosis. Since the addition of physiological doses of exogenous palmitate induces cell death in HER2/neu-positive breast cancer cells, the pathway is likely operating at its limits in these cells. We have studied the response of HER2/neu-positive breast cancer cells to physiological concentrations of exogenous palmitate to identify lipotoxicity-associated consequences of this physiology. Since epidemiological data show that a diet rich in saturated fatty acids is negatively associated with the development of HER2/neu-positive cancer, this cellular physiology may be relevant to the etiology and treatment of the disease. We sought to identify signaling pathways that are regulated by physiological concentrations of exogenous palmitate specifically in HER2/neu-positive breast cancer cells and gain insights into the molecular mechanism and its relevance to disease prevention and treatment. Transcriptional profiling was performed to assess programs that are regulated in HER2-normal MCF7 and HER2/neu-positive SKBR3 breast cancer cells in response to exogenous palmitate. Computational analyses were used to define and predict functional relationships and identify networks that are differentially regulated in the two cell lines. These predictions were tested using reporter assays, fluorescence-based high content microscopy, flow cytometry and immunoblotting. Physiological effects were confirmed in HER2/neu-positive BT474 and HCC1569 breast cancer cell lines. Exogenous palmitate induces functionally distinct transcriptional programs in HER2/neu-positive breast cancer cells. In the lipogenic HER2/neu-positive SKBR3 cell line, palmitate induces a G2 phase cell cycle delay and

  5. Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues

    Science.gov (United States)

    Robinson, Mike J.F.; Anselme, Patrick; Suchomel, Kristen; Berridge, Kent C.

    2015-01-01

    Amphetamine and stress can sensitize mesolimbic dopamine-related systems. In Pavlovian autoshaping, repeated exposure to uncertainty of reward prediction can enhance motivated sign-tracking or attraction to a discrete reward-predicting cue (lever CS+), as well as produce cross-sensitization to amphetamine. However, it remains unknown how amphetamine-sensitization or repeated restraint stress interact with uncertainty in controlling CS+ incentive salience attribution reflected in sign-tracking. Here rats were tested in three successive phases. First, different groups underwent either induction of amphetamine sensitization or repeated restraint stress, or else were not sensitized or stressed as control groups (either saline injections only, or no stress or injection at all). All next received Pavlovian autoshaping training under either certainty conditions (100% CS-UCS association) or uncertainty conditions (50% CS-UCS association and uncertain reward magnitude). During training, rats were assessed for sign-tracking to the lever CS+ versus goal-tracking to the sucrose dish. Finally, all groups were tested for psychomotor sensitization of locomotion revealed by an amphetamine challenge. Our results confirm that reward uncertainty enhanced sign-tracking attraction toward the predictive CS+ lever, at the expense of goal-tracking. We also report that amphetamine sensitization promoted sign-tracking even in rats trained under CS-UCS certainty conditions, raising them to sign-tracking levels equivalent to the uncertainty group. Combining amphetamine sensitization and uncertainty conditions together did not add together to elevate sign-tracking further above the relatively high levels induced by either manipulation alone. In contrast, repeated restraint stress enhanced subsequent amphetamine-elicited locomotion, but did not enhance CS+ attraction. PMID:26076340

  6. Concurrent validity and sensitivity to change of Direct Behavior Rating Single-Item Scales (DBR-SIS) within an elementary sample.

    Science.gov (United States)

    Smith, Rhonda L; Eklund, Katie; Kilgus, Stephen P

    2018-03-01

    The purpose of this study was to evaluate the concurrent validity, sensitivity to change, and teacher acceptability of Direct Behavior Rating single-item scales (DBR-SIS), a brief progress monitoring measure designed to assess student behavioral change in response to intervention. Twenty-four elementary teacher-student dyads implemented a daily report card intervention to promote positive student behavior during prespecified classroom activities. During both baseline and intervention, teachers completed DBR-SIS ratings of 2 target behaviors (i.e., Academic Engagement, Disruptive Behavior) whereas research assistants collected systematic direct observation (SDO) data in relation to the same behaviors. Five change metrics (i.e., absolute change, percent of change from baseline, improvement rate difference, Tau-U, and standardized mean difference; Gresham, 2005) were calculated for both DBR-SIS and SDO data, yielding estimates of the change in student behavior in response to intervention. Mean DBR-SIS scores were predominantly moderately to highly correlated with SDO data within both baseline and intervention, demonstrating evidence of the former's concurrent validity. DBR-SIS change metrics were also significantly correlated with SDO change metrics for both Disruptive Behavior and Academic Engagement, yielding evidence of the former's sensitivity to change. In addition, teacher Usage Rating Profile-Assessment (URP-A) ratings indicated they found DBR-SIS to be acceptable and usable. Implications for practice, study limitations, and areas of future research are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. The effects of Valeriana officinalis L. hydro-alcoholic extract on depression like behavior in ovalbumin sensitized rats

    Directory of Open Access Journals (Sweden)

    Ali Neamati

    2014-01-01

    Full Text Available Background: Neuroimmune factors have been considered as contributors to the pathogenesis of depression. Beside other therapeutic effects, Valeriana officinalis L., have been suggested to have anti-inflammatory effects. In the present study, the effects of V. officinalis L. hydro alcoholic extract was investigated on depression like behavior in ovalbumin sensitized rats. Materials and Methods: A total of 50 Wistar rats were divided into five groups: Group 1 (control group received saline instead of Valeriana officinalis L. extract. The animals in group 2 (sensitized were treated by saline instead of the extract and were sensitized using the ovalbumin. Groups 3-5 (Sent - Ext 50, (Sent - Ext 100 and (Sent - Ext 200 were treated by 50, 100 and 200 mg/kg of V. officinalis L. hydro-alcoholic extract respectively, during the sensitization protocol. Forced swimming test was performed for all groups and immobility time was recorded. Finally, the animals were placed in the open-field apparatus and the crossing number on peripheral and central areas was observed. Results: The immobility time in the sensitized group was higher than that in the control group (P < 0.01. The animals in Sent-Ext 100 and Sent-Ext 200 groups had lower immobility times in comparison with sensitized group (P < 0.05 and P < 0.01. In the open field test, the crossed number in peripheral by the sensitized group was higher than that of the control one (P < 0.01 while, the animals of Sent-Ext 50, Sent-Ext 100 and Sent-Ext 200 groups had lower crossing number in peripheral compared with the sensitized group (P < 0.05 and P < 0.01 respectively. Furthermore, in the sensitized group, the central crossing number was lower than that of the control group (P < 0.001. In the animals treated by 200 mg/kg of the extract, the central crossing number was higher than that of the sensitized group (P < 0. 05. Conclusions: The results of the present study showed that the hydro-alcoholic extract of V

  8. [Underlying Mechanisms of Methamphetamine-Induced Self-Injurious Behavior and Lethal Effects in Mice].

    Science.gov (United States)

    Mori, Tomohisa; Sawaguchi, Toshiko

    2018-01-01

    Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.

  9. Differential sensitivity of long-sleep and short-sleep mice to high doses of cocaine.

    Science.gov (United States)

    de Fiebre, C M; Ruth, J A; Collins, A C

    1989-12-01

    The cocaine sensitivity of male and female long-sleep (LS) and short-sleep (SS) mice, which have been selectively bred for differential ethanol-induced "sleep-time," was examined in a battery of behavioral and physiological tests. Differences between these two mouse lines were subtle and were seen primarily at high doses. At high doses, SS mice were more sensitive than LS mice, particularly to cocaine-induced hypothermia; however, significant hypothermia was not seen except at doses which were very near to the seizure threshold. During a 60-min test of locomotor activity, LS mice showed greater stimulation of Y-maze activity by 20 mg/kg cocaine than SS mice. Consistent with the finding of subtle differences in sensitivity to low doses of cocaine. LS and SS mice did not differ in sensitivity to cocaine inhibition of synaptosomal uptake of [3H]-dopamine, [3H]-norepinephrine or [3H]-5-hydroxytryptamine. However, consistent with the finding of differential sensitivity to high doses of cocaine, SS mice were more sensitive to the seizure-producing effects of the cocaine and lidocaine, a local anesthetic. It is hypothesized that the differential sensitivity of these mouse lines to high doses of cocaine is due to differential sensitivity to cocaine's actions on systems that regulate local anesthetic effects. Selective breeding for differential duration of alcohol-induced "sleep-time" may have resulted in differential ion channel structure or function in these mice.

  10. Effects of diet-induced obesity on motivation and pain behavior in an operant assay.

    Science.gov (United States)

    Rossi, H L; Luu, A K S; Kothari, S D; Kuburas, A; Neubert, J K; Caudle, R M; Recober, A

    2013-04-03

    Obesity has been associated with multiple chronic pain disorders, including migraine. We hypothesized that diet-induced obesity would be associated with a reduced threshold for thermal nociception in the trigeminal system. In this study, we sought to examine the effect of diet-induced obesity on facial pain behavior. Mice of two different strains were fed high-fat or regular diet (RD) and tested using a well-established operant facial pain assay. We found that the effects of diet on behavior in this assay were strain and reward dependent. Obesity-prone C57BL/6J mice fed a high-fat diet (HFD) display lower number of licks of a caloric, palatable reward (33% sweetened condensed milk or 30% sucrose) than control mice. This occurred at all temperatures, in both sexes, and was evident even before the onset of obesity. This diminished reward-seeking behavior was not observed in obesity-resistant SKH1-E (SK) mice. These findings suggest that diet and strain interact to modulate reward-seeking behavior. Furthermore, we observed a difference between diet groups in operant behavior with caloric, palatable rewards, but not with a non-caloric neutral reward (water). Importantly, we found no effect of diet-induced obesity on acute thermal nociception in the absence of inflammation or injury. This indicates that thermal sensation in the face is not affected by obesity-associated peripheral neuropathy as it occurs when studying pain behaviors in the rodent hindpaw. Future studies using this model may reveal whether obesity facilitates the development of chronic pain after injury or inflammation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats.

    Science.gov (United States)

    Vincenz, Daniel; Wernecke, Kerstin E A; Fendt, Markus; Goldschmidt, Jürgen

    2017-08-14

    Fear is an important behavioral system helping humans and animals to survive potentially dangerous situations. Fear can be innate or learned. Whereas the neural circuits underlying learned fear are already well investigated, the knowledge about the circuits mediating innate fear is still limited. We here used a novel, unbiased approach to image in vivo the spatial patterns of neural activity in odor-induced innate fear behavior in rats. We intravenously injected awake unrestrained rats with a 99m-technetium labeled blood flow tracer (99mTc-HMPAO) during ongoing exposure to fox urine or water as control, and mapped the brain distribution of the trapped tracer using single-photon emission computed tomography (SPECT). Upon fox urine exposure blood flow increased in a number of brain regions previously associated with odor-induced innate fear such as the amygdala, ventromedial hypothalamus and dorsolateral periaqueductal grey, but, unexpectedly, decreased at higher significance levels in the interpeduncular nucleus (IPN). Significant flow changes were found in regions monosynaptically connected to the IPN. Flow decreased in the dorsal tegmentum and entorhinal cortex. Flow increased in the habenula (Hb) and correlated with odor effects on behavioral defensive strategy. Hb lesions reduced avoidance of but increased approach to the fox urine while IPN lesions only reduced avoidance behavior without approach behavior. Our study identifies a new component, the IPN, of the neural circuit mediating odor-induced innate fear behavior in mammals and suggests that the evolutionarily conserved Hb-IPN system, which has recently been implicated in cued fear, also forms an integral part of the innate fear circuitry. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Venlafaxine-induced REM sleep behavioral disorder presenting as two fractures

    Directory of Open Access Journals (Sweden)

    R. Ryan Williams

    2017-10-01

    Full Text Available Rapid eye movement (REM sleep behavioral disorder is characterized by the absence of muscular atonia during REM sleep. In this disorder, patients can violently act out their dreams, placing them at risk for traumatic fractures during these episodes. REM sleep behavioral disorder (RBD can be a sign of future neurodegenerative disease and has also been found to be a side effect of certain psychiatric medications. We present a case of venlafaxine-induced RBD in a 55 year old female who presented with a 13 year history of intermittent parasomnia and dream enactment in addition to a recent history of two fractures requiring intervention.

  13. Venlafaxine-induced REM sleep behavioral disorder presenting as two fractures.

    Science.gov (United States)

    Ryan Williams, R; Sandigo, Gustavo

    2017-10-01

    Rapid eye movement (REM) sleep behavioral disorder is characterized by the absence of muscular atonia during REM sleep. In this disorder, patients can violently act out their dreams, placing them at risk for traumatic fractures during these episodes. REM sleep behavioral disorder (RBD) can be a sign of future neurodegenerative disease and has also been found to be a side effect of certain psychiatric medications. We present a case of venlafaxine-induced RBD in a 55 year old female who presented with a 13 year history of intermittent parasomnia and dream enactment in addition to a recent history of two fractures requiring intervention.

  14. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    Science.gov (United States)

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  15. Learning social attitudes: children's sensitivity to the nonverbal behaviors of adult models during interracial interactions.

    Science.gov (United States)

    Castelli, Luigi; De Dea, Cristina; Nesdale, Drew

    2008-11-01

    White children show marked ingroup race preferences and a relative devaluation of Black people. The origin of these early interracial attitudes is to a large extent still unclear. The studies here test the possibility that preschool-aged children are particularly sensitive to the nonverbal behaviors performed by White adults during interracial interactions. In Study 1, children were shown a video displaying an interaction between a White and a Black adult. Across conditions, the White adult's verbal behaviors were either friendly or neutral, whereas his nonverbal behaviors showed either easiness (e.g., closeness, high eye contact) or uneasiness (e.g., distance, avoidance of eye contact). Results revealed that participants shaped their attitudes toward the Black target accordingly, independently from the White adults' verbal behaviors. Study 2 replicated the basic findings and demonstrated that the observed effects generalized to other Black targets. Results are discussed in relation to current approaches to understanding the formation of racial attitudes among children.

  16. Acute stress-induced sensitization of the pituitary-adrenal response to heterotypic stressors: independence of glucocorticoid release and activation of CRH1 receptors.

    Science.gov (United States)

    Belda, Xavier; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2012-09-01

    A single exposure to some severe stressors causes sensitization of the hypothalamic-pituitary-adrenal (HPA) response to novel stressors. However, the putative factors involved in stress-induced sensitization are not known. In the present work we studied in adult male rats the possible role of glucocorticoids and CRH type 1 receptor (CRH-R1), using an inhibitor of glucocorticoid synthesis (metyrapone, MET), the glucocorticoid receptor (GR) antagonist RU38486 (mifepristone) and the non-peptide CRH-R1 antagonist R121919. In a first experiment we demonstrated with different doses of MET (40-150 mg/kg) that the highest dose acted as a pharmacological stressor greatly increasing ACTH release and altering the normal circadian pattern of HPA hormones, but no dose affected ACTH responsiveness to a novel environment as assessed 3 days after drug administration. In a second experiment, we found that MET, at a dose (75 mg/kg) that blocked the corticosterone response to immobilization (IMO), did not alter IMO-induced ACTH sensitization. Finally, neither the GR nor the CRH-R1 antagonists blocked IMO-induced ACTH sensitization on the day after IMO. Thus, a high dose of MET, in contrast to IMO, was unable to sensitize the HPA response to a novel environment despite the huge activation of the HPA axis caused by the drug. Neither a moderate dose of MET that markedly reduced corticosterone response to IMO, nor the blockade of GR or CRH-R1 receptors was able to alter stress-induced HPA sensitization. Therefore, stress-induced sensitization is not the mere consequence of a marked HPA activation and does not involve activation of glucocorticoid or CRH-R1 receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The selectively bred high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats differ in sensitivity to nicotine.

    Science.gov (United States)

    de Fiebre, NancyEllen C; Dawson, Ralph; de Fiebre, Christopher M

    2002-06-01

    Studies in rodents selectively bred to differ in alcohol sensitivity have suggested that nicotine and ethanol sensitivities may cosegregate during selective breeding. This suggests that ethanol and nicotine sensitivities may in part be genetically correlated. Male and female high alcohol sensitivity (HAS), control alcohol sensitivity, and low alcohol sensitivity (LAS) rats were tested for nicotine-induced alterations in locomotor activity, body temperature, and seizure activity. Plasma and brain levels of nicotine and its primary metabolite, cotinine, were measured in these animals, as was the binding of [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin in eight brain regions. Both replicate HAS lines were more sensitive to nicotine-induced locomotor activity depression than the replicate LAS lines. No consistent HAS/LAS differences were seen on other measures of nicotine sensitivity; however, females were more susceptible to nicotine-induced seizures than males. No HAS/LAS differences in nicotine or cotinine levels were seen, nor were differences seen in the binding of nicotinic ligands. Females had higher levels of plasma cotinine and brain nicotine than males but had lower brain cotinine levels than males. Sensitivity to a specific action of nicotine cosegregates during selective breeding for differential sensitivity to a specific action of ethanol. The differential sensitivity of the HAS/LAS rats is due to differences in central nervous system sensitivity and not to pharmacokinetic differences. The differential central nervous system sensitivity cannot be explained by differences in the numbers of nicotinic receptors labeled in ligand-binding experiments. The apparent genetic correlation between ethanol and nicotine sensitivities suggests that common genes modulate, in part, the actions of both ethanol and nicotine and may explain the frequent coabuse of these agents.

  18. Anxiety Sensitivity Uniquely Predicts Exercise Behaviors in Young Adults Seeking to Increase Physical Activity.

    Science.gov (United States)

    Moshier, Samantha J; Szuhany, Kristin L; Hearon, Bridget A; Smits, Jasper A J; Otto, Michael W

    2016-01-01

    Individuals with elevated levels of anxiety sensitivity (AS) may be motivated to avoid aversive emotional or physical states, and therefore may have greater difficulty achieving healthy behavioral change. This may be particularly true for exercise, which produces many of the somatic sensations within the domain of AS concerns. Cross-sectional studies show a negative association between AS and exercise. However, little is known about how AS may prospectively affect attempts at behavior change in individuals who are motivated to increase their exercise. We recruited 145 young adults who self-identified as having a desire to increase their exercise behavior. Participants completed a web survey assessing AS and additional variables identified as important for behavior change-impulsivity, grit, perceived behavioral control, and action planning-and set a specific goal for exercising in the next week. One week later, a second survey assessed participants' success in meeting their exercise goals. We hypothesized that individuals with higher AS would choose lower exercise goals and would complete less exercise at the second survey. AS was not significantly associated with exercise goal level, but significantly and negatively predicted exercise at Time 2 and was the only variable to offer significant prediction beyond consideration of baseline exercise levels. These results underscore the importance of considering AS in relation to health behavior intentions. This is particularly apt given the absence of prediction offered by other traditional predictors of behavior change. © The Author(s) 2015.

  19. Preventive effects of blueberry extract on behavioral and biochemical dysfunctions in rats submitted to a model of manic behavior induced by ketamine.

    Science.gov (United States)

    Debom, Gabriela; Gazal, Marta; Soares, Mayara Sandrielly Pereira; do Couto, Carlus Augustu Tavares; Mattos, Bruna; Lencina, Claiton; Kaster, Manuella Pinto; Ghisleni, Gabriele Codenonzi; Tavares, Rejane; Braganhol, Elizandra; Chaves, Vitor Clasen; Reginatto, Flávio Henrique; Stefanello, Francieli; Spanevello, Roselia Maria

    2016-10-01

    The aim of the present study was to evaluate the protective effects of blueberry extract on oxidative stress and inflammatory parameters in a model of mania induced by ketamine administration in rats. Male rats were pretreated with blueberry extract (200mg/kg, once a day for 14days), lithium chloride (45mg/kg, mood stabilizer used as a positive control, twice a day for 14days), or vehicle. Between the 8th and 14th days, rats also received an injection of ketamine (25mg/kg) or vehicle. In the 15th day, thirty minutes after ketamine administration the hyperlocomotion of the animals was assessed in the open - field apparatus. Immediately after the behavioral analysis brain and blood were collected for biochemical determinations. ketamine treatment induced hyperlocomotion and oxidative damage in cerebral cortex, hippocampus and striatum such as an increase in lipid peroxidation and a decrease in the antioxidant enzymes activities (superoxide dismutase, catalase e glutatione peroxidase). Ketamine administration also increased the IL-6 levels in serum in rats. Pretreatment of rats with blueberry extract or lithium prevented the hyperlocomotion, pro - oxidant effects and inflammation induced by ketamine. Our findings suggest that blueberry consumption has a neuroprotective potential against behavioral and biochemical dysfunctions induced in a preclinical model that mimic some aspects of the manic behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Prenatal phencyclidine treatment induces behavioral deficits through impairment of GABAergic interneurons in the prefrontal cortex.

    Science.gov (United States)

    Toriumi, Kazuya; Oki, Mika; Muto, Eriko; Tanaka, Junko; Mouri, Akihiro; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2016-06-01

    We previously reported that prenatal treatment with phencyclidine (PCP) induces glutamatergic dysfunction in the prefrontal cortex (PFC), leading to schizophrenia-like behavioral deficits in adult mice. However, little is known about the prenatal effect of PCP treatment on other types of neurons. We focused on γ-aminobutyric acid (GABA)-ergic interneurons and evaluated the effect of prenatal PCP exposure on the neurodevelopment of GABAergic interneurons in the PFC. PCP was administered at the dose of 10 mg/kg/day to pregnant dams from embryonic day 6.5 to 18.5. After the pups were reared to adult, we analyzed their GABAergic system in the PFC using immunohistological, biochemical, and behavioral analyses in adulthood. The prenatal PCP treatment decreased the density of parvalbumin-positive cells and reduced the expression level of glutamic acid decarboxylase 67 (GAD67) and GABA content of the PFC in adults. Additionally, prenatal PCP treatment induced behavioral deficits in adult mice, such as hypersensitivity to PCP and prepulse inhibition (PPI) deficits. These behavioral deficits were ameliorated by pretreatment with the GABAB receptor agonist baclofen. Furthermore, the density of c-Fos-positive cells was decreased after the PPI test in the PFC of mice treated with PCP prenatally, and this effect was ameliorated by pretreatment with baclofen. These findings suggest that prenatal treatment with PCP induced GABAergic dysfunction in the PFC, which caused behavioral deficits.

  1. Botulinum neurotoxin type-A when utilized in animals with trigeminal sensitization induced a antinociceptive effect

    Directory of Open Access Journals (Sweden)

    Elcio J Piovesan

    2016-06-01

    Full Text Available ABSTRACT Purpose of the study was evaluate the possible antinociceptive effect of botulinum neurotoxin type-A (BoNT/A in an experimental model of trigeminal neuralgia. Method Neuropathic pain was induced by surgical constriction of the infraorbital nerve in rats. A control group underwent a sham procedure consisting of surgical exposure of the nerve. Subgroups of each group received either BoNT/A or isotonic saline solution. The clinical response was assessed with the -20°C test. Animals that underwent nerve constriction developed sensitization; the sham group did not. Results The sensitization was reversed by BoNT/A treatment evident 24 hours following application. Pronociceptive effect was observed in the sham group following BoNT/A. Conclusion BoNT/A has an antinociceptive effect in sensitized animals and a pronociceptive effect in non-sensitized animals.

  2. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Udayabanu, Malairaman

    2014-03-01

    Evidences suggest that glucocorticoids results in depression and is a risk factor for type 2 diabetes. Further diabetes induces oxidative stress and hippocampal dysfunction resulting in cognitive decline. Traditionally Urtica dioica has been used for diabetes mellitus and cognitive dysfunction. The present study investigated the effect of the hydroalcoholic extract of Urtica dioica leaves (50 and 100 mg/kg, p.o.) in dexamethasone (1 mg/kg, i.m.) induced diabetes and its associated complications such as depressive like behavior and cognitive dysfunction. We observed that mice administered with chronic dexamethasone resulted in hypercortisolemia, oxidative stress, depressive like behavior, cognitive impairment, hyperglycemia with reduced body weight, increased water intake and decreased hippocampal glucose transporter-4 (GLUT4) mRNA expression. Urtica dioica significantly reduced hyperglycemia, plasma corticosterone, oxidative stress and depressive like behavior as well as improved associative memory and hippocampal GLUT4 mRNA expression comparable to rosiglitazone (5 mg/kg, p.o.). Further, Urtica dioica insignificantly improved spatial memory and serum insulin. In conclusion, Urtica dioica reversed dexamethasone induced hyperglycemia and its associated complications such as depressive like behavior and cognitive dysfunction.

  3. Fatty acid-induced gut-brain signaling attenuates neural and behavioral effects of sad emotion in humans.

    Science.gov (United States)

    Van Oudenhove, Lukas; McKie, Shane; Lassman, Daniel; Uddin, Bilal; Paine, Peter; Coen, Steven; Gregory, Lloyd; Tack, Jan; Aziz, Qasim

    2011-08-01

    Although a relationship between emotional state and feeding behavior is known to exist, the interactions between signaling initiated by stimuli in the gut and exteroceptively generated emotions remain incompletely understood. Here, we investigated the interaction between nutrient-induced gut-brain signaling and sad emotion induced by musical and visual cues at the behavioral and neural level in healthy nonobese subjects undergoing functional magnetic resonance imaging. Subjects received an intragastric infusion of fatty acid solution or saline during neutral or sad emotion induction and rated sensations of hunger, fullness, and mood. We found an interaction between fatty acid infusion and emotion induction both in the behavioral readouts (hunger, mood) and at the level of neural activity in multiple pre-hypothesized regions of interest. Specifically, the behavioral and neural responses to sad emotion induction were attenuated by fatty acid infusion. These findings increase our understanding of the interplay among emotions, hunger, food intake, and meal-induced sensations in health, which may have important implications for a wide range of disorders, including obesity, eating disorders, and depression.

  4. Critical Duration of Exposure for Developmental Chlorpyrifos-Induced Neurobehavioral Toxicity

    OpenAIRE

    Sledge, Damiyon; Yen, Jerry; Morton, Terrell; Dishaw, Laura; Petro, Ann; Donerly, Susan; Linney, Elwood; Levin, Edward D.

    2011-01-01

    Developmental exposure of rats to the pesticide chlorpyrifos (CPF) causes persistent neurobehavioral impairment. In a parallel series of studies with zebrafish, we have also found persisting behavioral dysfunction after developmental CPF exposure. We have developed a battery of measures of zebrafish behavior, which are reliable and sensitive to toxicant-induced damage. This study determined the critical duration of developmental CPF exposure for causing persisting neurobehavioral effects. Tes...

  5. Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant.

    Science.gov (United States)

    Prieto, José P; Galvalisi, Martín; López-Hill, Ximena; Meikle, María N; Abin-Carriquiry, Juan A; Scorza, Cecilia

    2015-08-01

    Caffeine is an active adulterant found in several drugs of abuse including coca paste (CP). We had previously demonstrated that caffeine potentiated the acute stimulant effect induced by CP seized samples. The role of caffeine in the expression of sensitization elicited by a CP seized sample (CP1) was here evaluated. CP1 (equivalent dose of 10 mg/kg of cocaine), cocaine (pure, 10 mg/kg), a combination of cocaine 10 mg/kg plus caffeine 2.5 mg/kg (CP1-surrogate) and saline (control) were intraperitoneally injected in male rats under two different sensitization schedules. Ambulatory locomotion was recorded in 58 animals. After five daily CP1 injections and 5 days of withdrawal, CP1-challenged animals displayed a more robust sensitization than cocaine-treated animals. When a 3 injections-regime of CP1-surrogate or cocaine was assayed, only CP1-surrogate was able to elicit sensitization. Caffeine enhances and accelerates the CP1-induced sensitization. Results may shed light on the fast and high dependence observed in CP users. © American Academy of Addiction Psychiatry.

  6. Behavioral Approach System Sensitivity and Risk Taking Interact to Predict Left-Frontal EEG Asymmetry

    OpenAIRE

    Black, Chelsea L.; Goldstein, Kim E.; LaBelle, Denise R.; Brown, Christopher W.; Harmon-Jones, Eddie; Abramson, Lyn Y.; Alloy, Lauren B.

    2014-01-01

    The Behavioral Approach System (BAS) hypersensitivity theory of bipolar disorder (BD; Alloy & Abramson, 2010; Depue & Iacono, 1989) suggests that hyperreactivity in the BAS results in the extreme fluctuations of mood characteristic of BD. In addition to risk conferred by BAS hypersensitivity, cognitive and personality variables may play a role in determining risk. We evaluated relationships among BAS sensitivity, risk taking, and an electrophysiological correlate of approach motivation, relat...

  7. In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Miski Aghnia Khairinisa

    2018-05-01

    Full Text Available Thyroid hormones (THs play crucial roles in general and brain development. Even if the hypothyroidism is mild, it may alter brain function, resulting in irreversible behavioral alterations. Although various behavioral analyses have been conducted, the effects of propylthiouracil (PTU treatment during in utero and postnatal periods on maternal behavior have not yet been studied. The present study examined in mice whether THs insufficiency during development induce behavioral changes. Pregnant C57BL/6j mice were divided into three groups, and each group was administered different dosages of PTU (0, 5, or 50 ppm in drinking water during in utero and postnatal periods (from gestational day 14 to postnatal day 21. First, locomotor activity and cognitive function were assessed in the offspring at 10 weeks. Next, female offspring were mated with normal mice and they and their offspring were used to assess several aspects of maternal behavior (identifying first pup, returning all pups to nest, time spent nursing, and licking pups. As expected, locomotor and cognitive functions in these mice were disrupted in a PTU dose-dependent manner. On postpartum day 2, dams who had been exposed 50 ppm PTU during in utero and postnatal periods displayed a significantly longer time identifying the first pup and returning all three pups back to the nest, less time nursing, and decreased licking behavior. The decrease in maternal behavior was significantly correlated with a decrease in cognition. These results indicate that insufficiency of THs during in utero and postnatal periods impairs maternal behavior, which may be partly induced by impaired cognitive function.

  8. Recurring ethanol exposure induces disinhibited courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.

  9. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo.

    Science.gov (United States)

    Yin, Gang; Fan, Jin; Zhou, Wei; Ding, Qingfeng; Zhang, Jun; Wu, Xuan; Tang, Pengyu; Zhou, Hao; Wan, Bowen; Yin, Guoyong

    2017-10-10

    mTOR is a valuable oncotarget for osteosarcoma. The anti-osteosarcoma activity by a novel mTOR kinase inhibitor, CZ415, was evaluated. We demonstrated that CZ415 potently inhibited survival and proliferation of known osteosarcoma cell lines (U2OS, MG-63 and SaOs2), and primary human osteosarcoma cells. Further, CZ415 provoked apoptosis and disrupted cell cycle progression in osteosarcoma cells. CZ415 treatment in osteosarcoma cells concurrently blocked mTORC1 and mTORC2 activation. Intriguingly, ERK-MAPK activation could be a major resistance factor of CZ415. ERK inhibition (by MEK162/U0126) or knockdown (by targeted ERK1/2 shRNAs) dramatically sensitized CZ415-induced osteosarcoma cell apoptosis. In vivo , CZ415 oral administration efficiently inhibited U2OS tumor growth in mice. Its activity was further potentiated with co-administration of MEK162. Collectively, we demonstrate that ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo . CZ415 could be further tested as a promising anti-osteosarcoma agent, alone or in combination of ERK inhibition.

  10. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    Science.gov (United States)

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  11. Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues.

    Science.gov (United States)

    Robinson, Mike J F; Anselme, Patrick; Suchomel, Kristen; Berridge, Kent C

    2015-08-01

    Amphetamine and stress can sensitize mesolimbic dopamine-related systems. In Pavlovian autoshaping, repeated exposure to uncertainty of reward prediction can enhance motivated sign-tracking or attraction to a discrete reward-predicting cue (lever-conditioned stimulus; CS+), as well as produce cross-sensitization to amphetamine. However, it remains unknown how amphetamine sensitization or repeated restraint stress interact with uncertainty in controlling CS+ incentive salience attribution reflected in sign-tracking. Here rats were tested in 3 successive phases. First, different groups underwent either induction of amphetamine sensitization or repeated restraint stress, or else were not sensitized or stressed as control groups (either saline injections only, or no stress or injection at all). All next received Pavlovian autoshaping training under either certainty conditions (100% CS-UCS association) or uncertainty conditions (50% CS-UCS association and uncertain reward magnitude). During training, rats were assessed for sign-tracking to the CS+ lever versus goal-tracking to the sucrose dish. Finally, all groups were tested for psychomotor sensitization of locomotion revealed by an amphetamine challenge. Our results confirm that reward uncertainty enhanced sign-tracking attraction toward the predictive CS+ lever, at the expense of goal-tracking. We also reported that amphetamine sensitization promoted sign-tracking even in rats trained under CS-UCS certainty conditions, raising them to sign-tracking levels equivalent to the uncertainty group. Combining amphetamine sensitization and uncertainty conditions did not add together to elevate sign-tracking further above the relatively high levels induced by either manipulation alone. In contrast, repeated restraint stress enhanced subsequent amphetamine-elicited locomotion, but did not enhance CS+ attraction. (c) 2015 APA, all rights reserved).

  12. Differential effects of the ascorbyl and tocopheryl derivative on the methamphetamine-induced toxic behavior and toxicity

    International Nuclear Information System (INIS)

    Ito, Shinobu; Mori, Tomohisa; Kanazawa, Hideko; Sawaguchi, Toshiko

    2007-01-01

    A previous study showed that high doses of methamphetamine induce self-injurious behavior (SIB) in rodents. Furthermore, the combination of methamphetamine and morphine increased lethality in mice. We recently surmised that the rise in SIB and mortality induced by methamphetamine and/or morphine may be related to oxidative stress. The present study was designed to determine whether an antioxidant could inhibit SIB or mortality directly induced by methamphetamine and/or morphine. The SIB induced by 20 mg/kg of methamphetamine was abolished by the administration of Na L-ascorbyl-2-phosphate (APS: 300 mg/kg), but not Na DL-α-tocopheryl phosphate (TPNa: 200 mg/kg). In contrast, APS (300 mg/kg) and TPNa (200 mg/kg) each significantly attenuated the lethality induced by methamphetamine and morphine. The present study showed that the signal intensity of superoxide adduct was increased by 20 mg/kg of methamphetamine in the heart and lungs, and methamphetamine plus morphine tended to increase superoxide adduct in all of the tissues measured by ESR spin trap methods. Adduct signal induced in brain by methamphetamine administration increased in significance, but in mouse administrated methamphetamine plus morphine. There are differential effects of administration of methamphetamine and coadministration of methamphetamine plus morphine on adduct signal. These results suggest that APS and TPNa are effective for reducing methamphetamine-induced toxicity and/or toxicological behavior. While APS and TPNa each affected methamphetamine- and/or morphine-induced toxicology and/or toxicological behavior, indicating that both drugs have antioxidative effects, their effects differed

  13. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    Science.gov (United States)

    2015-11-01

    Memorandum Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes...Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...Welding- Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c

  14. Wheat-Dependent Exercise-Induced Anaphylaxis Sensitized with Hydrolyzed Wheat Protein in Soap

    Directory of Open Access Journals (Sweden)

    Yuko Chinuki

    2012-01-01

    Full Text Available Wheat-dependent exercise-induced anaphylaxis (WDEIA is a specific form of wheat allergy typically induced by exercise after ingestion of wheat products. Wheat ω-5 gliadin is a major allergen associated with conventional WDEIA, and detection of serum immunoglobulin E (IgE specific to recombinant ω-5 gliadin is a reliable method for its diagnosis. Recently, an increased incidence of a new subtype of WDEIA, which is likely to be sensitized via a percutaneous and/or rhinoconjunctival route to hydrolyzed wheat protein (HWP, has been observed. All of the patients with this new subtype had used the same brand of soap, which contained HWP. Approximately half of these patients developed contact allergy several months later and subsequently developed WDEIA. In each of these patients, contact allergy with soap exposure preceded food ingestion-induced reactions. Other patients directly developed generalized symptoms upon ingestion of wheat products. The predominant observed symptom of the new WDEIA subtype was angioedema of the eyelids; a number of patients developed anaphylaxis. This new subtype of WDEIA has little serum ω-5 gliadin-specific serum IgE.

  15. Butyrate down regulates BCL-XL and sensitizes human fibroblasts to radiation and chemotherapy induced apoptosis

    International Nuclear Information System (INIS)

    Chung, Diana H.; Ljungman, Mats; Zhang Fenfen; Chen Feng; McLaughlin, William P.

    1997-01-01

    Purpose/Objective: Butyrate is a short chain fatty acid that has been implicated in the induction of cell cycle arrest, cell differentiation and apoptosis. The purpose of this study was to determine if butyrate treatment sensitizes cells to radiation or chemotherapy induced apoptosis. Materials and Methods: Normal neonatal human diploid fibroblasts were used throughout this study. Apoptosis was scored and quantified using three different methods. First, cell morphology using propidium iodide and fluorescence microscopy was used to qualitatively determine apoptosis and to quantify the percentage of cells undergoing apoptosis. Second, apoptosis induced DNA degradation was scored by quantifying the amount of cells appearing in a sub-G1 peak using fixed and PI-stained cells and flow cytometry. Third, apoptosis-induced DNA degradation was examined by using an assay involving direct lysis of cells in the wells of agarose gels followed by conventional gel electrophoresis. Western blotting was used to quantify the cellular levels of the apoptosis regulators, Bcl-2, Bcl-XL and Bax. Results: Human diploid fibroblasts, which were resistant to radiation induced apoptosis, were found to undergo massive apoptosis when radiation was combined with butyrate treatment. Sensitization was obtained when butyrate was added before or after radiation although the combination of both pre and post-treatment was the most effective. Butyrate was also found to enhance UV light and cisplatin-induced apoptosis. These findings correlated with a reduction of the apoptosis antagonist Bcl-XL. Bcl-XL levels significantly dropped in a time and dose dependent manner. In addition, butyrate effectively blocked UV-induced accumulation of p53. Conclusion: Our results suggest that butyrate may be an attractive agent to use in combination with radiation or chemotherapy to lower the apoptotic threshold of tumor cells, regardless of the p53 status of the tumor cells

  16. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    International Nuclear Information System (INIS)

    Polek, Tara C.; Talpaz, Moshe; Spivak-Kroizman, Taly R.

    2006-01-01

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects

  17. Effects of Sleeve Gastrectomy vs. Roux-en-Y Gastric Bypass on Eating Behavior and Sweet Taste Perception in Subjects with Obesity

    Directory of Open Access Journals (Sweden)

    Katie Nance

    2017-12-01

    Full Text Available The goal of this study was to test the hypothesis that weight loss induced by Roux-en-Y gastric bypass (RYGB has greater effects on taste perception and eating behavior than comparable weight loss induced by sleeve gastrectomy (SG. We evaluated the following outcomes in 31 subjects both before and after ~20% weight loss induced by RYGB (n = 23 or SG (n = 8: (1 sweet, savory, and salty taste sensitivity; (2 the most preferred concentrations of sucrose and monosodium glutamate; (3 sweetness palatability, by using validated sensory testing techniques; and (4 eating behavior, by using the Food Craving Inventory and the Dutch Eating Behavior Questionnaire. We found that neither RYGB nor SG affected sweetness or saltiness sensitivity. However, weight loss induced by either RYGB or SG caused the same decrease in: (1 frequency of cravings for foods; (2 influence of emotions and external food cues on eating behavior; and (3 shifted sweetness palatability from pleasant to unpleasant when repetitively tasting sucrose (all p-values ≤ 0.01. Therefore, when matched on weight loss, SG and RYGB cause the same beneficial effects on key factors involved in the regulation of eating behavior and hedonic component of taste perception.

  18. Repeated Short-term (2h×14d) Emotional Stress Induces Lasting Depression-like Behavior in Mice.

    Science.gov (United States)

    Kim, Kyoung-Shim; Kwon, Hye-Joo; Baek, In-Sun; Han, Pyung-Lim

    2012-03-01

    Chronic behavioral stress is a risk factor for depression. To understand chronic stress effects and the mechanism underlying stress-induced emotional changes, various animals model have been developed. We recently reported that mice treated with restraints for 2 h daily for 14 consecutive days (2h-14d or 2h×14d) show lasting depression-like behavior. Restraint provokes emotional stress in the body, but the nature of stress induced by restraints is presumably more complex than emotional stress. So a question remains unsolved whether a similar procedure with "emotional" stress is sufficient to cause depression-like behavior. To address this, we examined whether "emotional" constraints in mice treated for 2h×14d by enforcing them to individually stand on a small stepping platform placed in a water bucket with a quarter full of water, and the stress evoked by this procedure was termed "water-bucket stress". The water-bucket stress activated the hypothalamus-pituitary-adrenal gland (HPA) system in a manner similar to restraint as evidenced by elevation of serum glucocorticoids. After the 2h×14d water-bucket stress, mice showed behavioral changes that were attributed to depression-like behavior, which was stably detected >3 weeks after last water-bucket stress endorsement. Administration of the anti-depressant, imipramine, for 20 days from time after the last emotional constraint completely reversed the stress-induced depression-like behavior. These results suggest that emotional stress evokes for 2h×14d in mice stably induces depression-like behavior in mice, as does the 2h×14d restraint.

  19. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    Science.gov (United States)

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  20. Being bad in a video game can make us more morally sensitive.

    Science.gov (United States)

    Grizzard, Matthew; Tamborini, Ron; Lewis, Robert J; Wang, Lu; Prabhu, Sujay

    2014-08-01

    Several researchers have demonstrated that the virtual behaviors committed in a video game can elicit feelings of guilt. Researchers have proposed that such guilt could have prosocial consequences. However, this proposition has not been supported with empirical evidence. The current study examined this issue in a 2×2 (video game play vs. real world recollection×guilt vs. control) experiment. Participants were first randomly assigned to either play a video game or complete a memory recall task. Next, participants were randomly assigned to either a guilt-inducing condition (game play as a terrorist/recall of acts that induce guilt) or a control condition (game play as a UN soldier/recall of acts that do not induce guilt). Results of the study indicate several important findings. First, the current results replicate previous research indicating that immoral virtual behaviors are capable of eliciting guilt. Second, and more importantly, the guilt elicited by game play led to intuition-specific increases in the salience of violated moral foundations. These findings indicate that committing "immoral" virtual behaviors in a video game can lead to increased moral sensitivity of the player. The potential prosocial benefits of these findings are discussed.

  1. Micronuclei: sensitivity for the detection of radiation induced damage

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Nasazzi, N.B.; Taja, M.R.

    1998-01-01

    The in vitro cytokinesis-block (CB) micronucleus (MN) assay for human peripheral blood has been used extensively for the assessment of chromosomal damage induced by ionizing radiation and chemicals and considered a suitable biological dosimeter for estimating in vivo whole body exposures, particularly in the case of large scale radiation accidents. One of the major drawbacks of the MN assay is its reduced sensitivity for the detection of damage induced by low doses of low LET radiation, due to the high variability among the spontaneous MN frequencies. It is suggested that age, smoking habit and sex are the main confounding factors that contribute to the observed variability. Previous work in our laboratory, shows a significant positive correlation of the spontaneous and radiation induced MN frequencies with age and smoking habit, the latter being the strongest confounder. These findings led to in vitro studies of the dose-response relationships for smoking and non smoking donors evaluated separately, using 60 Co γ rays. The objectives of the present work are: 1-To increase the amount of data of the dose-response relationships, using γ rays from a 60 Co source, for smoking and non smoking donors, in order to find, if applicable, a correction factor for the calibration curve that takes into account the smoking habit of the individual in the case of accidental overexposure dose assessment, particularly in the low dose range. 2-To establish general conclusions on the current state of the technique. The sample for smoking and non smoking calibration curves was enlarged in the range of 0Gy to 2Gy. The fitting of both curves, performed up to the 2Gy dose, resulted in a linear quadratic model. MN distribution among bi nucleated cells was found to be over dispersed with respect to Poisson distribution, the average ratio of variance to mean being 1.13 for non smokers and 1.17 for smokers. Each fitted calibration curve, for smoking and non smoking donors, fell within the 95

  2. Hyperbaric oxygen therapy attenuates central sensitization induced by a thermal injury in humans

    DEFF Research Database (Denmark)

    Rasmussen, V M; Borgen, A E; Jansen, E C

    2015-01-01

    BACKGROUND: Hyperbaric oxygen (HBO2 ) treatment has in animal experiments demonstrated antinociceptive effects. It was hypothesized that these effects would attenuate secondary hyperalgesia areas (SHAs), an expression of central sensitization, after a first-degree thermal injury in humans. METHODS...... was demonstrated. However, in the nine volunteers starting with the control session, a statistical significant attenuation of SHAs was demonstrated in the HBO2 session (P = 0.004). CONCLUSIONS: The results indicate that HBO2 therapy in humans attenuates central sensitization induced by a thermal skin injury......, compared with control. These new and original findings in humans corroborate animal experimental data. The thermal injury model may give impetus to future human neurophysiological studies exploring the central effects of hyperbaric oxygen treatment....

  3. Music therapy inhibits morphine-seeking behavior via GABA receptor and attenuates anxiety-like behavior induced by extinction from chronic morphine use.

    Science.gov (United States)

    Kim, Ki Jin; Lee, Sang Nam; Lee, Bong Hyo

    2018-05-01

    Morphine is a representative pain killer. However, repeated use tends to induce addiction. Music therapy has been gaining interest as a useful type of therapy for neuropsychiatric diseases. The present study examined whether Korean traditional music (KT) could suppress morphine-seeking behavior and anxiety-like behavior induced by extinction from chronic morphine use and additionally investigated a possible neuronal mechanism. Male Sprague-Dawley rats were trained to intravenously self-administer morphine hydrochloride (1.0 mg/kg) using a fixed ratio 1 schedule in daily 2 h session during 3 weeks. After training, rats who established baseline (variation less than 20% of the mean of infusion for 3 consecutive days) underwent extinction. Music was played twice a day during extinction. In the second experiment, the selective antagonists of GABA A and GABA B receptors were treated before the last playing to investigate the neuronal mechanism focusing on the GABA receptor pathway. Another experiment of elevated plus maze was performed to investigate whether music therapy has an anxiolytic effect at the extinction phase. KT but not other music (Indian road or rock music) reduced morphine-seeking behavior induced by a priming challenge with morphine. And, this effect was blocked by the GABA receptor antagonists. In addition, KT showed anxiolytic effects against withdrawal from morphine. Results of this study suggest that KT suppresses morphine-seeking behavior via GABA receptor pathway. In addition, KT showed to have anxiolytic effects, suggesting it has bi-directional effects on morphine. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dimberg Lina Y

    2012-07-01

    Full Text Available Abstract Background Multiple myeloma (MM is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS. Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA, geldanamycin (17-AAG, doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6

  5. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    International Nuclear Information System (INIS)

    Dimberg, Lina Y; Nilsson, Kenneth; Öberg, Fredrik; Wiklund, Helena Jernberg; Dimberg, Anna; Ivarsson, Karolina; Fryknäs, Mårten; Rickardson, Linda; Tobin, Gerard; Ekman, Simon; Larsson, Rolf; Gullberg, Urban

    2012-01-01

    Multiple myeloma (MM) is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN) treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat)1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS). To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA), geldanamycin (17-AAG), doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. We conclude that Stat1 alters IL-6 induced Stat3 activity and the expression of pro

  6. Pretreatment with mixed-function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

    International Nuclear Information System (INIS)

    Shaddock, J.G.; Heflich, R.H.; McMillan, D.C.; Hinson, J.A.; Casciano, D.A.

    1989-01-01

    A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, the authors examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3',4,4'-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measured of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4'-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4'-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers

  7. Pretreatment with mixed-function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

    Energy Technology Data Exchange (ETDEWEB)

    Shaddock, J.G.; Heflich, R.H.; McMillan, D.C.; Hinson, J.A.; Casciano, D.A. (National Center for Toxicological Research, Jefferson, AK (USA) Univ. of Arkansas for Medical Sciences, Little Rock (USA))

    1989-01-01

    A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, the authors examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3{prime},4,4{prime}-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measured of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4{prime}-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4{prime}-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers.

  8. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    Science.gov (United States)

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  9. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed

    2006-01-01

    deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... and their genetically identical wild-type controls. For future studies, this cell system can be used to uncover the mechanisms and signalling pathways involved in the TIMP-1-mediated inhibition of apoptosis as well as to investigate the possibility of using TIMP-1 inhibitors to optimise the effect of conventional...

  10. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    Full Text Available DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.

  11. Adrenaline rush: the role of adrenergic receptors in stimulant-induced behaviors.

    Science.gov (United States)

    Schmidt, Karl T; Weinshenker, David

    2014-04-01

    Psychostimulants, such as cocaine and amphetamines, act primarily through the monoamine neurotransmitters dopamine (DA), norepinephrine, and serotonin. Although stimulant addiction research has largely focused on DA, medication development efforts targeting the dopaminergic system have thus far been unsuccessful, leading to alternative strategies aimed at abating stimulant abuse. Noradrenergic compounds have shown promise in altering the behavioral effects of stimulants in rodents, nonhuman primates, and humans. In this review, we discuss the contribution of each adrenergic receptor (AR) subtype (α1, α2, and β) to five stimulant-induced behaviors relevant to addiction: locomotor activity, conditioned place preference, anxiety, discrimination, and self-administration. AR manipulation has diverse effects on these behaviors; each subtype profoundly influences outcomes in some paradigms but is inconsequential in others. The functional neuroanatomy and intracellular signaling mechanisms underlying the impact of AR activation/blockade on these behaviors remain largely unknown, presenting a new frontier for research on psychostimulant-AR interactions.

  12. Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior

    Science.gov (United States)

    Wohleb, Eric S.; Powell, Nicole D.

    2013-01-01

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702

  13. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    Science.gov (United States)

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  14. Altered reward sensitivity in female offspring of cocaine-exposed fathers.

    Science.gov (United States)

    Fischer, Delaney K; Rice, Richard C; Martinez Rivera, Arlene; Donohoe, Mary; Rajadhyaksha, Anjali M

    2017-08-14

    Recent rodent studies have demonstrated that parental cocaine exposure can influence offspring behavior, supporting the idea that environmental insults can impact subsequent generations. However, studies on the effects of paternal cocaine exposure are limited and multiple inconsistencies exist. In the current study, we behaviorally characterize the effects of paternal cocaine exposure in a C57BL/6J intergenerational mouse model. Male sires were administered cocaine hydrochloride (20mg/kg) or saline (0.01mL/g) once a day for 75days, and bred with drug naïve females twenty-four hours after the final injection. Offspring, separated by sex, were tested in a battery of behaviors. We found that paternal cocaine exposure altered sensitivity to the rewarding and stimulant effects of psychostimulants and natural reward (sucrose) in female offspring; female cocaine-sired offspring showed blunted cocaine preference using cocaine conditioned place preference (CPP) at a low dose (5mg/kg), but displayed similar preference at a higher dose (10mg/kg) compared to saline-sired controls. Additionally, cocaine-sired female offspring exhibited higher psychomotor sensitivity to cocaine (10mg/kg) and amphetamine (2mg/kg) and consumed more sucrose. Cocaine-sired males exhibited increased psychomotor effects of cocaine and amphetamine. Male offspring also displayed an anxiety-like phenotype. No effect of paternal cocaine exposure was observed on depressive-like, learning and memory or social behavior in male or female offspring. Collectively, our findings show that paternal, chronic cocaine exposure induces intergenerational behavioral effects in male and female offspring with greatest impact on sensitivity to psychostimulants and sucrose in females. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Taylor, David J; Parsons, Christine E; Han, Haiyong; Jayaraman, Arul; Rege, Kaushal

    2011-01-01

    Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells

  16. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  17. Temporal correlations between sensitivity to radiation-induced mitotic delay and the S phase of the sea urchin egg

    International Nuclear Information System (INIS)

    Rustad, R.C.; Viswanathan, G.; Antonellis, B.C.

    1979-01-01

    Separate samples of eggs from the sea urchin Arbacia punctulata were gamma irradiated (4kR) at different times after fertilisation and division delay measured. The results demonstrated a characteristic post-fertilisation pattern of a rise in sensitivity to radiation-induced mitotic delay, followed by a biphasic decrease in sensitivity to a refractory period. Measurements of the cumulative incorporation of 3 H-TdR showed that the first period of decreasing radiation sensitivity was closely associated with the bulk synthesis of DNA (S phase). (U.K.)

  18. Prediction of BMI by impulsivity, eating behavior and activity level

    Directory of Open Access Journals (Sweden)

    Jiang Xiaxia

    2016-01-01

    Full Text Available Objective: Discuss the relationship between the impulsivity, eating behavior and activity level and the body mass index (BMI. Method: Test 147 female college students with the impulsivity questionnaire (BIS-11 and BIS/BAS, Dutch Eating Behavior Questionnaire (DBEQ, Sitting Time Scale (STS and Exercising Time Scale (ETS. Results: (1 The correlation analysis indicates that BMI and impulsivity (r = 0.43 and 0.52 have a significant positive correlation with the sitting time (r = 0.61 and a significant negative correlation with the activity level (r= −0.49. (2 The path analysis indicates that the reward sensitivity directly affects BMI and indirectly affects BMI through the activity level as well; the eating behavior has an insignificantly direct impact on BMI, because its impact is generated by the intermediary role of induced diet. Conclusion: (1 The impulsivity, eating behavior and activity level are closely related to BMI; (2 the activity level, sitting time and induced diet play an intermediary role between the impulsivity and BMI.

  19. Evidence for the concentration induced extinction of gas sensitivity in amorphous and nanostructured Te thin films

    International Nuclear Information System (INIS)

    Tsiulyanu, D.; Mocreac, O.; Enachi, M.; Volodina, G.

    2013-01-01

    The extinction of sensitivity to nitrogen dioxide induced by high gas concentration have been observed in ultrathin tellurium films. The phenomenon becomes apparent in both continuous and nanostructured films shown by AFM, SEM and XRD analyses to be in amorphous state. Sensitivity of 30 nm thickness Te film decreases near linearly with concentration increase between 150 and 500 ppb of nitrogen dioxide. The results are explained in terms of formation of a nitrogen dioxide catalytic gate in which a molecule adsorbs (and desorbs) without reacting. (authors)

  20. Behavioral sensitivity of Japanese children with and without ADHD to changing reinforcer availability: an experimental study using signal detection methodology.

    Science.gov (United States)

    Furukawa, Emi; Shimabukuro, Shizuka; Alsop, Brent; Tripp, Gail

    2017-09-25

    Most research on motivational processes in attention deficit hyperactivity disorder (ADHD) has been undertaken in Western Europe and North America. The extent to which these findings apply to other cultural groups is unclear. The current study evaluated the behavioral sensitivity of Japanese children with and without ADHD to changing reward availability. Forty-one school-aged children, 19 diagnosed with DSM-IV ADHD, completed a signal-detection task in which correct discriminations between two stimuli were associated with different reinforcement frequencies. The response alternative associated with the higher rate of reinforcement switched twice during the task without warning. Both groups of children developed an initial bias toward the more frequently reinforced response alternative. When the reward contingencies switched the response allocation (bias) of the control group children followed suit. The response bias scores of the children with ADHD did not, suggesting impaired tracking of reward availability over time. Japanese children with ADHD adjust their behavioral responses to changing reinforcer availability less than their typically developing peers. This is not explained by poor attention to task or a lack of sensitivity to reward. The current results are consistent with altered sensitivity to changing reward contingencies identified in non-Japanese samples of children with ADHD. Irrespective of their country of origin, children with ADHD will likely benefit from behavioral expectations and reinforcement contingencies being made explicit together with high rates of reinforcement for appropriate behaviors.

  1. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    Science.gov (United States)

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adaptors IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. PMID:22652453

  2. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  3. Contribution of a mesocorticolimbic subcircuit to drug context-induced reinstatement of cocaine-seeking behavior in rats.

    Science.gov (United States)

    Lasseter, Heather C; Xie, Xiaohu; Arguello, Amy A; Wells, Audrey M; Hodges, Matthew A; Fuchs, Rita A

    2014-02-01

    Cocaine-seeking behavior triggered by drug-paired environmental context exposure is dependent on orbitofrontal cortex (OFC)-basolateral amygdala (BLA) interactions. Here, we present evidence supporting the hypothesis that dopaminergic input from the ventral tegmental area (VTA) to the OFC critically regulates these interactions. In experiment 1, we employed site-specific pharmacological manipulations to show that dopamine D1-like receptor stimulation in the OFC is required for drug context-induced reinstatement of cocaine-seeking behavior following extinction training in an alternate context. Intra-OFC pretreatment with the dopamine D1-like receptor antagonist, SCH23390, dose-dependently attenuated cocaine-seeking behavior in an anatomically selective manner, without altering motor performance. Furthermore, the effects of SCH23390 could be surmounted by co-administration of a sub-threshold dose of the D1-like receptor agonist, SKF81297. In experiment 2, we examined effects of D1-like receptor antagonism in the OFC on OFC-BLA interactions using a functional disconnection manipulation. Unilateral SCH23390 administration into the OFC plus GABA agonist-induced neural inactivation of the contralateral or ipsilateral BLA disrupted drug context-induced cocaine-seeking behavior relative to vehicle, while independent unilateral manipulations of these brain regions were without effect. Finally, in experiment 3, we used fluorescent retrograde tracers to demonstrate that the VTA, but not the substantia nigra, sends dense intra- and interhemispheric projections to the OFC, which in turn has reciprocal bi-hemispheric connections with the BLA. These findings support that dopaminergic input from the VTA, via dopamine D1-like receptor stimulation in the OFC, is required for OFC-BLA functional interactions. Thus, a VTA-OFC-BLA neural circuit promotes drug context-induced motivated behavior.

  4. Extreme Thermal Sensitivity and Pain-Induced Sensitization in a Fibromyalgia Patient

    Directory of Open Access Journals (Sweden)

    Fong Wong

    2010-01-01

    Full Text Available During the course of a psychophysical study of fibromyalgia syndrome (FMS, one of the subjects with a long history of headache and facial pain displayed an extraordinarily severe thermal allodynia. Her stimulus-response function for ratings of cutaneous heat pain revealed a sensitivity clearly beyond that of normal controls and most FMS subjects. Specially designed psychophysical methods showed that heat sensitivity sometimes increased dramatically within a series of stimuli. Prior exposure to moderate heat pain served as a trigger for allodynic ratings of series of normally neutral thermal stimulation. These observations document a case of breakthrough pain sensitivity with implications for mechanisms of FMS pain.

  5. Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat.

    Science.gov (United States)

    Omerbašić, Damir; Smith, Ewan St J; Moroni, Mirko; Homfeld, Johanna; Eigenbrod, Ole; Bennett, Nigel C; Reznick, Jane; Faulkes, Chris G; Selbach, Matthias; Lewin, Gary R

    2016-10-11

    The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF), an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat

    Directory of Open Access Journals (Sweden)

    Damir Omerbašić

    2016-10-01

    Full Text Available The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF, an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness.

  7. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Science.gov (United States)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using random forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674

  8. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring.

    Directory of Open Access Journals (Sweden)

    DaLiao Xiao

    Full Text Available Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease.

  9. The effects of fisetin on lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Yu, Xuefeng; Jiang, Xi; Zhang, Xiangming; Chen, Ziwei; Xu, Lexing; Chen, Lei; Wang, Guokang; Pan, Jianchun

    2016-10-01

    Major depressive disorder (MDD) involves a series of pathological changes including the inflammation and increased cytokine levels. Fisetin, a natural flavonoid, has anti-inflammatory and antioxidant, and also has been shown in our previous studies to exert anti-depressant-like properties. The present study aimed to investigate the effect of fisetin on lipopolysaccharide (LPS)-induced depressive-like behavior and inflammation in mice. The results suggested that the immobility time in the forced swimming test (FST) and tail suspension test (TST) were increased at 6 h, 12 h and 24 h after LPS injection (0.83 mg/kg). However, only the group of 24 h treatment did not show any effect on locomotion counts. Pretreatment with fisetin at doses of 20, 40 and 80 mg/kg (p.o.) for 7 days reversed LPS-induced alterations of the immobility time in both of these two tests. Further neurochemical assays suggested that pretreatment with fisetin reversed LPS-induced overexpression of pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) in the hippocampus and the prefrontal cortex (PFC). Moreover, higher dose of fisetin effectively antagonized iNOS mRNA expression and nitrite levels via the modulation of NF-κB in the hippocampus and PFC. Taken together, fisetin may be an effective therapeutic agent for LPS-induced depressive-like behaviors, which is due to its anti-inflammatory property.

  10. Physical exercise ameliorates mood disorder-like behavior on high fat diet-induced obesity in mice.

    Science.gov (United States)

    Park, Hye-Sang; Lee, Jae-Min; Cho, Han-Sam; Park, Sang-Seo; Kim, Tae-Woon

    2017-04-01

    Obesity is associated with mood disorders such as depression and anxiety. The aim of this study was to investigate whether treadmill exercise had any benefits on mood disorder by high fat diet (HFD) induced obesity. Mice were randomly divided into four groups: control, control and exercise, high fat diet (HFD), and HFD and exercise. Obesity was induced by a 20-week HFD (60%). In the exercise groups, exercise was performed 6 times a week for 12 weeks, with the exercise duration and intensity gradually increasing at 4-week intervals. Mice were tested in tail suspension and elevated plus maze tasks in order to verify the mood disorder like behavior such as depression and anxiety on obesity. In the present study, the number of 5-HT- and TPH-positive cells, and expression of 5-HT 1A and 5-HTT protein decreased in dorsal raphe, and depression and anxiety like behavior increased in HFD group compared with the CON group. In contrast, treadmill exercise ameliorated mood disorder like behavior by HFD induced obesity and enhanced expression of the serotonergic system in the dorsal raphe. We concluded that exercise increases the capacity of the serotonergic system in the dorsal raphe, which improves the mood disorders associated with HFD-induced obesity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Effects of harmane and other β-carbolines on apomorphine-induced licking behavior in rat.

    Science.gov (United States)

    Farzin, Davood; Haghparast, Abbas; Motaman, Shirine; Baryar, Faegheh; Mansouri, Nazanin

    2011-04-01

    Harmane, harmine and norharmane are β-carboline compounds which have been referred to as inverse agonists of benzodiazepine receptors. The effect of these compounds on apomorphine-induced licking behavior was studied in rats. Subcutaneous (s.c.) injection of apomorphine (0.5 mg/kg) induced licking. The licking behavior was counted with a hand counter and recorded for a period of 75 min by direct observation. Intraperitoneal (i.p.) injections of harmane (1.25-5 mg/kg), harmine (2.5-10 mg/kg) and norharmane (1.25-5 mg/kg) significantly reduced the licking behavior. In rats pretreated with reserpine (5 mg/kg, i.p., 18 h before the test), the effects of harmane (4 mg/kg, i.p.), harmine (7.8 mg/kg, i.p.) and norharmane (2.5 mg/kg, i.p.) were unchanged. When flumazenil (2 mg/kg, i.p.) was administered 20 min before apomorphine, it was able to antagonize the effects of harmane, harmine and norharmane. It was concluded that the β-carbolines harmane, harmine and norharmane reduce the licking behavior via an inverse agonistic mechanism located in the benzodiazepine receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  13. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.

    Science.gov (United States)

    Franklin, Tina C; Wohleb, Eric S; Zhang, Yi; Fogaça, Manoela; Hare, Brendan; Duman, Ronald S

    2018-01-01

    Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Repeated Administration of D-Amphetamine Induces Distinct Alterations in Behavior and Metabolite Levels in 129Sv and Bl6 Mouse Strains

    Directory of Open Access Journals (Sweden)

    Taavi Vanaveski

    2018-06-01

    Full Text Available The main goal of the study was to characterize the behavioral and metabolomic profiles of repeated administration (for 11 days of d-amphetamine (AMPH, 3 mg/kg i. p., indirect agonist of dopamine (DA, in widely used 129S6/SvEvTac (129Sv and C57BL/6NTac (Bl6 mouse strains. Acute administration of AMPH (acute AMPH induced significantly stronger motor stimulation in Bl6. However, repeated administration of AMPH (repeated AMPH caused stronger motor sensitization in 129Sv compared acute AMPH. Body weight of 129Sv was reduced after repeated saline and AMPH, whereas no change occurred in Bl6. In the metabolomic study, acute AMPH induced an elevation of isoleucine and leucine, branched chain amino acids (BCAA, whereas the level of hexoses was reduced in Bl6. Both BCAAs and hexoses remained on level of acute AMPH after repeated AMPH in Bl6. Three biogenic amines [asymmetric dimethylarginine (ADMA, alpha-aminoadipic acid (alpha-AAA, kynurenine] were significantly reduced after repeated AMPH. Acute AMPH caused in 129Sv a significant reduction of valine, lysophosphatidylcholines (lysoPC a C16:0, lysoPC a C18:2, lysoPC a C20:4, phosphatidylcholine (PC diacyls (PC aa C34:2, PC aa C36:2, PC aa C36:3, PC aa C36:4 and alkyl-acyls (PC ae C38:4, PC ae C40:4. However, repeated AMPH increased the levels of valine and isoleucine, long-chain acylcarnitines (C14, C14:1-OH, C16, C18:1, PC diacyls (PC aa C38:4, PC aa C38:6, PC aa C42:6, PC acyl-alkyls (PC ae C38:4, PC ae C40:4, PC ae C40:5, PC ae C40:6, PC ae C42:1, PC ae C42:3 and sphingolipids [SM(OHC22:1, SM C24:0] compared to acute AMPH in 129Sv. Hexoses and kynurenine were reduced after repeated AMPH compared to saline in 129Sv. The established changes probably reflect a shift in energy metabolism toward lipid molecules in 129Sv because of reduced level of hexoses. Pooled data from both strains showed that the elevation of isoleucine and leucine was a prominent biomarker of AMPH-induced behavioral sensitization

  15. Dynamic Behavior of Fault Slip Induced by Stress Waves

    Directory of Open Access Journals (Sweden)

    Guang-an Zhu

    2016-01-01

    Full Text Available Fault slip burst is a serious dynamic hazard in coal mining. A static and dynamic analysis for fault slip was performed to assess the risk of rock burst. A numerical model FLAC3D was established to understand the stress state and mechanical responses of fault rock system. The results obtained from the analysis show that the dynamic behavior of fault slip induced by stress waves is significantly affected by mining depth, as well as dynamic disturbance intensity and the distance between the stope and the fault. The isolation effect of the fault is also discussed based on the numerical results with the fault angle appearing to have the strongest influence on peak vertical stress and velocity induced by dynamic disturbance. By taking these risks into account, a stress-relief technology using break-tip blast was used for fault slip burst control. This technique is able to reduce the stress concentration and increase the attenuation of dynamic load by fracturing the structure of coal and rock. The adoption of this stress-relief method leads to an effective reduction of fault slip induced rock burst (FSIRB occurrence.

  16. nor-BNI Antagonism of Kappa Opioid Agonist-Induced Reinstatement of Ethanol-Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Erin Harshberger

    2016-01-01

    Full Text Available Recent work suggests that the dynorphin (DYN/kappa opioid receptor (KOR system may be a key mediator in the behavioral effects of alcohol. The objective of the present study was to examine the ability of the KOR antagonist norbinaltorphimine (nor-BNI to attenuate relapse to ethanol seeking due to priming injections of the KOR agonist U50,488 at time points consistent with KOR selectivity. Male Wistar rats were trained to self-administer a 10% ethanol solution, and then responding was extinguished. Following extinction, rats were injected with U50,488 (0.1–10 mg/kg, i.p. or saline and were tested for the reinstatement of ethanol seeking. Next, the ability of the nonselective opioid receptor antagonist naltrexone (0 or 3.0 mg/kg, s.c. and nor-BNI (0 or 20.0 mg/kg, i.p. to block U50,488-induced reinstatement was examined. Priming injections U50,488 reinstated responding on the previously ethanol-associated lever. Pretreatment with naltrexone reduced the reinstatement of ethanol-seeking behavior. nor-BNI also attenuated KOR agonist-induced reinstatement, but to a lesser extent than naltrexone, when injected 24 hours prior to injections of U50,488, a time point that is consistent with KOR selectivity. While these results suggest that activation of KORs is a key mechanism in the regulation of ethanol-seeking behavior, U50,488-induced reinstatement may not be fully selective for KORs.

  17. Lithium prevents long-term neural and behavioral pathology induced by early alcohol exposure.

    Science.gov (United States)

    Sadrian, B; Subbanna, S; Wilson, D A; Basavarajappa, B S; Saito, M

    2012-03-29

    Fetal alcohol exposure can cause developmental defects in offspring known as fetal alcohol spectrum disorder (FASD). FASD symptoms range from obvious facial deformities to changes in neuroanatomy and neurophysiology that disrupt normal brain function and behavior. Ethanol exposure at postnatal day 7 in C57BL/6 mice induces neuronal cell death and long-lasting neurobehavioral dysfunction. Previous work has demonstrated that early ethanol exposure impairs spatial memory task performance into adulthood and perturbs local and interregional brain circuit integrity in the olfacto-hippocampal pathway. Here we pursue these findings to examine whether lithium prevents anatomical, neurophysiological, and behavioral pathologies that result from early ethanol exposure. Lithium has neuroprotective properties that have been shown to prevent ethanol-induced apoptosis. Here we show that mice co-treated with lithium on the same day as ethanol exposure exhibit dramatically reduced acute neurodegeneration in the hippocampus and retain hippocampal-dependent spatial memory as adults. Lithium co-treatment also blocked ethanol-induced disruption in synaptic plasticity in slice recordings of hippocampal CA1 in the adult mouse brain. Moreover, long-lasting dysfunctions caused by ethanol in olfacto-hippocampal networks, including sensory-evoked oscillations and resting state coherence, were prevented in mice co-treated with lithium. Together, these results provide behavioral and physiological evidence that lithium is capable of preventing or reducing immediate and long-term deleterious consequences of early ethanol exposure on brain function. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    International Nuclear Information System (INIS)

    Kook, Sung-Ho; Son, Young-Ok; Jang, Yong-Suk; Lee, Kyung-Yeol; Lee, Seung-Ah; Kim, Beom-Soo; Lee, Hyun-Jeong; Lee, Jeong-Chae

    2008-01-01

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH 2 -terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein as well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids

  19. The gut microbiota influence behavior in the subchronic PCP induced animal model of schizophrenia

    DEFF Research Database (Denmark)

    Jørgensen, Bettina Merete Pyndt; Redrobe, Paul; Brønnum Pedersen, Tina

    The gut microbiota has major impact on the individual. Here we show that the gut microbiota influence behavior in the subchronic PCP induced animal model of schizophrenia. The gut microbiota were changed in the group treated subchronic with PCP, and restoration coincided with normalisation...... of memory performance in lister hooded rats. Furthermore the individual gut microbiota correlated to the individual behavior abserved in the tests conducted. In conclusion results show an influence of the gut microbiota on behavior in this model, and therefore it might be relavant to include the information...

  20. Increased pain sensitivity but normal function of exercise induced analgesia in hip and knee osteoarthritis - treatment effects of neuromuscular exercise and total joint replacement

    DEFF Research Database (Denmark)

    Kosek, E; Roos, Ewa M.; Ageberg, E

    2013-01-01

    To assess exercise induced analgesia (EIA) and pain sensitivity in hip and knee osteoarthritis (OA) and to study the effects of neuromuscular exercise and surgery on these parameters.......To assess exercise induced analgesia (EIA) and pain sensitivity in hip and knee osteoarthritis (OA) and to study the effects of neuromuscular exercise and surgery on these parameters....

  1. Neutron-induced modifications on Hostaphan and Makrofol wettability and etching behaviors

    International Nuclear Information System (INIS)

    El-Sayed, D.; El-Saftawy, A.A.; Abd El Aal, S.A.; Fayez-Hassan, M.; Al-Abyad, M.; Mansour, N.A.; Seddik, U.

    2017-01-01

    Understanding the nature of polymers used as nuclear detectors is crucial to enhance their behaviors. In this work, the induced modifications in wettability and etching properties of Hostaphan and Makrofol polymers irradiated by different fluences of thermal neutrons are investigated. The wetting properties are studied by contact angle technique which showed the spread out of various liquids over the irradiated polymers surfaces (wettability enhanced). This wetting behavior is attributed to the induced changes in surface free energy (SFE), morphology, roughness, structure, hardness, and chemistry. SFE values are calculated by three different models and found to increase after neutrons irradiation associated with differences depending on the used model. These differences result from the intermolecular interactions in the liquid/polymer system. Surface morphology and roughness of both polymers showed drastic changes after irradiation. Additionally, surface structure and hardness of pristine and irradiated polymers were discussed and correlated to the surface wettability improvements. The changes in surface chemistry are examined by Fourier transform infrared spectroscopy (FTIR), which indicate an increase in surface polarity due to the formation of polar groups. The irradiated polymers etching characteristics and activation energies are discussed as well. Lastly, it is evident that thermal neutrons show efficiency in improving surface wettability and etching properties of Hostaphan and Makrofol in a controlled way. - Highlights: • Neutrons radiation used to modify Hostaphan and Makrofol polymer wetting behavior. • Tailoring surface structure, topography and chemistry control its wettability. • Bulk etching rate and activation energy improved after neutrons irradiation.

  2. Blebbistatin, a myosin II inhibitor, suppresses Ca(2+)-induced and "sensitized"-contraction of skinned tracheal muscles from guinea pig.

    Science.gov (United States)

    Yumoto, Masatoshi; Watanabe, Masaru

    2013-01-01

    Blebbistatin, a potent inhibitor of myosin II, has inhibiting effects on Ca(2+)-induced contraction and contractile filament organization without affecting the Ca(2+)-sensitivity to the force and phosphorylation level of myosin regulatory light chain (MLC20) in skinned (cell membrane permeabilized) taenia cecum from the guinea pig (Watanabe et al., Am J Physiol Cell Physiol. 2010; 298: C1118-26). In the present study, we investigated blebbistatin effects on the contractile force of skinned tracheal muscle, in which myosin filaments organization is more labile than that in the taenia cecum. Blebbistatin at 10 μM or higher suppressed Ca(2+)-induced tension development at any given Ca(2+) concentration, but had little effects on the Ca(2+)- induced myosin light chain phosphorylation. Also blebbistatin at 10 μM and higher significantly suppressed GTP-γS-induced "sensitized" force development. Since the force inhibiting effects of blebbistatin on the skinned trachea were much stronger than those in skinned taenia cecum, blebbistatin might directly affect myosin filaments organization.

  3. Quantitative automated microscopy (QuAM elucidates growth factor specific signalling in pain sensitization

    Directory of Open Access Journals (Sweden)

    Levine Jon D

    2010-12-01

    Full Text Available Abstract Background Dorsal root ganglia (DRG-neurons are commonly characterized immunocytochemically. Cells are mostly grouped by the experimenter's eye as "marker-positive" and "marker-negative" according to their immunofluorescence intensity. Classification criteria remain largely undefined. Overcoming this shortfall, we established a quantitative automated microscopy (QuAM for a defined and multiparametric analysis of adherent heterogeneous primary neurons on a single cell base. The growth factors NGF, GDNF and EGF activate the MAP-kinase Erk1/2 via receptor tyrosine kinase signalling. NGF and GDNF are established factors in regeneration and sensitization of nociceptive neurons. If also the tissue regenerating growth factor, EGF, influences nociceptors is so far unknown. We asked, if EGF can act on nociceptors, and if QuAM can elucidate differences between NGF, GDNF and EGF induced Erk1/2 activation kinetics. Finally, we evaluated, if the investigation of one signalling component allows prediction of the behavioral response to a reagent not tested on nociceptors such as EGF. Results We established a software-based neuron identification, described quantitatively DRG-neuron heterogeneity and correlated measured sample sizes and corresponding assay sensitivity. Analysing more than 70,000 individual neurons we defined neuronal subgroups based on differential Erk1/2 activation status in sensory neurons. Baseline activity levels varied strongly already in untreated neurons. NGF and GDNF subgroup responsiveness correlated with their subgroup specificity on IB4(+- and IB4(--neurons, respectively. We confirmed expression of EGF-receptors in all sensory neurons. EGF treatment induced STAT3 translocation into the nucleus. Nevertheless, we could not detect any EGF induced Erk1/2 phosphorylation. Accordingly, intradermal injection of EGF resulted in a fundamentally different outcome than NGF/GDNF. EGF did not induce mechanical hyperalgesia, but blocked

  4. Virulence test using nematodes to prescreen Nocardia species capable of inducing neurodegeneration and behavioral disorders

    Directory of Open Access Journals (Sweden)

    Claire Bernardin Souibgui

    2017-10-01

    Full Text Available Background Parkinson’s disease (PD is a disorder characterized by dopaminergic neuron programmed cell death. The etiology of PD remains uncertain—some cases are due to selected genes associated with familial heredity, others are due to environmental exposure to toxic components, but over 90% of cases have a sporadic origin. Nocardia are Actinobacteria that can cause human diseases like nocardiosis. This illness can lead to lung infection or central nervous system (CNS invasion in both immunocompromised and immunocompetent individuals. The main species involved in CNS are N. farcinica, N. nova, N. brasiliensis and N. cyriacigeorgica. Some studies have highlighted the ability of N. cyriacigeorgica to induce Parkinson’s disease-like symptoms in animals. Actinobacteria are known to produce a large variety of secondary metabolites, some of which can be neurotoxic. We hypothesized that neurotoxic secondary metabolite production and the onset of PD-like symptoms in animals could be linked. Methods Here we used a method to screen bacteria that could induce dopaminergic neurodegeneration before performing mouse experiments. Results The nematode Caenorhabditis elegans allowed us to demonstrate that Nocardia strains belonging to N. cyriacigeorgica and N. farcinica species can induce dopaminergic neurodegeneration. Strains of interest involved with the nematodes in neurodegenerative disorders were then injected in mice. Infected mice had behavioral disorders that may be related to neuronal damage, thus confirming the ability of Nocardia strains to induce neurodegeneration. These behavioral disorders were induced by N. cyriacigeorgica species (N. cyriacigeorgica GUH-2 and N. cyriacigeorgica 44484 and N. farcinica 10152. Discussion We conclude that C. elegans is a good model for detecting Nocardia strains involved in neurodegeneration. This model allowed us to detect bacteria with high neurodegenerative effects and which should be studied in mice to

  5. Hypoxia-inducible factor 1 regulates heat and cold pain sensitivity and persistence.

    Science.gov (United States)

    Kanngiesser, Maike; Mair, Norbert; Lim, Hee-Young; Zschiebsch, Katja; Blees, Johanna; Häussler, Annett; Brüne, Bernhard; Ferreiròs, Nerea; Kress, Michaela; Tegeder, Irmgard

    2014-06-01

    The present study assessed the functions of the transcription factor hypoxia-inducible factor (HIF) in sensory neurons in models of acute, inflammatory, ischemic, and neuropathic pain. The alpha subunit, HIF1α, was specifically deleted in neurons of the dorsal root ganglia by mating HIF1α(fl/fl) mice with SNScre mice. SNS-HIF1α(-/-) mice were more sensitive to noxious heat and cold pain stimulation than were HIF1α(fl/fl) control mice. They also showed heightened first-phase nociceptive responses in the formalin and capsaicin tests with increased numbers of cFos-positive neurons in the dorsal horn, and intensified hyperalgesia in early phases after paw inflammation and hind limb ischemia/reperfusion. The behavioral cold and heat pain hypersensitivity was explained by increased calcium fluxes after transient receptor potential channel activation in primary sensory neurons of SNS-HIF1α(-/-) mice and lowered electrical activation thresholds of sensory fibers. SNS-HIF1α(-/-) mice however, developed less neuropathic pain after sciatic nerve injury, which was associated with an abrogation of HIF1-mediated gene up-regulation. The results suggest that HIF1α is protective in terms of acute heat and cold pain but in case of ongoing activation in injured neurons, it may promote the development of neuropathic pain. The duality of HIF1 in pain regulation may have an impact on the side effects of drugs targeting HIF1, which are being developed, for example, as anticancer agents. Specifically, in patients with cancer neuropathy, however, temporary HIF1 inhibition might provide a welcome combination of growth and pain reduction.

  6. Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice.

    Science.gov (United States)

    Freitas, Andiara E; Egea, Javier; Buendia, Izaskun; Gómez-Rangel, Vanessa; Parada, Esther; Navarro, Elisa; Casas, Ana Isabel; Wojnicz, Aneta; Ortiz, José Avendaño; Cuadrado, Antonio; Ruiz-Nuño, Ana; Rodrigues, Ana Lúcia S; Lopez, Manuela G

    2016-07-01

    Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (-/-)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine's ability to produce an antidepressant-like effect was abolished in Nrf2 (-/-) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.

  7. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  8. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    International Nuclear Information System (INIS)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  9. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal

    2007-01-01

    The present study has been designed to pharmacologically investigate the role of phosphoinositide 3-kinase in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion-induced behavioral dysfunction in mice. Bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in mice. Short-term memory was evaluated using the elevated plus maze test. The inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced impaired short-term memory, motor co-ordination and lateral push response. Three episodes of carotid artery occlusion for a period of 10 s and reperfusion of 10 s (ischemic postconditioning) significantly prevented ischemia-reperfusion-induced behavioral deficit measured in terms of loss of short-term memory, motor coordination and lateral push response. Wortmannin (2 mg/kg, iv), a phosphoinositide 3-kinase inhibitor given 10 min before ischemia attenuated the beneficial effects of ischemic postconditioning. It may be concluded that beneficial effects of ischemic postconditioning on global cerebral ischemia and reperfusion-induced behavioral deficits may involve activation of phosphoinositide 3-kinase-linked pathway.

  10. Infusion of low dose glyceryl trinitrate has no consistent effect on burrowing behavior, running wheel activity and light sensitivity in female rats

    DEFF Research Database (Denmark)

    Christensen, Sarah Louise T; Petersen, Steffen; Sørensen, Dorte Bratbo

    2016-01-01

    . In the current paper we have studied the effect of glyceryl trinitrate infusion on three different rat behaviors. Methods: The stability of burrowing behavior, running wheel activity and light sensitivity towards repeated testing was evaluated also with respect to estrous cycle. Finally, the effect of glyceryl...... trinitrate on these behaviors in female rats was observed. Results: Burrowing behavior and running wheel activity were stable in the individual rat between experiments. The burrowing behavior was significantly affected by the stage of estrous cycle. The other assays were stable throughout the cycle. None...

  11. Beneficial effect of honokiol on lipopolysaccharide induced anxiety-like behavior and liver damage in mice.

    Science.gov (United States)

    Sulakhiya, Kunjbihari; Kumar, Parveen; Gurjar, Satendra S; Barua, Chandana C; Hazarika, Naba K

    2015-02-26

    Anxiety disorders are commonly occurring co-morbid neuropsychiatric disorders with chronic inflammatory conditions such as live damage. Numerous studies revealed that peripheral inflammation, oxidative stress and brain derived neurotrophic factor (BDNF) play important roles in the pathophysiology of anxiety disorders. Honokiol (HNK) is a polyphenol, possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and hepatoprotection. The present study was designed to investigate the effect of HNK, in lipopolysaccharide (LPS)-induced anxiety-like behavior and liver damage in mice. Mice (n=6-10/group) were pre-treated with different doses of HNK (2.5 and 5mg/kg; i.p.) for two days, and challenged with saline or LPS (0.83mg/kg; i.p.) on third day. Anxiety-like behavior was monitored using elevated plus maze (EPM) and open field test (OFT). Animals were sacrificed to evaluate various biochemical parameters in plasma and liver. HNK pre-treatment provided significant (P<0.01) protection against LPS-induced reduction in body weight, food and water intake in mice. HNK at higher dose significantly (P<0.05) attenuated LPS-induced anxiety-like behavior by increasing the number of entries and time spent in open arm in EPM test, and by increasing the frequency in central zone in OFT. HNK pre-treatment ameliorated LPS-induced peripheral inflammation by reducing plasma IL-1β, IL-6, TNF-α level, and also improved the plasma BDNF level, prevented liver damage via attenuating transaminases (AST, ALT), liver oxidative stress and TNF-α activity in LPS challenged mice. In conclusion, the current investigation suggests that HNK provided beneficial effect against LPS-induced anxiety-like behavior and liver damage which may be governed by inhibition of cytokines production, oxidative stress and depletion of plasma BDNF level. Our result suggests that HNK could be a therapeutic approach for the treatment of anxiety and other

  12. Ropivacaine and Bupivacaine prevent increased pain sensitivity without altering neuroimmune activation following repeated social defeat stress.

    Science.gov (United States)

    Sawicki, Caroline M; Kim, January K; Weber, Michael D; Jarrett, Brant L; Godbout, Jonathan P; Sheridan, John F; Humeidan, Michelle

    2018-03-01

    Mounting evidence indicates that stress influences the experience of pain. Exposure to psychosocial stress disrupts bi-directional communication pathways between the central nervous system and peripheral immune system, and can exacerbate the frequency and severity of pain experienced by stressed subjects. Repeated social defeat (RSD) is a murine model of psychosocial stress that recapitulates the immune and behavioral responses to stress observed in humans, including activation of stress-reactive neurocircuitry and increased pro-inflammatory cytokine production. It is unclear, however, how these stress-induced neuroimmune responses contribute to increased pain sensitivity in mice exposed to RSD. Here we used a technique of regional analgesia with local anesthetics in mice to block the development of mechanical allodynia during RSD. We next investigated the degree to which pain blockade altered stress-induced neuroimmune activation and depressive-like behavior. Following development of a mouse model of regional analgesia with discrete sensory blockade over the dorsal-caudal aspect of the spine, C57BL/6 mice were divided into experimental groups and treated with Ropivacaine (0.08%), Liposomal Bupivacaine (0.08%), or Vehicle (0.9% NaCl) prior to exposure to stress. This specific region was selected for analgesia because it is the most frequent location for aggression-associated pain due to biting during RSD. Mechanical allodynia was assessed 12 h after the first, third, and sixth day of RSD after resolution of the sensory blockade. In a separate experiment, social avoidance behavior was determined after the sixth day of RSD. Blood, bone marrow, brain, and spinal cord were collected for immunological analyses after the last day of RSD in both experiments following behavioral assessments. RSD increased mechanical allodynia in an exposure-dependent manner that persisted for at least one week following cessation of the stressor. Mice treated with either Ropivacaine or

  13. Eating high-fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-10-01

    Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.

  14. Eating high fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-01-01

    Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718

  15. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: ionization and collision-induced dissociation behavior.

    Science.gov (United States)

    Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen

    2016-02-28

    The detection of new anabolic steroid metabolites and new designer steroids is a challenging task in doping analysis. Switching from electron ionization gas chromatography triple quadrupole mass spectrometry (GC/EI-MS/MS) to chemical ionization (CI) has proven to be an efficient way to increase the sensitivity of GC/MS/MS analyses and facilitate the detection of anabolic steroids. CI also extends the possibilities of GC/MS/MS analyses as the molecular ion is retained in its protonated form due to the softer ionization. In EI it can be difficult to find previously unknown but expected metabolites due to the low abundance or absence of the molecular ion and the extensive (and to a large extent unpredictable) fragmentation. The main aim of this work was to study the CI and collision-induced dissociation (CID) behavior of a large number of anabolic androgenic steroids (AAS) as their trimethylsilyl derivatives in order to determine correlations between structures and CID fragmentation. Clarification of these correlations is needed for the elucidation of structures of unknown steroids and new metabolites. The ionization and CID behavior of 65 AAS have been studied using GC/CI-MS/MS with ammonia as the reagent gas. Glucuronidated AAS reference standards were first hydrolyzed to obtain their free forms. Afterwards, all the standards were derivatized to their trimethylsilyl forms. Full scan and product ion scan analyses were used to examine the ionization and CID behavior. Full scan and product ion scan analyses revealed clear correlations between AAS structure and the obtained mass spectra. These correlations were confirmed by analysis of multiple hydroxylated, methylated, chlorinated and deuterated analogs. AAS have been divided into three groups according to their ionization behavior and into seven groups according to their CID behavior. Correlations between fragmentation and structure were revealed and fragmentation pathways were postulated. Copyright © 2016 John Wiley

  16. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons

    Directory of Open Access Journals (Sweden)

    Langeslag Michiel

    2011-12-01

    Full Text Available Abstract Oncostatin M (OSM is a member of the interleukin-6 cytokine family and regulates eg. gene activation, cell survival, proliferation and differentiation. OSM binds to a receptor complex consisting of the ubiquitously expressed signal transducer gp130 and the ligand binding OSM receptor subunit, which is expressed on a specific subset of primary afferent neurons. In the present study, the effect of OSM on heat nociception was investigated in nociceptor-specific gp130 knock-out (SNS-gp130-/- and gp130 floxed (gp130fl/fl mice. Subcutaneous injection of pathophysiologically relevant concentrations of OSM into the hind-paw of C57BL6J wild type mice significantly reduced paw withdrawal latencies to heat stimulation. In contrast to gp130fl/fl mice, OSM did not induce heat hypersensitivity in vivo in SNS-gp130-/- mice. OSM applied at the receptive fields of sensory neurons in in vitro skin-nerve preparations showed that OSM significantly increased the discharge rate during a standard ramp-shaped heat stimulus. The capsaicin- and heat-sensitive ion channel TRPV1, expressed on a subpopulation of nociceptive neurons, has been shown to play an important role in inflammation-induced heat hypersensitivity. Stimulation of cultured dorsal root ganglion neurons with OSM resulted in potentiation of capsaicin induced ionic currents. In line with these recordings, mice with a null mutation of the TRPV1 gene did not show any signs of OSM-induced heat hypersensitivity in vivo. The present data suggest that OSM induces thermal hypersensitivity by directly sensitizing nociceptors via OSMR-gp130 receptor mediated potentiation of TRPV1.

  17. Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters.

    Science.gov (United States)

    Bradley, K C; Meisel, R L

    2001-03-15

    Dopamine transmission in the nucleus accumbens can be activated by drugs, stress, or motivated behaviors, and repeated exposure to these stimuli can sensitize this dopamine response. The objectives of this study were to determine whether female sexual behavior activates nucleus accumbens neurons and whether past sexual experience cross-sensitizes neuronal responses in the nucleus accumbens to amphetamine. Using immunocytochemical labeling, c-Fos expression in different subregions (shell vs core at the rostral, middle, and caudal levels) of the nucleus accumbens was examined in female hamsters that had varying amounts of sexual experience. Female hamsters, given either 6 weeks of sexual experience or remaining sexually naive, were tested for sexual behavior by exposure to adult male hamsters. Previous sexual experience increased c-Fos labeling in the rostral and caudal levels but not in the middle levels of the nucleus accumbens. Testing for sexual behavior increased labeling in the core, but not the shell, of the nucleus accumbens. To validate that female sexual behavior can sensitize neurons in the mesolimbic dopamine pathway, the locomotor responses of sexually experienced and sexually naive females to an amphetamine injection were then compared. Amphetamine increased general locomotor activity in all females. However, sexually experienced animals responded sooner to amphetamine than did sexually naive animals. These data indicate that female sexual behavior can activate neurons in the nucleus accumbens and that sexual experience can cross-sensitize neuronal responses to amphetamine. In addition, these results provide additional evidence for functional differences between the shell and core of the nucleus accumbens and across its anteroposterior axis.

  18. Haloperidol attenuates Methylphenidate and Modafinil induced behavioural sensitization and cognitive enhancement.

    Science.gov (United States)

    Alam, Nausheen; Choudhary, Kulsoom

    2018-06-01

    Previous studies have demonstrated that repeated psychostimulant administration produces behavioural sensitization and cognitive tolerance. Brain dopaminergic system and the involvement of dopamine D 2 -receptors are considered to be important in psychostimulant-induced sensitization. Study designed to compared the motor activity by using familiar and novel enviroments and cognitive effects by water maze and passive avoidance test after long term administration of methylphenidate(at the dose 0.6 mg/kg/day, 2.5 mg/kg/day and 10 mg/kg/day) and modafinil (50 mg/kg/day, 64 mg/kg/day and 75 mg/kg/day) in rats. The effects of challenge dose of haloperidol (at the dose of 1 mg/kg i.p.) has monitored to visualize any subsensitization or supersensitization of D 2 receptors. We found that motor activity and cognitive performance was increased in all doses and sensitization effect was more pronounced after 13 days of drug administration were greater at high than low and medium doses.Challenge dose of haloperidol attenuate motor activity in familiar and novel environment and impaired cognition in water maze and passive avoidance test in all treated rats. The effect of Haloperidol in high dose treated rats were however somewhat greater than low and medium dose treated rats following methylphenidate and modafinil administration. Increased response of haloperidol in methylphenidate treated rats can be explained in term of supersensitization of D 2 receptors which is greater in high dose treated rats. The results show that the role of D 2 receptors to develop side effects such as behavioural sensitization and cognitive tolerance by the long term administration of psychostimulants is of sufficient importance and helpful in understanding the mechanisms underlying the undesirable effects of psychostimulants.

  19. A novel behavioral assay for measuring cold sensation in mice.

    Science.gov (United States)

    Brenner, Daniel S; Golden, Judith P; Gereau, Robert W

    2012-01-01

    Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  20. Sensitization by wortmannin of heat- or X-ray induced cell death in cultured Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Tomita, Masanori; Suzuki, Norio; Matsumoto, Yoshihisa; Hirano, Kazuya; Umeda, Noriko; Sakai, Kazuo

    2000-01-01

    Here we found that wortmannin sensitized Chinese hamster V79 cells to hyperthermic treatment at 44.0 deg C as determined either by colony formation assay or by dye exclusion assay. Wortmannin enhanced heat-induced cell death accompanying cleavage of poly (ADP-ribose) polymerases (PARP). Additionally, the induction of heat shock protein HSP70 was suppressed and delayed in wortmannin-treated cells. Heat sensitizing effect of wortmannin was obvious at more than 5 or 10 μM of final concentrations, while radiosensitization was apparent at 5 μM. Requirement for high concentration of wortmannin, i.e., order of μM, suggests a possible role of certain protein kinases, such as DNA-PK and/or ATM among PI3-kinase family. The sensitization was minimal when wortmannin was added at the end of heat treatment. This was similar to the case of X-ray. Since heat-induced cell death and PARP cleavage preceded HSP70 induction phenomenon, the sensitization to the hyperthermic treatment was considered mainly caused by enhanced apoptotic cell death rather than secondary to suppression or delay by wortmannin of HSP70 induction. Further, in the present system radiosensitization by wortmannin was also at least partly mediated through enhancement of apoptotic cell death. (author)

  1. Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior

    Directory of Open Access Journals (Sweden)

    Maya Opendak

    2017-06-01

    Full Text Available Animals, including humans, require a highly coordinated and flexible system of social behavior and threat evaluation. However, trauma can disrupt this system, with the amygdala implicated as a mediator of these impairments in behavior. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences, with trauma experienced from an attachment figure, such as occurs in cases of caregiver-child maltreatment, as particularly detrimental. This review focuses on the unique role of caregiver presence during early-life trauma in programming deficits in social behavior and threat processing. Using data primarily from rodent models, we describe the interaction between trauma and attachment during a sensitive period in early life, which highlights the role of the caregiver’s presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. These data suggest that trauma experienced directly from an abusive caregiver and trauma experienced in the presence of caregiver cues produce similar neurobehavioral deficits, which are unique from those resulting from trauma alone. We go on to integrate this information into social experience throughout the lifespan, including consequences for complex scenarios, such as dominance hierarchy formation and maintenance.

  2. Cognitive-behavioral therapy induces sensorimotor and specific electrocortical changes in chronic tic and Tourette's disorder.

    Science.gov (United States)

    Morand-Beaulieu, Simon; O'Connor, Kieron P; Sauvé, Geneviève; Blanchet, Pierre J; Lavoie, Marc E

    2015-12-01

    Tic disorders, such as the Gilles de la Tourette syndrome and persistent tic disorder, are neurodevelopmental movement disorders involving impaired motor control. Hence, patients show repetitive unwanted muscular contractions in one or more parts of the body. A cognitive-behavioral therapy, with a particular emphasis on the psychophysiology of tic expression and sensorimotor activation, can reduce the frequency and intensity of tics. However, its impact on motor activation and inhibition is not fully understood. To study the effects of a cognitive-behavioral therapy on electrocortical activation, we recorded the event-related potentials (ERP) and lateralized readiness potentials (LRP), before and after treatment, of 20 patients with tic disorders and 20 healthy control participants (matched on age, sex and intelligence), during a stimulus-response compatibility inhibition task. The cognitive-behavioral therapy included informational, awareness training, relaxation, muscle discrimination, cognitive restructuration and relapse prevention strategies. Our results revealed that prior to treatment; tic patients had delayed stimulus-locked LRP onset latency, larger response-locked LRP peak amplitude, and a frontal overactivation during stimulus inhibition processing. Both stimulus-locked LRP onset latency and response-locked LRP peak amplitude normalized after the cognitive behavioral therapy completion. However, the frontal overactivation related to inhibition remained unchanged following therapy. Our results showed that P300 and reaction times are sensitive to stimulus-response compatibility, but are not related to tic symptoms. Secondly, overactivity of the frontal LPC and impulsivity in TD patients were not affected by treatment. Finally, CBT had normalizing effects on the activation of the pre-motor and motor cortex in TD patients. These results imply specific modifications of motor processes following therapy, while inhibition processes remained unchanged. Given

  3. Preschoolers’ Genetic, Physiological, and Behavioral Sensitivity Factors Moderate Links Between Parenting Stress and Child Internalizing, Externalizing, and Sleep Problems

    Science.gov (United States)

    Davis, Molly; Thomassin, Kristel; Bilms, Joanie; Suveg, Cynthia; Shaffer, Anne; Beach, Steven R. H.

    2017-01-01

    This study examined three potential moderators of the relations between maternal parenting stress and preschoolers’ adjustment problems: a genetic polymorphism - the short allele of the serotonin transporter (5-HTTLPR, ss/sl allele) gene, a physiological indicator - children’s baseline respiratory sinus arrhythmia (RSA), and a behavioral indicator - mothers’ reports of children’s negative emotionality. A total of 108 mothers (Mage = 30.68 years, SDage = 6.06) reported on their parenting stress as well as their preschoolers’ (Mage = 3.50 years, SDage = .51, 61% boys) negative emotionality and internalizing, externalizing, and sleep problems. Results indicated that the genetic sensitivity variable functioned according to a differential susceptibility model; however, the results involving physiological and behavioral sensitivity factors were most consistent with a diathesis-stress framework. Implications for prevention and intervention efforts to counter the effects of parenting stress are discussed. PMID:28295263

  4. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.

    Science.gov (United States)

    Azzarito, Tommaso; Venturi, Giulietta; Cesolini, Albino; Fais, Stefano

    2015-01-28

    Tumor acidity is now considered an important determinant of drug-resistance and tumor progression, and anti-acidic approaches, such as Proton Pump inhibitors (PPIs), have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to evaluate the possible PPI-induced sensitization of human melanoma cells to Paclitaxel (PTX). Our results show that PTX and the PPI Lansoprazole (LAN) combination was extremely efficient against metastatic melanoma cells, as compared to the single treatments, both in vitro and in vivo. We also showed that acidity plays an important role on the anti-tumor activity of these drugs, being detrimental for PTX activity, while crucial for the synergistic effect of PTX following pretreatment with LAN, due to its nature of pro-drug needing protonation for a full activation. We obtained straightforward results in a human melanoma xenograft model combining well tolerated LAN doses with suboptimal and poorly toxic doses of PTX. With this study we provide a clear evidence that the PPI LAN may be included in new combined therapy of human melanoma together with low doses of PTX. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    Science.gov (United States)

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  6. Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of 16 different genes (rad) conferring radiation sensitivity on chemically induced reversion in the yeast Saccharomyces cerevisiae was determined. The site of reversion used was a well-defined chain initiation mutant mapping in the structural gene coding for iso-1-cytochrome c. High doses of EMS and HNO 2 resulted in decreased reversion of cyc1-131 in rad6, rad9 and rad15 strains compared to the normal RAD + strains. In addition, rad52 greatly decreased EMS reversion of cyc1-131 but had no effect on HNO 2 -induced reversion; rad18, on the other hand, increased HNO 2 -induced reversion but did not alter EMS-induced reversion. When NQO was used as the mutagen, every rad gene tested, except for rad18, had an effect on reversion; rad6, rad9, rad15, rad17, rad18, rad22, rev1, rev2, and rev3 lowered NQO reversion while rad1, rad2, rad3, rad4, rad10, rad12, and rad16 increased it compared to the RAD + strain. The effect of rad genes on chemical mutagenesis is discussed in terms of their effect on uv mutagenesis. It is concluded that although the nature of the repair pathways may differ for uv- and chemically-induced mutations in yeast, a functional repair system is required for the induction of mutation by the chemical agents NQO, EMS, and HNO 2

  7. Life history trade-offs and behavioral sensitivity to testosterone: an experimental test when female aggression and maternal care co-occur.

    Directory of Open Access Journals (Sweden)

    Kimberly A Rosvall

    Full Text Available Research on male animals suggests that the hormone testosterone plays a central role in mediating the trade-off between mating effort and parental effort. However, the direct links between testosterone, intrasexual aggression and parental care are remarkably mixed across species. Previous attempts to reconcile these patterns suggest that selection favors behavioral insensitivity to testosterone when paternal care is essential to reproductive success and when breeding seasons are especially short. Females also secrete testosterone, though the degree to which similar testosterone-mediated trade-offs occur in females is much less clear. Here, I ask whether testosterone mediates trade-offs between aggression and incubation in females, and whether patterns of female sensitivity to testosterone relate to female life history, as is often the case in males. I experimentally elevated testosterone in free-living, incubating female tree swallows (Tachycineta bicolor, a songbird with a short breeding season during which female incubation and intrasexual aggression are both essential to female reproductive success. Testosterone-treated females showed significantly elevated aggression, reduced incubation temperatures, and reduced hatching success, relative to controls. Thus, prolonged testosterone elevation during incubation was detrimental to reproductive success, but females nonetheless showed behavioral sensitivity to testosterone. These findings suggest that the relative importance of both mating effort and parental effort may be central to understanding patterns of behavioral sensitivity in both sexes.

  8. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity.

    Directory of Open Access Journals (Sweden)

    Ryan C Thompson

    Full Text Available BACKGROUND: Diffuse large B-cell lymphoma (DLBCL is a genetically heterogeneous disease and this variation can often be used to explain the response of individual patients to chemotherapy. One cancer therapeutic approach currently in clinical trials uses histone deacetylase inhibitors (HDACi's as monotherapy or in combination with other agents. METHODOLOGY/PRINCIPAL FINDINGS: We have used a variety of cell-based and molecular/biochemical assays to show that two pan-HDAC inhibitors, trichostatin A and vorinostat, induce apoptosis in seven of eight human DLBCL cell lines. Consistent with previous reports implicating the BCL-2 family in regulating HDACi-induced apoptosis, ectopic over-expression of anti-apoptotic proteins BCL-2 and BCL-XL or pro-apoptotic protein BIM in these cell lines conferred further resistance or sensitivity, respectively, to HDACi treatment. Additionally, BCL-2 family antgonist ABT-737 increased the sensitivity of several DLBCL cell lines to vorinostat-induced apoptosis, including one cell line (SUDHL6 that is resistant to vorinostat alone. Moreover, two variants of the HDACi-sensitive SUDHL4 cell line that have decreased sensitivity to vorinostat showed up-regulation of BCL-2 family anti-apoptotic proteins such as BCL-XL and MCL-1, as well as decreased sensitivity to ABT-737. These results suggest that the regulation and overall balance of anti- to pro-apoptotic BCL-2 family protein expression is important in defining the sensitivity of DLBCL to HDACi-induced apoptosis. However, the sensitivity of DLBCL cell lines to HDACi treatment does not correlate with expression of any individual BCL-2 family member. CONCLUSIONS/SIGNIFICANCE: These studies indicate that the sensitivity of DLBCL to treatment with HDACi's is dependent on the complex regulation of BCL-2 family members and that BCL-2 antagonists may enhance the response of a subset of DLBCL patients to HDACi treatment.

  9. Inducing Assertive Behavior in Chronic Schizophrenics: A Comparison of Socioenvironmental Desensitization, and Relaxation Therapies

    Science.gov (United States)

    Weinman, Bernard; And Others

    1972-01-01

    It is concluded that systematic desensitization or relaxation therapy is not effective in inducing assertive behavior in the male chronic schizophrenic. The treatment of choice for the older chronic male schizophrenic remains socioenvironmental therapy. (Author)

  10. Addiction: from context-induced hedonia to appetite, based on transition of micro-behaviors in morphine abstinent tree shrews

    Directory of Open Access Journals (Sweden)

    Ying eDuan

    2016-06-01

    Full Text Available AbstractDrug addiction is viewed as a maladaptive memory induced by contextual cues even in the abstinent state. However, the variations of hedonia and appetite induced by the context during the abstinence have been neglected. To distinguish the representative behaviors between hedonia and appetite, micro-behaviors in abstinent animal such as psycho-activity and drug seeking behaviors were observed in morphine conditioned place preference (CPP. To confirm the different effects of reward between drug and natural reward, a palatable food CPP paradigm was compared in current work. After a 10-day training in CPP with morphine or food, the preference was tested on day 1, 14, 28, and the changes of micro-behaviors were analyzed further. Our data showed that tree shrews treated with morphine performed more jumps on day 1 and more visits to saline paired side on day 28, which indicated a featured behavioral transition from psycho-activity to seeking behavior during drug abstinence. Meanwhile, food-conditioned animals only displayed obvious seeking behaviors in the three tests. The results suggest that the variations of micro-behaviors could imply such a transition from hedonic response to appetitive behaviors during morphine abstinence, which provided a potential behavioral basis for further neural mechanism studies.

  11. Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide

    International Nuclear Information System (INIS)

    Zhang, Zhengren; Long, Yang; Zang, Xiaofei

    2017-01-01

    A graphene-based waveguide structure is proposed to achieve a unidirectional plasmonically induced transparency (PIT) behavior. In this structure, a standing-wave cavity can be formed in the graphene waveguide by controlling the Fermi energy at a different part of the graphene. Two resonant graphene ribbons are placed at the node and antinode of the standing-wave cavity field, respectively. Its corresponding optical response coming from different incident sides show a unidirectional PIT behavior. This is because the excited bright resonant graphene ribbon located at antinode inhibits the field strength on its downstream side and causes the field redistribution on its upstream side. When the wave propagates along the sequence node-antinode, the redistribution field will excite the dark resonant graphene ribbon, such that both ribbons couple coherently and the PIT behavior appears. In contrast, when the wave propagates along the sequence antinode-node, the dark resonant graphene ribbon remains dark, and no PIT appears. Our results may benefit novel nonreciprocal devices in the future. (paper)

  12. Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy.

    Science.gov (United States)

    Silva, Jonas G; Boareto, Ana C; Schreiber, Anne K; Redivo, Daiany D B; Gambeta, Eder; Vergara, Fernanda; Morais, Helen; Zanoveli, Janaína M; Dalsenter, Paulo R

    2017-02-22

    Chlorpyrifos is a pesticide, member of the organophosphate class, widely used in several countries to manage insect pests on many agricultural crops. Currently, chlorpyrifos health risks are being reevaluated due to possible adverse effects, especially on the central nervous system. The aim of this study was to investigate the possible action of this pesticide on the behaviors related to anxiety and depression of offspring rats exposed during pregnancy. Wistar rats were treated orally with chlorpyrifos (0.01, 0.1, 1 and 10mg/kg/day) on gestational days 14-20. Male offspring behavior was evaluated on post-natal days 21 and 70 by the elevated plus-maze test, open field test and forced swimming test. The results demonstrated that exposure to 0.1, 1 or 10mg/kg/day of chlorpyrifos could induce anxiogenic-like, but not depressive-like behavior at post-natal day 21, without causing fetal toxicity. This effect was reversed on post-natal day 70. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity.

    Science.gov (United States)

    Malykhina, Anna P; Lei, Qi; Erickson, Chris S; Epstein, Miles L; Saban, Marcia R; Davis, Carole A; Saban, Ricardo

    2012-12-19

    This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and

  14. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    Directory of Open Access Journals (Sweden)

    Malykhina Anna P

    2012-12-01

    Full Text Available Abstract Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1 and cholinergic nerves (ChAT was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a

  15. Cryptolepine, isolated from Sida acuta, sensitizes human gastric adenocarcinoma cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Ahmed, Firoj; Toume, Kazufumi; Ohtsuki, Takashi; Rahman, Mahmudur; Sadhu, Samir Kumar; Ishibashi, Masami

    2011-01-01

    Bioassay guided separation of Sida acuta whole plants led to the isolation of an alkaloid, cryptolepine (1), along with two kaempferol glycosides (2-3). Compound 1 showed strong activity in overcoming TRAIL-resistance in human gastric adenocarcinoma (AGS) cells at 1.25, 2.5 and 5 μm. Combined treatment of 1 and TRAIL sensitized AGS cells to TRAIL-induced apoptosis at the aforementioned concentrations. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  17. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  18. Interaction Between Daidzein and Hesperetin on Antispasmodic Action in Isolated Sensitized and Non-sensitized Guinea-Pig Tracheas.

    Science.gov (United States)

    Shih, Chung-Hung; Chang, Tsu-Ya; Ko, Wun-Chang

    2016-01-01

    In traditional Chinese medicine (TCM), a combination of kudzu and Chen-Pi is frequently prescribed for relieving colds, fever, bronchitis, and cough. It contains daidzein and hesperetin, selective inhibitors of family 3 (PDE3), and 4 (PDE4) of phosphodiesterases (PDEs), respectively. In passively sensitized human airways, allergen-induced contraction was reported to be inhibited only by the simultaneous inhibition of PDE3 and PDE4, but not by single inhibition of either isozyme. Therefore, we are interested in investigating the interaction between daidzein and hesperetin on their antispasmodic effects in the isolated sensitized and non-sensitized guinea-pig tracheas, to clarify the difference between these two tissues, because effects of TCM prescription on patients with or without allergic asthma are often different. Guinea-pigs were sensitized by subcutaneous injection of ovalbumin (OVA) into legs. After sensitization, the baseline and cumulative OVA-induced contractions of the sensitized trachea were isometrically recorded on a polygraph. In the same way, the histamine (30 μM)-induced tonic contraction of non-sensitized guinea-pig trachea was recorded. The isobole method was used to analyze the antagonism and synergism between daidzein and hesperetin. The isoboles showed antagonism between daidzein and hesperetin on baseline relaxant effect and OVA (100 μg/ml)-induced contraction in the sensitized guinea-pig trachea. In contrast, the isobole showed synergism between daidzein and hesperetin on the relaxant effect of histamine-induced tonic contraction in non-sensitized guinea-pig trachea. These results suggest that the combination of kudzu and Chen-Pi for relieving colds, fever, bronchitis and cough is effective in patients without, but might show little effect in patients with allergic asthma.

  19. Positron emission tomography (PET) study of the alterations in brain pharmacokinetics of methamphetamine in methamphetamine sensitized animals

    International Nuclear Information System (INIS)

    Nakamura, Hitoshi

    2001-01-01

    I investigated the differences in brain pharmacokinetics of [ 11 C]methamphetamine ([ 11 C]MAP) in normal and MAP sensitized animals using positron emission tomography (PET). [ 11 C]MAP was synthesized by an automated on-line [ 11 C]methylation system. I newly produced MAP sensitized dog and monkey by repeated MAP treatment. The maximal level of accumulation of [ 11 C]MAP in the sensitized dog brain was 1.4 times higher than that in the control. This result suggests the changes in the pharmacokinetic profile of MAP in the brain affect the development or expression of MAP-induced behavioral sensitization. However, the overaccumulation of [ 11 C]MAP in the sensitized monkey brain was not observed due to the influence of anesthesia. (author)

  20. Positron emission tomography (PET) study of the alterations in brain pharmacokinetics of methamphetamine in methamphetamine sensitized animals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hitoshi [Tohoku Univ., Sendai (Japan). Hospital

    2001-08-01

    I investigated the differences in brain pharmacokinetics of [{sup 11}C]methamphetamine ([{sup 11}C]MAP) in normal and MAP sensitized animals using positron emission tomography (PET). [{sup 11}C]MAP was synthesized by an automated on-line [{sup 11}C]methylation system. I newly produced MAP sensitized dog and monkey by repeated MAP treatment. The maximal level of accumulation of [{sup 11}C]MAP in the sensitized dog brain was 1.4 times higher than that in the control. This result suggests the changes in the pharmacokinetic profile of MAP in the brain affect the development or expression of MAP-induced behavioral sensitization. However, the overaccumulation of [{sup 11}C]MAP in the sensitized monkey brain was not observed due to the influence of anesthesia. (author)

  1. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  2. Evaluation of radiation-induced sensitization using electrochemical potentiokinetic reactivation technique for austenitic stainless steels

    International Nuclear Information System (INIS)

    Inazumi, T.; Bell, G.E.C.; Hishinuma, A.

    1990-01-01

    The electrochemical potentiokinetic reactivation (EPR) test technique was applied to the determination of sensitization in a neutron-irradiated (420 degree C, 10 dpa) titanium-modified austenitic stainless steel. Miniaturized specimens (3 mm diam by 0.25 mm thick) in solution-annealed and 25% cold-worked conditions were tested. The degree of sensitization (DOS) was calculated in terms of the reactivation charge (Pa). Results indicated the occurrence of radiation-induced sensitization when compared to control specimens thermally aged at the irradiation temperature. Post-EPR examination of the specimen surfaces showed etching across the face of each grain as well as at grain boundaries. This indicates that the Pa value normalized by the total grain boundary area, which is an accepted EPR-DOS criterion, cannot be directly used as an indicator of the DOS to determine the susceptibility of this irradiated material to intergranular stress corrosion cracking (IGSCC). Further investigations are necessary to correlate the results in this study to the IGSCC susceptibility of the irradiated stainless steel. 26 refs., 7 figs., 3 tabs

  3. Comparative influence of propranolol and verapamil on glycemic control and histamine sensitivity associated with L-thyroxine-induced hyperthyroidism - an experimental study.

    Science.gov (United States)

    Bhatt, Parloop A; Makwana, Dharmesh

    2008-02-01

    The present investigation was undertaken to study the comparative effectiveness of beta-adrenergic antagonist propranolol and calcium channel blocker verapamil on L-thyroxine-induced alteration on glycemic control and histamine sensitivity on rats and guinea pigs, respectively. Injection of L-thyroxine sodium every alternate day for 3 weeks in guinea pigs (75 microg/kg, i.p.) and rats (75 mg/kg, s.c.) produced a condition similar to thyrotoxicosis. Verapamil and propranolol administered daily in the third week along with L-thyroxine to two separate groups of hyperthyroid animals reversed thyroxine-induced loss in body weight, reduction in serum TSH levels, and rise in body temperature. Effect on glucose metabolism and insulin sensitivity was studied on rats. Compared to normal rats, L-thyroxine-treated animals showed a state of hyperglycemia, hyperinsulinemia, impaired glucose tolerance, and insulin resistance. Propranolol (10 mg/kg, i.p.) treatment significantly decreased fasting serum glucose levels without affecting serum insulin levels, AUC glucose, and K(ITT) values. Treatment with verapamil (5 mg/kg, i.p.) significantly reduced fasting serum glucose and insulin levels, AUC glucose, and significantly increased K(ITT) values. Effect of propranolol (15 mg/kg, orally) and verapamil (20 mg/kg, orally) treatment on histamine sensitivity was studied on L-thyroxine-treated guinea pigs. Compared to normal guinea pigs, L-thyroxine-treated guinea pigs showed an increased sensitivity to histamine-induced asphyxia. Verapamil treatment reversed this increased histamine sensitivity while propranolol aggravated it. In conclusion, compared to propranolol, verapamil has advantageous effects on glucose metabolism, insulin and histamine sensitivity and could therefore be a valuable addition as an adjunctive therapy option currently available for thyrotoxicosis associated with diabetes and/or anaphylaxis.

  4. Estrogen Receptor β Agonist Attenuates Endoplasmic Reticulum Stress-Induced Changes in Social Behavior and Brain Connectivity in Mice.

    Science.gov (United States)

    Crider, Amanda; Nelson, Tyler; Davis, Talisha; Fagan, Kiley; Vaibhav, Kumar; Luo, Matthew; Kamalasanan, Sunay; Terry, Alvin V; Pillai, Anilkumar

    2018-02-12

    Impaired social interaction is a key feature of several major psychiatric disorders including depression, autism, and schizophrenia. While, anatomically, the prefrontal cortex (PFC) is known as a key regulator of social behavior, little is known about the cellular mechanisms that underlie impairments of social interaction. One etiological mechanism implicated in the pathophysiology of the aforementioned psychiatric disorders is cellular stress and consequent adaptive responses in the endoplasmic reticulum (ER) that can result from a variety of environmental and physical factors. The ER is an organelle that serves essential roles in protein modification, folding, and maturation of proteins; however, the specific role of ER stress in altered social behavior is unknown. In this study, treatment with tunicamycin, an ER stress inducer, enhanced the phosphorylation level of inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and increased X-box-binding protein 1 (XBP1) mRNA splicing activity in the mouse PFC, whereas inhibition of IRE1/XBP1 pathway in PFC by a viral particle approach attenuated social behavioral deficits caused by tunicamycin treatment. Reduced estrogen receptor beta (ERβ) protein levels were found in the PFC of male mice following tunicamycin treatment. Pretreatment with an ERβ specific agonist, ERB-041 significantly attenuated tunicamycin-induced deficits in social behavior, and activation of IRE1/XBP1 pathway in mouse PFC. Moreover, ERB-041 inhibited tunicamycin-induced increases in functional connectivity between PFC and hippocampus in male mice. Together, these results show that ERβ agonist attenuates ER stress-induced deficits in social behavior through the IRE-1/XBP1 pathway.

  5. Sex-Dependent Depression-Like Behavior Induced by Respiratory Administration of Aluminum Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2015-12-01

    Full Text Available Ultrafine aluminum oxide, which are abundant in ambient and involved occupational environments, are associated with neurobehavioral alterations. However, few studies have focused on the effect of sex differences following exposure to environmental Al2O3 ultrafine particles. In the present study, male and female mice were exposed to Al2O3 nanoparticles (NPs through a respiratory route. Only the female mice showed depression-like behavior. Although no obvious pathological changes were observed in mice brain tissues, the neurotransmitter and voltage-gated ion channel related gene expression, as well as the small molecule metabolites in the cerebral cortex, were differentially modulated between male and female mice. Both mental disorder-involved gene expression levels and metabolomics analysis results strongly suggested that glutamate pathways were implicated in sex differentiation induced by Al2O3 NPs. Results demonstrated the potential mechanism of environmental ultrafine particle-induced depression-like behavior and the importance of sex dimorphism in the toxic research of environmental chemicals.

  6. Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Eliezer, N.; Groisman, Y. [Laser Distance Spectrometry, 9 Mota Gur St., Petah Tikva 49514 (Israel); Forni, O. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2014-08-01

    Fluorine and chlorine do not produce atomic and ionic line spectra of sufficient intensity to permit their detection by laser-induced breakdown spectroscopy. They do, however, combine with alkali-earths and other elements to form molecules whose spectra may be easily identified, enabling detection in ambient conditions with much higher sensitivity than using F I and Cl I atomic lines. - Highlights: • We studied laser induced breakdown spectra of halogens with alkali-earth elements. • Emission and temporal behavior of CaF and CaCl molecules were determined. • Sensitivity of F and Cl detection by molecules and atoms was compared.

  7. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2015-05-19

    A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process.

  8. Drug-sensitive reward in crayfish: an invertebrate model system for the study of SEEKING, reward, addiction, and withdrawal.

    Science.gov (United States)

    Huber, Robert; Panksepp, Jules B; Nathaniel, Thomas; Alcaro, Antonio; Panksepp, Jaak

    2011-10-01

    In mammals, rewarding properties of drugs depend on their capacity to activate appetitive motivational states. With the underlying mechanisms strongly conserved in evolution, invertebrates have recently emerged as a powerful new model in addiction research. In crayfish natural reward has proven surprisingly sensitive to human drugs of abuse, opening an unlikely avenue of research into the basic biological mechanisms of drug addiction. In a series of studies we first examined the presence of natural reward systems in crayfish, then characterized its sensitivity to a wide range of human drugs of abuse. A conditioned place preference (CPP) paradigm was used to demonstrate that crayfish seek out those environments that had previously been paired with the psychostimulants cocaine and amphetamine, and the opioid morphine. The administration of amphetamine exerted its effects at a number of sites, including the stimulation of circuits for active exploratory behaviors (i.e., SEEKING). A further study examined morphine-induced reward, extinction and reinstatement in crayfish. Repeated intra-circulatory infusions of morphine served as a reward when paired with distinct visual or tactile cues. Morphine-induced CPP was extinguished after repeated saline injections. Following this extinction phase, morphine-experienced crayfish were once again challenged with the drug. The priming injections of morphine reinstated CPP at all tested doses, suggesting that morphine-induced CPP is unrelenting. In an exploration of drug-associated behavioral sensitization in crayfish we concurrently mapped measures of locomotion and rewarding properties of morphine. Single and repeated intra-circulatory infusions of morphine resulted in persistent locomotory sensitization, even 5 days following the infusion. Moreover, a single dose of morphine was sufficient to induce long-term behavioral sensitization. CPP for morphine and context-dependent cues could not be disrupted over a drug free period of 5

  9. Tolerance and sensitization to inhaled 1,1,1-trichloroethane in mice: results from open-field behavior and a functional observational battery.

    Science.gov (United States)

    Bowen, Scott E; Balster, Robert L

    2006-05-01

    1,1,1-Trichloroethane (TCE), a representative abused solvent, has well described acute behavioral effects in animals. Much less is known about repeated high-concentration exposures as would be encountered in inhalant abusers. Tolerance has been demonstrated in some, but not all, studies with TCE while sensitization has also been seen with other abused solvents. The present study was designed to further characterize changes in the effects of repeated exposure to TCE on a variety of mouse behaviors. Mice were tested using locomotor activity as well as a functional observational battery (FOB) both before and after a regimen of daily exposures to various concentrations of TCE. The initial locomotor effects of acute 30-min exposures to TCE were biphasic with concentration-dependent increases in activity at lower concentrations and decreases observed at higher concentrations. The profile of acute effects as measured by the FOB included changes in posture, decreased arousal, disturbances in gait, delayed righting reflexes, and decreased sensorimotor reactivity. Animals were then divided into five groups and exposed 30 min/day to either air or one of four concentrations of TCE (2,000, 6,000, 10,000, or 13,300 ppm) for 15 consecutive days. The TCE concentration used primarily affected the magnitude of change, not whether tolerance or sensitization occurred. Tolerance developed on the measures of forelimb grip strength, inverted screen, and number of rears. Conversely, sensitization developed to measures of locomotor activity. Depending on the behavioral measure, both tolerance and sensitization can occur in mice with repeated exposure to TCE. Both of these phenomena are characteristic of drugs of abuse.

  10. Moderate and severe perinatal asphyxia induces differential effects on cocaine sensitization in adult rats.

    Science.gov (United States)

    Galeano, Pablo; Romero, Juan Ignacio; Luque-Rojas, María Jesús; Suárez, Juan; Holubiec, Mariana Inés; Bisagno, Verónica; Santín, Luis Javier; De Fonseca, Fernando Rodríguez; Capani, Francisco; Blanco, Eduardo

    2013-09-01

    Perinatal asphyxia (PA) increases the likelihood of suffering from dopamine-related disorders, such as ADHD and schizophrenia. Since dopaminergic transmission plays a major role in cocaine sensitization, the purpose of this study was to determine whether PA could be associated with altered behavioral sensitization to cocaine. To this end, adult rats born vaginally (CTL), by caesarean section (C+), or by C+ with 15 min (PA15, moderate PA) or 19 min (PA19, severe PA) of global anoxia were repeatedly administered with cocaine (i.p., 15 mg/kg) and then challenged with cocaine (i.p., 15 mg/kg) after a 5-day withdrawal period. In addition, c-Fos, FosB/ΔFosB, DAT, and TH expression were assessed in dorsal (CPu) and ventral (NAcc) striatum. Results indicated that PA15 rats exhibited an increased locomotor sensitization to cocaine, while PA19 rats displayed an abnormal acquisition of locomotor sensitization and did not express a sensitized response to cocaine. c-Fos expression in NAcc, but not in CPu, was associated with these alterations in cocaine sensitization. FosB/ΔFosB expression was increased in all groups and regions after repeated cocaine administration, although it reached lower expression levels in PA19 rats. In CTL, C+, and PA15, but not in PA19 rats, the expression of TH in NAcc was reduced in groups repeatedly treated with cocaine, independently of the challenge test. Furthermore, this reduction was more pronounced in PA15 rats. DAT expression remained unaltered in all groups and regions studied. These results suggest that moderate PA may increase the vulnerability to drug abuse and in particular to cocaine addiction. Copyright © 2013 Wiley Periodicals, Inc.

  11. Semianalytical Solution and Parameters Sensitivity Analysis of Shallow Shield Tunneling-Induced Ground Settlement

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2017-01-01

    Full Text Available The influence of boundary soil properties on tunneling-induced ground settlement is generally not considered in current analytic solutions, and the hypothesis of equal initial stress in vertical and horizontal makes the application of the above solutions limited. Based on the homogeneous half-plane hypothesis, by defining the boundary condition according to the ground loss pattern in shallow tunnel, and with the use of Mohr-Coulomb plastic yielding criteria and classic Lame and Kiersch elastic equations by separating the nonuniform stress field to uniform and single-direction stress field, a semiempirical solution for ground settlement induced by single shallow circular tunnel is presented and sensitivity to the ground parameters is analyzed. The methods of settlement control are offered by influence factors analysis of semiempirical solution. A case study in Beijing Metro tunnel shows that the semiempirical solution agrees well with the in situ measured results.

  12. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles

    OpenAIRE

    Grippo, Angela J.; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C. Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks o...

  13. A novel behavioral assay for measuring cold sensation in mice.

    Directory of Open Access Journals (Sweden)

    Daniel S Brenner

    Full Text Available Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  14. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  15. A Single Sub-anesthetic Dose of Ketamine Relieves Depression-like Behaviors Induced by Neuropathic Pain in Rats

    Science.gov (United States)

    Wang, Jing; Goffer, Yossef; Xu, Duo; Tukey, David S.; Shamir, D. B.; Eberle, Sarah E.; Zou, Anthony H.; Blanck, Thomas J.J.; Ziff, Edward B.

    2011-01-01

    Background Chronic pain is associated with depression. In rodents, pain is often assessed by sensory hypersensitivity, which does not sufficiently measure affective responses. Low-dose ketamine has been used to treat both pain and depression, but it is not clear whether ketamine can relieve depression associated with chronic pain and whether this antidepressant effect depends on its anti-nociceptive properties. Methods We examined whether the spared nerve injury (SNI) model of neuropathic pain induces depressive behavior in rats, using sucrose preference test and forced swim test, and tested whether a subanesthetic dose of ketamine treats SNI-induced depression. Results SNI-treated rats, compared with control, showed decreased sucrose preference (0.719 ± 0.068 (mean ± SEM) vs. 0.946 ± 0.010) and enhanced immobility in the forced swim test (107.3 ± 14.6s vs. 56.2 ± 12.5s). Further, sham-operated rats demonstrated depressive behaviors in the acute postoperative period (0.790 ± 0.062 on postoperative day 2). A single subanesthetic dose of ketamine (10mg/kg) did not alter SNI-induced hypersensitivity; however, it treated SNI-associated depression-like behaviors (0.896 ± 0.020 for ketamine vs. 0.663 ± 0.080 for control 1 day after administration; 0.858 ± 0.017 for ketamine vs. 0.683 ± 0.077 for control 5 days after administration). Conclusions Chronic neuropathic pain leads to depression-like behaviors. The postoperative period also confers vulnerability to depression, possibly due to acute pain. Sucrose preference test and forced swim test may be used to compliment sensory tests for assessment of pain in animal studies. Low-dose ketamine can treat depression-like behaviors induced by chronic neuropathic pain. PMID:21934410

  16. Behavioral and pharmacological characteristics of bortezomib-induced peripheral neuropathy in rats

    Directory of Open Access Journals (Sweden)

    Shota Yamamoto

    2015-09-01

    Full Text Available Bortezomib, an effective anticancer drug for multiple myeloma, often causes peripheral neuropathy which is mainly characterized by numbness and painful paresthesia. Nevertheless, there is no effective strategy to escape or treat bortezomib-induced peripheral neuropathy (BIPN, because we have understood few mechanism of this side effect. In this study, we evaluated behavioral and pathological characteristics of BIPN, and investigated pharmacological efficacy of various analgesic drugs and adjuvants on mechanical allodynia induced by bortezomib treatment in rats. The repeated administration of bortezomib induced mechanical and cold allodynia. There was axonal degeneration of sciatic nerve behind these neuropathic symptoms. Furthermore, the exposure to bortezomib shortened neurite length in PC12 cells. Finally, the result of evaluation of anti-allodynic potency, oral administration of tramadol (10 mg/kg, pregabalin (3 mg/kg, duloxetine (30 mg/kg or mexiletine (100 mg/kg, but not amitriptyline or diclofenac, transiently relieved the mechanical allodynia induced by bortezomib. These results suggest that axonal degeneration of the sciatic nerve is involved in BIPN and that some analgesic drugs and adjuvants are effective in the relief of painful neuropathy.

  17. Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice.

    Science.gov (United States)

    Long, Caela C; Sadler, Katelyn E; Kolber, Benedict J

    2016-10-15

    The evolutionary advantages to the suppression of pain during a stressful event (stress-induced analgesia (SIA)) are obvious, yet the reasoning behind sex-differences in the expression of this pain reduction are not. The different ways in which males and females integrate physiological stress responses and descending pain inhibition are unclear. A potential supraspinal modulator of stress-induced analgesia is the central nucleus of the amygdala (CeA). This limbic brain region is involved in both the processing of stress and pain; the CeA is anatomically and molecularly linked to regions of the hypothalamic pituitary adrenal (HPA) axis and descending pain network. The CeA exhibits sex-based differences in response to stress and pain that may differentially induce SIA in males and females. Here, sex-based differences in behavioral and molecular indices of SIA were examined following noxious stimulation. Acute restraint stress in male and female mice was performed prior to intraplantar injections of formalin, a noxious inflammatory agent. Spontaneous pain-like behaviors were measured for 60min following formalin injection and mechanical hypersensitivity was evaluated 120 and 180min post-injection. Restraint stress altered formalin-induced spontaneous behaviors in male and female mice and formalin-induced mechanical hypersensitivity in male mice. To assess molecular indices of SIA, tissue samples from the CeA and blood samples were collected at the 180min time point. Restraint stress prevented formalin-induced increases in extracellular signal regulated kinase 2 (ERK2) phosphorylation in the male CeA, but no changes associated with pERK2 were seen with formalin or restraint in females. Sex differences were also seen in plasma corticosterone concentrations 180min post injection. These results demonstrate sex-based differences in behavioral, molecular, and hormonal indices of acute stress in mice that extend for 180min after stress and noxious stimulation. Copyright

  18. The Methanolic Extract from Murraya koenigii L. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+ Channel as Antinociceptive Mechanism

    Directory of Open Access Journals (Sweden)

    Nushrat Sharmin Ani

    2016-01-01

    Full Text Available Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant’s leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly (p<0.01 inhibited the pain thresholds induced by formalin and acetic acid in a dose-dependent manner. MEMK also significantly (p<0.01 suppressed glutamate-induced pain. Moreover, pretreatment with glibenclamide (an ATP-sensitive potassium channel blocker at 10 mg/kg significantly (p<0.05 reversed the MEMK-mediated antinociception. These revealed that MEMK might have the potential to interact with glutamatergic system and the ATP-sensitive potassium channels to exhibit its antinociceptive activities. Therefore, our results strongly support the antinociceptive effects of M. koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine.

  19. Socialization of prosocial behavior

    DEFF Research Database (Denmark)

    Kok, Rianne; Prinzie, Peter; Bakermans-Kranenburg, Marian J.

    2018-01-01

     = 162), moderated mediation was tested for the relation between parental sensitivity and child prosocial behavior via brain volume, in boys and girls. Both maternal and paternal sensitivity were repeatedly observed between 1 and 4 years of age. Brain volume was assessed using magnetic resonance imaging......-by-brain interaction was found, illustrating that daughters of sensitive parents were more prosocial and that less prosocial behavior was reported for girls with a larger total brain volume. Child gender significantly moderated the indirect effect of parental sensitivity on prosocial behavior via total brain volume...

  20. The effects of instructions on the sensitivity of negatively reinforced human behavior to extinction.

    Science.gov (United States)

    Alessandri, Jérôme; Cançado, Carlos R X

    2017-03-01

    The effects of instructions on the sensitivity of negatively reinforced (escape) behavior to extinction were studied. Initially, responding produced timeouts from pressing a force cell on a variable-ratio (VR) schedule, which was then discontinued (extinction). Based on extinction data, participants were distributed into two groups. Participants in the Persistence Group (for which response rates were low in extinction) were instructed that the experimenter expected them to continue responding in extinction after a second exposure to the VR schedule. Participants in the Extinction group (for which response rates were high in extinction) were instructed that the experimenter expected them to stop responding in extinction. Relative to the condition in which instructions were absent, extinction-response rates increased and decreased, respectively, for participants in the Persistence and Extinction groups. These results replicate and extend to negatively reinforced responding previous findings that showed behavioral control by instructions formulated as explicit experimenter demands or expectations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rainfall-induced fecal indicator organisms transport from manured fields: model sensitivity analysis.

    Science.gov (United States)

    Martinez, Gonzalo; Pachepsky, Yakov A; Whelan, Gene; Yakirevich, Alexander M; Guber, Andrey; Gish, Timothy J

    2014-02-01

    Microbial quality of surface waters attracts attention due to food- and waterborne disease outbreaks. Fecal indicator organisms (FIOs) are commonly used for the microbial pollution level evaluation. Models predicting the fate and transport of FIOs are required to design and evaluate best management practices that reduce the microbial pollution in ecosystems and water sources and thus help to predict the risk of food and waterborne diseases. In this study we performed a sensitivity analysis for the KINEROS/STWIR model developed to predict the FIOs transport out of manured fields to other fields and water bodies in order to identify input variables that control the transport uncertainty. The distributions of model input parameters were set to encompass values found from three-year experiments at the USDA-ARS OPE3 experimental site in Beltsville and publicly available information. Sobol' indices and complementary regression trees were used to perform the global sensitivity analysis of the model and to explore the interactions between model input parameters on the proportion of FIO removed from fields. Regression trees provided a useful visualization of the differences in sensitivity of the model output in different parts of the input variable domain. Environmental controls such as soil saturation, rainfall duration and rainfall intensity had the largest influence in the model behavior, whereas soil and manure properties ranked lower. The field length had only moderate effect on the model output sensitivity to the model inputs. Among the manure-related properties the parameter determining the shape of the FIO release kinetic curve had the largest influence on the removal of FIOs from the fields. That underscored the need to better characterize the FIO release kinetics. Since the most sensitive model inputs are available in soil and weather databases or can be obtained using soil water models, results indicate the opportunity of obtaining large-scale estimates of FIO

  2. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  3. Manipulation of pH induced sensitivity of a fluorescent probe in presence of silver nanoparticles

    International Nuclear Information System (INIS)

    Kacmaz, Sibel; Ertekin, Kadriye; Oter, Ozlem; Hizliateş, Cevher Gundogdu; Ergun, Yavuz; Celik, Erdal

    2015-01-01

    In this study, pH induced spectral response of the newly synthesized carbazole derivative (9-butyl-bis-3-(4-(dimethylamino) phenyl) allylidene)-9H-carbazole-3,6-diamine) has been declared. We utilized silver nanoparticles (AgNPs) along with ionic liquid as additives for manipulation of the spectral response. Plasticized ethyl cellulose (EC) was used as matrix material. Fibers and porous films were produced by electrospinning technique. The emission intensity at 631 nm has been followed as the analytical signal. Utilization of silver nanoparticles in electrospun polymeric fibers for pH sensing purposes resulted with many advantages such as tuned sensitivity, linear calibration plot for larger pH ranges, increased surface area and enhancement in all sensor dynamics. Additionally, we performed manipulation of the pKa within the same matrix exploiting the silver NPs. Characteristics of the pH induced response for the offered composition was superior with respect to the previously reported ones. When stored at the ambient air of the laboratory there was no significant drift in the signal intensity after 16 months. Our sensitivity and stability tests are still in progress. - Highlights: • A carbozole derivative was used for the first time for sensing of pH along with silver nanoparticles. • The sensor slides fabricated in form of nanofibers. • The Ag containing and Ag-free slides were produced by electrospinning technique. • pH Sensitivity of the dye was compared for both; Ag containing and Ag-free forms. • We performed manipulation of the pKa within the same matrix exploiting the silver NPs.

  4. Manipulation of pH induced sensitivity of a fluorescent probe in presence of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kacmaz, Sibel [Giresun University, Faculty of Engineering, Department of Food Engineering, 28200 Giresun (Turkey); Ertekin, Kadriye [University of Dokuz Eylul, Faculty of Sciences, Department of Chemistry, 35160 Izmir (Turkey); University of Dokuz Eylul, Center for Fabrication and Application of Electronic Materials (EMUM), 35160 Izmir (Turkey); Oter, Ozlem; Hizliateş, Cevher Gundogdu; Ergun, Yavuz [University of Dokuz Eylul, Faculty of Sciences, Department of Chemistry, 35160 Izmir (Turkey); Celik, Erdal [University of Dokuz Eylul, Faculty of Engineering, Department of Metallurgical and Materials Engineering, 35160 Izmir (Turkey); University of Dokuz Eylul, Center for Fabrication and Application of Electronic Materials (EMUM), 35160 Izmir (Turkey)

    2015-12-15

    In this study, pH induced spectral response of the newly synthesized carbazole derivative (9-butyl-bis-3-(4-(dimethylamino) phenyl) allylidene)-9H-carbazole-3,6-diamine) has been declared. We utilized silver nanoparticles (AgNPs) along with ionic liquid as additives for manipulation of the spectral response. Plasticized ethyl cellulose (EC) was used as matrix material. Fibers and porous films were produced by electrospinning technique. The emission intensity at 631 nm has been followed as the analytical signal. Utilization of silver nanoparticles in electrospun polymeric fibers for pH sensing purposes resulted with many advantages such as tuned sensitivity, linear calibration plot for larger pH ranges, increased surface area and enhancement in all sensor dynamics. Additionally, we performed manipulation of the pKa within the same matrix exploiting the silver NPs. Characteristics of the pH induced response for the offered composition was superior with respect to the previously reported ones. When stored at the ambient air of the laboratory there was no significant drift in the signal intensity after 16 months. Our sensitivity and stability tests are still in progress. - Highlights: • A carbozole derivative was used for the first time for sensing of pH along with silver nanoparticles. • The sensor slides fabricated in form of nanofibers. • The Ag containing and Ag-free slides were produced by electrospinning technique. • pH Sensitivity of the dye was compared for both; Ag containing and Ag-free forms. • We performed manipulation of the pKa within the same matrix exploiting the silver NPs.

  5. O6-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C

    International Nuclear Information System (INIS)

    Passagne, Isabelle; Evrard, Alexandre; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-01-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O 6 -methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC 5 values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N 7 guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism

  6. O(6)-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C.

    Science.gov (United States)

    Passagne, Isabelle; Evrard, Alexandre; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-03-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O(6)-methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC(50) values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N(7) guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism.

  7. Attenuation by dextromethorphan on the higher liability to morphine-induced reward, caused by prenatal exposure of morphine in rat offspring

    Directory of Open Access Journals (Sweden)

    Tao Pao-Luh

    2009-11-01

    Full Text Available Abstract Co-administration of dextromethorphan (DM with morphine during pregnancy and throughout lactation has been found to reduce morphine physical dependence and tolerance in rat offspring. No evidence was presented, however, for the effect of DM co-administered with morphine during pregnancy on morphine-induced reward and behavioral sensitization (possibly related to the potential to induce morphine addiction in morphine-exposed offspring. Conditioned place preference and locomotor activity tests revealed that the p60 male offspring of chronic morphine-treated female rats were more vulnerable to morphine-induced reward and behavioral sensitization. The administration of a low dose of morphine (1 mg/kg, i.p. in these male offspring also increased the dopamine and serotonin turnover rates in the nucleus accumbens, which implied that they were more sensitive to morphine. Co-administration of DM with morphine in the dams prevented this adverse effect of morphine in the offspring rats. Thus, DM may possibly have a great potential in the prevention of higher vulnerability to psychological dependence of morphine in the offspring of morphine-addicted mothers.

  8. Olodaterol attenuates citric acid-induced cough in naïve and ovalbumin-sensitized and challenged guinea pigs.

    Directory of Open Access Journals (Sweden)

    Eva Wex

    Full Text Available Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR, have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01. Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001. In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve

  9. Depressive-like behavior, its sensitization, social buffering, and altered cytokine responses in rhesus macaques moved from outdoor social groups to indoor housing.

    Science.gov (United States)

    Hennessy, Michael B; Chun, Katie; Capitanio, John P

    2017-02-01

    Psychosocial stressors appear to promote the onset of depressive illness through activation and sensitization of inflammatory mechanisms. Here, adult male rhesus monkeys brought from large outdoor social groups to indoor housing for 8 days reliably exhibited a hunched, depressive-like posture. When rehoused indoors a second 8 days about 2 weeks later, monkeys housed alone, but not those with an affiliative partner, showed sensitization of the depressive-like hunched posture. Housing indoors also affected circulating pro-inflammatory cytokines: IL-1β showed increased responsiveness to immune challenge, and IL-1β and TNF-α showed reduced suppression by dexamethasone. Sensitivity of the anti-inflammatory cytokine IL-10 to immune challenge exhibited a relative increase from the first to the second round of indoor housing in animals housed in pairs, and a relative decrease in animals housed alone. Cytokine levels during indoor housing were positively correlated with duration of depressive-like behavior. Plasma cortisol levels increased but did not differentiate housing conditions or rounds. Results demonstrate a rapid induction and sensitization of depressive-like behavior to indoor individual housing, social buffering of sensitization, and associated inflammatory responses. This paradigm may provide a practical nonhuman primate model for examining inflammatory-mediated consequences of psychosocial stressors on depression and possible social buffering of these effects.

  10. The amphetamine sensitization model of schizophrenia symptoms and its effect on schedule-induced polydipsia in the rat.

    Science.gov (United States)

    Hawken, Emily R; Beninger, Richard J

    2014-05-01

    Amphetamine enhances dopamine (DA) transmission and induces psychotic states or exacerbates psychosis in at-risk individuals. Amphetamine sensitization of the DA system has been proposed as a rodent model of schizophrenia-like symptoms. In humans, excessive nonphysiologic drinking or primary polydipsia is significantly associated with a diagnosis of schizophrenia. In rodents, nonphysiologic drinking can be induced by intermittent presentation of food in the presence of a drinking spout to a hungry animal; this phenomenon is termed, "schedule-induced polydipsia" (SIP). This study aims to determine the effects of amphetamine sensitization on SIP. We injected rats with amphetamine (1.5 mg/kg) daily for 5 days. Following 4 weeks of withdrawal, animals were food restricted and exposed to the SIP protocol (noncontingent fixed-time 1-min food schedule) for daily 2-h sessions for 24 days. Results showed that previously amphetamine-injected animals drank more in the SIP protocol and drank more than controls when the intermittent food presentation schedule was removed. These findings suggest that hyperdopaminergia associated with schizophrenia may contribute to the development of polydipsia in this population. Whether animals that develop SIP have DA dysfunction or aberrant activity of other circuits that modulate DA activity has yet to be clearly defined.

  11. Highly sensitive SnO2 sensor via reactive laser-induced transfer

    Science.gov (United States)

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-04-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control.

  12. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring.

    Science.gov (United States)

    Manti, Maria; Fornes, Romina; Qi, Xiaojuan; Folmerz, Elin; Lindén Hirschberg, Angelica; de Castro Barbosa, Thais; Maliqueo, Manuel; Benrick, Anna; Stener-Victorin, Elisabet

    2018-03-22

    Maternal polycystic ovary syndrome (PCOS), a condition associated with hyperandrogenism, is suggested to increase anxiety-like behavior in the offspring. Because PCOS is closely linked to obesity, we investigated the impact of an adverse hormonal or metabolic maternal environment and offspring obesity on anxiety in the offspring. The obese PCOS phenotype was induced by chronic high-fat-high-sucrose (HFHS) consumption together with prenatal dihydrotestosterone exposure in mouse dams. Anxiety-like behavior was assessed in adult offspring with the elevated-plus maze and open-field tests. The influence of maternal androgens and maternal and offspring diet on genes implicated in anxiety were analyzed in the amygdala and hypothalamus with real-time PCR ( n = 47). Independent of diet, female offspring exposed to maternal androgens were more anxious and displayed up-regulation of adrenoceptor α 1B in the amygdala and up-regulation of hypothalamic corticotropin-releasing hormone ( Crh). By contrast, male offspring exposed to a HFHS maternal diet had increased anxiety-like behavior and showed up-regulation of epigenetic markers in the amygdala and up-regulation of hypothalamic Crh. Overall, there were substantial sex differences in gene expression in the brain. These findings provide novel insight into how maternal androgens and obesity exert sex-specific effects on behavior and gene expression in the offspring of a PCOS mouse model.-Manti, M., Fornes, R., Qi, X., Folmerz, E., Lindén Hirschberg, A., de Castro Barbosa, T., Maliqueo, M., Benrick, A., Stener-Victorin, E. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring.

  13. Ultra-fast and sensitive photo-induced phase switching in (EDO-TTF)2PF6

    International Nuclear Information System (INIS)

    Chollet, Matthieu; Guerin, Laurent; Uchida, Naoki; Fukaya, Souichi; Ishikawa, Tadahiko; Koshihara, Shin-ya; Matsuda, Kazunari; Yamochi, Hideki; Ota, Akira; Saito, Gunzi

    2005-01-01

    Organic conductor (EDO-TTF) 2 PF 6 crystal having 14 filled band shows a metal (M)-insulator (I) transition accompanied with Peierls transition, charge ordering, and anion ordering at transition temperature, T C =280K. This crystal is an important and fascinating candidate for photo-induced M-I transition because the multi-instability will afford sensitivity to the tiny stimulation. We make the report of the reflectivity change in (EDO-TTF) 2 PF 6 crystal induced by the irradiation of femto-second (fs) pulsed laser (pulse width: 120fs, main wavelength: 800nm, repetition rate: 1kHz). The obtained results indicate that the highly efficient I-to-M transition occurs within 3ps in this material. Based on these results, the strong electron-lattice cooperative interaction is proved to play an essential role in the driving process of this M-I transition. Also, 14 filled materials, which show M-I transition, accompanied with the charge ordering, can be classified as fascinating candidates not only for superconductivity but also for photo-induced cooperative phenomena and application in phase switching devices

  14. Compulsive Addiction-like Aggressive Behavior in Mice.

    Science.gov (United States)

    Golden, Sam A; Heins, Conor; Venniro, Marco; Caprioli, Daniele; Zhang, Michelle; Epstein, David H; Shaham, Yavin

    2017-08-15

    Some people are highly motivated to seek aggressive encounters, and among those who have been incarcerated for such behavior, recidivism rates are high. These observations echo two core features of drug addiction: high motivation to seek addictive substances, despite adverse consequences, and high relapse rates. Here we used established rodent models of drug addiction to determine whether they would be sensitive to "addiction-like" features of aggression in CD-1 mice. In experiments 1 and 2, we trained older CD-1 mice to lever press for opportunities to attack younger C57BL6/J mice. We then tested them for relapse to aggression seeking after forced abstinence or punishment-induced suppression of aggression self-administration. In experiment 3, we trained a large cohort of CD-1 mice and tested them for choice-based voluntary suppression of aggression seeking, relapse to aggression seeking, progressive ratio responding, and punishment-induced suppression of aggression self-administration. We then used cluster analysis to identify patterns of individual differences in compulsive "addiction-like" aggressive behavior. In experiments 1 and 2, we observed strong motivation to acquire operant self-administration of opportunities to aggress and relapse vulnerability during abstinence. In experiment 3, cluster analysis of the aggression-related measures identified a subset of "addicted" mice (∼19%) that exhibited intense operant-reinforced attack behavior, decreased likelihood to select an alternative reinforcer over aggression, heightened relapse vulnerability and progressive ratio responding, and resilience to punishment-induced suppression of aggressive behavior. Using procedures established to model drug addiction, we showed that a subpopulation of CD-1 mice demonstrate "addiction-like" aggressive behavior, suggesting an evolutionary origin for compulsive aggression. Published by Elsevier Inc.

  15. Effects of BDNF receptor antagonist on the severity of physical and psychological dependence, morphine-induced locomotor sensitization and the ventral tegmental area-nucleus accumbens BDNF levels in morphine- dependent and withdrawn rats.

    Science.gov (United States)

    Khalil-Khalili, Masoumeh; Rashidy-Pour, Ali; Bandegi, Ahmad Reza; Yousefi, Behpoor; Jorjani, Hassan; Miladi-Gorji, Hossein

    2018-03-06

    This study examined the effects of systemic administration of the TrkB receptor antagonist (ANA-12) on the severity of physical and psychological dependence and morphine-induced locomotor sensitization, the ventral tegmental area (VTA)-nucleus accumbens (NAc) BDNF levels in morphine-dependent and withdrawn rats. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 10 days. Then, rats were tested for naloxone-precipitated morphine withdrawal signs, the anxiety (the elevated plus maze-EPM) after the last morphine injection and injection of ANA12 (ip). Also, morphine-induced locomotor sensitization was evaluated after morphine challenge followed by an injection of ANA-12 in morphine-withdrawn rats. The VTA-NAc BDNF levels were assessed in morphine-dependent and withdrawn rats. The overall Gellert-Holtzman score was significantly higher in morphine-dependent rats receiving ANA-12 than in those receiving saline. Also, the percentage of time spent in the open arms in control and morphine-dependent rats receiving ANA-12 were higher compared to the Cont/Sal and D/Sal rats, respectively. There was no significant difference in the locomotor activity and the VTA-NAc BDNF levels between D/Sal/morphine and D/ANA-12/morphine groups after morphine withdrawal. We conclude that the systemic administration of ANA-12 exacerbates the severity of physical dependence on morphine and partially attenuates the anxiety-like behavior in morphine-dependent rats. However, ANA-12 did not affect morphine-induced locomotor sensitization and the VTA-NAc BDNF levels in morphine-dependent and withdrawn rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia.

    Directory of Open Access Journals (Sweden)

    Junie P Warrington

    Full Text Available Whole brain radiation therapy (WBRT is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40-50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia or 21% oxygen (normoxia for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.

  17. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb 3+ ). Single-stranded oligonucleotides greatly enhance the Tb 3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb 3+ /hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb 3+ , producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb 3+ /hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb 3+ /hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  18. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  19. Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Romeijn, Stefan; Ossendorp, Ferry; Jiskoot, Wim; Bouwstra, Joke

    2014-10-01

    The aim of this work was to study the applicability of antigen-coated pH-sensitive microneedle arrays for effective vaccination strategies. Therefore, a model antigen (ovalbumin) was coated onto pH-sensitive (pyridine-modified) microneedle arrays to test pH-triggered antigen release by applying the coated arrays onto ex vivo human skin, and by conducting a dermal immunization study in mice. The release of antigen into ex vivo human skin from the coated microneedles was determined by using radioactively labeled ovalbumin. To investigate the induction of antigen-specific IgG, and CD4(+) and CD8(+) T-cell responses, BALB/c mice were immunized with antigen-coated pH-sensitive microneedles by the 'coat and poke' approach. These responses were compared to responses induced by the 'poke and patch' approach, and subcutaneous and intradermal vaccination with classic hypodermic needles. The pH-sensitive microneedle arrays were efficiently coated with ovalbumin (95% coating efficiency) and upon application of six microneedle arrays 4.27 of 7 μg ovalbumin was delivered into the skin, showing a release efficiency of 70%. In contrast, the 'poke and patch' approach led to a delivery of only 6.91 of 100 μg ovalbumin (7% delivery efficiency). Immunization by means of ovalbumin-coated microneedles resulted in robust CD4(+) and CD8(+) T-cell responses comparable to those obtained after subcutaneous or intradermal immunization with conventional needles. Moreover, it effectively induced IgG responses; however, it required prime-boost immunizations before antibodies were produced. In conclusion, antigen delivery into ex vivo human skin by antigen-coated pH-sensitive microneedle arrays is more efficient than the 'poke-and-patch' approach and in vivo vaccination studies show the applicability of pH-sensitive microneedles for the induction of both T cell and B cell responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Preschoolers' genetic, physiological, and behavioral sensitivity factors moderate links between parenting stress and child internalizing, externalizing, and sleep problems.

    Science.gov (United States)

    Davis, Molly; Thomassin, Kristel; Bilms, Joanie; Suveg, Cynthia; Shaffer, Anne; Beach, Steven R H

    2017-05-01

    This study examined three potential moderators of the relations between maternal parenting stress and preschoolers' adjustment problems: a genetic polymorphism-the short allele of the serotonin transporter (5-HTTLPR, ss/sl allele) gene, a physiological indicator-children's baseline respiratory sinus arrhythmia (RSA), and a behavioral indicator-mothers' reports of children's negative emotionality. A total of 108 mothers (M age  = 30.68 years, SD age  = 6.06) reported on their parenting stress as well as their preschoolers' (M age  = 3.50 years, SD age  = 0.51, 61% boys) negative emotionality and internalizing, externalizing, and sleep problems. Results indicated that the genetic sensitivity variable functioned according to a differential susceptibility model; however, the results involving physiological and behavioral sensitivity factors were most consistent with a diathesis-stress framework. Implications for prevention and intervention efforts to counter the effects of parenting stress are discussed. © 2017 Wiley Periodicals, Inc.

  1. Is glycyrrhizin sensitivity increased in anorexia nervosa and should licorice be avoided? Case report and review of the literature

    DEFF Research Database (Denmark)

    Støving, René K; Lingqvist, Linnéa E; Bonde, Rasmus K

    2011-01-01

    OBJECTIVE: Hypokalemia is a potentially life-threatening electrolyte disturbance in anorexia nervosa and is most frequently caused by purging behavior. We report a case of severe hypokalemia in anorexia nervosa induced by daily ingestion of approximately 20 g of licorice. METHODS: To confirm...... low daily dose of licorice suggests high glycyrrhizin sensitivity. CONCLUSION: Patients with anorexia nervosa not only have decreased food intake but also selective and sometimes bizarre eating habits that, in association with increased sensitivity to glycyrrhizin, may cause severe hypokalemia....

  2. dcc Haploinsufficiency results in blunted sensitivity to cocaine enhancement of reward seeking.

    Science.gov (United States)

    Reynolds, Lauren M; Gifuni, Anthony J; McCrea, E Tess; Shizgal, Peter; Flores, Cecilia

    2016-02-01

    Mesocortical dopamine connectivity continues to mature during adolescence. This protracted development confers increased vulnerability for environmental and genetic factors to disrupt mesocortical wiring and subsequently influence responses to drugs of abuse in adulthood. The netrin-1 receptor, DCC, orchestrates medial prefrontal cortex dopamine input during adolescence and dictates the functional organization of local circuitry. Haploinsufficiency of dcc results in increased dopamine innervation to the medial prefrontal cortex, which in turn leads to resilience against the behavioral activating effects of stimulant drugs. However, whether sensitivity to the rewarding effects of drugs of abuse is also altered in dcc haploinsufficiency remains to be resolved. Here, we used the curve-shift method to measure cocaine-induced facilitation of intracranial self-stimulation (ICSS) in adult dcc haploinsufficient mice and wild-type littermates. We found that dcc haploinsufficient mice acquire ICSS behavior at comparable stimulation parameters to wild-type controls. However, cocaine-induced potentiation of ICSS is significantly blunted in dcc haploinsufficient mice. These results are consistent with decreased sensitivity to the rewarding effects of cocaine and/or decreased proclivity to invest effort in the pursuit of reward in dcc haploinsufficient mice. Moreover, these findings suggest that DCC signaling determines adult susceptibility to drug abuse most likely by controlling prefrontal cortex development in adolescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Characterization of Causative Allergens for Wheat-Dependent Exercise-Induced Anaphylaxis Sensitized with Hydrolyzed Wheat Proteins in Facial Soap

    Directory of Open Access Journals (Sweden)

    Tomoharu Yokooji

    2013-01-01

    Conclusions: : HWP-WDEIA patients could be sensitized to HWP containing a PEEPFP sequence, and WDEIA symptoms after WP ingestion could partly be induced by γ-gliadin. These findings could be useful to help develop tools for diagnosis and desensitization therapy for HWP-WDEIA.

  4. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression.

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Xu, Chang; Ma, Xin-Ming

    2017-05-15

    Major depressive disorder (MDD) is one of the most common psychiatric disorder, but the underlying mechanisms are largely unknown. Increasing evidence shows that brain-derived neurotrophic factor (BDNF) plays an important role in the structural plasticity induced by depression. Considering the opposite effects of BDNF and its precursor proBDNF on neural plasticity, we hypothesized that the balance of BDNF and proBDNF plays a critical role in chronic unpredicted mild stress (CUMS)-induced depressive-like behaviors and structural plasticity in the rodent hippocampus. The aims of this study were to compare the functions of BDNF and proBDNF in the CUMS-induced depressive-like behaviors, and determine the effects of BDNF and proBDNF on expressions of kalirin-7, postsynaptic density protein 95 (PSD95) and NMDA receptor subunit NR2B in the hippocampus of stressed and naïve control rats, respectively. Our results showed that CUMS induced depressive-like behaviors, caused a decrease in the ratio of BDNF/proBDNF in the hippocampus and resulted in a reduction in spine density in hippocampal CA1 pyramidal neurons; these alterations were accompanied by a decrease in the levels of kalirin-7, PSD95 and NR2B in the hippocampus. Injection of exogenous BDNF into the CA1 area of stressed rats reversed CUMS-induced depressive-like behaviors and prevented CUMS-induced spine loss and decrease in kalirin-7, NR2B and PSD95 levels. In contrast, injection of exogenous proBDNF into the CA1 region of naïve rats caused depressive-like behavior and an accompanying decrease in both spine density and the levels of kalirin-7, NR2B and PSD95. Taken together, our results suggest that the ratio of BDNF to proBDNF in the hippocampus plays a key role in CUMS-induced depressive-like behaviors and alterations of dendritic spines in hippocampal CA1 pyramidal neurons. Kalirin-7 may play an important role during this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study.

    Science.gov (United States)

    Shen, Jianxiang; Liu, Jun; Gao, Yangyang; Li, Xiaolin; Zhang, Liqun

    2014-07-28

    By setting up a coarse-grained model of polymer nanocomposites, we monitored the change in the elastic modulus as a function of the strain, derived from the stress-strain behavior by determining uniaxial tension and simple shear of two typical spatial distribution states (aggregation and dispersion) of nanoparticles (NPs). In both these cases, we observed that the elastic modulus decreases non-linearly with the increase of strain and reaches a low plateau at larger strains. This phenomenon is similar to the so-called "Payne effect" for elastomer nanocomposites. Particularly, the modulus of the aggregation case is more sensitive to the imposed strain. By examining the structural parameters, such as the number of neighboring NPs, coordination number of NPs, root-mean-squared average force exerted on the NPs, local strain, chain conformations (bridge, dangle, loop, interface bead and connection bead), and the total interaction energy of NP-polymer and NP-NP, we inferred that the underlying mechanism of the aggregation case is the disintegration of the NP network or clusters formed through direct contact; however, for the dispersion case, the non-linear behavior is attributed to the destruction of the NP network or clusters formed through the bridging of adsorbed polymer segments among the NPs. The former physical network is influenced by NP-NP interaction and NP volume fraction, while the latter is influenced by NP-polymer interaction and NP volume fraction. Lastly, we found that for the dispersion case, further increasing the inter-particle distance or grafting NPs with polymer chains can effectively reduce the non-linear behavior due to the decrease of the physical network density. In general, this simulation work, for the first time, establishes the correlation between the micro-structural evolution and the strain-induced non-linear behavior of polymer nanocomposites, and sheds some light on how to reduce the "Payne effect".

  6. The abdominal skin of female Sprague-Dawley rats is more sensitive than the back skin to drug-induced phototoxicity.

    Science.gov (United States)

    Kuga, Kazuhiro; Yasuno, Hironobu; Sakai, Yumi; Harada, Yumiko; Shimizu, Fumi; Miyamoto, Yumiko; Takamatsu, Yuki; Miyamoto, Makoto; Sato, Keiichiro

    2017-11-01

    In vivo phototoxicity studies are important to predict drug-induced phototoxicity in humans; however, a standard methodology has not established. To determine differences in sensitivity to drug-induced phototoxicity among various skin sites, we evaluated phototoxic reactions in the back and abdominal skin of female Sprague-Dawley rats orally dosed with phototoxic drugs (pirfenidone, 8-methoxysoraren, doxycycline, and lomefloxacin) or a non-phototoxic drug (gatifloxacin) followed by solar-simulated light irradiation comprising 18J/cm 2 ultraviolet A. Tissue reactions were evaluated by macroscopic and microscopic examination and immunohistochemistry for γ-H2AX, and tissue concentrations of pirfenidone, doxycycline, and lomefloxacin were measured by tandem mass spectrometry. In addition, the thicknesses of the skin layers at both sites were measured in drug-naïve rats. The abdominal skin showed more severe reactions to all phototoxic drugs than the back skin, whereas the minimal erythema dose in drug-naïve rats and skin concentrations of each drug were comparable between the sites. Furthermore, histopathological lesions and γ-H2AX-positive cells in the abdominal skin were detected in deeper layers than in the back skin. The stratum corneum and dermis in the abdominal skin were significantly thinner than in the back skin, indicating a difference in the depth of light penetration and potentially contributing to the site differences observed in sensitivity to phototoxicity. Gatifloxacin did not induce any phototoxic reactions at either site. In conclusion, the abdominal skin is more sensitive to drug-induced phototoxicity than the back skin and may represent a preferable site for irradiation in this rat phototoxicity model. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mechanisms of change in cognitive behavioral therapy for panic disorder: The unique effects of self-efficacy and anxiety sensitivity

    Science.gov (United States)

    Gallagher, Matthew W.; Payne, Laura A.; White, Kamila S.; Shear, Katherine M.; Woods, Scott W.; Gorman, Jack M.; Barlow, David H.

    2013-01-01

    The present study examined temporal dependencies of change of panic symptoms and two promising mechanisms of change (self-efficacy and anxiety sensitivity) during an 11-session course of cognitive-behavior therapy (CBT) for Panic Disorder (PD). 361 individuals with a principal diagnosis of PD completed measures of self-efficacy, anxiety sensitivity, and PD symptoms at each session during treatment. Effect size analyses indicated that the greatest changes in anxiety sensitivity occurred early in treatment, whereas the greatest changes in self-efficacy occurred later in treatment. Results of parallel process latent growth curve models indicated that changes in self-efficacy and anxiety sensitivity across treatment uniquely predicted changes in PD symptoms. Bivariate and multivariate latent difference score models indicated, as expected, that changes in anxiety sensitivity and self-efficacy temporally preceded changes in panic symptoms, and that intraindividual changes in anxiety sensitivity and self-efficacy independently predicted subsequent intraindividual changes in panic symptoms. These results provide strong evidence that changes in self-efficacy and anxiety sensitivity during CBT influence subsequent changes in panic symptoms, and that self-efficacy and anxiety sensitivity may therefore be two distinct mechanisms of change of CBT for PD that have their greatest impact at different stages of treatment. PMID:24095901

  8. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  9. Neuroprotective influence of taurine on fluoride-induced biochemical and behavioral deficits in rats.

    Science.gov (United States)

    Adedara, Isaac A; Abolaji, Amos O; Idris, Umar F; Olabiyi, Bolanle F; Onibiyo, Esther M; Ojuade, TeminiJesu D; Farombi, Ebenezer O

    2017-01-05

    Epidemiological and experimental studies have demonstrated that excessive exposure to fluoride induced neurodevelopmental toxicity both in humans and animals. Taurine is a free intracellular β-amino acid with antioxidant and neuroprotective properties. The present study investigated the neuroprotective mechanism of taurine by evaluating the biochemical and behavioral characteristics in rats exposed to sodium fluoride (NaF) singly in drinking water at 15 mg/L alone or orally co-administered by gavage with taurine at 100 and 200 mg/kg body weight for 45 consecutive days. Locomotor behavior was assessed using video-tracking software during a 10-min trial in a novel environment while the brain structures namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical determinations. Results showed that taurine administration prevented NaF-induced locomotor and motor deficits namely decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle along with weak forelimb grip, increased incidence of fecal pellets and time of grooming, immobility and negative geotaxis. The taurine mediated enhancement of the exploratory profiles of NaF-exposed rats was supported by track and occupancy plot analyses. Moreover, taurine prevented NaF-induced increase in hydrogen peroxide and lipid peroxidation levels but increased acetylcholinesterase and the antioxidant enzymes activities in the hypothalamus, cerebrum and cerebellum of the rats. Collectively, taurine protected against NaF-induced neurotoxicity via mechanisms involving the restoration of acetylcholinesterase activity and antioxidant status with concomitant inhibition of lipid peroxidation in the brain of rats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  11. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death

    International Nuclear Information System (INIS)

    Ozaki, Kei-ichi; Minoda, Ai; Kishikawa, Futaba; Kohno, Michiaki

    2006-01-01

    Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway is associated with the neoplastic phenotype of a large number of human tumor cells. Although specific blockade of the ERK pathway by treating such tumor cells with potent mitogen-activated protein kinase/ERK kinase (MEK) inhibitors completely suppresses their proliferation, it by itself shows only a modest effect on the induction of apoptotic cell death. However, these MEK inhibitors markedly enhance the efficacy of histone deacetylase (HDAC) inhibitors to induce apoptotic cell death: such an enhanced cell death is observed only in tumor cells in which the ERK pathway is constitutively activated. Co-administration of MEK inhibitor markedly sensitizes tumor cells to HDAC inhibitor-induced generation of reactive oxygen species, which appears to mediate the enhanced cell death induced by the combination of these agents. These results suggest that the combination of MEK inhibitors and HDAC inhibitors provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the ERK pathway is constitutively activated

  12. Sensitivity to Rocuronium-Induced Neuromuscular Block and Reversibility with Sugammadex in a Patient with Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Akihiro Kashiwai

    2012-01-01

    Full Text Available We report a patient with myotonic dystrophy who showed prolonged rocuronium-induced neuromuscular blockade, although with a fast recovery with sugammadex. During general anesthesia with propofol and remifentanil, the times to spontaneous recovery of the first twitch (T1 of train of four to 10% of control values after an intubating dose of rocuronium 1 mg/kg and an additional dose of 0.2 mg/kg were 112 min and 62 min, respectively. Despite the high sensitivity to rocuronium, sugammadex 2 mg/kg administered at a T1 of 10% safely and effectively antagonized rocuronium-induced neuromuscular block in 90 s.

  13. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    Science.gov (United States)

    Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  14. Distinct contributions of reactive oxygen species in amygdala to bee venom-induced spontaneous pain-related behaviors.

    Science.gov (United States)

    Lu, Yun-Fei; Neugebauer, Volker; Chen, Jun; Li, Zhen

    2016-04-21

    Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, play essential roles in physiological plasticity and are also involved in the pathogenesis of persistent pain. Roles of peripheral and spinal ROS in pain have been well established, but much less is known about ROS in the amygdala, a brain region that plays an important role in pain modulation. The present study explored the contribution of ROS in the amygdala to bee venom (BV)-induced pain behaviors. Our data show that the amygdala is activated following subcutaneous BV injection into the left hindpaw, which is reflected in the increased number of c-Fos positive cells in the central and basolateral amygdala nuclei in the right hemisphere. Stereotaxic administration of a ROS scavenger (tempol, 10mM), NADPH oxidase inhibitor (baicalein, 5mM) or lipoxygenase inhibitor (apocynin, 10mM) into the right amygdala attenuated the BV-induced spontaneous licking and lifting behaviors, but had no effect on BV-induced paw flinch reflexes. Our study provides further evidence for the involvement of the amygdala in nociceptive processing and pain behaviors, and that ROS in amygdala may be a potential target for treatment strategies to inhibit pain. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Phenformin-Induced Mitochondrial Dysfunction Sensitizes Hepatocellular Carcinoma for Dual Inhibition of mTOR.

    Science.gov (United States)

    Veiga, Sonia Rosa; Ge, Xuemei; Mercer, Carol A; Hernández-Alvarez, María Isabel; Thomas, Hala Elnakat; Hernández-Losa, Javier; Ramón Y Cajal, Santiago; Zorzano, Antonio; Thomas, George; Kozma, Sara C

    2018-04-24

    Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mammalian target of rapamycin (mTOR) for the treatment of HCC. However, such inhibitors induce glycemia and increase mitochondrial efficiency. Here we determined whether the mitochondrial complex I inhibitor Phenformin could reverse both side effects, impose an energetic-stress on cancer cells and suppress the growth of HCC. Human HCC cell lines were used in vitro to access the signaling and energetic impact of mTOR inhibitors and Phenformin, either alone or in combination. Next, the therapeutic utility of these drugs alone or in combination was investigated pre-clinically in human orthotopic tumors implanted in mice, by analyzing their impact on the tumor burden and overall survival. We found Phenformin caused mitochondrial dysfunction and fragmentation, inducing a compensatory shift to glycolysis. In contrast, dual inhibition of mTOR impaired cell growth and glycolysis, while increasing mitochondrial fusion and efficiency. In a mouse model of human HCC, dual inhibition of mTOR, together with Phenformin, was highly efficacious in controlling tumor burden. However, more striking, pretreatment with Phenformin sensitized tumors to dual inhibition of mTOR, leading to a dramatic improvement in survival. Treatment of HCC cells in vitro with the biguanide Phenformin causes a metabolic shift to glycolysis, mitochondrial dysfunction and fragmentation, and dramatically sensitizes orthotopic liver tumors to dual inhibition of mTOR. We therefore propose this therapeutic approach should be tested clinically in HCC. Copyright ©2018, American Association for Cancer Research.

  16. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  17. Diminished behavioral and neural sensitivity to sound modulation is associated with moderate developmental hearing loss.

    Directory of Open Access Journals (Sweden)

    Merri J Rosen

    Full Text Available The acoustic rearing environment can alter central auditory coding properties, yet altered neural coding is seldom linked with specific deficits to adult perceptual skills. To test whether developmental hearing loss resulted in comparable changes to perception and sensory coding, we examined behavioral and neural detection thresholds for sinusoidally amplitude modulated (sAM stimuli. Behavioral sAM detection thresholds for slow (5 Hz modulations were significantly worse for animals reared with bilateral conductive hearing loss (CHL, as compared to controls. This difference could not be attributed to hearing thresholds, proficiency at the task, or proxies for attention. Detection thresholds across the groups did not differ for fast (100 Hz modulations, a result paralleling that seen in humans. Neural responses to sAM stimuli were recorded in single auditory cortex neurons from separate groups of awake animals. Neurometric analyses indicated equivalent thresholds for the most sensitive neurons, but a significantly poorer detection threshold for slow modulations across the population of CHL neurons as compared to controls. The magnitude of the neural deficit matched that of the behavioral differences, suggesting that a reduction of sensory information can account for limitations to perceptual skills.

  18. Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin

    International Nuclear Information System (INIS)

    Smerdon, M.J.; Tlsty, T.D.; Lieberman, M.W.

    1978-01-01

    The distribution of ultraviolet radiation (uv) induced DNA repair synthesis within chromatin was examined in cultured human diploid fibroblasts (IMR-90). Measurement of the time course of repair synthesis yielded two distinct phases: An initial rapid phase (fast repair) which occurs during the first 2 to 3 h after damage and a slower phase (slow repair) associated with a tenfold decrease in the rate of nucleotide incorporation, which persists for at least 35 h after damage. Staphylococcal nuclease digests of nuclei from cells damaged with uv and labeled during the fast-repair phase revealed a marked preference of fast-repair synthesis for the nuclease-sensitive regions. A new method was developed to analyze the digestion data and showed that approximately 50% of the nucleotides incorporated during the fast-repair phase are located in staphylococcal nuclease-sensitive regions, which comprise about 30% of the genome. Calculations from these data indicate that in the staphylococcal nuclease-sensitive regions the number of newly inserted nucleotides per unit DNA is about twice that of resistant regions. These results were supported by electrophoresis studies which demonstrated a decreased representation of fast-repair synthesis in core particle DNA. In contrast, the distribution within chromatin of nucleotides incorporated during the slow-repair phase was found to be much more homogeneous with about 30% of the repair sites located in 25% of the genome. Digestion studieswith DNase I indicated a slight preference of repair synthesis for regions sensitive to this enzyme; however, no marked difference between the distributions of fast- and slow-repair synthesis was observed. This study provides evidence that the structural constraints placed upon DNA in chromatin also place constraints upon uv-induced DNA repair synthesis in human cells

  19. Behavioral and TMS Markers of Action Observation Might Reflect Distinct Neuronal Processes.

    Science.gov (United States)

    Hétu, Sébastien; Taschereau-Dumouchel, Vincent; Meziane, Hadj Boumediene; Jackson, Philip L; Mercier, Catherine

    2016-01-01

    Transcranial magnetic stimulation (TMS) studies have shown that observing an action induces muscle-specific changes in corticospinal excitability. From a signal detection theory standpoint, this pattern can be related to sensitivity, which here would measure the capacity to distinguish between two action observation conditions. In parallel to these TMS studies, action observation has also been linked to behavioral effects such as motor priming and interference. It has been hypothesized that behavioral markers of action observation could be related to TMS markers and thus represent a potentially cost-effective mean of assessing the functioning of the action-perception system. However, very few studies have looked at possible relationships between these two measures. The aim of this study was to investigate if individual differences in sensitivity to action observation could be related to the behavioral motor priming and interference effects produced by action observation. To this end, 14 healthy participants observed index and little finger movements during a TMS task and a stimulus-response compatibility task. Index muscle displayed sensitivity to action observation, and action observation resulted in significant motor priming+interference, while no significant effect was observed for the little finger in both task. Nevertheless, our results indicate that the sensitivity measured in TMS was not related to the behavioral changes measured in the stimulus-response compatibility task. Contrary to a widespread assumption, the current results indicate that individual differences in physiological and behavioral markers of action observation may be unrelated. This could have important impacts on the potential use of behavioral markers in place of more costly physiological markers of action observation in clinical settings.

  20. Behavioral and TMS markers of action observation might reflect distinct neuronal processes

    Directory of Open Access Journals (Sweden)

    Sébastien Hétu

    2016-09-01

    Full Text Available Transcranial magnetic stimulation (TMS studies have shown that observing an action induces muscle-specific changes in corticospinal excitability. From a signal detection theory standpoint, this pattern can be related to sensitivity, which here would measure the capacity to distinguish between two action observation conditions. In parallel to these TMS studies, action observation has also been linked to behavioral effects such as motor priming and interference. It has been hypothesized that behavioral markers of action observation could be related to TMS markers and thus represent a potentially cost-effective mean of assessing the functioning of the action-perception system. However, very few studies have looked at possible relationships between these two measures. The aim of this study was to investigate if individual differences in sensitivity to action observation could be related to the behavioral motor priming and interference effects produced by action observation. To this end, fourteen healthy participants observed index and little finger movements during a TMS task and a stimulus-response compatibility task. Index muscle displayed sensitivity to action observation, and action observation resulted in significant motor priming+interference, while no significant effect was observed for the little finger in both task. Nevertheless, our results indicate that the sensitivity measured in TMS was not related to the behavioral changes measured in the stimulus-response compatibility task. Contrary to a predominant assumption, the current results indicate that individual differences in physiological and behavioral markers of action observation may be unrelated. This could have important impacts on the potential use of behavioral markers in place of more costly physiological markers of action observation in clinical settings.