WorldWideScience

Sample records for behavioral momentum theory

  1. Large transverse momentum behavior of gauge theories

    International Nuclear Information System (INIS)

    Coquereaux, Robert; De Rafael, Eduardo.

    1977-05-01

    The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given

  2. Behavioral momentum theory: equations and applications.

    Science.gov (United States)

    Nevin, John A; Shahan, Timothy A

    2011-01-01

    Behavioral momentum theory provides a quantitative account of how reinforcers experienced within a discriminative stimulus context govern the persistence of behavior that occurs in that context. The theory suggests that all reinforcers obtained in the presence of a discriminative stimulus increase resistance to change, regardless of whether those reinforcers are contingent on the target behavior, are noncontingent, or are even contingent on an alternative behavior. In this paper, we describe the equations that constitute the theory and address their application to issues of particular importance in applied settings. The theory provides a framework within which to consider the effects of interventions such as extinction, noncontingent reinforcement, differential reinforcement of alternative behavior, and other phenomena (e.g., resurgence). Finally, the theory predicts some counterintuitive and potentially counterproductive effects of alternative reinforcement, and can serve as an integrative guide for intervention when its terms are identified with the relevant conditions of applied settings.

  3. Basing assessment and treatment of problem behavior on behavioral momentum theory: Analyses of behavioral persistence.

    Science.gov (United States)

    Schieltz, Kelly M; Wacker, David P; Ringdahl, Joel E; Berg, Wendy K

    2017-08-01

    The connection, or bridge, between applied and basic behavior analysis has been long-established (Hake, 1982; Mace & Critchfield, 2010). In this article, we describe how clinical decisions can be based more directly on behavioral processes and how basing clinical procedures on behavioral processes can lead to improved clinical outcomes. As a case in point, we describe how applied behavior analyses of maintenance, and specifically the long-term maintenance of treatment effects related to problem behavior, can be adjusted and potentially enhanced by basing treatment on Behavioral Momentum Theory. We provide a brief review of the literature including descriptions of two translational studies that proposed changes in how differential reinforcement of alternative behavior treatments are conducted based on Behavioral Momentum Theory. We then describe current clinical examples of how these translations are continuing to impact the definitions, designs, analyses, and treatment procedures used in our clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Toward a general theory of momentum-like effects.

    Science.gov (United States)

    Hubbard, Timothy L

    2017-08-01

    The future actions, behaviors, and outcomes of objects, individuals, and processes can often be anticipated, and some of these anticipations have been hypothesized to result from momentum-like effects. Five types of momentum-like effects (representational momentum, operational momentum, attentional momentum, behavioral momentum, psychological momentum) are briefly described. Potential similarities involving properties of momentum-like effects (continuation, coherence, role of chance or guessing, role of sensory processing, imperviousness to practice or error feedback, shifts in memory for position, effects of changes in velocity, rapid occurrence, effects of retention interval, attachment to an object rather than an abstract frame of reference, nonrigid transformation) are described, and potential constraints on a future theory of momentum-like effects (dynamic representation, nature of extrapolation, sensitivity to environmental contingencies, bridging gaps between stimulus and response, increasing adaptiveness to the environment, serving as a heuristic for perception and action, insensitivity to stimulus format, importance of subjective consequences, role of knowledge and belief, automaticity of occurrence, properties of functional architecture) are discussed. The similarity and ubiquity of momentum-like effects suggests such effects might result from a single or small number of mechanisms that operate over different dimensions, modalities, and time-scales and provide a fundamental adaptation for perception and action. Copyright © 2017. Published by Elsevier B.V.

  5. Blade-element/momentum theory

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    Although there exists a large variety of methods for predicting performance and loadings of wind turbines, the only approach used today by wind turbine manufacturers is based on the blade-element/momentum (BEM) theory by Glauert (Aerodynamic theory. Springer, Berlin, pp. 169-360, 1935). A basic...... assumption in the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from two-dimensional sectional airfoil characteristics....

  6. Problem of energy-momentum and theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system ''matter plus gravitational field'' and in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational filed is considered in the usual framework of the Lorentz invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrization makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the known experimental facts are described successfully. For strong gravitational fields the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy

  7. The energy-momentum problem and gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrized gravitation theories are considered. A covariant formulation of conservation laws in an arbitrary Riemann space-time is presented. In the Einstein theory both symmetric and canonical energy-momentum tensors of the matter and gravitational field system and, in particular, energy-momentum of free gravitational waves prove to be equal to zero. Since gravitational waves carry the curvature and, consequently, affect the detector, this bears witness to an intrinsic contradiction of the Einstein theory. To realize the sources of difficulties concerning energy-momentum in the Einstein theory the gravitational field is treated in the same way as all the other physical fields, i.e. in terms of usual Lorentz-invariant field theory. Unification of this approach with the Einstein idea of geometrization enables to construct the geometrized theory, which is free from contradictions, has clearly defined the notions of gravitation field energy-momentum and satisfactorily describes all known experimental facts. To construct a logically consistent theory one should geometrize only the density of the matter Lagrangian. The gravitation field equations are formulated in terms of the Euclidean space-time with a metric tensor γsub(ik), while the matter motion may be completely described in terms of the non-Euclidean space-time with a metric tensor gsub(ik). For strong gravitational fields the predictions of the quasi-linear theory under consideration appriciably differ from those of the Einstein formulation of the gravitation theory. No black holes are present in the theory. The results of the calculation for the energy flow of gravitational waves are rigorously unambiguous and show that gravitational waves carry positively definite energy

  8. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, K.

    1981-01-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat--space-time limit, all the Ward-Takahashi identities associated with space-time transformations including the global dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories. The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization-group b function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise

  9. Energy momentum tensor in theories with scalar field

    International Nuclear Information System (INIS)

    Joglekar, S.D.

    1992-01-01

    The renormalization of energy momentum tensor in theories with scalar fields and two coupling constants is considered. The need for addition of an improvement term is shown. Two possible forms for the improvement term are: (i) One in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities), (ii) One in which the improvement coefficient is a finite quantity, i.e. finite function of the renormalized quantities are considered. Four possible model of such theories are (i) Scalar Q.E.D. (ii) Non-Abelian theory with scalars, (iii) Yukawa theory, (iv) A model with two scalars. In all these theories a negative conclusion is established: neither forms for the improvement terms lead to a finite energy momentum tensor. Physically this means that when interaction with external gravity is incorporated in such a model, additional experimental input in the form of root mean square mass radius must be given to specify the theory completely, and the flat space parameters are insufficient. (author). 12 refs

  10. Behavioral momentum in the treatment of noncompliance.

    OpenAIRE

    Mace, F C; Hock, M L; Lalli, J S; West, B J; Belfiore, P; Pinter, E; Brown, D K

    1988-01-01

    Behavioral momentum refers to the tendency for behavior to persist following a change in environmental conditions. The greater the rate of reinforcement, the greater the behavioral momentum. The intervention for noncompliance consisted of issuing a sequence of commands with which the subject was very likely to comply (i.e., high-probability commands) immediately prior to issuing a low-probability command. In each of five experiments, the high-probability command sequence resulted in a "moment...

  11. Renormalization in Large Momentum Effective Theory of Parton Physics.

    Science.gov (United States)

    Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong

    2018-03-16

    In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.

  12. Energy momentum tensor in local causal perturbation theory

    International Nuclear Information System (INIS)

    Prange, D.

    2001-01-01

    We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)

  13. Energy-momentum complex in Moeller's tetrad theory of gravitation

    International Nuclear Information System (INIS)

    Mikhail, F.I.; Lashin, E.I.

    1991-08-01

    Moeller's tetrad theory of gravitation is examined with regard to the energy-momentum complex. The energy-momentum complex as well as the superpotential associated with Moeller's theory are derived. Moeller's field equations are solved in the case of ''general'' spherical symmetry. Two different solutions, giving rise to the same metric, are obtained. The energy associated with one solution is found to be twice the energy associated with the other. An avenue out of this inconsistency is suggested. (author). 20 refs, 1 tab

  14. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1980-12-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)

  15. On the theory of behavioral mechanics.

    Science.gov (United States)

    Dzendolet, E

    1999-12-01

    The Theory of Behavioral Mechanics is the behavioral analogue of Newton's laws of motion, with the rate of responding in operant conditioning corresponding to physical velocity. In an earlier work, the basic relation between rate of responding and sessions under two FI schedules and over a range of commonly used session values had been shown to be a power function. Using that basic relation, functions for behavioral acceleration, mass, and momentum are derived here. Data from other laboratories also support the applicability of a power function to VI schedules. A particular numerical value is introduced here to be the standard reference value for the behavioral force under the VI-60-s schedule. This reference allows numerical values to be calculated for the behavioral mass and momentum of individual animals. A comparison of the numerical values of the momenta of two animals can be used to evaluate their relative resistances to change, e.g., to extinction, which is itself viewed as a continuously changing behavioral force being imposed on the animal. This overall numerical approach allows behavioral force-values to be assigned to various experimental conditions such as the evaluation of the behavioral force of a medication dosage.

  16. Angular momentum conservation law in light-front quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.

    2017-03-01

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.

  17. Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories

    International Nuclear Information System (INIS)

    Hehl, F.W.; McCrea, J.D.

    1986-01-01

    Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincare gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article

  18. Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories

    Science.gov (United States)

    Hehl, Friedrich W.; McCrea, J. Dermott

    1986-03-01

    Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincaré gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article.

  19. The energy–momentum tensor(s in classical gauge theories

    Directory of Open Access Journals (Sweden)

    Daniel N. Blaschke

    2016-11-01

    Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  20. Momentum conserving defects in affine Toda field theories

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, Rebecca; Bowcock, Peter [Department of Mathematical Sciences, Durham University,Durham, DH1 3LE (United Kingdom)

    2017-05-30

    Type II integrable defects with more than one degree of freedom at the defect are investigated. A condition on the form of the Lagrangian for such defects is found which ensures the existence of a conserved momentum in the presence of the defect. In addition it is shown that for any Lagrangian satisfying this condition, the defect equations of motion, when taken to hold everywhere, can be extended to give a Bäcklund transformation between the bulk theories on either side of the defect. This strongly suggests that such systems are integrable. Momentum conserving defects and Bäcklund transformations for affine Toda field theories based on the A{sub n}, B{sub n}, C{sub n} and D{sub n} series of Lie algebras are found. The defect associated with the D{sub 4} affine Toda field theory is examined in more detail. In particular classical time delays for solitons passing through the defect are calculated.

  1. Energy-momentum tensor in the quantum field theory

    International Nuclear Information System (INIS)

    Azakov, S.I.

    1977-01-01

    An energy-momentum tensor in the scalar field theory is built. The tensor must satisfy the finiteness requirement of the Green function. The Green functions can always be made finite by renormalizations in the S-matrix by introducing counter terms into the Hamiltonian (or Lagrangian) of the interaction. Such a renormalization leads to divergencies in the Green functions. Elimination of these divergencies requires the introduction of new counter terms, which must be taken into account in the energy-momentum tensor

  2. Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature

    DEFF Research Database (Denmark)

    Huebner, K.; Karsch, F.; Pica, Claudio

    2008-01-01

    We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...... coefficients, in particular the bulk viscosity, in the vicinity of a second order phase transition point....

  3. Twistor theory and the energy-momentum and angular momentum of the gravitational field at spatial infinity

    International Nuclear Information System (INIS)

    Shaw, W.T.

    1983-01-01

    Penrose's 'quasi-local mass and angular momentum' is investigated for 2-surfaces near spatial infinity in both linearized theory on Minkowski space and full general relativity. It is shown that for space-times that are radially smooth of order one in the sense of Beig and Schmidt with asymptotically electric Weyl curvature, there exists a global concept of a twistor space at spatial infinity. Global conservation laws for the energy-momentum and angular momentum are obtained, and the ten conserved quantities are shown to be invariant under asymptotic coordinate transformations. The relation to other definitions is discussed briefly. (author)

  4. ''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Gurcan, O.D.; Rewaldt, G.

    2008-01-01

    The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nm i U # parallel# R/B 2 , and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  5. Notes on the quantum theory of angular momentum

    CERN Document Server

    Feenberg, Eugene

    1999-01-01

    This classic, concise text has served a generation of physicists as an exceptionally useful guide to the mysteries of angular momenta and Clebsch-Gordon Coefficients. Derived from notes originally prepared to assist graduate students in reading research papers on atomic, molecular, and nuclear structure, the text first reviews the basic elements of quantum theory. It then examines the development of the fundamental commutation relations for angular momentum components and vector operators, and the ways in which matrix elements and eigenvalues of the angular momentum operators are worked out f

  6. M-momentum transfer between gravitons, membranes, and fivebranes as perturbative gauge theory processes

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Kraus, P.

    1998-01-01

    Polchinski and Pouliot have shown that M-momentum transfer between membranes in supergravity can be understood as a non-perturbative instanton effect in gauge theory. Here we consider a dual process: electric flux transmission between D-branes. We show that this process can be described in perturbation theory as virtual string pair creation, and is closely related to Schwinger's treatment of the pair creation of charged particles in a uniform electric field. Through the application of dualities, our perturbative calculation gives results for various non-perturbative amplitudes, including M-momentum transfer between gravitons, membranes and longitudinal fivebranes. Thus perturbation theory plus dualities are sufficient to demonstrate agreement between supergravity and gauge theory for a number of M-momentum transferring processes. A variety of other processes where branes are transmitted between branes, e.g. (p,q)-string transmission in IIB theory, can also be studied. We discuss the implications of our results for proving the eleven-dimensional Lorentz invariance of matrix theory. (orig.)

  7. Axiomatic field theory and quantum electrodynamics: the massive case. [Gauge invariance, Maxwell equations, high momentum behavior

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik

    1975-01-01

    Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.

  8. On the complex angular momentum theory of scattering

    International Nuclear Information System (INIS)

    Thylwe, K.-E.

    1983-01-01

    A contribution to the theory of complex angular momentum techniques in the field of atomic and molecular collisions is given. A new, flexible representation of the scattering amplitude on the basis of realistic assumptions for the behaviour of the S matrix in the complex angular momentum plane is derived. The representation has the form of a sum of steepest-descent integrals, S-matrix residue terms and a symmetry-type background integral. The flexibility is due to the presence of two integer parameters which may be chosen conveniently so as to make the residue sums sufficiently convergent and to minimise the total number of important terms. (author)

  9. Value and Momentum Everywhere

    DEFF Research Database (Denmark)

    Asness, Clifford S.; Moskowitz, Tobias J.; Heje Pedersen, Lasse

    across asset classes than passive exposures to the asset classes themselves. However, value and momentum are negatively correlated both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three factor model. Global funding liquidity risk...... is a partial source of these patterns, which are identifiable only when examining value and momentum simultaneously across markets. Our findings present a challenge to existing behavioral, institutional, and rational asset pricing theories that largely focus on U.S. equities....

  10. How psychological and behavioral team states change during positive and negative momentum.

    Science.gov (United States)

    Den Hartigh, Ruud J R; Gernigon, Christophe; Van Yperen, Nico W; Marin, Ludovic; Van Geert, Paul L C

    2014-01-01

    In business and sports, teams often experience periods of positive and negative momentum while pursuing their goals. However, researchers have not yet been able to provide insights into how psychological and behavioral states actually change during positive and negative team momentum. In the current study we aimed to provide these insights by introducing an experimental dynamical research design. Rowing pairs had to compete against a virtual opponent on rowing ergometers, while a screen in front of the team broadcasted the ongoing race. The race was manipulated so that the team's rowing avatar gradually progressed (positive momentum) or regressed (negative momentum) in relation to the victory. The participants responded verbally to collective efficacy and task cohesion items appearing on the screen each minute. In addition, effort exertion and interpersonal coordination were continuously measured. Our results showed negative psychological changes (perceptions of collective efficacy and task cohesion) during negative team momentum, which were stronger than the positive changes during positive team momentum. Moreover, teams' exerted efforts rapidly decreased during negative momentum, whereas positive momentum accompanied a more variable and adaptive sequence of effort exertion. Finally, the interpersonal coordination was worse during negative momentum than during positive momentum. These results provide the first empirical insights into actual team momentum dynamics, and demonstrate how a dynamical research approach significantly contributes to current knowledge on psychological and behavioral processes.

  11. Energy and angular-momentum non-conservation in four-dimensional gauge theories

    International Nuclear Information System (INIS)

    Manohar, A.

    1985-01-01

    We study energy and angular-momentum non-conservation on four-dimensional chiral gauge theories using Landau levels. These effects are physical manifestations of the usual gauge anomaly, and enable us to understand in a semi-classical approximation why anomaly cancellation is required for a consistent field theory. (orig.)

  12. Operator theory of angular momentum nad orientational auto-correlation functions

    International Nuclear Information System (INIS)

    Evans, M.W.

    1982-01-01

    The rigorous relation between the orientational auto-correlation function and the angular momentum autocorrelation function is described in two cases of interest. First when description of the complete zero THz- spectrum is required from the Mori continued fraction expansion for the angular momentum autocorrelation function and second when rotation/translation effects are important. The Mori-Evans theory of 1976, relying on the simple Shimizu relation is found to be essentially unaffected by the higher order corrections recently worked out by Ford and co-workers in the Markov limit. The mutual interaction of rotation and translation is important in determining the details of both the orientational and angular momentum auto-correlation function's (a.c.f.'s) in the presence of sample anisotropy or a symmetry breaking field. In this case it is essential to regard the angular momentum a.c.f. as non-Markovian and methods are developed to relate this to the orientational a.c.f. in the presence of rotation/translation coupling. (author)

  13. Alpha Momentum and Price Momentum

    Directory of Open Access Journals (Sweden)

    Hannah Lea Hühn

    2018-05-01

    Full Text Available We analyze a novel alpha momentum strategy that invests in stocks based on three-factor alphas which we estimate using daily returns. The empirical analysis for the U.S. and for Europe shows that (i past alpha has power in predicting the cross-section of stock returns; (ii alpha momentum exhibits less dynamic factor exposures than price momentum and (iii alpha momentum dominates price momentum only in the U.S. Connecting both strategies to behavioral explanations, alpha momentum is more related to an underreaction to firm-specific news while price momentum is primarily driven by price overshooting due to momentum trading.

  14. The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories

    International Nuclear Information System (INIS)

    Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin

    1990-02-01

    A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)

  15. The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories

    International Nuclear Information System (INIS)

    Pfirsch, D.; Morrison, P.J.

    1990-02-01

    A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs

  16. Modified weak energy condition for the energy momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Latorre, J.

    1998-01-01

    The weak energy condition is known to fail in general when applied to expectation values of the energy momentum tensor in flat space quantum field theory. It is shown how the usual counter arguments against its validity are no longer applicable if the states vertical stroke ψ right angle for which the expectation value is considered are restricted to a suitably defined subspace. A possible natural restriction on vertical stroke ψ right angle is suggested and illustrated by two quantum mechanical examples based on a simple perturbed harmonic oscillator Hamiltonian. The proposed alternative quantum weak energy condition is applied to states formed by the action of the scalar, vector and the energy momentum tensor operators on the vacuum. We assume conformal invariance in order to determine almost uniquely three-point functions involving the energy momentum tensor in terms of a few parameters. The positivity conditions lead to non-trivial inequalities for these parameters. They are satisfied in free field theories, except in one case for dimensions close to two. Further restrictions on vertical stroke ψ right angle are suggested which remove this problem. The inequalities which follow from considering the state formed by applying the energy momentum tensor to the vacuum are shown to imply that the coefficient of the topological term in the expectation value of the trace of the energy momentum tensor in an arbitrary curved space background is positive, in accord with calculations in free field theories. (orig.)

  17. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  18. Momentum effect in stocks’ returns between the rational and the behavioural financial theories: Proposition of the progressive rationality

    Directory of Open Access Journals (Sweden)

    Faten Zoghlami

    2013-01-01

    Full Text Available     The puzzling momentum strategies’ payoffs defied the rational financial theory asserting the stocks returns’ unpredictability. Moreover, the momentum effect persist the main stocks returns’ anomaly escaping any risk-based explanation. The resilience of this phenomenon had favoured the development of behavioural financial field, which breaks with the investor’ full rationality hypothesis. This paper attempts to reconcile between the rational and behavioural financial theories, through the introduction of the progressive rationality concept. Especially, we argue that recognizing the temporary inappropriate investors’ reactions; can resolve the puzzling momentum anomaly. To fulfil our objective, we identify the appropriate autoregressive level that captures the significant autocorrelations involved by the investors’ over and under reactions. Then, we explore the profitability of the 6/6 momentum strategy implemented on the adjusted stocks’ returns. The adjusted momentum strategy is still profitable but no longer puzzling, since the related excess return is henceforth fully captured by a β and a size effect.Key words: Tunisian momentum effect, the rational finance theory, the behavioural finance theory, the three-factorial model and the autoregressive process.

  19. Green's functions for theories with massless particles (in perturbation theory). [Growth properties, momentum space, mass renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)

    1975-01-01

    With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.

  20. High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 1

    International Nuclear Information System (INIS)

    Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA

    1987-01-01

    Relativistic quantum field theories may give us useful guidance to understanding high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, we study the ladder diagrams in φ 3 theory. In this paper, some of the necessary techniques are developed and applied to the simplest cases of the fourth- and sixth-order ladder diagrams. (orig.)

  1. Energy-momentum tensor of the electromagnetic field

    International Nuclear Information System (INIS)

    Horndeski, G.W.; Wainwright, J.

    1977-01-01

    In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources

  2. Actuator disc edge singularity. The key to a revised actuator disc concept and momentum theory

    Energy Technology Data Exchange (ETDEWEB)

    Kuik, G.A.M. van (The Wind Energy Group of the Technical University Eindhoven (NL))

    1989-01-01

    Since the beginning of rotor aerodynamics the actuator disc momentum theory occupies a prominant place in almost any textbook on this subject. Specially in axial flow the theory provides an easy and rather accurate performance prediction. The results first obtained by Lanchester for the induced power of a hovering rotor and the maximum power of a wind turbine are still used as guidelines for complicated calculations. On the other hand, experimental results for propellers are known to deviate systematically (some 10%) from the momentum theory results. This is commonly attributed to the differences between a real rotor and an actuator disc. However, some actuator disc- and actuator strip (the 2-dimensional version) experiments are described in literature, showing the same deviations from momentum theory results. Therefore, apart from the question how representative an actuator disc is for a real rotor, the actuator disc concept itself may be inadequate. This problem is the subject of the work describe here. It will be shown that the classical actuator disc concept ignores discrete forces resulting from a flow singularity at the edge of the disc. The (extended) momentum theory, applied to this actuator strip model, shows a shift of the results towards the experimental data, and for the static case (hover) even a quantitative agreement is obtained. (author) 12 refs.

  3. Cutoff effects on energy-momentum tensor correlators in lattice gauge theory

    International Nuclear Information System (INIS)

    Meyer, Harvey B.

    2009-01-01

    We investigate the discretization errors affecting correlators of the energy-momentum tensor T μν at finite temperature in SU(N c ) gauge theory with the Wilson action and two different discretizations of T μν . We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x 0 and spatial momentum p, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy ∫d 3 x T 00 has much larger discretization errors than the correlator of momentum ∫d 3 x T 0k . Secondly, the shear and diagonal stress correlators (T 12 and T kk ) require N τ ≥ 8 for the Tx 0 = 1/2 point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with a σ /a τ = 2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p correlators.

  4. Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory

    International Nuclear Information System (INIS)

    Pons, Josep M.

    2011-01-01

    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.

  5. How psychological and behavioral team states change during positive and negative momentum

    NARCIS (Netherlands)

    Den Hartigh, Ruud J.R.; Gernigon, Christophe; Van Yperen, Nico W.; Marin, Ludovic; Van Geert, Paul

    In business and sports, teams often experience periods of positive and negative momentum while pursuing their goals. However, researchers have not yet been able to provide insights into how psychological and behavioral states actually change during positive and negative team momentum. In the current

  6. General momentum theory for wind turbines at low tip speed ratios

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; van Kuik, Gijs A. M.

    2011-01-01

    General momentum theory is used to study the behaviour of the ‘classical’ free vortex wake model of Joukowsky. This model has recently attained considerable attention as it shows the possibility of achieving a power performance that greatly exceeds the Lanchester‐Betz limit for rotors running...... at low tip speed ratios. This behaviour is confirmed even when including the effect of a centre vortex, allowing azimuthal velocities and the associated radial pressure gradient to be taken into account in the axial momentum balance without any simplifying assumptions. It is shown that the most likely...

  7. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong

    2016-01-01

    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip....... for the MEXICO rotor. Results show that the improved BEM theory gives a better prediction than the classic BEM method, especially in the blade tip region, when comparing to the MEXICO measurements. (C) 2016 Elsevier Ltd. All rights reserved....

  8. Energy-momentum tensor in theories with scalar fields and two coupling constants. I. Non-Abelian case

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1989-01-01

    In this paper, we generalize our earlier discussion of renormalization of the energy-momentum tensor in scalar QED to that in non-Abelian gauge theories involving scalar fields. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/)

  9. Is blade element momentum theory (BEM) enough for smart rotor design

    NARCIS (Netherlands)

    Yu, W.; Simao Ferreira, C.J.; van Kuik, G.A.M.

    2014-01-01

    Smart rotor emerges as an innovation technique to reduce the impact of dynamic loading on wind turbines. Local movements of distributed aerodynamic devices will enhance the non-uniformity and dynamic effects of loading, which will challenge the applicability of the blade element momentum theory

  10. Low momentum penguin contributions in a chiral theory

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1985-11-01

    It has been shown that penguin diagram contributions corresponding to u-quark loop momenta below a scale Λsub(x) approximately= 1 GeV are enhanced and could at least partly explain the ΔI=1/2 rule. Thus a previous calculation within the bag model is confirmed. The present caluculation is performed wihtin an effective chiral theory with pions and kaons coupled to quarks. It has been found that low momentum left-left loop contributions are important, while left-right contributions can be neglected

  11. An equivalence between momentum and charge in string theory

    International Nuclear Information System (INIS)

    Horne, J.H.; Horowitz, G.T.; Steif, A.R.

    1992-01-01

    It is shown that for a translationally invariant solution to string theory, spacetime duality interchanges the momentum in the symmetry direction and the axion charge per unit length. As one application, we show explicitly that charged black strings are equivalent to boosted (uncharged) black strings. The extremal black strings (which correspond to the field outside of a fundamental macroscopic string) are equivalent to plane-fronted waves describing strings moving at the speed of light

  12. Energy momentum tensor and marginal deformations in open string field theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2004-01-01

    Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)

  13. A complex angular momentum theory of modified Coulomb scattering

    International Nuclear Information System (INIS)

    Thylwe, K.E.; Connor, J.N.L.

    1985-01-01

    The paper develops an exact complex angular momentum (CAM) theory of elastic scattering for a complex optical potential with a Coulombic tail. The present CAM theory avoids complications due to the long range nature of the Coulombic potential in a straightforward way. The Sommerfeld-Watson transformation together with a travelling wave (near-side far-side) decomposition, is used to obtain an exact representation for the scattering amplitude f(theta) in terms of a background integral fsub(B)(theta) and a series of subamplitudes fsup((+-))sub(n)(theta). New exact representations are derived for fsub(B)(theta) when the scattering matrix element S(lambda) possesses local symmetries of the type S(-lambda)=S(lambda)exp(+-2iπlambda) and S(-lambda)=S(lambda). The exact results obtained in this paper unify the CAM theory of scattering for Coulombic and short range potentials and are especially suitable for the introduction of semiclassical approximations. (author)

  14. Solitons and the energy-momentum tensor for affine Toda theory

    Science.gov (United States)

    Olive, D. I.; Turok, N.; Underwood, J. W. R.

    1993-07-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.

  15. Solitons and the energy-momentum tensor for affine Toda theory

    International Nuclear Information System (INIS)

    Olive, D.I.; Turok, N.; Underwood, J.W.R.

    1993-01-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moodyy algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy-momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g. (orig.)

  16. Energy momentum tensor and operator product expansion in local causal perturbation theory

    International Nuclear Information System (INIS)

    Prange, D.

    2000-09-01

    We derive new examples for algebraic relations of interacting fields in local perturbative quantum field theory. The fundamental building blocks in this approach are time ordered products of free (composed) fields. We give explicit formulas for the construction of Poincare covariant ones, which were already known to exist through cohomological arguments. For a large class of theories the canonical energy momentum tensor is shown to be conserved. Classical theories without dimensionful couplings admit an improved tensor that is additionally traceless. On the example of φ 4 -theory we discuss the improved tensor in the quantum theory. Its trace receives an anomalous contribution due to its conservation. Moreover, we define an interacting bilocal normal product for scalar theories. This leads to an operator product expansion of two time ordered fields. (orig.) [de

  17. High-energy, large-momentum-transfer processes: Ladder diagrams in var-phi 3 theory

    International Nuclear Information System (INIS)

    Newton, C.L.J.

    1990-01-01

    Relativistic quantum field theories may help one to understand high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, the author studies ladder diagrams in var-phi 3 theory. He shows that in the limit s much-gt |t| much-gt m 2 , the scattering amplitude for the N-rung ladder diagram takes the form s -1 |t| -N+1 times a homogeneous polynomial of degree 2N - 2 and ln s and ln |t|. This polynomial takes different forms depending on the relation of ln |t| to ln s. More precisely, the asymptotic formula for the N-rung ladder diagram has points of non-analytically when ln |t| = γ ln s for γ = 1/2, 1/3, hor-ellipsis, 1/N-2

  18. Energy-momentum tensor in the fermion-pairing model

    International Nuclear Information System (INIS)

    Kawati, S.; Miyata, H.

    1980-01-01

    The symmetric energy-momentum tensor for the self-interacting fermion theory (psi-barpsi) 2 is expressed in terms of the collective mode within the Hartree approximation. The divergent part of the energy-momentum tensor for the fermion theory induces an effective energy-momentum tensor for the collective mode, and this effective energy-momentum tensor automatically has the Callan-Coleman-Jackiw improved form. The renormalized energy-momentum tensor is structurally equivalent to the Callan-Coleman-Jackiw improved tensor for the Yukawa theory

  19. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    International Nuclear Information System (INIS)

    Montesinos, M.; Flores, E.

    2006-01-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  20. Symmetry broken and restored coupled-cluster theory: I. Rotational symmetry and angular momentum

    International Nuclear Information System (INIS)

    Duguet, T

    2015-01-01

    We extend coupled-cluster (CC) theory performed on top of a Slater determinant breaking rotational symmetry to allow for the exact restoration of the angular momentum at any truncation order. The main objective relates to the description of near-degenerate finite quantum systems with an open-shell character. As such, the newly developed many-body formalism offers a wealth of potential applications and further extensions dedicated to the ab initio description of, e.g., doubly open-shell atomic nuclei and molecule dissociation. The formalism, which encompasses both single-reference CC theory and projected Hartree–Fock theory as particular cases, permits the computation of usual sets of connected diagrams while consistently incorporating static correlations through the highly non-perturbative restoration of rotational symmetry. Interestingly, the yrast spectroscopy of the system, i.e. the lowest energy associated with each angular momentum, is accessed within a single calculation. A key difficulty presently overcome relates to the necessity to handle generalized energy and norm kernels for which naturally terminating CC expansions could be eventually obtained. The present work focuses on SU(2) but can be extended to any (locally) compact Lie group and to discrete groups, such as most point groups. In particular, the formalism will be soon generalized to U(1) symmetry associated with particle number conservation. This is relevant to Bogoliubov CC theory that was recently applied to singly open-shell nuclei. (paper)

  1. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  2. Momentum and hamiltonian in complex action theory

    DEFF Research Database (Denmark)

    Nagao, Keiichi; Nielsen, Holger Frits Bech

    2012-01-01

    $-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...

  3. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    Science.gov (United States)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  4. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  5. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Montesinos, M. [CINVESTAV-IPN, 07360 Mexico D.F. (Mexico); Flores, E. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)]. E-mail: merced@fis.cinvestav.mx

    2006-07-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  6. First-principles momentum-dependent local ansatz wavefunction and momentum distribution function bands of iron

    International Nuclear Information System (INIS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-01-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi–Dirac function for the d electrons with e g symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data. (author)

  7. Nonlocal gauge theories

    International Nuclear Information System (INIS)

    Partovi, M.H.

    1982-01-01

    From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories

  8. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    International Nuclear Information System (INIS)

    Li, Yunyun; Li, Nianbei; Hänggi, Peter; Li, Baowen; Liu, Sha

    2015-01-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  9. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    Science.gov (United States)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  10. Thermo-electric transport in gauge/gravity models with momentum dissipation

    Science.gov (United States)

    Amoretti, Andrea; Braggio, Alessandro; Maggiore, Nicola; Magnoli, Nicodemo; Musso, Daniele

    2014-09-01

    We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.

  11. Dryson equations, Ward identities, and the infrared behavior of Yang-Mills theories. [Schwinger-Dyson equations, Slavnov-Taylor identities

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.

    1979-01-01

    It was shown using the Schwinger-Dyson equations and the Slavnov-Taylor identities of Yang-Mills theory that no inconsistency arises if the gluon propagator behaves like (1/p/sup 2/)/sup 2/ for small p/sup 2/. To see whether the theory actually contains such singular long range behavior, a nonperturbative closed set of equations was formulated by neglecting the transverse parts of GAMMA and GAMMA/sub 4/ in the Schwinger-Dyson equations. This simplification preserves all the symmetries of the theory and allows the possibility for a singular low-momentum behavior of the gluon propagator. The justification for neglecting GAMMA/sup (T)/ and GAMMA/sub 4//sup (T)/ is not evident but it is expected that the present study of the resulting equations will elucidate this simplification, which leads to a closed set of equations.

  12. Dependence of two-neutron momentum densities on total pair momentum

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph A [Los Alamos National Laboratory; Wiringa, R B [ANL; Schiavilla, R [JEFFERSON LAB; Pieper, Steven C [ANL

    2008-01-01

    Two-nucleon momentum distributions are calculated for the ground states of {sup 3}He and {sup 4}He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range (300--500) MeV/c and vanishing total momentum. Howeer, as the totalmomentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for {sup 3}He and 1/4 for {sup 4}He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A(e, e'pN).

  13. Momentum fractionation on superstrata

    International Nuclear Information System (INIS)

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-01-01

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS_3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  14. Analysis of Health Behavior Theories for Clustering of Health Behaviors.

    Science.gov (United States)

    Choi, Seung Hee; Duffy, Sonia A

    The objective of this article was to review the utility of established behavior theories, including the Health Belief Model, Theory of Reasoned Action, Theory of Planned Behavior, Transtheoretical Model, and Health Promotion Model, for addressing multiple health behaviors among people who smoke. It is critical to design future interventions for multiple health behavior changes tailored to individuals who currently smoke, yet it has not been addressed. Five health behavior theories/models were analyzed and critically evaluated. A review of the literature included a search of PubMed and Google Scholar from 2010 to 2016. Two hundred sixty-seven articles (252 studies from the initial search and 15 studies from the references of initially identified studies) were included in the analysis. Most of the health behavior theories/models emphasize psychological and cognitive constructs that can be applied only to one specific behavior at a time, thus making them not suitable to address multiple health behaviors. However, the Health Promotion Model incorporates "related behavior factors" that can explain multiple health behaviors among persons who smoke. Future multiple behavior interventions guided by the Health Promotion Model are necessary to show the utility and applicability of the model to address multiple health behaviors.

  15. Currents and the energy-momentum tensor in classical field theory: a fresh look at an old problem

    International Nuclear Information System (INIS)

    Forger, Michael; Roemer, Hartmann

    2004-01-01

    We give a comprehensive review of various methods to define currents and the energy-momentum tensor in classical field theory, with emphasis on a geometric point of view. The necessity of 'improving' the expressions provided by the canonical Noether procedure is addressed and given an adequate geometric framework. The main new ingredient is the explicit formulation of a principle of 'ultralocality' with respect to the symmetry generators, which is shown to fix the ambiguity inherent in the procedure of improvement and guide it towards a unique answer: when combined with the appropriate splitting of the fields into sectors, it leads to the well-known expressions for the current as the variational derivative of the matter field Lagrangian with respect to the gauge field and for the energy-momentum tensor as the variational derivative of the matter field Lagrangian with respect to the metric tensor. In the second case, the procedure is shown to work even when the matter field Lagrangian depends explicitly on the curvature, thus establishing the correct relation between scale invariance, in the form of local Weyl invariance 'on shell', and tracelessness of the energy-momentum tensor, required for a consistent definition of the concept of a conformal field theory

  16. Dropout Rates, Student Momentum, and Course Walls: A New Tool for Distance Education Designers

    Science.gov (United States)

    Christensen, Steven S.; Spackman, Jonathan S.

    2017-01-01

    This paper explores a new tool for instructional designers. By calculating and graphing the Student Momentum Indicator (M) for 196 university-level online courses and by employing the constant comparative method within the grounded theory framework, eight distinct graph shapes emerged as meaningful categories of dropout behavior. Several of the…

  17. DC conductivities from non-relativistic scaling geometries with momentum dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Cremonini, S. [Department of Physics, Lehigh University,16 Memorial Drive East, Bethlehem, PA 18018 (United States); Liu, Hai-Shan [Institute for Advanced Physics & Mathematics, Zhejiang University of Technology,Hangzhou 310023 (China); George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing 100875 (China); DAMTP, Centre for Mathematical Sciences, Cambridge University,Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2017-04-04

    We consider a gravitational theory with two Maxwell fields, a dilatonic scalar and spatially dependent axions. Black brane solutions to this theory are Lifshitz-like and violate hyperscaling. Working with electrically charged solutions, we calculate analytically the holographic DC conductivities when both gauge fields are allowed to fluctuate. We discuss some of the subtleties associated with relating the horizon to the boundary data, focusing on the role of Lifshitz asymptotics and the presence of multiple gauge fields. The axionic scalars lead to momentum dissipation in the dual holographic theory. Finally, we examine the behavior of the DC conductivities as a function of temperature, and comment on the cases in which one can obtain a linear resistivity.

  18. Transverse Momentum Distributions for Heavy Quark Pairs

    OpenAIRE

    Berger, Edmond L.; Meng, Ruibin

    1993-01-01

    We study the transverse momentum distribution for a $pair$ of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order $\\alpha_s^3$ QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all...

  19. A parametric study of the behavior of the angular momentum vector during spin rate changes of rigid body spacecraft

    Science.gov (United States)

    Longuski, J. M.

    1982-01-01

    During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.

  20. Momentum-space cigar geometry in topological phases

    Science.gov (United States)

    Palumbo, Giandomenico

    2018-01-01

    In this paper, we stress the importance of momentum-space geometry in the understanding of two-dimensional topological phases of matter. We focus, for simplicity, on the gapped boundary of three-dimensional topological insulators in class AII, which are described by a massive Dirac Hamiltonian and characterized by an half-integer Chern number. The gap is induced by introducing a magnetic perturbation, such as an external Zeeman field or a ferromagnet on the surface. The quantum Bures metric acquires a central role in our discussion and identifies a cigar geometry. We first derive the Chern number from the cigar geometry and we then show that the quantum metric can be seen as a solution of two-dimensional non-Abelian BF theory in momentum space. The gauge connection for this model is associated to the Maxwell algebra, which takes into account the Lorentz symmetries related to the Dirac theory and the momentum-space magnetic translations connected to the magnetic perturbation. The Witten black-hole metric is a solution of this gauge theory and coincides with the Bures metric. This allows us to calculate the corresponding momentum-space entanglement entropy that surprisingly carries information about the real-space conformal field theory describing the defect lines that can be created on the gapped boundary.

  1. Momentum accounting for trends : Relevance, explanatory and predictive power of the framework of triple-entry bookkeeping and momentum accounting of Yuji Ijiri

    NARCIS (Netherlands)

    Melse, E.

    2010-01-01

    The objective of momentum accounting is to improve strategic management accounting practices, enumeration and corporate disclosure for governance purposes. This accounting theory introduces new measurement units: momentum and force. The key development is to see momentum as a rate or the speed of

  2. Quantum scattering theory on the momentum lattice

    International Nuclear Information System (INIS)

    Rubtsova, O. A.; Pomerantsev, V. N.; Kukulin, V. I.

    2009-01-01

    A new approach based on the wave-packet continuum discretization method recently developed by the present authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the momentum space. The solution of the few-body scattering problem can be found in the approach from linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed approach is illustrated by the solution of numerous two- and three-body scattering problems with local and nonlocal potentials below and well above the three-body breakup threshold.

  3. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.

    2011-01-01

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  4. Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum

    International Nuclear Information System (INIS)

    Nashed, Gamal G. L.

    2010-01-01

    The energy–momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space-time their energies are different. Therefore, a regularized expression of the gravitational energy–momentum tensor of the teleparallel equivalent of general relativity (TEGR), is used to make the energies of the two tetrad fields equal. The definition of the gravitational energy–momentum is used to investigate the energy within the external event horizon. The components of angular momentum associated with these space–times are calculated. In spite of using a static space–time, we get a non-zero component of angular momentum! Therefore, we derive the Killing vectors associated with these space–times using the definition of the Lie derivative of a second rank tensor in the framework of the TEGR to make the picture more clear. (general)

  5. On the Classical and Quantum Momentum Map

    DEFF Research Database (Denmark)

    Esposito, Chiara

    In this thesis we study the classical and quantum momentum maps and the theory of reduction. We focus on the notion of momentum map in Poisson geometry and we discuss the classification of the momentum map in this framework. Furthermore, we describe the so-called Poisson Reduction, a technique...... that allows us to reduce the dimension of a manifold in presence of symmetries implemented by Poisson actions. Using techniques of deformation quantization and quantum groups, we introduce the quantum momentum map as a deformation of the classical momentum map, constructed in such a way that it factorizes...

  6. A CFD analysis of the actuator disc flow compared with momentum theory results

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H. [Risoe National Laboratory, Roskilde (Denmark)

    1997-08-01

    The blade element momentum (BEM) model is still used in many aerodynamic and aeroelastic models for design and load calculations. This is due to its simplicity, robustness, computational speed and good accuracy for a wide range of applications. The question about accuracy is however closely connected to the airfoil section data and therefore correlation/lack of correlation with experimental results can both be due to the specific input data used and due to the induced velocity field predicted by the BEM method. It is also well-known that the BEM method for some applications is used under operational conditions that violates the assumptions made for the development of the model, e.g. operation in yaw and operation at high loading. The main objective with the present study is to investigate this part of the BEM method (the momentum strip theory MST) on which the determination of the induced velocities is based. This is done by comparing the results of the MST model with velocities predicted on basis of the Navier Stokes equations for the flow through an actuator disc. (au)

  7. Dirac states for unit position and momentum: Phase consistency of their angular momentum representations

    International Nuclear Information System (INIS)

    Snider, R.F.

    1982-01-01

    It is shown that the position and momentum directional representations of angular momentum states must satisfy Σ/sub lambdas/ = Σ/sub lambdas/(i)/sup lambda/Y/sub lambdas/(r)Y/sub lambdas/ (p)*. This imposes phase constraints on the relation between , , Y/sub lambdas/ (r), and Y/sub lambdas/(p). In the accompanying paper, it is shown that this resolves a problem in the centrifugal sudden approximation of molecular collision theory

  8. Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws.

    Science.gov (United States)

    Lehoucq, R B; Sears, Mark P

    2011-09-01

    The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.

  9. Consistent momentum space regularization/renormalization of supersymmetric quantum field theories: the three-loop β-function for the Wess-Zumino model

    International Nuclear Information System (INIS)

    Carneiro, David; Sampaio, Marcos; Nemes, Maria Carolina; Scarpelli, Antonio Paulo Baeta

    2003-01-01

    We compute the three loop β function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disentangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories. (author)

  10. Momentum considerations on the New MEXICO experiment

    Science.gov (United States)

    Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.

    2016-09-01

    The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.

  11. Non-linear variation of the beta function with momentum

    International Nuclear Information System (INIS)

    Parzen, G.

    1983-07-01

    A theory is presented for computing the non-linear dependence of the β-functions on momentum. Results are found for the quadratic term. The results of the theory are compared with computed results. A procedure is proposed for computing the strengths of the sextupole correctors to correct the dependence of the β-function on momentum

  12. Cosmological models in energy-momentum-squared gravity

    Science.gov (United States)

    Board, Charles V. R.; Barrow, John D.

    2017-12-01

    We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.

  13. On the UV renormalizability of noncommutative field theories

    International Nuclear Information System (INIS)

    Sarkar, Swarnendu

    2002-01-01

    UV/IR mixing is one of the most important features of noncommutative field theories. As a consequence of this coupling of the UV and IR sectors, the configuration of fields at the zero momentum limit in these theories is a very singular configuration. We show that the renormalization conditions set at a particular momentum configuration with a fixed number of zero momenta, renormalizes the Green's functions for any general momenta only when this configuration has same set of zero momenta. Therefore only when renormalization conditions are set at a point where all the external momenta are nonzero, the quantum theory is renormalizable for all values of nonzero momentum. This arises as a result of different scaling behaviors of Green's functions with respect to the UV cutoff (Λ) for configurations containing different set of zero momenta. We study this in the noncommutative φ 4 theory and analyse similar results for the Gross-Neveu model at one loop level. We next show this general feature using Wilsonian RG of Polchinski in the globally O(N) symmetric scalar theory and prove the renormalizability of the theory to all orders with an infrared cutoff. In the context of spontaneous symmetry breaking (SSB) in noncommutative scalar theory, it is essential to note the different scaling behaviors of Green's functions with respect to Λ for different set of zero momenta configurations. We show that in the broken phase of the theory the Ward identities are satisfied to all orders only when one keeps an infrared regulator by shifting to a nonconstant vacuum. (author)

  14. Excessive sensitivity of momentum densities to crystal potentials as a reason for difficulties in verifying positron enhancement theories

    International Nuclear Information System (INIS)

    Sormann, H.

    2001-01-01

    The excessive sensitivity of the momentum densities of electron-positron annihilation pairs (MDAP) to crystal potentials found in this study severely deteriorates a possibility to use a comparison between theoretical and experimental MDAP results as a criterion for the legitimacy of electron-positron interaction theories. Illustrative examples are given. (orig.)

  15. The energy-momentum operator in curved space-time

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.

    1983-01-01

    It is argued that the only meaningful geometrical measure of the energy-momentum of states of matter described by a free quantum field theory in a general curved space-time is that provided by a normal ordered energy-momentum operator. The finite expectation values of this operator are contrasted with the conventional renormalized expectation values and it is further argued that the use of renormalization theory is inappropriate in this context. (author)

  16. Energy-momentum tensor in scalar QED

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1988-01-01

    We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE

  17. Momentum-subtraction renormalization techniques in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-10-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.

  18. Momentum-subtraction renormalization techniques in curved space-time

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should

  19. Toward a Theory of Entrepreneurial Behavior

    DEFF Research Database (Denmark)

    Teague, Bruce T.; Gartner, Bill

    2017-01-01

    The chapter reviews several of the most prominent entrepreneurship frameworks to demonstrate that the entrepreneurship field lacks a theory of entrepreneurial behavior. However, each of these existing frameworks would benefit from, and be complemented by, an entrepreneurial behavioral theory. Dra...

  20. Papapetrou energy-momentum tensor for Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Guarrera, David; Hariton, A. J.

    2007-01-01

    We construct a conserved, symmetric energy-momentum (pseudo-)tensor for Chern-Simons modified gravity, thus demonstrating that the theory is Lorentz invariant. The tensor is discussed in relation to other gravitational energy-momentum tensors and analyzed for the Schwarzschild, Reissner-Nordstrom, and Friedmann-Robertson-Walker solutions. To our knowledge this is the first confirmation that the Reissner-Nordstrom and Friedmann-Robertson-Walker metrics are solutions of the modified theory

  1. Legislator voting and behavioral science theory: a systematic review.

    Science.gov (United States)

    Tung, Gregory J; Vernick, Jon S; Reiney, Erin V; Gielen, Andrea C

    2012-11-01

    To examine the application of behavioral science theories to explain the voting behavior of legislators for public health policies. We conducted a systematic review to identify studies that examined factors associated with legislator support, intention to vote, or actual votes on public health policies, emphasizing those grounded in behavior science theory. Twenty-one papers met our inclusion criteria, and 6 were explicitly grounded in a behavioral science theory. Behavioral science theories, and the theory of planned behavior in particular, provide a framework for understanding legislator voting behavior and can be used by advocates to advance pro-health policies.

  2. A MAPLE Package for Energy-Momentum Tensor Assessment in Curved Space-Time

    International Nuclear Information System (INIS)

    Murariu, Gabriel; Praisler, Mirela

    2010-01-01

    One of the most interesting problem which remain unsolved, since the birth of the General Theory of Relativity (GR), is the energy-momentum localization. All our reflections are within the Lagrange formalism of the field theory. The concept of the energy-momentum tensor for gravitational interactions has a long history. To find a generally accepted expression, there have been different attempts. This paper is dedicated to the investigation of the energy-momentum problem in the theory of General Relativity. We use Einstein [1], Landau-Lifshitz [2], Bergmann-Thomson [3] and Moller's [4] prescriptions to evaluate energy-momentum distribution. In order to cover the huge volume of computation and, bearing in mind to make a general approaching for different space-time configurations, a MAPLE application to succeed in studying the energy momentum tensor was built. In the second part of the paper for two space-time configuration, the comparative results were presented.

  3. Population momentum across vertebrate life histories

    Science.gov (United States)

    Koons, D.N.; Grand, J.B.; Arnold, J.M.

    2006-01-01

    Population abundance is critically important in conservation, management, and demographic theory. Thus, to better understand how perturbations to the life history affect long-term population size, we examined population momentum for four vertebrate classes with different life history strategies. In a series of demographic experiments we show that population momentum generally has a larger effect on long-term population size for organisms with long generation times than for organisms with short generation times. However, patterns between population momentum and generation time varied across taxonomic groups and according to the life history parameter that was changed. Our findings indicate that momentum may be an especially important aspect of population dynamics for long-lived vertebrates, and deserves greater attention in life history studies. Further, we discuss the importance of population momentum in natural resource management, pest control, and conservation arenas. ?? 2006 Elsevier B.V. All rights reserved.

  4. Momentum of the Pure Radiation Field

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2007-01-01

    Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.

  5. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  6. Asymmetric Extreme Tails and Prospective Utility of Momentum Returns

    NARCIS (Netherlands)

    Stork, P.A.; Gregory-Allen, R.; Lu, H.

    2012-01-01

    We use extreme value theory to analyse the tails of a momentum strategy's return distribution. The asymmetry between the fat left tail and thin right tail strongly reduces a momentum strategy's prospective utility levels. © 2012 Elsevier B.V.

  7. Mimesis: Linking Postmodern Theory to Human Behavior

    Science.gov (United States)

    Dybicz, Phillip

    2010-01-01

    This article elaborates mimesis as a theory of causality used to explain human behavior. Drawing parallels to social constructionism's critique of positivism and naturalism, mimesis is offered as a theory of causality explaining human behavior that contests the current dominance of Newton's theory of causality as cause and effect. The contestation…

  8. Diffraction and angular momentum effects in semiclassical atomic scattering theory

    International Nuclear Information System (INIS)

    Russek, A.

    1979-01-01

    The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs

  9. Crisis behavior: An exploration of theories in concert.

    Science.gov (United States)

    McConnell, Jason B; Crudo, Christine

    2015-01-01

    How might prominent existing communication theory better explain behavior in a crisis context, when considered in concert with one another? This theoretical work highlights the insight to be gained using Situational Crisis Communication Theory and Bandura's notions of self-efficacy to heighten the explanatory power of the Theory of Planned Behavior as applied to communication during times of crisis. Situational Crisis Communication Theory better explains how past experience with crisis influences the attitudes and social norms of crisis behavior, while Bandura's notion of self-efficacy speaks more directly to the availability of resources as contributing factors to perceived behavioral control in a crisis situation. As such, the incorporation of these well-developed notions into the broader framework of the Theory of Planned Behavior affords greater understanding of the relationship between communication and behavior during a crisis. Further exploration of this theoretical relationship is warranted.

  10. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    Energy Technology Data Exchange (ETDEWEB)

    Kurian, P., E-mail: pkurian@gmx.com [National Human Genome Center, Howard University, College of Medicine, Washington, DC (United States); Verzegnassi, C. [Department of Chemistry and Environmental Physics, University of Udine, Udine (Italy); Association for Medicine and Complexity (AMeC), Trieste (Italy)

    2016-01-28

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.

  11. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    International Nuclear Information System (INIS)

    Kurian, P.; Verzegnassi, C.

    2016-01-01

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.

  12. Momentum transfer theory of non-conservative charged particle transport in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Vrhovac, S.B.; Petrovic, Z.Lj.

    1995-01-01

    Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m 0 0 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles

  13. Comparing three attitude-behavior theories for predicting science teachers' intentions

    Science.gov (United States)

    Zint, Michaela

    2002-11-01

    Social psychologists' attitude-behavior theories can contribute to understanding science teachers' behaviors. Such understanding can, in turn, be used to improve professional development. This article describes leading attitude-behavior theories and summarizes results from past tests of these theories. A study predicting science teachers' intention to incorporate environmental risk education based on these theories is also reported. Data for that study were collected through a mail questionnaire (n = 1336, radjusted = 80%) and analyzed using confirmatory factor and multiple regression analysis. All determinants of intention to act in the Theory of Reasoned Action and Theory of Planned Behavior and some determinants in the Theory of Trying predicted science teachers' environmental risk education intentions. Given the consistency of results across studies, the Theory of Planned Behavior augmented with past behavior is concluded to provide the best attitude-behavior model for predicting science teachers' intention to act. Thus, science teachers' attitude toward the behavior, perceived behavioral control, and subjective norm need to be enhanced to modify their behavior. Based on the Theory of Trying, improving their attitude toward the process and toward success, and expectations of success may also result in changes. Future research should focus on identifying determinants that can further enhance the ability of these theories to predict and explain science teachers' behaviors.

  14. Overview of toroidal momentum transport

    International Nuclear Information System (INIS)

    Peeters, A.G.; Hornsby, W.A.; Angioni, C.; Hein, T.; Kluy, N.; Strintzi, D.; Tardini, G.; Bortolon, A.; Camenen, Y.; Casson, F.J.; Snodin, A.P.; Szepesi, G.; Duval, B.; Fiederspiel, L.; Idomura, Y.; Mantica, P.; Parra, F.I.; Tala, T.; De Vries, P.; Weiland, J.

    2011-01-01

    Toroidal momentum transport mechanisms are reviewed and put in a broader perspective. The generation of a finite momentum flux is closely related to the breaking of symmetry (parity) along the field. The symmetry argument allows for the systematic identification of possible transport mechanisms. Those that appear to lowest order in the normalized Larmor radius (the diagonal part, Coriolis pinch, E x B shearing, particle flux, and up-down asymmetric equilibria) are reasonably well understood. At higher order, expected to be of importance in the plasma edge, the theory is still under development.

  15. High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 2

    International Nuclear Information System (INIS)

    Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA

    1987-01-01

    The scattering amplitude for the four-rung ladder diagram in φ 3 theory is evaluated at high energies and for large momentum transfers. The result takes the form of s -1 vertical stroketvertical stroke -3 multiplied by a homogeneous sixth-order polynomial in ln s and 1nvertical stroketvertical stroke. The novel and unexpected feature is that this polynomial is different depending on whether 1n vertical stroketvertical stroke is larger or less than 1/2 1n s. Thus the asymptotic formula is not analytic at 1n vertical stroketvertical stroke=1/2 1n s, although the first five derivatives are continuous. (orig.)

  16. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  17. Perilaku Pembelian Konsumen: Sebuah Tinjauan Literatur Theory of Planned Behavior

    Directory of Open Access Journals (Sweden)

    Meitiana

    2017-06-01

    Full Text Available This study aims to examine the differences between several empirical articles on the theory of planned behavior. Theory of planned behavior provides a framework for studying attitudes toward behaviors that postulate three determinants of conceptual intent. Specifically, the intention is based on the variables of attitude toward behavior, subjective norms, and perceived behavioral control. Although this theory has been used frequently, there are still differences in outcomes in explaining attitudes toward behavior. The results show that there is still a different view of the theory of planned behavior so it is necessary to identify the gaps that occur in this theory. For further research is expected to expand and enrich the discussion of the theory of planned behavior

  18. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes

    Energy Technology Data Exchange (ETDEWEB)

    Günaydin, Murat [Institute for Gravitation and the Cosmos, Physics Department,Pennsylvania State University, University Park, PA 16802 (United States); Lüst, Dieter [Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Malek, Emanuel [Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München (Germany)

    2016-11-07

    We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginary octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g{sub s}.

  19. Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons

    Science.gov (United States)

    Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco

    2017-12-01

    We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham–Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin–orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.

  20. Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons

    Science.gov (United States)

    Y Bliokh, Konstantin; Y Bekshaev, Aleksandr; Nori, Franco

    2017-12-01

    We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham-Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin-orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.

  1. Renormalized energy-momentum tensor of λΦ4 theory in curved ...

    Indian Academy of Sciences (India)

    Divergenceless expression for the energy-momentum tensor of scalar field is obtained using the momentum cut-off regularization technique. We consider a scalar field with quartic self-coupling in a spatially flat (3+1)-dimensional Robertson–Walker space-time, having arbitrary mass and coupled to gravity. As special cases ...

  2. Theories of information behavior

    CERN Document Server

    Erdelez, Sandra; McKechnie, Lynne

    2005-01-01

    This unique book presents authoritative overviews of more than 70 conceptual frameworks for understanding how people seek, manage, share, and use information in different contexts. A practical and readable reference to both well-established and newly proposed theories of information behavior, the book includes contributions from 85 scholars from 10 countries. Each theory description covers origins, propositions, methodological implications, usage, links to related conceptual frameworks, and listings of authoritative primary and secondary references. The introductory chapters explain key concepts, theory–method connections, and the process of theory development.

  3. High-energy behavior of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Nieh, H.T.; Yao, Y.

    1976-01-01

    This paper is a detailed account of a study in perturbation theory of the high-energy behavior of non-Abelian gauge theories. The fermion-fermion scattering amplitude is calculated up to sixth order in the coupling constant in the high-energy limit s → infinity with fixed t, in the approximation of keeping only the leading logarithmic terms. Results indicate that the high-energy behavior of non-Abelian gauge theories are complicated, and quite different from the known behaviors of other field theories studied so far

  4. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  5. Hadronic currents in the infinite momentum frame

    International Nuclear Information System (INIS)

    Toth, K.

    1975-01-01

    The problem of the transformation properties of hadronic currents in the infinite momentum frame (IMF) is investigated. A general method is proposed to deal with the problem which is based upon the concept of group contraction. The two-dimensional aspects of the IMF description are studied in detail, and the current matrix elements of a three-dimensional Poincare covariant theory are reduced to those of a two-dimensional one. It is explicitlyshown that the covariance group of the two-dimensional theory may either be a 'non-relativistic' (Galilei) group, or a 'relativistic' (Poincare) one depending on the value of a parameter reminiscent of the light velocity in the three-dimensional theory. The value of this parameter cannot be determined by kinematical argument. These results offer a natural generalization of models which assume Galilean symmetry in the infinite momentum frame

  6. Statistical test theory for the behavioral sciences

    CERN Document Server

    de Gruijter, Dato N M

    2007-01-01

    Since the development of the first intelligence test in the early 20th century, educational and psychological tests have become important measurement techniques to quantify human behavior. Focusing on this ubiquitous yet fruitful area of research, Statistical Test Theory for the Behavioral Sciences provides both a broad overview and a critical survey of assorted testing theories and models used in psychology, education, and other behavioral science fields. Following a logical progression from basic concepts to more advanced topics, the book first explains classical test theory, covering true score, measurement error, and reliability. It then presents generalizability theory, which provides a framework to deal with various aspects of test scores. In addition, the authors discuss the concept of validity in testing, offering a strategy for evidence-based validity. In the two chapters devoted to item response theory (IRT), the book explores item response models, such as the Rasch model, and applications, incl...

  7. Gravitational coupling to two-particle bound states and momentum conservation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Batiz, Zoltan; Gross, Franz

    2000-01-01

    The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society

  8. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    Science.gov (United States)

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  9. Educational Theory and Classroom Behavior.

    Science.gov (United States)

    Swanson, Ronald G.; Smith, William S.

    1979-01-01

    Described are two instruments used in a workshop designed to help teachers clarify their own beliefs about education and to shape their classroom behavior accordingly. The Student-Content Inventory concerns styles of student-teacher interaction and the Educational Theory Inventory correlates the respondent's beliefs to major educational theories.…

  10. Use of Theory in Behavior Change Interventions.

    Science.gov (United States)

    Bluethmann, Shirley M; Bartholomew, L Kay; Murphy, Caitlin C; Vernon, Sally W

    2017-04-01

    Theory use may enhance effectiveness of behavioral interventions, yet critics question whether theory-based interventions have been sufficiently scrutinized. This study applied a framework to evaluate theory use in physical activity interventions for breast cancer survivors. The aims were to (1) evaluate theory application intensity and (2) assess the association between extensiveness of theory use and intervention effectiveness. Studies were previously identified through a systematic search, including only randomized controlled trials published from 2005 to 2013, that addressed physical activity behavior change and studied survivors who were theory items from Michie and Prestwich's coding framework were selected to calculate theory intensity scores. Studies were classified into three subgroups based on extensiveness of theory use (Level 1 = sparse; Level 2 = moderate; and Level 3 = extensive). Fourteen randomized controlled trials met search criteria. Most trials used the transtheoretical model ( n = 5) or social cognitive theory ( n = 3). For extensiveness of theory use, 5 studies were classified as Level 1, 4 as Level 2, and 5 as Level 3. Studies in the extensive group (Level 3) had the largest overall effect size ( g = 0.76). Effects were more modest in Level 1 and 2 groups with overall effect sizes of g = 0.28 and g = 0.36, respectively. Theory use is often viewed as essential to behavior change, but theory application varies widely. In this study, there was some evidence to suggest that extensiveness of theory use enhanced intervention effectiveness. However, there is more to learn about how theory can improve interventions for breast cancer survivors.

  11. The Effects of Minimal Length, Maximal Momentum, and Minimal Momentum in Entropic Force

    Directory of Open Access Journals (Sweden)

    Zhong-Wen Feng

    2016-01-01

    Full Text Available The modified entropic force law is studied by using a new kind of generalized uncertainty principle which contains a minimal length, a minimal momentum, and a maximal momentum. Firstly, the quantum corrections to the thermodynamics of a black hole are investigated. Then, according to Verlinde’s theory, the generalized uncertainty principle (GUP corrected entropic force is obtained. The result shows that the GUP corrected entropic force is related not only to the properties of the black holes but also to the Planck length and the dimensionless constants α0 and β0. Moreover, based on the GUP corrected entropic force, we also derive the modified Einstein’s field equation (EFE and the modified Friedmann equation.

  12. The electromagnetic impulse pendulum and momentum conservation

    International Nuclear Information System (INIS)

    Graneau, P.; Graneau, P.N.

    1986-01-01

    Largely quantitative experiments by Pappas have indicated that the momentum imparted to an electrodynamic impulse pendulum was not balanced by an equal and opposite momentum change of field energy as required by the special theory of relativity. The authors repeated Pappas' experiment using discharge currents from a capacitor bank which contained a known amount of stored energy. It turned out that, for momentum conservation, the magnetic-field energy required would have been 1000 to 2000 times as large as the energy that was actually stored in the capacitors. In the second part of the paper the pendulum experiments are interpreted in terms of Ampere's force law

  13. The momentum degree of freedom of elementary particles and the gravitation

    International Nuclear Information System (INIS)

    Tati, Takao.

    1978-01-01

    A universal time-like vector has been introduced into the momentum space of elementary particles, in a quantum field theory with a finite degree of freedom, in order to specify the Lorentz-system in which the cutoff function of momentum is given. In this paper, the relationship between quantum field theory and general relativity is considered and it is argued that, when the effect of gravitation on the momentum degree of freedom is taken into account, the universal time-like vector depends on the position of macroscopic space-time and can be considered, in a cosmological model, to coincide, on an average, with the Weyl's cosmic time. (auth.)

  14. The origin of the energy-momentum conservation law

    Science.gov (United States)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2017-09-01

    The interplay between the action-reaction principle and the energy-momentum conservation law is revealed by the examples of the Maxwell-Lorentz and Yang-Mills-Wong theories, and general relativity. These two statements are shown to be equivalent in the sense that both hold or fail together. Their mutual agreement is demonstrated most clearly in the self-interaction problem by taking account of the rearrangement of degrees of freedom appearing in the action of the Maxwell-Lorentz and Yang-Mills-Wong theories. The failure of energy-momentum conservation in general relativity is attributed to the fact that this theory allows solutions having nontrivial topologies. The total energy and momentum of a system with nontrivial topological content prove to be ambiguous, coordinatization-dependent quantities. For example, the energy of a Schwarzschild black hole may take any positive value greater than, or equal to, the mass of the body whose collapse is responsible for forming this black hole. We draw the analogy to the paradoxial Banach-Tarski theorem; the measure becomes a poorly defined concept if initial three-dimensional bounded sets are rearranged in topologically nontrivial ways through the action of free non-Abelian isometry groups.

  15. A behavior-analytic critique of Bandura's self-efficacy theory

    Science.gov (United States)

    Biglan, Anthony

    1987-01-01

    A behavior-analytic critique of self-efficacy theory is presented. Self-efficacy theory asserts that efficacy expectations determine approach behavior and physiological arousal of phobics as well as numerous other clinically important behaviors. Evidence which is purported to support this assertion is reviewed. The evidence consists of correlations between self-efficacy ratings and other behaviors. Such response-response relationships do not unequivocally establish that one response causes another. A behavior-analytic alternative to self-efficacy theory explains these relationships in terms of environmental events. Correlations between self-efficacy rating behavior and other behavior may be due to the contingencies of reinforcement that establish a correspondence between such verbal predictions and the behavior to which they refer. Such a behavior-analytic account does not deny any of the empirical relationships presented in support of self-efficacy theory, but it points to environmental variables that could account for those relationships and that could be manipulated in the interest of developing more effective treatment procedures. PMID:22477956

  16. Counter terms for low momentum nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Holt, Jason D.; Kuo, T.T.S.; Brown, G.E.; Bogner, Scott K.

    2004-01-01

    There is much current interest in treating low energy nuclear physics using the renormalization group (RG) and effective field theory (EFT). Inspired by this RG-EFT approach, we study a low-momentum nucleon-nucleon (NN) interaction, V low-k , obtained by integrating out the fast modes down to the scale Λ∼2 fm -1 . Since NN experiments can only determine the effective interaction in this low momentum region, our chief purpose is to find such an interaction for complex nuclei whose typical momenta lie below this scale. In this paper we find that V low-k can be highly satisfactorily accounted for by the counter terms corresponding to a short range effective interaction. The coefficients C n of the power series expansion ΣC n q n for the counter terms have been accurately determined, and results derived from several meson-exchange NN interaction models are compared. The counter terms are found to be important only for the S, P and D partial waves. Scaling behavior of the counter terms is studied. Finally we discuss the use of these methods for computing shell model matrix elements

  17. Investigation of electron momentum distributions for outer valence orbitals of trichlorofluoromethane by (e, 2e) electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Zhou, L.X.; Shan, X.; Chen, X.J.; Yin, X.F.; Zhang, X.H.; Xu, C.K.; Wei, Z.; Xu, K.Z.

    2006-01-01

    The binding energy spectra and electron momentum distributions for the outer valence orbitals of trichlorofluoromethane (CFCl 3 ) have been measured by binary (e, 2e) electron momentum spectroscopy (EMS) at an impact energy of 1200 eV + binding energy. The experimental electron momentum profiles are compared with Hartree-Fock and density functional theory (DFT) calculations with different-sized basis sets. Generally, the DFT calculations employing B3LYP functional with large basis sets of AUG-cc-pVDZ and AUG-cc-pVTZ give better description of the experimental results. But for 3e orbital, all the theoretical calculations underestimate the experiment, which is probably due to the distorted-wave effect that often occurs in π*-like molecular orbital

  18. Entropy generation and momentum transfer in the superconductor-normal and normal-superconductor phase transformations and the consistency of the conventional theory of superconductivity

    Science.gov (United States)

    Hirsch, J. E.

    2018-05-01

    Since the discovery of the Meissner effect, the superconductor to normal (S-N) phase transition in the presence of a magnetic field is understood to be a first-order phase transformation that is reversible under ideal conditions and obeys the laws of thermodynamics. The reverse (N-S) transition is the Meissner effect. This implies in particular that the kinetic energy of the supercurrent is not dissipated as Joule heat in the process where the superconductor becomes normal and the supercurrent stops. In this paper, we analyze the entropy generation and the momentum transfer between the supercurrent and the body in the S-N transition and the N-S transition as described by the conventional theory of superconductivity. We find that it is not possible to explain the transition in a way that is consistent with the laws of thermodynamics unless the momentum transfer between the supercurrent and the body occurs with zero entropy generation, for which the conventional theory of superconductivity provides no mechanism. Instead, we point out that the alternative theory of hole superconductivity does not encounter such difficulties.

  19. Applying Psychological Theories to Promote Long-Term Maintenance of Health Behaviors

    Science.gov (United States)

    Joseph, Rodney P.; Daniel, Casey L.; Thind, Herpreet; Benitez, Tanya J.; Pekmezi, Dori

    2014-01-01

    Behavioral health theory provides a framework for researchers to design, implement, and evaluate the effects of health promotion programs. However, limited research has examined theories used in interventions to promote long-term maintenance of health behaviors. The purpose of this review was to evaluate the available literature and identify prominent behavioral health theories used in intervention research to promote maintenance of health behaviors. We reviewed theories used in intervention research assessing long-term maintenance (≥ 6 months post-intervention) of physical activity, weight loss, and smoking cessation. Five prominent behavioral theories were referenced by the 34 studies included in the review: Self-Determination Theory, Theory of Planned Behavior, Social Cognitive Theory, Transtheoretical Model, and Social Ecological Model. Descriptions and examples of applications of these theories are provided. Implications for future research are discussed. PMID:28217036

  20. [Analysis of momentum and impurity confinment in TFTR (1990)

    International Nuclear Information System (INIS)

    1990-01-01

    Work during the present grant period has been concentrated in two areas and are discussed in this report: (1) a review of momentum confinement experiments in tokamaks, of momentum confinement theories and of previous comparisons of the two; and (2) analysis and documentation of the dedicated power-scan rotation experiment performed on TFTR in September 1988

  1. Physical Activity Participation: Social Cognitive Theory versus the Theories of Reasoned Action and Planned Behavior.

    Science.gov (United States)

    Dzewaltowski, David A; Noble, John M; Shaw, Jeff M

    1990-12-01

    Social cognitive theory and the theories of reasoned action and planned behavior were examined in the prediction of 4 weeks of physical activity participation. The theories of reasoned action and planned behavior were supported. Attitude and perceived control predicted intention, and intention predicted physical activity participation. The social cognitive theory variables significantly predicted physical activity participation, with self-efficacy and self-evaluation of the behavior significantly contributing to the prediction. The greater the confidence in participating in physical activity and the greater the satisfaction with present physical activity, the more physical activity performed. Hierarchical regression analyses indicated that perceived control and intentions did not account for any unique variation in physical activity participation over self-efficacy. Therefore the social cognitive theory constructs were better predictors of physical activity than those from the theories of reasoned action and planned behavior.

  2. Eating Behaviors of Older African Americans: An Application of the Theory of Planned Behavior

    Science.gov (United States)

    O’Neal, Catherine Walker

    2014-01-01

    Purpose: The study applies the theory of planned behavior to explain the fruit and vegetable eating behaviors, a broad construct consisting of preparing, self-monitoring, and consuming fruits and vegetables, of older African Americans. Design and Methods: Structural equation modeling was used to examine the applicability of the theory of planned behavior with data from 211 older African American women and men (73% women, 26% men; median age range of 57–63 years) participating in a larger intervention study. Results: Attitudes about eating fruit and vegetables, subjective social norms, and perceived behavioral control were related to older African Americans’ intentions to consume fruits and vegetables. Social norms and behavioral intentions were associated with fruit and vegetable eating behaviors. Perceived control did not moderate the influence of behavioral intentions on actual behavior. Implications: Results indicated that the theory of planned behavior can be used to explain variation in older African Americans’ eating behavior. This study also emphasizes the value of considering broader behavioral domains when employing the theory of planned behavior rather than focusing on specific behaviors. Furthermore, social service programs aimed at reducing the incidence of diseases commonly associated with poor eating behaviors among older African Americans must consider promoting not only fruit and vegetable consumption but also related behaviors including preparing and self-monitoring by eliminating structural, cognitive, and normative constraints. PMID:23241919

  3. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  4. Perilaku Pembelian Konsumen: sebuah Tinjauan Literatur Theory Of Planned Behavior

    OpenAIRE

    Meitiana, Meitiana

    2017-01-01

    This study aims to examine the differences between several empirical articles on the theory of planned behavior. Theory of planned behavior provides a framework for studying attitudes toward behaviors that postulate three determinants of conceptual intent. Specifically, the intention is based on the variables of attitude toward behavior, subjective norms, and perceived behavioral control. Although this theory has been used frequently, there are still differences in outcomes in explaining atti...

  5. Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Broedel, Johannes [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin (Germany); Sprenger, Martin [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2016-05-10

    Starting from the known all-order expressions for the BFKL eigenvalue and impact factor, we establish a formalism allowing the direct calculation of the six-point remainder function in N=4 super-Yang-Mills theory in momentum space to — in principle — all orders in perturbation theory. Based upon identities which relate different integrals contributing to the inverse Fourier-Mellin transform recursively, the formalism allows to easily access the full remainder function in multi-Regge kinematics up to 7 loops and up to 10 loops in the fourth logarithmic order. Using the formalism, we prove the all-loop formula for the leading logarithmic approximation proposed by Pennington and investigate the behavior of several newly calculated functions.

  6. Optimal search behavior and classic foraging theory

    International Nuclear Information System (INIS)

    Bartumeus, F; Catalan, J

    2009-01-01

    Random walk methods and diffusion theory pervaded ecological sciences as methods to analyze and describe animal movement. Consequently, statistical physics was mostly seen as a toolbox rather than as a conceptual framework that could contribute to theory on evolutionary biology and ecology. However, the existence of mechanistic relationships and feedbacks between behavioral processes and statistical patterns of movement suggests that, beyond movement quantification, statistical physics may prove to be an adequate framework to understand animal behavior across scales from an ecological and evolutionary perspective. Recently developed random search theory has served to critically re-evaluate classic ecological questions on animal foraging. For instance, during the last few years, there has been a growing debate on whether search behavior can include traits that improve success by optimizing random (stochastic) searches. Here, we stress the need to bring together the general encounter problem within foraging theory, as a mean for making progress in the biological understanding of random searching. By sketching the assumptions of optimal foraging theory (OFT) and by summarizing recent results on random search strategies, we pinpoint ways to extend classic OFT, and integrate the study of search strategies and its main results into the more general theory of optimal foraging.

  7. Perceived enjoyment, concentration, intention, and speed violation behavior: Using flow theory and theory of planned behavior.

    Science.gov (United States)

    Atombo, Charles; Wu, Chaozhong; Zhang, Hui; Wemegah, Tina D

    2017-10-03

    Road accidents are an important public health concern, and speeding is a major contributor. Although flow theory (FLT) is a valid model for understanding behavior, currently the nature of the roles and interplay of FLT constructs within the theory of planned behavior (TPB) framework when attempting to explain the determinants of motivations for intention to speed and speeding behavior of car drivers is not yet known. The study aims to synthesize TPB and FLT in explaining drivers of advanced vehicles intentions to speed and speed violation behaviors and evaluate factors that are critical for explaining intention and behavior. The hypothesized model was validated using a sample collected from 354 fully licensed drivers of advanced vehicles, involving 278 males and 76 females on 2 occasions separated by a 3-month interval. During the first of the 2 occasions, participants completed questionnaire measures of TPB and FLT variables. Three months later, participants' speed violation behaviors were assessed. The study observed a significant positive relationship between the constructs. The proposed model accounted for 51 and 45% of the variance in intention to speed and speed violation behavior, respectively. The independent predictors of intention were enjoyment, attitude, and subjective norm. The independent predictors of speed violation behavior were enjoyment, concentration, intention, and perceived behavioral control. The findings suggest that safety interventions for preventing speed violation behaviors should be aimed at underlying beliefs influencing the speeding behaviors of drivers of advanced vehicles. Furthermore, perceived enjoyment is of equal importance to driver's intention, influencing speed violation behavior.

  8. Is physics in the infinite momentum frame independent of the compactificaction radius?

    International Nuclear Information System (INIS)

    Gueijosa, A.

    1998-01-01

    With the aim of clarifying the eleven-dimensional content of matrix theory, we examine the dependence of a theory in the infinite momentum frame (IMF) on the (purely spatial) longitudinal compactification radius R. It is shown that in a point particle theory the generic scattering amplitude becomes independent of R in the IMF. Processes with zero longitudinal momentum transfer are found to be exceptional. The same question is addressed in a theory with extended objects. A one-loop type II string amplitude is shown to be R-independent in the IMF, and to coincide with that of the uncompactified theory. No exceptional processes exist in this case. The possible implications of these results for M theory are discussed. In particular, if amplitudes in M theory are independent of R in the IMF, matrix theory can be rightfully expected (in the N→∞ limit) to describe uncompactified M theory. (orig.)

  9. Momentum analyticity of the holographic electric polarizability in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lei [Institute of Physics, Academic Sinica,No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei, R.O.C. (China); Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China); Ren, Hai-cang [Physics Department, The Rockefeller University,1230 York Avenue, New York, 10021-6399 (United States); Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China); Lee, Ting-Kuo [Institute of Physics, Academic Sinica,No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei, Taiwan (China); Hou, Defu [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China)

    2017-04-21

    The static electric polarization of a holographic field theory dual to the Einstein-Maxwell theory in the background of AdS{sub 4} with a Reissner-Nordström (AdS-RN) black hole is investigated. We prove that the holographic polarization is a meromorphic functions in complex momentum plane and locate analytically the asymptotic distribution of the poles along two straight lines parallel to the imaginary axis for a large momentum magnitude. The results are compared with the numerical result on Friedel-like poles of the same holographic model reported in the literature and with the momentum singularities of the one-loop polarization in weak-coupling spinor QED{sub 3} and scalar QED{sub 3} with the similarities and differences discussed.

  10. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  11. Angular momentum dependence of the distribution of shell model eigenenergies

    International Nuclear Information System (INIS)

    Yen, M.K.

    1974-01-01

    In the conventional shell model calculation the many-particle energy matrices are constructed and diagonalized for definite angular momentum and parity. However the resulting set of eigenvalues possess a near normal behavior and hence a simple statistical description is possible. Usually one needs only about four parameters to capture the average level densities if the size of the set is not too small. The parameters are essentially moments of the distribution. But the difficulty lies in the yet unsolved problem of calculating moments in the fixed angular momentum subspace. We have derived a formula to approximate the angular momentum projection dependence of any operator averaged in a shell model basis. This approximate formula which is a truncated series in Hermite polynomials has been proved very good numerically and justified analytically for large systems. Applying this formula to seven physical cases we have found that the fixed angular momentum projection energy centroid, width and higher central moments can be obtained accurately provided for even-even nuclei the even and odd angular momentum projections are treated separately. Using this information one can construct the energy distribution for fixed angular momentum projection assuming normal behavior. Then the fixed angular momentum level densities are deduced and spectra are extracted. Results are in reasonably good agreement with the exact values although not as good as those obtained using exact fixed angular momentum moments. (Diss. Abstr. Int., B)

  12. Energy–momentum localization for Bianchi type-IV Universe in ...

    Indian Academy of Sciences (India)

    different energy–momentum complexes give same and reasonable results for a given ... He investigated the formulation of covariant conservation laws and calculated the tidal work using ... tetrad theory of gravity, have obtained total energy of the Universe in Bianchi type- ...... Principle and applications of general theory of.

  13. Molecular collision theory

    CERN Document Server

    Child, M S

    2010-01-01

    This high-level monograph offers an excellent introduction to the theory required for interpretation of an increasingly sophisticated range of molecular scattering experiments. There are five helpful appendixes dealing with continuum wavefunctions, Green's functions, semi-classical connection formulae, curve-crossing in the momentum representation, and elements of classical mechanics.The contents of this volume have been chosen to emphasize the quantum mechanical and semi-classical nature of collision events, with little attention given to purely classical behavior. The treatment is essentiall

  14. Enhancing "theory of mind" through behavioral synchrony.

    Science.gov (United States)

    Baimel, Adam; Severson, Rachel L; Baron, Andrew S; Birch, Susan A J

    2015-01-01

    Theory of mind refers to the abilities underlying the capacity to reason about one's own and others' mental states. This ability is critical for predicting and making sense of the actions of others, is essential for efficient communication, fosters social learning, and provides the foundation for empathic concern. Clearly, there is incredible value in fostering theory of mind. Unfortunately, despite being the focus of a wealth of research over the last 40 years relatively little is known about specific strategies for fostering social perspective taking abilities. We provide a discussion of the rationale for applying one specific strategy for fostering efficient theory of mind-that of engaging in "behavioral synchrony" (i.e., the act of keeping together in time with others). Culturally evolved collective rituals involving synchronous actions have long been held to act as social glue. Specifically, here we present how behavioral synchrony tunes our minds for reasoning about other minds in the process of fostering social coordination and cooperation, and propose that we can apply behavioral synchrony as a tool for enhancing theory of mind.

  15. High-momentum response of liquid He3

    International Nuclear Information System (INIS)

    Mazzanti, F.; Polls, A.; Boronat, J.; Casulleras, J.

    2004-01-01

    A final-state-effects formalism suitable to analyze the high-momentum response of Fermi liquids is presented and used to study the dynamic structure function of liquid He 3 . The theory, developed as a natural extension of the Gersch-Rodriguez formalism, incorporates the Fermi statistics explicitly through a new additive term which depends on the semidiagonal two-body density matrix. The use of a realistic momentum distribution, calculated using the diffusion Monte Carlo method, and the inclusion of this additive correction allows for good agreement with available deep-inelastic neutron scattering data

  16. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  17. Regional fluxes of momentum and sensible heat over a sub-arctic landscape during late winter

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik; Hasager, C.B.

    2001-01-01

    flux is determined in two ways, both based on blending height theory. One is a parameterised method, the other represents a numerical solution of an aggregation model. The regional sensible heat flux is determined from the theory of mixed-layer growth. At near neutral conditions the regional momentum......Based on measurements at Sodankyla Meteorological Observatory the regional (aggregated) momentum and sensible heat fluxes are estimated for two days over a site in Finnish Lapland during late winter. The forest covers 49% of the area. The study shows that the forest dominates and controls...... the regional fluxes of momentum and sensible heat in different ways. The regional momentum flux is found to be 10-20% smaller than the measured momentum flux over the forest, and the regional sensible heat flux is estimated to be 30-50% of the values measured over a coniferous forest. The regional momentum...

  18. The Das-Popowicz Moyal momentum algebra

    International Nuclear Information System (INIS)

    Boulahoual, A.; Sedra, M.B.

    2002-08-01

    We introduce in this short note some aspects of the Moyal momentum algebra that we call the Das-Popowicz Mm algebra. Our interest on this algebra is motivated by the central role that it can play in the formulation of integrable models and in higher conformal spin theories. (author)

  19. Simple recursion relations for general field theories

    International Nuclear Information System (INIS)

    Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav

    2015-01-01

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.

  20. Rastall's and related theories are conservative gravitational theories although physically inequivalent to general relativity

    Science.gov (United States)

    Smalley, L. L.

    1983-01-01

    The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.

  1. Predicting Problem Behaviors with Multiple Expectancies: Expanding Expectancy-Value Theory

    Science.gov (United States)

    Borders, Ashley; Earleywine, Mitchell; Huey, Stanley J.

    2004-01-01

    Expectancy-value theory emphasizes the importance of outcome expectancies for behavioral decisions, but most tests of the theory focus on a single behavior and a single expectancy. However, the matching law suggests that individuals consider expected outcomes for both the target behavior and alternative behaviors when making decisions. In this…

  2. Time Series Momentum

    DEFF Research Database (Denmark)

    Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse

    2012-01-01

    We document significant “time series momentum” in equity index, currency, commodity, and bond futures for each of the 58 liquid instruments we consider. We find persistence in returns for one to 12 months that partially reverses over longer horizons, consistent with sentiment theories of initial...... under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...

  3. Transverse momentum dependent quark distributions and polarized Drell-Yan processes

    OpenAIRE

    Zhou, Jian; Yuan, Feng; Liang, Zuo-Tang

    2009-01-01

    We study the spin-dependent quark distributions at large transverse momentum. We derive their transverse momentum behaviors in the collinear factorization approach in this region. We further calculate the angular distribution of the Drell-Yan lepton pair production with polarized beams and present the results in terms of the collinear twist-three quark-gluon correlation functions. In the intermediate transverse momentum region, we find that the two pproaches: the collinear factorization and t...

  4. Plasma electron hole kinematics. I. Momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, I. H.; Zhou, C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  5. Theory, evidence and Intervention Mapping to improve behavior nutrition and physical activity interventions

    Directory of Open Access Journals (Sweden)

    Ferreira Isabel

    2005-04-01

    Full Text Available Abstract Background The present paper intends to contribute to the debate on the usefulness and barriers in applying theories in diet and physical activity behavior-change interventions. Discussion Since behavior theory is a reflection of the compiled evidence of behavior research, theory is the only foothold we have for the development of behavioral nutrition and physical activity interventions. Application of theory should improve the effectiveness of interventions. However, some of the theories we use lack a strong empirical foundation, and the available theories are not always used in the most effective way. Furthermore, many of the commonly-used theories provide at best information on what needs to be changed to promote healthy behavior, but not on how changes can be induced. Finally, many theories explain behavioral intentions or motivation rather well, but are less well-suited to explaining or predicting actual behavior or behavior change. For more effective interventions, behavior change theory needs to be further developed in stronger research designs and such change-theory should especially focus on how to promote action rather than mere motivation. Since voluntary behavior change requires motivation, ability as well as the opportunity to change, further development of behavior change theory should incorporate environmental change strategies. Conclusion Intervention Mapping may help to further improve the application of theories in nutrition and physical activity behavior change.

  6. Behavior of nuclei at high angular momentum

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1982-07-01

    The present report begins with a brief overview of nuclear shapes and level structures at high-spin values. The new spectroscopy associated with angular-momentum alignments is described, and some of the exciting possibilities of this spectroscopy are explored. Nuclear moments of inertia are discussed and a somewhat different one is defined, together with a method for measuring it and some early results. Finally a few comments on the future prospects for high-spin physics are offered

  7. A quantitative evolutionary theory of adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2013-10-01

    The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PsycINFO Database Record (c) 2013 APA, all rights reserved

  8. Momentum transfer in a Brillouin surface scattering

    International Nuclear Information System (INIS)

    Khater, A.F.

    1980-01-01

    The theory of acoustic excitation scattering in the surface of Brilloiun of opaque materials, is related to the question of momentum transfexed from radiation fields to the material when the incident eight is scattered in a measurable spectrum. (A.C.A.S.) [pt

  9. A periodic table of effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)

    2017-02-06

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.

  10. Strong-coupling expansion for the momentum distribution of the Bose-Hubbard model with benchmarking against exact numerical results

    International Nuclear Information System (INIS)

    Freericks, J. K.; Krishnamurthy, H. R.; Kato, Yasuyuki; Kawashima, Naoki; Trivedi, Nandini

    2009-01-01

    A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator-to-superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.

  11. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  12. The role of descriptive norm within the theory of planned behavior in predicting Korean Americans' exercise behavior.

    Science.gov (United States)

    Lee, Hyo

    2011-08-01

    There are few studies investigating psychosocial mechanisms in Korean Americans' exercise behavior. The present study tested the usefulness of the theory of planned behavior in predicting Korean American's exercise behavior and whether the descriptive norm (i.e., perceptions of what others do) improved the predictive validity of the theory of planned behavior. Using a retrospective design and self-report measures, web-survey responses from 198 Korean-American adults were analyzed using hierarchical regression analyses. The theory of planned behavior constructs accounted for 31% of exercise behavior and 43% of exercise intention. Intention and perceived behavioral control were significant predictors of exercise behavior. Although the descriptive norm did not augment the theory of planned behavior, all original constructs--attitude, injunctive norm (a narrow definition of subjective norm), and perceived behavioral control--statistically significantly predicted leisure-time physical activity intention. Future studies should consider random sampling, prospective design, and objective measures of physical activity.

  13. Integrated Theory of Health Behavior Change: background and intervention development.

    Science.gov (United States)

    Ryan, Polly

    2009-01-01

    An essential characteristic of advanced practice nurses is the use of theory in practice. Clinical nurse specialists apply theory in providing or directing patient care, in their work as consultants to staff nurses, and as leaders influencing and facilitating system change. Knowledge of technology and pharmacology has far outpaced knowledge of how to facilitate health behavior change, and new theories are needed to better understand how practitioners can facilitate health behavior change. In this article, the Integrated Theory of Health Behavior Change is described, and an example of its use as foundation to intervention development is presented. The Integrated Theory of Health Behavior Change suggests that health behavior change can be enhanced by fostering knowledge and beliefs, increasing self-regulation skills and abilities, and enhancing social facilitation. Engagement in self-management behaviors is seen as the proximal outcome influencing the long-term distal outcome of improved health status. Person-centered interventions are directed to increasing knowledge and beliefs, self-regulation skills and abilities, and social facilitation. Using a theoretical framework improves clinical nurse specialist practice by focusing assessments, directing the use of best-practice interventions, and improving patient outcomes. Using theory fosters improved communication with other disciplines and enhances the management of complex clinical conditions by providing holistic, comprehensive care.

  14. Predicting problem behaviors with multiple expectancies: expanding expectancy-value theory.

    Science.gov (United States)

    Borders, Ashley; Earleywine, Mitchell; Huey, Stanley J

    2004-01-01

    Expectancy-value theory emphasizes the importance of outcome expectancies for behavioral decisions, but most tests of the theory focus on a single behavior and a single expectancy. However, the matching law suggests that individuals consider expected outcomes for both the target behavior and alternative behaviors when making decisions. In this study, we expanded expectancy-value theory to evaluate the contributions of two competing expectancies to adolescent behavior problems. One hundred twenty-one high school students completed measures of behavior problems, expectancies for both acting out and academic effort, and perceived academic competence. Students' self-reported behavior problems covaried mostly with perceived competence and academic expectancies and only nominally with problem behavior expectancies. We suggest that behavior problems may result from students perceiving a lack of valued or feasible alternative behaviors, such as studying. We discuss implications for interventions and suggest that future research continue to investigate the contribution of alternative expectancies to behavioral decisions.

  15. Behaviorism Makes Its Debut: A Review of Lattal and Chase's Behavior Theory and Philosophy

    OpenAIRE

    Zuriff, G.E

    2005-01-01

    Behavior Theory and Philosophy, masterfully edited by Lattal and Chase, is a collection of 21 papers by major behaviorists, presented and discussed at a conference on the intersection of philosophy and behavior analysis held at West Virginia University in 2000. The chapters in Part I are devoted to philosophy of science (causality, constructs, theory, explanation, reductionism) and the relations among behavior analysis and several contemporary philosophical movements (humanism, empiricism, pr...

  16. Full transverse-momentum spectra of low-mass Drell-Yan pairs at LHC energies

    CERN Document Server

    Fái, G; Zhang, X; Fai, George; Qiu, Jianwei; Zhang, Xiaofei

    2003-01-01

    The transverse momentum distribution of low-mass Drell-Yan pairs is calculated in QCD perturbation theory with all-order resummation. We argue that at LHC energies the results should be reliable for the entire transverse momentum range. We demonstrate that the transverse momentum distribution of low-mass Drell-Yan pairs is an advantageous source of constraints on the gluon distribution and its nuclear dependence.

  17. Cognitive-Behavioral Therapy. Second Edition. Theories of Psychotherapy Series

    Science.gov (United States)

    Craske, Michelle G.

    2017-01-01

    In this revised edition of "Cognitive-Behavioral Therapy," Michelle G. Craske discusses the history, theory, and practice of this commonly practiced therapy. Cognitive-behavioral therapy (CBT) originated in the science and theory of classical and instrumental conditioning when cognitive principles were adopted following dissatisfaction…

  18. Distance- and momentum-dependence of modern nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Feldmeier, Hans; Neff, Thomas; Weber, Dennis

    2015-01-01

    A phase-space representation of nuclear interactions, which depends on the distance r vector and relative momentum p vector of the nucleons, is presented. It visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method (UCOM) or with the similarity renormalization group (SRG). It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have undesired complicated momentum dependencies at momenta around and above the Fermi momentum. Properties, similarities, and differences of the Argonne and the N3LO chiral potential, and their UCOM and SRG derivatives are discussed. (author)

  19. Theory-driven intervention for changing personality: expectancy value theory, behavioral activation, and conscientiousness.

    Science.gov (United States)

    Magidson, Jessica F; Roberts, Brent W; Collado-Rodriguez, Anahi; Lejuez, C W

    2014-05-01

    Considerable evidence suggests that personality traits may be changeable, raising the possibility that personality traits most linked to health problems can be modified with intervention. A growing body of research suggests that problematic personality traits may be altered with behavioral intervention using a bottom-up approach. That is, by targeting core behaviors that underlie personality traits with the goal of engendering new, healthier patterns of behavior that, over time, become automatized and manifest in changes in personality traits. Nevertheless, a bottom-up model for changing personality traits is somewhat diffuse and requires clearer integration of theory and relevant interventions to enable real clinical application. As such, this article proposes a set of guiding principles for theory-driven modification of targeted personality traits using a bottom-up approach, focusing specifically on targeting the trait of conscientiousness using a relevant behavioral intervention, Behavioral Activation (BA), considered within the motivational framework of expectancy value theory (EVT). We conclude with a real case example of the application of BA to alter behaviors counter to conscientiousness in a substance-dependent patient, highlighting the EVT principles most relevant to the approach and the importance and viability of a theoretically driven, bottom-up approach to changing personality traits. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  20. Health Care Waste Segregation Behavior among Health Workers in Uganda: An Application of the Theory of Planned Behavior.

    Science.gov (United States)

    Akulume, Martha; Kiwanuka, Suzanne N

    2016-01-01

    Objective . The goal of this study was to assess the appropriateness of the theory of planned behavior in predicting health care waste segregation behaviors and to examine the factors that influence waste segregation behaviors. Methodology . One hundred and sixty-three health workers completed a self-administered questionnaire in a cross-sectional survey that examined the theory of planned behavior constructs (attitudes, subjective norms, perceived behavioral control, and intention) and external variables (sociodemographic factors, personal characteristics, organizational characteristics, professional characteristics, and moral obligation). Results . For their most recent client 21.5% of the health workers reported that they most definitely segregated health care waste while 5.5% did not segregate. All the theory of planned behavior constructs were significant predictors of health workers' segregation behavior, but intention emerged as the strongest and most significant ( r = 0.524, P theory of planned behavior model explained 52.5% of the variance in health workers' segregation behavior. When external variables were added, the new model explained 66.7% of the variance in behavior. Conclusion . Generally, health workers' health care waste segregation behavior was high. The theory of planned behavior significantly predicted health workers' health care waste segregation behaviors.

  1. Electron--molecule scattering in momentum space

    International Nuclear Information System (INIS)

    Ritchie, B.

    1979-01-01

    We examine the Fourier transform of the Schroedinger equation for electron--molecule scattering, treated as potential scattering from a multicenter distribution of charged fixed in space. When the angle theta between R,the internuclear vector of a diatomic target, and q, the momentum transfer, is held fixed during the collision, then the directions of incidence and scattering are fixed relative to R. The process is then described as having a dynamical dependence on the magnitude of q, q, from which the scattering angle is determined, and a parametric dependence on q's direction relative to R. This approximation is used routinely at high energies in the calculation of the Born amplitude. Fixed--nuclei coordinate--space studies suggest that this approximation can be extended to low energies, provided the amplitude is taken from the solution of the integral equation of momentum space rather than from its inhomogeneity, proportional to the Born amplitude. We constrain R to be in the same direction relative to q', a virtual momentum transfer belonging to the kernel, as it is to q.Calculations are performed for the e, H 2 scattering in the static approximation, and cross sections averaged over theta/sub R/ are shown to be in good agreement with cross sections calculated by use of coupled spherical and coupled spheroidal partial wave theories. The angular distribution in the static approximation is also calculated at an incident energy close to 7 eV, where exchange is relatively unimportant. This result is in reasonably good agreement with that of R matrix theory in the static--exchange approximation. The extension of the theory to treat exchange is formulated and discussed. Also its extension to treat more complicated molecular targets is discussed

  2. Rastall's and related theories are conservative gravitational theories although physically inequivalent to general relativity

    International Nuclear Information System (INIS)

    Smalley, L.L.; Alabama Univ., Huntsville

    1983-01-01

    It is shown that (1) the proper framework for testing Rastall's theory and its generalisations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients; 2) these theories have conserved integral four-momentum and angular momentum; and (3) the Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor. (author)

  3. Behaviorism Makes Its Debut: A Review of Lattal and Chase's Behavior Theory and Philosophy

    Science.gov (United States)

    Zuriff, G.E

    2005-01-01

    Behavior Theory and Philosophy, masterfully edited by Lattal and Chase, is a collection of 21 papers by major behaviorists, presented and discussed at a conference on the intersection of philosophy and behavior analysis held at West Virginia University in 2000. The chapters in Part I are devoted to philosophy of science (causality, constructs, theory, explanation, reductionism) and the relations among behavior analysis and several contemporary philosophical movements (humanism, empiricism, pragmatism, selectionism, analytic philosophy). Part II examines behavior-analytic interpretations of mentalistic concepts (intention, imagination, ethics, cognition). Part III presents extensions and applications of basic research in behavior analysis (verbal behavior, creativity, development, education, disability, and corporate culture). The publication of this book signals that behaviorism has developed mature philosophical foundations.

  4. A Behavioral Theory of Human Capital Integration

    DEFF Research Database (Denmark)

    Christensen, Jesper

    design in fostering the integration and use of human capital is bounded by individual cognitive limitations that may lead employees to deviate from expected behavior, both individually and in collaboration. The thesis consists of three research papers relying on comprehensive longitudinal project data...... with one another. The overarching contribution of the thesis is to demonstrate, through the combination of psychological and organizational theory, how the ability of firms to properly activate and apply the knowledge held by their employees is fundamentally contingent on the interplay of cognitive...... of a behavioral theory of human capital integration....

  5. Learning Theory and Prosocial Behavior

    Science.gov (United States)

    Rosenhan, D. L.

    1972-01-01

    Although theories of learning which stress the role of reinforcement can help us understand altruistic behaviors, it seems clear that a more complete comprehension calls for an expansion of our notions of learning, such that they incorporate affect and cognition. (Author/JM)

  6. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    International Nuclear Information System (INIS)

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such as INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism

  7. An Introduction to Item Response Theory for Health Behavior Researchers

    Science.gov (United States)

    Warne, Russell T.; McKyer, E. J. Lisako; Smith, Matthew L.

    2012-01-01

    Objective: To introduce item response theory (IRT) to health behavior researchers by contrasting it with classical test theory and providing an example of IRT in health behavior. Method: Demonstrate IRT by fitting the 2PL model to substance-use survey data from the Adolescent Health Risk Behavior questionnaire (n = 1343 adolescents). Results: An…

  8. Health Care Waste Segregation Behavior among Health Workers in Uganda: An Application of the Theory of Planned Behavior

    Directory of Open Access Journals (Sweden)

    Martha Akulume

    2016-01-01

    Full Text Available Objective. The goal of this study was to assess the appropriateness of the theory of planned behavior in predicting health care waste segregation behaviors and to examine the factors that influence waste segregation behaviors. Methodology. One hundred and sixty-three health workers completed a self-administered questionnaire in a cross-sectional survey that examined the theory of planned behavior constructs (attitudes, subjective norms, perceived behavioral control, and intention and external variables (sociodemographic factors, personal characteristics, organizational characteristics, professional characteristics, and moral obligation. Results. For their most recent client 21.5% of the health workers reported that they most definitely segregated health care waste while 5.5% did not segregate. All the theory of planned behavior constructs were significant predictors of health workers’ segregation behavior, but intention emerged as the strongest and most significant (r=0.524, P<0.001. The theory of planned behavior model explained 52.5% of the variance in health workers’ segregation behavior. When external variables were added, the new model explained 66.7% of the variance in behavior. Conclusion. Generally, health workers’ health care waste segregation behavior was high. The theory of planned behavior significantly predicted health workers’ health care waste segregation behaviors.

  9. Momentum dependence of the topological susceptibility with overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Koma, Yoshiaki; Koma, Miho [Numazu College of Technology, Shizuoka (Japan); Ilgenfritz, Ernst-Michael [Humboldt Univ., Berlin (Germany). Inst. fuer Physik; Koller, Karl [Muenchen Univ. (Germany). Fakultaet fuer Physik; Schierholz, Gerrit [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Streuer, Thomas [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Weinberg, Volker [Bayerische Akademie der Wissenschaften, Garching (Germany). Leibniz-Rechenzentrum

    2010-12-15

    Knowledge of the derivative of the topological susceptibility at zero momentum is important for assessing the validity of the Witten-Veneziano formula for the {eta}{sup '} mass, and likewise for the resolution of the EMC proton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using overlap fermions in quenched lattice QCD simulations. We expose the role of the low-lying Dirac eigenmodes for the topological charge density, and find a negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule for pure Yang-Mills theory, the absolute value is overestimated if the contribution from higher eigenmodes is ignored. (orig.)

  10. Momentum dependence of the topological susceptibility with overlap fermions

    International Nuclear Information System (INIS)

    Koma, Yoshiaki; Koma, Miho; Ilgenfritz, Ernst-Michael; Streuer, Thomas; Weinberg, Volker

    2010-12-01

    Knowledge of the derivative of the topological susceptibility at zero momentum is important for assessing the validity of the Witten-Veneziano formula for the η ' mass, and likewise for the resolution of the EMC proton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using overlap fermions in quenched lattice QCD simulations. We expose the role of the low-lying Dirac eigenmodes for the topological charge density, and find a negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule for pure Yang-Mills theory, the absolute value is overestimated if the contribution from higher eigenmodes is ignored. (orig.)

  11. Aquatic Instructors' Beliefs Toward Inclusion: The Theory of Planned Behavior.

    Science.gov (United States)

    Conatser, Phillip; Block, Martin; Gansneder, Bruce

    2002-04-01

    The purpose was to (a) examine aquatic instructors' beliefs (female, n = 82; male, n = 29) about teaching swimming to individuals with disabilities in inclusive settings and (b) test the theory of planned behavior model (Ajzen, 1985, 1988, 2001). Aquatic instructors from 25 states representing 122 cities across the U.S. participated in this study. The instrument, named Aquatic Instructors' Beliefs Toward Inclusion (AIBTI), was an extended version of the Physical Educators' Attitudes Toward Teaching Individuals with Disabilities- Swim (Conatser, Block, & Lepore, 2000). A correlated t test showed aquatic instructors' beliefs (attitudes toward the behavior, normative beliefs, perceived behavioral control, intention, behavior) were significantly more favorable toward teaching aquatics to individuals with mild disabilities than individuals with severe disabilities. Stepwise multiple regression showed perceived behavioral control and attitude significantly predicted intention, and intention predicted instructors' inclusive behavior for both disability groups. Further, results indicated the theory of planned behavior predicts aquatic instructors' behavior better than the theory of reasoned action.

  12. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  13. A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics

    Science.gov (United States)

    Riggs, Peter J.

    2016-01-01

    Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…

  14. Predicting Facebook users' online privacy protection: risk, trust, norm focus theory, and the theory of planned behavior.

    Science.gov (United States)

    Saeri, Alexander K; Ogilvie, Claudette; La Macchia, Stephen T; Smith, Joanne R; Louis, Winnifred R

    2014-01-01

    The present research adopts an extended theory of the planned behavior model that included descriptive norms, risk, and trust to investigate online privacy protection in Facebook users. Facebook users (N = 119) completed a questionnaire assessing their attitude, subjective injunctive norm, subjective descriptive norm, perceived behavioral control, implicit perceived risk, trust of other Facebook users, and intentions toward protecting their privacy online. Behavior was measured indirectly 2 weeks after the study. The data show partial support for the theory of planned behavior and strong support for the independence of subjective injunctive and descriptive norms. Risk also uniquely predicted intentions over and above the theory of planned behavior, but there were no unique effects of trust on intentions, nor of risk or trust on behavior. Implications are discussed.

  15. High energy approximations for nuclear knockout form factors at small momentum transfer

    International Nuclear Information System (INIS)

    Amado, R.D.; Cannata, F.; Dedonder, J.P.

    1985-01-01

    We obtain an explicit approximate expression for the nucleon knockout form factor at small momentum transfer induced by a scalar probe in a single particle model in terms of the momentum space bound state wave function. Our form preserves the orthogonality constraint without using explicitly the final state scattering wave function. We examine the leading large momentum behavior of the momentum space wave function and of correction terms to our expression for the form factor in the case where the bound state is an s state

  16. The bounds of reason game theory and the unification of the behavioral sciences

    CERN Document Server

    Gintis, Herbert

    2014-01-01

    Game theory is central to understanding human behavior and relevant to all of the behavioral sciences-from biology and economics, to anthropology and political science. However, as The Bounds of Reason demonstrates, game theory alone cannot fully explain human behavior and should instead complement other key concepts championed by the behavioral disciplines. Herbert Gintis shows that just as game theory without broader social theory is merely technical bravado, so social theory without game theory is a handicapped enterprise. This edition has been thoroughly revised and updated. Reinvigorati

  17. Predicting organic food consumption: A meta-analytic structural equation model based on the theory of planned behavior.

    Science.gov (United States)

    Scalco, Andrea; Noventa, Stefano; Sartori, Riccardo; Ceschi, Andrea

    2017-05-01

    During the last decade, the purchase of organic food within a sustainable consumption context has gained momentum. Consequently, the amount of research in the field has increased, leading in some cases to discrepancies regarding both methods and results. The present review examines those works that applied the theory of planned behavior (TPB; Ajzen, 1991) as a theoretical framework in order to understand and predict consumers' motivation to buy organic food. A meta-analysis has been conducted to assess the strength of the relationships between attitude, subjective norms, perceived behavioral control, and intention, as well as between intention and behavior. Results confirm the major role played by individual attitude in shaping buying intention, followed by subjective norms and perceived behavioral control. Intention-behavior shows a large effect size, few studies however explicitly reported such an association. Furthermore, starting from a pooled correlation matrix, a meta-analytic structural equation model has been applied to jointly evaluate the strength of the relationships among the factors of the original model. Results suggest the robustness of the TPB model. In addition, mediation analysis indicates a potential direct effect from subjective norms to individual attitude in the present context. Finally, some issues regarding methodological aspects of the application of the TPB within the context of organic food are discussed for further research developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Momentum transport during reconnection events in the MST reversed field pinch

    Science.gov (United States)

    Kuritsyn, Alexey

    2008-11-01

    During reconnection events in the MST reversed field pinch momentum parallel to the magnetic field is observed to be suddenly transported from the core to the edge. This occurs simultaneous with a surge in multiple resistive tearing instabilities. From measurements of the plasma flow and the forces arising from tearing instability (Maxwell and Reynolds stresses) we have established that tearing instabilities induce strong momentum transport. Comparison with nonlinear MHD computation of tearing fluctuations supports this conclusion, although it also indicates that effects beyond single-fluid MHD are likely to be important. The radial profile of the parallel velocity is reconstructed from a combination of diagnostics: Rutherford scattering of injected neutral atoms (for majority ions), charge exchange recombination spectroscopy (for minority ions), and Mach probes (for edge majority ion flow). Maxwell stress has been measured previously in the core by laser Faraday rotation, and both stresses are measured in the edge with probes. A surprising observation is that both the Maxwell and Reynolds stresses are each ten times larger than needed to account for the observed momentum transport (i.e., larger than the inertial and viscous terms in the momentum balance equation). However, they are oppositely directed such that their difference is approximately equal to the rate of change of plasma momentum. The large magnitude of the individual stresses is not predicted by MHD theory; the Maxwell stress also produces a Hall dynamo effect, implying that a two-fluid theory might be necessary for a complete description of momentum transport. To test further the relation between momentum transport and tearing fluctuations, momentum transport was measured perturbatively, by altering plasma rotation with inserted biased electrodes. Biasing is applied in plasmas with large tearing activity and improved confinement plasmas in which tearing activity is reduced by inductive current profile

  19. Energy-momentum tensor of the gravitational field for material spheres

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1990-01-01

    Density of the energy-momentum tensor of a gravitational field which can be defined in the general relativity theory with the help of ideas of the relativistic gravitational theory is found for the case of material spheres. A relationship of this quantity with the Riemann tensor R αβγδ is discussed

  20. Profitabilitas Strategi Momentum di Bursa Efek Indonesia (Periode Januari 2003 – Desember 2007

    Directory of Open Access Journals (Sweden)

    B Yuliarto Nugroho

    2008-12-01

    Full Text Available Momentum trading strategy present challenges to the concept of efficient market theory. Many studies investigate the profitability of momentum trading strategy in international and domestic equity market and evidence has shown that this strategy could lead to abnormal profit. The purpose of this paper are to examine and analyse the profitability of momentum strategy in the Indonesia equity market from January 2003 to December 2007. This paper also investigates factor such as size and trading volume to identify potential source of profits in momentum strategy. The result of this research show that short-term momentum strategy are profitable on all stock listed on IDX. The findings of the research also show that in the shortterm, trading volume have significant effects and could be potential source of profits in momentum strategy.Keywords: profitability, momentum, size, trading volume

  1. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  2. On the short distance behavior of string theories

    International Nuclear Information System (INIS)

    Guida, R.; Konishi, K.; Provero, P.

    1991-01-01

    Short distance behavior of string theories is investigated by the use of the discretized path-integral formulation. In particular, the minimum physical length and the generalized uncertainty relation are re-derived from a set of Ward-Takahashi identities. In this paper several issues related to the form of the generalized uncertainty relation and to its implications are discussed. A consistent qualitative picture of short distance behavior of string theory seems to emerge from such a study

  3. Non-dipolar gauge links for transverse-momentum-dependent pion wave functions

    International Nuclear Information System (INIS)

    Wang, Y.M.

    2016-01-01

    I discuss the factorization-compatible definitions of transverse-momentum-dependent (TMD) pion wave functions which are fundamental theory inputs entering QCD factorization formulae for many hard exclusive processes. I will first demonstrate that the soft subtraction factor introduced to remove both rapidity and pinch singularities can be greatly reduced by making the maximal use of the freedom to construct the Wilson-line paths when defining the TMD wave functions. I will then turn to show that the newly proposed TMD definition with non-dipolar Wilson lines is equivalent to the one with dipolar gauge links and with a complicated soft function, to all orders of the perturbative expansion in the strong coupling, as far as the infrared behavior is concerned. (author)

  4. Nucleon-nucleon momentum correlation function for light nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.

    2007-01-01

    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics

  5. Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum.

    Science.gov (United States)

    Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik

    2013-01-21

    The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.

  6. Cultural Context and Modification of Behavior Change Theory

    Science.gov (United States)

    Sanders Thompson, Vetta L.

    2009-01-01

    Although social and cultural contexts act on each level of the multilevel ecologic model to affect cancer risk, health behavior, and cancer screening and promotion in health behavior research, people have yet to develop theories that sufficiently integrate the social and environmental context with group and individual behavior. The "Behavioral…

  7. Spin and intrinsic angular momentum; application to the electromagnetic field

    International Nuclear Information System (INIS)

    Paillere, P.

    1993-05-01

    Within the framework of the field theory governed by a Lagrangian, function of the tensor quantities and their covariant first derivatives, and starting with the third order intrinsic angular momentum tensor obtained from a variational principle, the intrinsic angular momentum vector of the electromagnetic field in vacuum is determined. This expression leads to spin matrices for the electromagnetic field, with unity as eigenvalue, thus allowing to bridge the gap between continuous physics and quantum physics. 6 refs

  8. Explaining Consumer Safe Food Handling Through Behavior-Change Theories: A Systematic Review.

    Science.gov (United States)

    Young, Ian; Reimer, Danielle; Greig, Judy; Meldrum, Richard; Turgeon, Patricia; Waddell, Lisa

    2017-11-01

    Consumers often engage in unsafe food handling behaviors at home. Previous studies have investigated the ability of behavior-change theories to explain and predict these behaviors. The purpose of this review was to determine which theories are most consistently associated with consumers' safe food handling behaviors across the published literature. A standardized systematic review methodology was used, consisting of the following steps: comprehensive search strategy; relevance screening of identified references; confirmation of relevance and characterization of relevant articles; risk-of-bias assessment; data extraction; and descriptive analysis of study results. A total of 20 relevant studies were identified; they were mostly conducted in Australia (40%) and the United States (35%) and used a cross-sectional design (65%). Most studies targeted young adults (65%), and none focused on high-risk consumer groups. The outcomes of 70% of studies received high overall risk-of-bias ratings, largely due to a lack of control for confounding variables. The most commonly applied theory was the Theory of Planned Behavior (45% of studies), which, along with other investigated theories of behavior change, was frequently associated with consumer safe food handling behavioral intentions and behaviors. However, overall, there was wide variation in the specific constructs found to be significantly associated and in the percentage of variance explained in each outcome across studies. The results suggest that multiple theories of behavior change can help to explain consumer safe food handling behaviors and could be adopted to guide the development of future behavior-change interventions. In these contexts, theories should be appropriately selected and adapted to meet the needs of the specific target population and context of interest.

  9. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  10. Structure of the generalized momentum of a test charged particle and the inverse problem in general relativity theory

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Singatullin, R.S.

    1981-01-01

    The inverse problem is solved in general relativity theory (GRT) consisting in determining the metric and potentials of an electromagnetic field by their values in the nonsingular point of the V 4 space and present functions, being the generalized momenta of a test charged particle. The Hamilton-Jacobi equation for a test charged particle in GRT is used. The general form of the generalized momentum dependence on the initial values is determined. It is noted that the inverse problem solution of dynamics in GRT contains arbitrariness which depends on the choice of the metric and potential values of the electromagnetic field in the nonsingular point [ru

  11. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    Science.gov (United States)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  12. Theories of suicidal behavior applied to Sylvia Plath.

    Science.gov (United States)

    Lester, D

    1998-01-01

    The suicide of Sylvia Plath is examined from the perspective of 15 theories of suicidal behavior and is found to fit best with psychoanalytic and cognitive theories of suicide, in particular those of Aaron Beck, Henry Murray, and Edwin Shneidman.

  13. The rotor theories by Professor Joukowsky: Vortex theories

    DEFF Research Database (Denmark)

    Okulov, Valery L.; Sørensen, Jens Nørkær; Wood, David H.

    2015-01-01

    This is the second of two articles with the main, and largely self-explanatory, title "Rotor theories by Professor Joukowsky". This article considers rotors with finite number of blades and is subtitled "Vortex theories". The first article with subtitle "Momentum theories", assessed the starring...

  14. Evidences from electron momentum spectroscopy for ultra-fast charge transfers and structural reorganizations in a floppy molecule: Ethanol

    International Nuclear Information System (INIS)

    Deleuze, Michael S; Hajgato, Balazs; Morini, Filippo

    2009-01-01

    Calculations of electron momentum distributions employing advanced Dyson orbital theories and statistical thermodynamics beyond the RRHO approximation fail to quantitatively reproduce the outermost momentum profile inferred from experiments on ethanol employing high resolution Electron Momentum Spectroscopy [1]. Study of the influence of nuclear dynamics in the initial ground state and final ionized state indicates that this discrepancy between theory and experiment reflects a charge transfer occurring during an ultra-fast dissociation of the ethanol radical cation into a methyl radical and H 2 C=O-H + .

  15. Theory, evidence and Intervention Mapping to improve behavior nutrition and physical activity interventions.

    OpenAIRE

    Brug, Hans; Oenema, Anke; Ferreira, Isabel

    2005-01-01

    Abstract Background The present paper intends to contribute to the debate on the usefulness and barriers in applying theories in diet and physical activity behavior-change interventions. Discussion Since behavior theory is a reflection of the compiled evidence of behavior research, theory is the only foothold we have for the development of behavioral nutrition and physical activity interventions. Application of theory should improve the effectiveness of interventions. However, some of the the...

  16. Emergent gravity from vanishing energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Carone, Christopher D.; Erlich, Joshua [High Energy Theory Group, Department of Physics, College of William and Mary,Williamsburg, VA 23187-8795 (United States); Vaman, Diana [Department of Physics, University of Virginia,Box 400714, Charlottesville, VA 22904 (United States)

    2017-03-27

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. We comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.

  17. Emergent gravity from vanishing energy-momentum tensor

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Vaman, Diana

    2017-01-01

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. We comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.

  18. Relationships between self-determination theory and theory of planned behavior applied to physical activity and exercise behavior in chronic pain.

    Science.gov (United States)

    Brooks, Jessica M; Iwanaga, Kanako; Chiu, Chung-Yi; Cotton, Brandi Parker; Deiches, Jon; Morrison, Blaise; Moser, Erin; Chan, Fong

    2017-08-01

    This study examined the relationships between self-determination theory (SDT) and theory of planned behavior (TpB) applied to physical activity and exercise behavior (PA&E) in people with chronic pain. Two hundred and eleven adults with chronic musculoskeletal pain (28 males and 183 females, age range 18 to 82 years, mean age 43 years) were recruited from online support groups and clinic networks in the United States. Participants completed SDT measures relevant to PA&E on perceived autonomy support, autonomy, competence, and relatedness, as well as TpB measures relevant to PA&E on intention, attitudes, subjective norms, and perceived behavioral control. Correlational techniques and canonical correlation analysis were performed to examine the relationships and variance within and between theoretical dimensions. Overall, the SDT set accounted for 37% of the TpB variance and the TpB set accounted for 32% of the SDT set variance. The results indicate there are statistical similarities and differences between concepts in SDT and TpB models for PA&E. Using both empirical guidance and clinical expertise, researchers and practitioners should attempt to select and integrate non-redundant and complementary components from SDT, TpB, and other related health behavior theories.

  19. Scale transformations, the energy-momentum tensor, and the equation of state

    International Nuclear Information System (INIS)

    Carruthers, P.

    1989-01-01

    The Equation of State (EOS) relates diagonal elements of the energy-momentum tensor θ μν . The first moment of the energy-momentum tensor generates scale transformations. The virial theorem, a consequence of the behavior of the energy density under scale transformations, allows one to eliminate the kinetic energy in terms of the potential terms. The trace theorem for the energy-momentum tensor expresses ε-3p in terms of ensemble averages of scale-breaking operators, allowing a new approach to the EOS. 10 refs

  20. Integrated Theory of Health Behavior Change: Background and Intervention Development

    OpenAIRE

    RYAN, POLLY

    2009-01-01

    An essential characteristic of advanced practice nurses is the use of theory in practice. Clinical nurse specialists apply theory in providing or directing patient care, in their work as consultants to staff nurses, and as leaders influencing and facilitating system change. Knowledge of technology and pharmacology has far outpaced knowledge of how to facilitate health behavior change, and new theories are needed to better understand how practitioners can facilitate health behavior change. In ...

  1. Yang-Mills theory on a momentum lattice: Gauge invariance, chiral invariance, and no fermion doubling

    International Nuclear Information System (INIS)

    Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L.

    1991-01-01

    We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum (k) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like logV with the lattice volume V. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being c-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the φ 4 model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator left-angle φ(k)φ(k')right-angle in the φ 4 model, investigate Euclidean invariance, and extract m R as well as Z R . Moreover we compute left-angle F μν (k)F μν (k')right-angle in the SU(2) model

  2. Theory, evidence and Intervention Mapping to improve behavior nutrition and physical activity interventions.

    NARCIS (Netherlands)

    J. Brug (Hans); A. Oenema (Anke); A. Ferreira (Isabel)

    2005-01-01

    textabstractBACKGROUND: The present paper intends to contribute to the debate on the usefulness and barriers in applying theories in diet and physical activity behavior-change interventions. DISCUSSION: Since behavior theory is a reflection of the compiled evidence of behavior research, theory is

  3. Twisted molecular excitons as mediators for changing the angular momentum of light

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-07-01

    Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.

  4. On scalar and vector fields coupled to the energy-momentum tensor

    Science.gov (United States)

    Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.

    2018-05-01

    We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.

  5. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory

    International Nuclear Information System (INIS)

    Wang, Lin; Liu, Xiongwei; Renevier, Nathalie; Stables, Matthew; Hall, George M.

    2014-01-01

    Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic models are linear models based on assumption of small blade deflections. This assumption is not valid anymore for very flexible blade design because such blades often experience large deflections. In this paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation tests. The results show that good agreement is achieved when compared with experimental data, and its capability of handling large deflections is demonstrated. Finally the nonlinear aeroelastic model is applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic code FAST (Fatigue, Aerodynamics, Structures, and Turbulence). - Highlights: • A novel nonlinear aeroelastic model for wind turbine blades is developed. • The model takes account of large blade deflections and geometric nonlinearities. • The model is reliable and efficient for aeroelastic modelling of wind turbine blades. • The accuracy of the model is verified by a series of benchmark calculation tests. • The model provides more realistic aeroelastic modelling than FAST (Fatigue, Aerodynamics, Structures, and Turbulence)

  6. Infrared behaviors of SU(2 gauge theory

    Directory of Open Access Journals (Sweden)

    Tuominen Kimmo

    2017-01-01

    Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.

  7. Scaling function, spectral function and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Ivanov, M.V.; Caballero, J.A.; Barbaro, M.B.; Udias, J.M.; Moya de Guerra, E.; Donnelly, T.W.

    2010-01-01

    The aim of the study is to find a good simultaneous description of the spectral function and the momentum distribution in relation to the realistic scaling function obtained from inclusive electron-nuclei scattering experiments. We start with a modified Hartree-Fock spectral function in which the energy dependent part (δ-function) is replaced by the Gaussian distributions with hole state widths as free parameters. We calculate the scaling function and the nucleon momentum distribution on the basis of the spectral function constructed in this way, trying to find a good description of the experimental data. The obtained scaling function has a weak asymmetry and the momentum distribution has not got a high-momentum tail in the case when harmonic-oscillator single-particle wave functions are used. So, to improve the behavior of the momentum distribution we used the basis of natural orbitals (NO) in which short-range correlations are partly incorporated. The results for the scaling function show again a weak asymmetry, but in this case the momentum distribution has a high-momentum tail. As a next step we include final-state interactions (FSI) in the calculations to reproduce the experimentally observed asymmetry of the scaling function. (author)

  8. An approach to children's smoking behavior using social cognitive learning theory.

    Science.gov (United States)

    Bektas, Murat; Ozturk, Candan; Armstrong, Merry

    2010-01-01

    This review article discusses the theoretical principles of social cognitive learning theory and children's risk-taking behavior of cigarette smoking, along with preventive initiatives. Social cognitive learning theorists examine the behavior of initiating and sustained smoking using a social systems approach. The authors discuss the reciprocal determinism aspect of the theory as applied to the importance of individual factors, and environment and behavioral interactions that influence smoking behavior. Included is the concept of vicarious capability that suggests that smoking behavior is determined in response to and interaction with feedback provided by the environment. The principle of self-regulatory capability asserts that people have control over their own behavior and thus that behavior change is possible. The principle of self-efficacy proposes that high level of self-efficacy of an individual may decrease the behavior of attempting to or continuing to smoke. Examples of initiatives to be undertaken in order to prevent smoking in accordance with social cognitive learning theory are presented at the end of each principle.

  9. Utility of the theories of reasoned action and planned behavior for predicting physician behavior: a prospective analysis.

    Science.gov (United States)

    Millstein, S G

    1996-09-01

    The utility of the theory of reasoned action (TRA) and the theory of planned behavior (TPB) for prospectively predicting physicians' delivery of preventive services was compared. Primary care physicians (N = 765) completed 2 mail surveys at periods 6 months apart. The addition of perceived behavioral control to the TRA model significantly increased the variance accounted for in behavioral intention and subsequent behavior (p behavioral control had direct effects on behavior and interacted with social norms and behavioral intentions. Applications of models such as the TRA or TPB have focused primarily on predicting the behavioral intentions and behaviors of patients. Results suggest that these models have relevance for studying the behavior of health care providers as well.

  10. Behavioral Theory and Culture Special Issue: Authors' Response to Commentaries

    Science.gov (United States)

    Pasick, Rena J.; Burke, Nancy J.; Joseph, Galen

    2009-01-01

    This article presents the authors' response to commentaries that focus on the "Behavioral Constructs and Culture in Cancer Screening" (3Cs) study. The 3Cs study had an unremarkable beginning, with two colleagues discussing their frustration over the narrow range of behavioral theories and the limited guidance the theories offered for a study…

  11. Health Care Waste Segregation Behavior among Health Workers in Uganda: An Application of the Theory of Planned Behavior

    OpenAIRE

    Akulume, Martha; Kiwanuka, Suzanne N.

    2016-01-01

    Objective. The goal of this study was to assess the appropriateness of the theory of planned behavior in predicting health care waste segregation behaviors and to examine the factors that influence waste segregation behaviors. Methodology. One hundred and sixty-three health workers completed a self-administered questionnaire in a cross-sectional survey that examined the theory of planned behavior constructs (attitudes, subjective norms, perceived behavioral control, and intention) and externa...

  12. Portfolio selection between rational and behavioral theories emergent markets case

    Directory of Open Access Journals (Sweden)

    Bouri Abdelfatteh

    2012-08-01

    Full Text Available The aim of this paper is to explore the determinants of Portfolio Choice under the investors, professionals and academics’ perception. We introduce an approach based on cognitive mapping technique with a series of semi-directive interviews. Among a sample of 30 Tunisian individuals, we propose tow different frameworks: a mean-variance framework and a behavioral framework. Each framework is oriented to capture the effect of some concepts as proposed by the mean-variance portfolio theory and the behavioral portfolio theory on the portfolio choice decision. The originality of this research paper is guaranteed since it traits the behavioral portfolio choice in emergent markets. In the best of our knowledge this is the first study in the Tunisian context that explores such area of research. Ours results show that the Tunisian investors behave as it prescribed by the behavioral portfolio theory. They use some concepts proposed by the rational mean-variance theory of portfolio choice but they are affected by their emotions and some others cognitive bias when constructing and managing they portfolio of assets.

  13. Contributions of Socialization Theory to Consumer Behavior Research

    Science.gov (United States)

    Ward, Scott

    1978-01-01

    Socialization theory can contribute to consumer research because it focuses on (1) youth and development, (2) interaction of factors affecting consumer behavior, and (3) linkages between mental processes and overt behavior. Various approaches to socialization research and consumer research are described, including cognitive development and…

  14. Determinants of oral hygiene behavior : a study based on the theory of planned behavior

    NARCIS (Netherlands)

    Buunk-Werkhoven, Y.A.; Dijkstra, Arie; van der Schans, C.P.

    Objective: The aim of this study was to develop an index for oral hygiene behavior (OHB) and to examine potential predictors of this actual behavior based on the theory of planned behavior (TPB). Measures of oral health knowledge (OHK) and the expected effect of having healthy teeth on social

  15. Air Bag Momentum Force Including Aspiration

    Directory of Open Access Journals (Sweden)

    Guy Nusholtz

    1995-01-01

    Full Text Available A gas-jet momentum force drives the air bag into position during a crash. The magnitude of this force can change as a result of aspiration. To determine the potential magnitude of the effect on the momentum force and mass flow rate in an aspirated system, a series of experiments and simulations of those experiments was conducted. The simulation consists of a two-dimensional unsteady isentropic CFD model with special “infinite boundaries”. One of the difficulties in simulating the gas-jet behavior is determining the mass flow rate. To improve the reliability of the mass flow rate input to the simulation, a sampling procedure involving multiple tests was used, and an average of the tests was adopted.

  16. Dynamical evolution of angular momentum in damped nuclear reactions. I. Accumulation of angular momentum by nucleon transfer

    International Nuclear Information System (INIS)

    Doessing, T.; Randrup, J.

    1984-01-01

    An important goal in the theory of nuclear dynamics is to understand the observed transport phenomena in terms of the basic microscopic processes in the system. For this purpose a model was developed in which the dissipative mechanism responsible for the transport process is the transfer of nucleons between the two reacting nuclides. Until now, most efforts to confront that theory with data have concentrated on the evolution of the charge and mass distribution with energy loss, and overall good agreement has been obtained for a variety of features. While this success lends strong support to the theory, it is important to broaden the contact with experiment by considering also other aspects of the data. Therefore the authors have undertaken a comprehensive study of the angular momentum variables which represent six additional observables (three for each fragment spin) and thus provide a rich testing ground for the theory

  17. Theory of planned behavior and adherence in chronic illness: a meta-analysis

    NARCIS (Netherlands)

    Rich, A.; Brandes, K.; Mullan, B.; Hagger, M.S.

    2015-01-01

    Social-cognitive models such as the theory of planned behavior have demonstrated efficacy in predicting behavior, but few studies have examined the theory as a predictor of treatment adherence in chronic illness. We tested the efficacy of the theory for predicting adherence to treatment in chronic

  18. Behavioral and social sciences theories and models: are they used in unintentional injury prevention research?

    Science.gov (United States)

    Trifiletti, L B; Gielen, A C; Sleet, D A; Hopkins, K

    2005-06-01

    Behavioral and social sciences theories and models have the potential to enhance efforts to reduce unintentional injuries. The authors reviewed the published literature on behavioral and social science theory applications to unintentional injury problems to enumerate and categorize the ways different theories and models are used in injury prevention research. The authors conducted a systematic review to evaluate the published literature from 1980 to 2001 on behavioral and social science theory applications to unintentional injury prevention and control. Electronic database searches in PubMed and PsycINFO identified articles that combined behavioral and social sciences theories and models and injury causes. The authors identified some articles that examined behavioral and social science theories and models and unintentional injury topics, but found that several important theories have never been applied to unintentional injury prevention. Among the articles identified, the PRECEDE PROCEED Model was cited most frequently, followed by the Theory of Reasoned Action/Theory of Planned Behavior and Health Belief Model. When behavioral and social sciences theories and models were applied to unintentional injury topics, they were most frequently used to guide program design, implementation or develop evaluation measures; few examples of theory testing were found. Results suggest that the use of behavioral and social sciences theories and models in unintentional injury prevention research is only marginally represented in the mainstream, peer-reviewed literature. Both the fields of injury prevention and behavioral and social sciences could benefit from greater collaborative research to enhance behavioral approaches to injury control.

  19. On the angular momentum in star formation

    International Nuclear Information System (INIS)

    Horedt, G.P.

    1978-01-01

    The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)

  20. Membranes from monopole operators in ABJM theory: Large angular momentum and M-theoretic AdS4/CFT3

    International Nuclear Information System (INIS)

    Kovacs, Stefano; Sato, Yuki; Shimada, Hidehiko

    2014-01-01

    We study the duality between M-theory in AdS 4 ×S 7 /ℤ k and the ABJM N=6 Chern–Simons-matter theory with gauge group U(N)×U(N) and level k, taking N large and k of order 1. In this M-theoretic regime the lack of an explicit formulation of M-theory in AdS 4 ×S 7 /ℤ k makes the gravity side difficult, while the CFT is strongly coupled and the planar approximation is not applicable. We focus on states on the gravity side with large angular momentum J≫1 associated with a single plane of rotation in S 7 and identify their dual operators in the CFT. We show that natural approximation schemes arise on both sides thanks to the presence of the small parameter 1/J. On the AdS side, we use the matrix model of M-theory on the maximally supersymmetric pp-wave background with matrices of size J/k. A perturbative treatment of this matrix model provides a good approximation to M-theory in AdS 4 ×S 7 /ℤ k when N 1/3 ≪J≪N 1/2 . On the CFT side, we study the theory on S 2 ×ℝ with magnetic flux J/k. A Born–Oppenheimer-type expansion arises naturally for large J in spite of the theory being strongly coupled. The energy spectra on the two sides agree at leading order. This provides a non-trivial test of the AdS 4 /CFT 3 correspondence including near-BPS observables associated with membrane degrees of freedom, thus verifying the duality beyond the previously studied sectors corresponding to either BPS observables or the type IIA string regime

  1. A Lesson on Social Role Theory: An Example of Human Behavior in the Social Environment Theory

    OpenAIRE

    Agnes M. Dulin

    2007-01-01

    This paper discusses the social role theory, a theory of Human Behavior in the Social Environment (HBSE). Relevance of this topic is briefly discussed, as well as a definition of the theory and its historical background. Empirical research that employs this theory will be discussed.Recommendations will be made for future theory development and implications for social work education will conclude the discussion.

  2. Transverse momentum distributions inside the nucleon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Musch, Bernhard Ulrich

    2009-05-29

    Nucleons, i.e., protons and neutrons, are composed of quarks and gluons, whose interactions are described by the theory of quantum chromodynamics (QCD), part of the standard model of particle physics. This work applies lattice QCD to compute quark momentum distributions in the nucleon. The calculations make use of lattice data generated on supercomputers that has already been successfully employed in lattice studies of spatial quark distributions (''nucleon tomography''). In order to be able to analyze transverse momentum dependent parton distribution functions, this thesis explores a novel approach based on non-local operators. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. A more elaborate operator geometry is required to enable a quantitative comparison to high energy scattering experiments. First steps in this direction are encouraging. (orig.)

  3. Self-Determination Theory: Intrinsic Motivation and Behavioral Change.

    Science.gov (United States)

    Flannery, Marie

    2017-03-01

    Motivation is a central concept in behavioral change. This article reviews the self-determination theory with an emphasis on "intrinsic motivation," which is facilitated when three basic psychological needs (autonomy, competence, and relatedness) are met. Intrinsic motivation is associated with improved well-being and sustained behavioral change.

  4. Accounting in three dimensions : A case for momentum revisited

    NARCIS (Netherlands)

    Melse, E.

    2008-01-01

    This paper aims to extend an earlier analysis of the profitability of an individual firm operating in the professional services industry from the perspective of the triple-entry framework of the momentum accounting theory of Yuji Ijiri. Design/methodology/approach — The paper presents a

  5. On the energy-momentum tensor in Moyal space

    International Nuclear Information System (INIS)

    Balasin, Herbert; Schweda, Manfred; Blaschke, Daniel N.; Gieres, Francois

    2015-01-01

    We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)

  6. Theory of planned behavior interventions for reducing heterosexual risk behaviors: A meta-analysis.

    Science.gov (United States)

    Tyson, Mandy; Covey, Judith; Rosenthal, Harriet E S

    2014-12-01

    The meta-analysis reported here examined interventions informed by the theory of planned behavior (TPB) or theory of reasoned action (TRA) aimed at reducing heterosexual risk behaviors (prevention of STDs and unwanted pregnancy). Studies were eligible for inclusion if they were either randomized control trials or quasi-experimental studies that compared the TPB-based intervention against a control group. Search strategy consisted of articles identified in previous reviews, keyword search through search engines, examination of key journals, and contacting key experts. Forty-seven intervention studies were included in the meta-analysis. Random effects models revealed that pooled effect sizes for TPB-based interventions had small but significant effects on behavior and other secondary outcomes (i.e., knowledge, attitudes, normative beliefs, perceived behavioral control, and intentions). Significant heterogeneity found between effect sizes was explored using metaregression. Larger effects were found for interventions that provided opportunities for social comparison. The TPB provides a valuable framework for designing interventions to change heterosexual risk behaviors. However, effect sizes varied quite substantially between studies, and further research is needed to explore the reasons why.

  7. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  8. Physics of non-diffusive turbulent transport of momentum and the origins of spontaneous rotation in tokamaks

    DEFF Research Database (Denmark)

    Diamond, P.H.; McDevitt, C.J.; Güran, Ö.D.

    2009-01-01

    Recent results in the theory of turbulent momentum transport and the origins of intrinsic rotation are summarized. Special attention is focused on aspects of momentum transport critical to intrinsic rotation, namely the residual stress and the edge toroidal flow velocity pinch. Novel results...

  9. Combined threshold and transverse momentum resummation for inclusive observables

    International Nuclear Information System (INIS)

    Muselli, Claudio; Forte, Stefano; Ridolfi, Giovanni

    2017-01-01

    We present a combined resummation for the transverse momentum distribution of a colorless final state in perturbative QCD, expressed as a function of transverse momentum p T and the scaling variable x. Its expression satisfies three requirements: it reduces to standard transverse momentum resummation to any desired logarithmic order in the limit p T →0 for fixed x, up to power suppressed corrections in p T ; it reduces to threshold resummation to any desired logarithmic order in the limit x→1 for fixed p T , up to power suppressed correction in 1−x; upon integration over transverse momentum it reproduces the resummation of the total cross cross at any given logarithmic order in the threshold x→1 limit, up to power suppressed correction in 1−x. Its main ingredient, and our main new result, is a modified form of transverse momentum resummation, which leads to threshold resummation upon integration over p T , and for which we provide a simple closed-form analytic expression in Fourier-Mellin (b,N) space. We give explicit coefficients up to NNLL order for the specific case of Higgs production in gluon fusion in the effective field theory limit. Our result allows for a systematic improvement of the transverse momentum distribution through threshold resummation which holds for all p T , and elucidates the relation between transverse momentum resummation and threshold resummation at the inclusive level, specifically by providing within perturbative QCD a simple derivation of the main consequence of the so-called collinear anomaly of SCET.

  10. Combined threshold and transverse momentum resummation for inclusive observables

    Energy Technology Data Exchange (ETDEWEB)

    Muselli, Claudio; Forte, Stefano [Tif Lab, Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova,Via Dodecaneso 33, I-16146 Genova (Italy)

    2017-03-21

    We present a combined resummation for the transverse momentum distribution of a colorless final state in perturbative QCD, expressed as a function of transverse momentum p{sub T} and the scaling variable x. Its expression satisfies three requirements: it reduces to standard transverse momentum resummation to any desired logarithmic order in the limit p{sub T}→0 for fixed x, up to power suppressed corrections in p{sub T}; it reduces to threshold resummation to any desired logarithmic order in the limit x→1 for fixed p{sub T}, up to power suppressed correction in 1−x; upon integration over transverse momentum it reproduces the resummation of the total cross cross at any given logarithmic order in the threshold x→1 limit, up to power suppressed correction in 1−x. Its main ingredient, and our main new result, is a modified form of transverse momentum resummation, which leads to threshold resummation upon integration over p{sub T}, and for which we provide a simple closed-form analytic expression in Fourier-Mellin (b,N) space. We give explicit coefficients up to NNLL order for the specific case of Higgs production in gluon fusion in the effective field theory limit. Our result allows for a systematic improvement of the transverse momentum distribution through threshold resummation which holds for all p{sub T}, and elucidates the relation between transverse momentum resummation and threshold resummation at the inclusive level, specifically by providing within perturbative QCD a simple derivation of the main consequence of the so-called collinear anomaly of SCET.

  11. The Behavior Intervention Support Team (BIST) Program: Underlying Theories

    Science.gov (United States)

    Boulden, Walter T.

    2010-01-01

    The Behavior Intervention Support Team (BIST) is a proactive school-wide behavior management plan for all students, emphasizing schools partnering with students and parents through caring relationships and high expectations. The BIST program is well-grounded in behavioral theory and combines strength-based and resiliency principles within the…

  12. A comparison of generalized hybrid Monte Carlo methods with and without momentum flip

    International Nuclear Information System (INIS)

    Akhmatskaya, Elena; Bou-Rabee, Nawaf; Reich, Sebastian

    2009-01-01

    The generalized hybrid Monte Carlo (GHMC) method combines Metropolis corrected constant energy simulations with a partial random refreshment step in the particle momenta. The standard detailed balance condition requires that momenta are negated upon rejection of a molecular dynamics proposal step. The implication is a trajectory reversal upon rejection, which is undesirable when interpreting GHMC as thermostated molecular dynamics. We show that a modified detailed balance condition can be used to implement GHMC without momentum flips. The same modification can be applied to the generalized shadow hybrid Monte Carlo (GSHMC) method. Numerical results indicate that GHMC/GSHMC implementations with momentum flip display a favorable behavior in terms of sampling efficiency, i.e., the traditional GHMC/GSHMC implementations with momentum flip got the advantage of a higher acceptance rate and faster decorrelation of Monte Carlo samples. The difference is more pronounced for GHMC. We also numerically investigate the behavior of the GHMC method as a Langevin-type thermostat. We find that the GHMC method without momentum flip interferes less with the underlying stochastic molecular dynamics in terms of autocorrelation functions and it to be preferred over the GHMC method with momentum flip. The same finding applies to GSHMC

  13. Momentum density of hcp and liquid helium-4 by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Hilleke, R.O.

    1983-01-01

    A measurement of the momentum density in hcp and liquid 4 He by inelastic neutron scattering is reported. Using the Low Resolution Medium Energy Chopper Spectrometer at the Intense Pulsed Neutron Source at Argonne National Laboratory, momentum transfers in the range 12 to 22.5 A -1 were attained. At these momentum transfers, the momentum density of the sample is related to the dynamic structure factor by the impulse approximation. The measured momentum distribution is Gaussian and the kinetic energy is larger than proposed by existing theories. Data were taken on two solid samples, the first was a 19.45 cm 3 /mole hcp solid, the second was 18.20 cm 3 /mole; both solid samples were maintained at 1.70 K during data collection. Data were also taken on a liquid sample with a molar volume of 18.20 cm 3 /mole at 4.00 K. At 1.70 K the two solid samples are essentially in their ground states so that the measurement is of the ground state momentum density. The liquid sample was included to see if the difference between the liquid and solid momentum density at the same molar volume was observable

  14. Improving measurement of injection drug risk behavior using item response theory.

    Science.gov (United States)

    Janulis, Patrick

    2014-03-01

    Recent research highlights the multiple steps to preparing and injecting drugs and the resultant viral threats faced by drug users. This research suggests that more sensitive measurement of injection drug HIV risk behavior is required. In addition, growing evidence suggests there are gender differences in injection risk behavior. However, the potential for differential item functioning between genders has not been explored. To explore item response theory as an improved measurement modeling technique that provides empirically justified scaling of injection risk behavior and to examine for potential gender-based differential item functioning. Data is used from three studies in the National Institute on Drug Abuse's Criminal Justice Drug Abuse Treatment Studies. A two-parameter item response theory model was used to scale injection risk behavior and logistic regression was used to examine for differential item functioning. Item fit statistics suggest that item response theory can be used to scale injection risk behavior and these models can provide more sensitive estimates of risk behavior. Additionally, gender-based differential item functioning is present in the current data. Improved measurement of injection risk behavior using item response theory should be encouraged as these models provide increased congruence between construct measurement and the complexity of injection-related HIV risk. Suggestions are made to further improve injection risk behavior measurement. Furthermore, results suggest direct comparisons of composite scores between males and females may be misleading and future work should account for differential item functioning before comparing levels of injection risk behavior.

  15. Using meta-analytic path analysis to test theoretical predictions in health behavior: An illustration based on meta-analyses of the theory of planned behavior.

    Science.gov (United States)

    Hagger, Martin S; Chan, Derwin K C; Protogerou, Cleo; Chatzisarantis, Nikos L D

    2016-08-01

    Synthesizing research on social cognitive theories applied to health behavior is an important step in the development of an evidence base of psychological factors as targets for effective behavioral interventions. However, few meta-analyses of research on social cognitive theories in health contexts have conducted simultaneous tests of theoretically-stipulated pattern effects using path analysis. We argue that conducting path analyses of meta-analytic effects among constructs from social cognitive theories is important to test nomological validity, account for mediation effects, and evaluate unique effects of theory constructs independent of past behavior. We illustrate our points by conducting new analyses of two meta-analyses of a popular theory applied to health behaviors, the theory of planned behavior. We conducted meta-analytic path analyses of the theory in two behavioral contexts (alcohol and dietary behaviors) using data from the primary studies included in the original meta-analyses augmented to include intercorrelations among constructs and relations with past behavior missing from the original analysis. Findings supported the nomological validity of the theory and its hypotheses for both behaviors, confirmed important model processes through mediation analysis, demonstrated the attenuating effect of past behavior on theory relations, and provided estimates of the unique effects of theory constructs independent of past behavior. Our analysis illustrates the importance of conducting a simultaneous test of theory-stipulated effects in meta-analyses of social cognitive theories applied to health behavior. We recommend researchers adopt this analytic procedure when synthesizing evidence across primary tests of social cognitive theories in health. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Application of the Expanded Theory of Planned Behavior in Intercity Travel Behavior

    Directory of Open Access Journals (Sweden)

    Jing Peng

    2014-01-01

    Full Text Available Congestion in intercity corridors of metropolitan area has been increasing steadily. To alleviate congestion, many major investment projects, such as the high speed railway projects, were proposed by agency. To evaluate the adequacy and efficiency of these projects, the intercity travel behavior should be analyzed in metropolitan area. The paper constructed a Multiple Indicators and Multiple Causes (MIMIC model according to an expanded theory of planned behavior (TPB to study the travel behavior of choosing from the choice set of the traditional train, the high speed railway and the coach by demographic and psychological factors. Through empirical data collection and analysis, we found that demographic factors of travelers indeed positively engender the latent variables in MIMIC, and descriptive norm and habit had direct or indirect significant effect on travel behavior and intention. On the basis of the effect of psychological constructors of the expanded TPB on the intercity travel behavior and differentiation of traveler's demographic characteristics, the agency can make reasonable policies and proper information for the intercity transportation. The results will support the basic theory of optimizing the transportation system in metropolitan area. Implications for researchers and suggestions for future research are also addressed in this study.

  17. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  18. Electroexcitation of the Δ+(1232 at low momentum transfer

    Directory of Open Access Journals (Sweden)

    A. Blomberg

    2016-09-01

    Full Text Available We report on new p(e,e′pπ∘ measurements at the Δ+(1232 resonance at the low momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly changing, offering a test bed for chiral effective field theory calculations. The new data explore the Q2 dependence of the resonant quadrupole amplitudes and for the first time indicate that the Electric and the Coulomb quadrupole amplitudes converge as Q2→0. The measurements of the Coulomb quadrupole amplitude have been extended to the lowest momentum transfer ever reached, and suggest that more than half of its magnitude is attributed to the mesonic cloud in this region. The new data disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.

  19. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  20. Physical approach to price momentum and its application to momentum strategy

    Science.gov (United States)

    Choi, Jaehyung

    2014-12-01

    We introduce various quantitative and mathematical definitions for price momentum of financial instruments. The price momentum is quantified with velocity and mass concepts originated from the momentum in physics. By using the physical momentum of price as a selection criterion, the weekly contrarian strategies are implemented in South Korea KOSPI 200 and US S&P 500 universes. The alternative strategies constructed by the physical momentum achieve the better expected returns and reward-risk measures than those of the traditional contrarian strategy in weekly scale. The portfolio performance is not understood by the Fama-French three-factor model.

  1. Dynamics of high momentum transfer processes

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1977-01-01

    The high momentum transfer processes are considered in terms of field theory of quarks interacting through scalar or pseudoscalar gluons. This approach is based on an algorithm involving the consideration of the Feynman diagram asymptotical behaviour and its summation. The Parton model and quark counting power are an approximation of not too high momentum transfer when anti g 2 (q 2 )ln(-q 2 /Λ) 2 -invariant charge, Λ-boundary parameter. The violation of scaling beyond this region depends on the character of charge renormalization and is of the same kind as in the Wilson expansion approach. Scaling in this region is suppressed by anti g 4 factor for high psub(UPSILON) hadroproduction and wide angle elastic scattering, and by anti g 2 factor for inclusive lepton production and wide angle electro- and photoproduction. Parameter Λ is controlled by hadron masses and can be essential for not too high psub(UPSILON)

  2. Angular-momentum nonclassicality by breaking classical bounds on statistics

    Energy Technology Data Exchange (ETDEWEB)

    Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, E-28040 Madrid (Spain); Rivas, Angel [Departamento de Fisica Teorica I, Facultad de Ciencias Fisicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-10-15

    We derive simple practical procedures revealing the quantum behavior of angular momentum variables by the violation of classical upper bounds on the statistics. Data analysis is minimum and definite conclusions are obtained without evaluation of moments, or any other more sophisticated procedures. These nonclassical tests are very general and independent of other typical quantum signatures of nonclassical behavior such as sub-Poissonian statistics, squeezing, or oscillatory statistics, being insensitive to the nonclassical behavior displayed by other variables.

  3. The proposition of a general version of the theory of planned behavior: Predicting ecological behavior

    NARCIS (Netherlands)

    Kaiser, F.G.; Gutscher, H.

    2003-01-01

    The present paper explores whether the theory of planned behavior (TPB) must abandon the notion that perceived behavioral control (PBC) has a direct influence on behavior. In a cross-sectional survey of 895 Swiss residents, our hypothesis was tested by means of structural equation models. Applied

  4. Chapter 2: Theoretical Models for Understanding Physical Activity Behavior among Children and Adolescents--Social Cognitive Theory and Self-Determination Theory

    Science.gov (United States)

    Motl, Robert W.

    2007-01-01

    The study of physical activity behavior in youth generally lacks a sufficient theoretical foundation for examining variables that influence that behavior. This is a major limitation because theory guides the search for determinants of behavior and the subsequent interplay between research findings and application. Theory offers a systematically…

  5. Advancing Models and Theories for Digital Behavior Change Interventions.

    Science.gov (United States)

    Hekler, Eric B; Michie, Susan; Pavel, Misha; Rivera, Daniel E; Collins, Linda M; Jimison, Holly B; Garnett, Claire; Parral, Skye; Spruijt-Metz, Donna

    2016-11-01

    To be suitable for informing digital behavior change interventions, theories and models of behavior change need to capture individual variation and changes over time. The aim of this paper is to provide recommendations for development of models and theories that are informed by, and can inform, digital behavior change interventions based on discussions by international experts, including behavioral, computer, and health scientists and engineers. The proposed framework stipulates the use of a state-space representation to define when, where, for whom, and in what state for that person, an intervention will produce a targeted effect. The "state" is that of the individual based on multiple variables that define the "space" when a mechanism of action may produce the effect. A state-space representation can be used to help guide theorizing and identify crossdisciplinary methodologic strategies for improving measurement, experimental design, and analysis that can feasibly match the complexity of real-world behavior change via digital behavior change interventions. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  6. High momentum transfer processes in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    A unified approach to the investigation of inclusive high momentum transfer processes in the QCD framework is proposed. A modified parton model (with parton distribution functions depending on an additional renormalization parameter) is shown to be valid in all orders of perturbation theory. The approach is also applicable for studying wide-angle elastic scattering processes of colourless bound states of quarks (the hadrons). The asymptotic behaviour of pion electromagnetic form factor is calculated as an example

  7. The extended Theory of Planned Behavior in explaining exclusive breastfeeding intention and behavior among women in Kelantan, Malaysia.

    Science.gov (United States)

    Tengku Ismail, Tengku Alina; Wan Muda, Wan Abdul Manan; Bakar, Mohd Isa

    2016-02-01

    The purpose of this study is to utilize an extended Theory of Planned Behavior in identifying predictors of exclusive breastfeeding intention and behavior among women in Kelantan, Malaysia. A prospective cohort study was conducted, recruiting pregnant womenthrough two-stage cluster sampling. Their exclusive breastfeeding intention, attitude, perceived norm, perceived behavioral control and past behavior were obtained at baseline through interviewer-guided questionnaire. At one month after delivery, another interview was conducted to determine the two additional variables in the extended theory, which were their postpartum support and breastfeeding difficulty. The behavior, which was the actual duration of exclusive breastfeeding, was obtained from the second follow-up at six months. Pearson correlation and two hierarchical regression analyses were conducted. A total of 200 women completed the study follow-up. Their median intended exclusive breastfeeding duration was 4.0 (IQR 5) months, and the median actual duration was 1.0 (IQR 4) month. The Theory of Planned Behavior explained 51.0% of the variance in intention, with perceived behavioral control and attitude were the significant predictors. It also explained 10.0% of the variance in behavior, but the addition of postpartum support and breastfeeding difficulty increased the amount of explained variance in behavior by 6.0%. The significant predictors of exclusive breastfeeding behavior were intention, postpartum support and breastfeeding difficulty. The extended Theory of Planned Behaviorhad a good predictive ability in explaining exclusive breastfeedingintention and behavior. The women's intention to practice exclusive breastfeeding may be improved by improving their perceived behavioral control and attitude. Providing correct postpartum support and skills to handle breastfeeding difficulties after delivery will improve their exclusive breastfeeding behavior.

  8. The interplay between affect and theory of planned behavior variables

    NARCIS (Netherlands)

    Keer, M.; van den Putte, B.; Neijens, P.

    2012-01-01

    Objectives: To assess whether affective evaluations of health behaviors moderate or mediate the influence of theory of planned behavior (TPB) variables on intention. Methods: For each of 20 health behaviors, respondents (N=300) completed questionnaire measures of affective evaluation, attitude,

  9. Field momentum, inertial momentum and gravitational momentum of a system of bodies in the post-Newtonian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jankiewicz, Cz; Sikora, D [Wyzsza Szkola Pedagogiczna, Rzeszow (Poland)

    1980-01-01

    It is shwon that in the post-Newtonian approximation the gravitational momentum of a system of point particles is equal to the sum of field momentum and inertial momentum only in two classes of coordinate systems. This equality may be treated as a natural condition on a coordinate system in which the generally covariant Einstein equations are to be solved.

  10. Study on Conversion Between Momentum and Contrarian Based on Fractal Game

    Science.gov (United States)

    Wu, Xu; Song, Guanghui; Deng, Yan; Xu, Lin

    2015-06-01

    Based on the fractal game which is performed by the majority and the minority, the fractal market theory (FMT) is employed to describe the features of investors' decision-making. Accordingly, the process of fractal games is formed in order to analyze the statistical features of conversion between momentum and contrarian. The result shows that among three fractal game mechanisms, the statistical feature of simulated return rate series is much more similar to log returns on actual series. In addition, the conversion between momentum and contrarian is also extremely similar to real situation, which can reflect the effectiveness of using fractal game in analyzing the conversion between momentum and contrarian. Moreover, it also provides decision-making reference which helps investors develop effective investment strategy.

  11. On momentum conservation

    International Nuclear Information System (INIS)

    Karastoyanov, A.

    1990-01-01

    The relativistic law of momentum transformation shows that the sum of momenta of even isolated particles is not invariable in all inertial reference systems. This is connected with the relativistic change of kinetic energy and mass of a system of particles in result of internal interactions. The paper proposes a short and simple proof on the necessity of potential momentum. The momentum conservation law (for all interactions in the Minkowski world) is expressed in a generalized form. The constancy of the sum of kinetic and potential momentum of closed system of particles is shown. The energy conservation is a necessary condition. The potential momentum is defined as usual (e.g. as in the Berkeley Physics Course). (author). 13 refs

  12. Effect of isospin degree of freedom on transverse momentum spectra

    International Nuclear Information System (INIS)

    Kaur, Sukhjit; Swati

    2013-01-01

    We study the effect of isospin degree of freedom, incident energy as well as system mass on the behavior of transverse momentum spectra, dN/p t dp t , of neutrons and protons. We find that most of the nucleons suffer soft collisions. The effect of isospin degree of freedom on transverse spectra diminishes with the increase in the incident energy. In Fermi energy region, transverse momentum spectra of both protons and neutrons show sensitivity toward the density dependence of symmetry energy. (author)

  13. Relativistic theory of gravitation and nonuniqueness of the predictions of general relativity theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Loskutov, Yu.M.

    1986-01-01

    It is shown that while the predictions of relativistic theory of gravitation (RTG) for the gravitational effects are unique and consistent with the experimental data available, the relevant predictions of general relativity theory are not unique. Therewith the above nonuniqueness manifests itself in some effects in the first order in the gravitational interaction constant in others in the second one. The absence in GRT of the energy-momentum and angular momentum conservation laws for the matter and gravitational field taken together and its inapplicability to give uniquely determined predictions for the gravitational phenomena compel to reject GRT as a physical theory

  14. Numerical Simulations of Marine Hydrokinetic (MHK) Turbines Using the Blade Element Momentum Theory

    Science.gov (United States)

    Javaherchi, Teymour; Thulin, Oskar; Aliseda, Alberto

    2011-11-01

    Energy extraction from the available kinetic energy in tidal currents via Marine Hydrokinetic (MHK) turbines has recently attracted scientists' attention as a highly predictable source of renewable energy. The strongest tidal resources have a concentrated nature that require close turbine spacing in a farm of MHK turbines. This tight spacing, however, will lead to interaction of the downstream turbines with the turbulent wake generated by upstream turbines. This interaction can significantly reduce the power generated and possibly result in structural failure before the expected service life is completed. Development of a numerical methodology to study the turbine-wake interaction can provide a tool for optimization of turbine spacing to maximize the power generated in turbine arrays. In this work, we will present numerical simulations of the flow field in a farm of horizontal axis MHK turbines using the Blade Element Momentum Theory (BEMT). We compare the value of integral variables (i.e. efficiency, power, torque and etc.) calculated for each turbine in the farm for different arrangements with varying streamwise and lateral offsets between turbines. We find that BEMT provides accurate estimates of turbine efficiency under uniform flow conditions, but overpredicts the efficiency of downstream turbines when they are strongly affected by the wakes. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  15. Transverse momentum at work in high-energy scattering experiments

    Science.gov (United States)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  16. Prediction of attendance at fitness center: a comparison between the theory of planned behavior, the social cognitive theory, and the physical activity maintenance theory

    OpenAIRE

    Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O.; Mess, Filip; Reiner, Miriam; Renner, Britta

    2015-01-01

    In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed...

  17. Effective string theory and QCD scattering amplitudes

    International Nuclear Information System (INIS)

    Makeenko, Yuri

    2011-01-01

    QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.

  18. Psychosocial Predictors for Cancer Prevention Behaviors in Workplace Using Protection Motivation Theory

    OpenAIRE

    Zare Sakhvidi, Mohammad Javad; Zare, Maryam; Mostaghaci, Mehrdad; Mehrparvar, Amir Houshang; Morowatisharifabad, Mohammad Ali; Naghshineh, Elham

    2015-01-01

    Backgrounds. The aim of this study was to describe the preventive behaviors of industrial workers and factors influencing occupational cancer prevention behaviors using protection motivation theory. Methods. A self-administered questionnaire was completed by 161 petrochemical workers in Iran in 2014 which consisted of three sections: background information, protection motivation theory measures, and occupational cancers preventive behaviors. Results. A statistically significant positive corre...

  19. On black hole thermodynamics with a momentum relaxation

    International Nuclear Information System (INIS)

    Park, Chanyong

    2016-01-01

    We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mass density of another matter localized at the center. Even though all parameters are continuous, there exists a specific point where its thermodynamic interpretation is not continuously connected to the one defined in the other parameter regime. The similar feature also appears in a topological AdS black hole. In this work, we show why such an unusual thermodynamic feature happens and provide a unified way to understand such an exotic black hole thermodynamically in the entire parameter range. (paper)

  20. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  1. On the development of the theory of the QBO. [Quasi-Biennial Oscillation

    Science.gov (United States)

    Lindzen, Richard S.

    1987-01-01

    The events that led to the discovery of the quasi-biennial oscillation (QBO) of the equatorial stratosphere are described together with the development of current QBO theory. Three independent areas of inquiry led to this theory: (1) the observational and theoretical studies of equatorial waves, (2) the theoretical study of the behavior of mountain waves at critical levels where the mean flow speed went to zero, and (3) the semiempirical study of the momentum budget of the QBO. The efforts in each of these three areas are discussed.

  2. Spin-Orbital Momentum Decomposition and Helicity Exchange in a Set of Non-Null Knotted Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Manuel Arrayás

    2018-03-01

    Full Text Available We calculate analytically the spin-orbital decomposition of the angular momentum using completely nonparaxial fields that have a certain degree of linkage of electric and magnetic lines. The split of the angular momentum into spin-orbital components is worked out for non-null knotted electromagnetic fields. The relation between magnetic and electric helicities and spin-orbital decomposition of the angular momentum is considered. We demonstrate that even if the total angular momentum and the values of the spin and orbital momentum are the same, the behavior of the local angular momentum density is rather different. By taking cases with constant and non-constant electric and magnetic helicities, we show that the total angular momentum density presents different characteristics during time evolution.

  3. Behavioral data requirements for translating cognitive theories into computer software algorithms

    International Nuclear Information System (INIS)

    Meister, D.

    1992-01-01

    This paper reviews the characteristics of cognitive theories and their links to behavioral science and advanced intelligent systems. Cognitive theories model human cognition, perception, and communication. They suggest the human functions the system should have, serve as a philosophical basis for system development, and provide abstract design guidelines. The underlying assumption behind this paper is that if the cognitive theories are to have any value at all, they must be translated into usable systems. A process for testing a cognitive theory in terms of conceptual criteria, behavioral predictions and tests, and software development and tests, is suggested. Criteria for measuring the problem solving success of the advanced system are described. A theory of the system as an intelligent problem solver is presented. (author)

  4. Establishing a Relationship between Behavior Change Theory and Social Marketing: Implications for Health Education.

    Science.gov (United States)

    Thackeray, Rosemary; Neiger, Brad L.

    2000-01-01

    Describes relationships between behavior change theory and social marketing practice, noting challenges in making behavior change theory an important component of social marketing and proposing that social marketing is the framework to which theory can be applied, creating theory-driven, consumer-focused, more effective health education programs.…

  5. Applying theory-driven approaches to understanding and modifying clinicians' behavior: what do we know?

    Science.gov (United States)

    Perkins, Matthew B; Jensen, Peter S; Jaccard, James; Gollwitzer, Peter; Oettingen, Gabriele; Pappadopulos, Elizabeth; Hoagwood, Kimberly E

    2007-03-01

    Despite major recent research advances, large gaps exist between accepted mental health knowledge and clinicians' real-world practices. Although hundreds of studies have successfully utilized basic behavioral science theories to understand, predict, and change patients' health behaviors, the extent to which these theories-most notably the theory of reasoned action (TRA) and its extension, the theory of planned behavior (TPB)-have been applied to understand and change clinician behavior is unclear. This article reviews the application of theory-driven approaches to understanding and changing clinician behaviors. MEDLINE and PsycINFO databases were searched, along with bibliographies, textbooks on health behavior or public health, and references from experts, to find article titles that describe theory-driven approaches (TRA or TPB) to understanding and modifying health professionals' behavior. A total of 19 articles that detailed 20 studies described the use of TRA or TPB and clinicians' behavior. Eight articles describe the use of TRA or TPB with physicians, four relate to nurses, three relate to pharmacists, and two relate to health workers. Only two articles applied TRA or TPB to mental health clinicians. The body of work shows that different constructs of TRA or TPB predict intentions and behavior among different groups of clinicians and for different behaviors and guidelines. The number of studies on this topic is extremely limited, but they offer a rationale and a direction for future research as well as a theoretical basis for increasing the specificity and efficiency of clinician-targeted interventions.

  6. Falsification of matching theory and confirmation of an evolutionary theory of behavior dynamics in a critical experiment.

    Science.gov (United States)

    McDowell, J J; Calvin, Olivia L; Hackett, Ryan; Klapes, Bryan

    2017-07-01

    Two competing predictions of matching theory and an evolutionary theory of behavior dynamics, and one additional prediction of the evolutionary theory, were tested in a critical experiment in which human participants worked on concurrent schedules for money (Dallery et al., 2005). The three predictions concerned the descriptive adequacy of matching theory equations, and of equations describing emergent equilibria of the evolutionary theory. Tests of the predictions falsified matching theory and supported the evolutionary theory. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. On the reversibility of the Meissner effect and the angular momentum puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu

    2016-10-15

    It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay of eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes. - Highlights: • The normal-superconductor phase transition is reversible. • Within the conventional theory, Foucault currents give rise to irreversibility. • To

  8. On the reversibility of the Meissner effect and the angular momentum puzzle

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2016-01-01

    It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay of eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes. - Highlights: • The normal-superconductor phase transition is reversible. • Within the conventional theory, Foucault currents give rise to irreversibility. • To

  9. Infrared behavior of massless field theories

    International Nuclear Information System (INIS)

    Sapirstein, J.R.

    1979-01-01

    Typical infrared effects in several gauge field theories with massless particles are investigated in perturbation theory. It is first shown that divergences occurring in individual Feynman graphs arising from integrations over the long-wavelength modes of the fields cancel when the graphs are grouped together in a particular way, in a generalization of the Bloch-Nordsieck treatment of QED. As one of the requirements of finiteness is renormalization of the vector propagator off shell, the charge in these theories is not directly related to classical experiment. In an effort to find the meaning of charge the low-energy theorem is considered. Although in lowest order the graphs reproduce the Thompson limit, it is found that loop corrections are singular in the low-energy limit; a simple definition of the charge is thus precluded. Finally, the behavior of the quark color magnetic moment is treated. An apparent infrared singularity of this moment is shown to be due to an improper use of perturbation theory, and is removed and replaced with a finite, field-dependent moment, by use of Furry picture propagators

  10. On the energy-momentum tensors for field theories in spaces with affine connection and metric

    International Nuclear Information System (INIS)

    Manoff, S.

    1991-01-01

    Generalized covariant Bianchi type identities are obtained and investigated for Lagrangian densities, depending on co- and contravariant tensor fields and their first and second covariant derivatives in spaces with affine connection and metric (L n -space). The notions of canonical, generalized canonical, symmetric and variational energy-momentum tensor are introduced and necessary and sufficient conditions for the existence of the symmetric energy-momentum tensor as a local conserved quantity are obtained. 19 refs.; 1 tab

  11. Application of the Expanded Theory of Planned Behavior in Intercity Travel Behavior

    OpenAIRE

    Peng, Jing; Zhi-cai, Juan; Lin-jie, Gao

    2014-01-01

    Congestion in intercity corridors of metropolitan area has been increasing steadily. To alleviate congestion, many major investment projects, such as the high speed railway projects, were proposed by agency. To evaluate the adequacy and efficiency of these projects, the intercity travel behavior should be analyzed in metropolitan area. The paper constructed a Multiple Indicators and Multiple Causes (MIMIC) model according to an expanded theory of planned behavior (TPB) to study the travel beh...

  12. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2009-12-15

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  13. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2009-12-01

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  14. Angular momentum and torque described with the complex octonion

    International Nuclear Information System (INIS)

    Weng, Zi-Hua

    2014-01-01

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field and of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory

  15. Theory of mind in schizophrenia: correlation with clinical symptomatology, emotional recognition and ward behavior.

    Science.gov (United States)

    Lee, Woo Kyeong; Kim, Yong Kyu

    2013-09-01

    Several studies have suggested the presence of a theory of mind (ToM) deficit in schizophrenic disorders. This study examined the relationship of emotion recognition, theory of mind, and ward behavior in patients with schizophrenia. Fifty-five patients with chronic schizophrenia completed measures of emotion recognition, ToM, intelligence, Positive and Negative Syndrome Scale (PANSS) and Nurse's Observation Scale for Inpatient Evaluation (NOSIE). Theory of mind sum score correlated significantly with IQ, emotion recognition, and ward behavior. Ward behavior was linked to the duration of the illness, and even more so to theory of mind deficits. Theory of mind contributed a significant proportion of the amount of variance to explain social behavior on the ward. Considering our study results, impaired theory of mind contributes significantly to the understanding of social competence in patients with schizophrenia. Copyright © 2012 Wiley Publishing Asia Pty Ltd.

  16. On expansion of scattering amplitude at large momentum transfers

    International Nuclear Information System (INIS)

    Edneral, V.F.; Troshin, S.M.; Tyurin, N.E.

    1979-01-01

    The aim of the paper is to construct an iterative approximation for hadronic scattering amplitude and to search for the related small parameters. The expansion of the amplitude is obtained. A series is derived where the role of the small parameter is played by the quantity dependent on the momentum transfer. The appearance of the small parameter is directly related to the growth of total cross section. For the case g 2 not equal to 0 in the framework of the strong interaction theory model, based on the solution of three-domensional dynamical equation an expression is obtained for scattering amplitude in the form of a series over the quantity decreasing with the growth of momentum transfer

  17. The utility of theory of planned behavior in predicting consistent ...

    African Journals Online (AJOL)

    admin

    disease. Objective: To examine the utility of theory of planned behavior in predicting consistent condom use intention of HIV .... (24-25), making subjective norms as better predictors of intention ..... Organizational Behavior and Human Decision.

  18. Extending Theory-Based Quantitative Predictions to New Health Behaviors.

    Science.gov (United States)

    Brick, Leslie Ann D; Velicer, Wayne F; Redding, Colleen A; Rossi, Joseph S; Prochaska, James O

    2016-04-01

    Traditional null hypothesis significance testing suffers many limitations and is poorly adapted to theory testing. A proposed alternative approach, called Testing Theory-based Quantitative Predictions, uses effect size estimates and confidence intervals to directly test predictions based on theory. This paper replicates findings from previous smoking studies and extends the approach to diet and sun protection behaviors using baseline data from a Transtheoretical Model behavioral intervention (N = 5407). Effect size predictions were developed using two methods: (1) applying refined effect size estimates from previous smoking research or (2) using predictions developed by an expert panel. Thirteen of 15 predictions were confirmed for smoking. For diet, 7 of 14 predictions were confirmed using smoking predictions and 6 of 16 using expert panel predictions. For sun protection, 3 of 11 predictions were confirmed using smoking predictions and 5 of 19 using expert panel predictions. Expert panel predictions and smoking-based predictions poorly predicted effect sizes for diet and sun protection constructs. Future studies should aim to use previous empirical data to generate predictions whenever possible. The best results occur when there have been several iterations of predictions for a behavior, such as with smoking, demonstrating that expected values begin to converge on the population effect size. Overall, the study supports necessity in strengthening and revising theory with empirical data.

  19. Suicide Prevention in Schools as Viewed through the Interpersonal-Psychological Theory of Suicidal Behavior

    Science.gov (United States)

    Joiner, Thomas E., Jr.

    2009-01-01

    The author has proposed a new theory of suicidal behavior--the interpersonal-psychological theory of suicidal behavior (Joiner, 2005)--which attempts to answer the question "Why do people die by suicide?" In this commentary, he briefly describes the theory, and then argues that the theory's constructs may allow a new level of focus and specificity…

  20. Theory of deep inelastic neutron scattering: Hard-core perturbation theory

    International Nuclear Information System (INIS)

    Silver, R.N.

    1988-01-01

    Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He

  1. The interpersonal theory of suicide and adolescent suicidal behavior.

    Science.gov (United States)

    Barzilay, S; Feldman, D; Snir, A; Apter, A; Carli, V; Hoven, C W; Wasserman, C; Sarchiapone, M; Wasserman, D

    2015-09-01

    Joiner's interpersonal theory of suicide (IPTS) proposes that suicide results from the combination of a perception of burdening others, social alienation, and the capability for self-harm. The theory gained some empirical support, however the overall model has yet to be tested. This study aimed to test the main predictions of IPTS in a large community sample of Israeli adolescents. 1196 Israeli Jewish and Arab high-school pupils participating in the SEYLE project completed a self-report questionnaire measuring perceived burdensomeness, thwarted belongingness, health risk behaviors, and non-suicidal self-injury (risk variables), and suicidal ideation and suicide attempts (outcome measures). The data were tested in cross-sectional regression models. Consistent with IPTS, perceived burdensomeness was found to interact with thwarted belongingness, predicting suicidal ideation. Depression mediated most of the effect of thwarted belongingness and perceived burdensomeness on suicidal ideation. Acquired capability for self-harm, as measured by health risk behaviors and direct non-suicidal self-injurious behaviors, predicted suicide attempt. However, this mechanism operated independently from ideation rather than in interaction with it, at variance with IPTS-based predictions. The cross-sectional design precludes conclusions about causality and directionality. Proxy measures were used to test the interpersonal theory constructs. The findings support some of the IPTS predictions but not all, and imply two separate pathways for suicidal behavior in adolescents: one related to internalizing psychopathology and the other to self-harm behaviors. This conceptualization has clinical implications for the differential identification of adolescents at risk for suicidal behavior and for the development of prevention strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  3. Using the Theory of Planned Behavior to Explain and Predict Behavior Intentions in Taiwan

    Science.gov (United States)

    Wu, Cheng-Lung

    2015-01-01

    This study aims to use the theory of planned behavior to verify undergraduates' behavioral intentions regarding their participation in aquatic sports. Undergraduates in Taiwan serve as the research subjects and a survey method employs questionnaires. A total of 200 valid questionnaires were received out of 230, thus giving a valid response rate of…

  4. The Contributions of Applied Behavior Analysis and Behavior Theory to Innovative Research and Practice Cultures in Social Work.

    Science.gov (United States)

    Briggs, Harold Eugene; Sharkey, Caroline; Briggs, Adam Christopher

    2016-01-01

    In this article the authors tie the emergence of an empirical practice research culture, which enabled the rise in evidence-based practice in social work to the introduction of applied behavior analysis and behavioral theory to social work practice and research. The authors chronicle the: (1) scientific foundations of social work, (2) influence and push by corporatized university cultures for higher scholarship productivity among faculty, (3) significance of theory in general, (4) importance of behavioral theory in particular as a major trigger of the growth in research on effective social work practice approaches, and (5) commonalities between applied behavior analysis and evidence-based practice. The authors conclude with implications for addressing the dual challenges of building an enhanced research culture in schools of social work and the scholarship of transferring practice research to adoption in real world practice settings.

  5. Improving hand hygiene compliance in healthcare settings using behavior change theories: reflections.

    Science.gov (United States)

    Al-Tawfiq, Jaffar A; Pittet, Didier

    2013-01-01

    Although hand hygiene is the most effective method for preventing healthcare-associated infections, hand hygiene practice falls short in many healthcare facilities. The compliance rate is mostly linked to system design and easily accessible hand hygiene products. System change, healthcare worker motivation, and complex behavioral considerations seem to play a significant role. This article discusses the application of behavioral theories in hand hygiene promotion in a theoretical manner. The program relies on the transtheoretical model (TTM) of health behavior change, John Keller's (ARCS) Model of Motivational Design, and the theory of planned behavior (TPB). Thus, the program links attitudes and behavior to hand hygiene promotion. The TTM of health behavior change helps to tailor interventions to predict and motivate individual movement across the pathway to change. A program could be based on this theory with multiple intercalations with John Keller's ARCS and the TPB. Such a program could be strengthened by linking attitudes and behavior to promote hand hygiene. The program could utilize different strategies such as organization cultural change that may increase the attention as well as fostering the movement in the ARCS stages. In addition, modeling TPB by creating peer pressure, ability to overcome obstacles, and increasing knowledge of the role of hand hygiene may lead to the desired outcome. The understanding and application of behavior change theories may result in an effective program to improve awareness and raise intention and thus may increase the potential for success of hand hygiene promotion programs.

  6. Inclusive reactions and high momentum components in nuclei

    International Nuclear Information System (INIS)

    Frankel, S.

    1977-01-01

    A summary is given of the activity in the last two years, both experimental and theoretical, aimed at understanding high momentum nuclear phenomena. Most of the data that are useful come from the inclusive production of protons (p + A → p + A). Some of it comes from production of antiprotons (p + A → anti p + A) in nuclei at energies below threshold for free p-p interactions. Inclusive proton production by protons is concentrated on and a review is given of the data and the theoretical attempts to understand the data on the basis of different models. The different momentum distributions that enter into the models are then examined. Finally, problems and avenues for the present theory and new experiments that could be designed to distinguish between or further probe present models are discussed

  7. Angular momentum projection of cranked PNC wave function

    International Nuclear Information System (INIS)

    Han Yong

    2000-01-01

    In studying the properties of nuclear higher-spin states, not only the K-mixture needed to be taken into account, but also the Coriolis interaction (the cranking term) should be introduced. The cranking term breaks the time reversal symmetry, and the projection of the single-particle angular momentum on the intrinsic symmetric axis is no longer a good quantum number. This makes the theoretical calculation somewhat complicated. However, considering some intrinsic symmetry in a nucleus, it is not very difficult to apply the angular momentum projection technique to the PNC wave functions including the cranking components (the cranked PNC wave functions). The fundamental expressions for calculating the nuclear energy spectra and the electromagnetic properties are deduced and evaluated in theory, consequently the feasibility of actualizing the present scheme is made clear

  8. Nonlinear behavior of capacitive micro-beams based on strain gradient theory

    International Nuclear Information System (INIS)

    Fathalilou, Mohammad; Sadeghi, Morteza; Rezazadeh, Ghader

    2014-01-01

    This paper studies the size dependent behavior of materials in MEMS structures. This behavior becomes noticeable for a structure when the characteristic size such as thickness or diameter is close to its internal length-scale parameter and is insignificant for the high ratio of the characteristic size to the length-scale parameter, which is the case of the silicon base micro-beams. However, in some types of micro-beams like gold or nickel bases, the size dependent effect cannot be overlooked. In such cases, ignoring this behavior in modeling will lead to incorrect results. Some previous researchers have applied classic beam theory on their models and imposed a considerable hypothetical value of residual stress to match their theoretical results with the experimental ones. The equilibrium positions or fixed points of the gold and nickel micro-beams are obtained and shown that for a given DC voltage, there is a considerable difference between the obtained fixed points using classic beam theory, modified couple stress theory, and modified strain gradient theory. In addition, it is shown that the calculated static and dynamic pull-in voltages using higher order theories are much closer to the experimental results and are higher several times than those obtained by classic beam theory.

  9. Investigation of the molecular conformations of ethanol using electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Ning, C G; Luo, Z H; Huang, Y R; Liu, K; Zhang, S F; Deng, J K; Hajgato, B; Morini, F; Deleuze, M S

    2008-01-01

    The valence electronic structure and momentum-space electron density distributions of ethanol have been investigated with our newly constructed high-resolution electron momentum spectrometer. The measurements are compared to thermally averaged simulations based on Kohn-Sham (B3LYP) orbital densities as well as one-particle Green's function calculations of ionization spectra and Dyson orbital densities, assuming Boltzmann's statistical distribution of the molecular structure over the two energy minima defining the anti and gauche conformers. One-electron ionization energies and momentum distributions in the outer-valence region were found to be highly dependent upon the molecular conformation. Calculated momentum distributions indeed very sensitively reflect the distortions and topological changes that molecular orbitals undergo due to the internal rotation of the hydroxyl group, and thereby exhibit variations which can be traced experimentally. The B3LYP model Kohn-Sham orbital densities are overall in good agreement with the experimental distributions, and closely resemble benchmark ADC(3) Dyson orbital densities. Both approaches fail to quantitatively reproduce the experimental momentum distributions characterizing the highest occupied molecular orbital. Since electron momentum spectroscopy measurements at various electron impact energies indicate that the plane wave impulse approximation is valid, this discrepancy between theory and experiment is tentatively ascribed to thermal disorder, i.e. large-amplitude and thermally induced dynamical distortions of the molecular structure in the gas phase

  10. Extending the Theory of Normative Social Behavior to Predict Hand-Washing among Koreans.

    Science.gov (United States)

    Chung, Minwoong; Lapinski, Maria Knight

    2018-04-10

    The current study tests the predictions of the theory of normative social behavior (TNSB) in a hand-washing context in a Korean sample and extends the theory to examine the role of perceived publicness, a variable believed to activate face concerns, as a moderator of the norm-behavior relationship. The findings show substantial main effects for all of the study variables on behavior. In addition, the descriptive norm-behavior relationship is moderated by perceived publicness and outcome expectations, but the nature of the interactions is not consistent with that evidenced in previous literature on US samples. Implications for normative theory and communication campaigns are discussed.

  11. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  12. How Settings Change People: Applying Behavior Setting Theory to Consumer-Run Organizations

    Science.gov (United States)

    Brown, Louis D.; Shepherd, Matthew D.; Wituk, Scott A.; Meissen, Greg

    2007-01-01

    Self-help initiatives stand as a classic context for organizational studies in community psychology. Behavior setting theory stands as a classic conception of organizations and the environment. This study explores both, applying behavior setting theory to consumer-run organizations (CROs). Analysis of multiple data sets from all CROs in Kansas…

  13. Extending unified-theory-of-reinforcement neural networks to steady-state operant behavior.

    Science.gov (United States)

    Calvin, Olivia L; McDowell, J J

    2016-06-01

    The unified theory of reinforcement has been used to develop models of behavior over the last 20 years (Donahoe et al., 1993). Previous research has focused on the theory's concordance with the respondent behavior of humans and animals. In this experiment, neural networks were developed from the theory to extend the unified theory of reinforcement to operant behavior on single-alternative variable-interval schedules. This area of operant research was selected because previously developed neural networks could be applied to it without significant alteration. Previous research with humans and animals indicates that the pattern of their steady-state behavior is hyperbolic when plotted against the obtained rate of reinforcement (Herrnstein, 1970). A genetic algorithm was used in the first part of the experiment to determine parameter values for the neural networks, because values that were used in previous research did not result in a hyperbolic pattern of behavior. After finding these parameters, hyperbolic and other similar functions were fitted to the behavior produced by the neural networks. The form of the neural network's behavior was best described by an exponentiated hyperbola (McDowell, 1986; McLean and White, 1983; Wearden, 1981), which was derived from the generalized matching law (Baum, 1974). In post-hoc analyses the addition of a baseline rate of behavior significantly improved the fit of the exponentiated hyperbola and removed systematic residuals. The form of this function was consistent with human and animal behavior, but the estimated parameter values were not. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. NNLO QCD corrections to Higgs boson production at large transverse momentum

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X. [Center for High Energy Physics, Peking University,Beijing 100871 (China); Cruz-Martinez, J. [Institute for Particle Physics Phenomenology, Department of Physics, University of Durham,Durham, DH1 3LE (United Kingdom); Gehrmann, T. [Department of Physics, University of Zürich,CH-8057 Zürich (Switzerland); Glover, E.W.N. [Institute for Particle Physics Phenomenology, Department of Physics, University of Durham,Durham, DH1 3LE (United Kingdom); Jaquier, M. [Albert-Ludwigs-Universität Freiburg, Physikalisches Institut,D-79104 Freiburg (Germany)

    2016-10-13

    We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to-leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.

  15. NNLO QCD corrections to Higgs boson production at large transverse momentum

    Science.gov (United States)

    Chen, X.; Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Jaquier, M.

    2016-10-01

    We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to-leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.

  16. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  17. Conformal symmetry breaking and the energy-momentum tensor in four dimensions

    International Nuclear Information System (INIS)

    Kraus, E.; Sibold, K.

    1993-01-01

    We derive the conformal transformation properties of the energy-momentum tensor for the massless φ 4 -theory in four dimensions. For this purpose the consistency conditions arising from Weyl-transformations are essential. The breaking of Weyl-invariance can be completely absorbed by making the coupling of the elementary theory local and by introducing an external field which couples to the composite operators φ 2 . Only then can one stay in a completely local framework. (orig.)

  18. Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-04-01

    We develop a new method to study electrical circuits at quantum nanoscale by introducing a heat momentum operator which reproduces quantum effects similar to those obtained in Suykens's nonlocal-in-time kinetic energy approach for the case of reversible motion. The series expansion of the heat momentum operator is similar to the momentum operator obtained in the framework of minimal length phenomenologies characterized by the deformation of Heisenberg algebra. The quantization of both LC and mesoscopic circuits revealed a number of motivating features like the emergence of a generalized uncertainty relation and a minimal charge similar to those obtained in the framework of minimal length theories. Additional features were obtained and discussed accordingly.

  19. Symmetric large momentum transfer for atom interferometry with BECs

    Science.gov (United States)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  20. THEORY OF REASONED ACTION FOR CONTINUOUS IMPROVEMENT CAPABILITIES: A BEHAVIORAL APPROACH

    Directory of Open Access Journals (Sweden)

    Janaina Siegler

    2012-09-01

    Full Text Available The importance of interaction between Operations Management (OM and Human Behavior has been recently re-addressed. This paper introduced the Reasoned Action Theory suggested by Froehle and Roth (2004 to analyze Operational Capabilities exploring the suitability of this model in the context of OM. It also seeks to discuss the behavioral aspects of operational capabilities from the perspective of organizational routines. This theory was operationalized using Fishbein and Ajzen (F/A behavioral model and a multi-case strategy was employed to analyze the Continuous Improvement (CI capability. The results posit that the model explains partially the CI behavior in an operational context and some contingency variables might influence the general relationsamong the variables involved in the F/A model. Thus intention might not be the determinant variable of behavior in this context.

  1. State of the evidence regarding behavior change theories and strategies in nutrition counseling to facilitate health and food behavior change.

    Science.gov (United States)

    Spahn, Joanne M; Reeves, Rebecca S; Keim, Kathryn S; Laquatra, Ida; Kellogg, Molly; Jortberg, Bonnie; Clark, Nicole A

    2010-06-01

    Behavior change theories and models, validated within the field of dietetics, offer systematic explanations for nutrition-related behavior change. They are integral to the nutrition care process, guiding nutrition assessment, intervention, and outcome evaluation. The American Dietetic Association Evidence Analysis Library Nutrition Counseling Workgroup conducted a systematic review of peer-reviewed literature related to behavior change theories and strategies used in nutrition counseling. Two hundred fourteen articles were reviewed between July 2007 and March 2008, and 87 studies met the inclusion criteria. The workgroup systematically evaluated these articles and formulated conclusion statements and grades based upon the available evidence. Strong evidence exists to support the use of a combination of behavioral theory and cognitive behavioral theory, the foundation for cognitive behavioral therapy (CBT), in facilitating modification of targeted dietary habits, weight, and cardiovascular and diabetes risk factors. Evidence is particularly strong in patients with type 2 diabetes receiving intensive, intermediate-duration (6 to 12 months) CBT, and long-term (>12 months duration) CBT targeting prevention or delay in onset of type 2 diabetes and hypertension. Few studies have assessed the application of the transtheoretical model on nutrition-related behavior change. Little research was available documenting the effectiveness of nutrition counseling utilizing social cognitive theory. Motivational interviewing was shown to be a highly effective counseling strategy, particularly when combined with CBT. Strong evidence substantiates the effectiveness of self-monitoring and meal replacements and/or structured meal plans. Compelling evidence exists to demonstrate that financial reward strategies are not effective. Goal setting, problem solving, and social support are effective strategies, but additional research is needed in more diverse populations. Routine documentation

  2. Models of alcohol use by young adults: an examination of various attitude-behavior theories.

    Science.gov (United States)

    O'Callaghan, F V; Chang, D C; Callan, V J; Baglioni, A

    1997-09-01

    The aim of this study was to test the effectiveness of various attitude-behavior theories in explaining alcohol use among young adults. The theory of reasoned action (TRA), the theory of planned behavior and an extension of the TRA that incorporates past behavior were compared by the method of maximum-likelihood estimation, as implemented in LISREL for Windows 8.12. Respondents consisted of 122 university students (82 female) who were questioned about their attitudes, subjective norms, perceived behavioral control, past behavior and intentions relating to drinking behavior. Students received course credit for their participation in the research. Overall, the results suggest that the extension of the theory of reasoned action which incorporates past behavior provides the best fit to the data. For these young adults, their intentions to drink alcohol were predicted by their past behavior as well as their perceptions of what important others think they should do (subjective norm). The main conclusions drawn from the research concern the importance of focusing on normative influences and past behavior in explaining young adult alcohol use. Issues regarding the relative merit of various alternative models and the need for greater clarity in the measure of attitudes are also discussed.

  3. THE ANALYSIS OF PREDICTABILITY OF SHARE PRICE CHANGES USING THE MOMENTUM MODEL

    Directory of Open Access Journals (Sweden)

    Tatjana Stanivuk

    2012-12-01

    Full Text Available Within the context of behavioral finance, there is increasing evidence on predicting the stock returns based on several variables specific for each company. One of these anomalies also identified as the one which is most difficult to explain within the context of traditional price paradigms, is the effect of price momentum. It is demonstrated that the shares that have generated the highest (or lowest returns in the period from 3 to 12 months have the tendency of increase (or decrease in the following 3 to 12 months. The findings are contrary to the Efficient Market Hypothesis (EMH. The investment industry professionals are aware of the momentum effect, and it seems that the stock evaluation is performed based on the price momentum. This paper presents empirical evidence on existence of price momentum in the stock market. The anomalies continue to persist.

  4. Transfer of orbital angular momentum to an optically trapped low-index particle

    International Nuclear Information System (INIS)

    Garces-Chavez, V.; Sibbett, W.; Dholakia, K.; Volke-Sepulveda, K.; Chavez-Cerda, S.

    2002-01-01

    We demonstrate the transfer of orbital angular momentum from a light beam to a trapped low-index particle. The particle is trapped in a dark annular region of a high-order Bessel beam and rotates around the beam axis due to scattering from the helical wave fronts of the light beam. A general theoretical geometrical optics model is developed that, applied to our specific situation, corroborates tweezing and transfer of orbital angular momentum to the low-index particle. Good quantitative agreement between theory and experiment for particle rotation rates is observed

  5. A study of driver's route choice behavior based on evolutionary game theory.

    Science.gov (United States)

    Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.

  6. Uncertainty principle for angular position and angular momentum

    International Nuclear Information System (INIS)

    Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-01-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry

  7. The energy-momentum spectrum in local field theories with broken Lorentz-symmetry

    International Nuclear Information System (INIS)

    Borchers, H.J.; Buchholz, D.

    1984-05-01

    Assuming locality of the observables and positivity of the energy it is shown that the joint spectrum of the energy-momentum operators has a Lorentz-invariant lower boundary in all superselection sectors. This result is of interest if the Lorentz-symmetry is (spontaneously) broken, such as in the charged sectors of quantum electrodynamics. (orig.)

  8. Position-momentum uncertainty relations in the presence of quantum memory

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Berta, Mario [Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125 (United States); Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Tomamichel, Marco [School of Physics, The University of Sydney, Sydney 2006 (Australia); Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Scholz, Volkher B. [Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Christandl, Matthias [Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark)

    2014-12-15

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear operational interpretation in information theory and cryptography. Recently, entropic uncertainty relations have been used to show that the uncertainty can be reduced in the presence of entanglement and to prove security of quantum cryptographic tasks. However, much of this recent progress has been focused on observables with only a finite number of outcomes not including Heisenberg’s original setting of position and momentum observables. Here, we show entropic uncertainty relations for general observables with discrete but infinite or continuous spectrum that take into account the power of an entangled observer. As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states.

  9. Equilibrium configuration of perfect fluid orbiting around black holes in some classes of alternative gravity theories

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta

    2015-01-01

    The hydrodynamic behavior of perfect fluid orbiting around black holes in spherically symmetric spacetime for various alternative gravity theories has been investigated. For this purpose we have assumed a uniform distribution for the angular momentum density of the rotating perfect fluid. The contours of equipotential surfaces are illustrated in order to obtain the nature of inflow and outflow of matter. It has been noticed that the marginally stable circular orbits originating from decreasing angular momentum density lead to closed equipotential surfaces along with cusps, allowing the existence of accretion disks. On the other hand, the growing part of the angular momentum density exhibits central rings for which stable configurations are possible. However, inflow of matter is prohibited. Among the solutions discussed in this work, the charged F(R) gravity and Einstein–Maxwell–Gauss–Bonnet solutions exhibit inflow and outflow of matter with central rings present. These varied accretion disk structures of perfect fluid attribute astrophysical importance to these spacetimes. The effect of higher curvature terms predominantly arises from the region near the black hole horizon. Hence the structural difference of the accretion disk in modified gravity theories in comparison to general relativity may act as an experimental probe for these alternative gravity theories. (paper)

  10. Theory of reasoned action and theory of planned behavior-based dietary interventions in adolescents and young adults: a systematic review

    OpenAIRE

    Hackman CL; Knowlden AP

    2014-01-01

    Christine L Hackman, Adam P KnowldenDepartment of Health Science, The University of Alabama, Tuscaloosa, AL, USABackground: Childhood obesity has reached epidemic proportions in many nations around the world. The theory of planned behavior (TPB) and the theory of reasoned action (TRA) have been used to successfully plan and evaluate numerous interventions for many different behaviors. The aim of this study was to systematically review and synthesize TPB and TRA-based dietary behavior interven...

  11. Applications of the infinite momentum method to quantum electrodynamics and bound state problem

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1973-01-01

    It is shown that the infinite momentum method is a valid and useful calculational alternative to standard perturbation theory methods. The most exciting future applications may be in bound state problems in quantum electrodynamics

  12. Social Learning Theory and Behavioral Therapy: Considering Human Behaviors within the Social and Cultural Context of Individuals and Families.

    Science.gov (United States)

    McCullough Chavis, Annie

    2011-01-01

    This article examines theoretical thoughts of social learning theory and behavioral therapy and their influences on human behavior within a social and cultural context. The article utilizes two case illustrations with applications for consumers. It points out the abundance of research studies concerning the effectiveness of social learning theory, and the paucity of research studies regarding effectiveness and evidence-based practices with diverse groups. Providing a social and cultural context in working with diverse groups with reference to social learning theory adds to the literature for more cultural considerations in adapting the theory to women, African Americans, and diverse groups.

  13. [Health promotion. Instrument development for the application of the theory of planned behavior].

    Science.gov (United States)

    Lee, Y O

    1993-01-01

    The purpose of this article is to describe operationalization of the Theory of Planned Behavior (TPB). The quest to understand determinants of health behaviors has intensified as evidence accumulates concerning the impact of personal behavior on health. The majority of theory-based research has used the Health Belief Model(HBM). The HBM components have had limited success in explaining health-related behaviors. There are several advantages of the TPB over the HBM. TPB is an expansion of the Theory of Reasoned Action(TRA) with the addition of the construct, perceived behavioral control. The revised model has been shown to yield greater explanatory power than the original TRA for goal-directed behaviors. The process of TPB instrument development was described, using example form the study of smoking cessation behavior in military smokers. It was followed by a discussion of reliability and validity issues in operationalizing the TPB. The TPB is a useful model for understanding and predicting health-related behaviors when carefully operationalized. The model holds promise in the development of prescriptive nursing approaches.

  14. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  15. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  16. Nuclear theory. 1998 progress report

    International Nuclear Information System (INIS)

    1998-01-01

    Summaries of progress made on the following topics are given: (1) nonresonant contributions to inelastic N→Δ(1232) parity violation; (2) neutron distribution effects in elastic nuclear parity violation; (3) Wilson RG for scalar-plus-fermion field theories at finite density; (4) Perturbation theory for spin ladders using angular momentum coupled bases; (5) mean-field theory for spin ladders using angular momentum density; (6) finite temperature renormalization group effective potentials for the linear Sigma model; (7) negative-parity baryon resonances from lattice QCD; (8) the N→Δ electromagnetic transition amplitudes from QCD sum rules; and (9) higher nucleon resonances in exclusive reactions (γ, πN) on nuclei

  17. The Dark Side of Malleability: Incremental Theory Promotes Immoral Behaviors.

    Science.gov (United States)

    Huang, Niwen; Zuo, Shijiang; Wang, Fang; Cai, Pan; Wang, Fengxiang

    2017-01-01

    Implicit theories drastically affect an individual's processing of social information, decision making, and action. The present research focuses on whether individuals who hold the implicit belief that people's moral character is fixed (entity theorists) and individuals who hold the implicit belief that people's moral character is malleable (incremental theorists) make different choices when facing a moral decision. Incremental theorists are less likely to make the fundamental attribution error (FAE), rarely make moral judgment based on traits and show more tolerance to immorality, relative to entity theorists, which might decrease the possibility of undermining the self-image when they engage in immoral behaviors, and thus we posit that incremental beliefs facilitate immorality. Four studies were conducted to explore the effect of these two types of implicit theories on immoral intention or practice. The association between implicit theories and immoral behavior was preliminarily examined from the observer perspective in Study 1, and the results showed that people tended to associate immoral behaviors (including everyday immoral intention and environmental destruction) with an incremental theorist rather than an entity theorist. Then, the relationship was further replicated from the actor perspective in Studies 2-4. In Study 2, implicit theories, which were measured, positively predicted the degree of discrimination against carriers of the hepatitis B virus. In Study 3, implicit theories were primed through reading articles, and the participants in the incremental condition showed more cheating than those in the entity condition. In Study 4, implicit theories were primed through a new manipulation, and the participants in the unstable condition (primed incremental theory) showed more discrimination than those in the other three conditions. Taken together, the results of our four studies were consistent with our hypotheses.

  18. The Dark Side of Malleability: Incremental Theory Promotes Immoral Behaviors

    Directory of Open Access Journals (Sweden)

    Niwen Huang

    2017-08-01

    Full Text Available Implicit theories drastically affect an individual’s processing of social information, decision making, and action. The present research focuses on whether individuals who hold the implicit belief that people’s moral character is fixed (entity theorists and individuals who hold the implicit belief that people’s moral character is malleable (incremental theorists make different choices when facing a moral decision. Incremental theorists are less likely to make the fundamental attribution error (FAE, rarely make moral judgment based on traits and show more tolerance to immorality, relative to entity theorists, which might decrease the possibility of undermining the self-image when they engage in immoral behaviors, and thus we posit that incremental beliefs facilitate immorality. Four studies were conducted to explore the effect of these two types of implicit theories on immoral intention or practice. The association between implicit theories and immoral behavior was preliminarily examined from the observer perspective in Study 1, and the results showed that people tended to associate immoral behaviors (including everyday immoral intention and environmental destruction with an incremental theorist rather than an entity theorist. Then, the relationship was further replicated from the actor perspective in Studies 2–4. In Study 2, implicit theories, which were measured, positively predicted the degree of discrimination against carriers of the hepatitis B virus. In Study 3, implicit theories were primed through reading articles, and the participants in the incremental condition showed more cheating than those in the entity condition. In Study 4, implicit theories were primed through a new manipulation, and the participants in the unstable condition (primed incremental theory showed more discrimination than those in the other three conditions. Taken together, the results of our four studies were consistent with our hypotheses.

  19. Effect of Cognitive-Behavioral-Theory-Based Skill Training on Academic Procrastination Behaviors of University Students

    Science.gov (United States)

    Toker, Betül; Avci, Rasit

    2015-01-01

    This study examined the effectiveness of a cognitive-behavioral theory (CBT) psycho-educational group program on the academic procrastination behaviors of university students and the persistence of any training effect. This was a quasi-experimental research based on an experimental and control group pretest, posttest, and followup test model.…

  20. Initial angular momentum and flow in high energy nuclear collisions

    Science.gov (United States)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  1. The role of angular momentum conservation law in statistical mechanics

    Directory of Open Access Journals (Sweden)

    I.M. Dubrovskii

    2008-12-01

    Full Text Available Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Two-dimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle flows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential.

  2. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models

    International Nuclear Information System (INIS)

    Forger, M.; Mannheim Univ.; Laartz, J.; Schaeper, U.

    1994-01-01

    The recently derived current algrbra of classical non-linear sigma models on arbitrary Riemannian manifolds is extended to include the energy-momentum tensor. It is found that in two dimensions the energy-momentum tensor θ μv , the Noether current j μ associated with the global symmetry of the theory and the composite field j appearing as the coefficient of the Schwinger term in the current algebra, together with the derivatives of j μ and j, generte a closed algebra. The subalgebra generated by the light-cone components of the energy-momentum tensor consists of two commuting copies of the Virasoro algebra, with central charge c=0, reflecting the classical conformal invariance of the theory, but the current algebra part and the semidirect product structure are quite different from the usual Kac-Moody/Sugawara type contruction. (orig.)

  3. Undergraduates' intentions to take a second language proficiency test: a comparison of predictions from the theory of planned behavior and social cognitive theory.

    Science.gov (United States)

    Lin, Bih-Jiau; Chiou, Wen-Bin

    2010-06-01

    English competency has become essential for obtaining a better job or succeeding in higher education in Taiwan. Thus, passing the General English Proficiency Test is important for college students in Taiwan. The current study applied Ajzen's theory of planned behavior and the notions of outcome expectancy and self-efficacy from Bandura's social cognitive theory to investigate college students' intentions to take the General English Proficiency Test. The formal sample consisted of 425 undergraduates (217 women, 208 men; M age = 19.5 yr., SD = 1.3). The theory of planned behavior showed greater predictive ability (R2 = 33%) of intention than the social cognitive theory (R2 = 7%) in regression analysis and made a unique contribution to prediction of actual test-taking behavior one year later in logistic regression. Within-model analyses indicated that subjective norm in theory of planned behavior and outcome expectancy in social cognitive theory are crucial factors in predicting intention. Implications for enhancing undergraduates' intentions to take the English proficiency test are discussed.

  4. Fast-forward Langevin dynamics with momentum flips

    Science.gov (United States)

    Hijazi, Mahdi; Wilkins, David M.; Ceriotti, Michele

    2018-05-01

    Stochastic thermostats based on the Langevin equation, in which a system is coupled to an external heat bath, are popular methods for temperature control in molecular dynamics simulations due to their ergodicity and their ease of implementation. Traditionally, these thermostats suffer from sluggish behavior in the limit of high friction, unlike thermostats of the Nosé-Hoover family whose performance degrades more gently in the strong coupling regime. We propose a simple and easy-to-implement modification to the integration scheme of the Langevin algorithm that addresses the fundamental source of the overdamped behavior of high-friction Langevin dynamics: if the action of the thermostat causes the momentum of a particle to change direction, it is flipped back. This fast-forward Langevin equation preserves the momentum distribution and so guarantees the correct equilibrium sampling. It mimics the quadratic behavior of Nosé-Hoover thermostats and displays similarly good performance in the strong coupling limit. We test the efficiency of this scheme by applying it to a 1-dimensional harmonic oscillator, as well as to water and Lennard-Jones polymers. The sampling efficiency of the fast-forward Langevin equation thermostat, measured by the correlation time of relevant system variables, is at least as good as the traditional Langevin thermostat, and in the overdamped regime, the fast-forward thermostat performs much better, improving the efficiency by an order of magnitude at the highest frictions we considered.

  5. Higgs-boson production at small transverse momentum

    Science.gov (United States)

    Becher, Thomas; Neubert, Matthias; Wilhelm, Daniel

    2013-05-01

    Using methods from effective field theory, we have recently developed a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio m V / q T are resummed to all orders. This formalism is applied to the production of Higgs bosons in gluon fusion at the LHC. The production cross section receives logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale {q_{*}}tilde{mkern6mu} {m_H}{e^{{{{{-const}} / {{{α_s}( {{m_H}} )}} .}}}}≈ 8 GeV, which protects the process from receiving large long-distance hadronic contributions. We present numerical predictions for the transverse-momentum spectrum of Higgs bosons produced at the LHC, finding that it is quite insensitive to hadronic effects.

  6. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Cresswell, A.; Zimmerman, R.L.; Oregon Univ., Eugene

    1986-01-01

    It is argued that the correct expressions for the angular momentum flux carried by gravitational radiation should follow directly from the momentum currents. Following this approach, the authors compute the angular momentum associated with several different choices of energy-momentum prescriptions. (author)

  7. Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders

    Science.gov (United States)

    Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Zhong, Chen-Yang; Qiu, Tian; Ren, Fei; He, Yun-Xing

    2018-03-01

    By incorporating market impact and momentum traders into an agent-based model, we investigate the conditions for the occurrence of self-reinforcing feedback loops and the coevolutionary mechanism of prices and strategies. For low market impact, the price fluctuations are originally large. The existence of momentum traders has little impact on the change of price fluctuations but destroys the equilibrium between the trend-following and trend-rejecting strategies. The trend-following herd behaviors become dominant. A self-reinforcing feedback loop exists. For high market impact, the existence of momentum traders leads to an increase in price fluctuations. The trend-following strategies of rational individuals are suppressed while the trend-following strategies of momentum traders are promoted. The crowd-anticrowd behaviors become dominant. A negative feedback loop exists. A theoretical analysis indicates that, for low market impact, the majority effect is beneficial for the trend-followers to earn more, which in turn promotes the trend-following strategies. For high market impact, the minority effect causes the trend-followers to suffer great losses, which in turn suppresses the trend-following strategies.

  8. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  9. Theoretical domains: a heuristic for teaching behavioral theory in HIV/STD prevention courses.

    Science.gov (United States)

    Dolcini, M Margaret; Canin, Lisa; Gandelman, Alice; Skolnik, Heidi

    2004-10-01

    The HIV/STD epidemics have broadened the need for better behavioral intervention programs and highlighted the importance of providing training in behavioral theory to frontline program practitioners. However, there is a lack of effective methods for teaching theoretical concepts to people who may not have a background in behavioral science. This article presents a solution to this challenge by introducing a new heuristic for teaching theory and for placing individual theories/models in a broader context. Using a broad framework, we identify five domains that influence behavior: risk appraisal, self-perceptions, emotions and arousal, relationships and social influence, and environmental and structural factors. Each domain is described, and a brief overview of supporting literature is provided. Following the presentation of domains, we discuss course structure and activities.

  10. Dislocations, the elastic energy momentum tensor and crack propagation

    International Nuclear Information System (INIS)

    Lung, Chi-wei

    1979-07-01

    Based upon dislocation theory, some stress intensity factors can be calculated for practical cases. The results obtained by this method have been found to agree fairly well with the results obtained by the conventional fracture mechanics. The elastic energy momentum tensor has been used to calculate the force acting on the crack tip. A discussion on the kinetics of migration of impurities to the crack tip was given. It seems that the crack tip sometimes may be considered as a singularity in an elastic field and the fundamental law of classical field theory is applicable on the problem in fracture of materials. (author)

  11. UV-IR mixing in nonassociative Snyder ϕ4 theory

    Science.gov (United States)

    Meljanac, Stjepan; Mignemi, Salvatore; Trampetic, Josip; You, Jiangyang

    2018-03-01

    Using a quantization of the nonassociative and noncommutative Snyder ϕ4 scalar field theory in a Hermitian realization, we present in this article analytical formulas for the momentum-conserving part of the one-loop two-point function of this theory in D -, 4-, and 3-dimensional Euclidean spaces, which are exact with respect to the noncommutative deformation parameter β . We prove that these integrals are regularized by the Snyder deformation. These results indicate that the Snyder deformation does partially regularize the UV divergences of the undeformed theory, as it was proposed decades ago. Furthermore, it is observed that different nonassociative ϕ4 products can generate different momentum-conserving integrals. Finally, most importantly, a logarithmic infrared divergence emerges in one of these interaction terms. We then analyze sample momentum nonconserving integral qualitatively and show that it could exhibit IR divergence too. Therefore, infrared divergences should exist, in general, in the Snyder ϕ4 theory. We consider infrared divergences at the limit p →0 as UV/IR mixings induced by nonassociativity, since they are associated to the matching UV divergence in the zero-momentum limit and appear in specific types of nonassociative ϕ4 products. We also discuss the extrapolation of the Snyder deformation parameter β to negative values as well as certain general properties of one-loop quantum corrections in Snyder ϕ4 theory at the zero-momentum limit.

  12. Health Behavior Theory in Popular Calorie Counting Apps: A Content Analysis

    OpenAIRE

    Davis, Siena F; Ellsworth, Marisa A; Payne, Hannah E; Hall, Shelby M; West, Joshua H; Nordhagen, Amber L

    2016-01-01

    Background Although the Health & Fitness category of the Apple App Store features hundreds of calorie counting apps, the extent to which popular calorie counting apps include health behavior theory is unknown. Objective This study evaluates the presence of health behavior theory in calorie counting apps. Methods Data for this study came from an extensive content analysis of the 10 most popular calorie counting apps in the Health & Fitness category of the Apple App Store. Results Each app was ...

  13. Health Behavior Theory in Physical Activity Game Apps: A Content Analysis.

    Science.gov (United States)

    Payne, Hannah E; Moxley, Victor Ba; MacDonald, Elizabeth

    2015-07-13

    Physical activity games developed for a mobile phone platform are becoming increasingly popular, yet little is known about their content or inclusion of health behavior theory (HBT). The objective of our study was to quantify elements of HBT in physical activity games developed for mobile phones and to assess the relationship between theoretical constructs and various app features. We conducted an analysis of exercise and physical activity game apps in the Apple App Store in the fall of 2014. A total of 52 apps were identified and rated for inclusion of health behavior theoretical constructs using an established theory-based rubric. Each app was coded for 100 theoretical items, containing 5 questions for 20 different constructs. Possible total theory scores ranged from 0 to 100. Descriptive statistics and Spearman correlations were used to describe the HBT score and association with selected app features, respectively. The average HBT score in the sample was 14.98 out of 100. One outlier, SuperBetter, scored higher than the other apps with a score of 76. Goal setting, self-monitoring, and self-reward were the most-reported constructs found in the sample. There was no association between either app price and theory score (P=.5074), or number of gamification elements and theory score (P=.5010). However, Superbetter, with the highest HBT score, was also the most expensive app. There are few content analyses of serious games for health, but a comparison between these findings and previous content analyses of non-game health apps indicates that physical activity mobile phone games demonstrate higher levels of behavior theory. The most common theoretical constructs found in this sample are known to be efficacious elements in physical activity interventions. It is unclear, however, whether app designers consciously design physical activity mobile phone games with specific constructs in mind; it may be that games lend themselves well to inclusion of theory and any

  14. Theory of reasoned action and theory of planned behavior-based dietary interventions in adolescents and young adults: a systematic review

    Directory of Open Access Journals (Sweden)

    Hackman CL

    2014-06-01

    Full Text Available Christine L Hackman, Adam P KnowldenDepartment of Health Science, The University of Alabama, Tuscaloosa, AL, USABackground: Childhood obesity has reached epidemic proportions in many nations around the world. The theory of planned behavior (TPB and the theory of reasoned action (TRA have been used to successfully plan and evaluate numerous interventions for many different behaviors. The aim of this study was to systematically review and synthesize TPB and TRA-based dietary behavior interventions targeting adolescents and young adults.Methods: The following databases were systematically searched to find articles for this review: Academic Search Premier; Cumulative Index to Nursing and Allied Health (CINAHL; Education Resources Information Center (ERIC; Health Source: Nursing/Academic Edition; Cochrane Central Register of Controlled Trials (CENTRAL; and MEDLINE. Inclusion criteria for articles were: 1 primary or secondary interventions, 2 with any quantitative design, 3 published in the English language, 4 between January 2003 and March 2014, 5 that targeted adolescents or young adults, 6 which included dietary change behavior as the outcome, and 7 utilized TPB or TRA.Results: Of the eleven intervention studies evaluated, nine resulted in dietary behavior change that was attributed to the treatment. Additionally, all but one study found there to be a change in at least one construct of TRA or TPB, while one study did not measure constructs. All of the studies utilized some type of quantitative design, with two employing quasi-experimental, and eight employing randomized control trial design. Among the studies, four utilized technology including emails, social media posts, information on school websites, web-based activities, audio messages in classrooms, interactive DVDs, and health-related websites. Two studies incorporated goal setting and four employed persuasive communication.Conclusion: Interventions directed toward changing dietary behaviors

  15. Five roles for using theory and evidence in the design and testing of behavior change interventions.

    Science.gov (United States)

    Bartholomew, L Kay; Mullen, Patricia Dolan

    2011-01-01

    The prevailing wisdom in the field of health-related behavior change is that well-designed and effective interventions are guided by theory. Using the framework of intervention mapping, we describe and provide examples of how investigators can effectively select and use theory to design, test, and report interventions. We propose five roles for theory and evidence about theories: a) identification of behavior and determinants of behavior related to a specified health problem (i.e., the logic model of the problem); b) explication of a causal model that includes theoretical constructs for producing change in the behavior of interest (i.e., the logic model of change); c) selection of intervention methods and delivery of practical applications to achieve changes in health behavior; d) evaluation of the resulting intervention including theoretical mediating variables; and e) reporting of the active ingredients of the intervention together with the evaluation results. In problem-driven applied behavioral or social science, researchers use one or multiple theories, empiric evidence, and new research, both to assess a problem and to solve or prevent a problem. Furthermore, the theories for description of the problem may differ from the theories for its solution. In an applied approach, the main focus is on solving problems regarding health behavior change and improvement of health outcomes, and the criteria for success are formulated in terms of the problem rather than the theory. Resulting contributions to theory development may be quite useful, but they are peripheral to the problem-solving process.

  16. Contrasting the theory of planned behavior with the value-belief-norm model in explaning conservation behavior

    NARCIS (Netherlands)

    Kaiser, F.G.; Hübner, G.; Bogner, F.X.

    2005-01-01

    In this paper, we contrast the value-belief-norm (VBN) model and the theory of planned behavior (TPB) for the first time regarding their ability to explain conservation behavior. The participants represent a convenience sample of 468 university students. Using survey data and adopting previously

  17. Final Report for the Center for Momentum Transport and Flow Organization (CMTFO)

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, George R. [Univ. of California, San Diego, CA (United States)

    2018-01-25

    The Center for Momentum Transport and Flow Organization (CMTFO) was established in 2009 as a multi-institutional U.S. DOE Plasma Science Center, with a focus on the fundamental physics mechanisms that lead to the transport of momentum within fusion and astrophysical plasma systems, and the subsequent formation of ordered behavior in such systems. It was funded in two tranches; this report covers the activities supported by the second period of funding which ran from May 2012 through May 2016.

  18. Mathematical Systems Theory : from Behaviors to Nonlinear Control

    CERN Document Server

    Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien

    2015-01-01

    This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...

  19. Rational decision perspectives on alcohol consumption by youth. Revising the theory of planned behavior.

    Science.gov (United States)

    Kuther, Tara L

    2002-01-01

    Cognitive and developmental approaches have made great strides in describing and predicting alcohol consumption by youth. The present review examines several theories of decision making with regard to alcohol consumption, including subjective expected utility (SEU) theory, the theories of reasoned action and planned behavior, and alcohol-related outcome expectancy theory. In addition, the developmental literature on the contribution of parents and peers to adolescent alcohol consumption is reviewed. A model is proposed, which integrates the theory of planned behavior and alcohol-related outcome expectancy theory with modifications based on findings from the developmental literature. Implications for further research are discussed.

  20. Causality and superluminal behavior in classical field theories: Applications to k-essence theories and modified-Newtonian-dynamics-like theories of gravity

    International Nuclear Information System (INIS)

    Bruneton, Jean-Philippe

    2007-01-01

    Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories

  1. Predicting Participation in Dual Language Immersion Using Theory of Planned Behavior

    Science.gov (United States)

    Call, Andrea; Domenech Rodríguez, Melanie M.; Vázquez, Alejandro L.; Corralejo, Samantha M.

    2018-01-01

    Dual language immersion programs are increasing in popularity. Yet little is known about what motivates parents to enroll their children in dual language immersion. The theory of planned behavior posits that behavior is based on attitudes, subjective norms, and perceived behavioral control. The current study was an exploratory evaluation of the…

  2. Evaluation of physical activity web sites for use of behavior change theories.

    Science.gov (United States)

    Doshi, Amol; Patrick, Kevin; Sallis, James F; Calfas, Karen

    2003-01-01

    Physical activity (PA) Web sites were assessed for their use of behavior change theories, including constructs of the health belief model, Transtheoretical Model, social cognitive theory, and the theory of reasoned action and planned behavior. An evaluation template for assessing PA Web sites was developed, and content validity and interrater reliability were demonstrated. Two independent raters evaluated 24 PA Web sites. Web sites varied widely in application of theory-based constructs, ranging from 5 to 48 on a 100-point scale. The most common intervention strategies were general information, social support, and realistic goal areas. Coverage of theory-based strategies was low, varying from 26% for social cognitive theory to 39% for health belief model. Overall, PA Web sites provided little assessment, feedback, or individually tailored assistance for users. They were unable to substantially tailor the on-line experience for users at different stages of change or different demographic characteristics.

  3. Accessing the quark orbital angular momentum with Wigner distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay, France and LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, Barbara [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)

    2013-04-15

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  4. Accessing the quark orbital angular momentum with Wigner distributions

    International Nuclear Information System (INIS)

    Lorcé, Cédric; Pasquini, Barbara

    2013-01-01

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  5. Effectiveness of training on preventative nutritional behaviors for type-2 diabetes among the female adolescents: Examination of theory of planned behavior.

    Science.gov (United States)

    Maleki, Farzaneh; Hosseini Nodeh, Zahra; Rahnavard, Zahra; Arab, Masoume

    2016-01-01

    Since type-2 diabetes is the most common chronic disease among Iranian female adolescents, we applied theory of planned behavior to examine the effect of training to intention to preventative nutritional behaviors for type-2 diabetes among female adolescents. In this experimental study 200 (11-14 year old) girls from 8 schools of Tehran city (100 in each intervention and control group) were recruited based on cluster sampling method during two stages. For intervention group, an educational program was designed based on the theory of planned behavior and presented in 6 workshop sessions to prevent type-2 diabetes. The data were collected before and two months after the workshops using a valid and reliable (α=0.72 and r=0.80) authormade questionnaire based on Ajzens TPB questionnaire manual. The data were analyzed using t-test, chi-square test and analysis of covariance. Findings indicate that the two groups were homogeneous regarding the demographic characteristics before education, but the mean score of the theory components (attitudes, subjective norms, perceived behavioral control, and intention) was higher in the control group. Also, results showed all of the theory components significantly increased after the education in the intervention group (p=0.000). Training based on the theory of planned behavior enhances the intention to adherence preventative nutritional behaviors for type-2 diabetes among the studied female adolescents.

  6. Pengembangan tes kemampuan literasi sains pada materi momentum dan impuls dengan Analisis Item Response Theory (IRT

    Directory of Open Access Journals (Sweden)

    Della Apriyani Kusuma Putri

    2018-04-01

    Full Text Available Kemampuan literasi sains adalah suatu kemampuan yang memungkinkan seseorang untuk membuat suatu keputusan dengan pengetahuan konsep dan proses sains yang dimilikinya. Berbagai macam permasalahan yang terjadi di era globalisasi ini menuntut siswa untuk tidak hanya cakap dalam aspek kognitif tapi juga mampu memberi keputusan untuk memecahkan permasalahan, sehingga dapat dikatakan bahwa kemampuan literasi sains adalah kemampuan yang penting dan harus dimiliki siswa. Oleh karena itu, dibutuhkan instrumen untuk mengukur kemampuan literasi sains. hal inilah yang mendasari peneliti mengembangkan instrumen kemampuan literasi sains. Tujuan penelitian ini adalah untuk mengembangkan dan mengetahui karakteristik tes kemampuan literasi sains fisika siswa SMA pada materi momentum dan impuls berdasarkan aspek literasi sains yang dikemukakan oleh Gormally. Metode penelitian yang diterapkan adalah penelitian dan pengembangan (Research and Development yaitu metode penelitian yang digunakan untuk menghasilkan produk tertentu, dan menguji keefektifan produk tersebut. Sebelum diuji coba tes telah divalidasi oleh tiga orang validator dan menghasilkan kesimpulan bahwa tes cukup baik dan dapat diuji coba. Hasil analisis menggunakan Item Response Theory menunjukkan bahwa model 3PL adalah model yang sesuai dengan karakteristik tes. Sedangkan karakteristik tes yang meliputi daya pembeda, tingkat kesukaran, dan faktor tebakan termasuk dalam kategori baik. Science literacy skills is an ability that allows one to make a decision with the knowledge of the concepts and processes of science has. A wide variety of problems that occur in a globalized world requires students to not only proficient in cognitive but also able to make a decision to solve the problem, so it can be said that the ability of science literacy is an important capability and must be owned by the students. Therefore, the instrument is required to measure the ability of science literacy. This problem is

  7. Operation with the low momentum compaction factor on an electron storage ring

    International Nuclear Information System (INIS)

    Hama, H.; Yamazaki, J.; Nakamura, E.; Isoyama, G.

    1994-01-01

    We have studied quasi-isochronous operation with the low momentum compaction factor to reduce the bunch length of the electron beam on the UVSOR storage ring. The momentum compaction factor α was reduced by changing the dispersion function in the bending magnets. Though effect of the second order α becomes dominant in the very low α region, we could compensate it by reducing strength of the focusing sextupole magnets. The momentum compaction factor was reduced to less than one hundredth with respect to the ordinary value. Using a streak camera, we measured the very short bunch, and confirmed the storage ring was operated nearly isochronously. The beam current dependence of the bunch length was also measured. The bunch lengthening was interpreted by potential-well distortion theory with a constant value of the effective longitudinal coupling impedance over the wide range of α. (author)

  8. The disappearing momentum of the supercurrent in the superconductor-to-normal phase transformation

    Science.gov (United States)

    Hirsch, J. E.

    2016-06-01

    A superconductor in a magnetic field has surface currents that prevent the magnetic field from penetrating its interior. These currents carry kinetic energy and mechanical momentum. When the temperature is raised and the system becomes normal the currents disappear. Where do the kinetic energy and mechanical momentum of the currents go, and how? Here we propose that the answer to this question reveals a key necessary condition for materials to be superconductors, that is not part of conventional BCS-London theory: superconducting materials need to have hole carriers.

  9. Nucleon internal structure: a new set of quark, gluon momentum, angular momentum operators and parton distribution functions

    International Nuclear Information System (INIS)

    Wang Fan; Sun Weimin; Chen Xiangsong; Lu Xiaofu; Goldman, T.

    2009-01-01

    It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)

  10. Using the Theory of Planned Behavior and Cheating Justifications to Predict Academic Misconduct

    Science.gov (United States)

    Stone, Thomas H.; Jawahar, I. M.; Kisamore, Jennifer L.

    2009-01-01

    Purpose: The purpose of this paper is to show that academic misconduct appears to be on the rise; some research has linked academic misconduct to unethical workplace behaviors. Unlike previous empirically-driven research, this theory-based study seeks to examine the usefulness of a modification of Ajzen's theory of planned behavior to predict…

  11. Understanding Nature-Related Behaviors among Children through a Theory of Reasoned Action Approach

    Science.gov (United States)

    Gotch, Chad; Hall, Troy

    2004-01-01

    The Theory of Reasoned Action has proven to be a valuable tool for predicting and understanding behavior and, as such, provides a potentially important basis for environmental education program design. This study used a Theory of Reasoned Action approach to examine a unique type of behavior (nature-related activities) and a unique population…

  12. Mass-polariton theory of light in dispersive media

    Science.gov (United States)

    Partanen, Mikko; Tulkki, Jukka

    2017-12-01

    We have recently shown that the electromagnetic pulse in a medium is made of mass-polariton (MP) quasiparticles, which are quantized coupled states of the field and an atomic mass density wave (MDW) [M. Partanen et al., Phys. Rev. A 95, 063850 (2017), 10.1103/PhysRevA.95.063850]. In this work, we generalize the MP theory of light for dispersive media assuming that absorption and scattering losses are very small. Following our previous work, we present two different approaches to the coupled state of light: (1) the MP quasiparticle theory, which is derived by only using the fundamental conservation laws and the Lorentz transformation; (2) the classical optoelastic continuum dynamics (OCD), which is a generalization of the electrodynamics of continuous media to include the dynamics of the medium under the influence of optical forces. We show that the total momentum and the transferred mass of the light pulse can be determined in a straightforward way if we know the field energy of the pulse and the dispersion relation of the medium. In analogy to the nondispersive case, we also find unambiguous correspondence between the MP and OCD theories. For the coupled MP state of a single photon and the medium, we obtain the total MP momentum pMP=npℏ ω /c , where np is the phase refractive index. The field's share of the MP momentum is equal to pfield=ℏ ω /(ngc ) , where ng is the group refractive index and the share of the MDW is equal to pMDW=pMP-pfield . Thus, as in a nondispersive medium, the total momentum of the MP is equal to the Minkowski momentum and the field's share of the momentum is equal to the Abraham momentum. We also show that the correspondence between the MP and OCD models and the conservation of momentum at interfaces gives an unambiguous formula for the optical force. The dynamics of the light pulse and the related MDW lead to nonequilibrium of the medium and to relaxation of the atomic density by sound waves in the same way as for nondispersive media

  13. Fast-forward scaling theory for phase imprinting on a BEC: creation of a wave packet with uniform momentum density and loading to Bloch states without disturbance

    Science.gov (United States)

    Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio

    2018-02-01

    We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.

  14. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  15. An Attempt to Extend Taylor-Spence Drive Theory to Vocational Choice Behavior

    Science.gov (United States)

    Sharf, Richard S.

    1972-01-01

    Predictions were made from Taylor-Spence drive theory about vocational choice behavior. Although the results did not specifically support the predictions made from Taylor-Spence theory, they indicated the potential usefulness of certain concepts in this theory and suggested several lines of inquiry for further research. (Author)

  16. Psychosocial Predictors for Cancer Prevention Behaviors in Workplace Using Protection Motivation Theory.

    Science.gov (United States)

    Zare Sakhvidi, Mohammad Javad; Zare, Maryam; Mostaghaci, Mehrdad; Mehrparvar, Amir Houshang; Morowatisharifabad, Mohammad Ali; Naghshineh, Elham

    2015-01-01

    Backgrounds. The aim of this study was to describe the preventive behaviors of industrial workers and factors influencing occupational cancer prevention behaviors using protection motivation theory. Methods. A self-administered questionnaire was completed by 161 petrochemical workers in Iran in 2014 which consisted of three sections: background information, protection motivation theory measures, and occupational cancers preventive behaviors. Results. A statistically significant positive correlation was found between PM and self-efficacy, response efficacy, and the cancer preventive behaviors. Meanwhile, statistically significant negative correlations were found between PM, cost, and reward. Conclusions. Among available PMT constructs, only self-efficacy and cost were significant predictors of preventive behaviors. Protection motivation model based health promotion interventions with focus on self-efficacy and cost would be desirable in the case of occupational cancers prevention.

  17. Psychosocial Predictors for Cancer Prevention Behaviors in Workplace Using Protection Motivation Theory

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Zare Sakhvidi

    2015-01-01

    Full Text Available Backgrounds. The aim of this study was to describe the preventive behaviors of industrial workers and factors influencing occupational cancer prevention behaviors using protection motivation theory. Methods. A self-administered questionnaire was completed by 161 petrochemical workers in Iran in 2014 which consisted of three sections: background information, protection motivation theory measures, and occupational cancers preventive behaviors. Results. A statistically significant positive correlation was found between PM and self-efficacy, response efficacy, and the cancer preventive behaviors. Meanwhile, statistically significant negative correlations were found between PM, cost, and reward. Conclusions. Among available PMT constructs, only self-efficacy and cost were significant predictors of preventive behaviors. Protection motivation model based health promotion interventions with focus on self-efficacy and cost would be desirable in the case of occupational cancers prevention.

  18. Predictors of Prosthodontic Treatment-Related Behavior Using the Theory of Planned Behavior Framework.

    Science.gov (United States)

    Vieira, Antonio Helio; Castro e Silva, Donizete; Nogueira, Túlio Eduardo; Leles, Cláudio Rodrigues

    2016-01-01

    The Theory of Planned Behavior (TPB) was used to assess subjects' intentions and behavior to predict willingness to undergo prosthodontic care. A questionnaire was administered to 225 adults with history of teeth loss who currently were not under prosthodontic treatment. The questionnaire comprised TPB components (attitude toward behaviour [ATB], subjective norm [SN], and perceived behavioral control [PBC]) containing items with potential influence on the intentions and behavior of individuals toward prosthodontic care. Clinical and socioeconomic data were also assessed. A path regression model was constructed explaining two dependent variables simultaneously: one explained the influence of PBC on intention (R2=0.04) and another explained the influence of dental arch, position of lost teeth, socioeconomic status, and PBC on behavior (R2=0.31). It was concluded that PBC was a relevant TPB component that encompasses perception of costs, opportunity cost, perceived need, and access to dental care. Clinical and socioeconomic factors were also major determinants of behavior toward prosthodontic treatment.

  19. A Study of Driver’s Route Choice Behavior Based on Evolutionary Game Theory

    Directory of Open Access Journals (Sweden)

    Xiaowei Jiang

    2014-01-01

    Full Text Available This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers’ route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver’s route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver’s route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.

  20. Predicting entrepreneurial career intentions: Values and the theory of planned behavior.

    NARCIS (Netherlands)

    M.J. Gorgievski-Duijvesteijn (Marjan); U. Stephan (Ute); M. Laguna (Mariola); J.A. Moriano (Juan)

    2017-01-01

    textabstractIntegrating predictions from the theory of human values with the theory of planned behavior (TPB), our primary goal is to investigate mechanisms through which individual values are related to entrepreneurial career intentions using a sample of 823 students from four European countries.

  1. Hagedorn Behavior of Little String Theories from string corrections to NS5-branes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string...... correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals....

  2. Exploring user behavior and needs in Q & A communities

    OpenAIRE

    Choudhury, Smitashree; Alani, Harith

    2014-01-01

    One of the difficult challenges of any knowledge centric online community is to sustain the momentum of knowledge sharing and knowledge creation effort by its members through various means. This requires a clearer understanding of user needs that drive community members to contribute, engage and stay loyal to the community. In this paper, we explore the applicability of Abraham Maslow’s theory (1943) to understand user behavior and their latent needs using Exploratory Factor analysis. Results...

  3. Spectral and scattering theory for translation invariant models in quantum field theory

    DEFF Research Database (Denmark)

    Rasmussen, Morten Grud

    This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...

  4. Finite-temperature behavior of mass hierarchies in supersymmetric theories

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1982-01-01

    It is shown that Witten's mechanism for producing a large gauge hierarchy in supersymmetric theories leads to a novel symmetry behavior at finite temperature. The exponentially large expectation value in such models develops at a critical temperature of order of the small (supersymmetry-breaking) scale. The phase transition can proceed without need of vacuum tunnelling. Models based on Witten's mechanism thus require a reexamination of the standard cosmological treatment of grand unified theories. (orig.)

  5. How the Weak Variance of Momentum Can Turn Out to be Negative

    Science.gov (United States)

    Feyereisen, M. R.

    2015-05-01

    Weak values are average quantities, therefore investigating their associated variance is crucial in understanding their place in quantum mechanics. We develop the concept of a position-postselected weak variance of momentum as cohesively as possible, building primarily on material from Moyal (Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Cambridge, 1949) and Sonego (Found Phys 21(10):1135, 1991) . The weak variance is defined in terms of the Wigner function, using a standard construction from probability theory. We show this corresponds to a measurable quantity, which is not itself a weak value. It also leads naturally to a connection between the imaginary part of the weak value of momentum and the quantum potential. We study how the negativity of the Wigner function causes negative weak variances, and the implications this has on a class of `subquantum' theories. We also discuss the role of weak variances in studying determinism, deriving the classical limit from a variational principle.

  6. Fragment separator momentum compression schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)

    2011-07-21

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  7. Fragment separator momentum compression schemes

    International Nuclear Information System (INIS)

    Bandura, Laura; Erdelyi, Bela; Hausmann, Marc; Kubo, Toshiyuki; Nolen, Jerry; Portillo, Mauricio; Sherrill, Bradley M.

    2011-01-01

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  8. Effect of Theory of Planned Behavior-based Educational Intervention on Breastfeeding Behavior in Pregnant Women in Fasa City, Iran

    Directory of Open Access Journals (Sweden)

    Seyedeh Marjan Arshad

    2017-09-01

    Full Text Available Background and Objective: Breastfeeding is a matter of significant importance. Given the role of such factors as attitude and subjective norms on the behavior of mothers and the low level of exclusive breastfeeding, the present study aimed to determine the effect of educational program based on the theory of planned behavior on breastfeeding behavior among the pregnant women in Fasa, Iran. Materials and Methods: This quasi-experimental study was conducted on 100 pregnant women with the gestational age of 30-35 weeks who referred to the health care centers of Fasa, Iran, in 2017. The study population was selected using random sampling technique, and then assigned into two groups of control (n=50 and intervention (n=50. The data were collected using a demographic form, components of the theory of planned behavior questionnaire, and a breastfeeding checklist. The intervention group received three 55-to-60-minute training sessions. The mothers' breastfeeding behavior was evaluated before the training sessions and 40 days post-delivery in both groups. The data were analyzed in SPSS software, version 22, using Chi-square test, independent t-test, and paired sample t-test. Results: According to the results, there was no significant difference between the two groups in terms of the components of the theory of planned behavior before the educational intervention (P=0.208. However, after the training sessions, the intervention group showed a significant improvement in all components of the theory of planned behavior, including intention and breastfeeding behavior, compared to the control group (P=0.001. Conclusion: Based on the findings of this study, appropriate training programs, social network support, and suitable conditions for breastfeeding in the community are among the effective factors that can change the mothers’ attitudes towards lactation and result in successful breastfeeding in the first three months after childbirth.

  9. Health Behavior Theory in Physical Activity Game Apps: A Content Analysis

    Science.gov (United States)

    Moxley, Victor BA; MacDonald, Elizabeth

    2015-01-01

    Background Physical activity games developed for a mobile phone platform are becoming increasingly popular, yet little is known about their content or inclusion of health behavior theory (HBT). Objective The objective of our study was to quantify elements of HBT in physical activity games developed for mobile phones and to assess the relationship between theoretical constructs and various app features. Methods We conducted an analysis of exercise and physical activity game apps in the Apple App Store in the fall of 2014. A total of 52 apps were identified and rated for inclusion of health behavior theoretical constructs using an established theory-based rubric. Each app was coded for 100 theoretical items, containing 5 questions for 20 different constructs. Possible total theory scores ranged from 0 to 100. Descriptive statistics and Spearman correlations were used to describe the HBT score and association with selected app features, respectively. Results The average HBT score in the sample was 14.98 out of 100. One outlier, SuperBetter, scored higher than the other apps with a score of 76. Goal setting, self-monitoring, and self-reward were the most-reported constructs found in the sample. There was no association between either app price and theory score (P=.5074), or number of gamification elements and theory score (P=.5010). However, Superbetter, with the highest HBT score, was also the most expensive app. Conclusions There are few content analyses of serious games for health, but a comparison between these findings and previous content analyses of non-game health apps indicates that physical activity mobile phone games demonstrate higher levels of behavior theory. The most common theoretical constructs found in this sample are known to be efficacious elements in physical activity interventions. It is unclear, however, whether app designers consciously design physical activity mobile phone games with specific constructs in mind; it may be that games lend

  10. On geometrized gravitation theories

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe

  11. Theories of reasoned action and planned behavior as models of condom use: a meta-analysis.

    Science.gov (United States)

    Albarracín, D; Johnson, B T; Fishbein, M; Muellerleile, P A

    2001-01-01

    To examine how well the theories of reasoned action and planned behavior predict condom use, the authors synthesized 96 data sets (N = 22,594) containing associations between the models' key variables. Consistent with the theory of reasoned action's predictions, (a) condom use was related to intentions (weighted mean r. = .45), (b) intentions were based on attitudes (r. = .58) and subjective norms (r. = .39), and (c) attitudes were associated with behavioral beliefs (r. = .56) and norms were associated with normative beliefs (r. = .46). Consistent with the theory of planned behavior's predictions, perceived behavioral control was related to condom use intentions (r. = .45) and condom use (r. = .25), but in contrast to the theory, it did not contribute significantly to condom use. The strength of these associations, however, was influenced by the consideration of past behavior. Implications of these results for HIV prevention efforts are discussed.

  12. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas

    2017-12-27

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  13. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  14. Analytic multi-Regge theory and the pomeron in QCD. 1

    International Nuclear Information System (INIS)

    White, A.R.

    1991-01-01

    This paper reports on the formalism of analytic multi-Regge theory developed as a basis for the study of abstract critical and super-critical pomeron high-energy behavior and for related studies of the Regge behavior of spontaneously broken gauge theories and the pomeron in QCD. Asymptotic domains of analyticity for multiparticle amplitudes are shown to follow from properties of field theory and S-matrix theory. General asymptotic dispersion relations are then derived for such amplitudes in which the spectral components are described by the graphical formalism of hexagraphs. Further consequences are distinct Sommerfeld-Watson representations for each hexagraph spectral component, together with a complete set of angular momentum plane unitarity equations which control the form of all multi-Regge amplitudes. Because of this constraint of reggeon unitarity the critical pomeron solution of the reggeon field theory gives the only known non-trivial unitary high-energy S-matrix. By exploiting the full structure of multi-Regge amplitudes as the pomeron becomes super-critical, one can study the simultaneous modification of hadrons and the pomeron. The result is a completely consistent description of the super-critical pomeron appearing in hadron scattering. Reggeon unitarity is satisfied in the super-critical phase by the appearance of a massive gluon (Reggeized vector particle) coupling pair-wise to the pomeron

  15. Validation and modification of the Blade Element Momentum theory based on comparisons with actuator disc simulations

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bak, Christian; Døssing, Mads

    2010-01-01

    A comprehensive investigation of the Blade Element Momentum (BEM) model using detailed numerical simulations with an axis symmetric actuator disc (AD) model has been carried out. The present implementation of the BEM model is in a version where exactly the same input in the form of non-dimensiona......A comprehensive investigation of the Blade Element Momentum (BEM) model using detailed numerical simulations with an axis symmetric actuator disc (AD) model has been carried out. The present implementation of the BEM model is in a version where exactly the same input in the form of non...

  16. Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China.

    Science.gov (United States)

    Liu, Yuwei; Sheng, Hong; Mundorf, Norbert; Redding, Colleen; Ye, Yinjiao

    2017-12-18

    With increasing urbanization in China, many cities are facing serious environmental problems due to continuous and substantial increase in automobile transportation. It is becoming imperative to examine effective ways to reduce individual automobile use to facilitate sustainable transportation behavior. Empirical, theory-based research on sustainable transportation in China is limited. In this research, we propose an integrated model based on the norm activation model and the theory of planned behavior by combining normative and rational factors to predict individuals' intention to reduce car use. Data from a survey of 600 car drivers in China's three metropolitan areas was used to test the proposed model and hypotheses. Results showed that three variables, perceived norm of car-transport reduction, attitude towards reduction, and perceived behavior control over car-transport reduction, significantly affected the intention to reduce car-transport. Personal norms mediated the relationship between awareness of consequences of car-transport, ascription of responsibility of car-transport, perceived subjective norm for car-transport reduction, and intention to reduce car-transport. The results of this research not only contribute to theory development in the area of sustainable transportation behavior, but also provide a theoretical frame of reference for relevant policy-makers in urban transport management.

  17. Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China

    Directory of Open Access Journals (Sweden)

    Yuwei Liu

    2017-12-01

    Full Text Available With increasing urbanization in China, many cities are facing serious environmental problems due to continuous and substantial increase in automobile transportation. It is becoming imperative to examine effective ways to reduce individual automobile use to facilitate sustainable transportation behavior. Empirical, theory-based research on sustainable transportation in China is limited. In this research, we propose an integrated model based on the norm activation model and the theory of planned behavior by combining normative and rational factors to predict individuals’ intention to reduce car use. Data from a survey of 600 car drivers in China’s three metropolitan areas was used to test the proposed model and hypotheses. Results showed that three variables, perceived norm of car-transport reduction, attitude towards reduction, and perceived behavior control over car-transport reduction, significantly affected the intention to reduce car-transport. Personal norms mediated the relationship between awareness of consequences of car-transport, ascription of responsibility of car-transport, perceived subjective norm for car-transport reduction, and intention to reduce car-transport. The results of this research not only contribute to theory development in the area of sustainable transportation behavior, but also provide a theoretical frame of reference for relevant policy-makers in urban transport management.

  18. Mechanisms That Link Parenting Practices to Adolescents' Risky Sexual Behavior: A Test of Six Competing Theories.

    Science.gov (United States)

    Simons, Leslie Gordon; Sutton, Tara E; Simons, Ronald L; Gibbons, Frederick X; Murry, Velma McBride

    2016-02-01

    Risky sexual behavior, particularly among adolescents, continues to be a major source of concern. In order to develop effective education and prevention programs, there is a need for research that identifies the antecedents of such behavior. This study investigated the mediators that link parenting experiences during early adolescence to subsequent risky sexual behaviors among a diverse sample of African American youth (N = 629, 55 % female). While there is ample evidence that parenting practices (e.g., supportive parenting, harsh parenting, parental management) are antecedent to risky sexual behavior, few studies have examined whether one approach to parenting is more strongly related to risky sex than others. Using a developmental approach, the current study focused on factors associated with six theories of risky sexual behavior. While past research has provided support for all of the theories, few studies have assessed the relative contribution of each while controlling for the processes proposed by the others. The current study addresses these gaps in the literature and reports results separately by gender. Longitudinal analyses using structural equation modeling revealed that the mediating mechanisms associated with social learning and attachment theories were significantly related to the risky sexual behavior of males and females. Additionally, there was support for social control and self-control theories only for females and for life history theory only for males. We did not find support for problem behavior theory, a perspective that dominates the risky sex literature, after controlling for the factors associated with the other theories. Finally, supportive parenting emerged as the parenting behavior most influential with regard to adolescents' risky sexual behavior. These results provide insight regarding efficacious approaches to education and preventative programs designed to reduce risky sexual behaviors among adolescents.

  19. Toward an understanding of late life suicidal behavior: the role of lifespan developmental theory.

    Science.gov (United States)

    Fiske, Amy; O'Riley, Alisa A

    2016-01-01

    Suicidal behavior in late life differs in important ways from suicidal behavior that occurs earlier in the lifespan, suggesting the possibility of developmental differences in the etiology of suicidal behavior. This paper examines late life suicidal behavior within the context of lifespan developmental theory. This paper presents a conceptual framework for using lifespan developmental theory to better understand late life suicidal behavior. We argue that the motivational theory of lifespan development, which focuses on control, is particularly relevant to late life suicide. This theory posits that opportunities to exert control over important aspects of one's life diminish in late life as a result of declines in physical functioning and other factors, and that successful aging is associated with adaptive regulation of this developmental change. Although continued striving to meet goals is normative throughout the lifespan, most individuals also increase the use of compensatory strategies in old age or when faced with a decline in functioning. We propose that individuals who do not adapt to developmental changes by altering their strategies for exerting control will be at risk for suicidal behavior in late life. This paper reviews evidence that supports the importance of control with respect to suicidal outcomes in older adults, as well as findings regarding specific types of control strategies that may be related to suicide risk in older adults with health-related limitations. Although suicidal behavior is not a normal part of aging, the application of lifespan developmental theory may be useful in understanding and potentially preventing suicide among older adults.

  20. Apps seeking theories: results of a study on the use of health behavior change theories in cancer survivorship mobile apps.

    Science.gov (United States)

    Vollmer Dahlke, Deborah; Fair, Kayla; Hong, Y Alicia; Beaudoin, Christopher E; Pulczinski, Jairus; Ory, Marcia G

    2015-03-27

    Thousands of mobile health apps are now available for use on mobile phones for a variety of uses and conditions, including cancer survivorship. Many of these apps appear to deliver health behavior interventions but may fail to consider design considerations based in human computer interface and health behavior change theories. This study is designed to assess the presence of and manner in which health behavior change and health communication theories are applied in mobile phone cancer survivorship apps. The research team selected a set of criteria-based health apps for mobile phones and assessed each app using qualitative coding methods to assess the application of health behavior change and communication theories. Each app was assessed using a coding derived from the taxonomy of 26 health behavior change techniques by Abraham and Michie with a few important changes based on the characteristics of mHealth apps that are specific to information processing and human computer interaction such as control theory and feedback systems. A total of 68 mobile phone apps and games built on the iOS and Android platforms were coded, with 65 being unique. Using a Cohen's kappa analysis statistic, the inter-rater reliability for the iOS apps was 86.1 (Papps, 77.4 (Papps were consistently higher than those of the Android platform apps. For personalization and tailoring, 67% of the iOS apps (24/36) had these elements as compared to 38% of the Android apps (12/32). In the area of prompting for intention formation, 67% of the iOS apps (34/36) indicated these elements as compared to 16% (5/32) of the Android apps. Mobile apps are rapidly emerging as a way to deliver health behavior change interventions that can be tailored or personalized for individuals. As these apps and games continue to evolve and include interactive and adaptive sensors and other forms of dynamic feedback, their content and interventional elements need to be grounded in human computer interface design and health

  1. Correlation functions of the energy-momentum tensor on spaces of constant curvature

    International Nuclear Information System (INIS)

    Osborn, H.; Shore, G.M.

    2000-01-01

    An analysis of one- and two-point functions of the energy-momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy-momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of O(d-1,2), for two-point functions of vector currents is derived in detail and extended to the energy-momentum tensor by analogy. It is demonstrated that, at non-coincident points, the two-point functions are not related to a in any direct fashion and there is no straightforward demonstration obtainable in this framework of irreversibility under renormalisation group flow of any function of the couplings for four-dimensional field theories which reduces to a at fixed points

  2. Health Belief Model and Reasoned Action Theory in Predicting Water Saving Behaviors in Yazd, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ghaneian

    2012-12-01

    Full Text Available Background: People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter-mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha-viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. Methods: The cross-sectional study used random cluster sampling to recruit 200 heads of households to collect the data. The survey questionnaire was tested for its content validity and reliability. Analysis of data included descriptive statistics, simple correlation, hierarchical multiple regression. Results: Simple correlations between water saving behaviors and Reasoned Action Theory and Health Belief Model constructs were statistically significant. Health Belief Model and Reasoned Action Theory constructs explained 20.80% and 8.40% of the variances in water saving beha-viors, respectively. Perceived barriers were the strongest Predictor. Additionally, there was a sta-tistically positive correlation between water saving behaviors and intention. Conclusion: In designing interventions aimed at water waste prevention, barriers of water saving behaviors should be addressed first, followed by people's attitude towards water saving. Health Belief Model constructs, with the exception of perceived severity and benefits, is more powerful than is Reasoned Action Theory in predicting water saving behavior and may be used as a framework for educational interventions aimed at improving water saving behaviors.

  3. On the principle of gauge invariance in the field theory with curved momentum space

    International Nuclear Information System (INIS)

    Mir-Kasimov, R.M.

    1990-11-01

    The gauge transformations consistent with the hypothesis of the curved momentum space are considered. In this case the components of the electromagnetic field are not commuting. The finite-difference analogue of the D'Alambert equation is derived. (author). 5 refs

  4. Parental Involvement and the Theory of Planned Behavior

    Science.gov (United States)

    Bracke, Deborah; Corts, Daniel

    2012-01-01

    The "Theory of Planned Behavior" provided a specific theoretical framework to evaluate the impact of attitudes, norms, and controls on parental involvement in a local school district. The "new knowledge" that resulted from the measurement of these constructs affirmed that regardless of the perceived level of parental involvement, virtually all…

  5. Electron momentum spectroscopy

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1986-03-01

    For electron energies greater than a few hundred eV and recoil momenta less than a few atomic units, the differential cross section for the non-coplanar symmetric (e,2e) reaction on an atom or molecule depends on the target and ion structure only through the target-ion overlap. Experimental criteria for the energy and momentum are that the apparent structure information does not change when the energy and momentum are varied. The plane-wave impulse approximation is a sufficient description of the reaction mechanism for determining spherically-averaged squares of momentum-space orbitals for atoms and molecules and for coefficients describing initial and final state correlations

  6. Non-perturbative analysis of some simple field theories on a momentum space lattice

    International Nuclear Information System (INIS)

    Brooks, E.D. III.

    1984-01-01

    In this work, a new technique is developed for the numerical study of quantum field theory. The procedure, borrowed from nonrelativistic quantum mechanics, is that of finding the eigenvalues of a finite Hamiltonian matrix. The matrix is created by evaluating the matrix elements of the Hamiltonian operator on a finite basis of states. The eigenvalues and eigenvectors of the finite dimensional matrix become an accurate approximation to those of the physical system as the finite basis of states is extended to become more complete. A model of scalars coupled to fermions in 0 + 1 dimensions as a simple field theory is studied to consider in the course of developing the technique. Having developed the numerical and analytical techniques, a Fermi field coupled to a Bose field in 1 + 1 dimensions with the Yukawa coupling lambda anti-psi phi psi is considered. The large coupling limit basis of the 0 + 1 dimensional model is extended to this case using a Bogoliubov transformation on the fermions. It provides a handle on the behavior of the system in the large coupling limit. The effects of renormalization and the generation of bound states are considered

  7. Bootstrapping gravity: A consistent approach to energy-momentum self-coupling

    International Nuclear Information System (INIS)

    Butcher, Luke M.; Hobson, Michael; Lasenby, Anthony

    2009-01-01

    It is generally believed that coupling the graviton (a classical Fierz-Pauli massless spin-2 field) to its own energy-momentum tensor successfully recreates the dynamics of the Einstein field equations order by order; however the validity of this idea has recently been brought into doubt [T. Padmanabhan, Int. J. Mod. Phys. D 17, 367 (2008).]. Motivated by this, we present a graviton action for which energy-momentum self-coupling is indeed consistent with the Einstein field equations. The Hilbert energy-momentum tensor for this graviton is calculated explicitly and shown to supply the correct second-order term in the field equations; in contrast, the Fierz-Pauli action fails to supply the correct term. A formalism for perturbative expansions of metric-based gravitational theories is then developed, and these techniques employed to demonstrate that our graviton action is a starting point for a straightforward energy-momentum self-coupling procedure that, order by order, generates the Einstein-Hilbert action (up to a classically irrelevant surface term). The perturbative formalism is extended to include matter and a cosmological constant, and interactions between perturbations of a free matter field and the gravitational field are studied in a vacuum background. Finally, the effect of a nonvacuum background is examined, and the graviton is found to develop a nonvanishing 'mass-term' in the action.

  8. Distribution of electron orbits having a definite angular momentum in a static magnetic field

    International Nuclear Information System (INIS)

    Olszewski, S.

    1996-01-01

    Electron orbits having a definite angular momentum in a static magnetic field are calculated with the aid of the Bohr-Sommerfeld quantization rules. The quantization gives that orbits are arranged along a straight line but the distance between the centers of two neighboring orbits decreases with increase of the absolute value of the angular momentum. With the energy correction equal to the zero-point energy of the harmonic oscillator, the distribution of orbits becomes identical to that obtained recently with the aid of a mixed semiclassical and quantum mechanical theory. 16 refs., 1 fig

  9. Single-Particle Momentum Distributions of Efimov States in Mixed-Species Systems

    DEFF Research Database (Denmark)

    T. Yamashita, M.; F. Bellotti, F.; Frederico, T.

    2013-01-01

    to derive formulas for the scaling factor of the Efimov spectrum for any mass ratio assuming either that two or three of the two-body subsystems have a bound state at zero energy. We consider the single-particle momentum distribution analytically and numerically and analyse the tail of the momentum......We solve the three-body bound state problem in three dimensions for mass imbalanced systems of two identical bosons and a third particle in the universal limit where the interactions are assumed to be of zero-range. The system displays the Efimov effect and we use the momentum-space wave equation...... distribution to obtain the three-body contact parameter. Our finding demonstrate that the functional form of the three-body contact term depends on the mass ratio and we obtain an analytic expression for this behavior. To exemplify our results, we consider mixtures of Lithium with either two Caesium or Rubium...

  10. Health belief model and reasoned action theory in predicting water saving behaviors in yazd, iran.

    Science.gov (United States)

    Morowatisharifabad, Mohammad Ali; Momayyezi, Mahdieh; Ghaneian, Mohammad Taghi

    2012-01-01

    People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter¬mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha¬viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. The cross-sectional study used random cluster sampling to recruit 200 heads of households to collect the data. The survey questionnaire was tested for its content validity and reliability. Analysis of data included descriptive statistics, simple correlation, hierarchical multiple regression. Simple correlations between water saving behaviors and Reasoned Action Theory and Health Belief Model constructs were statistically significant. Health Belief Model and Reasoned Action Theory constructs explained 20.80% and 8.40% of the variances in water saving beha-viors, respectively. Perceived barriers were the strongest Predictor. Additionally, there was a sta¬tistically positive correlation between water saving behaviors and intention. In designing interventions aimed at water waste prevention, barriers of water saving behaviors should be addressed first, followed by people's attitude towards water saving. Health Belief Model constructs, with the exception of perceived severity and benefits, is more powerful than is Reasoned Action Theory in predicting water saving behavior and may be used as a framework for educational interventions aimed at improving water saving behaviors.

  11. The Theory of Reasoned Action as Parallel Constraint Satisfaction: Towards a Dynamic Computational Model of Health Behavior

    OpenAIRE

    Orr, Mark G.; Thrush, Roxanne; Plaut, David C.

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constrain...

  12. Symmetry and bifurcations of momentum mappings

    International Nuclear Information System (INIS)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface. (orig.)

  13. Symmetry and bifurcations of momentum mappings

    Science.gov (United States)

    Arms, Judith M.; Marsden, Jerrold E.; Moncrief, Vincent

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.

  14. The theoretical basis for practice-relevant medication use research: patient-centered/behavioral theories.

    Science.gov (United States)

    Blalock, Susan J

    2011-12-01

    There is an urgent need for research to improve the quality of medication use among those who require pharmacotherapy. To describe how behavioral science theories can help to achieve this goal. We begin by describing what a theory is and the functions that theories serve. We then provide 8 guiding principles that are crucial for investigators to understand if they are to use theory appropriately. We conclude by discussing the need for a new model of patient medication self-management that incorporates information concerning factors operating at all levels of the ecological framework, ranging from patient-level to societal-level factors. The 8 guiding principles discussed are the following: (1) There is no single theory that is appropriate for guiding all medication use research; (2) Behavioral science theories are probabilistic, not deterministic; (3) When trying to influence a health behavior, the health behavior of interest must be defined precisely; (4) Many factors outside of patient control influence patient medication use; (5) Every patient is unique; (6) Patient motivation is a fundamental ingredient required to optimize medication use, especially when maintenance of long term behavior is the goal; (7) Health care providers can have a profound effect on patient medication use, and this effect can operate through several possible causal pathways; and (8) When planning an intervention to optimize medication use, it is important to develop a conceptual model that links intervention inputs to the ultimate outcomes that are desired. Medication use can be influenced by a wide variety of factors acting at different levels of the ecological model. The quality of research on medication use could be improved by development of an ecological model specific to medication self-management. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The effect of education based on the Theory of Planned Behavior in smoking

    Directory of Open Access Journals (Sweden)

    Mahmoud Barfi

    2018-03-01

    Conclusion: According to the results, Education based on the theory of planned behavior has a positive impact on smoking behavior, Therefore, it is recommended that the above educational model is used to modify the behavior of smokers.

  16. Infrared behavior of the Reggeon field theory for the pomeron

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Dash, J.W.; Pinsky, S.S.; Rabl, V.

    1975-01-01

    The infrared structure of Reggeon field theory is investigated using renormalization group methods. The infrared fixed point where only the phi 3 interaction is nontrivial is shown to be stable with respect to all higher order interactions within the context of perturbation theory both at D = 2 and in the epsilon-expansion. This may imply that the asymptotic behavior of the total cross section is model independent

  17. The role of response force on the persistence and structure of behavior during extinction.

    Science.gov (United States)

    Pinkston, Jonathan W; Foss, Erica K

    2018-01-01

    Behavior Momentum Theory has emerged as a prominent account of resistance to change in both basic and applied research. Although laboratory studies often define precise, repeatable responses, application research often deals with response classes that may vary widely along a number of dimensions. In general, Behavior Momentum Theory has not addressed how response dimensions impact resistance to change, providing an opportunity to expand the model in new directions. Four rats pressed a force transducer under a multiple variable interval (VI) 60-s VI 60-s schedule of reinforcement. In one component, responses satisfied the schedule only if the response force fell within a "low" force band requirement; responses in the other schedule were required to satisfy a "high" force band. Once responding stabilized, extinction was programmed for three sessions. Then, the procedures were replicated. The results showed that response force came under discriminative control, but force requirements had no impact on resistance to extinction. In a follow-up condition, the schedule was changed to a multiple VI 30-s VI 120-s schedule and the low-force band operated in both components. The results showed that behavior maintained by the VI 30-s schedule was generally more resistant to extinction. A secondary analysis showed that force distributions created under baseline maintained during extinction. Overall, the results suggest that differential response force requirements prevailing in steady state do not affect the course of extinction. © 2018 Society for the Experimental Analysis of Behavior.

  18. Utility of the theory of reasoned action and theory of planned behavior for predicting Chinese adolescent smoking.

    Science.gov (United States)

    Guo, Qian; Johnson, C Anderson; Unger, Jennifer B; Lee, Liming; Xie, Bin; Chou, Chih-Ping; Palmer, Paula H; Sun, Ping; Gallaher, Peggy; Pentz, MaryAnn

    2007-05-01

    One third of smokers worldwide live in China. Identifying predictors of smoking is important for prevention program development. This study explored whether the Theory of Reasoned Action (TRA) and Theory of Planned Behavior (TPB) predict adolescent smoking in China. Data were obtained from 14,434 middle and high school students (48.6% boys, 51.4% girls) in seven geographically varied cities in China. TRA and TPB were tested by multilevel mediation modeling, and compared by multilevel analyses and likelihood ratio tests. Perceived behavioral control was tested as a main effect in TPB and a moderation effect in TRA. The mediation effects of smoking intention were supported in both models (p<0.001). TPB accounted for significantly more variance than TRA (p<0.001). Perceived behavioral control significantly interacted with attitudes and social norms in TRA (p<0.001). Therefore, TRA and TPB are applicable to China to predict adolescent smoking. TPB is superior to TRA for the prediction and TRA can better predict smoking among students with lower than higher perceived behavioral control.

  19. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  20. Quantum field theory with a momentum space of constant curvature (perturbation theory)

    International Nuclear Information System (INIS)

    Mir-Kasimov, R.M.

    1978-01-01

    In the framework of the field-theoretical approach in which the off-the-mass shell extension proceeds in the p-space of constant curvature, the perburbation theory is developed. The configurational representation of the de Sitter space is introduced with the help of the Fourier transformation of the group of motions. On the basis of a natural generalization of the Bogolyubov causality condition to the case of the new configurational representation a perturbation theory is constructed with the local in xi space Lagrangian density fucntion. The obtained S matrix obeys the reguirement of translation invariance. The S matrix elements are given by convergent expressions

  1. Weak turbulence theory of Langmuir waves: A reconsideration of validity of quasilinear theory

    International Nuclear Information System (INIS)

    Liang, Y.M.; Diamond, P.H.

    1991-01-01

    The weak turbulence theory of Langmuir waves in a one-dimensional, one-species plasma is discussed. Analytical calculations using the theory of two-point correlation functions show that in the weak turbulence regime τ ac much-lt min[τ tr , γ k -1 ], the nonlinear enhancement of the mode growth rate relative to the linear Landau mode growth rate γ k L is rather weak, and quasilinear theory is reproduced at the lowest order. Hence this work also proves the validity of the quasilinear theory. Here τ ac ∼ (kΔv ph ) -1 is the phase-mixing time or the auto-correlation time, and τ tr ∼ (k 2 D ql ) -1/3 is the particle decorrelation time or the turbulence trapping time. In particular, the lowest order nonlinear correction to γ k L in the regime τ ac much-lt τ tr much-lt γ k -1 is proportional to (1/ω k τ tr )γ k L . Both corrections are additive, not multiplicative, and are of higher order in the weak turbulence expansion. The smallness of the corrections is due to the fact that the only mechanism for the relaxation of the plasma distribution function in a one-dimensional, one-species plasma is momentum exchange between waves and particles, which is exactly the interaction considered in the quasilinear theory. No like-like particle momentum exchange is allowed due to momentum conservation constraints. Similar calculations are also done for the traveling wave tube, which can be used to test this theory experimentally, especially for the case of bump-on-tail instability. A comparison of theoretical predictions with experimental results is presented. 3 refs

  2. Gauge theory high-energy behavior from j-plane unitarity

    International Nuclear Information System (INIS)

    Coriano, C.; Florida Univ., Gainesville, FL; White, A.R.

    1996-01-01

    In a non-abelian gauge theory the t-channel multiparticle unitarity equations continued in the complex j-plane can be systematically expanded around j=1 and t=0. The combination of Ward identity constraints with unitarity is sufficient to produce directly many of the results obtained by Regge limit leading-log and next-to-leading log momentum-space calculations. The O(g 2 ) BFKL kernel is completely determined. O(g 4 ) infrared contributions to this kernel are also obtained, including the leading contribution of a new partial-wave amplitude - previously identified as a separate forward component with a holomorphically factorizable spectrum. For this amplitude the only scale ambiguity is the overall normalization and it is anticipated to be a new conformally invariant kernel. While scale-dependent non-leading reggeon interactions can not be derived by the techniques developed, it is conjectured that all conformally invariant interactions may be determined by t-channel unitarity. (orig.)

  3. Multiple nucleon transfer in damped nuclear collisions. [Lectures, mass charge, and linear and angular momentum transport

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.

  4. The Theory of Planned Behavior and Helmet Use among College Students

    Science.gov (United States)

    Ross, Lisa Thomson; Ross, Thomas P.; Farber, Sarah; Davidson, Caroline; Trevino, Meredith; Hawkins, Ashley

    2011-01-01

    Objectives: To assess undergraduate helmet use attitudes and behaviors in accordance with the theory of planned behavior (TPB). We predicted helmet wearers and nonwearers would differ on our subscales. Methods: Participants (N = 414, 69% female, 84% white) completed a survey. Results: Principal component analysis and reliability analysis guided…

  5. Evolution of curvature perturbation in generalized gravity theories

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.

  6. Behavioral Finance in Brazil: applying the prospect theory to potential investors

    Directory of Open Access Journals (Sweden)

    Claudia Emiko Yoshinaga

    2014-12-01

    Full Text Available The premise of unbounded rationality defended by the Efficient Market Hypothesis is challenged by the theoretical framework that involves Behavioral Finance, whose basis, Kahneman and Tversky’s Prospect Theory (1979, questions the Expected Utility Theory, an important element of Neoclassical Economics, as basis for decisionmaking. This research aims to replicate the empirical research of Kahneman and Tversky’s seminal article (1979 to evaluate the decisionmaking process of employees (potential investors from a major national financial institution. The results of this study were compared to those obtained in the original article and to other similar studies. The questionnaire employed was an adaptation of the one originally used, so that we could test, in the studied sample, the applicability of the Prospect Theory, more specifically with regard to Certainty, Reflection and Isolation Effects. We also analyzed differences in the decision-making process considering respondents’ attributes (gender, age and income. The results confirmed that behavioral effects do exist, and proved that a large portion of the sample presented significant inconsistency in their choices according to Expected Utility Theory principles, highlighting that their decisions were not made according to strictly rational behavior. Furthermore, we analyzed the relationship between violations and investor characteristics by estimating a linear model. Results indicate that both age and level of income were negatively related to total violations.

  7. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    Science.gov (United States)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  8. Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts.

    Science.gov (United States)

    Saldanha, Pablo L

    2010-02-01

    It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the form epsilon(0)E x B, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

  9. Angular momentum of dwarf galaxies

    Science.gov (United States)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  10. Health education and multimedia learning: educational psychology and health behavior theory (Part 1).

    Science.gov (United States)

    Mas, Francisco G Soto; Plass, Jan; Kane, William M; Papenfuss, Richard L

    2003-07-01

    When health education researchers began to investigate how individuals make decisions related to health and the factors that influence health behaviors, they referred to frameworks shared by educational and learning research. Health education adopted the basic principles of the cognitive revolution, which were instrumental in advancing the field. There is currently a new challenge to confront: the widespread use of new technologies for health education. To better overcome this challenge, educational psychology and instructional technology theory should be considered. Unfortunately, the passion to incorporate new technologies too often overshadows how people learn or, in particular, how people learn through computer technologies. This two-part article explains how educational theory contributed to the early development of health behavior theory, describes the most relevant multimedia learning theories and constructs, and provides recommendations for developing multimedia health education programs and connecting theory and practice.

  11. Applications of operant learning theory to the management of challenging behavior after traumatic brain injury.

    Science.gov (United States)

    Wood, Rodger Ll; Alderman, Nick

    2011-01-01

    For more than 3 decades, interventions derived from learning theory have been delivered within a neurobehavioral framework to manage challenging behavior after traumatic brain injury with the aim of promoting engagement in the rehabilitation process and ameliorating social handicap. Learning theory provides a conceptual structure that facilitates our ability to understand the relationship between challenging behavior and environmental contingencies, while accommodating the constraints upon learning imposed by impaired cognition. Interventions derived from operant learning theory have most frequently been described in the literature because this method of associational learning provides good evidence for the effectiveness of differential reinforcement methods. This article therefore examines the efficacy of applying operant learning theory to manage challenging behavior after TBI as well as some of the limitations of this approach. Future developments in the application of learning theory are also considered.

  12. Toward a Behavioral Theory of Boards and Corporate Governance

    NARCIS (Netherlands)

    van Ees, Hans; Gabrielsson, Jonas; Huse, Morten; Gabrielson, J.

    Review A coherent alternative to an economic approach of corporate governance is missing. In this paper we take steps towards developing a behavioral theory of boards and corporate governance. Building upon concepts such as political bargaining, routinization of decision making, satisficing, and

  13. The theory of reasoned action as parallel constraint satisfaction: towards a dynamic computational model of health behavior.

    Directory of Open Access Journals (Sweden)

    Mark G Orr

    Full Text Available The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior, does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence. To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.

  14. The theory of reasoned action as parallel constraint satisfaction: towards a dynamic computational model of health behavior.

    Science.gov (United States)

    Orr, Mark G; Thrush, Roxanne; Plaut, David C

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.

  15. The role of oxytocin in mothers' theory of mind and interactive behavior during the perinatal period.

    Science.gov (United States)

    MacKinnon, Anna L; Gold, Ian; Feeley, Nancy; Hayton, Barbara; Carter, C Sue; Zelkowitz, Phyllis

    2014-10-01

    The present longitudinal study examined the relations between plasma oxytocin, theory of mind, and maternal interactive behavior during the perinatal period. A community sample of women was assessed at 12-14 weeks gestation, 32-34 weeks gestation, and 7-9 weeks postpartum. Oxytocin during late pregnancy was significantly positively correlated with a measure of theory of mind, and predicted theory of mind ability after controlling for parity, maternal education, prenatal psychosocial risk, and general anxiety, measured during the first trimester. Theory of mind was associated with less remote and less depressive maternal interactive behavior. Oxytocin, across all time points, was not directly related to maternal interactive behavior. However, there was a significant indirect effect of oxytocin during late pregnancy on depressive maternal behavior via theory of mind ability. These preliminary findings suggest that changes in the oxytocinergic system during the perinatal period may contribute to the awareness of social cues, which in turn plays a role in maternal interactive behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Qualitative application of the theory of planned behavior to understand beverage consumption behaviors among adults.

    Science.gov (United States)

    Zoellner, Jamie; Krzeski, Erin; Harden, Samantha; Cook, Emily; Allen, Kacie; Estabrooks, Paul A

    2012-11-01

    Despite strong scientific data indicating associations among sugar-sweetened beverages (SSB) and numerous adverse health outcomes, little is known about culturally specific beliefs and potential individual-level behavioral strategies to reduce SSB intake. The primary objective of this formative study targeting adults residing in rural southwest Virginia was to apply the Theory of Planned Behavior to investigate culturally specific attitudes, subjective norms, and perceived behavioral control constructs related to the consumption of SSB, water, and artificially sweetened beverages. Using a homogenous sampling strategy, eight focus groups were conducted with 54 adult participants who exceeded recommendations of Theory of Planned Behavior, to execute the focus group. All focus groups were audiotaped and transcribed verbatim. Three researchers independently coded meaning units to the major themes and subsequently met to gain consensus in coding. Important beverage-specific themes emerged for attitudes, subjective norms, perceived behavioral control, and intentions. Across all beverages, the most notable themes included taste (n=161 meaning units), availability/convenience (n=95 meaning units), habit/addiction (n=57 meaning units), and cost (n=28 meaning units). Health consequences associated with beverages and water-quality issues also surfaced, as well as normative beliefs, including the influence of doctors and peers. The identified themes and subthemes provide critical insight into understanding culturally relevant context and beliefs associated with beverage consumption behaviors and helps inform the development and evaluation of future intervention efforts targeting SSB consumption in the health disparate region of southwest Virginia. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  17. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  18. Quantum X waves with orbital angular momentum in nonlinear dispersive media

    Science.gov (United States)

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2018-06-01

    We present a complete and consistent quantum theory of generalised X waves with orbital angular momentum in dispersive media. We show that the resulting quantised light pulses are affected by neither dispersion nor diffraction and are therefore resilient against external perturbations. The nonlinear interaction of quantised X waves in quadratic and Kerr nonlinear media is also presented and studied in detail.

  19. Photofragment angular momentum distribution beyond the axial recoil approximation: Predissociation

    International Nuclear Information System (INIS)

    Kuznetsov, Vladislav V.; Vasyutinskii, Oleg S.

    2007-01-01

    We present the quantum mechanical expressions for the angular momentum distribution of the photofragments produced in slow predissociation. The paper is based on our recent theoretical treatment [J. Chem. Phys. 123, 034307 (2005)] of the recoil angle dependence of the photofragment multipole moments which explicitly treat the role of molecular axis rotation on the electronic angular momentum polarization of the fragments. The electronic wave function of the molecule was used in the adiabatic body frame representation. The rigorous expressions for the fragment state multipoles which have been explicitly derived from the scattering wave function formalism have been used for the case of slow predissociation where a molecule lives in the excited quasibound state much longer than a rotation period. Possible radial nonadiabatic interactions were taken into consideration. The optical excitation of a single rotational branch and the broadband incoherent excitation of all possible rotational branches have been analyzed in detail. The angular momentum polarization of the photofragments has been treated in the high-J limit. The polarization of the photofragment angular momenta predicted by the theory depends on photodissociation mechanism and can in many cases be significant

  20. Using Theory of Planned Behavior to Predict Healthy Eating among Danish Adolescents

    Science.gov (United States)

    Gronhoj, Alice; Bech-Larsen, Tino; Chan, Kara; Tsang, Lennon

    2013-01-01

    Purpose: The purpose of the study was to apply the theory of planned behavior to predict Danish adolescents' behavioral intention for healthy eating. Design/methodology/approach: A cluster sample survey of 410 students aged 11 to 16 years studying in Grade 6 to Grade 10 was conducted in Denmark. Findings: Perceived behavioral control followed by…

  1. Correlates of hepatitis B virus health-related behaviors of Korean Americans: a situation-specific nursing theory.

    Science.gov (United States)

    Lee, Haeok; Fawcett, Jacqueline; Yang, Jin Hyang; Hann, Hie-Won

    2012-12-01

    The purpose of this article is to explain the evolution of a situation-specific theory developed to enhance understanding of health-related behaviors of Korean Americans (KAs) who have or are at risk for a chronic hepatitis B virus (HBV) infection. The situation-specific theory evolved from an integration of the Network Episode Model, studies of health-related behaviors of people with HBV infection, and our studies of and practice experiences with Asian American individuals with HBV infection. The major concepts of the theory are sociocultural context, social network, individual-level factors, illness experience, and health-related behaviors. The major propositions of the theory are that sociocultural context, social network, and individual-level factors influence the illness experience, and that sociocultural context, social network, individual-level factors, and the illness experience influence health-related behaviors of KAs who have or are at risk for HBV infection. This situation-specific theory represents a translation of abstract concepts into clinical reality. The theory is an explanation of correlates of health-related HBV behaviors of KAs. The next step is to develop and test the effectiveness of a nursing intervention designed to promote behaviors that will enhance the health of KAs who have or are at risk for HBV infection, and that takes into account sociocultural context, social network, individual-level factors, and illness experience. © 2012 Sigma Theta Tau International.

  2. Momentum density maps for molecules

    International Nuclear Information System (INIS)

    Cook, J.P.D.; Brion, C.E.

    1982-01-01

    Momentum-space and position-space molecular orbital density functions computed from LCAO-MO-SCF wavefunctions are used to rationalize the shapes of some momentum distributions measured by binary (e,2e) spectroscopy. A set of simple rules is presented which enable one to sketch the momentum density function and the momentum distribution from a knowledge of the position-space wavefunction and the properties and effects of the Fourier Transform and the spherical average. Selected molecular orbitals of H 2 , N 2 and CO 2 are used to illustrate this work

  3. Force As A Momentum Current

    International Nuclear Information System (INIS)

    Munera, Hector A.

    2010-01-01

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  4. Variables of the Theory of Planned Behavior Are Associated with Family Meal Frequency among Adolescents

    Science.gov (United States)

    Eto, Kumi; Koch, Pamela; Contento, Isobel R.; Adachi, Miyuki

    2011-01-01

    Objective: To examine associations between Theory of Planned Behavior variables and the family meal frequency. Methods: Fifth-through seventh-grade students (n = 236) completed a self-administered questionnaire in their classrooms. The relationships between Theory of Planned Behavior variables (intention, attitudes, subjective norms, and perceived…

  5. Momentum confinement at low torque

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W M [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); De Grassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Budny, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kinsey, J E [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Mikkelsen, D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Petty, C C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Politzer, P A [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Scott, S D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Zeeland, M A Van [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Zarnstorff, M C [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2007-12-15

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E x B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.

  6. Analytical scheme calculations of angular momentum coupling and recoupling coefficients

    Science.gov (United States)

    Deveikis, A.; Kuznecovas, A.

    2007-03-01

    We investigate the Scheme programming language opportunities to analytically calculate the Clebsch-Gordan coefficients, Wigner 6j and 9j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The considered coefficients are calculated by a direct evaluation of the sum formulas. The calculation results for large values of quantum angular momenta were compared with analogous calculations with FORTRAN and Java programming languages.

  7. Analytical scheme calculations of angular momentum coupling and recoupling coefficients

    International Nuclear Information System (INIS)

    Deveikis, A.; Kuznecovas, A.

    2007-01-01

    We investigate the Scheme programming language opportunities to analytically calculate the Clebsch-Gordan coefficients, Wigner 6j and 9j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The considered coefficients are calculated by a direct evaluation of the sum formulas. The calculation results for large values of quantum angular momenta were compared with analogous calculations with FORTRAN and Java programming languages

  8. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  9. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    International Nuclear Information System (INIS)

    Zheng, Y.; Brion, C.E.; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E.; Chakravorty, S.J.; Davidson, E.R.; Sgamellotti, A.; von Niessen, W.

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green's function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs

  10. Evaluation of a Person-Centered, Theory-Based Intervention to Promote Health Behaviors.

    Science.gov (United States)

    Worawong, Chiraporn; Borden, Mary Jo; Cooper, Karen M; Pérez, Oscar A; Lauver, Diane

    Effective promotion of health behaviors requires strong interventions. Applying person-centered approaches and concepts synthesized from two motivational theories could strengthen the effects of such interventions. The aim of the study was to report the effect sizes, fidelity, and acceptability of a person-centered, health behavior intervention based on self-regulation and self-determination theories. Using a pre- and postintervention design, with a 4-week follow-up, advanced practice registered nurses made six weekly contacts with 52 volunteer participants. Most participants were educated White women. Advanced practice registered nurses elicited participant motives and particular goals for either healthy diet or physical activity behaviors. Minutes and type of activity and servings of fat and fruit/vegetables were assessed. Effect sizes for engaging in moderate aerobic activity and in fruit/vegetable and fat intake were 0.53, 0.82, and -0.57, respectively. The fidelity of delivery was 80-97% across contacts, and fidelity of participants' receipt of intervention components was supported. Participant acceptance of the intervention was supported by positive ratings on aspects of relevance and usefulness. To advance the science of health behavior change and improve client health status, person-centered approaches and concepts synthesized from motivational theories can be applied and tested with a randomized, controlled design and diverse samples to replicate and extend this promising behavioral intervention.

  11. Determinants of Cancer Early Detection Behaviors:Application of Protection Motivation Theory.

    Science.gov (United States)

    Rahaei, Zohreh; Ghofranipour, Fazlollah; Morowatisharifabad, Mohammad Ali; Mohammadi, Eesa

    2015-01-01

    Cancer is account for 13% of all deaths around the world and is the third cause of mortality in Iran. More than one third of these cases are pre-ventable and about 33% are curable with early detection. The aim of this study was to determine the predictors of cancer early detection (CED) behaviors applying Protection Motivation Theory (PMT). In this cross-sectional study, cluster sampling method was employed to recruit 260 individuals of above 20 years old in Yazd, Iran and a researcher designed questionnaire was completed through interviews for each of the respondents. PMT theoretical variables and CED behaviors were the basis of data collection procedure. Participants acquired 64.47% of the protection motivation, 30.97% of the passive and 45.64% of the active behaviors‟ possible scores. Theory constructs predicted 19.8%, 15.6% and 9.6% of the variations for protection motivation, passive and active behavior respectively. Protection motivation was responsible for 3.6% of passive and 8% of active behaviors‟ variations. Considering the scarceness of CED behaviors and the applicability of PMT in predicting these behaviors, utilization of the PMT‟s constructs in any interventional programs to accelerate CED behaviors could be an alternate methodological choice in the cancer control initiatives.

  12. Universality of many-body two-nucleon momentum distributions: Correlated nucleon spectral function of complex nuclei

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Morita, Hiko

    2017-12-01

    Background: The nuclear spectral function is a fundamental quantity that describes the mean-field and short-range correlation dynamics of nucleons embedded in the nuclear medium; its knowledge is a prerequisite for the interpretation of various electroweak scattering processes off nuclear targets aimed at providing fundamental information on strong and weak interactions. Whereas in the case of the three-nucleon and, partly, the four-nucleon systems, the spectral function can be calculated ab initio within a nonrelativistic many-body Schroedinger approach, in the case of complex nuclei only models of the correlated, high-momentum part of the spectral function are available so far. Purpose: The purpose of this paper is to present a new approach such that the spectral function for a specific nucleus can be obtained from a reliable many-body calculation based upon realistic nucleon-nucleon interactions, thus avoiding approximations leading to adjustable parameters. Methods: The expectation value of the nuclear many-body Hamiltonian, containing realistic nucleon-nucleon interaction of the Argonne family, is evaluated variationally by a normalization-conserving linked-cluster expansion and the resulting many-body correlated wave functions are used to calculate the one-nucleon and the two-nucleon momentum distributions; by analyzing the high-momentum behavior of the latter, the spectral function can be expressed in terms of a transparent convolution formula involving the relative and center-of-mass (c.m.) momentum distributions in specific regions of removal energy E and momentum k . Results: It is found that as a consequence of the factorization of the many-body wave functions at short internucleon separations, the high-momentum behavior of the two-nucleon momentum distributions in A =3 ,4 ,12 ,16 ,40 nuclei factorizes, at proper values of the relative and c.m. momenta, into the c.m. and relative momentum distributions, with the latter exhibiting a universal A

  13. Energy-momentum density of graphite by electron-momentum spectroscopy

    International Nuclear Information System (INIS)

    Vos, M.; Fang, Z.; Canney, S.; Kheifets, A.; McCarthy, I.E.; Weigold, E.

    1996-11-01

    The energy-resolved electron momentum density of graphite has been measured along a series of well-defined directions using electron momentum spectroscopy (EMS). This is the first measurement of this kind performed on a single-crystal target with a thoroughly controlled orientation which clearly demonstrates the different nature of the σ and π bands in graphite. Good agreement between the calculated density and the measured one is found, further establishing that fact that EMS yields more direct and complete information on the valence electronic structure that any other method. 12 refs., 2 figs

  14. Predicting short-term weight loss using four leading health behavior change theories

    Directory of Open Access Journals (Sweden)

    Barata José T

    2007-04-01

    Full Text Available Abstract Background This study was conceived to analyze how exercise and weight management psychosocial variables, derived from several health behavior change theories, predict weight change in a short-term intervention. The theories under analysis were the Social Cognitive Theory, the Transtheoretical Model, the Theory of Planned Behavior, and Self-Determination Theory. Methods Subjects were 142 overweight and obese women (BMI = 30.2 ± 3.7 kg/m2; age = 38.3 ± 5.8y, participating in a 16-week University-based weight control program. Body weight and a comprehensive psychometric battery were assessed at baseline and at program's end. Results Weight decreased significantly (-3.6 ± 3.4%, p Conclusion The present models were able to predict 20–30% of variance in short-term weight loss and changes in weight management self-efficacy accounted for a large share of the predictive power. As expected from previous studies, exercise variables were only moderately associated with short-term outcomes; they are expected to play a larger explanatory role in longer-term results.

  15. SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems

    International Nuclear Information System (INIS)

    Hecht, K.T.; Zahn, W.

    1978-01-01

    In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references

  16. Low-momentum dynamic structure factor of a strongly interacting Fermi gas at finite temperature: A two-fluid hydrodynamic description

    Science.gov (United States)

    Hu, Hui; Zou, Peng; Liu, Xia-Ji

    2018-02-01

    We provide a description of the dynamic structure factor of a homogeneous unitary Fermi gas at low momentum and low frequency, based on the dissipative two-fluid hydrodynamic theory. The viscous relaxation time is estimated and is used to determine the regime where the hydrodynamic theory is applicable and to understand the nature of sound waves in the density response near the superfluid phase transition. By collecting the best knowledge on the shear viscosity and thermal conductivity known so far, we calculate the various diffusion coefficients and obtain the damping width of the (first and second) sounds. We find that the damping width of the first sound is greatly enhanced across the superfluid transition and very close to the transition the second sound might be resolved in the density response for the transferred momentum up to half of Fermi momentum. Our work is motivated by the recent measurement of the local dynamic structure factor at low momentum at Swinburne University of Technology and the ongoing experiment on sound attenuation of a homogeneous unitary Fermi gas at Massachusetts Institute of Technology. We discuss how the measurement of the velocity and damping width of the sound modes in low-momentum dynamic structure factor may lead to an improved determination of the universal superfluid density, shear viscosity, and thermal conductivity of a unitary Fermi gas.

  17. Leaving an Abusive Dating Relationship: A Prospective Analysis of the Investment Model and Theory of Planned Behavior.

    Science.gov (United States)

    Edwards, Katie M; Gidycz, Christine A; Murphy, Megan J

    2015-10-01

    The purpose of the current study was to build on the existing literature to better understand young women's leaving processes in abusive dating relationships using a prospective design. Two social psychological models-the investment model and theory of planned behavior-were tested. According to the investment model, relationship continuation is predicted by commitment, which is a function of investment, satisfaction, and low quality of alternatives. The theory of planned behavior asserts that a specific behavior is predicted by an individual's intention to use a behavior, which is a function of the individual's attitudes toward the behavior, the subjective norms toward the behavior, and the individual's perceived behavioral control over the behavior. College women (N = 169 young women in abusive relatinships) completed surveys at two time points, approximately 4 months apart, to assess initially for the presence of intimate partner violence (IPV) in a current relationship and investment model and theory of planned behavior variables; the purpose of the 4-month follow-up session was to determine if women had remained in or terminated their abusive relationship. Path analytic results demonstrated that both the theory of planned behavior and investment models were good fits to the data in prospectively predicting abused women's stay/leave decisions. However, the theory of planned behavior was a better fit to the data than the investment model. Implications for future research and intervention are discussed. © The Author(s) 2014.

  18. The psychological behaviorism theory of pain and the placebo: its principles and results of research application.

    Science.gov (United States)

    Staats, Peter S; Hekmat, Hamid; Staats, Arthur W

    2004-01-01

    The psychological behaviorism theory of pain unifies biological, behavioral, and cognitive-behavioral theories of pain and facilitates development of a common vocabulary for pain research across disciplines. Pain investigation proceeds in seven interacting realms: basic biology, conditioned learning, language cognition, personality differences, pain behavior, the social environment, and emotions. Because pain is an emotional response, examining the bidirectional impact of emotion is pivotal to understanding pain. Emotion influences each of the other areas of interest and causes the impact of each factor to amplify or diminish in an additive fashion. Research based on this theory of pain has revealed the ameliorating impact on pain of (1) improving mood by engaging in pleasant sexual fantasies, (2) reducing anxiety, and (3) reducing anger through various techniques. Application of the theory to therapy improved the results of treatment of osteoarthritic pain. The psychological behaviorism theory of the placebo considers the placebo a stimulus conditioned to elicit a positive emotional response. This response is most powerful if it is elicited by conditioned language. Research based on this theory of the placebo that pain is ameliorated by a placebo suggestion and augmented by a nocebo suggestion and that pain sensitivity and pain anxiety increase susceptibility to a placebo.

  19. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2018-04-01

    Full Text Available The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam. Keywords: Photon, Angular momentum, Laser optics, Particle physics

  20. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  1. The predictive capacity of the theory of reasoned action and the theory of planned behavior in exercise research: an integrated literature review.

    Science.gov (United States)

    Blue, C L

    1995-04-01

    Although the association between habitual exercise and health benefits has been well documented, physical activity levels in the United States are lower than is necessary to reach the nation's health potential. Beliefs that people hold can be a motivating factor in engaging in exercise. A critical review of the literature was conducted to assess the efficacy of using the Theory of Reasoned Action and the Theory of Planned Behavior with respect to exercise. Evidence for the predictive utility of the theories was found. The Theory of Planned Behavior is a more promising framework for the study of exercise because it includes beliefs about control of factors that would facilitate or inhibit carrying out exercise. Strategies for use of the theories in planning exercise programs are provided and suggestions for future research discussed.

  2. User-Generated Content and travel planning: An application of the Theory of Planned Behavior

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Machado Mendes Filho

    2012-12-01

    Full Text Available User-Generated Content (UGC such as online travel reviews written by travelers and posted to virtual communities are being used more frequently to communicate travel-related information. UGC is therefore helping travelers to make decisions about their travel. Utilizing the Theory of Planned Behavior (TPB, which is one of the most comprehensive models explaining behavioral intention, this study contributes to the further development of theories of online consumer behavior by determining which factors are most important in relation to the use of UGC in the travel industry. The TPB has three independent determinants of behavioral intention: attitude toward the behavior, subjective norm, and perceived behavior control. Therefore the aim of this paper is to examine the roles of attitude, subjective norm and perceived behavior control in respect of travelers’ intention to use UGC when making travel plans.

  3. Effect of resonant-to-bulk electron momentum transfer on the efficiency of electron-cyclotron current-drive

    International Nuclear Information System (INIS)

    Matsuda, Y.; Smith, G.R.; Cohen, R.H.

    1989-01-01

    Efficiency of current drive by electron cyclotron waves is investigated numerically by a bounce-averaged Fokker-Planck code to ellucidate the effects of momentum transfer from resonant to bulk-electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. (author)

  4. Symmetry and bifurcations of momentum mappings

    Energy Technology Data Exchange (ETDEWEB)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.

  5. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams.

    Science.gov (United States)

    Demore, Christine E M; Yang, Zhengyi; Volovick, Alexander; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2012-05-11

    We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam's topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result.

  6. Applying the model of Goal-Directed Behavior, including descriptive norms, to physical activity intentions: A contribution to improving the Theory of Planned Behavior

    Science.gov (United States)

    The theory of planned behavior (TPB) has received its fair share of criticism lately, including calls for it to retire. We contributed to improving the theory by testing extensions such as the model of goal-directed behavior (MGDB, which adds desire and anticipated positive and negative emotions) ap...

  7. Asthma management simulation for children: translating theory, methods, and strategies to effect behavior change.

    Science.gov (United States)

    Shegog, Ross; Bartholomew, L Kay; Gold, Robert S; Pierrel, Elaine; Parcel, Guy S; Sockrider, Marianna M; Czyzewski, Danita I; Fernandez, Maria E; Berlin, Nina J; Abramson, Stuart

    2006-01-01

    Translating behavioral theories, models, and strategies to guide the development and structure of computer-based health applications is well recognized, although a continued challenge for program developers. A stepped approach to translate behavioral theory in the design of simulations to teach chronic disease management to children is described. This includes the translation steps to: 1) define target behaviors and their determinants, 2) identify theoretical methods to optimize behavioral change, and 3) choose educational strategies to effectively apply these methods and combine these into a cohesive computer-based simulation for health education. Asthma is used to exemplify a chronic health management problem and a computer-based asthma management simulation (Watch, Discover, Think and Act) that has been evaluated and shown to effect asthma self-management in children is used to exemplify the application of theory to practice. Impact and outcome evaluation studies have indicated the effectiveness of these steps in providing increased rigor and accountability, suggesting their utility for educators and developers seeking to apply simulations to enhance self-management behaviors in patients.

  8. Conservation laws and stress-energy-momentum tensors for systems with background fields

    Energy Technology Data Exchange (ETDEWEB)

    Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de [Institute for Theoretical Physics, University of Cologne, 50923 Koeln (Germany); Tucker, Robin W., E-mail: r.tucker@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2012-10-15

    This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics in media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.

  9. Can Malin's gravitational-field equations be modified to obtain a viable theory of gravity to obtain a viable theory of gravity to obtain a viable theory of gravity

    International Nuclear Information System (INIS)

    Smalley, L.L.; Prestage, J.

    1976-01-01

    Malin's gravitational theory, which was recently shown by Lindblom and Nester to be incorrect, is modified by means of a recently proposed method for obtaining viable gravitational theories. The resulting self-consistent theory, which is in effect a Rastall-type modification of the Einstein theory, exhibits nonconservation of momentum, yet agrees with all experimental limits known to date within the PPN framework

  10. Matching the quasiparton distribution in a momentum subtraction scheme

    Science.gov (United States)

    Stewart, Iain W.; Zhao, Yong

    2018-03-01

    The quasiparton distribution is a spatial correlation of quarks or gluons along the z direction in a moving nucleon which enables direct lattice calculations of parton distribution functions. It can be defined with a nonperturbative renormalization in a regularization independent momentum subtraction scheme (RI/MOM), which can then be perturbatively related to the collinear parton distribution in the MS ¯ scheme. Here we carry out a direct matching from the RI/MOM scheme for the quasi-PDF to the MS ¯ PDF, determining the non-singlet quark matching coefficient at next-to-leading order in perturbation theory. We find that the RI/MOM matching coefficient is insensitive to the ultraviolet region of convolution integral, exhibits improved perturbative convergence when converting between the quasi-PDF and PDF, and is consistent with a quasi-PDF that vanishes in the unphysical region as the proton momentum Pz→∞ , unlike other schemes. This direct approach therefore has the potential to improve the accuracy for converting quasidistribution lattice calculations to collinear distributions.

  11. Theory of generation of angular momentum of phonons by heat current and its conversion to spins

    Science.gov (United States)

    Hamada, Masato; Murakami, Shuichi

    Spin-rotation coupling in crystals will enable us to convert between spin current and mechanical rotations, as has been studied in surface acoustic waves, in liquid metals, and in carbon nanotubes. In this presentation we focus on angular momentum of phonons. In nonmagnetic crystals without inversion symmetry, we theoretically demonstrate that phonon modes generally have angular momenta depending on their wave vectors. In equilibrium the sum of the angular momenta is zero. On the other hand, if a heat current flows in the crystal, nonequilibrium phonon distribution leads to nonzero total angular momentum of phonons. It can be observed as a rotation of crystal itself, and as a spin current induced by these phonons via the spin-rotation coupling.

  12. Prediction of attendance at fitness center: a comparison between the theory of planned behavior, the social cognitive theory, and the physical activity maintenance theory.

    Science.gov (United States)

    Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O; Mess, Filip; Reiner, Miriam; Renner, Britta

    2015-01-01

    In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed for 101 college students (53 female) aged between 19 and 32 years (M = 23.6; SD = 2.9) over 20 weeks using a magnetic card. In order to predict the pattern of participation TPB, SCT and PAMT were used. A latent class zero-inflated Poisson growth curve analysis identified two participation patterns: regular attenders and intermittent exercisers. SCT showed the highest predictive power followed by PAMT and TPB. Impeding aspects as life stress and barriers were the strongest predictors suggesting that overcoming barriers might be an important aspect for working out on a regular basis. Self-efficacy, perceived behavioral control, and social support could also significantly differentiate between the participation patterns.

  13. Momentum and angular momentum in the H-space of asymptotically flat, Einstein-Maxwell space-time

    International Nuclear Information System (INIS)

    Hallidy, W.; Ludvigsen, M.

    1979-01-01

    New definitions are proposed for the momentum and angular momentum of Einstein-Maxwell fields that overcome the deficiencies of earlier definitions of these terms and are appropriate to the new H-space formulations of space-time. Definitions are made in terms of the Winicour-Tamburino linkages applied to the good cuts of Cj + . The transformations between good cuts then correspond to the translations and Lorentz transformations at points in H-space. For the special case of Robinson-Trautman type II space-times, it is shown that the definitions of momentum and angular momentum yield previously published results. (author)

  14. Predicting Study Abroad Intentions Based on the Theory of Planned Behavior

    Science.gov (United States)

    Schnusenberg, Oliver; de Jong, Pieter; Goel, Lakshmi

    2012-01-01

    The emphasis on study abroad programs is growing in the academic context as U.S. based universities seek to incorporate a global perspective in education. Using a model that has underpinnings in the theory of planned behavior (TPB), we predict students' intention to participate in short-term study abroad program. We use TPB to identify behavioral,…

  15. The importance of theory in cognitive behavior therapy: a perspective of contextual behavioral science.

    Science.gov (United States)

    Herbert, James D; Gaudiano, Brandon A; Forman, Evan M

    2013-12-01

    For the past 30 years, generations of scholars of cognitive behavior therapy (CBT) have expressed concern that clinical practice has abandoned the close links with theory that characterized the earliest days of the field. There is also a widespread assumption that a greater working knowledge of theory will lead to better clinical outcomes, although there is currently very little hard evidence to support this claim. We suggest that the rise of so-called "third generation" models of CBT over the past decade, along with the dissemination of statistical innovations among psychotherapy researchers, have given new life to this old issue. We argue that theory likely does matter to clinical outcomes, and we outline the future research that would be needed to address this conjecture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  17. Teacher Attitudes and Behavior toward the Inclusion of Children with Social, Emotional and Behavioral Difficulties in Mainstream Schools: An Application of the Theory of Planned Behavior

    Science.gov (United States)

    MacFarlane, Kate; Woolfson, Lisa Marks

    2013-01-01

    The Theory of Planned Behavior (TPB) was used to examine relationships between teacher attitudes and behavior toward children with social, emotional and behavioral difficulties (SEBD). One hundred and eleven elementary school teachers completed questionnaires. Teacher perception of their school principals' expectations (subjective norm) predicted…

  18. Noncommutative field theory and violation of translation invariance

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Guisado, Luis

    2003-01-01

    Noncommutative field theories with commutator of the coordinates of the form [x μ , x ν ] = i Λ μν ω x ω with nilpotent structure constants are studied and shown that a free quantum field theory is not affected. Invariance under translations is broken and the conservation of energy-momentum is violated, obeying a new law which is expressed by a Poincare-invariant equation. The resulting new kinematics is studied and applied to simple examples and to astrophysical puzzles, such as the observed violation of the GZK cutoff. The λΦ 4 quantum field theory is also considered in this context. In particular, self interaction terms violate the usual conservation of energy-momentum and, hence, the radiative correction to the propagator is altered. The correction to first order in λ is calculated. The usual UV divergent terms are still present, but a new type of term also emerges, which is IR divergent, violates momentum conservation and implies a correction to the dispersion relation. (author)

  19. Theory of Mind and Empathy as predictors of antisocial behavior during adolescence

    Directory of Open Access Journals (Sweden)

    Olber Eduardo Arango Tobón

    2014-04-01

    Full Text Available It has been proposed that the characteristics of theory of mind and empathy are important predictors of behavioural disorders during childhood and adolescence. This study compared a group of teenagers with the characteristics of antisocial behavior disorder and a group of teenagers as controls in terms of their performance on tests assessing the theory of mind and empathy, with the further aim of establishing risk and protective factors predictive of the development of antisocial behavior during adolescence. There were significant statistical differences between the two groups on the theory of mind and empathy tests. The dimension of empathy known as as perspective taking as well as the adolescent’s skills in understanding mental and emotional states were established as protective factors according to the Reading the Mind in the Eyes Test.

  20. Universal formula for the energy–momentum tensor via a flow equation in the Gross–Neveu model

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi

    2015-01-01

    For the fermion field in the two-dimensional Gross–Neveu model, we introduce a flow equation that allows a simple 1/N expansion. By employing the 1/N expansion, we examine the validity of a universal formula for the energy–momentum tensor which is based on the small flow-time expansion. We confirm that the formula reproduces a correct normalization and the conservation law of the energy–momentum tensor by computing the translation Ward–Takahashi relation in the leading non-trivial order in the 1/N expansion. Also, we confirm that the expectation value at finite temperature correctly reproduces thermodynamic quantities. These observations support the validity of a similar construction of the energy–momentum tensor via the gradient/Wilson flow in lattice gauge theory

  1. Momentum Confinement at Low Torque

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; deGrassie, J.S.; Budny, R.; Groebner, R.J.; Heidbrink, W.W.; Kinsey, J.E.; Kramer, G.J.; Makowski, M.A.; Mikkelsen, D.; Nazikian, R.; Petty, C.C.; Politzer, P.A.; Scott, S.D.; Van Zeeland, M.A.; Zarnstorff, M.C.

    2007-01-01

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized β N , by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q min show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  2. [Relational frame theory - a theoretical framework for contextual behavioral science].

    Science.gov (United States)

    Kensche, M; Schweiger, U

    2015-05-01

    Therapists have to deal with verbal systems and often work with verbal exchange. Therefore, a psychological theory is required, which teaches the therapist how to accomplish this task. The BRT is a theory of human language and cognition that explains how people use their verbal behavior as stimuli in their interrelations and how they act and react, based on the resulting relationships. This behavior is learned very early in the course of language acquisition and functions as a generalized operant. A prerequisite for this is the ability of people to undergo mental simulation. This enables them to construct diverse relational frameworks between individual stimuli. Without relational frameworks, people cannot function. The ability to establish a relational framework is a prerequisite for the formation of rule-governed behavior. Rule-governed behavior economizes complex decision processes, creates interpersonal security and enables dealing with events before they take place. On the other hand, the same properties that enable people to solve problems effectively can also contribute to rigid adherence to rules and experience avoidance. Relational frameworks, once established, outweigh other sources of behavioral regulation. Thus, it can become the basis of psychopathology. Poor contextual control makes it difficult for people to devote flexible, focused and voluntary attention to the present and align their actions with the immediate present. Contextual psychotherapy methods that are based on the BRT start precisely at this point: Targeted establishment of new contingencies in the therapeutic interaction through systematic strengthening of metacognitive mode and through the establishment of new rules that make possible a change in the rule-governed behavior enable undermining of dysfunctional rule-governed behavior and build up desirable behavior. This allows any therapeutic process to be more effective - regardless of the patient's expressed symptoms. © Georg Thieme

  3. [Relational Frame Theory--A Theoretical Framework for Contextual Behavioral Science].

    Science.gov (United States)

    Kensche, M; Schweiger, U

    2015-07-01

    Therapists have to deal with verbal systems and often work with verbal exchange. Therefore, a psychological theory is required, which teaches the therapist how to accomplish this task. The BRT is a theory of human language and cognition that explains how people use their verbal behavior as stimuli in their interrelations and how they act and react, based on the resulting relationships. This behavior is learned very early in the course of language acquisition and functions as a generalized operant. A prerequisite for this is the ability of people to undergo mental simulation. This enables them to construct diverse relational frameworks between individual stimuli. Without relational frameworks, people cannot function. The ability to establish a relational framework is a prerequisite for the formation of rule-governed behavior. Rule-governed behavior economizes complex decision processes, creates interpersonal security and enables dealing with events before they take place. On the other hand, the same properties that enable people to solve problems effectively can also contribute to rigid adherence to rules and experience avoidance. Relational frameworks, once established, outweigh other sources of behavioral regulation. Thus, it can become the basis of psychopathology. Poor contextual control makes it difficult for people to devote flexible, focused and voluntary attention to the present and align their actions with the immediate present. Contextual psychotherapy methods that are based on the BRT start precisely at this point: Targeted establishment of new contingencies in the therapeutic interaction through systematic strengthening of metacognitive mode and through the establishment of new rules that make possible a change in the rule-governed behavior enable undermining of dysfunctional rule-governed behavior and build up desirable behavior. This allows any therapeutic process to be more effective--regardless of the patient's expressed symptoms. © Georg Thieme

  4. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  5. Exact renormalization group for gauge theories

    International Nuclear Information System (INIS)

    Balaban, T.; Imbrie, J.; Jaffe, A.

    1984-01-01

    Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study

  6. Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows

    Science.gov (United States)

    Mach, Patryk; Piróg, Michał; Font, José A.

    2018-05-01

    We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.

  7. Investigation of the coupling of the momentum distribution of a BEC with its collective of modes

    Science.gov (United States)

    Henn, Emanuel; Tavares, Pedro; Fritsch, Amilson; Vivanco, Franklin; Telles, Gustavo; Bagnato, Vanderlei

    In our group we have a strong research line on quantum turbulence and the general investigation of Bose-Einstein condensates (BEC) subjected to oscillatory excitations. Inside this research line we investigate first the behavior of the normal modes of the BEC under this excitation and observe a non-linear behavior in the amplitude of the quadrupolar mode. Also, inside this same procedure of investigation we study the momentum distribution of a BEC to understand if it is possible to extract Kolmogorov like excitation spectra which would point to a turbulent state of matter. The condensate is perturbed, and we let it evolve in-trap after which we perform standard time-of- flight absorption imaging. The momentum distribution is extracted and analyzed as a function of the in-trap free evolution time for a 2D projected cloud. We show that the momentum distribution has its features varying periodically with the same frequency as the quadrupolar mode displayed by the atomic gas hinting at a strong coupling of both. The main consequence of that one cannot be assertive about the quantitative features of the extract spectrum of momentum and we can only rely on its qualitative features. Financial Support: FAPESP, CNPq.

  8. Reward and Cognition: Integrating Reinforcement Sensitivity Theory and Social Cognitive Theory to Predict Drinking Behavior.

    Science.gov (United States)

    Hasking, Penelope; Boyes, Mark; Mullan, Barbara

    2015-01-01

    Both Reinforcement Sensitivity Theory and Social Cognitive Theory have been applied to understanding drinking behavior. We propose that theoretical relationships between these models support an integrated approach to understanding alcohol use and misuse. We aimed to test an integrated model in which the relationships between reward sensitivity and drinking behavior (alcohol consumption, alcohol-related problems, and symptoms of dependence) were mediated by alcohol expectancies and drinking refusal self-efficacy. Online questionnaires assessing the constructs of interest were completed by 443 Australian adults (M age = 26.40, sd = 1.83) in 2013 and 2014. Path analysis revealed both direct and indirect effects and implicated two pathways to drinking behavior with differential outcomes. Drinking refusal self-efficacy both in social situations and for emotional relief was related to alcohol consumption. Sensitivity to reward was associated with alcohol-related problems, but operated through expectations of increased confidence and personal belief in the ability to limit drinking in social situations. Conversely, sensitivity to punishment operated through negative expectancies and drinking refusal self-efficacy for emotional relief to predict symptoms of dependence. Two pathways relating reward sensitivity, alcohol expectancies, and drinking refusal self-efficacy may underlie social and dependent drinking, which has implications for development of intervention to limit harmful drinking.

  9. A Theory of Planned Behavior Research Model for Predicting the Sleep Intentions and Behaviors of Undergraduate College Students

    Science.gov (United States)

    Knowlden, Adam P.; Sharma, Manoj; Bernard, Amy L.

    2012-01-01

    The purpose of this study was to operationalize the constructs of the Theory of Planned Behavior (TPB) to predict the sleep intentions and behaviors of undergraduate college students attending a Midwestern University. Data collection spanned three phases. The first phase included a semi-structured qualitative interview (n = 11), readability by…

  10. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Richard A. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Janiszewski, Stefan [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Kaminski, Matthias [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-11-28

    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z=1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  11. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Science.gov (United States)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  12. Momentum scale in the HARP TPC

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M

    2007-01-01

    Recently a claim was made that the reconstruction of the large angle tracks in the HARP TPC was affected by a momentum bias as large as 15% at 500 MeV/c transverse momentum. In the following we recall the main issues with the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. Proton-proton elastic scattering data off the hydrogen target are used to alibrate the momentum of charged particles with a precision evaluated to be 3.5%. A full description of the time development of the dynamic distortions in the TPC during physics spills is now available together with a correction algorithm. This allows a new cross-check using an enlarged data set made by comparing positive and negative pion elasticscattering data collected with negative polarity of the solenoid magnet. These data confirm the absence of a bias in the sagitta measurement. The dE/dx versus momentum curves are revisited, and shown to provide a confirmation that the HARP momentum calibration is correc...

  13. Symmetry behavior of the effective gauge theory

    International Nuclear Information System (INIS)

    Midorikawa, S.

    1981-01-01

    The restoration of spontaneously broken CP invariance is investigated by using the effective QED lagrangian obtained from the standard SU(2) x U(1) gauge theory with two Higgs doublets. It is shown that the large electromagnetic field may restore CP invariance by changing the relative phase angle of Higgs vacuum expectation values even before one of the vacuum expectation values of the two Higgs doublets disappears. Further large magnetic field may lead to the fine structure constant with discontinuous behavior. (orig.)

  14. ICNTS. Benchmarking of momentum correction techniques

    International Nuclear Information System (INIS)

    Beidler, Craig D.; Isaev, Maxim Yu.; Kasilov, Sergei V.

    2008-01-01

    In the traditional neoclassical ordering, mono-energetic transport coefficients are evaluated using the simplified Lorentz form of the pitch-angle collision operator which violates momentum conservation. In this paper, the parallel momentum balance with radial parallel momentum transport and viscosity terms is analysed, in particular with respect to the radial electric field. Next, the impact of momentum conservation in the stellarator lmfp-regime is estimated for the radial transport and the parallel electric conductivity. Finally, momentum correction techniques are described based on mono-energetic transport coefficients calculated e.g. by the DKES code, and preliminary results for the parallel electric conductivity and the bootstrap current are presented. (author)

  15. Effect of resonant-to-bulk electron momentum transfer on the efficiency of electron-cyclotron current drive

    International Nuclear Information System (INIS)

    Matsuda, Y.; Smith, G.R.; Cohen, R.H.

    1988-01-01

    Efficiency of current drive by electron-cyclotron waves is investigated numerically by a bounce-average Fokker-Planck code to elucidate the effects of momentum transfer from resonant to bulk electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. 4 refs., 4 figs

  16. Increasing organizational energy conservation behaviors: Comparing the theory of planned behavior and reasons theory for identifying specific motivational factors to target for change

    Science.gov (United States)

    Finlinson, Scott Michael

    Social scientists frequently assess factors thought to underlie behavior for the purpose of designing behavioral change interventions. Researchers commonly identify these factors by examining relationships between specific variables and the focal behaviors being investigated. Variables with the strongest relationships to the focal behavior are then assumed to be the most influential determinants of that behavior, and therefore often become the targets for change in a behavioral change intervention. In the current proposal, multiple methods are used to compare the effectiveness of two theoretical frameworks for identifying influential motivational factors. Assessing the relative influence of all factors and sets of factors for driving behavior should clarify which framework and methodology is the most promising for identifying effective change targets. Results indicated each methodology adequately predicted the three focal behaviors examined. However, the reasons theory approach was superior for predicting factor influence ratings compared to the TpB approach. While common method variance contamination had minimal impact on the results or conclusions derived from the present study's findings, there were substantial differences in conclusions depending on the questionnaire design used to collect the data. Examples of applied uses of the present study are discussed.

  17. Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II. The Deconfined phase

    CERN Document Server

    Caselle, Michele; Feo, Alessandra; Gliozzi, Ferdinando; Gursoy, Umut; Panero, Marco; Schafer, Andreas

    2012-01-01

    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the en...

  18. Can a stationary Bianchi black brane have momentum along the direction with no translational symmetry?

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-01-01

    Bianchi black branes (black brane solutions with homogeneous but anisotropic horizons classified by the Bianchi type) provide a simple holographic setting with lattice structures taken into account. In the case of holographic superconductor, we have a persistent current with lattices. Accordingly, we expect that in the dual gravity side, a black brane should carry some momentum along a direction of lattice structure, where translational invariance is broken. Motivated by this expectation, we consider whether — and if possible, in what circumstances — a Bianchi black brane can have momentum along a direction of no-translational invariance. First, we show that this cannot be the case for a certain class of stationary Bianchi black brane solutions in the Einstein-Maxwell-dilation theory. Then we also show that this can be the case for some Bianchi VII_0 black branes by numerically constructing such a solution in the Einstein-Maxwell theory with an additional vector field having a source term. The horizon of this solution admits a translational invariance on the horizon and conveys momentum (and is “rotating” when compactified). However this translational invariance is broken just outside the horizon. This indicates the existence of a black brane solution which is regular but non-analytic at the horizon, thereby evading the black hole rigidity theorem.

  19. THE MOMENTUM EFFECT EXEMPLIFIES THE INFLUENCE OF INVESTORS’ IRRATIONAL BEHAVIOUR ON CHANGING PRICES OF SHARES AND STOCKS: AN ANALYSIS OF THE MOMENTUM EFFECT ON THE WARSAW STOCK EXCHANGE

    Directory of Open Access Journals (Sweden)

    Paweł Merło

    2015-08-01

    Full Text Available An efficient market should not show any anomalies. When new information reaches a market which is efficient, it should automatically translate into prices of assets, which ought to eliminate the possibility of gaining an advantage over other investors, thus preventing excess profits. However, studies on capital markets indicate that in reality it is possible to earn unusually high profits by taking advantage of certain anomalies which occur on a given market. Among such anomalies there is the momentum effect. This study performed on the Stock Exchange in Warsaw has shown that the momentum effect occurred throughout the entire analyzed time period. Positive returns demonstrated for investment strategies based on the momentum effect were unexplainable by the classical theory of finances. A correlation was found between the economic situation on the stock exchange and portfolio return rates, but it was too weak to attribute the effect to a single decisive factor. In addition, the returns from investments based on the momentum effect were statistically higher in January than in the other months, which was caused by the January effect, stimulating the occurrence of statistically higher returns at the beginning of a year rather than later on during the analyzed period of time. Research in this field carried out in other countries justifies the claim that there are many irrational factors which together create the momentum effect on the stock exchange. Thus, it is possible to conclude that irrational decisions may have strong impact on the pricing of stocks on the capital market. The momentum effect persisted throughout the entire analyzed period, although its power changed cyclically, which coincides with results of research carried out in other countries. The fact that the momentum effect did not disappear may suggest that the factors involved in its creation are an indispensable part of the market, and this seems to undermine the commonly accepted

  20. The azimuthal component of Poynting's vector and the angular momentum of light

    Science.gov (United States)

    Cameron, Robert P.; Speirits, Fiona C.; Gilson, Claire R.; Allen, L.; Barnett, Stephen M.

    2015-12-01

    The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms.