WorldWideScience

Sample records for behavioral inhibition cu

  1. Adsorption and inhibition of CuO nanoparticles on Arabidopsis thaliana root

    Science.gov (United States)

    Xu, Lina

    2018-02-01

    CuO NPs, the size ranging from 20 to 80 nm were used to detect the adsorption and inhibition on the Arabidopsis thaliana roots. In this study, CuO NPs were adsorbed and agglomerated on the surface of root top after exposed for 7 days. With the increasing of CuO NPs concentrations, CuO NPs also adsorbed on the meristernatic zone. The growth of Arabidopsis thaliana lateral roots were also inhibited by CuO NPs exposure. The Inhibition were concentration dependent. The number of root top were 246, 188 and 123 per Arabidopsis thaliana, respectively. The number of root tops after CuO NPs exposure were significantly decreased compared with control groups. This results suggested the phytotoxicity of CuO NPs on Arabidopsis thaliana roots.

  2. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    International Nuclear Information System (INIS)

    Yang, Ming; Ko, Yong-Ho; Bang, Junghwan; Kim, Taek-Soo; Lee, Chang-Woo; Li, Mingyu

    2017-01-01

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  3. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Ko, Yong-Ho [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Bang, Junghwan [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Kim, Taek-Soo [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Chang-Woo, E-mail: cwlee@kitech.re.kr [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Li, Mingyu, E-mail: myli@hit.edu.cn [Shenzhen Key Laboratory of Advanced Materials, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China)

    2017-02-15

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  4. Inhibiting properties of benzimidazole films for Cu(II)/Cu(I) reduction in chloride media studied by RDE and EQCN techniques

    Energy Technology Data Exchange (ETDEWEB)

    Scendo, M. [Institute of Chemistry, Saint Cross Academy, ul. Checinska 5, 25020 Kielce (Poland)]. E-mail: scendo@pu.kielce.pl; Hepel, M. [Department of Chemistry, State University of New York, Potsdam, NY 13676, USA (United States)

    2007-08-15

    The effects of benzimidazole (BIM) and 2-methylbenzimidazole (MBIM) on the electroreduction of Cu(II) on a rotating Pt disk electrode in chloride media were investigated. These studies were undertaken in conjunction with earlier observation that these imidazole derivatives act as inhibitors of copper corrosion processes and are non-toxic. We have found that BIM and MBIM also form adsorption films on Pt, which are able to inhibit one-electron reduction of Cu(II) to Cu(I) and prevent the development of convective diffusion limiting current wave. The inhibition was found to be controlled by field-assisted mass transfer in the film. The ingress of Cu(II) species into the film was detected using the EQCN technique. The EQCN measurements indicate that small fraction of Cu(I) formed in the film by reduction of Cu(II) is retained in the film, most likely in the form of CuCl. The uptake of CuCl by inhibitor films diminishes in strongly inhibiting films (e.g., in acidic medium). The inhibition effectiveness of Cu(II) reduction process by Pt vertical bar BIM and Pt vertical bar MBIM films increases strongly with increasing acidity of the medium in the pH range from 3.0 to 1.0. The mechanism of this remarkable pH effect has been proposed. It is based on charge and pH-induced film restructuring, including changes in orientation and protonation of BIM molecules in the film.

  5. Dietary uptake of Cu sorbed to hydrous iron oxide is linked to cellular toxicity and feeding inhibition in a benthic grazer

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noele; Fuller, Christopher C.; Ringwood, Amy H.

    2016-01-01

    Whereas feeding inhibition caused by exposure to contaminants has been extensively documented, the underlying mechanism(s) are less well understood. For this study, the behavior of several key feeding processes, including ingestion rate and assimilation efficiency, that affect the dietary uptake of Cu were evaluated in the benthic grazer Lymnaea stagnalis following 4–5 h exposures to Cu adsorbed to synthetic hydrous ferric oxide (Cu–HFO). The particles were mixed with a cultured alga to create algal mats with Cu exposures spanning nearly 3 orders of magnitude at variable or constant Fe concentrations, thereby allowing first order and interactive effects of Cu and Fe to be evaluated. Results showed that Cu influx rates and ingestion rates decreased as Cu exposures of the algal mat mixture exceeded 104 nmol/g. Ingestion rate appeared to exert primary control on the Cu influx rate. Lysosomal destabilization rates increased directly with Cu influx rates. At the highest Cu exposure where the incidence of lysosomal membrane damage was greatest (51%), the ingestion rate was suppressed 80%. The findings suggested that feeding inhibition was a stress response emanating from excessive uptake of dietary Cu and cellular toxicity.

  6. Response inhibition moderates the association between drug use and risky sexual behavior.

    Science.gov (United States)

    Nydegger, Liesl A; Ames, Susan L; Stacy, Alan W; Grenard, Jerry L

    2014-09-01

    HIV infection is problematic among all drug users, not only injection drug users. Drug users are at risk for contracting HIV by engaging in risky sexual behaviors. The present study sought to determine whether inhibitory processes moderate the relationship between problematic drug use and HIV-risk behaviors (unprotected sex and multiple sex partners). One hundred ninety-six drug offenders enrolled in drug education programs were administered a battery of computer-based assessments. Measures included a cued go/no-go assessment of inhibitory processes, the Drug Abuse Screening Test (DAST) assessment of problematic drug use, and self-report assessment of condom use and multiple sex partners. Findings revealed that response inhibition assessed by the proportion of false alarms on the cued go/no-go moderated the relationship between problematic drug use and an important measure of HIV risk (condom nonuse) among drug offenders. However, response inhibition did not moderate the relationship between problematic drug use and another measure of HIV risk: multiple sex partners. Among this sample of drug offenders, we have found a relationship between problematic drug use and condom nonuse, which is exacerbated by poor control of inhibition. These findings have implications for the development of HIV intervention components among high-risk populations.

  7. Precipitation and Evolution Behavior of Second Phase Particles in Grain-oriented Silicon Steel with Cu

    Directory of Open Access Journals (Sweden)

    LI Zhi-chao

    2017-12-01

    Full Text Available The precipitation behavior and distribution of second phase particles in conventional grain-oriented silicon steel during manufacturing process were observed by field emission scanning electron microscopy, and the average particle size, the areal particle density, and the Zener factor were statistically analyzed. The results show that the samples mainly contain two kinds of precipitates:A class is the (Cu,MnS composite precipitates with the average size of 1μm; B class is the Cu2S precipitates with the size of 10-30nm, the key inhibition effect is produced by Cu2S. Hot rolling leads to a large amount of fine second phase particles precipitation, which has the minimum average particle size and the highest areal density; in the manufacturing process before high temperature annealing, the average particle size is increasing and the areal density is decreasing; in the process of high temperature annealing, with the decrease of volume fraction of precipitates, the inhibition ability exhibits reducing trend,obvious aggregation occurs at 960℃,secondary recrystallization will happen when Zener factor A decreases below the critical value of 0.19nm-1, and the residual particles will not produce valid inhibition effect.

  8. Behavioral inhibition and obsessive-compulsive disorder.

    Science.gov (United States)

    Coles, Meredith E; Schofield, Casey A; Pietrefesa, Ashley S

    2006-01-01

    Behavioral inhibition is frequently cited as a vulnerability factor for development of anxiety. However, few studies have examined the unique relationship between behavioral inhibition and obsessive-compulsive disorder (OCD). Therefore, the current study addressed the relationship between behavioral inhibition and OCD in a number of ways. In a large unselected student sample, frequency of current OC symptoms was significantly correlated with retrospective self-reports of total levels of childhood behavioral inhibition. In addition, frequency of current OC symptoms was also significantly correlated with both social and nonsocial components of behavioral inhibition. Further, there was evidence for a unique relationship between behavioral inhibition and OC symptoms beyond the relationship of behavioral inhibition and social anxiety. In addition, results showed that reports of childhood levels of behavioral inhibition significantly predicted levels of OCD symptoms in adulthood. Finally, preliminary evidence suggested that behavioral inhibition may be more strongly associated with some types of OC symptoms than others, and that overprotective parenting may moderate the impact of behavioral inhibition on OC symptoms. The current findings suggest the utility of additional research examining the role of behavioral inhibition in the etiology of OCD.

  9. Mechanism insight of pollutant degradation and bromate inhibition by Fe-Cu-MCM-41 catalyzed ozonation.

    Science.gov (United States)

    Chen, Weirui; Li, Xukai; Tang, Yiming; Zhou, Jialu; Wu, Dan; Wu, Yin; Li, Laisheng

    2018-03-15

    A flexible catalyst, Fe-Cu-MCM-41, was employed to enhance diclofenac (DCF) mineralization and inhibit bromate formation in catalytic ozonation process. Greater TOC removal was achieved in Fe-Cu-MCM-41/O 3 process (78%) than those in Fe-MCM-41/O 3 (65%), Cu-MCM-41/O 3 (73%) and sole ozonation (42%). But it was interesting that both Cu-MCM-41/O 3 and Fe-MCM-41/O 3 achieved 93% bromate inhibition efficiency, only 71% inhibition efficiency was observed in Fe-Cu-MCM-41/O 3 . Influence of pH, TBA/NaHSO 3 and detection of by-products were conducted to explore the mechanism. By Pyridine adsorption-IR and XPS, a relationship was found among activity of catalysts, Lewis acid sites and electron transfer effect between Fe (II/III) and Cu (I/II). Fe-Cu-MCM-41 promoted ozone decomposition to generate OH, which accounted for enhanced DCF mineralization. The consumption of aqueous O 3 also suppressed the oxidative of Br - and HBrO/Br - . More HBrO/BrO - accumulated in catalytic ozonation process and less bromate generated. Bromate formation in Fe-Cu-MCM-41/O 3 process was sensitive with pH value, the acidic condition was not favor for bromate formation. Both DCF mineralization and bromate inhibition were influenced by surface reaction. Moreover, Fe-Cu-MCM-41 showed excellent catalytic performance in suppressing the accumulation of carboxylic acid, especially for oxalic acid. Nearly no oxalic acid was detected during Fe-Cu-MCM-41/O 3 process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The inhibition effect and mechanism of L-cysteine on the corrosion of bronze covered with a CuCl patina

    International Nuclear Information System (INIS)

    Wang, Tianran; Wang, Julin; Wu, Yuqing

    2015-01-01

    Highlights: • CuCl patina was synthesized on bronze electrodes with electrochemical method. • L-cysteine was used as a green inhibitor for bronze covered with CuCl patina. • The inhibition efficiency reached above 90%. • The inhibition mechanism of L-cysteine on CuCl patina was investigated. - Abstract: CuCl patina was synthesized on bronze electrodes with electrochemical method. The inhibition effect and mechanism of L-cysteine (Cys) on bronze covered with CuCl patina have been studied with electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) techniques. The EIS results show that Cys stabilized the CuCl patina to a great extent. The hydrolysis reaction of CuCl was inhibited effectively and an inhibition efficiency of over 90% was achieved. The XPS analyses indicate that the chemisorption of Cys molecules on CuCl surface occurred through sulfur atom in thiol and nitrogen atom in amino group

  11. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    Science.gov (United States)

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model.

  12. Effect of Thermal Mechanical Behaviors of Cu on Stress Distribution in Cu-Filled Through-Silicon Vias Under Heat Treatment

    Science.gov (United States)

    Zhao, Xuewei; Ma, Limin; Wang, Yishu; Guo, Fu

    2018-01-01

    Through-silicon vias (TSV) are facing unexpected thermo-mechanical reliability problems due to the coefficient of thermal expansion (CTE) mismatch between various materials in TSVs. During applications, thermal stresses induced by CTE mismatch will have a negative impact on other devices connecting with TSVs, even leading to failure. Therefore, it is essential to investigate the stress distribution evolution in the TSV structure under thermal loads. In this report, TSVs were heated to 450°C at different heating rates, then cooled down to room temperature after a 30-min dwelling. After heating treatment, TSV samples exhibited different Cu deformation behaviors, including Cu intrusion and protrusion. Based on the different Cu deformation behaviors, stress in Si around Cu vias of these samples was measured and analyzed. Results analyzed by Raman spectrums showed that the stress distribution changes were associated with Cu deformation behaviors. In the area near the Cu via, Cu protrusion behavior might aggravate the stress in Si obtained from the Raman measurement, while Cu intrusion might alleviate the stress. The possible reason was that in this area, the compressive stress σ_{θ } induced by thermal loads might be the dominant stress. In the area far from the Cu via, thermal loads tended to result in a tensile stress state in Si.

  13. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    International Nuclear Information System (INIS)

    Devulder, Wouter; De Schutter, Bob; Detavernier, Christophe; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Muller, Robert; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Belmonte, Attilio

    2014-01-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu 0.6 Te 0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu 0.6 Te 0.4 -C/Al 2 O 3 /Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al 2 O 3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al 2 O 3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents

  14. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    Science.gov (United States)

    Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe

    2014-02-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  15. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    A study on the inhibition of Al-Cu-Ni alloy in simulated sea-water environment was investigated using Sodium Chromate as inhibitor. The inhibitor concentration was varied as control, 0.25, 0.5, 1.0, 1.5 and 2.0 Molar. Al-Cu-Ni alloy was sand cast into cylindrical bars of 20 mm x 300 mm dimension. The corrosion of the ...

  16. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  17. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  18. Abnormal magnetization behaviors in Sm–Ni–Fe–Cu alloys

    International Nuclear Information System (INIS)

    Yang, W.Y.; Zhang, Y.F.; Zhao, H.; Chen, G.F.; Zhang, Y.; Du, H.L.; Liu, S.Q.; Wang, C.S.; Han, J.Z.; Yang, Y.C.; Yang, J.B.

    2016-01-01

    The magnetization behaviors in Sm–Ni–Fe–Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu 5 -type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu 5 -type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (H cm ) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10 −15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion. - Highlights: • Two different magnetization mechanisms, controlled by temperature, have been found in the Sm–Ni–Fe–Cu alloys. The smooth-jump behavior of the magnetization is observed at T>5 K and the step-like magnetization process appears at T<5 K. • The magnetic moment reversal model with thermal activation has been successfully used to explain the relation of the critical magnetic field (H cm ) to the temperature (T>5 K). The energy barrier for the reversal of the moment direction has been found to be about 6.6×10 −15 erg. • The transition field for the step-like jumps is very strict, independent from the magnetic sweep rate. This is remarkably different from the similar step-like jump behavior in reference [20]. • According to the SEM images and EDX analysis, two kinds of regions are found in the alloys. The Fe–Ni–Cu regions are surrounded by the 1:5 Sm–Ni–Fe–Cu regions and shows fish-bone like structure. An interesting thing is that the Fe–Ni–Cu regions are

  19. Corrosion behavior of Cu during graphene growth by CVD

    International Nuclear Information System (INIS)

    Dong, Yuhua; Liu, Qingqing; Zhou, Qiong

    2014-01-01

    Highlights: • Graphene films were deposited on the Cu by chemical vapor deposition method. • Annealing affects the corrosion property of Cu. • Graphene films improve corrosion performance of Cu for a short period of time. - Abstract: The corrosion performance of Cu samples may be affected by annealing at high temperatures during graphene growth via the chemical vapor deposition method. In this study, multiple graphene films were deposited on Cu and characterized by Raman spectroscopy and transmission electron microscopy. The corrosion behavior of Cu immersed in 3.5 wt.% NaCl solution was investigated using electrochemical impedance spectroscopy. The Cu morphology was observed by optical microscopy and scanning electron microscopy. Results indicated that annealing affects the corrosion process of Cu. The presence of graphene films on the Cu substrate improved the corrosion performance of the material for a short period of time

  20. On the mechanical behavior of a cryomilled Al-Ti-Cu alloy

    International Nuclear Information System (INIS)

    Han, Bing Q.; Lavernia, Enrique J.; Mohamed, Farghalli A.

    2003-01-01

    The mechanical behavior of a cryomilled Al10Ti2Cu that was later extruded was investigated in compression. The data obtained show that the strength of the extruded alloy parallel to the extrusion axis is higher than that normal to the axis. Also, a comparison between the compression behavior of the alloy and its tensile behavior reveals that there is a small asymmetry of yield strength with respect to deformation mode. Examination of the microstructure of the cryomilled alloy by means of transmission electron microscopy (TEM) indicates the presence of two phases: approximately 90% nanostructured Al(Cu) phase containing a dispersion of Al 3 Ti and 10% coarse-grained Al(Cu) phase. TEM observations indicate that as a result of the extrusion process, the larger (softer) grains of the Al(Cu) phase experience severe deformation, resulting in the development of mechanical fibering. It is suggested that the presence of coarse-grained Al(Cu) 'islands' in the matrix of the nanostructured phase and their change during extrusion into elongated bands may be responsible for the anisotropy of the mechanical properties of the extruded cryomilled Al10Ti2Cu

  1. New alternative methods of analyzing human behavior in cued target acquisition.

    Science.gov (United States)

    Maltz, Masha; Shinar, David

    2003-01-01

    Target acquisition tasks in natural environments are often augmented by cuing systems that advise human observers during the decision process. With present technological limitations, cuing systems are imperfect, so the question arises whether cuing aids should be implemented under all conditions. We examined target acquisition performance under different levels of task complexity and cuing system reliability. We introduce here two new methods to help define observer behavior trends in cued target acquisition: a quantitative measure of observer search behavior in a temporal sense and a measure of the extent of observer reliance on the cue. We found that observer reliance on the cue correlated with task difficulty and the perceived reliability of the cue. Cuing was generally helpful in complex tasks, whereas cuing reduced performance in easy tasks. Consequently, cuing systems should be implemented only when the task is difficult enough to warrant the intrusion of a cue into the task. Actual or potential applications of this research include the design and implementation of imperfect automated aids dealing with augmented reality.

  2. Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys

    Science.gov (United States)

    Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng

    2017-04-01

    Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

  3. Adsorption Behavior of TBPS in the Process of Cu Electrodeposition on an Au Film.

    Science.gov (United States)

    Chen, Liang-Huei; Liu, Yung-Fang; Krug, Klaus; Lee, Yuh-Lang

    2018-05-15

    The adsorption behavior of an Cu electroplating additive, 3,3 thiobis-(1-propanesulfonic acid sodium salt) (TBPS) in a process of Cu deposition onto a single crystalline Au(111) surface is studied by an in-situ Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS). The SEIRAS spectra of the TBPS adlayer on a Cu film is investigated first and compared to that on an Au film. These results are utilized to evaluate the characteristics of TBPS adlayer on the electrode surface during the Cu deposition and stripping processes. The results show that the SEIRAS spectra of TBPS adsorbed on the Cu film resembles closely to that on the Au film, and the most pronounced peaks are symmetric S-O (ss-SO) and asymmetric S-O (as-SO) stretching modes. However, the as-SO band is sharper with a higher intensity on the Cu film. Since the ss-SO and as-SO peaks correspond to the molecular with upright and lie-down orientations, respectively, it implies that the TBPS molecules have higher ratio of lie-down orientation on the Cu film. In the Cu electrodeposition process, the cyclic voltammetry (CV) result shows that the presence of the TBPS in the HClO 4 solution can decrease the inhibition effect of HClO 4 to the Cu deposition. For the spectra measured at various potential during cathodic and anodic sweeping, an obvious change of the spectra occurs at ca. 0.6 V, the initiation of Cu underpotential deposition (Cu-UPD). For potentials higher and lower than 0.6 V, the spectra are similar, respectively, to those measured for the Au and Cu films. This result indicates that the TBPS molecules originally adsorbing on the Au film transfer to the surface of deposited Cu layer. This inference is also confirmed by the variation in wavenumber and peak intensity of ss-SO and as-SO peaks during the potential sweeping.

  4. Corrosion behavior of Zr-x(Nb, Sn and Cu) binary alloys

    International Nuclear Information System (INIS)

    Kim, M. H.; Lee, M. H.; Park, S. Y.; Jung, Y. H.; We, M. Y.

    1999-01-01

    For the development of advanced zirconium alloys for nuclear fuel cladding, the corrosion behaviors of zirconium binary alloys were studied on the Zr-xNb, Zr-xSn, and Zr-xCu alloys. The corrosion test were performed in water at 360 deg C, steam at 400 deg C and LiOH at 360 deg C for 45 days. The corrosion behaviors of Zr-xNb was similar to that of Zr-xCu alloys. However, the corrosion behavior of Zr-xSn was different from Zr-xNb and Zr-xCu. The weight gain of Zr-xNb and Zr-xCu was increased with addition of alloying elements. When Sn is added to Zr matrix in range below the solubility limit, the corrosion resistance decrease with increasing Sn-content, while in the range over solubility limit, Sn has an adverse effect on the corrosion resistance. Especially, Zr-xSn alloys showed higher corrosion resistance than Zr-xNb and Zr-xCu alloys in LiOH solution

  5. Exposure to waterborne Cu inhibits cutaneous Na⁺ uptake in post-hatch larval rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Zimmer, Alex M; Brauner, Colin J; Wood, Chris M

    2014-05-01

    In freshwater rainbow trout (Oncorhynchus mykiss), two common responses to acute waterborne copper (Cu) exposure are reductions in ammonia excretion and Na(+) uptake at the gills, with the latter representing the likely lethal mechanism of action for Cu in adult fish. Larval fish, however, lack a functional gill following hatch and rely predominantly on cutaneous exchange, yet represent the most Cu-sensitive life stage. It is not known if Cu toxicity in larval fish occurs via the skin or gills. The present study utilized divided chambers to assess cutaneous and branchial Cu toxicity over larval development, using disruptions in ammonia excretion (Jamm) and Na(+) uptake (Jin(Na)) as toxicological endpoints. Early in development (early; 3 days post-hatch; dph), approximately 95% of Jamm and 78% of Jin(Na) occurred cutaneously, while in the late developmental stage (late; 25 dph), the gills were the dominant site of exchange (83 and 87% of Jamm and Jin(Na), respectively). Exposure to 50 μg/l Cu led to a 49% inhibition of Jamm in the late developmental stage only, while in the early and middle developmental (mid; 17 dph) stages, Cu had no effect on Jamm. Jin(Na), however, was significantly inhibited by Cu exposure at the early (53% reduction) and late (47% reduction) stages. Inhibition at the early stage of development was mediated by a reduction in cutaneous uptake, representing the first evidence of cutaneous metal toxicity in an intact aquatic organism. The inhibitions of both Jamm and Jin(Na) in the late developmental stage occurred via a reduction in branchial exchange only. The differential responses of the skin and gills to Cu exposure suggest that the mechanisms of Jamm and Jin(Na) and/or Cu toxicity differ between these tissues. Exposure to 20μg/l Cu revealed that Jamm is the more Cu-sensitive process. The results presented here have important implications in predicting metal toxicity in larval fish. The Biotic Ligand Model (BLM) is currently used to predict

  6. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: A study on the inhibition of Al-Cu-Ni alloy in simulated ... which the percentage of Copper, and Nickel were kept .... proceed based on equation of reaction in eqn (4). Al .... Sodium-Modified A356.0-Type Al-Si-Mg Alloy in Simulated.

  7. Point defects behavior in beta Cu-based shape memory alloys

    International Nuclear Information System (INIS)

    Romero, R.; Somoza, A.

    1999-01-01

    A summary of positron annihilation spectroscopy data relating to the point defect behavior after quenching and to thermal equilibrium in β-phase Cu-based shape memory alloys Cu-Zn-Al and Cu-Al-Be is presented. Particular attention is given to the initial concentration of quenched-in vacancies as a function of the quenching temperature, migration of the retained point defects with aging temperature and time, and the vacancy formation and migration energies. (orig.)

  8. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    Science.gov (United States)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  9. Migration behavior of Cu and Zn in landfill with different operation modes

    International Nuclear Information System (INIS)

    Long Yuyang; Shen Dongsheng; Wang Hongtao; Lu Wenjing

    2010-01-01

    Cu and Zn were chosen to study the heavy metal migration behavior and mechanism in three simulated landfills with different operation modes, namely conventional landfill (CL), leachate directly recirculated landfill (RL) and leachate pre-treated bioreactor landfill (BL). It showed that Cu and Zn in refuse experienced periodic migration and retention gradually during decomposition, and the variation of Cu(II) and Zn(II) in leachate correspondingly reflected the releasing behavior of Cu and Zn in landfill refuse at different stabilization stages. Except for their accumulated leaching amounts, Cu(II) and Zn(II) concentrations in leachate from landfills with different operation modes had no significant difference. The accumulated leaching amounts of Cu and Zn from CL showed exponential increase, while those of RL and BL showed exponential decay. The operation of bioreactor landfill with leachate recirculation can obviously attenuate the heavy metal leaching than conventional operation. The introduction of methanogenic reactor (MR) in bioreactor landfill can further promote the immobilization of heavy metal in refuse than leachate recirculation directly.

  10. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  11. Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function.

    Science.gov (United States)

    Gaier, Eric D; Eipper, Betty A; Mains, Richard E

    2014-05-01

    Copper (Cu) is an essential element with many biological roles, but its roles in the mammalian nervous system are poorly understood. Mice deficient in the cuproenzyme peptidylglycine α-amidating monooxygenase (Pam(+/-) mice) were initially generated to study neuropeptide amidation. Pam(+/-) mice exhibit profound deficits in a few behavioral tasks, including enhancements in innate fear along with deficits in acquired fear. Interestingly, several Pam(+/-) phenotypes were recapitulated in Cu-restricted wild-type mice and rescued in Cu-supplemented Pam(+/-) mice. These behaviors correspond to enhanced excitability and deficient synaptic plasticity in the amygdala of Pam(+/-) mice, which are also rescued by Cu supplementation. Cu and ATP7A are present at synapses, in key positions to respond to and influence synaptic activity. Further study demonstrated that extracellular Cu is necessary for wild-type synaptic plasticity and sufficient to induce long-term potentiation. These experiments support roles for PAM in Cu homeostasis and for synaptic Cu in amygdalar function. © 2014 New York Academy of Sciences.

  12. Effect of microstructure on corrosion behavior of Ag-30Cu-27Sn alloy in vitro media

    International Nuclear Information System (INIS)

    Salehisaki, Mehdi; Aryana, Maryam

    2014-01-01

    Highlights: • High cooling rates decrease the number of Ag intermetallic particles in Cu-rich phase. • Increasing cooling rate improves corrosion behavior of Ag-30Cu-27Sn dental alloy. • Cathode/anode ratio in Cu-rich phases determines the corrosion behavior of alloy. - Abstract: In the present work, three simple heat treatment cycles were used to study the effects of microstructure on electrochemical corrosion behavior of Ag-30Cu-27Sn dental alloy. The electrochemical impedance spectroscopy (EIS) measurements and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of as-cast and heat treated samples in synthetic saliva solution. The presence of intermetallic compounds were studied by X-ray diffraction method (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDAX). The microstructural observations and electrochemical corrosion results revealed that, increasing the cooling rate improves the corrosion behavior of under investigation samples. Improvement of the corrosion behavior is attributed to reducing the area of fine distributed Ag 3 Sn islands in the Cu-rich matrix which decrease the cathode/anode ratio of microgalvanic cells

  13. A novel piperazine-bis(rhodamine-B)-based chemosensor for highly sensitive and selective naked-eye detection of Cu{sup 2+} and its application as an INHIBIT logic device

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zebin; Li, Haizhen; Guo, Dan; Liu, Yan; Tian, Zhang; Yan, Shiqiang, E-mail: yansq@lzu.edu.cn

    2015-11-15

    Abstact: We report the design and synthesis of a new piperazine-bis(rhodamine-B) (RB-P-RB)-based indicator for selective detection of Cu{sup 2+} ion. Optical sensing behavior toward various metal ions including alkali, alkaline earth and transition metal ions (Na{sup +}, K{sup +}, Ba{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Hg{sup 2+}, and Ag{sup +}) were investigated by UV–vis and fluorescence spectroscopy in ethassnol solution. The indicator showed highly selective and sensitive colorimetric and “turn-on” fluorescence enhancement responses toward Cu{sup 2+} ion owing to the ring-opening structure of the rhodamine spirolactam. The significant change from colorless to pink upon the addition of Cu{sup 2+} could make it a suitable “naked-eye” indicator for Cu{sup 2+}. Furthermore, a possible ring-opening mechanism (off-on) of the rhodamine spirolactam induced by Cu{sup 2+} binding is supported by Job plot, ESI-mass, FT-IR, and {sup 1}H NMR. More significantly, the probe displayed highly selective Cu{sup 2+}-amplified absorption in the presence of Cu{sup 2+} ions. Finally, using Cu{sup 2+} and EDTA as inputs and the fluorescence emission intensity as output, an INHIBIT logic gate can be constructed at the molecular level. - Highlights: • A novel piperazine-bis(rhodamine-B)-based sensor for selective detection of Cu{sup 2+} ion was synthesized via simple synthetic procedures. • The probe exhibited highly selective and sensitive colorimetric and “turn on” fluorescence enhancement responses to Cu{sup 2+}. • The probe can serve as a reversible and selective “naked eye” indicator for Cu{sup 2+} ions in ethanol solution. • The probe can be utilized to construct an INHIBIT logic gate at the molecular level. • The probe displays highly selective Cu{sup 2+}-amplified absorption in ethanol solution.

  14. Relationship between the electrochemical behavior of multiwalled carbon nanotubes (MWNTs) loaded with CuO and the photocatalytic activity of Eosin Y-MWNTs-CuO system

    Science.gov (United States)

    Bui, Duc-Nguyen; Kang, Shi-Zhao; Qin, Lixia; Li, Xiang-Qing; Mu, Jin

    2013-02-01

    The photocatalytic system containing Eosin Y, multiwalled carbon nanotubes (MWNTs) and CuO (Eosin Y-MWNTs-CuO) was fabricated; meanwhile its photocatalytic activity for hydrogen evolution from triethanolamine (TEOA) aqueous solution was evaluated. Under visible light irradiation, the amount of hydrogen (H2) evolution increased greatly due to introduction of CuO in the photocatalytic system. Moreover, the electrochemical behavior of MWNTs loaded with CuO was explored using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results clearly indicate that there is a strong relationship between the electrochemical behavior of MWNTs-CuO and the photocatalytic activity of Eosin Y-MWNTs-CuO, and the high photocatalytic activity of Eosin Y-MWNTs-CuO may mainly originate from the efficient electron-transfer in the system.

  15. Origin of the Distinct Diffusion Behaviors of Cu and Ag in Covalent and Ionic Semiconductors.

    Science.gov (United States)

    Deng, Hui-Xiong; Luo, Jun-Wei; Li, Shu-Shen; Wei, Su-Huai

    2016-10-14

    It is well known that Cu diffuses faster than Ag in covalent semiconductors such as Si, which has prevented the replacement of Ag by Cu as a contact material in Si solar cells for reducing the cost. Surprisingly, in more ionic materials such as CdTe, Ag diffuses faster than Cu despite that it is larger than Cu, which has prevented the replacement of Cu by Ag in CdTe solar cells to improve the performance. But, so far, the mechanisms behind these distinct diffusion behaviors of Cu and Ag in covalent and ionic semiconductors have not been addressed. Here we reveal the underlying mechanisms by combining the first-principles calculations and group theory analysis. We find that the symmetry controlled s-d coupling plays a critical role in determining the diffusion behaviors. The s-d coupling is absent in pure covalent semiconductors but increases with the ionicity of the zinc blende semiconductors, and is larger for Cu than for Ag, owing to its higher d orbital energy. In conjunction with Coulomb interaction and strain energy, the s-d coupling is able to explain all the diffusion behaviors from Cu to Ag and from covalent to ionic hosts. This in-depth understanding enables us to engineer the diffusion of impurities in various semiconductors.

  16. Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.D., E-mail: fanxd@seu.edu.cn; Shen, B.L., E-mail: blshen@seu.edu.cn

    2015-07-01

    High Fe content FeBCSiCu nanocrystalline alloys are prepared by annealing melt-spun amorphous ribbons with aim at increasing saturation magnetic flux density. Microstructures identified by XRD and TEM reveal that Cu addition inhibits the surface crystallization of Fe{sub 86}B{sub 7}C{sub 7} alloy and improve its glass-forming ability. Activation energy of crystallization calculated by Kissinger's equation indicates that both Cu and Si addition promotes the precipitation of α-Fe phase and improves the thermal stability. VSM and DC B–H loop tracer measurements show that the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits high saturation magnetic flux density of 1.8 T and low coercivity of 10 A/m, respectively. AC properties measured by AC B–H analyzer show this alloy exhibits low core loss of 0.35 W/kg at 1 T at 50 Hz. Low material cost and convenient productivity make the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy an economical application in industry. - Highlights: • Cu addition inhibits the surface crystallization and improves the GFA. • The competitive formation of Fe{sub 3}C and α-Fe phase impedes the devitrification. • Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits excellent magnetic properties. • The alloy system has an economical advantage and convenient productivity.

  17. Devitrification behavior and glass-forming ability of Cu-Zr-Ag alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Xie, Guoqiang; Zhang, Wei; Inoue, Akihisa

    2007-01-01

    This paper presents an influence of Ag addition on the glass-forming ability and devitrification behavior of Cu-Zr glassy alloys on heating. The crystallization kinetics and structure changes in Cu 45 Zr 45 Ag 10 and Cu 35 Zr 45 Ag 20 glassy alloys on heating were studied by X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. Based on the results obtained one can assume that the improvement of the glass-forming ability of the Cu-Zr alloys by the addition of Ag is connected with a particular crystallization mechanism and a higher reduced glass-transition temperature of the Cu 45 Zr 45 Ag 10 ternary alloy compared to the binary Cu 55 Zr 45 counterpart. As observed in the present work crystallization of the Cu-Zr-Ag alloys is found to cause embitterment of the samples and should be avoided as these alloys are considered to be used as structural materials. The Cu 35 Zr 45 Ag 20 alloy shows possible submicron-scale phase separation upon annealing

  18. Corrosion behavior of amorphous and crystalline Cu50Ti50 and Cu50Zr50 alloys

    International Nuclear Information System (INIS)

    Naka, M.; Hoshimoto, K.; Masumoto, T.

    1978-01-01

    Corrosion rates and anodic polarization curves of amorphous and crystalline Cu 50 Ti 50 and Cu 50 Zr 50 alloys have been examined in various acidic, neutral and alkaline solutions. The amorphous alloys are very stable in acidic and alkaline solutions, but unstable in agressive chloride solutions. The corrosion resistance of these amorphous alloys is higher than that of the crystallized alloys. The high corrosion resistance of amorphous alloys is attributable to the high chemical homogeneity of amorphous alloys without localized crystalline defects such as precipitates, segregates, grain boundaries, etc. Metalloid elements play an important role in the corrosion behavior of amorphous alloys; the addition of phosphorus to amorphous Cu-Ti alloy greatly increases the corrosion resistance, even in 1N HCl. (Auth.)

  19. Prevalence of behavioral inhibition among preschool aged children in Tehran, Iran.

    Directory of Open Access Journals (Sweden)

    Alipasha Meysamie

    2014-04-01

    Full Text Available One of the identified risk factors for anxiety disorders in adolescence and adulthood is inhibited behaviors in childhood. The present study sought to examine the relationship between behavioral inhibition with some of the internal (personal and external (family environment factors in a sample of preschool children in kindergartens. In a cross sectional study in 2009, data was collected trough a structured questionnaire completed by parents and teachers in day-care centers. A total of 1403 children were assessed. Analysis was performed through complex sample analysis. The results showed that 7.4% (CI95%= 6.1%-9.1% of children according to parents' and 8.1% (CI95%= 6%- 10.7% according to teachers' evaluation classified as behaviorally inhibited. The higher levels of behavioral inhibition were shown by girls, first children, single parent families and older children. Birth year before 2004, birth rank, living in a single parent family and maternal level of education were independent predictors for behavioral inhibition in logistic regression modeling. There is relatively high prevalence of inhibited behaviors among Iranian children. Further examination of diagnosed children with behavioral inhibition by experienced psychiatrists is needed. Also establishing consultation centers for behaviorally inhibited children and instructing their parents and teachers are recommended.

  20. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel

    International Nuclear Information System (INIS)

    Ren, Ling; Nan, Li; Yang, Ke

    2011-01-01

    Copper (Cu) precipitation behavior in a type 304 Cu-bearing austenitic antibacterial stainless steel was studied by analyses of variations in micro-hardness, electrical resistivity, electrochemical impedance and lattice constant of the steel, complemented with transmission electron microscopy (TEM) observation, showing more or less changes on these properties of the steel with different aging time. It was found that both micro-hardness and electrical resistivity measurements were relatively sensitive and accurate to reflect the Cu precipitation behavior in the experimental steel, indicating the beginning and finishing points of the precipitation, which are more simple and effective to be used for development of the new type of antibacterial stainless steels.

  1. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding

    International Nuclear Information System (INIS)

    Jia, S.G.; Liu, P.; Ren, F.Z.; Tian, B.H.; Zheng, M.S.; Zhou, G.S.

    2005-01-01

    The wear behavior of a Cu-Ag-Cr alloy contact wire against a copper-base sintered alloy strip was investigated. Wear tests were conducted under laboratory conditions with a special sliding wear apparatus that simulated train motion under electrical current conditions. The initial microstructure of the Cu-Ag-Cr alloy contact wire was analyzed by transmission electron microscopy. Worn surfaces of the Cu-Ag-Cr alloy wire were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicate that the wear rate of the Cu-Ag-Cr wire increased with increasing electrical current and sliding. Within the studied range of electrical current, the wear rate increases with increasing electrical current and sliding speed. Compared with the Cu-Ag contact wire under the same testing conditions, the Cu-Ag-Cr alloy wire has much better wear resistance. Adhesive, abrasive, and electrical erosion wear are the dominant mechanisms during the electrical sliding processes

  2. Effect of Cu addition on microstructure and corrosion behavior of spray-deposited Zn–30Al alloy

    International Nuclear Information System (INIS)

    Wang Feng; Xiong Baiqing; Zhang Yongan; Liu Hongwei; Li Zhihui; Li Xiwu; Qu Chu

    2012-01-01

    Highlights: ► Zn–30Al–xCu alloys were synthesized by the spray atomization and deposition technique. ► Immersion test and electrochemical measurements have been used to estimate the corrosion rate and the behavior. ► The result indicates that the 1 wt.% Cu addition displays superior corrosion resistance. - Abstract: In this study, one binary Zn–30Al and three ternary Zn–30Al–Cu alloys were synthesized by the spray atomization and deposition technique. The microstructures of the spray-deposited alloys were investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD). Immersion test, potentiodynamic polarization and electrochemical impedance measurements have been used to estimate the corrosion rate and the behavior. The results indicate that the 1 wt.% Cu addition to spray-deposited Zn–30Al alloy does not make significant change in microstructure. However, with the 2, 4 wt.% Cu additions to the alloy, some ε-CuZn 4 compounds with particle or irregular shapes were observed on the grain boundaries in the microstructures. Immersion test and electrochemical measurements confirmed that the 1 wt.% Cu addition displays superior corrosion resistance, whereas the 2, 4 wt.% Cu additions have a baneful effect on the corrosion behavior.

  3. Item-cued directed forgetting of related words and pictures in children and adults: selective rehearsal versus cognitive inhibition.

    Science.gov (United States)

    Lehman, E B; McKinley-Pace, M; Leonard, A M; Thompson, D; Johns, K

    2001-01-01

    The main purpose of this study was to compare the relative importance of selective rehearsal and cognitive inhibition in accounting for developmental changes in the directed-forgetting paradigm developed by R. A. Bjork (1972). In two experiments, children in Grades 2 and 5 and college students were asked to remember some words or pictures and to forget others when items were categorically related. Their memory for both items and the associated remember or forget cues was then tested with recall and recognition. Fifth graders recognized more of the forget-cued words than college students did. The pattern of results suggested that age differences in rehearsal and source monitoring (i.e., remembering whether a word had been cued remember or forget) were better explanatory mechanisms for children's forgetting inefficiencies than retrieval inhibition was. The results are discussed in terms of a multiple process view of inhibition.

  4. Behavior of palladium and its impact on intermetallic growth in palladium-coated Cu wire bonding

    International Nuclear Information System (INIS)

    Xu Hui; Qin, Ivy; Clauberg, Horst; Chylak, Bob; Acoff, Viola L.

    2013-01-01

    This paper describes the behavior of palladium in palladium-coated Cu (PdCu) wire bonding and its impact on bond reliability by utilizing transmission electron microscopy (TEM). A Pd layer approximately 80 nm thick, which is coated on the surface of Cu wire, dissolves into the Cu matrix during ball formation (under N 2 gas protection) when the wire tip is melted to form a ball. As a result of dissolving the very thin Pd layer into the ball, Pd is almost undetectable along the entire bond interface between the ball and the Al pad. The behavior of Pd during thermal aging in air, however, is different for central and peripheral interfaces. At the central interface, less than 5 at.% Pd is present after 168 h aging at 175 °C. At the periphery, however, Pd diffuses back and congregates, reaching a level of ∼12 at.% after 24 h, and a Pd-rich (Cu,Pd) 9 Al 4 layer (>40 at.% Pd) forms after 168 h. Pd acts substitutionally in Cu 9 Al 4 but cannot penetrate into the CuAl 2 or CuAl. By comparison of intermetallic thickness and interfacial morphology between PdCu and bare Cu wire bonds, it is concluded that the presence of Pd reduces intermetallic growth rate, and is associated with numerous nanovoids in PdCu bonds.

  5. Influence of applied load on wear behavior of C/C-Cu composites under electric current

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2017-04-01

    Full Text Available Using carbon fiber needled fabrics with Cu-mesh and graphite powder as the preform, Cu mesh modified carbon/carbon(C/C-Cu composites were prepared by chemical vapor deposition (CVD with C3H6 and impregnation-carbonization (I/C with furan resin. C/C composites, as a comparison, were also prepared. Their microstructures and wear morphologies were observed by optical microscopy (OM and scanning electron microscope (SEM, respectively. Wear behavior of C/C and C/C-Cu composites under different applied loads were investigated on a pin-on-disc wear tester. The results show that Cu meshes are well dispersed and pyrolytic carbon is in rough laminar structure. Both C/C and C/C-Cu composites had good wear properties. The current-carrying capacity of C/C-Cu composites increases and the arc discharge is hindered as the applied load increases from 40 N to 80 N. Both C/C and C/C-Cu composites had good wear properties. The mass wear rate of C/C-Cu composites under 80 N was only 4.2% of that under 60 N. In addition, C/C-Cu composites represent different wear behaviors because wear mechanisms of arc erosion, abrasive wear, adhesive wear, and oxidative wear are changing under different applied loads.

  6. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  7. Selective mutism and temperament: the silence and behavioral inhibition to the unfamiliar.

    Science.gov (United States)

    Gensthaler, Angelika; Khalaf, Sally; Ligges, Marc; Kaess, Michael; Freitag, Christine M; Schwenck, Christina

    2016-10-01

    Behavioral inhibition (BI) is a suspected precursor of selective mutism. However, investigations on early behavioral inhibition of children with selective mutism are lacking. Children aged 3-18 with lifetime selective mutism (n = 109), social phobia (n = 61), internalizing behavior (n = 46) and healthy controls (n = 118) were assessed using the parent-rated Retrospective Infant Behavioral Inhibition (RIBI) questionnaire. Analyses showed that children with lifetime selective mutism and social phobia were more inhibited as infants and toddlers than children of the internalizing and healthy control groups, who displayed similar low levels of behavioral inhibition. Moreover, behavioral inhibition was higher in infants with lifetime selective mutism than in participants with social phobia according to the Total BI score (p = 0.012) and the Shyness subscale (p selective mutism. Results yield first evidence of the recently hypothesized temperamental origin of selective mutism. Children at risk should be screened for this debilitating child psychiatric condition.

  8. Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, C.T.; Wong, P.K. [Department of Electromechanical Engineering, University of Macau (China); Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University (Hong Kong); Cheng, F.T., E-mail: apaftche@polyu.edu.h [Department of Applied Physics, Hong Kong Polytechnic University (Hong Kong)

    2009-10-01

    CuCrZr is a high copper alloy widely used as electrical and thermal conducting material, especially in heat exchangers in nuclear reactors. In this respect, the physical and fatigue properties of CuCrZr have been extensively studied. The electrochemical behavior of CuCrZr, on the other hand, has not been adequately investigated. In the present study, the effect of pH on the corrosion behavior of CuCrZr in aqueous solutions without and with chloride (0.6 M NaCl) was studied. The pH of the solutions is found to exert significant influence on the corrosion behavior of CuCrZr. In acidic solutions without chloride, the corrosion of CuCrZr is ascribed to active dissolution with soluble products. In neutral and alkaline solutions without NaCl, the presence of oxides on the surface of CuCrZr leads to a noble shift in corrosion potential and passivation results in increased corrosion resistance. In chloride solutions at various pH values, the chloride ions influence the formation of the surface layers and the anodic dissolution process during polarization. At high pH, CuCrZr shows significant passivity and high corrosion resistance due to the growth of Cu{sub 2}O/Cu(OH) film which hinders further dissolution whereas at low pH the corrosion resistance is lowered due to active dissolution of Cu.

  9. Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl

    International Nuclear Information System (INIS)

    Kwok, C.T.; Wong, P.K.; Man, H.C.; Cheng, F.T.

    2009-01-01

    CuCrZr is a high copper alloy widely used as electrical and thermal conducting material, especially in heat exchangers in nuclear reactors. In this respect, the physical and fatigue properties of CuCrZr have been extensively studied. The electrochemical behavior of CuCrZr, on the other hand, has not been adequately investigated. In the present study, the effect of pH on the corrosion behavior of CuCrZr in aqueous solutions without and with chloride (0.6 M NaCl) was studied. The pH of the solutions is found to exert significant influence on the corrosion behavior of CuCrZr. In acidic solutions without chloride, the corrosion of CuCrZr is ascribed to active dissolution with soluble products. In neutral and alkaline solutions without NaCl, the presence of oxides on the surface of CuCrZr leads to a noble shift in corrosion potential and passivation results in increased corrosion resistance. In chloride solutions at various pH values, the chloride ions influence the formation of the surface layers and the anodic dissolution process during polarization. At high pH, CuCrZr shows significant passivity and high corrosion resistance due to the growth of Cu 2 O/Cu(OH) film which hinders further dissolution whereas at low pH the corrosion resistance is lowered due to active dissolution of Cu.

  10. Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites

    Science.gov (United States)

    Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang

    2018-06-01

    The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation ( R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.

  11. Aging behavior of an in-situ TiB2/Al-Cu-Li-x matrix composite

    International Nuclear Information System (INIS)

    Shen, Yanwei; Hong, Tianran; Geng, Jiwei; Han, Gaoyang; Chen, Dong; Li, Xianfeng; Wang, Haowei

    2017-01-01

    Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB 2 /Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al 5 Cu 6 Mg 2 ) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al 3 Li), β′ (Al 3 Zr) and the cubic phase. After aging for 18 h, all precipitates including T 1 (Al 2 CuLi), S (Al 2 CuMg), θ′ (Al 2 Cu), δ′, β′ and the cubic phase have appeared, and the formation of T 1 and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T 1 and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB 2 /Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al 5 Cu 6 Mg 2 ) or its variant was precipitated. •The hardness change was dominated by the evolution of T 1 (Al 2 CuLi) and S (Al 2 CuMg).

  12. The Interaction Between Child Behavioral Inhibition and Parenting Behaviors: Effects on Internalizing and Externalizing Symptomology.

    Science.gov (United States)

    Ryan, Sarah M; Ollendick, Thomas H

    2018-02-20

    Both child temperament and parenting have been extensively researched as predictors of child outcomes. However, theoretical models suggest that specific combinations of temperament styles and parenting behaviors are better predictors of certain child outcomes such as internalizing and externalizing symptoms than either temperament or parenting alone. The current qualitative review examines the interaction between one childhood temperamental characteristic (child behavioral inhibition) and parenting behaviors, and their subsequent impact on child psychopathology. Specifically, the moderating role of parenting on the relationship between child behavioral inhibition and both internalizing and externalizing psychopathology is examined, and the methodological variations which may contribute to inconsistent findings are explored. Additionally, support for the bidirectional relations between behavioral inhibition and parenting behaviors, as well as for the moderating role of temperament on the relationships between parenting and child outcomes, is briefly discussed. Finally, the clinical applicability of this overall conceptual model, specifically in regard to future research directions and potential clinical interventions, is considered.

  13. The Relevant Role of Dislocations in the Martensitic Transformations in Cu-Al-Ni Single Crystals

    Science.gov (United States)

    Gastien, R.; Sade, M.; Lovey, F. C.

    2018-03-01

    The interaction between dislocations and martensitic transformations in Cu-Al-Ni alloys is shortly reviewed. Results from many researchers are critically analyzed towards a clear interpretation of the relevant role played by dislocations on the properties of shape memory alloys in Cu-based alloys. Both thermally and stress-induced transformations are considered and focus is paid on two types of transitions, the β→β' and the formation of a mixture of martensites: β→β' + γ'. After cycling in the range where both martensites are formed, the twinned γ' phase is inhibited and cycling evolves into the formation of only β'. A model which considers the difference in energy of each γ' twin variant due to the introduced dislocations quantitatively explains the inhibition of γ' in both thermally and stress-induced cycling. The type of dislocations which are mainly introduced, mixed with Burgers vector belonging to the basal plane of the β' martensite, enables also to explain the unmodified mechanical behavior during β→β' cycling. The reported behavior shows interesting advantages of Cu-Al-Ni single crystals if mechanical properties are comparatively considered with those in other Cu-based alloys.

  14. Crystallization Behavior of A Bulk Amorphous Mg62Cu26Y12 Alloy

    Science.gov (United States)

    Wu, Shyue-Sheng; Chin, Tsung-Shune; Su, Kuo-Chang

    1994-07-01

    The crystallization temperature, the associated activation energy and the crystallized structure of a bulk amorphous Mg62Cu26Y12 alloy with a diameter of 2.5 mm were studied. It possesses a one-step crystallization behavior. The crystallization reaction was found to be represented by: AM(MG62Cu26Y12)→Mg2Cu+MgY+CuY+Mg, ( Tx=188°C, Eac=134 kJ/mol) where AM represents the amorphous state, T x the crystallization temperature at an infinitesimal heating rate, and E ac the associated activation energy. The amount of crystalline phases were found to be Mg2Cu:MgY:CuY=76:17:7. The Mg phase is identifiable only by high resolution electron microscopy, not by X-ray diffraction. The crystallization leads to a sharp rise in electrical resistivity which is reversed to those of iron-based amorphous alloys.

  15. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    Science.gov (United States)

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Oscillatory behavior of the magnetic properties of Nd–Fe–B films with Mo and Mo–Cu additions

    International Nuclear Information System (INIS)

    Urse, M.; Grigoras, M.; Lupu, N.; Borza, F.; Chiriac, H.

    2013-01-01

    A series of Ta/NdFeB/Ta thin films with Mo and Mo–Cu additions embedded by alloying and by stratification have been prepared by r.f. sputtering. The influence of additions, their embedding mode, and annealing temperature on the structural and magnetic behavior of Ta/NdFeB/Ta thin films is presented. The use of additions of Mo and Mo–Cu leads to refined grain structure and improvement in the hard magnetic characteristics of Ta/NdFeB/Ta thin films. The Ta/[NdFeBMo(540 nm)/Ta films and Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films present enhanced coercivities and M r /M s ratios in comparison with the Ta/NdFeB(540 nm)/Ta films. The stratification of Ta/NdFeB/Ta thin films with Mo–Cu interlayers leads to an oscillatory behavior of hard magnetic characteristics of the Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films, when the thickness, d, of Mo–Cu interlayers varies by increments of 1 nm. When the thickness of Mo–Cu interlayers varies by increments of 2 nm the oscillatory behavior of the magnetic characteristics is not revealed. For a thickness of the Mo–Cu interlayer of 3 nm in the Ta/[NdFeB(180 nm)/MoCu(3 nm)] × 3/Ta thin films annealed at 650 °C, the c-axis of part of the hard magnetic Nd 2 Fe 14 B grains is oriented out-of-plane

  17. PRECIPITATION BEHAVIOR IN A Cu-Sn-Ni-Zn-P LEAD FRAME MATERIAL

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; C.K. Yan; M.Nemoto

    2003-01-01

    Transmission electron microscopy (TEM) observations were carried out for examining the precipitation behavior in a Cu-Sn-Ni-Zn-P lead frame material. TEM observations revealed that the precipitate is hexagonal Ni5P2 and the orientation relationship between the Cu matrix and Ni5P2 precipitate is (111)fcc//(0001)hcp,[101]fcc//[11-20]hcp, where the suffix fcc denotes the Cu matrix and hcp denotes the hexagonal Ni5P2 precipitate. The NisP2 precipitate is ovoidal in shape at the beginning of aging at lower temperature. By prolonging the aging time or increasing the aging temperature, Ni5P2 precipitate grows and shows a rod-like shape. The Ni added Cu based lead frame material has a comparative mechanical properties with that of TAMAC15 which has been developed and used in electrical industry.

  18. Crystallization behavior of Zr62Al8Ni13Cu17 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Jo Mi Sun

    2017-06-01

    Full Text Available The crystallization behavior has been studied in Zr62Al8Ni13Cu17 metallic glass alloy. The Zr62Al8Ni13Cu17 metallic glass crystallized through two steps. The fcc Zr2Ni phase transformed from the amorphous matrix during first crystallization and then the Zr2Ni and residual amorphous matrix transformed into a mixture of tetragonal Zr2Cu and hexagonal Zr6Al2Ni phases. Johnson-Mehl-Avrami analysis of isothermal transformation data suggested that the formation of crystalline phase is primary crystallization by diffusion-controlled growth.

  19. Behavior of CuP and OFHC Cu anodes under electrodeposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, G.S.; Schrott, A.G.; Horkans, J.; Andricacos, P.C. (International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center); Isaacs, H.S. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Films formed on CuP (with 0.05 wt % P) and OFHC Cu anodes in electroplating solutions were studied by X-ray Photoelectron Spectroscopy, X-ray Absorption Spectroscopy, electrochemical methods, and a newly developed gravimetric technique. The black film formed on CuP in Cl-containing solutions was found to resemble a porous sponge composed of CuCl but laden/with concentrated CuSO{sub 4} solution. The difference between the buoyancy-corrected measured mass change and the charge-equivalent mass change was found to have two components: a reversible part that comes and goes as the current is turned on and off, and an irreversible part that remains on the surface and increase in mass with time. The irreversible part results from the anodic film, which increases linearly with charge density but independent of current density. The reversible part of the mass change arises from the weight of the diffusion layer. In contrast to CuP, OFHC Cu releases much more Cu{sup +1} during anodic polarization and forms a poorly-adherent anodic film that is considerably heavier than the black film for a given charge density.

  20. Behavior of CuP and OFHC Cu anodes under electrodeposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, G.S.; Schrott, A.G.; Horkans, J.; Andricacos, P.C. [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center; Isaacs, H.S. [Brookhaven National Lab., Upton, NY (United States)

    1992-08-01

    Films formed on CuP (with 0.05 wt % P) and OFHC Cu anodes in electroplating solutions were studied by X-ray Photoelectron Spectroscopy, X-ray Absorption Spectroscopy, electrochemical methods, and a newly developed gravimetric technique. The black film formed on CuP in Cl-containing solutions was found to resemble a porous sponge composed of CuCl but laden/with concentrated CuSO{sub 4} solution. The difference between the buoyancy-corrected measured mass change and the charge-equivalent mass change was found to have two components: a reversible part that comes and goes as the current is turned on and off, and an irreversible part that remains on the surface and increase in mass with time. The irreversible part results from the anodic film, which increases linearly with charge density but independent of current density. The reversible part of the mass change arises from the weight of the diffusion layer. In contrast to CuP, OFHC Cu releases much more Cu{sup +1} during anodic polarization and forms a poorly-adherent anodic film that is considerably heavier than the black film for a given charge density.

  1. Indentation creep behaviors of amorphous Cu-based composite alloys

    Science.gov (United States)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  2. From capture to inhibition: How does irrelevant information influence visual search? Evidence from a spatial cuing paradigm.

    Directory of Open Access Journals (Sweden)

    Christine eMertes

    2016-05-01

    Full Text Available Even though information is spatially and temporally irrelevant, it can influence the processing of subsequent information. The present study used a spatial cuing paradigm to investigate the origins of this persisting influence by means of event-related potentials (ERPs of the EEG. An irrelevant color cue that was either contingent (color search or non-contingent (shape search on attentional sets was presented prior to a target array with different stimulus-onset asynchronies (SOA; 200, 400, 800 ms. Behavioral results indicated that color cues captured attention only when they shared target-defining properties. These same-location effects persisted over time but were pronounced when cue and target array were presented in close succession. N2pc showed that the color cue generally drew attention, but was strongest in the contingent condition. A subsequently emerging contralateral posterior positivity referred to the irrelevant cue (i.e. distractor positivity; Pd was unaffected by the attentional set and therefore interpreted as an inhibitory process required to enable a re-direction of the attentional focus. CDA was only observable in the contingent condition, indicating the transfer of spatial information into working memory and thus providing an explanation for the same-location effect for longer SOAs. Inhibition of this irrelevant information was reflected by a second contralateral positivity triggered through target presentation. The results suggest that distracting information is actively maintained when it resembles a sought-after object. However, two independent attentional processes are at work to compensate for attentional distraction: The timely inhibition of attentional capture and the active inhibition of mental representation of irrelevant information.

  3. Unusual behavior of nuclear relaxation in CeCu2Si2 'possible evidence for triplet superconductivity'

    International Nuclear Information System (INIS)

    Kitaoka, Y.; Asayama, K.; Ueda, K.; Kohara, T.

    1984-01-01

    Nuclear relaxation of 63 Cu in the superconducting state of the Kondo-lattice system CeCu 2 Si 2 has been studied with the use of the 63 Cu nuclear quadrupole resonance technique under zero field and down to 65mK. The nuclear spin-lattice relaxation rate (1/T 1 ) decreases drastically just below Tsub(c)=0.67 K down to 0.5Tsub(c) without the apparent enhanced behavior and then is found to be almost temperature independent below 0.3Tsub(c). These results suggest that the superconductivity in CeCu 2 Si 2 is not in the usual BCS regime. The analysis based upon the existing triplet pairing model with an anisotropic energy gap describes well the behavior from Tsub(c) down to 0.5Tsub(c), while the temperature independence below 0.3Tsub(c) remains unexplained. (author)

  4. Identification of emotional facial expressions among behaviorally inhibited adolescents with lifetime anxiety disorders

    Science.gov (United States)

    Reeb-Sutherland, Bethany C.; Williams, Lela Rankin; Degnan, Kathryn A.; Pérez-Edgar, Koraly; Chronis-Tuscano, Andrea; Leibenluft, Ellen; Pine, Daniel S.; Pollak, Seth D.; Fox, Nathan A.

    2014-01-01

    The current study examined differences in emotion expression identification between adolescents characterized with behavioral inhibition (BI) in childhood with and without a lifetime history of anxiety disorder. Participants were originally assessed for behavioral inhibition during toddlerhood and for social reticence during childhood. During adolescence, participants returned to the laboratory and completed a facial-emotion identification task and a clinical psychiatric interview. Results revealed that behaviorally inhibited adolescents with a lifetime history of anxiety disorder displayed a lower threshold for identifying fear relative to anger emotion expressions compared to non-anxious behaviorally inhibited adolescents and non-inhibited adolescents with or without anxiety. These findings were specific to behaviorally inhibited adolescents with a lifetime history of social anxiety disorder. Thus, adolescents with a history of both BI and anxiety, specifically social anxiety, are more likely to differ from other adolescents in their identification of fearful facial expressions. This offers further evidence that perturbations in the processing of emotional stimuli may underlie the etiology of anxiety disorders. PMID:24800906

  5. Superelastic behavior and damping capacity of CuAlBe alloys

    International Nuclear Information System (INIS)

    Montecinos, Susana; Moroni, Maria Ofelia; Sepulveda, Aquiles

    2006-01-01

    Shape memory alloys (SMAs) showing the superelastic effect, dissipate energy through hysteretic cycles up to large strain amplitudes, without remnant strains after unloading. This effect is associated with a reversible stress-induced martensitic transformation. In this paper, the behavior of copper-based SMAs is examined, with the perspective of potential applications in seismic-energy dissipative devices. In particular, two different compositions of CuAlBe are characterized using chemical analysis, differential scanning calorimetry (DSC), light and scanning electron microscopy and X-rays diffraction. Mechanical and hysteretic damping properties are determined from cyclic tensile and tension-compression tests, for different strain amplitudes and frequencies. Both alloys show superelastic behavior, although hysteresis loops differ, due to differences in the composition and transformation phase temperatures. Equivalent damping up to 5% was obtained for the largest strain imposed. Frequency, in the range of interest for seismic applications, had a small influence on the damping values. It is concluded that alloy Cu-11.8 wt.% Al-0.5 wt.% Be best exhibited properties for the application intended

  6. Hot Deformation Behavior of SiCP/A1-Cu Composite

    Directory of Open Access Journals (Sweden)

    CHENG Ming-yang

    2017-02-01

    Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of SiCp/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10s-1. The true stress-strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the softening mechanism of dynamic recrystallization is a feature of high-temperature flow stress-strain curves of SiCp/A1-Cu composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate.The flow stress behavior of the composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 320.79kJ/mol. The stable regions and the instability regions in the processing map were identified and the microstructures in different regions of processing map were studied.There are particle breakage and void in the instability regions.

  7. Enhancement of oxidation resistance in Cu and Cu(Al) thin layers

    International Nuclear Information System (INIS)

    Horvath, Z.E.; Peto, G.; Paszti, Z.; Zsoldos, E.; Szilagyi, E.; Battistig, G.; Lohner, T.; Molnar, G.L.; Gyulai, J.

    1999-01-01

    High conductivity and good resistance to electromigration makes copper a promising interconnect material in microelectronics. However, one of its disadvantages is the poor corrosion resistance. Two methods of passivation are investigated and compared: Al alloying and BF 2 + ion implantation. X-ray diffraction (XRD) and Rutherford Backscattering Spectrometry (RBS) show the oxidation inhibition of both methods, but the different ratio of CuO 2 to CuO phases suggests different mechanisms of passivation. There are no definite oxide lines in the XRD spectrum of the implanted and annealed Cu(Al) sample, so the presence of Al and the implantation together give increased protection against oxidation. The difference between the two mechanisms of oxidation inhibition is discussed briefly

  8. Aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yanwei; Hong, Tianran; Geng, Jiwei; Han, Gaoyang; Chen, Dong; Li, Xianfeng, E-mail: brucelee75cn@sjtu.edu.cn; Wang, Haowei

    2017-02-15

    Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB{sub 2}/Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al{sub 3}Li), β′ (Al{sub 3}Zr) and the cubic phase. After aging for 18 h, all precipitates including T{sub 1} (Al{sub 2}CuLi), S (Al{sub 2}CuMg), θ′ (Al{sub 2}Cu), δ′, β′ and the cubic phase have appeared, and the formation of T{sub 1} and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T{sub 1} and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) or its variant was precipitated. •The hardness change was dominated by the evolution of T{sub 1} (Al{sub 2}CuLi) and S (Al{sub 2}CuMg).

  9. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    Science.gov (United States)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  10. Behavioral activation and inhibition system's role in predicting addictive behaviors of patients with bipolar disorder of Roozbeh Psychiatric Hospital

    Science.gov (United States)

    Abbasi, Moslem; Sadeghi, Hasan; Pirani, Zabih; Vatandoust, Leyla

    2016-01-01

    Background: Nowadays, prevalence of addictive behaviors among bipolar patients is considered to be a serious health threat by the World Health Organization. The aim of this study is to investigate the role of behavioral activation and inhibition systems in predicting addictive behaviors of male patients with bipolar disorder at the Roozbeh Psychiatric Hospital. Materials and Methods: The research method used in this study is correlation. The study population consisted of 80 male patients with bipolar disorder referring to the psychiatrics clinics of Tehran city in 2014 who were referred to the Roozbeh Psychiatric Hospital. To collect data, the international and comprehensive inventory diagnostic interview, behavioral activation and inhibition systems scale, and addictive behaviors scale were used. Results: The results showed that there is a positive and significant relationship between behavioral activation systems and addictive behaviors (addictive eating, alcohol addiction, television addiction, cigarette addiction, mobile addiction, etc.). In addition, correlation between behavioral inhibition systems and addictive behaviors (addictive eating, alcohol addiction, TV addiction, cigarette addiction, mobile addiction) is significantly negative. Finally, regression analysis showed that behavioral activation and inhibition systems could significantly predict 47% of addictive behaviors in patients with bipolar disorder. Conclusions: It can be said that the patients with bipolar disorder use substance and addictive behaviors for enjoyment and as pleasure stimulants; they also use substances to suppress unpleasant stimulants and negative emotions. These results indicate that behavioral activation and inhibition systems have an important role in the incidence and exacerbation of addictive behaviors. Therefore, preventive interventions in this direction seem to be necessary. PMID:28194203

  11. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    International Nuclear Information System (INIS)

    Palmero, E. M.; Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.

    2014-01-01

    Arrays of Ni 100−x Cu x nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  12. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites

    Science.gov (United States)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.

    2014-01-01

    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  13. Enhancement of oxidation resistance in Cu and Cu(Al) thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Z.E.; Peto, G. E-mail: peto@mfa.kfki.hu; Paszti, Z.; Zsoldos, E.; Szilagyi, E.; Battistig, G.; Lohner, T.; Molnar, G.L.; Gyulai, J

    1999-01-02

    High conductivity and good resistance to electromigration makes copper a promising interconnect material in microelectronics. However, one of its disadvantages is the poor corrosion resistance. Two methods of passivation are investigated and compared: Al alloying and BF{sub 2}{sup +} ion implantation. X-ray diffraction (XRD) and Rutherford Backscattering Spectrometry (RBS) show the oxidation inhibition of both methods, but the different ratio of CuO{sub 2} to CuO phases suggests different mechanisms of passivation. There are no definite oxide lines in the XRD spectrum of the implanted and annealed Cu(Al) sample, so the presence of Al and the implantation together give increased protection against oxidation. The difference between the two mechanisms of oxidation inhibition is discussed briefly.

  14. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats.

    Science.gov (United States)

    Li, Xiaoliang; Sun, Wei; An, Lei

    2018-06-01

    Manufactured metal nanoparticles and their applications are continuously expanding because of their unique characteristics while their increasing use may predispose to potential health problems. Several studies have reported the adverse effects of copper oxide nanoparticles (nano-CuO) relative to ecotoxicity and cell toxicity, whereas little is known about the neurotoxicity of nano-CuO. The present study aimed to examine its effects on spatial cognition, hippocampal function, and the possible mechanisms. Male Wistar rats were used to establish an animal model, and nano-CuO was administered at a dose of 0.5 mg/kg/day for 2 weeks. The Morris water maze (MWM) test was employed to evaluate learning and memory. The long-term potentiation (LTP) from Schaffer collaterals to the hippocampal CA1 region, and the effects of nano-CuO on synases were recorded in the hippocampal CA1 neurons of rats. MWM test showed that learning and memory abilities were impaired significantly by nano-CuO ( p nano-CuO-treated groups compared with the control group ( p nano-CuO markedly depressed the frequencies of both spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), indicating an effect of nano-CuO on inhibiting the release frequency of glutamate presynapticly ( p nano-CuO-treated animals, which suggested that the effect of nano-CuO modulates postsynaptic receptor kinetics ( p nano-CuO impaired glutamate transmission presynapticly and postsynapticly, which may contribute importantly to diminished LTP and other induced cognitive deficits.

  15. From Capture to Inhibition: How does Irrelevant Information Influence Visual Search? Evidence from a Spatial Cuing Paradigm.

    Science.gov (United States)

    Mertes, Christine; Wascher, Edmund; Schneider, Daniel

    2016-01-01

    Even though information is spatially and temporally irrelevant, it can influence the processing of subsequent information. The present study used a spatial cuing paradigm to investigate the origins of this persisting influence by means of event-related potentials (ERPs) of the EEG. An irrelevant color cue that was either contingent (color search) or non-contingent (shape search) on attentional sets was presented prior to a target array with different stimulus-onset asynchronies (SOA; 200, 400, 800 ms). Behavioral results indicated that color cues captured attention only when they shared target-defining properties. These same-location effects persisted over time but were pronounced when cue and target array were presented in close succession. N2 posterior contralateral (N2pc) showed that the color cue generally drew attention, but was strongest in the contingent condition. A subsequently emerging contralateral posterior positivity referred to the irrelevant cue (i.e., distractor positivity, Pd) was unaffected by the attentional set and therefore interpreted as an inhibitory process required to enable a re-direction of the attentional focus. Contralateral delay activity (CDA) was only observable in the contingent condition, indicating the transfer of spatial information into working memory and thus providing an explanation for the same-location effect for longer SOAs. Inhibition of this irrelevant information was reflected by a second contralateral positivity triggered through target presentation. The results suggest that distracting information is actively maintained when it resembles a sought-after object. However, two independent attentional processes are at work to compensate for attentional distraction: the timely inhibition of attentional capture and the active inhibition of mental representation of irrelevant information.

  16. Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Solís-Fernández, Pablo [Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580 (Japan); Yunus, Rozan Mohamad [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Hibino, Hiroki [School of Science and Technology, Kwansei Gakuin University, Hyogo, 669-1337 (Japan); Ago, Hiroki, E-mail: ago.hiroki.974@m.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580 (Japan)

    2017-06-30

    Highlights: • Growth mechanism of large graphene grains on oxidized Cu was revealed by investigating the behavior of oxygen in the Cu. • Only the heating up step was found to be crucial for obtaining large graphene grains. • The copper oxide layer was found to promote some oxygen atoms to dissolve into the Cu foil. • The dissolved oxygen contributes to the reduction of a nucleation density of graphene. - Abstract: Decreasing the nucleation density of graphene grown on copper (Cu) foil by chemical vapor deposition (CVD) is essential for the synthesis of large-area single-crystalline graphene. Here, the behavior of the copper oxide layer and its impact on the graphene growth have been investigated. We found that a small amount of oxygen dissolves into the Cu when the oxide layer decomposes during the heating up in a non-reducing Ar environment. The remaining oxygen in the Cu foil can play an important role in decreasing the graphene nucleation density. The dissolved oxygen can withstand at high temperatures even in reducing H{sub 2} environments without completely losing its effectiveness for maintaining a low graphene nucleation density. However, heating up in a H{sub 2} environment significantly reduces the copper oxide layer during the very first moments of the process at low temperatures, preventing the oxygen to dissolve into the Cu and significantly increasing the nucleation density. These findings will help to improve the graphene growth on Cu catalyst by increasing the grain size while decreasing the grain density.

  17. Post-Depositional Behavior of Cu in a Metal-Mining Polishing Pond (East Lake, Canada)

    Science.gov (United States)

    Martin, A.J.; Jambor, J.L.; Pedersen, Thomas F.; Crusius, J.

    2003-01-01

    The post-depositional behavior of Cu in a gold-mining polishing pond (East Lake, Canada) was assessed after mine closure by examination of porewater chemistry and mineralogy. The near-surface (upper 1.5 cm) sediments are enriched in Cu, with values ranging from 0.4 to 2 wt %. Mineralogical examination revealed that the bulk of the Cu inventory is present as authigenic copper sulfides. Optical microscopy, energy-dispersion spectra, and X-ray data indicate that the main Cu sulfide is covellite (CuS). The formation of authigenic Cu-S phases is supported by the porewater data, which demonstrate that the sediments are serving as a sink for dissolved Cu below sub-bottom depths of 1-2 cm. The zone of Cu removal is consistent with the occurrence of detectable sulfide and the consumption of sulfate. The sediments can be viewed as a passive bioreactor that permanently removes Cu as insoluble copper sulfides. This process is not unlike that which occurs in other forms of bioremediation, such as wetlands and permeable reactive barriers. Above the zone of Cu removal, dissolved Cu maxima in the interfacial porewaters range from 150 to 450 ??g L-1 and reflect the dissolution of a Cu-bearing phase in the surface sediments. The reactive phase is thought to be a component of treatment sludges delivered to the lake as part of cyanide treatment. Flux calculations indicate that the efflux of dissolved Cu from the sediments to the water column (14-51 ??g cm-2 yr-1) can account for the elevated levels of dissolved Cu in lake waters (???50 ??g L-1). Implications for lake recovery are discussed.

  18. XRD and SEM study on the phase separation and crystallization behavior for an amorphous Cu+ conductor

    International Nuclear Information System (INIS)

    Yang Yuan; Hou Jianguo; Yu Wenhai

    1990-01-01

    The X-ray diffraction (XRD) and scanning electron microscopy (SEM) study was carried out for an amorphous Cu + conductor 0.4 CuI-0.3 Cu 2 O-0.3 P 2 O 5 with the simultaneous conductivity measurement in the isothermal heat treament process. The results indicated that the initial amorphous material was phase-separated. In the course of time the separated amorphous phase disappeared, the crystalline γ-CuI and Cu 2 P 2 O 7 formed in sequence and grew up gradually. The correlation of the phase separation and crystallization behavior with the conductivity anomaly confirmed again the interface effect between different phases in amorphous fast ionic conductors and its universality

  19. The Relationship Between Hypersexual Behavior, Sexual Excitation, Sexual Inhibition, and Personality Traits.

    Science.gov (United States)

    Rettenberger, Martin; Klein, Verena; Briken, Peer

    2016-01-01

    The term hypersexuality was introduced to describe excessive sexual behavior associated with a person's inability to control his or her sexual behavior. The main aim of the present study was to investigate the impact of different personality traits on the degree of hypersexual behavior as measured by the Hypersexual Behavior Inventory (HBI). A further aim was to evaluate the association between sexual inhibition and excitation [as described in the Dual Control Model (DCM)] and hypersexual behavior. A sample of 1,749 participants completed an internet-based survey comprised the HBI, the short form of the Sexual Inhibition/Sexual Excitation Scales (SIS/SES-SF) as well as more general personality measures: the Behavioral Inhibition System/Behavioral Activation System-scales (BIS/BAS-scales) and a short version of the Big Five Inventory (BFI-10). Using the recommended HBI cut-off, 6.0 % (n = 105) of the present sample could be categorized as hypersexual, which is comparable to the results of previous studies about the prevalence of hypersexual behavior in the general population. The results provided strong support for the components of the DCM-sexual excitation and inhibition-to explain hypersexual behavior, irrespective of gender and sexual orientation. Some of the general personality traits also showed significant relationships with hypersexual behavior. Taken together, the results of the present study provide further support for the relevance of research about the relationships between sexual problems and disorders, the DCM, and personality variables.

  20. Is running away right? The behavioral activation-behavioral inhibition model of anterior asymmetry.

    Science.gov (United States)

    Wacker, Jan; Chavanon, Mira-Lynn; Leue, Anja; Stemmler, Gerhard

    2008-04-01

    The measurement of anterior electroencephalograph (EEG) asymmetries has become an important standard paradigm for the investigation of affective states and traits. Findings in this area are typically interpreted within the motivational direction model, which suggests a lateralization of approach and withdrawal motivational systems to the left and right anterior region, respectively. However, efforts to compare this widely adopted model with an alternative account-which relates the left anterior region to behavioral activation independent of the direction of behavior (approach or withdrawal) and the right anterior region to goal conflict-induced behavioral inhibition-are rare and inconclusive. Therefore, the authors measured the EEG in a sample of 93 young men during emotional imagery designed to provide a critical test between the 2 models. The results (e.g., a correlation between left anterior activation and withdrawal motivation) favor the alternative model on the basis of the concepts of behavioral activation and behavioral inhibition. In addition, the present study also supports an association of right parietal activation with physiological arousal and the conceptualization of parietal EEG asymmetry as a mediator of emotion-related physiological arousal. (Copyright) 2008 APA.

  1. Effect of Sn addition on the corrosion behavior of Ti-7Cu-Sn cast alloys for biomedical applications.

    Science.gov (United States)

    Tsao, L C

    2015-01-01

    The aim of this study was to investigate the effects of Sn content on the microstructure and corrosion resistance of Ti7CuXSn (x=0-5 wt.%) samples. The corrosion tests were carried out in 0.9 wt.% NaCl solution at 25 °C. The electrochemical corrosion behavior of the Ti7CuXSn alloy samples was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and equivalent circuit analysis. The resulting impedance parameters and polarization curves showed that adding Sn improved the electrochemical corrosion behavior of the Ti7CuXSn alloy. The Ti7CuXSn alloy samples were composed of a dual-layer oxide consisting of an inner barrier layer and an outer porous layer. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Clinical Evaluation of the Self-Injurious Behavior Inhibiting System (SIBIS).

    Science.gov (United States)

    Linscheid, Thomas R.; And Others

    1990-01-01

    The Self-Injurious Behavior Inhibiting System (in which mild and brief contingent electric stimulation is delivered) was evaluated with five cases involving severe mental retardation and previously unmanageable self-injurious behavior. Findings indicated almost complete elimination of the self-injurious behavior with followup suggesting continuing…

  3. Anxiety disorders and behavioral inhibition in preschool children: a population-based study.

    Science.gov (United States)

    Paulus, Frank W; Backes, Aline; Sander, Charlotte S; Weber, Monika; von Gontard, Alexander

    2015-02-01

    This study assessed the prevalence of anxiety disorders in preschool children and their associations with behavioral inhibition as a temperamental precursor. A representative sample of 1,342 children aged 4–7 years (M = 6;1, SD = 4.80) was examined with a standardized parental questionnaire, including items referring to anxiety disorders at the current age and behavioral inhibition at the age of 2 years. The total prevalence of anxiety disorders was 22.2 %. Separation anxiety (SAD) affected 7 %, social phobia (SOC) 10.7 %, specific phobia (PHOB) 9.8 % and depression/generalized anxiety (MDD/GAD) 3.4 % of children. The prevalence of most types of anxiety was higher in girls except for separation anxiety, which affected more boys. Behavioral inhibition in the second year of life was associated with all types of anxiety. Anxiety disorders are common but frequently overlooked in preschool children. Different subtypes can be differentiated and are often preceded by behavioral inhibition. Assessment, prevention and treatment of anxiety disorders are recommended in preschool children.

  4. Tourette-like behaviors in the normal population are associated with hyperactive/impulsive ADHD-like behaviors but do not relate to deficits in conditioned inhibition or response inhibition

    Directory of Open Access Journals (Sweden)

    Nadja eHeym

    2014-09-01

    Full Text Available Attention-Deficit Hyperactivity Disorder (ADHD and Tourette Syndrome (TS present as distinct conditions clinically; however, comorbidity and inhibitory control deficits have been proposed for both. Whilst such deficits have been studied widely within clinical populations, findings are mixed – partly due to comorbidity and/or medication effects - and studies have rarely distinguished between subtypes of the disorders. Studies in the general population are sparse. Using a continuity approach, the present study examined (i the relationships between inattentive and hyperactive/impulsive aspects of ADHD and TS-like behaviors in the general population, and (ii their unique associations with automatic and executive inhibitory control, as well as (iii yawning (a proposed behavioral model of TS. One hundred and thirty-eight participants completed self-report measures for ADHD and TS-like behaviors as well as yawning, and a conditioned inhibition task to assess automatic inhibition. A sub-sample of fifty-four participants completed three executive inhibition tasks. An exploratory factor analysis of the TS behavior checklist supported a distinction between phonic and motor like pure TS behaviors. Whilst hyperactive/impulsive aspects of ADHD were associated with increased pure and compulsive TS-like behaviors, inattention in isolation was related to reduced obsessive-compulsive TS-like behaviors. TS-like behaviors were associated with yawning during situations of inactivity, and specifically motor TS was related to yawning during stress. Phonic TS and inattention aspects of ADHD were associated with yawning during concentration/activity. Whilst executive interference control deficits were linked to hyperactive/impulsive ADHD-like behaviors, this was not the case for inattentive ADHD or TS-like behaviors, which instead related to increased performance on some measures. No associations were observed for automatic conditioned inhibition.

  5. Complex living conditions impair behavioral inhibition but improve attention in rats

    Directory of Open Access Journals (Sweden)

    Rixt evan der Veen

    2015-12-01

    Full Text Available Rapid adaptation to changes, while maintaining a certain level of behavioral inhibition is an important feature in every day functioning. How environmental context and challenges in life can impact on the development of this quality is still unknown. In the present study, we examined the effect of a complex rearing environment during adolescence on attention and behavioral inhibition in adult male rats. We also tested whether these effects were affected by an adverse early life challenge, maternal deprivation. We found that animals that were raised in large, two floor MarlauTM cages, together with 10 conspecifics, showed improved attention, but impaired behavioral inhibition in the 5-choice serial reaction time task. The early life challenge of 24h maternal deprivation on postnatal day 3 led to a decline in bodyweight during adolescence, but did not by itself influence responses in the 5-choice task in adulthood, nor did it moderate the effects of complex housing. Our data suggest that a complex rearing environment leads to a faster adaptation to changes in the environment, but at the cost of lower behavioral inhibition.

  6. In-situ GISAXS study on the oxidation behavior of liquid Ga on Ni(Cu)/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weidong [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Liu, Mingling [Department of Mechanical and Electrical Engineering, Qinhuangdao Institute of Technology, Qinhuangdao 066100 (China); Wu, Zhaojun [Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006 (China); Xing, Xueqing; Mo, Guang; Wu, Zhonghua [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Hong, E-mail: lhong68@sina.com.cn [School of Biomedical Engineering, Capital Medical University, Beijing 100069 (China)

    2015-11-01

    Liquid Ga could be used as a flexible heat-transfer medium or contact medium in the synchrotron-radiation-based instruments. The chemical stability of liquid Ga on other metal surface determines the serviceability of liquid Ga. In this paper, the oxidation evolutions of liquid Ga on Ni and Cu substrates have been investigated by in-situ grazing incidence small angle X-ray scattering (GISAXS) as a function of substrate temperature. The liquid Ga on Ni and Cu substrates shows different oxidation behaviors. A successive and slower oxidation from oxide clusters to oxide layer takes place with temperature increasing from 25 to 190 °C on the surface of the Ga/Ni/Si specimen, but a quick oxidation occurs on the entire surface of the Ga/Cu/Si specimen at the initial 25 °C. The subsequent heating increases the surface roughness of both liquid Ga, but increases simultaneously the surface curvature of the Ga/Cu/Si specimen. The understanding of the substrate-dependent oxidation behavior of liquid Ga is beneficial to its application as a heat-transfer medium.

  7. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  8. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    Science.gov (United States)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.

  9. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study

    International Nuclear Information System (INIS)

    Xi, Tong; Babar Shahzad, M.; Xu, Dake; Zhao, Jinlong; Yang, Chunguang; Qi, Min; Yang, Ke

    2016-01-01

    The effect of precipitation hardening on mechanical properties and coarsening behavior of Cu-rich precipitates in a Cu-bearing 316L austenite stainless steel after aging at 700 °C for different time were systematically investigated. The variations of morphology and composition of Cu-rich precipitates as a function of aging time were respectively characterized by electrical resistivity, atom probe tomography (APT) and transmission electron microscopy (TEM). It was found that both hardness and mechanical strength increased to peak value within short aging time, and remained nearly unchanged with prolonged aging time. The TEM observation confirmed a coherent interface between Cu-rich precipitates and austenite matrix, while high number densities of spheroidal Cu-rich precipitates were observed in all aged samples. APT analyses confirmed virtually 100% Cu core composition of Cu-rich precipitates, whereas the average radius was slightly increased from 1.38±0.46 nm to 2.39±0.81 nm with increasing the aging time. The relatively slow growth and coarsening behavior of Cu-rich precipitates was largely attributed to the slower diffusion kinetics of Cu, low interfacial energy and high strain energy of Cu-rich precipitates in the austenite matrix, and was well predicted by the Lifshitz-Slyozov-Wagner theory. The slow increase in average radius of Cu-rich precipitates was consistent with the modest change in hardness and yield strength with extended aging. In addition, the precipitation strengthening effects of Cu-rich precipitates were quantitatively evaluated and analyzed. These cumulative results and analyses could provide a solid foundation for much wider applications of Cu-bearing stainless steels.

  10. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Tong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Babar Shahzad, M.; Xu, Dake; Zhao, Jinlong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Chunguang, E-mail: cgyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Qi, Min [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-10-15

    The effect of precipitation hardening on mechanical properties and coarsening behavior of Cu-rich precipitates in a Cu-bearing 316L austenite stainless steel after aging at 700 °C for different time were systematically investigated. The variations of morphology and composition of Cu-rich precipitates as a function of aging time were respectively characterized by electrical resistivity, atom probe tomography (APT) and transmission electron microscopy (TEM). It was found that both hardness and mechanical strength increased to peak value within short aging time, and remained nearly unchanged with prolonged aging time. The TEM observation confirmed a coherent interface between Cu-rich precipitates and austenite matrix, while high number densities of spheroidal Cu-rich precipitates were observed in all aged samples. APT analyses confirmed virtually 100% Cu core composition of Cu-rich precipitates, whereas the average radius was slightly increased from 1.38±0.46 nm to 2.39±0.81 nm with increasing the aging time. The relatively slow growth and coarsening behavior of Cu-rich precipitates was largely attributed to the slower diffusion kinetics of Cu, low interfacial energy and high strain energy of Cu-rich precipitates in the austenite matrix, and was well predicted by the Lifshitz-Slyozov-Wagner theory. The slow increase in average radius of Cu-rich precipitates was consistent with the modest change in hardness and yield strength with extended aging. In addition, the precipitation strengthening effects of Cu-rich precipitates were quantitatively evaluated and analyzed. These cumulative results and analyses could provide a solid foundation for much wider applications of Cu-bearing stainless steels.

  11. Relative contributions of pituitary-adrenal hormones to the ontogeny of behavioral inhibition in the rat.

    Science.gov (United States)

    Takahashi, L K; Kim, H

    1995-04-01

    Recent investigations revealed that adrenalectomized (ADX) rat pups exhibit deficits in behavioral inhibition. Furthermore, administration of exogenous corticosterone (CORT) restores behavioral inhibition in ADX pups. Although these studies suggest that CORT has an important role in the development of behavioral inhibition, the relative behavioral effects of elevated pituitary hormone secretion induced by ADX are not known. Therefore, experiments were conducted to assess the potential behavioral effects of elevated adrenocorticotropin (ACTH) secretion induced by ADX and to further evaluate the contribution of endogenous CORT to the development of behavioral inhibition. In Experiment 1., we verified that 10-day-old ADX rats exhibit high levels of plasma ACTH throughout the preweaning period associated with the development of behavioral inhibition. In Experiment 2, 10-day-old pups were hypophysectomized (HYPOX) and ADX and were compared behaviorally to sham-operated controls on day 14. When tested in the presence of an anesthetized unfamiliar adult male rat, HYPOX + ADX pups exhibited low levels of freezing accompanied by ultrasonic vocalizations. These pups also had reduced concentrations of plasma ACTH and CORT. In Experiment 3, 10-day-old pups were HYPOX and tested for behavioral inhibition on day 14. In comparison to sham-operated controls, HYPOX rats exhibited significantly lower levels of freezing and had reduced plasma concentrations of ACTH and CORT. Results demonstrate clearly that deficits in freezing occur even in the presence of low plasma ACTH concentrations. Therefore, elevated secretion of pituitary hormones is not a major factor that contributes to the ADX-induced deficits in behavioral inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Empathy Problems in Youth with Disruptive Behavior Disorders, with and without CU Traits

    NARCIS (Netherlands)

    Pijper, J.|info:eu-repo/dai/nl/369283414; de Wied, M.A.|info:eu-repo/dai/nl/089238672; van Goozen, S.; Meeus, W.H.J.|info:eu-repo/dai/nl/070442215

    2017-01-01

    This chapter first examines the nature of empathy problems in clinically referred disruptive behavior disorders (DBD) youth with callous unemotional (CU) traits. It then examines whether a lack of empathy contributes to a differentiation between DBD subtypes. The chapter also explores whether the

  13. Different Neural Networks are Involved in Cross-Modal Non-Spatial Inhibition of Return (IOR: The Effect of the Sensory Modality of Behavioral Targets

    Directory of Open Access Journals (Sweden)

    Qi Chen

    2011-10-01

    Full Text Available We employed a novel cross-modal non-spatial inhibition of return (IOR paradigm with fMRI to investigate whether object concept is organized by supramodal or modality-specific systems. A precue-neutral cue-target sequence was presented and participants were asked to discriminate whether the target was a dog or a cat. The precue and the target could be either a picture or vocalization of a dog or a cat. The neutral cue (bird was always from the same modality as the precue. Behaviorally, for both visual and auditory targets, the main effect of cue validity was the only significant effect, p<0.01, with equivalent effects for within- and cross-modal IOR. Neurally, for visual targets, left inferior frontal gyrus and left medial temporal gyrus showed significantly higher neural activity in cued than uncued condition, irrespective of the precue-target relationship, indicating that the two areas are involved in inhibiting a supramodal representation of previously attended object concept. For auditory targets, left lateral occipital gyrus and right postcentral gyrus showed significantly higher neural activity in uncued than cued condition irrespective of the cue-target relationship, indicating that the two areas are involved in creating a new supramodal representation when a novel object concept appears.

  14. Investigation of solution chemistry effects on sorption behavior of radionuclide 64Cu(II) on illite

    International Nuclear Information System (INIS)

    Shitong Yang; Guodong Sheng; Zhiqiang Guo; Yubing Sun; Donglin Zhao

    2011-01-01

    In this work, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, coexisting electrolyte ions, humic substances and temperature on the sorption behavior of illite towards 64 Cu(II). The results indicated that 64 Cu(II) sorption on illite achieved equilibrium quickly. The pH- and ionic strength-dependent sorption suggested that 64 Cu(II) sorption on illite was dominated by ion exchange or outer-sphere surface complexation at pH 7. A positive effect of humic substances on 64 Cu(II) sorption was found at pH 6.5. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 64 Cu(II) at three different temperatures of 293, 313, and 333 K. The thermodynamic parameters (ΔH 0 , ΔS 0 , and ΔG 0 ) of 64 Cu(II) sorption on illite were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption of 64 Cu(II) on illite was endothermic and spontaneous. From the experimental results, it is possible to conclude that illite has good potentialities for cost-effective treatments of 64 Cu(II)-contaminated wastewaters. (author)

  15. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    Science.gov (United States)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  16. Behavioral inhibition system (BIS), Behavioral activation system (BAS) and schizophrenia : Relationship with psychopathology and physiology

    NARCIS (Netherlands)

    Scholten, Marion R. M.; van Honk, Jack; Aleman, Andre; Kahn, Rene S.

    2006-01-01

    Objective: The Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been conceptualized as two neural motivational systems that regulate sensitivity to punishment (BIS) and reward (BAS). Imbalance in BIS and BAS levels has been reported to be related to various forms of

  17. Behavior of Electrochemically Prepared CuInSe2 as Photovoltaic Absorber in thin Film Solar Cells

    International Nuclear Information System (INIS)

    Guillen, C; Martinez, M.A.; Dona, J. M.; Herrero, J; Gutierrez, M. T.

    2000-01-01

    Two different objectives have been pursued in the present investigation: 1) optimization of the CuInSe, preparation parameters from electrodeposited precursors, and 2) evaluation of their photovoltaic behavior by preparing and enhancing Mo/CuInSe,/CdS/TCO devices. When Cu-In-Se precursors are directly electrodeposited, the applied potential fit is essential to improve the photovoltaic performance. Suitable absorbers have been also obtained by evaporating an In layer onto electrodeposited Cu-Se precursors. In this case, the substrate temperature during evaporation determines the CuInSe, quality. Similar results have been reached by substituting typical Mo-coated glass substrates by flexible Mo foils. Different TCO tested (ZnO and ITO) have been found equivalent as front electrical contact in the devices. Solar cell performance can be improved by annealing in air at 200 degree centigree. (Author) 46 refs

  18. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  19. Influence of Temperature on Mechanical Behavior During Static Restore Processes of Al-Zn-Mg-Cu High Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Kun

    2017-06-01

    Full Text Available Flow stress behaviors of as-cast Al-Zn-Mg-Cu high strength aluminum alloy during static restore processes were investigated by: Isothermal double-pass compression tests at temperatures of 300-400℃, strain rates of 0.01-1 s-1, strains of 33% +20% with the holding times of 0~900 s after the first pass compression. The results indicate that the deformation temperature has a dramatical effect on mechanical behaviors during static restore processes of the alloy. (1 At 300 ℃ and 330 ℃ lower temperatures, the recovery during the deformation is slow, and deformation energy stored in matrix is higher, flow stresses at the second pass deformation decreased during the recovery and recrystallization, and the stress softening phenomena is observed. Stress softening is increased with the increasing holding time; Precipitation during the holding time inhibites the stress softening. (2 At 360 ℃ and 400 ℃ higher temperatures, the recovery during deformation is rapid, and deformation energy stored in matrix is lower. Solid solubility is higher after holding, so that flow stress at the second pass deformation is increased, stress hardening phenomena is observed. Stress hardening decreased with the increasing holding time duo to the recovery and recrystallization during holding period at 360 ℃; Precipitation during holding also inhibited the stress softening. However, Stress hardening remains constant with the increasing holding time duo to the reasanenal there are no recovery and recrystallization during holding period at 400 ℃.

  20. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    Science.gov (United States)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  1. Does Early Childhood Callous-Unemotional Behavior Uniquely Predict Behavior Problems or Callous-Unemotional Behavior in Late Childhood?

    Science.gov (United States)

    Waller, Rebecca; Dishion, Thomas J.; Shaw, Daniel S.; Gardner, Frances; Wilson, Melvin N.; Hyde, Luke W.

    2016-01-01

    Callous-unemotional (CU) behavior has been linked to behavior problems in children and adolescents. However, few studies have examined whether CU behavior in "early childhood" predicts behavior problems or CU behavior in "late childhood". This study examined whether indicators of CU behavior at ages 2-4 predicted aggression,…

  2. Beyond Behavioral Inhibition: A Computer Avatar Task Designed to Assess Behavioral Inhibition Extends to Harm Avoidance

    Directory of Open Access Journals (Sweden)

    Michael Todd Allen

    2017-09-01

    Full Text Available Personality factors such as behavioral inhibition (BI, a temperamental tendency for avoidance in the face of unfamiliar situations, have been identified as risk factors for anxiety disorders. Personality factors are generally identified through self-report inventories. However, this tendency to avoid may affect the accuracy of these self-report inventories. Previously, a computer based task was developed in which the participant guides an on-screen “avatar” through a series of onscreen events; performance on the task could accurately predict participants’ BI, measured by a standard paper and pencil questionnaire (Adult Measure of Behavioral Inhibition, or AMBI. Here, we sought to replicate this finding as well as compare performance on the avatar task to another measure related to BI, the harm avoidance (HA scale of the Tridimensional Personality Questionnaire (TPQ. The TPQ includes HA scales as well as scales assessing reward dependence (RD, novelty seeking (NS and persistence. One hundred and one undergraduates voluntarily completed the avatar task and the paper and pencil inventories in a counter-balanced order. Scores on the avatar task were strongly correlated with BI assessed via the AMBI questionnaire, which replicates prior findings. Females exhibited higher HA scores than males, but did not differ on scores on the avatar task. There was a strong positive relationship between scores on the avatar task and HA scores. One aspect of HA, fear of uncertainty was found to moderately mediate the relationship between AMBI scores and avatar scores. NS had a strong negative relationship with scores on the avatar task, but there was no significant relationship between RD and scores on the avatar task. These findings indicate the effectiveness of the avatar task as a behavioral alternative to self-report measures to assess avoidance. In addition, the use of computer based behavioral tasks are a viable alternative to paper and pencil self

  3. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  4. AgCuO2: Preparationand Electrochemical Behaviors in Alkaline Electrolytes%AgCuO2:制备及其在碱性溶液中的电化学行为

    Institute of Scientific and Technical Information of China (English)

    张婷锦; 张校刚; 胡风平

    2005-01-01

    The silver cuprate AgCuO2 powder was prepared by a chemical co-precipitation method and characterized by XRD, SEM and TEM techniques. The electrochemical behaviors of AgCuO2 electrodes and AgCuO2 modified by sulfur were studied by means of galvanostatic discharge and line sweep voltammetry experiments. The resuits indicated that the specific capacity of AgCuO2 could reach 422.32 mAh·g-1 at middle discharge rate and the addition of sulfur could significantly improve the discharge performance of AgCuO2. The mechanism for this modified effect was also discussed.

  5. Site-SpecificCu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N), Using Copper Free Click Chemistry

    DEFF Research Database (Denmark)

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H

    2018-01-01

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migrati...

  6. Behavioral inhibition and risk for posttraumatic stress symptoms in Latino children exposed to violence.

    Science.gov (United States)

    Gudiño, Omar G

    2013-08-01

    Latino children in urban contexts marked by poverty are at high risk of being exposed to violence and developing posttraumatic stress disorder (PTSD). Nonetheless, there is great variability in individual responses to violence exposure. This study examines risk for developing re-experiencing, avoidance, and arousal symptoms of PTSD as a function of individual differences in behavioral inhibition and exposure to community violence. Participants were 148 Latino students (M age =11.43 years, SD = 0.69; 55 % girls) living in an area marked by poverty and crime. Children completed self-report measures of behavioral inhibition and posttraumatic stress symptoms during a baseline assessment. During a follow-up interview 6 months later, children completed self-report measures of exposure to community violence since the baseline assessment and posttraumatic stress symptoms. Structural equation models revealed that behavioral inhibition at baseline was positively associated with PTSD avoidance and arousal symptoms at follow-up, after controlling for symptoms at baseline. Furthermore, behavioral inhibition moderated the association between violence exposure and symptoms such that violence was more strongly associated with the development of PTSD avoidance symptoms as behavioral inhibition increased. Results suggest that individual differences in behavioral inhibition contribute to risk for specific PTSD symptoms and are important for understanding variation in responses to trauma exposure. By examining diathesis--stress models within a disorder, we may be better able to elucidate the etiology of a disorder and translate this improved understanding into personalized intervention approaches that maximize effectiveness.

  7. Effects of CuO nanoparticles on Lemna minor.

    Science.gov (United States)

    Song, Guanling; Hou, Wenhua; Gao, Yuan; Wang, Yan; Lin, Lin; Zhang, Zhiwei; Niu, Qiang; Ma, Rulin; Mu, Lati; Wang, Haixia

    2016-12-01

    Copper dioxide nanoparticles (NPs), which is a kind of important and widely used metal oxide NP, eventually reaches a water body through wastewater and urban runoff. Ecotoxicological studies of this kind of NPs effects on hydrophyte are very limited at present. Lemna minor was exposed to media with different concentrations of CuO NPs, bulk CuO, and two times concentration of Cu 2+ released from CuO NPs in culture media. The changes in plant growth, chlorophyll content, antioxidant defense enzyme activities [i.e., peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) activities], and malondialdehyde (MDA) content were measured in the present study. The particle size of CuO NPs and the zeta potential of CuO NPs and bulk CuO in the culture media were also analyzed to complementally evaluate their toxicity on duckweed. Results showed that CuO NPs inhibited the plant growth at lower concentration than bulk CuO. L. minor roots were easily broken in CuO NPs media under the experimental condition, and the inhibition occurred only partly because CuO NPs released Cu 2+ in the culture media. The POD, SOD, and CAT activities of L. minor increased when the plants were exposed to CuO NPs, bulk CuO NPs and two times the concentration of Cu 2+ released from CuO NPs in culture media, but the increase of these enzymes were the highest in CuO NPs media among the three kinds of materials. The MDA content was significantly increased compared with that of the control from 50 mg L -1 CuO NP concentration in culture media. CuO NPs has more toxicity on L. minor compared with that of bulk CuO, and the inhibition occurred only partly because released Cu 2+ in the culture media. The plant accumulated more reactive oxygen species in the CuO NP media than in the same concentration of bulk CuO. The plant cell encountered serious damage when the CuO NP concentration reached 50 mg L -1 in culture media. The toxicology of CuO NP on hydrophytes must be considered because that hydrophytes

  8. Physiological markers of motor inhibition during human behavior

    Science.gov (United States)

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  9. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in [Department of Metallurgical Engineering, IIT (BHU), Varanasi and DST Unit on Nanoscience and Technology, BHU, Varanasi-221 005 (India); Manda, Premkumar; Singh, A. K. [DefenceMetallurgical Research Laboratory, KanchanBagh, Hyderabad-500058 (India)

    2015-10-15

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  10. The fundamental structural factor in determining the glass-forming ability and mechanical behavior in the Cu-Zr metallic glasses

    International Nuclear Information System (INIS)

    Sha, Z.D.; Feng, Y.P.; Li, Y.

    2011-01-01

    Research highlights: → A weak but significant hump in trend of the coordinate number and density was observed, respectively. → Our findings indicate our simulation is more accurate to describe the atomic structure of Cu-Zr MGs. The composition-structure-properties correlation was established. → And the effective structural unit for this correlation is the Cu-centered full icosahedra. - Abstract: Using the large-scale atomic/molecular massively parallel simulator, the quantitative composition-structure-properties (including glass-forming ability (GFA) and mechanical behavior) correlations in the Cu-Zr metallic glasses were established. The atomic-level origin of these correlations was tracked down. It was found that the Cu-centered full icosahedron is the microscopic factor that fundamentally influences both GFA and mechanical behavior. Our findings have implications for understanding the nature, forming ability and properties of metallic glasses, and for searching novel metallic glasses with unique functional properties.

  11. Deep Roots? Behavioral Inhibition and Behavioral Activation System (BIS/BAS) Sensitivity and Entrepreneurship

    NARCIS (Netherlands)

    Lerner, Daniel; Hatak, Isabella; Rauch, Andreas

    2018-01-01

    A growing number of studies suggest a link between disinhibition and entrepreneurship. Separately, psychology literature has theorized and empirically shown that the roots of disinhibition can largely be traced to two psychophysiological systems – the behavioral inhibition system (BIS) and

  12. Finasteride inhibited brain dopaminergic system and open-field behaviors in adolescent male rats.

    Science.gov (United States)

    Li, Li; Kang, Yun-Xiao; Ji, Xiao-Ming; Li, Ying-Kun; Li, Shuang-Cheng; Zhang, Xiang-Jian; Cui, Hui-Xian; Shi, Ge-Ming

    2018-02-01

    Finasteride inhibits the conversion of testosterone to dihydrotestosterone. Because androgen regulates dopaminergic system in the brain, it could be hypothesized that finasteride may inhibit dopaminergic system. The present study therefore investigates the effects of finasteride in adolescent and early developmental rats on dopaminergic system, including contents of dopamine and its metabolites (dihydroxy phenyl acetic acid and homovanillic acid) and tyrosine hydroxylase expressions both at gene and protein levels. Meanwhile, open-field behaviors of the rats are examined because of the regulatory effect of dopaminergic system on the behaviors. Open-field behaviors were evaluated by exploratory and motor behaviors. Dopamine and its metabolites were assayed by liquid chromatography-mass spectrometry. Tyrosine hydroxylase mRNA and protein expressions were determined by real-time qRT-PCR and western blot, respectively. It was found that in adolescent male rats, administration of finasteride at doses of 25 and 50 mg/kg for 14 days dose dependently inhibited open-field behaviors, reduced contents of dopamine and its metabolites in frontal cortex, hippocampus, caudate putamen, nucleus accumbens, and down-regulated tyrosine hydroxylase mRNA and protein expressions in substantia nigra and ventral tegmental area. However, there was no significant change of these parameters in early developmental rats after finasteride treatment. These results suggest that finasteride inhibits dopaminergic system and open-field behaviors in adolescent male rats by inhibiting the conversion of testosterone to dihydrotestosterone, and imply finasteride as a potential therapeutic option for neuropsychiatric disorders associated with hyperactivities of dopaminergic system and androgen. © 2017 John Wiley & Sons Ltd.

  13. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  14. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  15. Response inhibition signals and miscoding of direction in dorsomedial striatum

    Directory of Open Access Journals (Sweden)

    Daniel W Bryden

    2012-09-01

    Full Text Available The ability to inhibit action is critical for everyday behavior and is affected by a variety of disorders. Behavioral control and response inhibition is thought to depend on a neural circuit that includes the dorsal striatum, yet the neural signals that lead to response inhibition and its failure are unclear. To address this issue, we recorded from neurons in rat dorsomedial striatum (mDS in a novel task in which rats responded to a spatial cue that signaled that reward would be delivered either to the left or to the right. On 80% of trials rats were instructed to respond in the direction cued by the light (GO. On 20% of trials a second light illuminated instructing the rat to refrain from making the cued movement and move in the opposite direction (STOP. Many neurons in mDS encoded direction, firing more or less strongly for GO movements made ipsilateral or contralateral to the recording electrode. Neurons that fired more strongly for contralateral GO responses were more active when rats were faster, showed reduced activity on STOP trials, and miscoded direction on errors, suggesting that when these neurons were overly active, response inhibition failed. Neurons that decreased firing for contralateral movement were excited during trials in which the rat was required to stop the ipsilateral movement. For these neurons activity was reduced when errors were made and was negatively correlated with movement time suggesting that when these neurons were less active on STOP trials, response inhibition failed. Finally, the activity of a significant number of neurons represented a global inhibitory signal, firing more strongly during response inhibition regardless of response direction. Breakdown by cell type suggests that putative medium spiny neurons tended to fire more strongly under STOP trials, whereas putative interneurons exhibited both activity patterns. 

  16. Hazardous drinking and dimensions of impulsivity, behavioral approach, and inhibition in adult men and women.

    Science.gov (United States)

    Hamilton, Kristen R; Sinha, Rajita; Potenza, Marc N

    2012-06-01

    Hazardous drinking is characterized by decisions to engage in excessive or risky patterns of alcohol consumption. Levels of impulsivity and behavioral approach and inhibition may differ in hazardous drinkers and nonhazardous drinkers. A comparison of the relative levels of dimensions of impulsivity and behavioral inhibition and approach in adult men and women hazardous and nonhazardous drinkers may inform treatment and prevention efforts. In the present research, 466 men and women from a community sample were administered the Alcohol Use Disorders Identification Test (AUDIT), the Behavioral Inhibition System/Behavioral Approach System (BIS/BAS) scale, and the Barratt Impulsiveness Scale, version 11 (BIS-11). Relations among the dimensions of these constructs were examined using multivariate analysis of covariance (MANCOVA), with age and race as covariates. There were main effects of hazardous drinking on all 3 dimensions of impulsivity, the behavioral inhibition system, and the behavioral activation system Reward Responsiveness, and Fun-Seeking components, with hazardous drinkers scoring higher than nonhazardous drinkers. This research provides a better understanding of the manner in which impulsivity and behavioral inhibition and approach tendencies relate to hazardous alcohol use in men and women. The present results have implications for alcohol-related prevention and treatment strategies for adult men and women. Copyright © 2012 by the Research Society on Alcoholism.

  17. Microgalvanic Corrosion Behavior of Cu-Ag Active Braze Alloys Investigated with SKPFM

    Directory of Open Access Journals (Sweden)

    Armen Kvryan

    2016-04-01

    Full Text Available The nature of microgalvanic couple driven corrosion of brazed joints was investigated. 316L stainless steel samples were joined using Cu-Ag-Ti and Cu-Ag-In-Ti braze alloys. Phase and elemental composition across each braze and parent metal interface was characterized and scanning Kelvin probe force microscopy (SKPFM was used to map the Volta potential differences. Co-localization of SKPFM with Energy Dispersive Spectroscopy (EDS measurements enabled spatially resolved correlation of potential differences with composition and subsequent galvanic corrosion behavior. Following exposure to the aggressive solution, corrosion damage morphology was characterized to determine the mode of attack and likely initiation areas. When exposed to 0.6 M NaCl, corrosion occurred at the braze-316L interface preceded by preferential dissolution of the Cu-rich phase within the braze alloy. Braze corrosion was driven by galvanic couples between the braze alloys and stainless steel as well as between different phases within the braze microstructure. Microgalvanic corrosion between phases of the braze alloys was investigated via SKPFM to determine how corrosion of the brazed joints developed.

  18. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    -aided video tracking, whereupon the whole body AChE activity was measured in the individual beetle. AChE inhibition was strongly correlated with dimethoate dose in both sexes. Alterations in the locomotor behavior were directly correlated with AChE inhibition in male beetles, which responded by reducing...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer...... the time in locomotion, average velocity, and path length and by increasing the turning rate and frequency of stops. Females responded similarly at the two highest doses, whereas their locomotor behavior was not significantly different from the control group at the lowest dimethoate dose, suggesting a sex...

  19. Behavior of tungsten coatings on CuCrZr heat sink with the different interlayers under high heat flux

    International Nuclear Information System (INIS)

    Chong, F.L.; Chen, J.L.; Li, J.G.; Zheng, X.B.; Hu, D.Y.; Ding, C.X.

    2007-01-01

    In recent years, tungsten coated CuCrZr by means of vacuum plasma spraying technology was studied at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Plasma spraying technology is a good integration way of armor material and heat sink, which overcomes the disadvantage of heavy weight and poor workability of tungsten, and offers the ability to coat large area, even complex shapes and in situ repair of damaged parts. But tungsten coated CuCrZr is a challenge due to the larger mismatch of their thermal expansion coefficients (CTE), which will induce the stress concentration on the joint interface of plasma facing component. In order to enhance the adhesion of W coating on CuCrZr substrate and avoid the thermal stress concentration, it is necessary to use a compliant interlayer. At present, titanium (Ti), nickel-chromium-aluminum (NiCrAl) alloys and W/Cu mixtures were chosen as the compliant layers to insert between W coating and CuCrZr substrate. The adhesion strength was performed at RT. The behaviors of W/Cu mock up under high heat flux were carried out by means of the electron beam facility with actively cooling. The results indicated that the mock-ups with the interlayer architectures can withstand the higher heat flux compared to that with the sharp interface, which exhibited the effect of interlayers on reducing the maximum stress and enhancing the properties of resistant heat flux load, though the maximum surface temperature increased due to inserting the interlayers. Among three interlayers, W/Cu interlayer was much better due to its good heat removal capability and flexible W/Cu ratios. Meanwhile, the behaviors of W/Cu mock-ups with the different interlayers were analyzed and optimized by ANSYS finite element code. (authors)

  20. Effects of oxygen stoichiometry on the scaling behaviors of YBa2Cu3Ox grain boundary weak-links

    International Nuclear Information System (INIS)

    Wu, K.H.; Fu, C.M.; Jeng, W.J.

    1994-01-01

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa 2 Cu 3 O x bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealling processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e. with x=7.0 in YBa 2 Cu 3 O x stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g. with x=6.9 in YBa 2 Cu 3 O x stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given

  1. Infiltration Behavior Of Mechanical Alloyed 75 wt% Cu-25 wt% WC Powders Into Porous WC Compacts

    Directory of Open Access Journals (Sweden)

    Şelte A.

    2015-06-01

    Full Text Available In this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.

  2. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  3. Preparation and tribological behavior of Cu-nanoparticle polyelectrolyte multilayers obtained by spin-assisted layer-by-layer assembly

    International Nuclear Information System (INIS)

    Yang Guangbin; Geng Zhengang; Ma Hongxia; Wu Zhishen; Zhang Pingyu

    2009-01-01

    Polyelectrolyte multilayers (PEMs) fabricated by spin-assisted layer-by-layer assembly technique were used as nanoreactors for in-situ synthesis Cu nanoparticles. Chemical reaction within the PEMs was initiated by a reaction cycle in which Cu 2+ was absorbed into the polymer-coated substrate and then reduced in NaBH 4 solutions. Repeating the above process resulted in an increase in density of the nanoparticles and further growth in the dimension of the particles initially formed. So, different Cu-nanoparticle polyelectrolyte multilayers were formed in the process. The friction and wear properties of Cu-nanoparticle PEMs formed by different reaction cycles were investigated on a microtribometer against a stainless steel ball. The PEMs reinforced with Cu nanoparticles, prepared under the best preparation conditions, possess good tribological behavior, because of the weakened adhesion between the PEMs and the substrate and decreased mobility of the polymeric chains in the presence of excessive Cu nanoparticles generated at larger reaction cycles

  4. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  5. Testing Alternative Hypotheses Regarding the Association between Behavioral Inhibition and Language Development in Toddlerhood

    Science.gov (United States)

    Watts, Ashley K. Smith; Patel, Deepika; Corley, Robin P.; Friedman, Naomi P.; Hewitt, John K.; Robinson, JoAnn L.; Rhee, Soo H.

    2014-01-01

    Studies have reported an inverse association between language development and behavioral inhibition or shyness across childhood, but the direction of this association remains unclear. This study tested alternative hypotheses regarding this association in a large sample of toddlers. Data on behavioral inhibition and expressive and receptive…

  6. Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution

    Science.gov (United States)

    Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.

    2017-10-01

    The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.

  7. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    International Nuclear Information System (INIS)

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-01

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: ► The microstructure of Cu-Al alloy is modified in the Ag presence. ► (α + γ) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. ► Ag-rich phase modifies the magnetic characteristics of Cu–Al–Mn alloy.

  8. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  9. Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses

    International Nuclear Information System (INIS)

    Jiang, W.H.; Liu, F.X.; Wang, Y.D.; Zhang, H.F.; Choo, H.; Liaw, P.K.

    2006-01-01

    As-cast bulk and as-spun ribbon Cu 60 Zr 30 Ti 10 metallic glasses were characterized using differential-scanning calorimetry and instrumented nanoindentation. Two alloys show a significant difference in the amount of free volume, which is attributed to the difference in a cooling rate, while exhibiting a similar serrated plastic flow. Atomic-force-microscopy observations demonstrate the pile-ups containing shear bands around the indents in both alloys. The as-cast bulk alloy has higher hardness and elastic modulus than the as-spun ribbon alloy. The difference in the strengths of two alloys may be related to the different amount of free volume. The strength seems to be more sensitive to a cooling rate during solidification than the plastic-flow behavior in the Cu 60 Zr 30 Ti 10

  10. Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium

    International Nuclear Information System (INIS)

    Bai, Zhihao; Qiu, Feng; Wu, Xiaoxue; Liu, Yingying; Jiang, Qichuan

    2013-01-01

    The effects of praseodymium on age hardening behavior and creep resistance of cast Al–Cu alloy were investigated. The results indicated that praseodymium facilitated the formation of the θ′ precipitates during the age process and improved the hardness of the Al–Cu alloy. Besides, praseodymium resulted in the formation of the Al 11 Pr 3 phase in the grain boundaries and among the dendrites of the modified alloy. Because of the good thermal stability of Al 11 Pr 3 phase, it inhibits grain boundary migration and dislocation movement during the creep process, which contributes to the improvement in the creep resistance of the modified alloy at elevated temperatures. - Highlights: • Pr addition enhances the hardness and creep resistance of the Al–Cu alloy. • Pr addition facilitates the formation of the θ′ precipitates. • Pr addition results in the formation of the Al11Pr3 phase in the Al–Cu alloy

  11. Eutectic crystallization behavior of new Zr48Cu36Al8Ag8 alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Zhang, Q S; Zhang, W; Xie, G Q; Inoue, A

    2009-01-01

    A water quenching method is used to produce as-cast Zr 48 Cu 36 Al 8 Ag 8 rods with diameters from 20 mm to 25 mm. The microstructures of the as-cast samples were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Furthermore, the crystallization behavior of the Zr 48 Cu 36 Al 8 Ag 8 glassy alloy was examined by XRD and transmission electron microscopy. Based on the results obtained one can assume that the simultaneous precipitation of the Zr 2 Cu+AlCu 2 Zr eutectic phases is the possible reason for the high stabilization of the quaternary Zr 48 Cu 36 Al 8 Ag 8 supercooled liquid.

  12. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  13. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  14. Attention Biases to Threat Link Behavioral Inhibition to Social Withdrawal over Time in Very Young Children

    Science.gov (United States)

    Perez-Edgar, Koraly; Reeb-Sutherland, Bethany C.; McDermott, Jennifer Martin; White, Lauren K.; Henderson, Heather A.; Degnan, Kathryn A.; Hane, Amie A.; Pine, Daniel S.; Fox, Nathan A.

    2011-01-01

    Behaviorally inhibited children display a temperamental profile characterized by social withdrawal and anxious behaviors. Previous research, focused largely on adolescents, suggests that attention biases to threat may sustain high levels of behavioral inhibition (BI) over time, helping link early temperament to social outcomes. However, no prior…

  15. CuO nanoparticles and their antimicrobial activity against nosocomial strains

    Directory of Open Access Journals (Sweden)

    Mónica Marcela Gómez León

    2017-09-01

    Full Text Available Using a prototype reactor, CuO nanoparticles (NPs were synthetized through the precipitation method, starting from CuSO2·5H2O and Cu(CH3COO2·H2O. The obtained NPs were characterized by XDR, FT-IR, SEM, and TEM. The antimicrobial activity of the NPs was determined by the plate diffusion method, placing 20 mg of NPs onto four nosocomial strains obtained from north Lima national hospital Intensive-Care Unit (Staphylococcus epidermidis, Aerococcus viridans, Ochrobactrum anthropic, and Micrococcus lylae. NPs characterization revealed that those synthetized from acetate (CuO–Acet shown pure CuO phase, while those synthetized from sulphate CuO–Sulf shown two phases where CuO was the predominant one, having more than 84%. The crystal domains for CuO–Acet and CuO–Sulf were 15 and 19 nm, respectively. The inhibition halos for the studied strains were larger for CuO–Sulf NPs than CuO–Acet NPs, only Ochrobactrum anthropi displayed similar inhibition halos for both types of NPs.

  16. Callous-Unemotional Features, Behavioral Inhibition, and Parenting: Independent Predictors of Aggression in a High-Risk Preschool Sample

    Science.gov (United States)

    Kimonis, Eva R.; Frick, Paul J.; Boris, Neil W.; Smyke, Anna T.; Cornell, Amy H.; Farrell, Jamie M.; Zeanah, Charles H.

    2006-01-01

    A behaviorally-uninhibited temperament, callous-unemotional (CU) features, and harsh parenting have been associated with specific patterns of aggressive behavior in older children and adolescents. We tested the additive and interactive effects of these factors in predicting different types of aggressive behavior in a high-risk preschool sample.…

  17. Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Justin Raj, C.; Kim, Byung Chul; Cho, Won-Je; Lee, Won-Gil; Seo, Yongseong; Yu, Kook-Hyun, E-mail: yukook@dongguk.edu

    2014-02-15

    Highlights: • The electrochemical supercapacitor electrode was fabricated using CuS nanoplatelets. • CuS electrodes shows better electrochemical properties in aqueous LiClO{sub 4} electrolyte. • The heat treated CuS electrode shows an excellent pseudocapacitance performance than bare CuS electrode. -- Abstract: Copper sulfide (CuS) nanoplatelets have been fabricated by simple low temperature chemical bath deposition technique for electrochemical supercapacitor electrodes. The morphology and structural properties of the electrodes were analyzed using scanning electron microscopy and X-ray diffraction. The effect of heat treatment on electrochemical properties of CuS electrodes were examined by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge tests. Results show that bare and heat treated CuS has pseudocapacitive characteristic within the potential range of −0.6 to 0.3 V (vs. Ag/AgCl) in aqueous 1 M LiClO{sub 4} solution. The pseudocapacitance is induced mainly by lithium ions insertion/extraction with the CuS electrodes. The specific capacitance of 72.85 F g{sup −1} was delivered by heat treated CuS film at a scan rate of 5 mV s{sup −1} with an energy and power density of 6.23 W h kg{sup −1} and 1.75 kW kg{sup −1} at 3 Ag{sup −1} constant discharge current which is comparatively higher than that of as deposited CuS electrode.

  18. Fatigue crack micromechanisms in a Cu-Zn-Al shape memory alloy with pseudo-elastic behavior

    Directory of Open Access Journals (Sweden)

    Vittorio Di Cocco

    2015-10-01

    Full Text Available Shape memory property characterizes the behavior of many Ti based and Cu based alloys (SMAs. In Cu-Zn-Al SMAs, the original shape recovering is due to a bcc phase that is stable at high temperature. After an appropriate cooling process, this phase (β-phase or austenitic phase transforms reversibly into a B2 structure (transition phase and, after a further cooling process or a plastic deformation, it transforms into a DO3 phase (martensitic phase. In β-Cu-Zn-Al SMAs, the martensitic transformation due to plastic deformation is not stable at room temperature: a high temperature “austenitization” process followed by a high speed cooling process allow to obtain a martensitic phase with a higher stability. In this work, a Cu-Zn-Al SMA in “as cast” conditions has been microstructurally and metallographically characterized by means of X-Ray diffraction and Light Optical Microscope (LOM observations. Fatigue crack propagation resistance and damaging micromechanisms have been investigated corresponding to three different load ratios (R=0.10, 0.50 and 0.75

  19. Aggression, emotional self-regulation, attentional bias, and cognitive inhibition predict risky driving behavior.

    Science.gov (United States)

    Sani, Susan Raouf Hadadi; Tabibi, Zahra; Fadardi, Javad Salehi; Stavrinos, Despina

    2017-12-01

    The present study explored whether aggression, emotional regulation, cognitive inhibition, and attentional bias towards emotional stimuli were related to risky driving behavior (driving errors, and driving violations). A total of 117 applicants for taxi driver positions (89% male, M age=36.59years, SD=9.39, age range 24-62years) participated in the study. Measures included the Ahwaz Aggression Inventory, the Difficulties in emotion regulation Questionnaire, the emotional Stroop task, the Go/No-go task, and the Driving Behavior Questionnaire. Correlation and regression analyses showed that aggression and emotional regulation predicted risky driving behavior. Difficulties in emotion regulation, the obstinacy and revengeful component of aggression, attentional bias toward emotional stimuli, and cognitive inhibition predicted driving errors. Aggression was the only significant predictive factor for driving violations. In conclusion, aggression and difficulties in regulating emotions may exacerbate risky driving behaviors. Deficits in cognitive inhibition and attentional bias toward negative emotional stimuli can increase driving errors. Predisposition to aggression has strong effect on making one vulnerable to violation of traffic rules and crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII.

    Science.gov (United States)

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K; Jensen, Mette M; El Ali, Henrik H; Madsen, Jacob; Wiinberg, Bo; Petersen, Lars C; Kjaer, Andreas

    2016-07-01

    Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF. The purpose of this study was to investigate the possibility of using active site-inhibited FVII (FVIIai) labeled with (64)Cu for PET imaging of TF expression. FVIIai was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (64)Cu ((64)Cu-NOTA-FVIIai). Longitudinal in vivo PET imaging was performed at 1, 4, 15, and 36 h after injection of (64)Cu-NOTA-FVIIai in mice with pancreatic adenocarcinomas (BxPC-3). The specificity of TF imaging with (64)Cu-NOTA-FVIIai was investigated in subcutaneous pancreatic tumor models with different levels of TF expression and in a competition experiment. In addition, imaging of orthotopic pancreatic tumors was performed using (64)Cu-NOTA-FVIIai and PET/MRI. In vivo imaging data were supported by ex vivo biodistribution, flow cytometry, and immunohistochemistry. Longitudinal PET imaging with (64)Cu-NOTA-FVIIai showed a tumor uptake of 2.3 ± 0.2, 3.7 ± 0.3, 3.4 ± 0.3, and 2.4 ± 0.3 percentage injected dose per gram at 1, 4, 15, and 36 h after injection, respectively. An increase in tumor-to-normal-tissue contrast was observed over the imaging time course. Competition with unlabeled FVIIai significantly (P < 0.001) reduced the tumor uptake. The tumor uptake observed in models with different TF expression levels was significantly different from each other (P < 0.001) and was in agreement with

  1. The Relationship of Behavioral Activation and Inhibition Systems (BAS/BIS, Difficulty of Emotional Regulation, Metacognition with Worry

    Directory of Open Access Journals (Sweden)

    S. Soltan Mohammadlou

    2014-11-01

    Full Text Available Worry is a popular phenomenon and a common feature of many disorders, especially anxiety disorders. The objective of the study was to predict worry by using three predictive factors related to biological, emotional and cognition areas. In this study, behavioral inhibition, behavioral activation system, difficulties in emotion regulation and metacognition were examined as predictive variables. In a correlation cross-sectional design, 234 Medical Group students [BA and MA] of Tehran University of Medical Sciences participated in this study by using cluster sampling. The students completed these scales: Behavioral Inhibition and Behavioral Activation Systems (BAS/BIS, Difficulty of Emotion Regulation Scale (DERS, Metacognition Questionnaire-30 (MCQ-30 and Penn State Worry Questionnaire (PSWQ. Behavioral inhibition system, difficulty of emotion rgulation and metacognition variables were significantly positively correlated with worry (P<0/0 1(. Behavioral activation system variable was not significantly associated with worry. Stepwise multiple regression analysis indicated a predictive model for worry in which behavioral inhibition system, difficulty of emotional regulation and metacognition were its components respectively. Behavioral activation system was not included in the model. The findings of this study that worry should be studied in different biological, emotional, and metacognitive aspects. The results also emphasize the role of behavioral inhibition system as a temperamental and biological factor in psychopathology of worry in adult population.

  2. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy.

    Science.gov (United States)

    Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng

    2018-01-01

    This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The corrosion behavior of the T1 (Al2CuLi) intermetallic compound in aqueous environments

    Science.gov (United States)

    Buchheit, R. G.; Stoner, G. E.

    1989-01-01

    The intermetallic compound T1 (Al2CuLi) is suspected to play an important role in the localized corrosion at subgrain boundaries in Al-Li-Cu alloys. The intermetallic was synthesized for characterization of its corrosion behavior. Experiments performed included open circuit potential measurements, potentiodynamic polarization, and corrosion rate vs. pH in solutions whose pH was varied over the range of 3 to 11. Subgrain boundary pitting and continuous subgrain boundary corrosion are discussed in terms of the data obtained. Evidence suggesting the dealloying of copper from this compound is also presented.

  4. Correlation between zirconium oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Lee, Myung Ho; Choi, Byoung Kwon; Jeong, Yong Hwan; Jung, Youn Ho

    2001-01-01

    To evaluate the correlation of Zr oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys, the corrosion behavior of the alloys was tested in the autoclave containing 70 ppm LiOH solution at 360 .deg. C. The characteristics of the oxide on the alloys were investigated by using the electrochemical impedance spectrosocpy (EIS) method. The corrosion resistance of the alloys was evaluated from the corrosion rate determined as a function of the concentration of Nb. The equivalent circuit of the oxide was composed on the base of the spectrum from EIS measurements on the oxide layers that had formed at pre-and post-transition regions on the curve of corrosion rate. By using the capacitance characteristics of the equivalent circuit, the thickness of impervious layer, it's electrical resistance and characteristics of space charge layer were evaluated. The corrosion characteristics of the Zr-Nb-Sn-Fe-Cu alloys were successfully explained by applying the EIS test results

  5. Activation of dopamine receptors in the nucleus accumbens promotes sucrose-reinforced cued approach behavior

    Directory of Open Access Journals (Sweden)

    Saleem M. Nicola

    2016-07-01

    Full Text Available Dopamine receptor activation in the nucleus accumbens (NAc promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.

  6. The better of two evils? Evidence that children exhibiting continuous conduct problems high or low on callous-unemotional traits score on opposite directions on physiological and behavioral measures of fear.

    Science.gov (United States)

    Fanti, Kostas A; Panayiotou, Georgia; Lazarou, Chrysostomos; Michael, Raphaelia; Georgiou, Giorgos

    2016-02-01

    The present study examines whether heterogeneous groups of children identified based on their longitudinal scores on conduct problems (CP) and callous-unemotional (CU) traits differ on physiological and behavioral measures of fear. Specifically, it aims to test the hypothesis that children with high/stable CP differentiated on CU traits score on opposite directions on a fear-fearless continuum. Seventy-three participants (M age = 11.21; 45.2% female) were selected from a sample of 1,200 children. Children and their parents completed a battery of questionnaires assessing fearfulness, sensitivity to punishment, and behavioral inhibition. Children also participated in an experiment assessing their startle reactivity to fearful mental imagery, a well-established index of defensive motivation. The pattern of results verifies the hypothesis that fearlessness, assessed with physiological and behavioral measures, is a core characteristic of children high on both CP and CU traits (i.e., receiving the DSM-5 specifier of limited prosocial emotions). To the contrary, children with high/stable CP and low CU traits demonstrated high responsiveness to fear, high behavioral inhibition, and high sensitivity to punishment. The study is in accord with the principle of equifinality, in that different developmental mechanisms (i.e., extremes of high and low fear) may have the same behavioral outcome manifested as phenotypic antisocial behavior.

  7. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Du, H. W.; Li, Y.; Gao, M.; Wan, Y. Z.; Xu, F. [SHU-SolarE R& D Lab, Department of Physics, Shanghai University, Shanghai, 200444 (China); Ma, Z. Q., E-mail: zqma@shu.edu.cn [SHU-SolarE R& D Lab, Department of Physics, Shanghai University, Shanghai, 200444 (China); Instrumental Analysis & Research Center, Shanghai University, Shanghai, 200444 (China)

    2016-08-15

    The carriers’ behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se{sub 2} thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely V{sub Se}, In{sub Cu} and (In{sub Cu}+V{sub Cu}), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of E{sub C}-0.08, E{sub C}-0.20 and E{sub C}-0.25 eV, respectively. The In{sub Cu} and (In{sub Cu}+V{sub Cu}) deep level defects are non-radiative recombination centers at room temperature. The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se{sub 2} layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (In{sub Cu}+V{sub Cu}) and V{sub se} defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se{sub 2} conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.

  8. Glass transition behavior and crystallization kinetics of Cu0.3(SSe20)0.7 chalcogenide glass

    International Nuclear Information System (INIS)

    Soliman, A.A.

    2005-01-01

    The glass transition behavior and crystallization kinetics of Cu 0.3 (SSe 20 ) 0.7 chalcogenide glass were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD). Two crystalline phases (SSe 20 and Cu 2 Se) were identified after annealing the glass at 773 K for 24 h. The activation energy of the glass transition (E g ), the activation energy of crystallization (E c ), the Avrami exponent (n) and the dimensionality of growth (m) were determined. Results indicate that this glass crystallizes by a two-stage bulk crystallization process upon heating. The first transformation, in which SSe 20 precipitates from the amorphous matrix with a three-dimensional crystal growth. The second transformation, in which the residual amorphous phase transforms into Cu 2 Se compound with a two-dimensional crystal growth

  9. Effect of Ge addition on mechanical properties and fracture behavior of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Malekan, M.; Shabestari, S.G.; Gholamipour, R.; Seyedein, S.H.

    2009-01-01

    Effect of the addition of a small amount of Ge on mechanical properties and fracture behavior of Cu 50 Zr 43 Al 7 (at.%) bulk metallic glass were studied. The Cu 50 Zr 43 Al 7 alloy has a surprising glass-forming ability (GFA), and the glassy rods up to 4 mm in diameter can be formed. Partial addition of Ge causes the crystalline phases precipitate in the glassy matrix of (Cu 50 Zr 43 Al 7 ) 100-x Ge x (x = 0, 1, 2) rods with a diameter of 4 mm. In uniaxial compression, Cu 50 Zr 43 Al 7 bulk metallic glass exhibit high strength of 1692 MPa and very limited plasticity of 0.05%. When Ge increases from 0 to 2 at.%, the strength decreases, but plastic strain increases about 2.5%. Fracture surface and shear bands of samples were investigated by scanning electron microscopy (SEM).

  10. Behavioral Inhibition as a Risk Factor for the Development of Childhood Anxiety Disorders: A Longitudinal Study

    NARCIS (Netherlands)

    P.E.H.M. Muris (Peter); A.M.L. van Brakel (Anna); A. Arntz (Arnoud); E. Schouten (Erik)

    2011-01-01

    textabstractThis longitudinal study examined the additive and interactive effects of behavioral inhibition and a wide range of other vulnerability factors in the development of anxiety problems in youths. A sample of 261 children, aged 5 to 8 years, 124 behaviorally inhibited and 137 control

  11. Self-reported impulsivity, but not behavioral approach or inhibition, mediates the relationship between stress and self-control.

    Science.gov (United States)

    Hamilton, Kristen R; Sinha, Rajita; Potenza, Marc N

    2014-11-01

    Stress has been associated with poor self-control. Individual differences in impulsivity and other behavioral tendencies may influence the relationship of stress with self-control, although this possibility has not been examined to date. The present research investigated whether cumulative stress is associated with poor self-control, and whether this relationship is mediated by impulsivity, behavioral approach, and behavioral inhibition in men and women. A community sample of 566 adults (319 women and 247 men) was assessed on the Cumulative Adversity Interview, Brief Self-control Scale, Barratt Impulsivity Scale, and Behavioral Activation System and Behavioral Inhibition System Scale (BIS/BAS). Data were analyzed using regression and bootstrapping techniques. In the total sample, the effects of cumulative stress on self-control were mediated by impulsivity. Neither behavioral inhibition nor behavioral approach mediated the association between cumulative stress and self-control in the total sample. Results were similar when men and women were considered separately, with impulsivity, but not behavioral inhibition or approach, mediating the association between cumulative stress and self-control. Impulsive individuals might benefit preferentially from interventions focusing on stress management and strategies for improving self-control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 3D-AP and positron annihilation study of precipitation behavior in Cu-Cr-Zr alloy

    DEFF Research Database (Denmark)

    Hatakeyama, M.; Toyama, T.; Yang, J.

    2009-01-01

    Precipitation behavior in a Cu-0.78%Cr-0.13%Zr alloy during aging and reaging has been studied by laser-assisted local electrode three-dimensional atom probe (Laser-LEAP) and positron annihilation spectroscopy (PAS). After the prime aging at 460 degrees C, Cr clusters enriched with Zr were observed...

  13. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Bakhtiar, E-mail: engrbakhtiaralikhan@gmail.com; Sabri, Mohd Faizul Mohd, E-mail: faizul@um.edu.my; Jauhari, Iswadi, E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-07-19

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCs size (Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5}), especially the Cu{sub 6}Sn{sub 5} IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.

  14. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    Science.gov (United States)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  15. Effect of Process Parameters on Fatigue and Fracture Behavior of Al-Cu-Mg Alloy after Creep Aging

    Directory of Open Access Journals (Sweden)

    Lihua Zhan

    2018-04-01

    Full Text Available A set of creep aging tests at different aging temperatures and stress levels were carried out for Al-Cu-Mg alloy, and the effects of creep aging on strength and fatigue fracture behavior were studied through tensile tests and fatigue crack propagation tests. The microstructures were further analyzed by using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The results show that temperature and stress can obviously affect the creep behavior, mechanical properties, and fatigue life of Al-Cu-Mg alloy. As the aging temperature increases, the fatigue life of alloy first increases, and then decreases. The microstructure also displays a transition from the Guinier-Preston-Bagaryatsky (GPB zones to the precipitation of S phase in the grain interior. However, the precipitation phases grow up and become coarse at excessive temperatures. Increasing stress can narrow the precipitation-free zone (PFZ at the grain boundary and improve the fatigue life, but overhigh stress can produce the opposite result. In summary, the fatigue life of Al-Cu-Mg alloy can be improved by fine-dispersive precipitation phases and a narrow PFZ in a suitable creep aging process.

  16. Abnormal devitrification behavior and mechanical response of cold-rolled Mg-rich Mg-Cu-Gd metallic glasses

    International Nuclear Information System (INIS)

    Lee, J.I.; Kim, J.W.; Oh, H.S.; Park, J.S.; Park, E.S.

    2016-01-01

    Abnormal devitrification behavior and mechanical response of Mg 75 Cu 15 Gd 10 (relatively strong glass former with higher structural stability) and Mg 85 Cu 5 Gd 10 (relatively fragile glass former with lower structural stability) metallic glasses, fabricated by repeated forced cold rolling, have been investigated. When metallic glasses were cold-rolled up to a thickness reduction ratio of ∼33%, the heat of relaxation (ΔH relax. ) below T g of the cold-rolled specimens was reduced, which indicates the formation of local structural ordering via cold rolling due to stress-induced relaxation. The local structural ordering results in abnormal devitrification behavior, such as higher resistance of glass-to-supercooled liquid transition and delayed growth, in the following heat treatment due to increased nuclei density and pinning site. In particular, the fragility index, m, could assist in understanding structural stability and local structural variation by mechanical processing as well as compositional tuning. Indeed, we examine the shear avalanche size to rationalize the variation of the deformation unit size depending on the structural instability before and after cold rolling. The deformation mode in Mg 85 Cu 5 Gd 10 metallic glass might change from self-organized critical state to chaotic state by cold rolling, which results in unique hardening behavior under the condition for coexisting well distributed local structural ordering and numerous thinner shear deformed areas. These results would give us a guideline for atomic scale structural manipulation of metallic glasses, and help develop novel metallic glass matrix composites with optimal properties through effective mechanical processing as well as heat treatment.

  17. Relations among behavioral inhibition, shame- and guilt-proneness, and anxiety disorders symptoms in non-clinical children.

    Science.gov (United States)

    Muris, Peter; Meesters, Cor; Bouwman, Leanne; Notermans, Sabine

    2015-04-01

    This study examined relationships between the self-conscious emotions of shame and guilt, behavioral inhibition (as an index of anxiety proneness), and anxiety disorder symptoms in non-clinical children aged 8-13 years (N = 126), using children's self-report data. Results showed that there were positive and significant correlations between shame and guilt, behavioral inhibition, and anxiety disorders symptoms. When controlling for the overlap between shame and guilt, it was found that shame (but not guilt) remained significantly associated with higher levels of anxiety proneness and anxiety symptoms. Further, when controlling for the effect of behavioral inhibition, shame still accounted for a significant proportion of the variance of total anxiety and generalized anxiety scores. For these anxiety problems, support emerged for a model in which shame acted as a partial mediator in the relation between behavioral inhibition and anxiety. These results indicate that the self-conscious emotion of shame is a robust correlate of anxiety pathology in children.

  18. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition.

    Directory of Open Access Journals (Sweden)

    Miriam A Mosing

    Full Text Available Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious and feel that they are in control of their own destiny (internal locus of control. We discuss that some of the genes underlying this relationship may include those influencing the function of

  19. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition.

    Science.gov (United States)

    Mosing, Miriam A; Pedersen, Nancy L; Cesarini, David; Johannesson, Magnus; Magnusson, Patrik K E; Nakamura, Jeanne; Madison, Guy; Ullén, Fredrik

    2012-01-01

    Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious) and feel that they are in control of their own destiny (internal locus of control). We discuss that some of the genes underlying this relationship may include those influencing the function of dopaminergic neural

  20. Behavioral inhibition in rhesus monkeys (Macaca mulatta is related to the airways response, but not immune measures, commonly associated with asthma.

    Directory of Open Access Journals (Sweden)

    Katie Chun

    Full Text Available Behavioral inhibition reflects a disposition to react warily to novel situations, and has been associated with atopic diseases such as asthma. Retrospective work established the relationship between behavioral inhibition in rhesus monkeys (Macaca mulatta and airway hyperresponsiveness, but not atopy, and the suggestion was made that behavioral inhibition might index components of asthma that are not immune-related. In the present study, we prospectively examined the relationship between behavioral inhibition and airway hyperresponsiveness, and whether hormonal and immune measures often associated with asthma were associated with behavioral inhibition and/or airway hyperresponsiveness. In a sample of 49 yearling rhesus monkeys (mean=1.25 years, n=24 behaviorally inhibited animals, we measured in vitro cytokine levels (IL-4, IL-10, IL-12, IFN-γ in response to stimulation, as well as peripheral blood cell percentages, cortisol levels, and percentage of regulatory T-cells (CD3+CD4+CD25+FOXP3+. Airway reactivity was assessed using an inhaled methacholine challenge. Bronchoalveolar lavage was performed and the proportion of immune cells was determined. Behaviorally inhibited monkeys had airway hyperresponsiveness as indicated by the methacholine challenge (p=0.031, confirming our earlier retrospective result. Airway hyperresponsiveness was also associated with lower lymphocyte percentages in lavage fluid and marginally lower plasma cortisol concentrations. However, none of the tested measures was significantly related to both behavioral inhibition and airway hyperresponsiveness, and so could not mediate their relationship. Airway hyperresponsiveness is common to atopic and non-atopic asthma and behavioral inhibition has been related to altered autonomic activity in other studies. Our results suggest that behavioral inhibition might index an autonomically mediated reactive airway phenotype, and that a variety of stimuli (including inflammation within

  1. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    International Nuclear Information System (INIS)

    Guo, M.X.; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-01-01

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  2. Room temperature fatigue behavior of OFHC copper and CuAl25 specimens of two sizes

    DEFF Research Database (Denmark)

    Singhal, A.; Stubbins, J.F.; Singh, B.N.

    1994-01-01

    requiring an understanding of their fatigue behavior.This paper describes the room temperature fatigue behavior of unirradiated OFHC (oxygen-free high-conductivity) copper and CuAl25 (copper strengthened with a 0.25% atom fraction dispersion of alumina). The response of two fatigue specimen sizes to strain......Copper and its alloys are appealing for application in fusion reactor systems for high heat flux components where high thermal conductivities are critical, for instance, in divertor components. The thermal and mechanical loading of such components will be, at least in part, cyclic in nature, thus...

  3. CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

    Directory of Open Access Journals (Sweden)

    M. Ahmadzadeh

    2015-04-01

    Full Text Available CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled through the pulses numbers: 200, 260, 310,360 and 410 pulses were used to deposit the CoFe layers, while 300 pulse for the Cu layers. A certain increase in coercivity and squareness of CoFe/Cu multilayer nanowires observed with increasing the CoFe layer thickness and annealing improved the coercivity and decrease squareness of CoFe/Cu multilayer nanowires. First order reversal curves after annealed showed amount domains with soft magnetic phase, it also shows decreasing spreading of distribution function along the Hu axis after annealed

  4. A σ-T diagram analysis regarding the γ' inhibition in β ↔ β' + γ' cycling in CuAlNi single crystals

    International Nuclear Information System (INIS)

    Gastien, R.; Corbellani, C.E.; Sade, M.; Lovey, F.C.

    2006-01-01

    An effect of inhibition of the γ' martensitic structure in thermal and pseudoelastic β ↔ β' + γ' cycling in CuAlNi single crystals was reported previously [Gastien R, Corbellani CE, Alvarez Villar HN, Sade M, Lovey FC. Mater Sci Eng A 2003;349:191], and an experiment to determine the new thermodynamic parameters to obtain the stress-induced γ' structure was performed [Gastien R, Corbellani CE, Sade M, Lovey FC. Acta Mater 2005;53:1685]. In this paper, a thermodynamic analysis of this effect using σ-T diagrams is proposed, in order to obtain a proper estimation of the energy involved in the inhibition process for pseudoelastic β ↔ β' + γ' cycling

  5. Effects of La on the age hardening behavior and precipitation kinetics in the cast Al–Cu alloy

    International Nuclear Information System (INIS)

    Yao Dongming; Bai Zhihao; Qiu Feng; Li Yanjun; Jiang Qichuan

    2012-01-01

    Highlights: ► La addition enhances the hardness of the Al–Cu alloy. ► La addition facilitates the formation of the θ′ precipitates. ► La addition decreases the nucleation activation energy of the θ′ precipitates. - Abstract: The hardness and thermal stability are the important problems of the cast Al–Cu alloy related to the microstructural changes. In order to increase the possibilities of high temperature applications of the cast Al–Cu alloy, it is necessary to gain a more detail understanding of the correlation between the age hardening and the microstructure in the cast Al–Cu alloy, and the thermal stability of the θ′ precipitates at elevated temperatures. The aim of this work is to investigate the effects of La addition on the age hardening behavior and precipitation kinetics in the Al–Cu alloy in the temperature range from 435 to 523 K. The results indicated that La addition considerably increases the number of the θ′ precipitates and decreases their sizes, which results in the enhanced age hardening effect. The precipitation kinetics analysis showed that the activation energy (13 kJ/mol) of the θ′ precipitate nucleation of the modified alloy is smaller than that (19 kJ/mol) of the unmodified alloy. The decrease in the activation energy of the θ′ precipitate nucleation can be explained with both the enhanced nucleation process due to La/Cu/vacancy aggregating and the increased interaction between Al and Cu atoms.

  6. Chronic inhibition of dopamine β-hydroxylase facilitates behavioral responses to cocaine in mice.

    Directory of Open Access Journals (Sweden)

    Meriem Gaval-Cruz

    Full Text Available The anti-alcoholism medication, disulfiram (Antabuse, decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH, the enzyme that converts dopamine (DA to norepinephrine (NE in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh -/- mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/- and Dbh -/- mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh -/- mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/- mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/- mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh -/- mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor enhance qualitatively different cocaine-induced behaviors.

  7. Chronic Inhibition of Dopamine β-Hydroxylase Facilitates Behavioral Responses to Cocaine in Mice

    Science.gov (United States)

    Gaval-Cruz, Meriem; Liles, Larry Cameron; Iuvone, Paul Michael; Weinshenker, David

    2012-01-01

    The anti-alcoholism medication, disulfiram (Antabuse), decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH), the enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh −/−) mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/−) and Dbh −/− mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh −/− mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/− mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/− mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh −/− mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor) enhance qualitatively different cocaine-induced behaviors. PMID:23209785

  8. Behavioral activation and inhibition system's role in predicting addictive behaviors of patients with bipolar disorder of Roozbeh Psychiatric Hospital

    Directory of Open Access Journals (Sweden)

    Moslem Abbasi

    2016-01-01

    Conclusions: It can be said that the patients with bipolar disorder use substance and addictive behaviors for enjoyment and as pleasure stimulants; they also use substances to suppress unpleasant stimulants and negative emotions. These results indicate that behavioral activation and inhibition systems have an important role in the incidence and exacerbation of addictive behaviors. Therefore, preventive interventions in this direction seem to be necessary.

  9. The Influence of Culture and Adoption Status on the Development of Behavioral Inhibition, Anxiety, Temperament, and Parental Control

    OpenAIRE

    Louie, Jennifer Yu

    2013-01-01

    Previous research suggests that child behavioral phenotypes such as behavioral inhibition and aspects of parental control behavior may be shaped by culturally-informed socialization goals. Specifically, in accord with collectivistic values for interpersonal harmony and self-discipline, East Asian parents tend to support children's behavioral inhibition (BI; Chen & French, 2008) and utilize more parental control strategies such as encouragement of moderate emotional expressivity and restricti...

  10. Atomistic scale nanoscratching behavior of monocrystalline Cu influenced by water film in CMP process

    Science.gov (United States)

    Shi, Junqin; Chen, Juan; Fang, Liang; Sun, Kun; Sun, Jiapeng; Han, Jing

    2018-03-01

    The effect of water film on the nanoscratching behavior of monocrystalline Cu was studied by molecular dynamics (MD) simulation. The results indicate that the friction force acting on abrasive particle increases due to the resistance of water film accumulating ahead of particle, but the water film with lubrication decreases friction force acting on Cu surface. The accumulation of water molecules around particle causes the anisotropy of ridge and the surface damage around the groove, and the water molecules remaining in the groove lead to the non-regular groove structure. The dislocation evolution displays the re-organization of the dislocation network in the nanoscratching process. The evaluation of removal efficiency shows the number of removed Cu atoms decreases with water film thickness. It is considered that an appropriate rather than a high removal efficiency should be adopted to evaluate the polishing process in real (chemical mechanical polishing) CMP. These results are helpful to reveal the polishing mechanism under the effect of water film from physical perspective, which benefits the development of ultra-precision manufacture and miniaturized components, as well as the innovation of CMP technology.

  11. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  12. Competing Core Processes in Attention-Deficit/Hyperactivity Disorder (ADHD): Do Working Memory Deficiencies Underlie Behavioral Inhibition Deficits?

    Science.gov (United States)

    Alderson, R. Matt; Rapport, Mark D.; Hudec, Kristen L.; Sarver, Dustin E.; Kofler, Michael J.

    2010-01-01

    The current study examined competing predictions of the working memory and behavioral inhibition models of ADHD. Behavioral inhibition was measured using a conventional stop-signal task, and central executive, phonological, and visuospatial working memory components (Baddeley 2007) were assessed in 14 children with ADHD and 13 typically developing…

  13. The personality trait of behavioral inhibition modulates perceptions of moral character and performance during the trust game: behavioral results and computational modeling

    Directory of Open Access Journals (Sweden)

    Milen L. Radell

    2016-02-01

    Full Text Available Decisions based on trust are critical for human social interaction. We judge the trustworthiness of partners in social interactions based on a number of partner characteristics as well as experiences with those partners. These decisions are also influenced by personality. The current study examined how the personality trait of behavioral inhibition, which involves the tendency to avoid or withdraw from novelty in both social and non-social situations, is related to explicit ratings of trustworthiness as well as decisions made in the trust game. In the game, healthy young adults interacted with three fictional partners who were portrayed as trustworthy, untrustworthy or neutral through biographical information. Participants could choose to keep $1 or send $3 of virtual money to a partner. The partner could then choose to send $1.5 back to the participant or to keep the entire amount. On any trial in which the participant chose to send, the partner always reciprocated with 50% probability, irrespective of how that partner was portrayed in the biography. Behavioral inhibition was assessed through a self-report questionnaire. Finally, a reinforcement learning computational model was fit to the behavior of each participant. Self-reported ratings of trust confirmed that all participants, irrespective of behavioral inhibition, perceived differences in the moral character of the three partners (trustworthiness of good > neutral > bad partner. Decisions made in the game showed that inhibited participants tended to trust the neutral partner less than uninhibited participants. In contrast, this was not reflected in the ratings of the neutral partner (either pre- or post-game, indicating a dissociation between ratings of trustworthiness and decisions made by inhibited participants. Computational modeling showed that this was due to lower initial trust of the neutral partner rather than a higher learning rate associated with loss, suggesting an implicit bias

  14. In Situ Study of Reduction Process of CuO Paste and Its Effect on Bondability of Cu-to-Cu Joints

    Science.gov (United States)

    Yao, Takafumi; Matsuda, Tomoki; Sano, Tomokazu; Morikawa, Chiaki; Ohbuchi, Atsushi; Yashiro, Hisashi; Hirose, Akio

    2018-04-01

    A bonding method utilizing redox reactions of metallic oxide microparticles achieves metal-to-metal bonding in air, which can be alternative to lead-rich high-melting point solder. However, it is known that the degree of the reduction of metallic oxide microparticles have an influence on the joint strength using this bonding method. In this paper, the reduction behavior of CuO paste and its effect on Cu-to-Cu joints were investigated through simultaneous microstructure-related x-ray diffraction and differential scanning calorimetry measurements. The CuO microparticles in the paste were gradually reduced to submicron Cu2O particles at 210-250°C. Subsequently, Cu nanoparticles were generated instantaneously at 300-315°C. There was a marked difference in the strengths of the joints formed at 300°C and 350°C. Thus, the Cu nanoparticles play a critical role in sintering-based bonding using CuO paste. Furthermore, once the Cu nanoparticles have formed, the joint strength increases with higher bonding temperature (from 350°C to 500°C) and pressure (5-15 MPa), which can exceed the strength of Pb-5Sn solder at higher temperature and pressure.

  15. Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater.

    Science.gov (United States)

    Torres Bautista, Blanca E; Carvalho, Maria L; Seyeux, Antoine; Zanna, Sandrine; Cristiani, Pierangela; Tribollet, Bernard; Marcus, Philippe; Frateur, Isabelle

    2014-06-01

    Copper alloys often used in cooling circuits of industrial plants can be affected by biocorrosion induced by biofilm formation. The objective of this work was to study the influence of protein adsorption, which is the first step in biofilm formation, on the electrochemical behavior of 70Cu-30Ni (wt.%) alloy in static artificial seawater and on the chemical composition of oxide layers. For that purpose, electrochemical measurements performed after 1h of immersion were combined to surface analyses. A model is proposed to analyze impedance data. In the presence of bovine serum albumin (BSA, model protein), the anodic charge transfer resistance deduced from EIS data at Ecorr is slightly higher, corresponding to lower corrosion current. Without BSA, two oxidized layers are shown by XPS and ToF-SIMS: an outer layer mainly composed of copper oxide (Cu2O redeposited layer) and an inner layer mainly composed of oxidized nickel, with a global thickness of ~30nm. The presence of BSA leads to a mixed oxide layer (CuO, Cu2O, Ni(OH)2) with a lower thickness (~10nm). Thus, the protein induces a decrease of the dissolution rate at Ecorr and hence a decrease of the amount of redeposited Cu2O and of the oxide layer thickness. © 2013.

  16. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  17. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding

    Directory of Open Access Journals (Sweden)

    Koki Tanaka

    2016-12-01

    Full Text Available To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma–treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS measurement of the H2/Ar plasma–treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid–treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

  18. Corrosion inhibition behavior of Ketosulfone for Zinc in acidic medium

    African Journals Online (AJOL)

    The corrosion inhibition behavior of Ketosulfone for zinc is investigated by polarization and AC-impedance techniques at 303-333K. The Tafel plots indicates that the Ketosulfone is a mixed type inhibitor. The interaction between metal and inhibitor is explained by Langmuir adsorption isotherm. DG0ads andDH0ads value ...

  19. Exploring Cu2O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way

    International Nuclear Information System (INIS)

    Feng, Li-Chao; Xie, Ning; Shao, Wen-Zhu; Zhen, Liang; Ivanov, V.V.

    2014-01-01

    Highlights: • Cu 2 O/Cu cermet was used as a candidate partially inert anode material to produce aluminum alloys. • The thermal corrosion behavior of Cu 2 O/Cu was investigated in molten salt at 960 °C. • The corrosion rate is largely governed by the geometrical structures of Cu in the prepared samples. • The corrosion rate increases with decreasing sizes and increasing filling contents of Cu phase. • The corrosion rate was 1.8–9 cm/y and the Cu contents is less than 6.2 wt.% in the produced aluminum. - Abstract: As an energy-intensive process, aluminum production by the Hall–Héroult method accounts for significant emissions of CO 2 and some toxic greenhouse gases. The utilization of an inert anode in place of a carbon anode was considered as a revolutionary technique to solve most of the current environmental problems resulting from the Hall–Héroult process. However, the critical property requirements of the inert anode materials significantly limit the application of this technology. In light of the higher demand for aluminum alloys than for pure aluminum, a partially inert anode was designed to produce aluminum alloys in a more sustainable way. Here, Cu 2 O/Cu cermet was chosen as the material of interest. The thermal corrosion behavior of Cu 2 O/Cu was investigated in Na 3 AlF 6 –CaF 2 –Al 2 O 3 electrolyte at 960 °C to elucidate the corrosion mechanisms of this type of partially inert anode for the production of aluminum or aluminum alloys. Furthermore, the effects of the geometrical structure of the Cu phase on the thermal corrosion behavior of Cu 2 O/Cu cermet in the electrolyte were investigated as well. The thermal corrosion rate was evaluated by the weight loss method and the results show that the samples prepared with branch-like Cu have higher thermal corrosion rate than those prepared with spherical Cu, and the corrosion rate increases with decreasing size and increasing filling content of Cu phase. The calculated corrosion rate

  20. Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Steyer, P., E-mail: philippe.steyer@insa-lyon.fr [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Joly-Pottuz, L. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Billard, A. [LERMPS-UTBM, Site de Montbéliard, 90010 Belfort Cédex (France); Qiao, J.; Cardinal, S. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sanchette, F. [LASMIS-UTT, UMR CNRS 6279, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Pelletier, J.M.; Esnouf, C. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France)

    2014-06-30

    Bulk metallic glasses have attracted considerable attention over the last decades for their outstanding mechanical features (high strength, super-elasticity) and physico-chemical properties (corrosion resistance). Recently, some attempts to assign such original behavior from bulk materials to modified surfaces have been reported in the literature based on multicomponent alloys. In this paper we focused on the opportunity to form a metallic glass coating from the binary Zr–Cu system using a magnetron co-sputtering physical vapor deposition process. The composition of the films can be easily controlled by the relative intensities applied to both pure targets, which made possible the study of the whole Zr–Cu system (from 13.4 to 85.0 at.% Cu). The chemical composition of the films was obtained by energy dispersive X-ray spectroscopy, and their microstructure was characterized by scanning and transmission electron microscopy. The thermal stability of the films was deduced from an in situ X-ray diffraction analysis (from room temperature up to 600 °C) and correlated with the results of the differential scanning calorimetry technique. Their mechanical properties were determined by nanoindentation experiments. - Highlights: • We reported deposition of Zr-Cu thin film metallic glasses by co-sputtering • Films were XRD-amorphous in a wide composition range (33.3 – 85.0 at.% Cu) • Microstructure investigation revealed some local nanodomains • We examined the thermal stability by means of in situ X-ray diffraction • Nanoindentation was used to obtained mechanical properties of thin films.

  1. Investigation of the magnetoresistance behavior in high pulsed magnetic fields up to 351 in thick films YBa2Cu3Ox and YBa2Cu3Ox (5% Ag-doped) near by superconductivity transition

    International Nuclear Information System (INIS)

    Broide, E.; Yakunin, M.

    1998-01-01

    The influence of pulsed magnetic fields up to 35T on samples YBa 2 Cu 3 O x and YBa 2 Cu 3 O x (5% Ag-doped ) thick films produced after electromagnetic separation HTSC1-2-3 powders was investigated. The field was generated in the multiturned copper wire coil with a semisinusoidal pulse duration of about 10 ms.To measure the magneto resistivity the sample voltage under the constant current regime was made to an accuracy of 0.5*10 -6 V and minimal time interval of 100 ns. To extract the true signal from the spurious background voltage generated by the pulsed magnetic field ,the previously recorded signals for zero current were subtracted with high precision from the nonzero current signals. After a series of pulses the zero field resistivities as a function of temperature were compared with the initial date to reveal the irreversible changes in samples. We discovered a non linear behavior in the magnetoresistance of YBa 2 Cu 3 O x after measurements with current greater than 1A/cm 2 at the temperature 67.4K. However in the specimens with 5% Ag+YBa 2 Cu 3 O x we observed a linear plot of magneto resistivity and magnetic field at currents less than 20 A/cm 2 at the 77K. In our view the difference in behavior of the two types of samples is a function of the resistivity of granular contacts in polycrystal thick films YBa 2 Cu 3 O x and YBa 2 Cu 3 O x (5% Ag doped)

  2. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta

    2016-12-01

    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  3. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  4. Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes

    International Nuclear Information System (INIS)

    Krumschnabel, Gerhard; Manzl, Claudia; Berger, Christian; Hofer, Bettina

    2005-01-01

    We have previously shown that, in trout hepatocytes, exposure to a high dose of copper (Cu) leads to disruption of Ca 2+ homeostasis and elevated formation of reactive oxygen species (ROS), with the latter ultimately causing cell death. In the present study, we aimed at identifying, using a lower Cu concentration, the role of mitochondria in this scenario, the potential involvement of the mitochondrial permeability transition (MPT), and the mode of cell death induced by the metal. Incubation with 10 μM Cu resulted in a strong stimulation of ROS formation, and after 2 h of exposure a significant increase of both apoptotic and necrotic cells was seen. Co-incubation of Cu-treated hepatocytes with the iron-chelator deferoxamine significantly inhibited ROS production and completely prevented cell death. The origin of the radicals generated was at least partly mitochondrial, as visualized by confocal laser scanning microscopy. Furthermore, ROS production was diminished by inhibition of mitochondrial respiration, but since this also aggravated the elevation of intracellular Ca 2+ induced by Cu, it did not preserve cell viability. In a sub-population of cells, Cu induced a decrease of mitochondrial membrane potential and occurrence of the MPT. Cyclosporin A, which did not inhibit ROS formation, prevented the onset of the MPT and inhibited apoptotic, but not necrotic, cell death. Cu-induced apoptosis therefore appears to be dependent on induction of the MPT, but the prominent contribution of mitochondria to ROS generation also suggests an important role of mitochondria in necrotic cell death

  5. Thermodynamics of inclusion formation and its influence on the corrosion behavior of Cu bearing duplex stainless steels

    International Nuclear Information System (INIS)

    Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo; Park, Joo-Hyun; Kim, Kwang-Tae; Kim, Ji-Soo

    2011-01-01

    To elucidate the thermodynamics of inclusion formation and its influence on the corrosion behavior of Cu bearing duplex stainless steels, potentiodynamic and potentiostatic polarization tests, a SEM-EDS analysis of inclusions, and thermodynamic calculations of the formation of inclusions were carried out. While the resistance to general corrosion of the noble copper contained alloy-1.5Cu in a deaerated 2 M H 2 SO 4 was higher than that of the alloy-BASE, the resistance to pitting corrosion of copper contained alloy-1.5Cu in a deaerated 0.5 N HCl + 1 N NaCl and 30 mass% NaCl was lower than that of the alloy-BASE due to an increase of interface areas between inclusions and matrix acting as preferential pit initiation sites. The thermodynamic calculation for the formation of Cr-containing oxide inclusions was in good agreement with the experimental results. (author)

  6. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.

    Science.gov (United States)

    Moon, Young-Sun; Park, Eun-Sil; Kim, Tae-Oh; Lee, Hoi-Seon; Lee, Sung-Eun

    2014-11-01

    Metal oxide nanoparticles (NPs) can inhibit plant seed germination and root elongation via the release of metal ions. In the present study, two acute phytotoxicity tests, seed germination and root elongation tests, were conducted on cucumber seeds (Cucumis sativus) treated with bulk copper oxide (CuO) and CuO NPs. Two concentrations of bulk CuO and CuO NPs, 200 and 600ppm, were used to test the inhibition rate of root germination; both concentrations of bulk CuO weakly inhibited seed germination, whereas CuO NPs significantly inhibited germination, showing a low germination rate of 23.3% at 600ppm. Root elongation tests demonstrated that CuO NPs were much stronger inhibitors than bulk CuO. SELDI-TOF MS analysis showed that 34 proteins were differentially expressed in cucumber seeds after exposure to CuO NPs, with the expression patterns of at least 9 proteins highly differing from those in seeds treated with bulk CuO and in control plants. Therefore, these 9 proteins were used to identify CuO NP-specific biomarkers in cucumber plants exposed to CuO NPs. A 5977-m/z protein was the most distinguishable biomarker for determining phytotoxicity by CuO NPs. Principal component analysis (PCA) of the SELDI-TOF MS results showed variability in the modes of inhibitory action on cucumber seeds and roots. To our knowledge, this is the first study to demonstrate that the phytotoxic effect of metal oxide NPs on plants is not caused by the same mode of action as other toxins. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Evaluation of a novel GRPR antagonist for prostate cancer PET imaging: [64Cu]-DOTHA2-PEG-RM26.

    Science.gov (United States)

    Mansour, Nematallah; Paquette, Michel; Ait-Mohand, Samia; Dumulon-Perreault, Véronique; Guérin, Brigitte

    2018-01-01

    Gastrin releasing peptide receptors (GRPRs) are significantly over-expressed on a large proportion of prostate cancers making them prime candidates for receptor-mediated nuclear imaging by PET. Recently, we synthesized a novel bifunctional chelator (BFC) bearing hydroxamic acid arms (DOTHA 2 ). Here we investigated the potential of a novel DOTHA 2 -conjugated, 64 Cu-radiolabeled GRPR peptide antagonist, [D-Phe 6 -Sta 13 -Leu 14 -NH 2 ]bombesin(6-14) (DOTHA 2 -PEG-RM26) to visualize prostate tumors by PET imaging. DOTHA 2 -PEG-RM26 was conveniently and efficiently assembled on solid support. The compound was radiolabeled with 64 Cu and its affinity, stability, cellular uptake on PC3 prostate cancer cells were evaluated. The in vitro and in vivo behavior of [ 64 Cu]DOTHA 2 -PEG-RM26 was examined by PET imaging using human PC3 prostate cancer xenografts and its behavior was compared to that of the analogous [ 64 Cu]NOTA-PEG-RM26. The inhibition constant of nat Cu-DOTHA 2 -PEG-RM26 was in the low nanomolar range (0.68±0.19 nM). The [ 64 Cu]DOTHA 2 -PEG-RM26 conjugate was prepared with a labeling yield >95% and molar activity of 56±3 GBq/μmol after a 5-min room temperature labeling. [ 64 Cu]-DOTHA 2 -PEG-RM26 demonstrated rapid blood and renal clearance as well as a high tumor uptake. Small animal PET images confirmed high and specific uptake in PC3 tumor. Both [ 64 Cu]-DOTHA 2 -PEG-RM26 and [ 64 Cu]-NOTA-PEG-RM26 displayed similar tumor and normal tissue uptakes at early time point post injection. [ 64 Cu]-DOTHA 2 -PEG-RM26 allows visualization of prostate tumors by PET imaging. DOTHA 2 enables fast 64 Cu chelation under mild condition, and as such could be used advantageously for the development of other 64 Cu-labeled peptide-derived PET tracers. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions

    DEFF Research Database (Denmark)

    Holse, Christian; Elkjær, Christian Fink; Nierhoff, Anders Ulrik Fregerslev

    2015-01-01

    migrate to the Cu surface forming a Cu–Zn surface alloy. The oxidation and reduction dynamics of the CuZn nanoparticles is of great importance to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boosts the catalytic activity. Thus, the present......The oxidation and reduction of CuZn nanoparticles was studied using X-ray photoelectron spectroscopy (XPS) and in situ transmission electron microscopy (TEM). CuZn nanoparticles with a narrow size distribution were produced with a gas-aggregation cluster source in conjunction with mass......-filtration. A direct comparison between the spatially averaged XPS information and the local TEM observations was thus made possible. Upon oxidation in O2, the as-deposited metal clusters transform into a polycrystalline cluster consisting of separate CuO and ZnO nanocrystals. Specifically, the CuO is observed...

  9. Time Temperature-Precipitation Behavior in An Al-Cu-Li Alloy 2195

    Science.gov (United States)

    Chen, P. S.; Bhat, B. N.

    1999-01-01

    Al-Cu-Li alloy 2195, with its combination of good cryogenic properties, low density, and high modulus, has been selected by NASA to be the main structural alloy of the Super Light Weight Tank (SLWT) for the Space Shuttle. Alloy 2195 is strengthened by an aging treatment that precipitates a particular precipitate, labeled as T1(Al2CuLi). Other phases, such as GP zone, (theta)', (theta)", theta, (delta)', S' are also present in this alloy when artificially aged. Cryogenic strength and fracture toughness are critical to the -SLWT application, since the SLWT will house liquid oxygen and hydrogen. Motivation for the Time-Temperature-Precipitation (TTP) study at lower temperature (lower than 350 F) comes in part from a recent study by Chen, The study found that the cryogenic fracture toughness of alloy 2195 is greatly influenced by the phases present in the matrix and subgrain boundaries. Therefore, the understanding of TTP behavior can help develop a guideline to select appropriate heat treatment conditions for the desirable applications. The study of TTP behavior at higher temperature (400 to 1000 F) was prompted by the fact that the SLWT requires a welded construction. Heat conduction from the weld pool affects the microstructure in the heat-affected zone (HAZ), which leads to changes in the mechanical properties. Furthermore, the SLWT may need repair welding for more than one time and any additional thermal cycles will increase precipitate instability and promote phase transformation. As a result considerable changes in HAZ microstructure and mechanical properties are expected during the construction of the SLWT. Therefore, the TTP diagrams can serve to understand the thermal history of the alloy by analyzing the welded microstructure. In the case welding, the effects of thermal cycles on the microstructure and mechanical properties can be predicted with the aid of the TTP diagrams. The 2195 alloy (nominally Al + 4 pct Cu + 1 pct Li + 0.3 pct Ag + 0.3 pct Mg + 0

  10. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs were identified: 1 A left-frontotemporal negativity (250-700 ms that was positively associated with word-reading performance; 2 a midline-frontal negativity (450-800 ms that was positively associated with color-naming and incongruent performance; 3 a left-frontal negativity (450-800 ms that was positively associated with switch trial performance; and 4 a centroparietal positivity (450-800 ms that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1 domain-specific task facilitation; 2 switch-specific task-set reconfiguration; 3 preparation for response conflict; and 4 proactive attentional control. Examining the relationship between ERPs and behavioral

  11. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    Science.gov (United States)

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M

    2015-01-01

    It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral

  12. Coordination Behavior of Ni2+, Cu2+, and Zn2+ in Tetrahedral 1-Methylimidazole Complexes: A DFT/CSD Study

    OpenAIRE

    Tetteh, Samuel

    2018-01-01

    The interaction between nickel (Ni2+), copper (Cu2+), and zinc (Zn2+) ions and 1-methylimidazole has been studied by exploring the geometries of eleven crystal structures in the Cambridge Structural Database (CSD). The coordination behavior of the respective ions was further investigated by means of density functional theory (DFT) methods. The gas-phase complexes were fully optimized using B3LYP/GENECP functionals with 6-31G∗ and LANL2DZ basis sets. The Ni2+ and Cu2+ complexes show distorted ...

  13. Electrical and percolative behavior of Sr2YSbO6-YBa2Cu3O7-δ composites

    International Nuclear Information System (INIS)

    Ortiz-Diaz, O.; Landinez Tellez, D.A.; Perez, F.; Tovar, H.; Roa-Rojas, J.

    2007-01-01

    We found that a mixture of materials Sr 2 YSbO 6 insulator with YBa 2 Cu 3 O 7-δ superconductor is a system where the particles of superconductor and insulator materials are found coexisting in a composite with two well-defined separate phases. Electrical transport properties and percolation behavior have been studied by electrical resistivity measurements at room temperature on several samples of composites with different vol.% of YBa 2 Cu 3 O 7-δ . Resistivity measurements agree with the equation which describes the conductivity in percolation theory. However, critical exponent t=6.65 is greater than universal value t∼2. Furthermore, there is a non-negligible conductivity below percolation threshold while it is expected to be zero in ideal percolative systems. Nevertheless, percolative behavior in this region was found and, critical exponent value s was determined to be s=0.75 in agreement with universal value

  14. CH{sub 4} dehydrogenation on Cu(1 1 1), Cu@Cu(1 1 1), Rh@Cu(1 1 1) and RhCu(1 1 1) surfaces: A comparison studies of catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Riguang; Duan, Tian [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Ling, Lixia [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Wang, Baojun, E-mail: wangbaojun@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2015-06-30

    Highlights: • Adsorbed Rh atom on Cu catalyst exhibits better catalytic activity for CH{sub 4} dehydrogenation. • The adsorbed Rh atom is the reaction active center for CH{sub 4} dehydrogenation. • The morphology of Cu substrate has negligible effect on CH{sub 4} dehydrogenation. - Abstract: In the CVD growth of graphene, the reaction barriers of the dehydrogenation for hydrocarbon molecules directly decide the graphene CVD growth temperature. In this study, density functional theory method has been employed to comparatively probe into CH{sub 4} dehydrogenation on four types of Cu(1 1 1) surface, including the flat Cu(1 1 1) surface (labeled as Cu(1 1 1)) and the Cu(1 1 1) surface with one surface Cu atom substituted by one Rh atom (labeled as RhCu(1 1 1)), as well as the Cu(1 1 1) surface with one Cu or Rh adatom (labeled as Cu@Cu(1 1 1) and Rh@Cu(1 1 1), respectively). Our results show that the highest barrier of the whole CH{sub 4} dehydrogenation process is remarkably reduced from 448.7 and 418.4 kJ mol{sup −1} on the flat Cu(1 1 1) and Cu@Cu(1 1 1) surfaces to 258.9 kJ mol{sup −1} on RhCu(1 1 1) surface, and to 180.0 kJ mol{sup −1} on Rh@Cu(1 1 1) surface, indicating that the adsorbed or substituted Rh atom on Cu catalyst can exhibit better catalytic activity for CH{sub 4} complete dehydrogenation; meanwhile, since the differences for the highest barrier between Cu@Cu(1 1 1) and Cu(1 1 1) surfaces are smaller, the catalytic behaviors of Cu@Cu(1 1 1) surface are very close to the flat Cu(1 1 1) surface, suggesting that the morphology of Cu substrate does not obviously affect the dehydrogenation of CH{sub 4}, which accords with the reported experimental observations. As a result, the adsorbed or substituted Rh atom on Cu catalyst exhibit a better catalytic activity for CH{sub 4} dehydrogenation compared to the pure Cu catalyst, especially on Rh-adsorbed Cu catalyst, we can conclude that the potential of synthesizing high-quality graphene with the

  15. Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass

    International Nuclear Information System (INIS)

    Kopittke, P.M.; Asher, C.J.; Blamey, F.P.C.; Menzies, N.W.

    2009-01-01

    Sabi grass (Urochloa mosambicensis (Hack.) Dandy) (a C4 species of Poaceae) is commonly used to revegetate disturbed sites in low-rainfall environments, but comparatively little is known regarding copper (Cu) toxicity in this species. A dilute nutrient solution culture experiment was conducted for 10 d to examine the effects of elevated Cu 2+ activities ({Cu 2+ }) on the growth of Sabi grass. Growth was inhibited by high Cu in solution, with a 50% reduction in the relative fresh mass occurring at 1.0 μM {Cu 2+ } for the roots and 1.2 μM {Cu 2+ } for the shoots. In solutions containing 1.2-1.9 μM {Cu 2+ }, many of the roots ruptured due to the tearing and separation of the rhizodermis and outer cortex from the underlying tissues. Transmission electron microscopy revealed that Cu-rich deposits were found to accumulate predominantly within vacuoles. Due to limited translocation of Cu from the roots to the shoots, phytotoxicity is likely to be more of a problem in remediation of Cu-toxic sites than is Cu toxicity of fauna consuming the above-ground biomass.

  16. Callous-unemotional behavior and early-childhood onset of behavior problems: the role of parental harshness and warmth

    Science.gov (United States)

    Waller, Rebecca; Gardner, Frances; Shaw, Daniel S.; Dishion, Thomas J.; Wilson, Melvin N.; Hyde, Luke W.

    2014-01-01

    Objective Youth with callous unemotional (CU) behavior are at risk of developing more severe forms of aggressive and antisocial behavior. Previous cross-sectional studies suggest that associations between parenting and conduct problems are less strong when children or adolescents have high levels of CU behavior, implying lower malleability of behavior compared to low-CU children. The current study extends previous findings by examining the moderating role of CU behavior on associations between parenting and behavior problems in a very young sample, both concurrently and longitudinally, and using a variety of measurement methods. Methods Data were collected from a multi-ethnic, high-risk sample at ages 2–4 (N = 364; 49% female). Parent-reported CU behavior was assessed at age 3 using a previously validated measure (Hyde et al., 2013). Parental harshness was coded from observations of parent-child interactions and parental warmth was coded from five-minute speech samples. Results In this large and young sample, CU behavior moderated cross-sectional correlations between parent-reported and observed warmth and child behavior problems. However, in cross-sectional and longitudinal models testing parental harshness, and longitudinal models testing warmth, there was no moderation by CU behavior. Conclusions The findings are in line with recent literature suggesting parental warmth may be important to child behavior problems at high levels of CU behavior. In general, however, the results of this study contrast with much of the extant literature and suggest that in young children, affective aspects of parenting appear to be related to emerging behavior problems, regardless of the presence of early CU behavior. PMID:24661288

  17. The Biological Behaviors of Rat Dermal Fibroblasts Can Be Inhibited by High Levels of MMP9

    Directory of Open Access Journals (Sweden)

    Sheng-Neng Xue

    2012-01-01

    Full Text Available Aims. To explore the effects of the high expression of MMP9 on biological behaviors of fibroblasts. Methods. High glucose and hyperhomocysteine were used to induce MMP9 expression in skin fibroblasts. Cell proliferation was detected by flow cytometry and cell viability by CCK-8. ELISA assay was used to detect collagen (hydroxyproline secretion. Scratch test was employed to evaluate horizontal migration of cells and transwell method to evaluate vertical migration of cells. Results. The mRNA and protein expressions of MMP9 and its protease activity were significantly higher in cells treated with high glucose and hyperhomocysteine than those in control group. At the same time, the S-phase cell ratio, proliferation index, cell viability, collagen (hydroxyproline secretion, horizontal migration rate, and the number of vertical migration cells decreased in high-glucose and hyperhomocysteine-treated group. Tissue inhibitor of metalloproteinase 1 (TIMP1, which inhibits the activity of MMP9, recovered the above biological behaviors. Conclusions. High expression of MMP9 in skin fibroblasts could be induced by cultureing in high glucose and hyperhomocysteine medium, which inhibited cell biological behaviors. Inhibitions could be reversed by TIMP1. The findings suggested that MMP9 deters the healing of diabetic foot ulcers by inhibiting the biological behaviors of fibroblasts.

  18. Effects of oxygen stoichiometry on the scaling behaviors of YBa{sub 2}Cu{sub 3}O{sub x} grain boundary weak-links

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.H.; Fu, C.M.; Jeng, W.J. [National Chiao-Tung Univ., Taiwan (China)] [and others

    1994-12-31

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa{sub 2}Cu{sub 3}O{sub x} bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealling processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e. with x=7.0 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g. with x=6.9 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.

  19. Influence of Sludge Particles on the Fatigue Behavior of Al-Si-Cu Secondary Aluminium Casting Alloys

    Directory of Open Access Journals (Sweden)

    Lorella Ceschini

    2018-04-01

    Full Text Available Al-Si-Cu alloys are the most widely used materials for high-pressure die casting processes. In such alloys, Fe content is generally high to avoid die soldering issues, but it is considered an impurity since it generates acicular intermetallics (β-Fe which are detrimental to the mechanical behavior of the alloys. Mn and Cr may act as modifiers, leading to the formation of other Fe-bearing particles which are characterized by less harmful morphologies, and which tend to settle on the bottom of furnaces and crucibles (usually referred to as sludge. This work is aimed at evaluating the influence of sludge intermetallics on the fatigue behavior of A380 Al-Si-Cu alloy. Four alloys were produced by adding different Fe, Mn and Cr contents to A380 alloy; samples were remelted by directional solidification equipment to obtain a fixed secondary dendrite arm spacing (SDAS value (~10 μm, then subjected to hot isostatic pressing (HIP. Rotating bending fatigue tests showed that, at room temperature, sludge particles play a detrimental role on fatigue behavior of T6 alloys, diminishing fatigue strength. At elevated temperatures (200 °C and after overaging, the influence of sludge is less relevant, probably due to a softening of the α-Al matrix and a reduction of stress concentration related to Fe-bearing intermetallics.

  20. Relations between behavioral inhibition, big five personality factors, and anxiety disorder symptoms in non-clinical and clinically anxious children

    NARCIS (Netherlands)

    L.J. Vreeke (Leonie); P.E.H.M. Muris (Peter)

    2012-01-01

    textabstractThis study examined the relations between behavioral inhibition, Big Five personality traits, and anxiety disorder symptoms in non-clinical children (n = 147) and clinically anxious children (n = 45) aged 6-13 years. Parents completed the Behavioral Inhibition Questionnaire-Short Form,

  1. Externalizing behavior from early childhood to adolescence: Prediction from inhibition, language, parenting, and attachment.

    Science.gov (United States)

    Roskam, Isabelle

    2018-03-22

    The aim of the current research was to disentangle four theoretically sound models of externalizing behavior etiology (i.e., attachment, language, inhibition, and parenting) by testing their relation with behavioral trajectories from early childhood to adolescence. The aim was achieved through a 10-year prospective longitudinal study conducted over five waves with 111 referred children aged 3 to 5 years at the onset of the study. Clinical referral was primarily based on externalizing behavior. A multimethod (questionnaires, testing, and observations) approach was used to estimate the four predictors in early childhood. In line with previous studies, the results show a significant decrease of externalizing behavior from early childhood to adolescence. The decline was negatively related to mothers' coercive parenting and positively related to attachment security in early childhood, but not related to inhibition and language. The study has implications for research into externalizing behavior etiology recommending to gather hypotheses from various theoretically sound models to put them into competition with one another. The study also has implications for clinical practice by providing clear indications for prevention and early intervention.

  2. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiapeng, E-mail: sun.jiap@gmail.com [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Fang, Liang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province (China); Ma, Aibin, E-mail: aibin-ma@hhu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Jiang, Jinghua [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Han, Ying [Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, Jilin Province (China); Chen, Huawei [Department of Applied Physics, School of Science, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province (China); Han, Jing [School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province (China)

    2015-05-14

    The molecular dynamics simulations are performed to explore the fracture behavior and the ductility of the twinned Cu nanowires containing orthogonally oriented growth CTBs due to the uniaxial tensile deformation. The results reveal that, the fracture behavior and the ductility of the twinned nanowires are not related to the length of the nanowires but also intensively related to the twin boundary spacing. When the twin boundary space is changed, the twinned nanowires undergo three distinct failure modes which include ductile fracture, brittle fracture and ductile-to-brittle transition depending on the length of the nanowires. We also find a reduction in the ductility of the twinned nanowires, which is ascribed to the deformation localization induced by the Lomer dislocation and the rapid necking resulted from the twinning partial slipping. Finally, the atomic-level process that occurs during deformation until final fracture are examined in detail, and a new formation mechanism of the Lomer dislocation is observed when a 90° partial dislocation transmits across a coherent twin boundary.

  3. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Sun, Jiapeng; Fang, Liang; Ma, Aibin; Jiang, Jinghua; Han, Ying; Chen, Huawei; Han, Jing

    2015-01-01

    The molecular dynamics simulations are performed to explore the fracture behavior and the ductility of the twinned Cu nanowires containing orthogonally oriented growth CTBs due to the uniaxial tensile deformation. The results reveal that, the fracture behavior and the ductility of the twinned nanowires are not related to the length of the nanowires but also intensively related to the twin boundary spacing. When the twin boundary space is changed, the twinned nanowires undergo three distinct failure modes which include ductile fracture, brittle fracture and ductile-to-brittle transition depending on the length of the nanowires. We also find a reduction in the ductility of the twinned nanowires, which is ascribed to the deformation localization induced by the Lomer dislocation and the rapid necking resulted from the twinning partial slipping. Finally, the atomic-level process that occurs during deformation until final fracture are examined in detail, and a new formation mechanism of the Lomer dislocation is observed when a 90° partial dislocation transmits across a coherent twin boundary

  4. Complex Living Conditions Impair Behavioral Inhibition but Improve Attention in Rats

    NARCIS (Netherlands)

    van der Veen, Rixt; Kentrop, Jiska; van der Tas, Liza; Loi, Manila; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J; Joëls, Marian

    2015-01-01

    Rapid adaptation to changes, while maintaining a certain level of behavioral inhibition is an important feature in every day functioning. How environmental context and challenges in life can impact on the development of this quality is still unknown. In the present study, we examined the effect of a

  5. The BOLD-fMRI study of behavior inhibition in chronic heroin addicts

    International Nuclear Information System (INIS)

    Yuan Fei; Yuan Yi; Liu Yinshe; Zhao Jun; Weng Xuchu

    2011-01-01

    Objective: To identify the neural mechanisms of impulsivity and the response inhibition deficits of the chronic heroin users using event-related functional MRI (stop-signal task). Methods: Seventeen individuals with heroin dependence and 17 healthy control subjects underwent fMRI scan while executing stop -signal task after anatomical scanning in 3.0 T scanner. The AFNI package was used for fMRI data preprocessing and statistical analysis. Results: The behavioral data showed that the stop signal reaction rime (SSRT) of heroin users was significantly longer than that of the control group. There was no significant difference in activation of the primary motor cortex and supplementary motor area between two groups. Comparing to the control group, heroin users had weaker activation in the right dorsal lateral prefrontal cortex, right inferior prefrontal cortex, and anterior cingulated cortex, but stronger activation in bilateral striatum and amygdala while behavioral inhibition needed. Conclusion: The results suggest that heroin users have significant changes within impulsivity and inhibitory network, where the right prefrontal cortex is considered as main region for inhibition, while the anterior cingulated cortex is associated with error monitoring, and the amygdale controls impulsivity and emotion. (authors)

  6. Cubic-to-Tetragonal Phase Transitions in Ag-Cu Nano rods

    International Nuclear Information System (INIS)

    Delogu, F.; Mascia, M.

    2012-01-01

    Molecular dynamics simulations have been used to investigate the structural behavior of nano rods with square cross section. The nano rods consist of pure Ag and Cu phases or of three Ag and Cu domains in the sequence Ag-Cu-Ag or Cu-Ag-Cu. Ag and Cu domains are separated by coherent interfaces. Depending on the side length and the size of individual domains, Ag and Cu can undergo a transition from the usual face-centered cubic structure to a body-centered tetragonal one. Such transition can involve the whole nano rod, or only the Ag domains. In the latter case, the transition is accompanied by a loss of coherency at the Ag-Cu interfaces, with a consequent release of elastic energy. The observed behaviors are connected with the stresses developed at the nano rod surfaces.

  7. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds

    International Nuclear Information System (INIS)

    Xu, H.; Liu, C.; Silberschmidt, V.V.; Pramana, S.S.; White, T.J.; Chen, Z.; Acoff, V.L.

    2011-01-01

    Nanoscale interfacial evolution in Cu-Al wire bonds during isothermal annealing from 175 deg. C to 250 deg. C was investigated by high resolution transmission electron microscopy (HRTEM). The native aluminum oxide film (∼5 nm thick) of the Al pad migrates towards the Cu ball during annealing. The formation of intermetallic compounds (IMC) is controlled by Cu diffusion, where the kinetics obey a parabolic growth law until complete consumption of the Al pad. The activation energies to initiate crystallization of CuAl 2 and Cu 9 Al 4 are 60.66 kJ mol -1 and 75.61 kJ mol -1 , respectively. During IMC development, Cu 9 Al 4 emerges as a second layer and grows together with the initial CuAl 2 . When Al is completely consumed, CuAl 2 transforms to Cu 9 Al 4 , which is the terminal product. Unlike the excessive void growth in Au-Al bonds, only a few voids nucleate in Cu-Al bonds after long-term annealing at high temperatures (e.g., 250 o C for 25 h), and their diameters are usually in the range of tens of nanometers. This is due to the lower oxidation rate and volumetric shrinkage of Cu-Al IMC compared with Au-Al IMC.

  8. Effect of Y additions on the solidification behavior of a copper mold cast CuZrAl alloy with high oxygen content

    International Nuclear Information System (INIS)

    Coury, F.G.; Batalha, W.; Botta, W.J.; Bolfarini, C.; Kiminami, C.S.

    2014-01-01

    Bulk glassy samples of the CuAlZr system were produced by copper mold casting in the form of wedges with different amounts of yttrium (0 , 0.3 and 2 at%) , the processing conditions led to high oxygen contents on the samples (1000ppm). A reportedly good glass-former composition was chosen as the base alloy, it’s nominal composition is Cu47Zr45Al8. This study aimed to understand the influence of oxygen and yttrium in the solidification of these alloys. The samples were analyzed by scanning and transmission electron microscopy, differential scanning calorimetry and X-Ray diffraction. The sequence of formation of crystalline phases in these alloys was determined as a function of the different cooling rates inherent in the process. It was observed that the formation of CuZr2 phase was inhibited in samples with Y allowing the production of a fully glassy 8mm. (author)

  9. Trace element inhibition of phytase activity.

    Science.gov (United States)

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  10. Skittish, shielded, and scared: relations among behavioral inhibition, overprotective parenting, and anxiety in native and non-native Dutch preschool children.

    Science.gov (United States)

    Vreeke, Leonie J; Muris, Peter; Mayer, Birgit; Huijding, Jorg; Rapee, Ronald M

    2013-10-01

    This study examined behavioral inhibition and overprotective parenting as correlates and predictors of anxiety disorder symptoms in preschoolers with a multi-cultural background (N=168). Parents of 3- to 6-year-old children completed a set of questionnaires twice, 12 months apart. Parents were also interviewed with the Anxiety Disorders Interview Schedule for DSM-IV at the 12-month point to assess the clinical severity of children's anxiety symptoms. Behavioral inhibition consistently emerged as a significant concurrent correlate of anxiety symptoms and this was particularly true for social anxiety symptoms. Overprotective parenting also emerged as a significant correlate of anxiety, but only in the case of non-social anxiety symptoms and mainly in non-native Dutch children. Prospective analyses revealed that behavioral inhibition was a significant predictor of social anxiety symptoms, while overprotective parenting did not explain significant variance in the development of children's anxiety over time. The support for an interactive effect of behavioral inhibition and overprotective parenting was unconvincing. Finally, it was found that children who exhibited stable high levels of behavioral inhibition throughout the study ran the greatest risk for developing an anxiety disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of inclusions on the sintering behavior of YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Stearns, L.C.; Harmer, M.P.; Chan, H.M.

    1990-01-01

    The sintering behavior of two types of heterogeneous compacts of YBa 2 Cu 3 O 6+x was studied: Soft agglomerates present in the starting powder were used to study the effect of rapidly densifying inclusions on the overall sample densification. In this case, the induced stresses caused severe cracklike damage in the sintered microstructure. On the other hand, when nondensifying inclusions (same composition) were incorporated into the starting powder, no sintering damage was observed. Further, there was no retardation of densification or coarsening due to the presence of these dense inclusions, over a wide range of inclusion size. Several possibilities for this behavior are discussed, based on the distribution of stresses induced by differential sintering rates

  12. Genetic influences on phase synchrony of brain oscillations supporting response inhibition.

    Science.gov (United States)

    Müller, Viktor; Anokhin, Andrey P; Lindenberger, Ulman

    2017-05-01

    Phase synchronization of neuronal oscillations is a fundamental mechanism underlying cognitive processing and behavior, including context-dependent response production and inhibition. Abnormalities in neural synchrony can lead to abnormal information processing and contribute to cognitive and behavioral deficits in neuropsychiatric disorders. However, little is known about genetic and environmental contributions to individual differences in cortical oscillatory dynamics underlying response inhibition. This study examined heritability of event-related phase synchronization of brain oscillations in 302 young female twins including 94 MZ and 57 DZ pairs performing a cued Go/No-Go version of the Continuous Performance Test (CPT). We used the Phase Locking Index (PLI) to assess inter-trial phase clustering (synchrony) in several frequency bands in two time intervals after stimulus onset (0-300 and 301-600ms). Response inhibition (i.e., successful response suppression in No-Go trials) was characterized by a transient increase in phase synchronization of delta- and theta-band oscillations in the fronto-central midline region. Genetic analysis showed significant heritability of the phase locking measures related to response inhibition, with 30 to 49% of inter-individual variability being accounted for by genetic factors. This is the first study providing evidence for heritability of task-related neural synchrony. The present results suggest that PLI can serve as an indicator of genetically transmitted individual differences in neural substrates of response inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    International Nuclear Information System (INIS)

    Bobbili, Ravindranadh; Paman, Ashish; Madhu, V.

    2016-01-01

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  14. Fatigue crack behavior on a Cu-Zn-Al SMA

    Directory of Open Access Journals (Sweden)

    V. Di Cocco

    2014-10-01

    Full Text Available In recent years, mechanical property of many SMA has improved in order to introduce these alloys in specific field of industry. Main examples of these alloys are the NiTi, Cu-Zn-Al and Cu-Al-Ni which are used in many fields of engineering such as aerospace or mechanical systems. Cu-Zn-Al alloys are characterized by good shape memory properties due to a bcc disordered structure stable at high temperature called β-phase, which is able to change by means of a reversible transition to a B2 structure after appropriate cooling, and reversible transition from B2 secondary to DO3 order, under other types of cooling. In β-Cu-Zn-Al shape memory alloys, the martensitic transformation is not in equilibrium at room temperature. It is therefore often necessary to obtain the martensitic structure, using a thermal treatment at high temperature followed by quenching. The martensitic phases can be either thermally-induced spontaneous transformation, or stressinduced, or cooling, or stressing the β- phase. Direct quenching from high temperatures to the martensite phase is the most effective because of the non-diffusive character of the transformation. The martensite inherits the atomic order from the β-phase. Precipitation of many kinds of intermetallic phases is the main problem of treatment on cu-based shape memory alloy. For instance, a precipitation of α-phase occurs in many low aluminum copper based SMA alloy and presence of α-phase implies a strong degradation of shape recovery. However, Cu-Zn-Al SMA alloys characterized by aluminum contents less than 5% cover a good cold machining and cost is lower than traditional NiTi SMA alloys. In order to improve the SMA performance, it is always necessary to identify the microstructural changing in mechanical and thermal conditions, using X-Ray analyses. In this work a Cu-Zn-Al SMA alloy obtained in laboratory has been microstructurally and metallographically characterized by means of X-Ray diffraction and Light

  15. Insight into the short- and long-term effects of Cu(II) on denitrifying biogranules

    International Nuclear Information System (INIS)

    Chen, Hui; Chen, Qian-Qian; Jiang, Xiao-Yan; Hu, Hai-Yan; Shi, Man-Ling; Jin, Ren-Cun

    2016-01-01

    Highlights: • It is the first time to evaluate the effect of Cu"2"+ on denitrifying biogranules. • A high level of Cu(II) was investigated during batch assays and continuous tests. • Mechanisms of the effects of Cu"2"+ on denitrifying biogranules were discussed. • Effects of pre-exposure to Cu"2"+ and starvation treatments were investigated. - Abstract: This study aimed to investigate the short- and long-term effects of Cu"2"+ on the activity and performance of denitrifying bacteria. The short-term effects of various concentrations of Cu"2"+ on the denitrifying bacteria were evaluated using batch assays. The specific denitrifying activity (SDA) decreased from 14.3 ± 2.2 (without Cu"2"+) to 6.1 ± 0.1 mg N h"−"1 g"−"1 VSS (100 mgCu"2"+ L"−"1) when Cu"2"+ increased from 0 to 100 mg L"−"1 with an increment of 10 mgCu"2"+ L"−"1. A non-competitive inhibition model was used to calculate the 50% inhibition concentration (IC_5_0) of Cu"2"+ on denitrifying sludge (30.6 ± 2.5 mg L"−"1). Monod and Luong models were applied to investigate the influence of the initial substrate concentration, and the results suggested that the maximum substrate removal rate would be reduced with Cu"2"+ supplementation. Pre-exposure to Cu"2"+ could lead to an 18.2–46.2% decrease in the SDA and decreasing percentage of the SDA increased with both exposure time and concentration. In the continuous-flow test, Cu"2"+ concentration varied from 1 to 75 mg L"−"1; however, no clear deterioration was observed in the reactor, and the reactor was kept stable, with the total nitrogen removal efficiency and total organic carbon efficiency greater than 89.0 and 85.0%, respectively. The results demonstrated the short-term inhibition of Cu"2"+ upon denitrification, and no notable adversity was observed during the continuous-flow test after long-term acclimation.

  16. Decomposition of NO on Cu-loaded zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Escribano, A; Marquez-Alvarez, C; Rodriquez-Ramos, I; Fierro, J L.G. [Instituto de Catalisis y Petroleoquimica, Madrid (Spain); Guerrero-Ruiz, A [Departamento de Quimica Inorganica, UNED, Madrid (Spain)

    1993-05-26

    Two copper ion-exchanged zeolites, Cu/NaY and Cu/NaZSM-5 have been studied by several techniques (TPR, TPD of NO, IR spectroscopy of adsorbed NO and XPS) and their catalytic activity for NO-decomposition have been determined under dynamic conditions. The results obtained here show that copper is stabilized as Cu[sup +] in Cu/NaZSM-5 after calcination in air at 673K, while in Cu/NaY the initial Cu[sup +]-ions are easier oxidized to Cu[sup 2+], this leading to a completely different catalytic behavior in the reaction of NO-decomposition. So, whereas the Cu/NaZSM-5 exhibits a high NO-conversion at the reaction temperatures (573 and 873K), the parent Cu/NaY zeolite becomes deactivated in the first stages of reaction.

  17. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    International Nuclear Information System (INIS)

    Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying

    2013-01-01

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug

  18. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying, E-mail: caoying1130@sina.com [Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2013-11-15

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.

  19. Relations between Behavioral Inhibition, Big Five Personality Factors, and Anxiety Disorder Symptoms in Non-Clinical and Clinically Anxious Children

    Science.gov (United States)

    Vreeke, Leonie J.; Muris, Peter

    2012-01-01

    This study examined the relations between behavioral inhibition, Big Five personality traits, and anxiety disorder symptoms in non-clinical children (n = 147) and clinically anxious children (n = 45) aged 6-13 years. Parents completed the Behavioral Inhibition Questionnaire-Short Form, the Big Five Questionnaire for Children, and the Screen for…

  20. Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg - Zn spinel nanoferrites

    Science.gov (United States)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-03-01

    Cu2+ substituted Mg - Zn nanoferrites is synthesized by low temperature fired sol gel auto combustion method. The spinel nature of nanoferrites was confirmed by lab x-ray technique. Williamson - Hall (W-H) analysis estimate the average crystallite size (22.25-29.19 ± 3 nm) and micro strain induced Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5). Raman scattering measurements confirm presence of four active phonon modes. Red shift is observed with enhanced Cu concentration. Dielectric parameters exhibit a non - monotonous dispersion with Cu concentration and interpreted with the support of hopping mechanism and Maxwell-Wagner type of interfacial polarization. The ac conductivity of nanoferrites increases with raising the frequency. Complex electrical modulus reveals a non - Debye type of dielectric relaxation present in nanoferrites. Reactive impedance (Z″) detected an anomalous behavior and is related with resonance effect. Complex impedance demonstrates one semicircle corresponding to the intergrain (grain boundary) resistance and also explains conducting nature of nanoferrites. For x = 0.2, a large semicircle is observed revealing the ohmic nature (minimum potential drop at electrode surface). Dielectric properties were improved for nanoferrites with x = 0.2 and is due to high dielectric constant, conductivity and minimum loss value (∼0.009) at 1 MHz.

  1. Impact of Behavioral Inhibition and Parenting Style on Internalizing and Externalizing Problems from Early Childhood through Adolescence

    Science.gov (United States)

    Williams, Lela Rankin; Degnan, Kathryn A.; Perez-Edgar, Koraly E.; Henderson, Heather A.; Rubin, Kenneth H.; Pine, Daniel S.; Steinberg, Laurence; Fox, Nathan A.

    2009-01-01

    Behavioral inhibition (BI) is characterized by a pattern of extreme social reticence, risk for internalizing behavior problems, and possible protection against externalizing behavior problems. Parenting style may also contribute to these associations between BI and behavior problems (BP). A sample of 113 children was assessed for BI in the…

  2. Effect of Intermetallic on Electromigration and Atomic Diffusion in Cu/SnAg3.0Cu0.5/Cu Joints: Experimental and First-Principles Study

    Science.gov (United States)

    Zhou, Wei; Liu, Lijuan; Li, Baoling; Wu, Ping

    2009-06-01

    Electromigration phenomena in a one-dimensional Cu/SnAg3.0Cu0.5/Cu joint were investigated with current stressing. The special effect of intermetallic compound (IMC) layers on the formation of serious electromigration damage induced by nonuniform current density distribution was discussed based on experimental results. Meanwhile, hillocks were observed both at the anode and near the cathode of the joint, and they were described as the result of diffusion of atoms and compressive stress released along grain boundaries to the relatively free surface. Moreover, the diffusion behavior of Cu at the cathode was analyzed with the electromigration equation, and the stability of Ag atoms in the solder during electromigration was evaluated with a first-principles method.

  3. Conducting mechanisms of forming-free TiW/Cu{sub 2}O/Cu memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Yan, P.; Li, Y.; Hui, Y. J.; Zhong, S. J.; Zhou, Y. X.; Xu, L.; Liu, N.; Qian, H.; Sun, H. J., E-mail: shj@mail.hust.edu.cn; Miao, X. S. [Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-08-24

    P-type Cu{sub 2}O is a promising CMOS-compatible candidate to fabricate memristive devices for next-generation memory, logic and neuromorphic computing. In this letter, the microscopic switching and conducting mechanisms in TiW/Cu{sub 2}O/Cu memristive devices have been thoroughly investigated. The bipolar resistive switching behaviors without an electro-forming process are ascribed to the formation and rupture of the conducting filaments composed of copper vacancies. In the low resistive state, the transport of electrons in the filaments follows Mott's variable range hopping theory. When the devices switch back to high resistive state, the coexistence of Schottky emission at the Cu/Cu{sub 2}O interface and electron hopping between the residual filaments is found to dominate the conducting process. Our results will contribute to the further understanding and optimization of p-type memristive materials.

  4. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    Science.gov (United States)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  5. Inhibition and Encouragement of Entrepreneurial Behavior: Antecedents Analysis from Managers’ Perspectives

    Directory of Open Access Journals (Sweden)

    Marcos Hashimoto

    2014-10-01

    Full Text Available One of the paths chosen by businesses to increase their competitiveness through innovation is by encouraging employees to adopt a more entrepreneurial attitude. Although studies on Entrepreneurial Orientation have brought important contributions, anecdotal evidences of entrepreneurial employees not affected by corporate initiatives drive attention to managers’ roles in developing entrepreneurial behavior. We found good possible explanations in the theory Induced vs. Autonomous Entrepreneurial Behavior. Thus, the objective of this study is to empirically analyze the factors that inhibit or encourage entrepreneurial behavior. These factors arose from empirical research and were consolidated based on a literature review. This is a qualitative study whose data were collected in interviews carried out with 15 executives from different businesses in Brazil. The results showed that, while some Entrepreneurially Oriented practices can induce employees to adopt entrepreneurial behavior, autonomous behavior intrapreneurs are mostly stimulated by manager attitude. Managers use different approaches depending on the type of intrapreneur whose entrepreneurial behavior is intended to be stimulated, leading to the conclusion that managers, in some cases, play an important role in promoting Corporate Entrepreneurship.

  6. Behavior of Electrochemically Prepared CuInSe{sub 2} as Photovoltaic Absorber in thin Film Solar Cells; Comportamiento del CuInSe{sub 2} Basado en Precursores Electrodepositados como Absorbente Fotovoltaico en Celulas Solares de Lamina Delgada

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C; Martinez, M A; Dona, J M; Herrero, J; Gutierrez, M T [Ciemat.Madrid (Spain)

    2000-07-01

    Two different objective have been pursued in the present investigation: (1) optimization of the CuInSe{sub 2} preparation parameters from electrodeposited precursors, and (2) evaluation of their photovoltaic behavior by preparing and enhancing Mo/CuInSe{sub 2}/CdS/TCO devices. When Cu-In-Se precursors are directly electrodeposited, the applied potential fit is essential to improve the photovoltaic performance. Suitable absorbers have been also obtained by evaporing an In layer onto electrodeposited Cu-Se precursors. In this case, the substrate temperature during evaporation determines the CuInSe{sub 2} quality. Similar results have been reached by substituting typical Mo-Coated glass substrates by flexible Mo foils. Different TCO tested (ZnO and ITO) have been found equivalent as front electrical contact in the devices. Solar cell performance can be improved by annealing in air at 200 degree centigree. (Author) 46 refs.

  7. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    International Nuclear Information System (INIS)

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-01-01

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor

  8. Highly stable carbon-doped Cu films on barrierless Si

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Li, X.N.; Nie, L.F.; Chu, J.P.; Wang, Q.; Lin, C.H.; Dong, C.

    2011-01-01

    Electrical resistivities and thermal stabilities of carbon-doped Cu films on silicon have been investigated. The films were prepared by magnetron sputtering using a Cu-C alloy target. After annealing at 400 deg. C for 1 h, the resistivity maintains a low level at 2.7 μΩ-cm and no Cu-Si reaction is detected in the film by X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations. According to the secondary ion mass spectroscopy (SIMS) results, carbon is enriched near the interfacial region of Cu(C)/Si, and is considered responsible for the growth of an amorphous Cu(C)/Si interlayer that inhibits the Cu-Si inter-diffusion. Fine Cu grains, less than 100 nm, were present in the Cu(C) films after long-term and high-temperature annealings. The effect of C shows a combination of forming a self-passivated interface barrier layer and maintaining a fine-grained structure of Cu. A low current leakage measured on this Cu(C) film also provides further evidence for the carbon-induced diffusion barrier interlayer performance.

  9. Characterization of uniaxial fatigue behavior of precipitate strengthened Cu-Ni-Si alloy (SICLANIC(TM

    Directory of Open Access Journals (Sweden)

    B. Saadouki

    2018-01-01

    Full Text Available Fatigue tests were conducted on cylindrical bars specimens to understand the fatigue behavior of SICLANIC. Although it displays good resistance in monotonic tension, this material weakens and shows a softening in repeated solicitation. This has been verified through a SEM observation, the Cu-Ni-Si alloy presents transgranular failure by cleavage. The MansonCoffin diagram exhibited the plastic deformation accommodation. The plastic deformation becomes periodic and decreases progressively as the cycle number increases. The approximations of Manson Coffin give fatigue parameters values which are in good agreement with the experience

  10. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    International Nuclear Information System (INIS)

    Jiang, L.; Li, J.K.; Liu, G.; Wang, R.H.; Chen, B.A.; Zhang, J.Y.; Sun, J.; Yang, M.X.; Yang, G.; Yang, J.; Cao, X.Z.

    2015-01-01

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al 2 Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al 2 Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al 2 Cu particles were precipitated and intragranular θ′-Al 2 Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying effect and the

  11. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, J.K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, R.H. [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen, B.A.; Zhang, J.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun, J., E-mail: junsun@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, M.X.; Yang, G. [Central Iron and Steel Research Institute, Beijing 100081 (China); Yang, J.; Cao, X.Z. [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-18

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al{sub 2}Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al{sub 2}Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al{sub 2}Cu particles were precipitated and intragranular θ′-Al{sub 2}Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying

  12. Impact of behavioral inhibition and parenting style on internalizing and externalizing problems from early childhood through adolescence.

    Science.gov (United States)

    Williams, Lela Rankin; Degnan, Kathryn A; Perez-Edgar, Koraly E; Henderson, Heather A; Rubin, Kenneth H; Pine, Daniel S; Steinberg, Laurence; Fox, Nathan A

    2009-11-01

    Behavioral inhibition (BI) is characterized by a pattern of extreme social reticence, risk for internalizing behavior problems, and possible protection against externalizing behavior problems. Parenting style may also contribute to these associations between BI and behavior problems (BP). A sample of 113 children was assessed for BI in the laboratory at 14 and 24 months of age, self-report of maternal parenting style at 7 years of age, and maternal report of child internalizing and externalizing BP at 4, 7, and 15 years. Internalizing problems at age 4 were greatest among behaviorally inhibited children who also were exposed to permissive parenting. Furthermore, greater authoritative parenting was associated with less of an increase in internalizing behavior problems over time and greater authoritarian parenting was associated with a steeper decline in externalizing problems. Results highlight the importance of considering child and environmental factors in longitudinal patterns of BP across childhood and adolescence.

  13. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    Directory of Open Access Journals (Sweden)

    Ramón A. Lorca

    2011-01-01

    Full Text Available Although the physiological function of the cellular prion protein (PrPC remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+.

  14. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    Science.gov (United States)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  15. The cognitive architecture of anxiety-like behavioral inhibition.

    Science.gov (United States)

    Bach, Dominik R

    2017-01-01

    The combination of reward and potential threat is termed approach/avoidance conflict and elicits specific behaviors, including passive avoidance and behavioral inhibition (BI). Anxiety-relieving drugs reduce these behaviors, and a rich psychological literature has addressed how personality traits dominated by BI predispose for anxiety disorders. Yet, a formal understanding of the cognitive inference and planning processes underlying anxiety-like BI is lacking. Here, we present and empirically test such formalization in the terminology of reinforcement learning. We capitalize on a human computer game in which participants collect sequentially appearing monetary tokens while under threat of virtual "predation." First, we demonstrate that humans modulate BI according to experienced consequences. This suggests an instrumental implementation of BI generation rather than a Pavlovian mechanism that is agnostic about action outcomes. Second, an internal model that would make BI adaptive is expressed in an independent task that involves no threat. The existence of such internal model is a necessary condition to conclude that BI is under model-based control. These findings relate a plethora of human and nonhuman observations on BI to reinforcement learning theory, and crucially constrain the quest for its neural implementation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. A-site ordered perovskite CaCu3Cu2Ir2O12−δ with square-planar and octahedral coordinated Cu ions

    International Nuclear Information System (INIS)

    Zhao Qing; Wang Qing-Tao; Yin Yun-Yu; Dai Jian-Hong; Shen Xi; Yang Jun-Ye; Yu Ri-Cheng; Long You-Wen; Hu Zhi-Wei; Li Xiao-Dong

    2016-01-01

    A novel CaCu 3 Cu 2 Ir 2 O 12−δ polycrystalline sample was synthesized at 8 GPa and 1373 K. Rietveld structural analysis shows that this compound crystallizes in an -type A-site ordered perovskite structure with space group Im-3. X-ray absorption spectra reveal a +2-charge state for both the square-planar and octahedral coordinated Cu ions, and the valence state of Ir is found to be about +5. Although the A-site Ca and the A′-site Cu 2+ are 1:3 ordered at fixed atomic positions, the distribution of B-site Cu 2+ and Ir 5+ is disorderly. As a result, no long-range magnetic ordering is observed at temperatures down to 2 K. Electrical transport and heat capacity measurements demonstrate itinerant electronic behavior. The crystal structure is stable with pressure up to 35.7 GPa at room temperature. (paper)

  17. Behavioral and Neural Correlates of Executive Function: Interplay between Inhibition and Updating Processes.

    Science.gov (United States)

    Kim, Na Young; Wittenberg, Ellen; Nam, Chang S

    2017-01-01

    This study investigated the interaction between two executive function processes, inhibition and updating, through analyses of behavioral, neurophysiological, and effective connectivity metrics. Although, many studies have focused on behavioral effects of executive function processes individually, few studies have examined the dynamic causal interactions between these two functions. A total of twenty participants from a local university performed a dual task combing flanker and n-back experimental paradigms, and completed the Operation Span Task designed to measure working memory capacity. We found that both behavioral (accuracy and reaction time) and neurophysiological (P300 amplitude and alpha band power) metrics on the inhibition task (i.e., flanker task) were influenced by the updating load (n-back level) and modulated by working memory capacity. Using independent component analysis, source localization (DIPFIT), and Granger Causality analysis of the EEG time-series data, the present study demonstrated that manipulation of cognitive demand in a dual executive function task influenced the causal neural network. We compared connectivity across three updating loads (n-back levels) and found that experimental manipulation of working memory load enhanced causal connectivity of a large-scale neurocognitive network. This network contains the prefrontal and parietal cortices, which are associated with inhibition and updating executive function processes. This study has potential applications in human performance modeling and assessment of mental workload, such as the design of training materials and interfaces for those performing complex multitasking under stress.

  18. Behavioral and Neural Correlates of Executive Function: Interplay between Inhibition and Updating Processes

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    2017-06-01

    Full Text Available This study investigated the interaction between two executive function processes, inhibition and updating, through analyses of behavioral, neurophysiological, and effective connectivity metrics. Although, many studies have focused on behavioral effects of executive function processes individually, few studies have examined the dynamic causal interactions between these two functions. A total of twenty participants from a local university performed a dual task combing flanker and n-back experimental paradigms, and completed the Operation Span Task designed to measure working memory capacity. We found that both behavioral (accuracy and reaction time and neurophysiological (P300 amplitude and alpha band power metrics on the inhibition task (i.e., flanker task were influenced by the updating load (n-back level and modulated by working memory capacity. Using independent component analysis, source localization (DIPFIT, and Granger Causality analysis of the EEG time-series data, the present study demonstrated that manipulation of cognitive demand in a dual executive function task influenced the causal neural network. We compared connectivity across three updating loads (n-back levels and found that experimental manipulation of working memory load enhanced causal connectivity of a large-scale neurocognitive network. This network contains the prefrontal and parietal cortices, which are associated with inhibition and updating executive function processes. This study has potential applications in human performance modeling and assessment of mental workload, such as the design of training materials and interfaces for those performing complex multitasking under stress.

  19. Motivating and Inhibiting Factors to Oral-Dental Health Behavior in Adolescents: a Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Zahra Hosseini

    2016-11-01

    Full Text Available Background Oral-dental diseases, especially tooth decay, are among the most common diseases in the world which usually begin in adolescence. Oral health during this period of life has a huge impact on the reduction of dental problems. This study aimed to determine motivating and inhibiting factors to oral-dental health behavior in adolescents. Materials and Methods This cross-sectional which had a descriptive and analytical design was conducted on 10-12th grade students in Kashan city, Iran. Using multi-stage sampling method and based on sampling size formula, a total of 290 of the students were randomly selected from the schools and were enrolled into the study. Then they received a research-made questionnaire containing questions about the knowledge and motivating and inhibiting factors to oral-dental health behavior. The collected data were analyzed using SPSS V.20 by independent t-test, ANOVA, and Pearson correlation coefficient. Results Of all, 62.8% of students brushed their teeth at least once a day. Moreover, 11.7% used dental floss once a day and 6.6% visited a dentist every six months. Oral-dental health behavior had a significant relationship with gender (P0.05. Conclusion When designing educational plans and interventions for improving oral-dental health behavior in students, it is necessary to adopt measures to enhance motivating factors and eliminate inhibiting factors.

  20. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  1. Attention biases to threat and behavioral inhibition in early childhood shape adolescent social withdrawal.

    Science.gov (United States)

    Pérez-Edgar, Koraly; Bar-Haim, Yair; McDermott, Jennifer Martin; Chronis-Tuscano, Andrea; Pine, Daniel S; Fox, Nathan A

    2010-06-01

    Behavioral inhibition (BI) is a temperament characterized in young children by a heightened sensitivity to novelty, social withdrawal, and anxious behaviors. For many children, these social difficulties dissipate over time. For others, patterns of social withdrawal continue into adolescence. Over time, attention biases to threat may influence the stability of BI and its association with social withdrawal, ultimately modulating the risk for anxiety disorders in BI children. However, we know relatively little about the cognitive processes that accompany BI and shape later socio-emotional functioning. We examined the relations among BI in childhood, attention biases to threat in adolescence, and adolescent social withdrawal in a longitudinal study (N = 126, Mean age = 15 years). As has been reported in anxious adults, adolescents who were behaviorally inhibited as toddlers and young children showed heightened attention bias to threat. In addition, attention bias to threat moderated the relation between childhood BI and adolescent social withdrawal.

  2. Formation of layered microstructure in the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Kammlott, G.W.; Tiefel, T.H.; Chen, S.K.

    1992-01-01

    The layered grain microstructure is essential for overcoming the weak link problem and ensuring high transport critical currents in the cuprate superconductors. In this paper we discuss the processing and the mechanisms for layer information in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O. In melt-processed Y-Ba-Cu-O, sympathetic nucleation on previously nucleated YBa 2 Cu 3 O 7-δ plates during solidification appears to be dominant mechanism for the formation of parallel plate-shaped grains. In the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons, the interface reaction between the superconductor layer and the silvers substrate seems to be the main mechanism for the c-axis texturing of the layered grains. The drastically different critical current behavior in the c-axis textured Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons is discussed in terms of possible differences in the nature of the twist and tilt grain boundaries. (orig.)

  3. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Initial stages of benzotriazole adsorption on the Cu(111) surface

    Science.gov (United States)

    Grillo, Federico; Tee, Daniel W.; Francis, Stephen M.; Früchtl, Herbert; Richardson, Neville V.

    2013-05-01

    Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion.Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion. Electronic supplementary information (ESI) available: Calculated IR spectra, RAIRS assignments, modeling details, statistics on diffusion, experimental details, additional STM images, movie low coverage diffusing species. See DOI: 10.1039/c3nr00724c

  5. Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles

    International Nuclear Information System (INIS)

    Li, N.; Mara, N.A.; Wang, Y.Q.; Nastasi, M.; Misra, A.

    2011-01-01

    Research highlights: → Firstly micro-pillar compression technique has been used to measure the implanted metal films. → The magnitude of radiation hardening decreased with decreasing layer thickness. → When thickness decreases to 2.5 nm, no hardening and no loss in deformability after implantation. -- Focused-ion-beam machined compression specimens were used to investigate the effect of nanometer-scale helium bubbles on the strength and deformability of sputter-deposited Cu and Cu/Nb multilayers with different layer thickness. The flow strength of Cu films increased by more than a factor of 2 due to helium bubbles but in multilayers, the magnitude of radiation hardening decreased with decreasing layer thickness. When the layer thickness decreases to 2.5 nm, insignificant hardening and no measurable loss in deformability is observed after implantation.

  6. Spectroscopic study of the CuO chains in YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Edwards, H.; Derro, D.J.; Barr, A.L.; Markert, J.T.; de Lozanne, A.L.

    1996-01-01

    We interpret our previously published results obtained using a technique called current-imaging tunneling spectroscopy (CITS) to study the detailed electronic structure of the CuO chains in the high-temperature superconductor YBa 2 Cu 3 O 7-x near the Fermi level. Our CITS data comprise sequences of 32 simultaneously obtained images taken at bias voltages ranging from -78 to 72 mV. Cross sections of the CITS data, normalized-conductance analysis, and logarithmic-derivative analysis allow us to examine in detail the behavior of electronic modulations along the CuO chains and the energy gap in the CuO chains of YBa 2 Cu 3 O 7-x . This new analysis lends a strong foundation to our previous interpretation of the CITS data [H. L. Edwards et al., Phys. Rev. Lett. 75, 1387 (1995)]. copyright 1996 American Vacuum Society

  7. Impact of Behavioral Inhibition and Parenting Style on Internalizing and Externalizing Problems from Early Childhood through Adolescence

    Science.gov (United States)

    Williams, Lela Rankin; Perez-Edgar, Koraly E.; Henderson, Heather A.; Rubin, Kenneth H.; Pine, Daniel S.; Steinberg, Laurence; Fox, Nathan A.

    2009-01-01

    Behavioral inhibition (BI) is characterized by a pattern of extreme social reticence, risk for internalizing behavior problems, and possible protection against externalizing behavior problems. Parenting style may also contribute to these associations between BI and behavior problems (BP). A sample of 113 children was assessed for BI in the laboratory at 14 and 24 months of age, self-report of maternal parenting style at 7 years of age, and maternal report of child internalizing and externalizing BP at 4, 7, and 15 years. Internalizing problems at age 4 were greatest among behaviorally inhibited children who also were exposed to permissive parenting. Furthermore, greater authoritative parenting was associated with less of an increase in internalizing behavior problems over time and greater authoritarian parenting was associated with a steeper decline in externalizing problems. Results highlight the importance of considering child and environmental factors in longitudinal patterns of BP across childhood and adolescence. PMID:19521761

  8. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  9. Chronic fluoxetine inhibits sexual behavior in the male rat: reversal with oxytocin.

    Science.gov (United States)

    Cantor, J M; Binik, Y M; Pfaus, J G

    1999-06-01

    Selective serotonin reuptake inhibitors, used widely in the treatment of depression, progressively inhibit sexual orgasm in many patients and induce a transient inhibition of sexual desire. We attempted to model the effects of these drugs in sexually experienced male rats during tests of copulation in bilevel chambers. These chambers allow the study of both appetitive and consummatory sexual responses of male rats. Males were treated daily with fluoxetine hydrochloride (0, 1, 5, or 10 mg/kg) and tested for sexual behavior with receptive females at 4-day intervals. Rats were treated with oxytocin (200 ng/kg) or saline after ejaculations had decreased. Fluoxetine decreased ejaculatory responses of male rats in a dose- and time-dependent fashion, but left the copulatory efficiency of the males intact. In contrast, conditioned level changing, a measure of appetitive sexual excitement, was inhibited following acute and chronic treatment with 10 mg/kg, although tolerance may have developed to the effect of 5 mg/kg. Subsequent administration of oxytocin restored the ejaculatory response but not the measure of sexual excitement to baseline levels. The reversal by oxytocin of the fluoxetine-induced deficit in ejaculations is consistent with the hypothesis that serotonin suppresses ejaculatory mechanisms by interrupting the action of oxytocin, which normally accompanies sexual behavior. Co-administration of oxytocin may help to alleviate the predominant sexual side effect of serotonin reuptake blockers.

  10. Insight on a novel layered semiconductors: CuTlS and CuTlSe

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ziya S., E-mail: ziyasaliev@gmail.com [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku (Azerbaijan); Donostia International Physics Center (DIPC), 20080 San Sebastian (Spain); Zúñiga, Fco. Javier [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Koroteev, Yury M. [Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Siberian Branch, 634055 Tomsk (Russian Federation); Tomsk State University, Tomsk, 634050 (Russian Federation); Breczewski, Tomasz [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Babanly, Nizamaddin B. [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); Amiraslanov, Imamaddin R. [Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku (Azerbaijan); Politano, Antonio [Department of Physics, University of Calabria, 87036 Rende (CS) (Italy); Madariaga, Gotzon [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Babanly, Mahammad B. [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); and others

    2016-10-15

    Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and are narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.

  11. Surface structure and morphology of Cu-free and Cu-covered Au(100) and Au(111) electrodes in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Schlaup, Christian [Technical University of Denmark, Department of Physics, Fysikvey, DK-2800 Kongens Lyngby (Denmark); Friebel, Daniel [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Wandelt, Klaus [University of Bonn, Institute for Physical und Theoretical Chemistry, Wegelerstr. 12, D-53115 Bonn (Germany)

    2011-07-01

    For both Cu-free Au-electrodes three different phases were observed as a function of the applied electrode potential. While at low potentials the onset of surface reconstruction points towards an apparently adsorbate free surface and, thus, a weak interaction with species from the electrolyte, a Au-hydroxide and a Au-oxide phase are formed subsequently during potential increase. A similar phase behavior was also found for Cu-covered Au-electrodes, while at low potentials an apparently adsorbate free Cu layer is observed, a Cu-hydroxide coadsorbate phase and a Cu-oxide phase are formed under increased potential conditions. In addition the apparently adsorbate free Cu-film tends to form a Cu-Au alloy phase while keeping the electrode for a sufficient long time at low potential conditions.

  12. Alpha oscillations correlate with the successful inhibition of unattended stimuli.

    Science.gov (United States)

    Händel, Barbara F; Haarmeier, Thomas; Jensen, Ole

    2011-09-01

    Because the human visual system is continually being bombarded with inputs, it is necessary to have effective mechanisms for filtering out irrelevant information. This is partly achieved by the allocation of attention, allowing the visual system to process relevant input while blocking out irrelevant input. What is the physiological substrate of attentional allocation? It has been proposed that alpha activity reflects functional inhibition. Here we asked if inhibition by alpha oscillations has behavioral consequences for suppressing the perception of unattended input. To this end, we investigated the influence of alpha activity on motion processing in two attentional conditions using magneto-encephalography. The visual stimuli used consisted of two random-dot kinematograms presented simultaneously to the left and right visual hemifields. Subjects were cued to covertly attend the left or right kinematogram. After 1.5 sec, a second cue tested whether subjects could report the direction of coherent motion in the attended (80%) or unattended hemifield (20%). Occipital alpha power was higher contralateral to the unattended side than to the attended side, thus suggesting inhibition of the unattended hemifield. Our key finding is that this alpha lateralization in the 20% invalidly cued trials did correlate with the perception of motion direction: Subjects with pronounced alpha lateralization were worse at detecting motion direction in the unattended hemifield. In contrast, lateralization did not correlate with visual discrimination in the attended visual hemifield. Our findings emphasize the suppressive nature of alpha oscillations and suggest that processing of inputs outside the field of attention is weakened by means of increased alpha activity.

  13. Behavioral inhibition and attentional control in adolescents : Robust relationships with anxiety and depression

    NARCIS (Netherlands)

    Sportel, B. Esther; Nauta, Maaike H.; de Hullu, Eva; de Jong, Peter J.; Hartman, Catharina A.

    Behavioral inhibition (BI) has been associated with the development of internalizing disorders in children and adolescents. It has further been shown that attentional control (AC) is negatively associated with internalizing problems. The combination of high BI and low AC may particularly lead to

  14. Inhibiting effect of bioactive metabolites produced by mushroom cultivation on bacterial quorum sensing-regulated behaviors.

    Science.gov (United States)

    Zhu, Hu; Wang, Shou-Xian; Zhang, Shuai-Shuai; Cao, Chun-Xu

    2011-01-01

    This study aimed to search for novel quorum sensing (QS) inhibitors from mushroom and to analyze their inhibitory activity, with a view to their possible use in controlling detrimental infections. The bioactive metabolites produced by mushroom cultivation were tested for their abilities to inhibit QS-regulated behavior. All mushroom strains were cultivated in potato-dextrose medium by large-scale submerged fermentation. The culture supernatant was condensed into 0.2 vol by freeze-drying. The condensed supernatant was sterilized by filtration through a 0.22-μm membrane filter and added to Chromobacterium violaceum CV026 cultures, which were used to monitor QS inhibition. Inhibitory activity was measured by quantifying violacein production using a microplate reader. The results have revealed that, of 102 mushroom strains, the bioactive metabolites produced by 14 basidiomycetes were found to inhibit violacein production, a QS-regulated behavior in C. violaceum. Higher fungi can produce QS-inhibitory compounds. Copyright © 2011 S. Karger AG, Basel.

  15. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations.

    Science.gov (United States)

    Mehta, S K; Singh, Alpana; Gaur, J P

    2002-03-01

    Adsorption and uptake of Cu2+ by Chlorella vulgaris were distinguished by extracting the surface-bound Cu2+ with EDTA. The uptake of Cu2+ followed Michaelis Menten kinetics. The maximum rate of Cu2+ uptake (0.362fmolcell(-1) h(-1)) was obtained at pH 6.0. The rate of Cu2+ uptake was greater for cultures in the exponential phase of growth, and increased with a rise in temperature from 6 to 25 degrees C, thus pointing towards an active mechanism. The maximum number of Cu2+ binding sites was 3.245 fmol cell(-1) at pH 4.5. Adsorption of Cu2+ was strongly pH-dependent thereby indicating that the number and nature of metal binding sites on the cell surface change with changing chemistry of the solution. Unlike uptake, the adsorption remained unaffected by small changes in temperature. Older cultures displayed a higher Cu2+ adsorption capacity than the exponentially growing ones thus suggesting generation of new and/or additional Cu2+ binding sites on older cells of C. vulgaris. By pH titration, the cation-exchange capacity of Chlorella, measured in terms of H+/ Na+ exchange, was about 17 fmol cell(-1) at pH 10.5. Negligible cation exchange capacity at and below pH 5.0 indicated that ion exchange was not the sole mechanism of Cu2+ adsorption by Chlorella. The uptake and adsorption of Cu2+ were inhibited by 100 microM of various cations including other heavy metal ions. The general concept that cations competitively inhibit accumulation of metals in living organisms does not hold for C. vulgaris. Non-competitive, uncompetitive and mixed inhibition of Cu2+ uptake and adsorption by various cations were more common than competitive inhibition.

  16. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnO{sub x}-CeO{sub 2} catalysts for chlorobenzene destruction

    Energy Technology Data Exchange (ETDEWEB)

    He, Chi, E-mail: chi_he@mail.xjtu.edu.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yu, Yanke [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Shen, Qun [Research Center for Greenhouse Gases and Environmental Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); Chen, Jinsheng, E-mail: jschen@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Qiao, Nanli [Department of Environmental Nano-materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-04-01

    Graphical abstract: - Highlights: • Mesoporous CuO-MnO{sub x}-CeO{sub 2} oxides with enhanced reducibility and oxygen mobility. • Incorporation of Cu and Mn ions causes abundant crystal defects and oxygen vacancies. • Surface oxygen concentration and active oxygen mobility determine the catalytic efficiency. • Catalysts with conspicuous chlorobenzene low-temperature removal activity and durability. - Abstract: Mesoporous CuO-MnO{sub x}-CeO{sub 2} composite metal oxides with different copper and manganese loadings were prepared by a urea-assistant hydrothermal method, and were further adopted for the complete catalytic combustion of chlorobenzene. The effects of reaction conditions such as inlet reagent concentration and water feed concentration on chlorobenzene combustion were also studied. The structure and textural properties of the synthesized catalysts were characterized via the XRD, N{sub 2} adsorption/desorption, FE-SEM, TEM, H{sub 2}-TPR, O{sub 2}-TPD, and XPS techniques. The characterization results reveal that the presence of a small amount of Mn species can facilitate the incorporation of Cu and Mn ions into ceria lattice to form Cu-Mn-Ce-O solid solution. The synergistic effect of Cu and Mn species can reduce the redox potential of the composite catalysts, and produce large amounts of oxygen vacancies in the interface of CuO{sub x}, MnO{sub x}, and CeO{sub 2} oxides. The catalyst with Cu/Mn atomic ratio of 1/1 exhibits the best chlorobenzene elimination capability, oxidizing about 95% of the inlet chlorobenzene at 264 °C with CO{sub 2} selectivity higher than 99.5%. The concentration and mobility of the chemically adsorbed oxygen are vital for the effective removal of surface Cl species, which inhibits the dissociation of oxygen molecules and decreases the reducibility of the copper and manganese species. It can be rationally concluded that the superior catalytic performance and durability of the mesoporous CuO-MnO{sub x}-CeO{sub 2} composite

  17. CuInS[sub 2] with lamellar morphology; 2: Photoelectrochemical behavior of heterogeneous material

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S. (Inst. di Polarografia ed Elettrochimica Preparativa del C.N.R., Padova (Italy)); Guerriero, P. (Inst. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati del C.N.R., Padova (Italy)); Razzini, G. (Applicata del Politecnico di Milano (Italy). Dipt. di Chimica Fisica); Lewerenz, H.J. (Hahn-Meitner-Inst., Berlin (Germany))

    1994-05-01

    Lamellar CuInS[sub 2] material grown in a steep temperature gradient shows heterogeneous composition and complex photoeffects. Besides predominant n-type behavior, the electrode surface has areas with intrinsic or p-type conductivity, the latter usually corresponding to indium-rich regions. An inverted (cathodic) photocurrent is observed at n-type electrodes polarized under accumulation conditions. Both spectral dependence, with a pronounced peak for energies around the bandgap, and quantum yields > 1 suggest that these photoeffects originate from photoconductivity phenomena in the crystal bulk. Variability in electronic properties limits the average performance of the material in solar cells.

  18. Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition

    DEFF Research Database (Denmark)

    Mattern, N.; Hermann, H.; Roth, S.

    2003-01-01

    The thermal behavior of the structure of Pd40Cu30Ni10P20 bulk metallic glass has been investigated in situ through the glass transition by means of high-temperature x-ray synchrotron diffraction. The dependence of the x-ray structure factor S(q) of the Pd40Cu30Ni10P20 glass on temperature follows...... the Debye theory up to the glass transition with a Debye temperature theta=296 K. Above the glass transition temperature T-g, the temperature dependence of S(q) is altered, pointing to a continuous development of structural changes in the liquid with temperature. The atomic pair correlation functions g......(r) indicate changes in short-range-order parameters of the first and the second neighborhood with temperature. The temperature dependence of structural parameters is different in glass and in supercooled liquid, with a continuous behavior through the glass transition. The nearest-neighbor distance decreases...

  19. Abnormal specific heat enhancement and non-Fermi-liquid behavior in the heavy-fermion system U2Cu17 -xGax (5 ≤x ≤8 )

    Science.gov (United States)

    Svanidze, E.; Amon, A.; Prots, Yu.; Leithe-Jasper, A.; Grin, Yu.

    2018-03-01

    In the antiferromagnetic heavy-fermion compound U2Zn17 , the Sommerfeld coefficient γ can be enhanced if all Zn atoms are replaced by a combination of Cu and Al or Cu and Ga. In the former ternary phase, glassy behavior was observed, while for the latter, conflicting ground-state reports suggest material quality issues. In this work, we investigate the U2Cu17 -xGax substitutional series for 4.5 ≤x ≤9.5 . In the homogeneity range of the phase with the Th2Zn17 -type of crystal structure, all samples exhibit glassy behavior with 0.6 K ≤Tf≤1.8 K . The value of the electronic specific heat coefficient γ in this system exceeds 900 mJ/molUK2. Such a drastic effective-mass enhancement can possibly be attributed to the effects of structural disorder, since the role of electron concentration and lattice compression is likely minimal. Crystallographic disorder is also responsible for the emergence of non-Fermi-liquid behavior in these spin-glass materials, as evidenced by logarithmic divergence of magnetic susceptibility, specific heat, and electrical resistivity.

  20. Two mechanisms of oral malodor inhibition by zinc ions.

    Science.gov (United States)

    Suzuki, Nao; Nakano, Yoshio; Watanabe, Takeshi; Yoneda, Masahiro; Hirofuji, Takao; Hanioka, Takashi

    2018-01-18

    The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria.

  1. Phytoextraction of initial cutting of Salix matsudana for Cd and Cu.

    Science.gov (United States)

    Wang, Wen-Wen; Cheng, Liu Ke; Hao, Jie Wei; Guan, Xin; Tian, Xing-Jun

    2016-06-27

    Salix species are widely used as vegetation filters because of their flourishing root system and fast growth rate. However, studies have yet to determine whether the root system functions in vegetable filters with mixed heavy metal (HM) pollution or whether initial cutting participates in the phytoextraction of HMs. This study aims to determine the function of the root system and initial cutting as vegetation filters in the absorption and accumulation of Cd and Cu. Thick (>1 cm in diameter) and fine (phytoextraction capacity of plants. The initial cuttings could also absorb and accumulate HMs in the early growth stages of willow without roots. Cu inhibited the plant absorption and accumulation of Cd and promoted Cd transport to shoots. Cd inhibited the Cu absorption of the root system. Our study provided essential data regarding woody species as vegetation filters of HM pollution.

  2. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    Science.gov (United States)

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  3. Transport and microstructural phenomena in bentonite clay with respect to the behavior and influence of Na, Cu, and U

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.; Muurinen, A.

    1989-12-01

    MX-80 Na smectite clay, essentially consisting of montmorillonite, was investigated with respect to major transport properties and rheological behavior. Duffison and percolation tests using sodium, copper, and uranium solutions were conducted both at room temperature and at 90deg C. The diffusion tests showed that Na migrates very rapidly by pore and surface diffusion. Cu appears to migrate at the same rate as many other cations, the major diffusion mechanism being surface diffusion. Cu tends to replace initially sorbed Na and exchangeable protons and charges the clay to yield 'Cu-bentonite' even on contacting the clay with rather dilute solutions (100 ppm Cu). Uranium was found to migrate approximately as Cu but precipitation of Na- or Ca U compounds forming a front zone appeared to be a rate-controlling mechanism. Thus, the diffusion profile had a very steep front, identified also by a SEM/EDX investigation. This indicates that the rate of advancement of the front is determined by the reaction rate. Although not being a true diffusion process, it can approximately be regarded as one, the coefficient of diffusion being 10-100 times lower than that of Cu. Behind the high concentration front, the clay becomes fully charged with U to form a 'U-bentonite' even at low concentration of the uranium solution (100 ppm U). The percolation and rheological investigations showed only moderate influence on the hydraulic conductivity and creep properties by an increased Na content (10000 ppm) or partial uptake by Cu or U. Considerable differences were found between samples investigated at room temperature and at 90deg C (effect of cementation). The microstructure was concluded to control a number of practically important physical properties. It determines the hydraulic conductivity and the rheological behaviour, and it has a very substantial influence on diffusive transport of ions in the porewater. (orig.)

  4. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  5. Indigo Carmine-Cu complex probe exhibiting dual colorimetric/fluorimetric sensing for selective determination of mono hydrogen phosphate ion and its logic behavior

    Science.gov (United States)

    Tavallali, Hossein; Deilamy-Rad, Gohar; Moaddeli, Ali; Asghari, Khadijeh

    2017-08-01

    A new selective probe based on copper complex of Indigo Carmine (IC-Cu2) for colorimetric, naked-eye, and fluorimetric recognition of mono hydrogen phosphate (MHP) ion in H2O/DMSO (4:1 v/v, 1.0 mmol L- 1 HEPES buffer solution pH 7.5) was developed. Detection limit of HPO42 - determination, achieved by fluorimetric and 3lorimetric method, are 0.071 and 1.46 μmol L- 1, respectively. Potential, therefore is clearly available in IC-Cu2 complex to detect HPO42 - in micromolar range via dual visible color change and fluorescence response. Present method shows high selectivity toward HPO42 - over other phosphate species and other anions and was successfully utilized for analysis of P2O5 content of a fertilizer sample. The results obtained by proposed chemosensor presented good agreement with those obtained the colorimetric reference method. INHIBIT and IMPLICATION logic gates operating at molecular level have been achieved using Cu2 + and HPO42 - as chemical inputs and UV-Vis absorbance signal as output.

  6. Inhibition of the Cu65/Zn35 brass corrosion by natural extract of Camellia sinensis

    International Nuclear Information System (INIS)

    Ramde, Tambi; Rossi, Stefano; Zanella, Caterina

    2014-01-01

    In this work, the corrosion inhibition of brass was studied using natural plant extract, Camellia sinensis, in 0.1 M Na2SO4 solutions with pH 7 and pH 4. Electrochemical techniques (potentiodynamic polarization, electrochemical impedance spectroscopy) and scanning electron microscopy (SEM) were applied to study the brass corrosion behavior in presence and absence of the extract. The results indicated that the extract is a very effective corrosion inhibitor for brass corrosion process in both the acidic and neutral media by virtue of adsorption. The inhibition effect increases by time as demonstrated by the EIS monitoring for 120 h. In the blank solution the corrosion process leads to the formation of a dark oxide patina at pH 7 and induces localized corrosion morphology at pH 4. The extract presence can avoid both the dark patina and the pits formation.

  7. Inhibition of the Cu65/Zn35 brass corrosion by natural extract of Camellia sinensis

    Energy Technology Data Exchange (ETDEWEB)

    Ramde, Tambi, E-mail: t_ramde@univ-ouaga.bf [Equipe Chimie Physique et Electrochimie, Laboratoire de Chimie Moléculaire et des Matériaux, Université de Ouagadougou, 03 BP 7021 Ouagadougou 03 (Burkina Faso); Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento (Italy); Rossi, Stefano; Zanella, Caterina [Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento (Italy)

    2014-07-01

    In this work, the corrosion inhibition of brass was studied using natural plant extract, Camellia sinensis, in 0.1 M Na2SO4 solutions with pH 7 and pH 4. Electrochemical techniques (potentiodynamic polarization, electrochemical impedance spectroscopy) and scanning electron microscopy (SEM) were applied to study the brass corrosion behavior in presence and absence of the extract. The results indicated that the extract is a very effective corrosion inhibitor for brass corrosion process in both the acidic and neutral media by virtue of adsorption. The inhibition effect increases by time as demonstrated by the EIS monitoring for 120 h. In the blank solution the corrosion process leads to the formation of a dark oxide patina at pH 7 and induces localized corrosion morphology at pH 4. The extract presence can avoid both the dark patina and the pits formation.

  8. Synthesis and characterization of Cu3TaIn3Se7 and CuTa2InTe4

    International Nuclear Information System (INIS)

    Calderon, E.; Munoz-Pinto, M.; Duran-Pina, S.; Quintero, M.; Quintero, E.; Morocoima, M.; Delgado, G.E.; Romero, H.; Briceno, J.M.; Fernandez, J.; Grima-Gallardo, P.

    2008-01-01

    Polycrystalline samples of Cu 3 TaIn 3 Se 7 and CuTa 2 InTe 4 were synthesized by the usual melt and anneal technique. X-ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a=5.794±0.002 A, c=11.66±0.01 A, c/a=2.01, V=391±1 A 3 and a=6.193±0.001 A, c=12.400 ±0.002A, c/a=2.00, V=475±1 A 3 , respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero-field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T=70 K (Cu 3 TaIn 3 Se 7 ) and 42 K (CuTa 2 InTe 4 ). A spin-glass transition was observed in Cu 3 TaIn 3 Se 7 with T f ∼50 K. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  10. Cu-containing Keggin-type polyoxometalates-based organic-inorganic hybrids with double electro-catalytic behaviors

    Science.gov (United States)

    Zhou, Wanli; Zheng, Yanping; Peng, Jun

    2018-02-01

    Four new organic-inorganic hybrids consisting of Keggin-type polyoxometalates: [Cu5(bimpy)5(α-BW12O40)]·4H2O (1), [Cu4(bimpy)4(α-SiW12O40)]·2H2O (2), [Cu4(bimpy)4(α-HPMo12O40)2]·2H2O (3), [Cu2(bimpy)4(H2O)2(α-HPW12O40)2]·8H2O (4) (bimpy = 2,5-bis(1H-imidazol-1-yl)pyridine), have been hydrothermally synthesized. Compounds 1-4 are constructed from Cu/bimpy segments modified different types of Keggin POMs. The 1D double chains of compound 1 are featured by {-Cu/bimpy-POM-Cu/bimpy-}n chains and {-Cu-bimpy-Cu-}n metal-organic chains; compound 2 with 1D "ladder-like" structure stemmed from {-Cu-bimpy-Cu-}n wave-like chains and α-SiW12 clusters; In compound 3, [Cu4(bimpy)4]4+ motifs are linked by α-PMo12 clusters to give rise to a (3,4)-connected two-dimensional architecture with the (83)(86) topology, while compound 4 has a (3,4,5)-connected 3D framework with the (42,6)(42,6,83)(42,65,83) topology. Cyclic voltammetries of compounds 1-4 show discrepant double electro-catalytic properties for reduction of nitrite and oxidation of ascorbic acid owing to variant Keggin-type POMs and Cu/bimpy complexes.

  11. Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al--Mg--Si alloys

    International Nuclear Information System (INIS)

    Kim, JaeHwang; Daniel Marioara, Calin; Holmestad, Randi; Kobayashi, Equo; Sato, Tatsuo

    2013-01-01

    Low Cu and Ag additions (≤0.10 at%) were found to strongly affect the age-hardening behavior in Al--Mg--Si alloys with Mg+Si>1.5 at%. The hardness increased during aging at 170 °C and the formation of β ″ precipitates was kinetically accelerated. The activation energy of the formation of the β ″ phase was calculated to 127, 105, 108 and 99 KJmol −1 in the base, Cu-added, Ag-added and Cu--Ag-added alloys, respectively using the Kissinger method. The negative effect of two-step aging caused by the formation of Cluster (1) during natural aging was not overcome by the addition of microalloying elements. However, it was suppressed by the formation of Cluster (2) through a pre-aging at 100 °C. Quantitative analysis of the precipitate microstructure was performed using a transmission electron microscope equipped with a parallel electron energy loss spectrometer for the determination of specimen thickness. The formation of Cluster (2) was found to increase the number density of β ″ precipitates, whereas the formation of Cluster (1) decreased the number density and increased the needle length. The effects of low Cu and Ag additions in combination with multi-step aging are discussed based on microstructure observations and hardness and resistivity measurements.

  12. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X = Bi, In) solders with Cu substrate

    International Nuclear Information System (INIS)

    Hodulova, Erika; Palcut, Marian; Lechovic, Emil; Simekova, Beata; Ulrich, Koloman

    2011-01-01

    Highlights: → In substitutes Sn in intermetallic compounds formed at the Cu-solder interface. → Bi and In decrease the parabolic rate constant of Cu 3 Sn layer growth. → In increases the parabolic rate constant of Cu 6 Sn 5 layer growth. → High In concentrations should be avoided since they may lead to a pre-mature solder joint degradation. - Abstract: The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 deg. C for 5 s. The joints were subsequently aged at temperatures of 130-170 deg. C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu 3 Sn and Cu 6 Sn 5 . Cu 6 Sn 5 is formed during soldering. Cu 3 Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu 3 Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu 6 (Sn,In) 5 instead of Cu 6 Sn 5 , with a higher rate constant. The mechanism of the Cu 6 (Sn,In) 5 layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.

  13. Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus.

    Science.gov (United States)

    Bogovyk, Ruslan; Lunko, Oleksii; Fedoriuk, Mihail; Isaev, Dmytro; Krishtal, Oleg; Holmes, Gregory L; Isaeva, Elena

    2017-02-01

    Protease-activated receptor 1 (PAR1) is an important contributor to the pathogenesis of a variety of brain disorders associated with a risk of epilepsy development. Using the lithium-pilocarpine model of temporal lobe epilepsy (TLE), we recently showed that inhibition of this receptor during the first ten days after pilocarpine-induced status epilepticus (SE) results in substantial anti-epileptogenic and neuroprotective effects. As PAR1 is expressed in the central nervous system regions of importance for processing emotional reactions, including amygdala and hippocampus, and TLE is frequently associated with a chronic alteration of the functions of these regions, we tested the hypothesis that PAR1 inhibition could modulate emotionally driven behavioral responses of rats experiencing SE. We showed that SE induces a chronic decrease in the animals' anxiety-related behavior and an increase of locomotor activity. PAR1 inhibition after SE abolished the alteration of the anxiety level but does not affect the increase of locomotor activity in the open field and elevated plus maze tests. Moreover, while PAR1 inhibition produces an impairment of memory recall in the context fear conditioning paradigm in the control group, it substantially improves contextual and cued fear learning in rats experiencing SE. These data suggest that PAR1-dependent signaling is involved in the mechanisms underlying emotional disorders in epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.

    Science.gov (United States)

    Shakiba, Mohammad; Parson, Nick; Chen, X-Grant

    2016-06-30

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.

  15. Structure-dependent behavior of stress-induced voiding in Cu interconnects

    International Nuclear Information System (INIS)

    Wu Zhenyu; Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing

    2010-01-01

    Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.

  16. Processing and characterization of composite CuO/CuO/Cu-CGO obtained by a chemical synthesis route in one step

    International Nuclear Information System (INIS)

    Sousa, A.R.O. de; Menezes, A.J.; Souza, G.S.; Lima, C.G.M. de; Souza, G.S.; Dutra, R.P.S.; Macedo, D.A.

    2016-01-01

    This paper deals with the processing and characterization of composite CuO / ceria doped with 10 mol% gadolinia (CuO-Ce0,9Gd0,1O1,95) obtained by a chemical synthesis route in one step. It was varied CuO content at 40, 50 and 60% by weight, resulting in resin precursor, which was mixed with the CGO and then heat treated at 350 ° C and subsequently calcined at 1050 deg C. The particulate materials were characterized by X-ray diffractometry using powders, it was possible to synthesize and deposit, by serigraphy, films of the anodes of the three compositions CGO electrolyte. The technique of impedance spectroscopy allowed the analysis of the electrical properties of the material, as well as the understanding of their behavior when subjected to different atmospheres of hydrogen and methane. (author)

  17. A Cross-Cultural Study of Behavioral Inhibition in Toddlers: East-West-North-South

    Science.gov (United States)

    Rubin, Kenneth H.; Hemphill, Sheryl A.; Chen, Xinyin; Hastings, Paul; Sanson, Ann; Coco, Alida Lo; Zappulla, Carla; Chung, Ock-Boon; Park, Sung-Yun; Doh, Hyun Sim; Chen, Huichang; Sun, Ling; Yoon, Chong-Hee; Cui, Liyin

    2006-01-01

    The prevalence of behavioral inhibition in toddlers was examined in five cultures. Participants in this study included 110 Australian, 108 Canadian, 151 Chinese, 104 Italian, and 113 South Korean toddlers and their mothers who were observed during a structured observational laboratory session. Matched procedures were used in each country, with…

  18. Potential barrier behavior in BiCuVOX materials Comportamento da barreira de potencial em materiais BiCuVOX

    Directory of Open Access Journals (Sweden)

    S. M. Gheno

    2011-12-01

    Full Text Available The BiMeVOX materials appear being high attractive for applications at low temperatures when the ionic conductivity is the determining parameter. The occurrence of many types substitution was confirmed for numerous Me ions, but the greatest interest have been focused on the BiCuVOX materials. The objective of this study was to image the potential barriers in BiCuVOX. The sample was sintered for 4 h at 750 °C and the results show that the high density compound can be obtained. Simultaneously, topography and electric force microscopy (EFM images are viewed side-by-side. EFM experiments were performed and the results show the maps of the electric field distribution on the surface of BiCuVOX. The formation of potential barrier was observed and the width and intensity were measured.Materiais do tipo BiMeVOX são muito atrativos para aplicações em baixas temperaturas quando a condutividade iônica for o parâmetro determinante. A ocorrência de muitos tipos de substituições foi confirmada para numerosos íons Me, dentre os quais, existe um grande interesse no estudo de materiais BiCuVOX. O objetivo deste estudo foi realizar o imageamento das barreiras de potencial em uma amostra de material BiCuVOX. A amostra foi sinterizada 4 h a 750 °C e apresentou alta densidade. Imagens da superfície topográfica e de microscopia de força elétrica (EFM foram obtidas simultaneamente em um microscópio de varredura por sonda. Os experimentos EFM mostraram um mapa da distribuição do campo elétrico na superfície do material BiCuVOx. A formação da barreira de potencial foi observada e tanto a largura quanto a altura foram medidas.

  19. Formation of uniform carrot-like Cu31S16-CuInS2 heteronanostructures assisted by citric acid at the oil/aqueous interface.

    Science.gov (United States)

    Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng

    2018-01-07

    A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.

  20. Understanding the Inhibiting Effect of BTC on CuBTC Growth through Experiment and Modeling

    NARCIS (Netherlands)

    Schäfer, P.; Kapteijn, F.; van der Veen, M.A.; Domke, Katrin F.

    2017-01-01

    The room temperature growth kinetics of the commonly studied metal-organic framework CuBTC (HKUST-1) is investigated with UV/vis absorption spectroscopy. Contrary to chemical intuition, increased concentrations of the BTC ligand slows down the formation of CuBTC. Based on the time-resolved

  1. Effect of mushy state rolling on age-hardening and tensile behavior of Al-4.5Cu alloy and in situ Al-4.5Cu-5TiB2 composite

    International Nuclear Information System (INIS)

    Siddhalingeshwar, I.G.; Herbert, M.A.; Chakraborty, M.; Mitra, R.

    2011-01-01

    Research highlights: → Mushy state rolling of composites reduces peak-aging times to ∼7.5-10% of that of as-cast alloy. → Uniform Cu atom distribution achieved in matrices by mushy state rolling enhances aging kinetics. → Uniform precipitate distribution obtained by mushy state rolling leads to higher microhardness. → Peak-age tensile strength and strain hardening rates are found to increase on mushy state rolling. - Abstract: The effect of mushy state rolling on aging kinetics of stir-cast Al-4.5Cu alloy and in situ Al-4.5Cu-5TiB 2 composite and their tensile behavior in solution-treated (495 deg. C) or differently aged (170 deg. C) conditions, has been investigated. As-cast or pre-hot rolled alloy and composite samples were subjected to single or multiple mushy state roll passes to 5% thickness reduction at temperatures for 20% liquid content. Peak-aging times of mushy state rolled composite matrices have been found as ∼7.5-10% of that of as-cast alloy. Such enhancement in aging kinetics is attributed to homogeneity in Cu atom distribution as well as increase in matrix dislocation density due to thermal expansion coefficient mismatch between Al and TiB 2 , matrix grain refinement and particle redistribution, achieved by mushy state rolling. Uniform precipitate distribution in mushy state rolled composite matrices leads to greater peak-age microhardness with higher yield and ultimate tensile strengths than those in as-cast alloy and composite.

  2. Stable Early Maternal Report of Behavioral Inhibition Predicts Lifetime Social Anxiety Disorder in Adolescence

    Science.gov (United States)

    Chronis-Tuscano, Andrea; Degnan, Kathryn Amey; Pine, Daniel S.; Perez-Edgar, Koraly; Henderson, Heather A.; Diaz, Yamalis; Raggi, Veronica L.; Fox, Nathan A.

    2009-01-01

    The odds of a lifetime diagnosis of social anxiety disorder increased by 3.79 times for children who had a stable report of behavioral inhibition from their mothers. This finding has important implications for the early identification and prevention of social anxiety disorder.

  3. CuSn(OH)6 submicrospheres: Room-temperature synthesis, growth mechanism, and weak antiferromagnetic behavior

    International Nuclear Information System (INIS)

    Zhong, Sheng-Liang; Xu, Rong; Wang, Lei; Li, Yuan; Zhang, Lin-Fei

    2011-01-01

    Highlights: ► CuSn(OH) 6 spheres have been synthesized via an aqueous solution method at room temperature. ► The diameters of the CuSn(OH) 6 spheres can be tuned by adjusting the molar ratio of SnO 3 2− to Cu 2+ . ► The as-obtained CuSn(OH) 6 spheres are antiferromagnetic and have a weak spin-Peierls transition at about 78 K -- Abstract: CuSn(OH) 6 submicrospheres with diameters of 400–900 nm have been successfully fabricated using a simple aqueous solution method at room temperature. Influencing factors such as the dosage of reactants and reaction time on the preparation were systematically investigated. The products were characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and differential thermal analysis (DTA). Results reveal that the CuSn(OH) 6 spheres are built from numerous nanoparticles. It is found that the diameter of CuSn(OH) 6 spheres can be readily tuned by adjusting the molar ratio of SnO 3 2− to Cu 2+ . A possible growth mechanism for the CuSn(OH) 6 submicrospheres has been proposed. Amorphous CuSnO 3 submicrospheres were obtained after thermal treatment of the CuSn(OH) 6 submicrospheres at 300 °C for 4 h. Standard magnetization measurements demonstrate that the CuSn(OH) 6 submicrospheres are antiferromagnetic and have a weak spin-Peierls transition at about 78 K.

  4. Conventional and inverse magnetocaloric effect in Pr2CuSi3 and Gd2CuSi3 compounds

    International Nuclear Information System (INIS)

    Wang, Fang; Yuan, Feng-ying; Wang, Jin-zhi; Feng, Tang-fu; Hu, Guo-qi

    2014-01-01

    Highlights: • Two phase transitions in a narrow temperature range were observed and studied. • Both typical and inverse magnetocaloric effect were observed and discussed. • The inverse magnetocaloric effect was attributed to the spin-glass behavior. - Abstract: Magnetic properties and magnetocaloric effect (MCE) in Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds were investigated systematically. Both Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds experienced two phase transitions in a relatively narrow temperature range: first a paramagnet (PM)–ferromagnet (FM) second-order phase transition at 12 and 26 K and then a FM–spin glass (SG) transition at 6 K and 7.5 K, respectively. The magnetic entropy change (ΔS M ) was calculated based on Maxwell relation using the collected magnetization data. The maximum of ΔS M for Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds was 7.6 and 5 J kg −1 K −1 , respectively, at the applied filed change of 0–5 T. The shape of the temperature dependence of ΔS M (ΔS M –T) curve was obviously different from that of the conventional magnetic materials undergoing only one typical phase transition. In the left half part of ΔS M –T curve, ΔS M is not very sensitive to the applied field and they tend to intersect with the decrease of temperature. Both typical conventional and inverse MCE behavior were observed in Gd 2 CuSi 3 , which would be originated from the two transition features at the low temperatures

  5. The adsorption behavior of functional particles modified by polyvinylimidazole for Cu(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixin; Men, Jiying; Gao, Baojiao [School of Chemical Engineering and Environment, North University of China, Taiyuan (China)

    2012-03-15

    In this paper, a novel composite material the silica grafted by poly(N-vinyl imidazole) (PVI), i.e., PVI/SiO{sub 2}, was prepared using 3-methacryloxypropyl trimethoxysilane (MPS) as intermedia through the ''grafting from'' method. The adsorption behavior of metal ions by PVI/SiO{sub 2} was researched by both static and dynamic methods. Experimental results showed that PVI/SiO{sub 2} possessed very strong adsorption ability for metal ions. For different metal ions, PVI/SiO{sub 2} exhibited different adsorption abilities with the following order of adsorption capacity: Cu{sup 2+}> Cd{sup 2+}> Zn{sup 2+}. The adsorption material PVI/SiO{sub 2} was especially good at adsorbing Cu(II) ion and the saturated adsorption capacity could reach up to 49.2 mg/g. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. Higher temperatures facilitated the adsorption process and thus increased the adsorption capacity. The pH and grafting amount of PVI had great influence on the adsorption amount. In addition, PVI/SiO{sub 2} particles had excellent eluting and regenerating property using diluted hydrochloric acid solution as eluent. The adsorption ability trended to steady during 10 cycles. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Optical anisotropy of Bi2Sr2CaCu2O8

    Science.gov (United States)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  7. Behavioral inhibition and anxiety: The moderating roles of inhibitory control and attention shifting

    Science.gov (United States)

    White, Lauren K.; McDermott, Jennifer Martin; Degnan, Kathryn A.; Henderson, Heather A.; Fox, Nathan A.

    2013-01-01

    Behavioral inhibition (BI), a temperament identified in early childhood, is associated with social reticence in childhood and an increased risk for anxiety problems in adolescence and adulthood. However, not all behaviorally inhibited children remain reticent or develop an anxiety disorder. One possible mechanism accounting for the variability in the developmental trajectories of BI is a child’s ability to successfully recruit cognitive processes involved in the regulation of negative reactivity. However, separate cognitive processes may differentially moderate the association between BI and later anxiety problems. The goal of the current study was to examine how two cognitive processes - attention shifting and inhibitory control - laboratory assessed at 48 months of age moderated the association between 24-month BI and anxiety symptoms in the preschool years. Results revealed that high levels of attention shifting decreased the risk for anxiety symptoms in children with high levels of BI, whereas high levels of inhibitory control increased this risk for anxiety symptoms. These findings suggest that different cognitive processes may influence relative levels of risk or adaptation depending upon a child’s temperamental reactivity. PMID:21301953

  8. Influence of trait behavioral inhibition and behavioral approach motivation systems on the LPP and frontal asymmetry to anger pictures.

    Science.gov (United States)

    Gable, Philip A; Poole, Bryan D

    2014-02-01

    Behavioral approach and avoidance are fundamental to the experience of emotion and motivation, but the motivational system associated with anger is not well established. Some theories posit that approach motivational processes underlie anger, whereas others posit that avoidance motivational processes underlie anger. The current experiment sought to address whether traits related to behavioral approach or avoidance influence responses to anger stimuli using multiple measures: ERP, electroencephalographic (EEG) α-asymmetry and self-report. After completing the behavioral inhibition system/behavioral approach system (BIS/BAS) scales, participants viewed anger pictures and neutral pictures. BAS predicted larger late positive potentials (LPPs) to anger pictures, but not to neutral pictures. In addition, BAS predicted greater left-frontal asymmetry to anger pictures. Moreover, larger LPPs to anger pictures related to greater left-frontal EEG asymmetry during anger pictures. These results suggest that trait approach motivation relates to neurophysiological responses of anger.

  9. Impact of Behavioral Inhibition and Parenting Style on Internalizing and Externalizing Problems from Early Childhood through Adolescence

    OpenAIRE

    Williams, Lela Rankin; Degnan, Kathryn A.; Perez-Edgar, Koraly E.; Henderson, Heather A.; Rubin, Kenneth H.; Pine, Daniel S.; Steinberg, Laurence; Fox, Nathan A.

    2009-01-01

    Behavioral inhibition (BI) is characterized by a pattern of extreme social reticence, risk for internalizing behavior problems, and possible protection against externalizing behavior problems. Parenting style may also contribute to these associations between BI and behavior problems (BP). A sample of 113 children was assessed for BI in the laboratory at 14 and 24 months of age, self-report of maternal parenting style at 7 years of age, and maternal report of child internalizing and externaliz...

  10. Structure and frictional properties of Langmuir-Blodgett films of Cu nanoparticles modified by dialkyldithiophosphate

    International Nuclear Information System (INIS)

    Xu Jun; Dai Shuxi; Cheng Gang; Jiang Xiaohong; Tao Xiaojun; Zhang Pingyu; Du Zuliang

    2006-01-01

    Langmuir-Blodgett (LB) films of dialkyldithiophosphate (DDP) modified Cu nanoparticles were prepared. The structure, microfrictional behaviors and adhesion of the LB films were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic/friction force microscopy (AFM/FFM). Our results showed that the modified Cu nanoparticles have a typical core-shell structure and fine film-forming ability. The images of AFM/FFM showed that LB films of modified Cu nanoparticles were composed of many nanoparticles arranged closely and orderly and the nanoparticles had favorable behaviors of lower friction. The friction loop of the films indicated that the friction force was affected prominently by the surface slope of the Cu nanoparticles and the microfrictional behaviors showed obvious 'ratchet effect'. The adhesion experiment showed that the modified Cu nanoparticle had a very small adhesive force

  11. Relationship between self-reported childhood behavioral inhibition and lifetime anxiety disorders in a clinical sample.

    Science.gov (United States)

    Gladstone, Gemma L; Parker, Gordon B; Mitchell, Phillip B; Wilhelm, Kay A; Malhi, Gin S

    2005-01-01

    To examine the association between an early inhibited temperament and lifetime anxiety disorders, we studied a sample of patients with major depression who were not selected on the basis of comorbid axis I anxiety disorders. One-hundred eighty-nine adults (range = 17-68 years) referred to a tertiary depression unit underwent structured diagnostic interviews for depression and anxiety and completed two self-report measures of behavioral inhibition, the retrospective measure of behavioural inhibition (RMBI) [Gladstone and Parker, 2005] and the adult measure of behavioural inhibition (AMBI) [Gladstone and Parker, 2005]. Patients' scores were classified into "low," "moderate," or "high" inhibition. While groups did not differ in terms of depression severity, there were differences across groups in clinically diagnosed nonmelancholic status and age of onset of first episode. Those reporting a high degree of childhood inhibition were significantly more likely to qualify for a diagnosis of social phobia, and this association was independent of their scores on the AMBI. Findings are discussed in light of the existing risk-factor literature and support the hypothesis that an early inhibited temperament may be a significant precursor to later anxiety, especially social anxiety disorder. Copyright 2005 Wiley-Liss, Inc.

  12. Children of Few Words: Relations Among Selective Mutism, Behavioral Inhibition, and (Social) Anxiety Symptoms in 3- to 6-Year-Olds.

    Science.gov (United States)

    Muris, Peter; Hendriks, Eline; Bot, Suili

    2016-02-01

    Children with selective mutism (SM) fail to speak in specific public situations (e.g., school), despite speaking normally in other situations (e.g., at home). The current study explored the phenomenon of SM in a sample of 57 non-clinical children aged 3-6 years. Children performed two speech tasks to assess their absolute amount of spoken words, while their parents completed questionnaires for measuring children's levels of SM, social anxiety and non-social anxiety symptoms as well as the temperament characteristic of behavioral inhibition. The results indicated that high levels of parent-reported SM were primarily associated with high levels of social anxiety symptoms. The number of spoken words was negatively related to behavioral inhibition: children with a more inhibited temperament used fewer words during the speech tasks. Future research is necessary to test whether the temperament characteristic of behavioral inhibition prompts children to speak less in novel social situations, and whether it is mainly social anxiety that turns this taciturnity into the psychopathology of SM.

  13. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  14. Solvothermal Synthesis of Three-Dimensional Hierarchical CuS Microspheres from a Cu-Based Ionic Liquid Precursor for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhang, Jing; Feng, Huijie; Yang, Jiaqin; Qin, Qing; Fan, Hongmin; Wei, Caiying; Zheng, Wenjun

    2015-10-07

    It is meaningful to exploit copper sulfide materials with desired structure as well as potential application due to their cheapness and low toxicity. A low-temperature and facile solvothermal method for preparing three-dimensional (3D) hierarchical covellite (CuS) microspheres from an ionic liquid precursor [Bmim]2Cu2Cl6 (Bmim = 1-butyl-3-methylimidazolium) is reported. The formation of CuS nanostructures was achieved by decomposition of intermediate complex Cu(Tu)3Cl (thiourea = Tu), which produced CuS microspheres with diameters of 2.5-4 μm assembled by nanosheets with thicknesses of 10-15 nm. The ionic liquid, as an "all-in-one" medium, played a key role for the fabrication and self-assembly of CuS nanosheets. The alkylimidazolium rings ([Bmim](+)) were found to adsorb onto the (001) facets of CuS crystals, which inhibited the crystal growth along the [001] direction, while the alkyl chain had influence on the assembly of CuS nanosheets. The CuS microspheres showed enhanced electrochemical performance and high stability for the application in supercapacitors due to intriguing structural design and large specific surface area. When this well-defined CuS electrode was assembled into an asymmetric supercapacitor (ASC) with an activated carbon (AC) electrode, the CuS//AC-ASC demonstrated good cycle performance (∼88% capacitance after 4000 cycles) and high energy density (15.06 W h kg(-1) at a power density of 392.9 W kg(-1)). This work provides new insights into the use of copper sulfide electrode materials for asymmetric supercapacitors and other electrochemical devices.

  15. Effect of Precipitate State on Mechanical Properties, Corrosion Behavior, and Microstructures of Al-Zn-Mg-Cu Alloy

    Science.gov (United States)

    Peng, Xiaoyan; Li, Yao; Xu, Guofu; Huang, Jiwu; Yin, Zhimin

    2018-03-01

    The mechanical properties, corrosion behavior and microstructures of the Al-Zn-Mg-Cu alloy under various ageing treatments were investigated comparatively. The results show that the tensile strength and corrosion resistance are strongly affected by the precipitate state. Massive fine intragranular precipitates contribute to high strength. Discontinuous coarse grain boundary precipitates containing high Cu content, as well as the narrow precipitate free zone, result in low corrosion susceptibility. After the non-isothermal ageing (NIA) treatment, the tensile strength of 577 MPa is equivalent to that of 579 MPa for the T6 temper. Meanwhile, the stress corrosion susceptibility r tf and the maximum corrosion depth are 97.8% and 23.5 μm, which are comparable to those of 92.8% and 26.7 μm for the T73 temper. Moreover, the total ageing time of the NIA treatment is only 7.25 h, which is much less than that of 48.67 h for the retrogression and re-ageing condition.

  16. A Comparative Study of Personality Traits and Brain Behavioral activation Systems and Inhibition in Women with Cancer, Cardiovascular Diseases and Normal Women

    Directory of Open Access Journals (Sweden)

    Sohrab Amiri

    2017-04-01

    Full Text Available Background and Objectives: Chronic diseases are among the most important causes of mortality. The aim of the current study was to compare the Brain/behavioral systems and Dark personality traits of Machiavellianism, narcissism, and psychopathy in cancer, cardiovascular female patients and normal women. Methods: In this study, 60 individuals were selected using available sampling in three groups of 20 cancer patients, cardiovascular patients, and normal subjects. Finally, in order to test the goals and hypotheses of the research, the participants were studied based on Behavioral Activation System and Behavioral Inhibition System, and Dark Triad traits. Data analysis was performed using multivariate ANOVA, univariate ANOVA and post-hoc tests. Results: In this study, there was a significant difference among the three groups in Brain/behavioral systems and traits of Machiavellianism, narcissism, and psychopathy, so that the cancer and cardiovascular patients had higher score in dark triad traits compared to normal individuals. Also, the cancer patients had a higher score in Machiavellianism trait compared to the cardiovascular patients. In the brain/behavioral systems, cardiovascular and cancer patients had higher score in behavioral inhibition system (BIS component compared to the normal individuals in the of behavioral inhibition system (BIS. Also, in the reward seeking subscale of behavioral activation system (BAS-f, cancer patients had a higher score compared to cardiovascular patients, which was significantly different. Conclusion: The results of this study indicated that cancer and cardiovascular patients, have greater extent of social disgusting personality traits as well as behavioral inhibition system as anxiety-predisposing factor.

  17. Indigo Carmine-Cu complex probe exhibiting dual colorimetric/fluorimetric sensing for selective determination of mono hydrogen phosphate ion and its logic behavior.

    Science.gov (United States)

    Tavallali, Hossein; Deilamy-Rad, Gohar; Moaddeli, Ali; Asghari, Khadijeh

    2017-08-05

    A new selective probe based on copper complex of Indigo Carmine (IC-Cu 2 ) for colorimetric, naked-eye, and fluorimetric recognition of mono hydrogen phosphate (MHP) ion in H 2 O/DMSO (4:1v/v, 1.0mmolL -1 HEPES buffer solution pH7.5) was developed. Detection limit of HPO 4 2- determination, achieved by fluorimetric and 3 lorimetric method, are 0.071 and 1.46μmolL -1 , respectively. Potential, therefore is clearly available in IC-Cu 2 complex to detect HPO 4 2- in micromolar range via dual visible color change and fluorescence response. Present method shows high selectivity toward HPO 4 2- over other phosphate species and other anions and was successfully utilized for analysis of P 2 O 5 content of a fertilizer sample. The results obtained by proposed chemosensor presented good agreement with those obtained the colorimetric reference method. INHIBIT and IMPLICATION logic gates operating at molecular level have been achieved using Cu 2+ and HPO 4 2- as chemical inputs and UV-Vis absorbance signal as output. Copyright © 2017. Published by Elsevier B.V.

  18. Superparamagnetism in CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grima-Gallardo, P.; Alvarado, F.; Munoz, M.; Duran, S.; Quintero, M.; Nieves, L.; Quintero, E.; Tovar, R.; Morocoima, M. [Centro de Estudios en Semiconductores (CES), Fac. Ciencias, Dpto. Fisica, Universidad de Los Andes, Merida (Venezuela); Ramos, M.A. [Laboratorio de Difraccion y Fluorescencia de Rayos-X, Instituto Zuliano de Investigaciones Tecnologicas (INZIT), La Canada de Urdaneta, Estado Zulia (Venezuela)

    2012-06-15

    The temperature dependencies of DC magnetic susceptibilities, {chi}(T), of CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys were measured in a SQUID apparatus using the protocol of field cooling (FC) and zero FC (ZFC). The FC curves of both samples reflect a weak ferromagnetic (or ferrimagnetic) behavior with a nearly constant value of {chi}(T) in the measured temperature range (2-300 K) indicating that the critical temperatures (T{sub c}) are >300 K. The ZFC curves diverges from FC, showing irreversibility temperatures (T{sub irr}) of {proportional_to}250 K for CuFeInTe{sub 3} and >300 K for CuFeGaTe{sub 3}, suggesting that we are dealing with cluster-glass systems in a superparamagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Use of micro-PIXE to determine spatial distributions of copper in Brassica carinata plants exposed to CuSO4 or CuEDDS

    International Nuclear Information System (INIS)

    Cestone, Benedetta; Vogel-Mikuš, Katarina; Quartacci, Mike Frank; Rascio, Nicoletta; Pongrac, Paula; Pelicon, Primož; Vavpetič, Primož; Grlj, Nataša; Jeromel, Luka; Kump, Peter; Nečemer, Marijan; Regvar, Marjana; Navari-Izzo, Flavia

    2012-01-01

    A better understanding of the mechanisms that govern copper (Cu) uptake, distribution and tolerance in Brassica carinata plants in the presence of chelators is needed before significant progress in chelate-assisted Cu phytoextraction can be made. The aims of this study were therefore to characterise (S,S)-N,N′-ethylenediamine disuccinic acid (EDDS)-assisted Cu uptake, and to compare the spatial distribution patterns of Cu in the roots and leaves of B. carinata plants. The plants were treated with 30 μM or 150 μM CuSO 4 or CuEDDS in hydroponic solution. Quantitative Cu distribution maps and concentration profiles across root and leaf cross-sections of the desorbed plants were obtained by micro-proton induced X-ray emission. In roots, the 30 μM treatments with both CuSO 4 and CuEDDS resulted in higher Cu concentrations in epidermal/cortical regions. At 150 μM CuSO 4 , Cu was mainly accumulated in root vascular bundles, whereas with 150 μM CuEDDS, Cu was detected in endodermis and the adjacent inner cortical cell layer. Under all treatments, except with a H + -ATP-ase inhibitor, the Cu in leaves was localised mainly in vascular tissues. The incubation of plants with 150 μM CuEDDS enhanced metal translocation to shoots, in comparison to the corresponding CuSO 4 treatment. Inhibition of H + -ATPase activity resulted in reduced Cu accumulation in 30 μM CuEDDS-treated roots and 150 μM CuEDDS-treated leaves, and induced changes in Cu distribution in the leaves. This indicates that active mechanisms are involved in retaining Cu in the leaf vascular tissues, which prevent its transport to photosynthetically active tissues. The physiological significance of EDDS-assisted Cu uptake is discussed. - Highlights: ► We localised Cu in Brassica carinata treated with CuSO 4 or CuEDDS by micro-PIXE. ► EDDS-assisted Cu uptake and transport resulted in preserved root endodermis. ► EDDS enhanced Cu transport from roots to shoots. ► Cu sequestration within leaf veins

  20. In-situ XRD study of alloyed Cu2ZnSnSe4-CuInSe2 thin films for solar cells

    International Nuclear Information System (INIS)

    Hartnauer, Stefan; Wägele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland

    2015-01-01

    We investigate the growth of Cu 2 ZnSnSe 4 -CuInSe 2 (CZTISe) thin films using a 2-stage (Cu-rich/Cu-free) co-evaporation process under simultaneous application of in-situ angle dispersive X-ray diffraction (XRD). In-situ XRD allows monitoring the phase formation during preparation. A variation of the content of indium in CZTISe leads to a change in the lattice constant. Single phase CZTISe is formed in a wide range, while at high In contents a phase separation is detected. Because of different thermal expansion coefficients, the X-ray diffraction peaks of ZnSe and CZTISe can be distinguished at elevated substrate temperatures. The formation of ZnSe appears to be inhibited even for low indium content. In-situ XRD shows no detectable sign for the formation of ZnSe. First solar cells of CZTISe have been prepared and show comparable performance to CZTSe. - Highlights: • In-situ XRD study of two-stage co-evaporated Cu 2 ZnSnSe 4 -CuInSe 2 alloyed thin films. • No detection of ZnSe with in-situ XRD due to Indium incorporation • Comparable efficiency of alloyed solar cells

  1. Mind magic: a pilot study of preventive mind-body-based stress reduction in behaviorally inhibited and activated children

    NARCIS (Netherlands)

    Jellesma, F.C.; Cornelis, J.

    2012-01-01

    Purpose of study: The aim of this pilot study was to examine a mind-body-based preventive intervention program and to determine relationships between children's behavioral inhibition system (BIS) and behavioral activation system, stress, and stress reduction after the program. Design of study:

  2. Inhibition of eating behavior: negative cognitive effects of dieting.

    Science.gov (United States)

    Hart, K E; Chiovari, P

    1998-06-01

    This study tested the hypothesis that dieters would score higher than nondieters in terms of food rumination. Two hundred and thirty one college undergraduates completed the Eating Obsessive-Compulsiveness Scale (EOCS) and responded to a questionnaire that inquired about dieting status. Subjects also completed measures that tapped neuroticism and social desirability. Results showed that current dieters were significantly more obsessed with thoughts of eating and food than were nondieters. Neither dieting status nor EOCS scale scores were related to neuroticism or social desirability. These results are consistent with previous theory and research suggesting that inhibition of appetitive behaviors can have negative cognitive effects. Moreover, they indicate a potential target for therapeutic intervention.

  3. Preparation, characterization and catalytic behavior of hierachically porous CuO/α-Fe2O3/SiO2 composite material for CO and o-DCB oxidation

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Ma; Xi Feng; Xuan He; Hongwen Guo; Lu Lü

    2011-01-01

    Hierachically porous (HP) CuO/α-Fe2O3/SiO2 composite material was fabricated by sol-gel method and multi-hydrothermal processes using HP-SiO2 as support.The resulting material was characterized by N2 adsorption-desorption,X-ray diffraction and scanning electron microscopy.The as-prepared CuO/Fe2O3/HP-SiO2 sample,with α-Fe2O3 and CuO nanocrystals,possessed a co-continuous skeleton,through-macroporous and mesoporous structure.Its catalytic behavior for CO and o-DCB oxidation was investigated.The result showed that CuO/Fe2O3/HP-SiO2 catalyst exhibited high catalytic activity for both CO and o-DCB oxidation,indicating its potential application in combined abatement of CO and chlorinated volatile organic compounds.

  4. Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water

    International Nuclear Information System (INIS)

    Yohai, L.; Schreiner, W.H.; Vázquez, M.; Valcarce, M.B.

    2013-01-01

    PO 4 3− ions as corrosion inhibitor were investigated on copper in tap water in the presence of NaClO. The inhibitor was evaluated by electrochemical techniques and weight loss tests. Raman spectroscopy and X-ray photoelectron spectroscopy were used to study the passive layer. In inhibited tap water, the passive layer is thick and compact if NaClO is present. Weight-loss tests showed the inhibition of uniform dissolution and no pitting attack. When adding NaClO, Cu 3 (PO 4 ) 2 is incorporated to the passive film. Thus, phosphate ions are effective as inhibitors for copper in tap water, even when using high dosages of biocides. - Highlights: ► Changes in the copper corrosion after adding phosphate to tap water were analyzed. ► When NaClO and phosphates are present, Cu 3 (PO 4 ) 2 participates of the surface film. ► In the absence of biocide the surface film contains a mixture of Cu 2 O, CuO and Cu(OH) 2 . ► PO 4 3− is an effective inhibitor for Cu in tap water containing high NaClO dosages

  5. The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation

    International Nuclear Information System (INIS)

    Lin, Yu-Wei; Wang, Ren-You; Ke, Wun-Bin; Wang, I-Sheng; Chiu, Ying-Ta; Lu, Kuo-Chang; Lin, Kwang-Lung; Lai, Yi-Shao

    2012-01-01

    Highlights: ► Pd distribution in Pd-plated Cu wires reveals the whirlpool flow pattern of Cu. ► The mechanisms of the Cu flow behavior and Pd distribution are proposed. ► At Pd-rich phases, small voids formed and followed the direction of Cu flow. ► Nanoindentation studies show the Cu ball bond is harder in regions with Pd. - Abstract: The Pd plating on the 20 μm Cu wire dissolves in the free air ball (FAB) and the Cu ball bond during the wire bonding process without forming intermetallic compounds. The limiting supply of Pd and the short bonding process, 15 ms of thermosonic bonding, result in uneven distribution of Pd in the as produced Cu ball bond. Also, the Pd-rich phase may accompany small voids formed within the FAB and the wire bond, and following the direction of semi-solid Cu flow. The Pd distribution, as evidenced by the focused ion beam (FIB) and wavelength dispersive X-ray spectroscopy (WDS) mapping, reveals the whirlpool flow pattern of Cu within the FAB and the ball bond. Pd distributes within the copper ball through convective transport by the copper flow. Additionally, hardness measurements by nanoindentation testing show that the Cu ball bond is harder in the regions where Pd exists.

  6. Studying the effects of dietary body weight-adjusted acute tryptophan depletion on punishment-related behavioral inhibition.

    Science.gov (United States)

    Gaber, Tilman J; Dingerkus, Vita L S; Crockett, Molly J; Bubenzer-Busch, Sarah; Helmbold, Katrin; Sánchez, Cristina L; Dahmen, Brigitte; Herpertz-Dahlmann, Beate; Zepf, Florian D

    2015-01-01

    Alterations in serotonergic (5-HT) neurotransmission are thought to play a decisive role in affective disorders and impulse control. This study aims to reproduce and extend previous findings on the effects of acute tryptophan depletion (ATD) and subsequently diminished central 5-HT synthesis in a reinforced categorization task using a refined body weight-adjusted depletion protocol. Twenty-four young healthy adults (12 females, mean age [SD]=25.3 [2.1] years) were subjected to a double-blind within-subject crossover design. Each subject was administered both an ATD challenge and a balanced amino acid load (BAL) in two separate sessions in randomized order. Punishment-related behavioral inhibition was assessed using a forced choice go/no-go task that incorporated a variable payoff schedule. Administration of ATD resulted in significant reductions in TRP measured in peripheral blood samples, indicating reductions of TRP influx across the blood-brain barrier and related brain 5-HT synthesis. Overall accuracy and response time performance were improved after ATD administration. The ability to adjust behavioral responses to aversive outcome magnitudes and behavioral adjustments following error contingent punishment remained intact after decreased brain 5-HT synthesis. A previously observed dissociation effect of ATD on punishment-induced inhibition was not observed. Our results suggest that neurodietary challenges with ATD Moja-De have no detrimental effects on task performance and punishment-related inhibition in healthy adults.

  7. Comparing Executive Function and Behavioral Inhibition in Schizophrenia, Bipolar Mood Disorder Type I and Normal Groups

    Directory of Open Access Journals (Sweden)

    Marziye Khodaee

    2015-11-01

    Full Text Available Introduction: Cognitive performance in patients with schizophrenia and Bipolar I disorder seems to be different from the normal individuals, that these defects affect their treatment results. Therefore, this study aimed to compare executive function and behavioral inhibition within patients suffering from schizophrenia, bipolar type I as well as a normal group. Methods: In this descriptive-comparative study, out of all patients hospitalized in daily psychiatric clinic in Najafabad in 2014 due to these disorders, 20 schizophrenia and 20 bipolar type I as well as 20 normal individuals were selected via the convinience sampling. All the study participants completed the computerizing tests including Tower of London and Go-No Go. The study data were analyzed utilizing SPSS software (ver 22 via MANOVA. Results: The study findings revealed a significant difference between the two patient groups and the normal group in regard with executive function and behavioral inhibition (p<0.05, whereas no differences were detected between schizophrenics and bipolar patient groups. Furthermore, patients suffering from schizophrenia and bipolar I mood disorder demonstrated significantly poor performance in cognitive function and behavioral inhibition compared to the normal group. Conclusion: The present study results can be significantly applied in pathology and therapy of these disorders, so as recognizing the inability of such patients can be effective in developing cognitive rehabilitation programs in these patients.

  8. The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al-Cu alloys immersed in H2SO4

    International Nuclear Information System (INIS)

    Osorio, Wislei R.; Spinelli, Jose E.; Freire, Celia M.A.; Cardona, Margarita B.; Garcia, Amauri

    2007-01-01

    Al-Cu alloys castings can exhibit different corrosion responses at different locations due to copper content and to the resulting differences on microstructural features and on Al 2 Cu fractions. The aim of this study was to investigate the influence of Al 2 Cu intermetallic particles associated to the dendritic arm spacings on the general corrosion resistance of three different hypoeutectic Al-Cu alloys samples in sulfuric acid solution. The cast samples were produced using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The typical microstructural pattern was examined by using electronic microscopy techniques. In order to evaluate the surface corrosion behavior of such Al-Cu alloys, corrosion tests were performed in a 0.5 M sulfuric acid solution at 25 deg. C by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. An equivalent circuit was also used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that Al 2 Cu has a less noble corrosion potential than that of the Al-rich phase. Despite that, dendrite fineness has proved to be more influent on corrosion resistance than the increase on alloy copper content with the consequent increase on Al 2 Cu fraction

  9. Automatic processes in at-risk adolescents: the role of alcohol-approach tendencies and response inhibition in drinking behavior.

    Science.gov (United States)

    Peeters, Margot; Wiers, Reinout W; Monshouwer, Karin; van de Schoot, Rens; Janssen, Tim; Vollebergh, Wilma A M

    2012-11-01

    This study examined the association between automatic processes and drinking behavior in relation to individual differences in response inhibition in young adolescents who had just started drinking. It was hypothesized that strong automatic behavioral tendencies toward alcohol-related stimuli (alcohol-approach bias) were associated with higher levels of alcohol use, especially amongst adolescents with relatively weak inhibition skills. To test this hypothesis structural equation analyses (standard error of mean) were performed using a zero inflated Poisson (ZIP) model. A well-known problem in studying risk behavior is the low incidence rate resulting in a zero dominated distribution. A ZIP-model accounts for non-normality of the data. Adolescents were selected from secondary Special Education schools (a risk group for the development of substance use problems). Participants were 374 adolescents (mean age of M = 13.6 years). Adolescents completed the alcohol approach avoidance task (a-AAT), the Stroop colour naming task (Stroop) and a questionnaire that assessed alcohol use. The ZIP-model established stronger alcohol-approach tendencies for adolescent drinkers (P processes are associated with the drinking behavior of young, at-risk adolescents. It appears that alcohol-approach tendencies are formed shortly after the initiation of drinking and particularly affect the drinking behavior of adolescents with relatively weak inhibition skills. Implications for the prevention of problem drinking in adolescents are discussed. © 2012 The Authors. Addiction © 2012 Society for the Study of Addiction.

  10. Wsbnd Cu functionally graded material: Low temperature fabrication and mechanical characterization

    Science.gov (United States)

    Yusefi, Ali; Parvin, Nader; Mohammadi, Hossein

    2018-04-01

    In this study, we fabricated and characterized a Wsbnd Cu functionally graded material (FGM) with 11 layers, including a pure copper layer. Samples were prepared by mixing a mechanically alloyed Nisbnd Mnsbnd Cu powder with W and Cu powders, stacking the powders, pressing the stacked layers, and finally sintering at 1000 °C. The utilization of a Nisbnd Mnsbnd Cu system may reduce the cost but without losing the good sintering behavior and physical and mechanical properties. The composition of the material was analyzed based on scanning electron microscopy images and by energy dispersive X-ray spectroscopy mapping, which indicated that in the presence of Ni and Mn, the Cu atoms could diffuse into the W particles. All of the layers had a very high relative density, thereby indicating their densification and excellent sintering behavior. We also found that the porosity values in the Cu phase remained unchanged at approximately 2.39% across the FGM. Mechanical measurements showed that the hardness (72%), modulus of elasticity (61%), and ultimate tensile strength (58%) increased with the W content across the Wsbnd Cu FGM, whereas the fracture toughness (KIC) varied in the opposite manner (minimum of 4.52 MPa/m0.5).

  11. R&D of CuCrZr tubes for W/Cu monoblock components

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Sixiang, E-mail: sxzhao@impcas.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), P.O. Box 1126, Hefei 230031 (China); Ma, Linsheng [State Nuclear Bao Ti Zirconium Industry Company, 206 Hi-Tech Avenue, Baoji 721013 (China); Peng, Lingjian [Advanced Technology & Materials Co., Ltd. - AT& M, Beijing 100081 (China); Gao, Bo [State Nuclear Bao Ti Zirconium Industry Company, 206 Hi-Tech Avenue, Baoji 721013 (China); Li, Chun [Laboratory of Advanced materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Li, Qiang; Wang, Wanjing; Wei, Ran; Xu, Yuping [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), P.O. Box 1126, Hefei 230031 (China); Pan, Ningjie; Qin, Sigui; Shi, Yingli; Liu, Guohui; Wang, Tiejun [Advanced Technology & Materials Co., Ltd. - AT& M, Beijing 100081 (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), P.O. Box 1126, Hefei 230031 (China); Hefei Center for Physical Science and Technology, Hefei 230031 (China); Hefei Science Center of CAS, Hefei 230031 (China)

    2016-11-15

    Highlights: • CuCrZr tubes with excellent HIP performance and good resistance to grain growth have been developed. • A circumferential ductility testing manner for small-diameter tubes has been utilized in this study. • The evolution of microstructures has been revealed throughout the new tube forming processes. - Abstract: In order to avoid the occurrence of two types of longitudinal defects (strain localization and folding flaws), which were observed in the CuCrZr tubes of EAST W/Cu upper divertor components, in the future manufacturing of monoblock components using hot isostatic pressing (HIP), a new CuCrZr tube forming protocol is proposed. The evolution of Cu grains and Cr-rich particles is monitored by scanning electron microscopy throughout the new tube forming processes. The final microstructures of the newly developed tubes are totally different from those of the EAST project previously chosen tubes and the elongation of Cr-rich precipitates has been substantially suppressed by using the new tube forming protocol. The newly developed tubes show better HIP performance than the EAST previously chosen ones. Since circumferential mechanical properties, especially ductility, are of great importance, a circumferential ductility testing manner for small-diameter tubes, which might be a supplement to longitudinal tensile testing, has been utilized and the preliminary testing results are given. The recrystallization behavior of the newly developed tubes is also investigated.

  12. Synthesis and densification of Cu-coated Ni-based amorphous composite powders

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Byoung-Kee; Kim, Jin-Chun

    2007-01-01

    Spherical Ni 57 Zr 20 Ti 16 Si 2 Sn 3 (numbers indicate at.%) amorphous powders were produced by the gas atomization process, and ductile Cu phase was coated on the Ni-based amorphous powders by the spray drying process in order to increase the ductility of the consolidated amorphous alloy. The characteristics of the as-prepared powders and the consolidation behaviors of Cu-coated Ni-based amorphous composite powders were investigated. The atomization was conducted at 1450 deg. C under the vacuum of 10 -2 mbar. The Ni-based amorphous powders and Cu nitrate solution were mixed and sprayed at temperature of 130 deg. C. After spray drying and reduction treatment, the sub-micron size Cu powders were coated successfully on the surface of the atomized Ni amorphous powders. The spark plasma sintering process was applied to study the densification behavior of the Cu-coated composite powders. Thickness of the Cu layer was less than 1 μm. The compacts obtained by SPS showed high relative density of over 98% and its hardness was over 800 Hv

  13. Theoretical study of stability and reaction mechanism of CuO supported on ZrO{sub 2} during chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minjun; Liu, Jing, E-mail: liujing27@mail.hust.edu.cn; Shen, Fenghua; Cheng, Hao; Dai, Jinxin; Long, Yan

    2016-03-30

    Graphical abstract: - Highlights: • The stability and reaction mechanism of CuO supported on ZrO{sub 2} were studied by DFT. • ZrO{sub 2} provides a high resistance to CuO sintering. • ZrO{sub 2} promotes the activity of CuO for CO oxidation in fuel reactor. • The energy barriers are low enough for CuO/ZrO{sub 2} oxidation reaction in air reactor. - Abstract: The addition of inert support is important for the Cu-based oxygen carrier used in chemical looping combustion (CLC). The effects of the ZrO{sub 2} support on the stability and reactivity of Cu-based oxygen carrier were investigated using the density functional theory (DFT). First, the sintering inhibition mechanism of ZrO{sub 2} that support active CuO was investigated. The optimized Cu{sub 4}O{sub 4}/ZrO{sub 2} structure showed a strong interaction occurred between the Cu{sub 4}O{sub 4} cluster and ZrO{sub 2}(1 0 1) surface. The interaction prevented the migration and agglomeration of CuO. Next, the adsorption of CO on Cu{sub 4}O{sub 4}/ZrO{sub 2} and the mechanism of the CuO/ZrO{sub 2} reduction by CO were studied. CO mainly chemisorbed on the Cu site and ZrO{sub 2} acted as an electron donor in the adsorption system. The energy barrier of CuO/ZrO{sub 2} reduction by CO (0.79 eV) was much lower than that of the pure CuO cluster (1.44 eV), indicating that ZrO{sub 2} had a positive effect on CuO/ZrO{sub 2} reduction by CO. After CO was oxidized in the fuel reactor, the CuO was reduced into Cu. The adsorption of O{sub 2} on Cu{sub 2}/ZrO{sub 2} and the most likely pathway of Cu{sub 2}/ZrO{sub 2} oxidation by O{sub 2} were investigated. The adsorption of O{sub 2} was found a strong chemisorption behavior. The energy barriers were low enough for the Cu-based oxygen carrier oxidation reaction.

  14. Behavioral and neurophysiological study of attentional and inhibitory processes in ADHD-combined and control children.

    Science.gov (United States)

    Baijot, S; Deconinck, N; Slama, H; Massat, I; Colin, C

    2013-12-01

    This study compares behavioral and electrophysiological (P300) responses recorded in a cued continuous performance task (CPT-AX) performed by children with attention deficit hyperactivity disorder-combined subtype (ADHD-com) and age-matched healthy controls. P300 cognitive-evoked potentials and behavioral data were recorded in eight children with ADHD (without comorbidity) and nine control children aged 8-12 years while performing a CPT-AX task. Such task enables to examine several kinds of false alarms and three different kinds of P300 responses: the "Cue P300", the "Go P300" and the "NoGo P300", respectively, associated with preparatory processing/attentional orienting, motor/response execution and motor/response inhibition. Whereas hit rates were about 95% in each group, ADHD children made significantly more false alarm responses (inattention- and inhibition-related) than control children. ADHD children had a marginally smaller Cue P300 than the control children. Behavioral and electrophysiological findings both highlighted inhibition and attention deficits in ADHD-com children in the CPT-AX task. A rarely studied kind of false alarm, the "Other" FA, seems to be a sensitive FA to take into account, even if its interpretation remains unclear.

  15. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Szade, J. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Talik, E. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Zubko, M. [Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chórzow (Poland); Wasilkowski, D. [Department of Biochemistry, University of Silesia, Jagiellońska 28, 40-032 Katowice (Poland); Dulski, M. [Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chórzow (Poland); Balin, K. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); and others

    2016-07-15

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover, UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.

  16. Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata)

    International Nuclear Information System (INIS)

    Kopittke, Peter M.; Dart, Peter J.; Menzies, Neal W.

    2007-01-01

    Although Cu is phytotoxic at Cu 2+ activities as low as 1-2 μM, the effect of Cu 2+ on the nodulation of legumes has received little attention. The effect of Cu 2+ on nodulation of cowpea (Vigna unguiculata (L.) Walp. cv. Caloona) was examined in a dilute solution culture system utilising a cation exchange resin to buffer solution Cu 2+ . The nodulation process was more sensitive to increasing Cu 2+ activities than both shoot and root growth; whilst a Cu 2+ activity of 1.0 μM corresponded to a 10% reduction in the relative yield of the shoots and roots, a Cu 2+ activity of 0.2 μM corresponded to a 10% reduction in nodulation. This reduction in nodulation with increasing Cu 2+ activity was associated with an inhibition of root hair formation in treatments containing ≥0.77 μM Cu 2+ , rather than to a reduction in the size of the Rhizobium population. - The nodulation process was more sensitive to increasing Cu 2+ activities than either shoot or root growth

  17. Effects of piracetam on behavior and memory in adult zebrafish.

    Science.gov (United States)

    Grossman, Leah; Stewart, Adam; Gaikwad, Siddharth; Utterback, Eli; Wu, Nadine; Dileo, John; Frank, Kevin; Hart, Peter; Howard, Harry; Kalueff, Allan V

    2011-04-25

    Piracetam, a derivative of γ-aminobutyric acid, exerts memory-enhancing and mild anxiolytic effects in human and rodent studies. To examine the drug's behavioral profile further, we assessed its effects on behavioral and endocrine (cortisol) responses of adult zebrafish (Danio rerio)--a novel model species rapidly gaining popularity in neurobehavioral research. Overall, acute piracetam did not affect zebrafish novel tank and light-dark box behavior at mild doses (25-400mg/L), but produced nonspecific behavioral inhibition at 700mg/L. No effects on cortisol levels or inter-/intra-session habituation in the novel tank test were observed for acute or chronic mild non-sedative dose of 200mg/L. In contrast, fish exposed to chronic piracetam at this dose performed significantly better in the cued learning plus-maze test. This observation parallels clinical and rodent literature on the behavioral profile of piracetam, supporting the utility of zebrafish paradigms for testing nootropic agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Hyperactivity in boys with attention deficit/hyperactivity disorder (ADHD): the association between deficient behavioral inhibition, attentional processes, and objectively measured activity.

    Science.gov (United States)

    Alderson, R Matt; Rapport, Mark D; Kasper, Lisa J; Sarver, Dustin E; Kofler, Michael J

    2012-01-01

    Contemporary models of ADHD hypothesize that hyperactivity reflects a byproduct of inhibition deficits. The current study investigated the relationship between children's motor activity and behavioral inhibition by experimentally manipulating demands placed on the limited-resource inhibition system. Twenty-two boys (ADHD = 11, TD = 11) between the ages of 8 and 12 years completed a conventional stop-signal task, two choice-task variants (no-tone, ignore-tone), and control tasks while their motor activity was measured objectively by actigraphs placed on their nondominant wrist and ankles. All children exhibited significantly higher activity rates under all three experimental tasks relative to control conditions, and children with ADHD moved significantly more than typically developing children across conditions. No differences in activity level were observed between the inhibition and noninhibition experimental tasks for either group, indicating that activity level was primarily associated with basic attentional rather than behavioral inhibition processes.

  19. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    Science.gov (United States)

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.

  20. Acute disinhibiting effects of alcohol as a factor in risky driving behavior

    Science.gov (United States)

    Fillmore, Mark T.; Blackburn, Jaime S.; Harrison, Emily L. R.

    2008-01-01

    Automobile crash reports show that up to 40% of fatal crashes in the United States involve alcohol and that younger drivers are over-represented. Alcohol use among young drivers is associated with impulsive and risky driving behaviors, such as speeding, which could contribute to their over-representation in alcohol-related crash statistics. Recent laboratory studies show that alcohol increases impulsive behaviors by impairing the drinker’s ability to inhibit inappropriate actions and that this effect can be exacerbated in conflict situations where the expression and inhibition of behavior are equally motivating. The present study tested the hypothesis that this response conflict might also intensify the disruptive effects of alcohol on driving performance. Fourteen subjects performed a simulated driving and a cued go/no-go task that measured their inhibitory control. Conflict was motivated in these tasks by providing equal monetary incentives for slow, careful behavior (e.g., slow driving, inhibiting impulses) and for quick, abrupt behavior (fast driving, disinhibition). Subjects were tested under two alcohol doses (0.65 g/kg and a placebo) that were administered twice: when conflict was present and when conflict was absent. Alcohol interacted with conflict to impair inhibitory control and to increase risky and impaired driving behavior on the drive task. Also, individuals whose inhibitory control was most impaired by alcohol displayed the poorest driving performance under the drug. The study demonstrates potentially serious disruptions to driving performance as a function of alcohol intoxication and response conflict, and points to inhibitory control as an important underlying mechanism. PMID:18325693

  1. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami; Deng, Shuo; Ganesan, Pugalenthi; Kumar, Alan Prem; Lim, Kiat Hon; Yang, Henry; Hooi, Shing Chuan; Goh, Yaw Chong; Maciver, Sutherland K.; Pervaiz, Shazib; Yap, Celestial T.

    2016-01-01

    , and this is mediated via gelsolin's effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained

  2. Fear of happiness predicts subjective and psychological well-being above the behavioral inhibition system (BIS) and behavioral activation system (BAS) model of personality

    OpenAIRE

    Murat Yildirim; Hacer Belen

    2018-01-01

    Fear of happiness is an important psychological construct and has a significant effect on life outcomes such as well-being. This study sought to examine whether fear of happiness could explain variance in subjective well-being and psychological well-being domains after controlling for Behavioral Inhibition System (BIS) and Behavioral Activation System (BAS) Model of Personality. A total of 243 participants (189 males and 54 females) completed Fear of Happiness Scale, Positive-Negative Affect ...

  3. Catechol-O-methlytransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat

    Science.gov (United States)

    Kline, R. H.; Exposto, F. G.; O’Buckley, S. C.; Westlund, K. N.; Nackley, A. G.

    2015-01-01

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10–45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of ARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. PMID:25659347

  4. Behavioral inhibition and activation systems in traumatic brain injury.

    Science.gov (United States)

    Wong, Christina G; Rapport, Lisa J; Meachen, Sarah-Jane; Hanks, Robin A; Lumley, Mark A

    2016-11-01

    Personality has been linked to cognitive appraisal and health outcomes; however, research specific to traumatic brain injury (TBI) has been sparse. Gray's theory of behavioral inhibition system and behavioral activation system (BIS/BAS) offers a neurobiologic view of personality that may be especially relevant to neurobehavioral change associated with TBI. The present study examined theoretical and psychometric issues of using the BIS/BAS scale among adults with TBI as well as BIS/BAS personality correlates of TBI. Research Method/Design: Eighty-one adults with complicated-mild to severe TBI and 76 of their significant others (SOs) participated. Measures included the BIS/BAS scale, Positive and Negative Affect Schedule, and Awareness Questionnaire. Among adults with TBI, BIS/BAS internal consistency reliabilities were similar to those found in normative samples of adults without TBI. The TBI group endorsed significantly higher BAS than did the SO group, and injury severity was positively correlated to BAS. The SO group showed expected patterns of correlation between personality and affect; positive affect was associated with BAS, and negative affect with BIS. In contrast, in the TBI group, BAS was positively correlated to both positive and negative affect. Impaired awareness of abilities moderated the intensity of relationships between BIS/BAS and affect. TBI was associated with relatively intensified BAS (approach behavior) but not BIS (avoidance behavior). The observed pattern is consistent with the neurobiology of TBI-related personality change and with theory regarding the independence of the BIS and BAS systems. The BIS/BAS scale shows promise as a personality measure in TBI. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Ji, Young Su; Chung, Sung Jae; Ok, Myoung-Ryul; Hong, Kyung Tae; Suh, Jin-Yoo; Byeon, Jai Won; Yoon, Jin-Kook; Lee, Kyung Hwan; Lee, Kyung Sub

    2007-01-01

    The crystallization behavior of Cu 43 Zr 43 Al 7 Ag 7 (numbers indicate at.%) bulk metallic glass was investigated using the isothermal electrical resistivity measurements at 450 deg. C in the supercooled liquid region. The crystallization process is a single step phase transformation. To analyze the electrical resistivity reduction, microstructure evolutions were analyzed using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering. The Avrami parameter of the electrical resistivity reduction step was 1.73, indicating that the crystallization process is a diffusion-controlled growth of intermetallic compounds with decreasing nucleation rate

  6. Polysaccharides from Wolfberry Prevents Corticosterone-Induced Inhibition of Sexual Behavior and Increases Neurogenesis

    Science.gov (United States)

    Lau, Benson Wui-Man; Lee, Jada Chia-Di; Li, Yue; Fung, Sophia Man-Yuk; Sang, Yan-Hua; Shen, Jiangang; Chang, Raymond Chuen-Chung; So, Kwok-Fai

    2012-01-01

    Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of infertility and sexual dysfunction. However, there is still a scarcity of experimental evidence to support the pro-sexual effect of wolfberry. The aim of this study is to determine the effect of Lycium barbarum polysaccharides (LBP) on male sexual behavior of rats. Here we report that oral feeding of LBP for 21 days significantly improved the male copulatory performance including increase of copulatory efficiency, increase of ejaculation frequency and shortening of ejaculation latency. Furthermore, sexual inhibition caused by chronic corticosterone was prevented by LBP. Simultaneously, corticosterone suppressed neurogenesis in subventricular zone and hippocampus in adult rats, which could be reversed by LBP. The neurogenic effect of LBP was also shown in vitro. Significant correlation was found between neurogenesis and sexual performance, suggesting that the newborn neurons are associated with reproductive successfulness. Blocking neurogenesis in male rats abolished the pro-sexual effect of LBP. Taken together, these results demonstrate the pro-sexual effect of LBP on normal and sexually-inhibited rats, and LBP may modulate sexual behavior by regulating neurogenesis. PMID:22523540

  7. Behavioral inhibition in childhood predicts smaller hippocampal volume in adolescent offspring of parents with panic disorder

    Science.gov (United States)

    Schwartz, C E; Kunwar, P S; Hirshfeld-Becker, D R; Henin, A; Vangel, M G; Rauch, S L; Biederman, J; Rosenbaum, J F

    2015-01-01

    Behavioral inhibition (BI) is a genetically influenced behavioral profile seen in 15–20% of 2-year-old children. Children with BI are timid with people, objects and situations that are novel or unfamiliar, and are more reactive physiologically to these challenges as evidenced by higher heart rate, pupillary dilation, vocal cord tension and higher levels of cortisol. BI predisposes to the later development of anxiety, depression and substance abuse. Reduced hippocampal volumes have been observed in anxiety disorders, depression and posttraumatic stress disorder. Animal models have demonstrated that chronic stress can damage the hippocampal formation and implicated cortisol in these effects. We, therefore, hypothesized that the hippocampi of late adolescents who had been behaviorally inhibited as children would be smaller compared with those who had not been inhibited. Hippocampal volume was measured with high-resolution structural magnetic resonance imaging in 43 females and 40 males at 17 years of age who were determined to be BI+ or BI− based on behaviors observed in the laboratory as young children. BI in childhood predicted reduced hippocampal volumes in the adolescents who were offspring of parents with panic disorder, or panic disorder with comorbid major depression. We discuss genetic and environmental factors emanating from both child and parent that may explain these findings. To the best of our knowledge, this is the first study to demonstrate a relationship between the most extensively studied form of temperamentally based human trait anxiety, BI, and hippocampal structure. The reduction in hippocampal volume, as reported by us, suggests a role for the hippocampus in human trait anxiety and anxiety disorder that warrants further investigation. PMID:26196438

  8. Heavy-metal-induced Inhibition of Aspergillus niger nitrate reductase: Applications for Rapid Contaminant Detection in Aqueous Samples

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William Arnold; Aiken, Abigail Marie; Peyton, Brent Michael; Petersen, James N.

    2003-03-01

    Enzyme inhibition assays have the potential to rapidly screen and identify heavy metals in environmental samples. Inhibition of nitrate reductase (NR) was examined as a method for detecting toxic metals. The activity of NR (EC 1.6.6.2) from Aspergillus niger was assayed as a function of metal concentration in the presence of Cd2+, Cr3+, Cr6+, Cu2+, Ni2+, Pb2+, and Zn2+. NR exhibited sensitivity to these metals at concentrations below 10 µM. Various buffers were screened for their ability to protect NR activity from metal inhibition, and 3-(N-morpholino) propanesulfonic acid (MOPS) was selected as the buffering system for the NR assays as it exhibited the least interference with metal inhibition, thus providing increased assay sensitivity. The hypothesis that chelating agents could prevent the inhibition of NR activity by metal ions was also tested. Results indicated that 10 mM ethylenediaminetetraacetic acid (EDTA) could protect NR activity from inhibition by Cr3+, Cu2+, Cd2+, Ni2+, and Zn2+ at concentrations below 100 µM, but that the EDTA had no effect on NR inhibition by Cr6+. An amount of 10 mM nitrilotriacetic acid (NTA) prevented NR inhibition by Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+ at metal concentrations below 100 µM. However, 10 mM NTA was unable to protect the enzyme from inhibition by either Cr3+ or Cr6+. These results indicated that through specific metal chelation, a NR-based method for individually quantifying Cr3+ and Cr6+ species in aqueous solutions could be developed. The ability to restore activity to NR which been previously inhibited by exposure to 100 µM Pb2+, Cd2+, Zn2+, Cu2+, and Cr3+ was explored to determine whether NR activity could be recovered by EDTA additions for use in consecutive metal inhibition assays. The results showed NR activity could not be regained after exposure to Cr3+ or Cu2+, but did partially recover activity after Cd2+, Pb2+, and Zn2+ exposure.

  9. Dielectric properties of (CuO,CaO2, and BaO)y/CuTl-1223 composites

    International Nuclear Information System (INIS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Hussain, S.Tajammul; Kamran, M.

    2013-01-01

    We synthesized (CuO, CaO 2 , and BaO) y /Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties such as real and imaginary part of dielectric constant, dielectric loss, and ac-conductivity of these composites are studied by capacitance and conductance measurement as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). The x-ray diffraction analysis reveals that the characteristic behavior of Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor phase and its structure is nearly undisturbed by doping of nanoparticles. The scanning electron microscopy images show the improvement in the intergranular links among the superconducting grains with increasing nanoparticles concentration. Microcracks are healed up with the inclusion of these nanoparticles and superconducting volume fraction is also increased. The dielectric properties of these composites strongly depend upon the frequency and temperature. The zero resistivity critical temperature and dielectric properties show opposite trend with the addition of nanoparticles in Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor matrix.

  10. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China); Zhang, Xian; Wang, Hui-Zhong [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Jin, Ren-Cun, E-mail: jrczju@aliyun.com [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036 (China)

    2015-12-30

    Highlights: • The Cu partition in an anammox UASB reactor was predicted by models. • The distribution and form dynamics of Cu in anammox reactors were tracked. • The response of the EPS to Cu(II) was characterized by 3D-EEM spectra. • The mechanism of Cu inhibition on anammox granules was updated. • The feasibilities of two novel remediation strategies were investigated. - Abstract: In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L{sup −1} d{sup −1}) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg{sup −1}SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  11. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation

    International Nuclear Information System (INIS)

    Zhang, Zheng-Zhe; Deng, Rui; Cheng, Ya-Fei; Zhou, Yu-Huang; Buayi, Xiemuguli; Zhang, Xian; Wang, Hui-Zhong; Jin, Ren-Cun

    2015-01-01

    Highlights: • The Cu partition in an anammox UASB reactor was predicted by models. • The distribution and form dynamics of Cu in anammox reactors were tracked. • The response of the EPS to Cu(II) was characterized by 3D-EEM spectra. • The mechanism of Cu inhibition on anammox granules was updated. • The feasibilities of two novel remediation strategies were investigated. - Abstract: In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L −1 d −1 ) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg −1 SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.

  12. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    OpenAIRE

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-01-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential sca...

  13. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyarajan, T.; Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Vignesh, S.; James, R. Arthur [Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024 (India); Karthikeyan, B., E-mail: balkarin@yahoo.com [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2013-05-01

    We report, synthesis and antibacterial activities of CuO nanoflakes. CuO nanoparticles are prepared at room temperature through sol–gel method. X-ray diffraction studies show the particles are monoclinic (crystalline) in nature. Scanning electron microscopy (SEM) images clearly show that the prepared particles are flake like in structure. Fourier transform infrared (FTIR) spectra exhibits three different bands that correspond to the A{sub u} and B{sub u} modes. Antibacterial studies were performed on Shigella flexneri, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium, Bacillus subtilis, Escherichia coli, Vibrio cholera, Pseudomonas aeruginosa and Aeromonas liquefaciens bacterial strains. Among these bacterial strains, S. flexneri and B. subtilis are most sensitive to copper oxide nanoparticles than the positive control (Penicillin G) and S. typhimurium strain shows the less sensitive. Results show that sensitivity is highly dependent on the concentrations of CuO nanoflakes. - Highlights: ► CuO nanoflakes are prepared through simple sol–gel method at room temperature. ► Bacterial strains are highly affected by CuO nanoflakes than the positive control. ► Zone of inhibition increases with an increase of CuO concentrations. ► Sensitivity is highly dependent on the concentrations of CuO nanoflakes.

  14. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes

    International Nuclear Information System (INIS)

    Pandiyarajan, T.; Udayabhaskar, R.; Vignesh, S.; James, R. Arthur; Karthikeyan, B.

    2013-01-01

    We report, synthesis and antibacterial activities of CuO nanoflakes. CuO nanoparticles are prepared at room temperature through sol–gel method. X-ray diffraction studies show the particles are monoclinic (crystalline) in nature. Scanning electron microscopy (SEM) images clearly show that the prepared particles are flake like in structure. Fourier transform infrared (FTIR) spectra exhibits three different bands that correspond to the A u and B u modes. Antibacterial studies were performed on Shigella flexneri, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium, Bacillus subtilis, Escherichia coli, Vibrio cholera, Pseudomonas aeruginosa and Aeromonas liquefaciens bacterial strains. Among these bacterial strains, S. flexneri and B. subtilis are most sensitive to copper oxide nanoparticles than the positive control (Penicillin G) and S. typhimurium strain shows the less sensitive. Results show that sensitivity is highly dependent on the concentrations of CuO nanoflakes. - Highlights: ► CuO nanoflakes are prepared through simple sol–gel method at room temperature. ► Bacterial strains are highly affected by CuO nanoflakes than the positive control. ► Zone of inhibition increases with an increase of CuO concentrations. ► Sensitivity is highly dependent on the concentrations of CuO nanoflakes

  15. Early childhood behavioral inhibition, adult psychopathology and the buffering effects of adolescent social networks: a twenty-year prospective study.

    Science.gov (United States)

    Frenkel, Tahl I; Fox, Nathan A; Pine, Daniel S; Walker, Olga L; Degnan, Kathryn A; Chronis-Tuscano, Andrea

    2015-10-01

    We examined whether the temperament of behavioral inhibition is a significant marker for psychopathology in early adulthood and whether such risk is buffered by peer social networks. Participants (N = 165) were from a prospective study spanning the first two decades of life. Temperament was characterized during infancy and early childhood. Extent of involvement in peer social networks was measured during adolescence, and psychopathology was assessed in early adulthood. Latent Class Analyses generated comprehensive variables at each of three study time-points. Regressions assessed (a) the direct effect of early behavioral inhibition on adult psychopathology (b) the moderating effect of adolescent involvement in social peer networks on the link between temperamental risk and adult psychopathology. Stable behavioral inhibition in early childhood was negatively associated with adult mental health (R(2 ) = .07, p = .005, β = -.26), specifically increasing risk for adult anxiety disorders (R(2) = .04, p = .037, β = .19). These temperament-pathology relations were significantly moderated by adolescent peer group social involvement and network size (Total R(2) = .13, p = .027, β = -.22). Temperament predicted heightened risk for adult anxiety when adolescent social involvement was low (p = .002, β = .43), but not when adolescent social involvement was high. Stable behavioral inhibition throughout early childhood is a risk factor for adult anxiety disorders and interacts with adolescent social involvement to moderate risk. This is the first study to demonstrate the critical role of adolescent involvement in socially active networks in moderating long-lasting temperamental risk over the course of two decades, thus informing prevention/intervention approaches. © 2015 Association for Child and Adolescent Mental Health.

  16. Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water

    Energy Technology Data Exchange (ETDEWEB)

    Yohai, L. [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Schreiner, W.H. [Laboratório de Superfícies e Interfases, Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, PR (Brazil); Vázquez, M., E-mail: mvazquez@fi.mdp.edu.ar [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Valcarce, M.B. [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2013-05-15

    PO{sub 4}{sup 3−} ions as corrosion inhibitor were investigated on copper in tap water in the presence of NaClO. The inhibitor was evaluated by electrochemical techniques and weight loss tests. Raman spectroscopy and X-ray photoelectron spectroscopy were used to study the passive layer. In inhibited tap water, the passive layer is thick and compact if NaClO is present. Weight-loss tests showed the inhibition of uniform dissolution and no pitting attack. When adding NaClO, Cu{sub 3}(PO{sub 4}){sub 2} is incorporated to the passive film. Thus, phosphate ions are effective as inhibitors for copper in tap water, even when using high dosages of biocides. - Highlights: ► Changes in the copper corrosion after adding phosphate to tap water were analyzed. ► When NaClO and phosphates are present, Cu{sub 3}(PO{sub 4}){sub 2} participates of the surface film. ► In the absence of biocide the surface film contains a mixture of Cu{sub 2}O, CuO and Cu(OH){sub 2}. ► PO{sub 4}{sup 3−} is an effective inhibitor for Cu in tap water containing high NaClO dosages.

  17. Influence of in situ synthesized TiC on thermal stability and corrosion behavior of Zr60Cu10Al15Ni15 amorphous composites

    International Nuclear Information System (INIS)

    Geng, Jiwei; Teng, Xinying; Zhou, Guorong; Leng, Jinfeng; Zhao, Degang

    2014-01-01

    In situ synthesized TiC particles were prepared by a thermal explosion method. Adding “in situ synthesized” TiC into Zr 60 Cu 10 Al 15 Ni 15 glass matrix to obtain amorphous matrix composites was achieved. The corrosion behavior of Zr 60 Cu 10 Al 15 Ni 15 amorphous composites was evaluated using potentiodynamic polarization measurements in 3.5 wt% NaCl solution at room temperature. The results show that the microhardness and thermal stability are improved apparently, while the TiC (≤0.6 wt%) does not significantly affect the supercooled liquid behavior. Moreover, the corrosion resistance is improved apparently because the nanocrystals accelerate the diffusion of passive elements for faster formation of the protective passive film at nanocrystals/amorphous interfaces. However, when the TiC content is more than 0.6 wt%, both glass forming ability and corrosion resistance are reduced significantly

  18. Electromigration-induced cracks in Cu/Sn3.5Ag/Cu solder reaction couple at room temperature

    International Nuclear Information System (INIS)

    He Hongwen; Xu Guangchen; Guo Fu

    2009-01-01

    Electromigration (EM) behavior of Cu/Sn 3.5 Ag/Cu solder reaction couple was investigated with a high current density of 5 x 10 3 A/cm 2 at room temperature. One dimensional structure, copper wire/solder ball/copper wire SRC was designed and fabricated to dissipate the Joule heating induced by the current flow. In addition, thermomigration effect was excluded due to the symmetrical structure of the SRC. The experimental results indicated that micro-cracks initially appeared near the cathode interface between solder matrix and copper substrate after 474 h current stressing. With current stressing time increased, the cracks propagated and extended along the cathode interface. It should be noted that the continuous Cu 6 Sn 5 intermetallic compounds (IMCs) layer both at the anode and at the cathode remained their sizes. Interestingly, tiny cracks appeared at the root of some long column-type Cu 6 Sn 5 at the cathode interface due to the thermal stress.

  19. Studying the effects of dietary body weight-adjusted acute tryptophan depletion on punishment-related behavioral inhibition

    Directory of Open Access Journals (Sweden)

    Tilman J. Gaber

    2015-08-01

    Full Text Available Background: Alterations in serotonergic (5-HT neurotransmission are thought to play a decisive role in affective disorders and impulse control. Objective: This study aims to reproduce and extend previous findings on the effects of acute tryptophan depletion (ATD and subsequently diminished central 5-HT synthesis in a reinforced categorization task using a refined body weight–adjusted depletion protocol. Design: Twenty-four young healthy adults (12 females, mean age [SD]=25.3 [2.1] years were subjected to a double-blind within-subject crossover design. Each subject was administered both an ATD challenge and a balanced amino acid load (BAL in two separate sessions in randomized order. Punishment-related behavioral inhibition was assessed using a forced choice go/no-go task that incorporated a variable payoff schedule. Results: Administration of ATD resulted in significant reductions in TRP measured in peripheral blood samples, indicating reductions of TRP influx across the blood–brain barrier and related brain 5-HT synthesis. Overall accuracy and response time performance were improved after ATD administration. The ability to adjust behavioral responses to aversive outcome magnitudes and behavioral adjustments following error contingent punishment remained intact after decreased brain 5-HT synthesis. A previously observed dissociation effect of ATD on punishment-induced inhibition was not observed. Conclusions: Our results suggest that neurodietary challenges with ATD Moja–De have no detrimental effects on task performance and punishment-related inhibition in healthy adults.

  20. Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction

    DEFF Research Database (Denmark)

    Hammershøi, Peter S.; Vennestrøm, Peter N. R.; Falsig, Hanne

    2018-01-01

    behavior and mechanisms of a Cu-SAPO-34 catalyst were studied with reactor tests and DFT calculations. Exposure of the catalyst to two different SO2 concentrations and durations, but with the same total SO2 exposure, calculated as the product of partial pressure of SO2 and exposure time, lead to the same...... degree of deactivation. Exposure of the Cu-SAPO-34 catalyst to SO2 in the presence and absence of NO and NH3 at different temperatures between 200–600 °C showed different trends for the deactivation. Below 400 °C, the S/Cu ratio on the catalyst increased with temperature in absence of NO and NH3, while...... showing that SO2 and SO3, which is possibly formed by oxidation of SO2 over Cu sites, interact similar with Cu in Cu-SAPO-34 and Cu-SSZ-13....

  1. Internal friction of Ti-Ni-Cu ternary shape memory alloys

    International Nuclear Information System (INIS)

    Yoshida, I.; Monma, D.; Iino, K.; Ono, T.; Otsuka, K.; Asai, M.

    2004-01-01

    Low frequency internal friction was measured on three specimens of Ti-Ni-Cu ternary alloys, the Cu content varying from 10 to 20 at.%, while Ti content was fixed at 50 at.%. The internal friction spectrum consists mainly of two peaks, a sharper one associated with the B2-B19 transformation and the other one at around 250 K, which is much broader and higher than the former. The peak height of the latter is 0.2 for the specimen containing 20% Cu, which shows that this alloy can be an excellent high damping material. Transformation behavior was studied by electrical resistivity, thermopower and DSC measurements, and was compared with the result of internal friction measurements. Solution treatment at higher temperatures lowers the internal friction peak markedly. Scanning electron microscopy observation reveals that the behaviors of precipitates are different for different solution treatment temperature, suggesting that the precipitation behavior is crucial in the damping properties

  2. Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods

    International Nuclear Information System (INIS)

    Sharma, Prashant K.; Dutta, Ranu K.; Pandey, Avinash C.

    2009-01-01

    Copper doped ZnO nanoparticles were synthesized by the chemical technique based on the hydrothermal method. The crystallite structure, morphology and size were determined by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) for different doping percentages of Cu 2+ (1-10%). TEM/SEM images showed formation of uniform nanorods, the aspect ratio of which varied with doping percentage of Cu 2+ . The wurtzite structure of ZnO gradually degrades with the increasing Cu 2+ doping concentration and an additional CuO associated diffraction peak was observed above 8% of Cu 2+ doping. The change in magnetic behavior of the nanoparticles of ZnO with varying Cu 2+ doping concentrations was investigated using a vibrating sample magnetometer (VSM). Initially these nanoparticles showed strong room-temperature ferromagnetic behavior, however at higher doping percentage of copper the ferromagnetic behavior was suppressed and paramagnetic nature was enhanced.

  3. Use of micro-PIXE to determine spatial distributions of copper in Brassica carinata plants exposed to CuSO{sub 4} or CuEDDS

    Energy Technology Data Exchange (ETDEWEB)

    Cestone, Benedetta, E-mail: benedettacestone@yahoo.it [Department of Biology of Crop Plants, University of Pisa, Via del Borghetto 80, 56121 Pisa (Italy); Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, S1-1000 Ljubljana (Slovenia); Quartacci, Mike Frank [Department of Biology of Crop Plants, University of Pisa, Via del Borghetto 80, 56121 Pisa (Italy); Rascio, Nicoletta [Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova (Italy); Pongrac, Paula [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, S1-1000 Ljubljana (Slovenia); Pelicon, Primoz; Vavpetic, Primoz; Grlj, Natasa; Jeromel, Luka; Kump, Peter; Necemer, Marijan [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, S1-1000 Ljubljana (Slovenia); Navari-Izzo, Flavia [Department of Biology of Crop Plants, University of Pisa, Via del Borghetto 80, 56121 Pisa (Italy)

    2012-06-15

    A better understanding of the mechanisms that govern copper (Cu) uptake, distribution and tolerance in Brassica carinata plants in the presence of chelators is needed before significant progress in chelate-assisted Cu phytoextraction can be made. The aims of this study were therefore to characterise (S,S)-N,N Prime -ethylenediamine disuccinic acid (EDDS)-assisted Cu uptake, and to compare the spatial distribution patterns of Cu in the roots and leaves of B. carinata plants. The plants were treated with 30 {mu}M or 150 {mu}M CuSO{sub 4} or CuEDDS in hydroponic solution. Quantitative Cu distribution maps and concentration profiles across root and leaf cross-sections of the desorbed plants were obtained by micro-proton induced X-ray emission. In roots, the 30 {mu}M treatments with both CuSO{sub 4} and CuEDDS resulted in higher Cu concentrations in epidermal/cortical regions. At 150 {mu}M CuSO{sub 4}, Cu was mainly accumulated in root vascular bundles, whereas with 150 {mu}M CuEDDS, Cu was detected in endodermis and the adjacent inner cortical cell layer. Under all treatments, except with a H{sup +}-ATP-ase inhibitor, the Cu in leaves was localised mainly in vascular tissues. The incubation of plants with 150 {mu}M CuEDDS enhanced metal translocation to shoots, in comparison to the corresponding CuSO{sub 4} treatment. Inhibition of H{sup +}-ATPase activity resulted in reduced Cu accumulation in 30 {mu}M CuEDDS-treated roots and 150 {mu}M CuEDDS-treated leaves, and induced changes in Cu distribution in the leaves. This indicates that active mechanisms are involved in retaining Cu in the leaf vascular tissues, which prevent its transport to photosynthetically active tissues. The physiological significance of EDDS-assisted Cu uptake is discussed. - Highlights: Black-Right-Pointing-Pointer We localised Cu in Brassica carinata treated with CuSO{sub 4} or CuEDDS by micro-PIXE. Black-Right-Pointing-Pointer EDDS-assisted Cu uptake and transport resulted in preserved root

  4. Examination of the Relationship of Difficulties in Emotion Regulation, Behavioral Activation and Behavioral Inhibition System in the Prediction of Social Anxiety

    Directory of Open Access Journals (Sweden)

    Sohrab Amiri

    2017-07-01

    Full Text Available Background and Objectives: Anxiety has a significant impact on academic and social performance as well as quality of life. The present study was conducted to investigate the relationship between brain/behavioral systems and difficulties in emotion regulation with cognitive and physical aspects of social anxiety. Methods: In this descriptive-correlational study, 306 students were selected from the student population of the Urmia University using multistage cluster sampling. Data collection was performed using measuring scales of social anxiety dimensions, behavioral activation and inhibition system, and difficulties in emotion regulation. Data were analyzed using descriptive indicators, correlation, simultaneous multiple regression analysis, and t-test analysis. Results: In this study, there was a significant positive correlation between behavioral inhibition system and social anxiety dimensions (p<0.001, Also, examination of the relationships of difficulties in emotion regulation and social anxiety indicated a significant positive correlation between difficulties in emotion regulation and social anxiety (p<0.001. In the comparison between women and men in terms of social anxiety components, both groups were different in cognitive dimension of social anxiety, so that the women obtained higher scores than men in the cognitive dimensions. Conclusion: According to the results of this study, individual differences in using negative emotion regulation strategies and personality traits play an important role in the onset and maintenance of anxiety.

  5. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat.

    Science.gov (United States)

    Kline, R H; Exposto, F G; O'Buckley, S C; Westlund, K N; Nackley, A G

    2015-04-02

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10-45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of βARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata)

    Energy Technology Data Exchange (ETDEWEB)

    Kopittke, Peter M. [School of Land and Food Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia)]. E-mail: p.kopittke@uq.edu.au; Dart, Peter J. [School of Land and Food Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia); Menzies, Neal W. [School of Land and Food Sciences, University of Queensland, St. Lucia, Qld 4072 (Australia)

    2007-01-15

    Although Cu is phytotoxic at Cu{sup 2+} activities as low as 1-2 {mu}M, the effect of Cu{sup 2+} on the nodulation of legumes has received little attention. The effect of Cu{sup 2+} on nodulation of cowpea (Vigna unguiculata (L.) Walp. cv. Caloona) was examined in a dilute solution culture system utilising a cation exchange resin to buffer solution Cu{sup 2+}. The nodulation process was more sensitive to increasing Cu{sup 2+} activities than both shoot and root growth; whilst a Cu{sup 2+} activity of 1.0 {mu}M corresponded to a 10% reduction in the relative yield of the shoots and roots, a Cu{sup 2+} activity of 0.2 {mu}M corresponded to a 10% reduction in nodulation. This reduction in nodulation with increasing Cu{sup 2+} activity was associated with an inhibition of root hair formation in treatments containing {>=}0.77 {mu}M Cu{sup 2+}, rather than to a reduction in the size of the Rhizobium population. - The nodulation process was more sensitive to increasing Cu{sup 2+} activities than either shoot or root growth.

  7. Anisotropic thermal properties and ferroelectric phase transitions in layered CuInP2S6 and CuInP2Se6 crystals

    Science.gov (United States)

    Liubachko, V.; Shvalya, V.; Oleaga, A.; Salazar, A.; Kohutych, A.; Pogodin, A.; Vysochanskii, Yu. M.

    2017-12-01

    Thermal diffusivity and thermal conductivity have been studied for the layered crystals CuInP2S6, CuInP2Se6 from 30 K to 350 K, showing a relevant thermal anisotropy. Heat is much more efficiently transferred within the layers than perpendicular to them. The ferrielectric transition in CuInP2S6 is proven to be clearly first order while the ferroelectric one in CuInP2Se6 has a weak first order character. The behavior of the thermal conductivity as a function of temperature in the ferroelectric phases shows that heat conduction is phonon driven. Disorder in the paraelectric phases due to hopping motions of Cu ions significantly reduces the thermal conductivity to extremely low values.

  8. Ongoing neurogenesis in the adult dentate gyrus mediates behavioral responses to ambiguous threat cues.

    Directory of Open Access Journals (Sweden)

    Lucas R Glover

    2017-04-01

    Full Text Available Fear learning is highly adaptive if utilized in appropriate situations but can lead to generalized anxiety if applied too widely. A role of predictive cues in inhibiting fear generalization has been suggested by stress and fear learning studies, but the effects of partially predictive cues (ambiguous cues and the neuronal populations responsible for linking the predictive ability of cues and generalization of fear responses are unknown. Here, we show that inhibition of adult neurogenesis in the mouse dentate gyrus decreases hippocampal network activation and reduces defensive behavior to ambiguous threat cues but has neither of these effects if the same negative experience is reliably predicted. Additionally, we find that this ambiguity related to negative events determines their effect on fear generalization, that is, how the events affect future behavior under novel conditions. Both new neurons and glucocorticoid hormones are required for the enhancement of fear generalization following an unpredictably cued threat. Thus, adult neurogenesis plays a central role in the adaptive changes resulting from experience involving unpredictable or ambiguous threat cues, optimizing behavior in novel and uncertain situations.

  9. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition

    International Nuclear Information System (INIS)

    Chen, B.A.; Pan, L.; Wang, R.H.; Liu, G.; Cheng, P.M.; Xiao, L.; Sun, J.

    2011-01-01

    Highlights: ► Effects of Sc addition on the precipitation and age hardening of Al–Cu alloy were investigated. ► The critical influence of solution treatment on the Sc effect was revealed. ► A significant enhancement in age hardening response was experimentally found and quantitatively assessed. - Abstract: Influences of solution treatment on precipitation behaviors and age hardening response of Al–2.5 wt% Cu–0.3 wt% Sc alloys were investigated, in comparison with Sc-free one. The Al 3 Sc dispersoids, formed during homogenization, were either survived or dissolved to become Sc solute atoms in solution treatment, depending on the solution temperature. When the temperature for solution treatment is 873 K, most of the Al 3 Sc dispersoids were dissolved and a significant enhancement in the uniform precipitation of finer θ′-Al 2 Cu particles was achieved in following aging treatment, causing a noticeable increase in peak-aging hardness by about 90% compared to Sc-free alloys. The enhanced age hardening effect was quantitatively related to the remarkable reduction in effective inter-particle spacing of the plate-shaped θ′-Al 2 Cu precipitates. When the temperature for solution treatment is 793 K, however, most of the Al 3 Sc dispersoids were survived after solution treatment and facilitated the heterogeneous precipitation of θ′-Al 2 Cu plates directly on the {1 0 0} facets of dispersoids in following aging treatment. Concomitantly, the uniform precipitation of θ′-Al 2 Cu plates was greatly suppressed, resulting in a reduced age hardening response. The age hardening responses were quantitatively assessed by using a modified strengthening model that is applicable to the plate-shaped precipitates. The calculations were in good agreement with experimental results. The present results show the importance of controlling solution treatments to achieve significant promotion effect of Sc addition on the precipitation hardening in heat-treatable aluminum

  10. Proximity effect of Pb on CeCu6 and La0.05Ce0.95Cu6

    International Nuclear Information System (INIS)

    Chen, T.P.; Tipparachi, U.; Yang, H.D.; Wang, J.T.; Chen, B.; Chen, J.C.J.

    1999-01-01

    Heavy fermion materials have attracted a great deal of attention since 1979. These materials which contain a rare earth (U, or Ce, etc.) element exhibit unusual behavior at low temperature. The effective mass m* of the Landau quasiparticles is found to be orders of magnitude higher than that of a bare electron. Some of the Heavy Fermion materials become superconductors at low temperature. The pairing of electrons in these superconductors may not be of s symmetry like those in BCS type superconductors. The mismatch in electronic mass and the difference in pairing state between the light conventional superconducting electrons and the heavy fermion electrons have brought the coupling between light electrons (BCS type) and the heavy fermion electrons into question. Proximity effect of Pb on CeCu 6 , Pb on La 0.05 Ce 0.95 Cu 6 , and Pb on Cu was used to investigate the coupling between the conventional superconducting electrons of Pb and the heavy electrons in CeCu 6 or La 0.05 Ce 0.95 Cu 6 . In this experiment proximity effect was found between Pb and CeCu 6 , as well as between Pb and La 0.05 Ce 0.95 Cu 6 . However, the proximity effect is small when compared with that between Pb and Cu. This indicates a much shorter extrapolation length in the heavy fermion materials than in Cu. Such a phenomenon can be explained by the mismatch in effective mass between the superconducting Pb electrons and the heavy fermion electrons

  11. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  12. Men's sex-dominance inhibition: do men automatically refrain from sexually dominant behavior?

    Science.gov (United States)

    Kiefer, Amy K; Sanchez, Diana T

    2007-12-01

    Men receive conflicting messages about their sexual roles in heterosexual relationships. Men are socialized to initiate and direct sexual activities with women; yet societal norms also proscribe the sexual domination and coercion of women. The authors test these competing hypotheses by assessing whether men inhibit the link between sex and dominance. In Studies 1a and b, using a subliminal priming procedure embedded in a lexical decision task, the authors demonstrate that men automatically suppress the concept of dominance following exposure to subliminal sex primes relative to neutral primes. In Studies 2 and 3, the authors show that men who are less likely to perceive sexual assertiveness as necessary, to refrain from dominant sexual behavior, and who do not invest in masculine gender ideals are more likely to inhibit dominant thoughts following sex primes. Implications for theories of automatic cognitive networks and gender-based sexual roles are discussed.

  13. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  14. Effects of Cu interlayer on the wettability of aluminum on carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Jin [School of Advanced Material Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Yoon, Juil [Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Han, Jun Hyun, E-mail: jhhan@cnu.ac.kr [Department of Nano Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-10-15

    Highlights: •The enhancement of wettability of Al on the Cu-coated graphite was restricted by the dewetting of the Cu layer. •The pre-sputtering of Cu could enhanced the wettability of Al more than the Cu single layer coating using electroless plating. •A thick Cu coating layer is needed to enhance the wettability of Al on graphite with time without dewetting of the Al droplet. -- Abstract: Wettability of Al on Cu coated graphites and the interfacial reactions between Al and the Cu coating were analyzed to examine in depth the effect of the Cu coating layer used to enhance the wettability of Al on carbon. The wetting behaviors of Al according to Cu coating method and Cu thickness were also investigated. The Cu/Cu double layer coated by sputtering the Cu single layer coated by electroless plating because it improved the stability of the Cu layer coated on graphite at high temperature. In order to suppress the dewetting of Al on graphite and improve the wettability of Al on graphite, a thick Cu coating layer to supply sufficient Cu atoms for saturation in an Al droplet is needed.

  15. Effects of Cu interlayer on the wettability of aluminum on carbon

    International Nuclear Information System (INIS)

    Ko, Young Jin; Yoon, Juil; Lee, Joonho; Han, Jun Hyun

    2013-01-01

    Highlights: •The enhancement of wettability of Al on the Cu-coated graphite was restricted by the dewetting of the Cu layer. •The pre-sputtering of Cu could enhanced the wettability of Al more than the Cu single layer coating using electroless plating. •A thick Cu coating layer is needed to enhance the wettability of Al on graphite with time without dewetting of the Al droplet. -- Abstract: Wettability of Al on Cu coated graphites and the interfacial reactions between Al and the Cu coating were analyzed to examine in depth the effect of the Cu coating layer used to enhance the wettability of Al on carbon. The wetting behaviors of Al according to Cu coating method and Cu thickness were also investigated. The Cu/Cu double layer coated by sputtering the Cu single layer coated by electroless plating because it improved the stability of the Cu layer coated on graphite at high temperature. In order to suppress the dewetting of Al on graphite and improve the wettability of Al on graphite, a thick Cu coating layer to supply sufficient Cu atoms for saturation in an Al droplet is needed

  16. Effect of solute Cu on ductile-to-brittle behavior of martensitic Fe-8% Ni alloy

    International Nuclear Information System (INIS)

    Junaidi Syarif; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2007-01-01

    Effect of solute Cu on the ductile-to-brittle (DBT) behaviour of martensitic Fe-8mass%Ni alloy is investigated to understand the effect of solute Cu on mechanical properties of martensitic steel. The DBT behaviours of the Fe-8mass%Ni and the Fe-8mass%Ni-1mass%Cu alloys are almost the same. It is thought to be due to disappearance of the solid solution softening in the martensitic Fe-8mass%Ni-Cu alloys. The solute Cu gives small influence on temperature and strain rate dependences of yield stress and suppressing the twin deformation at lower temperature in the martensitic Fe-8mass%Ni alloy. Therefore, the DBT temperature of the martensitic Fe-8mass%Ni-Cu alloy was not shifted to lower side. (author)

  17. The roles of Al{sub 2}Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al-Cu alloys immersed in H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Spinelli, Jose E. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Freire, Celia M.A. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Cardona, Margarita B. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Garcia, Amauri [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)]. E-mail: amaurig@fem.unicamp.br

    2007-09-27

    Al-Cu alloys castings can exhibit different corrosion responses at different locations due to copper content and to the resulting differences on microstructural features and on Al{sub 2}Cu fractions. The aim of this study was to investigate the influence of Al{sub 2}Cu intermetallic particles associated to the dendritic arm spacings on the general corrosion resistance of three different hypoeutectic Al-Cu alloys samples in sulfuric acid solution. The cast samples were produced using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The typical microstructural pattern was examined by using electronic microscopy techniques. In order to evaluate the surface corrosion behavior of such Al-Cu alloys, corrosion tests were performed in a 0.5 M sulfuric acid solution at 25 deg. C by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. An equivalent circuit was also used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that Al{sub 2}Cu has a less noble corrosion potential than that of the Al-rich phase. Despite that, dendrite fineness has proved to be more influent on corrosion resistance than the increase on alloy copper content with the consequent increase on Al{sub 2}Cu fraction.

  18. Separating intentional inhibition of prepotent responses and resistance to proactive interference in alcohol-dependent individuals.

    Science.gov (United States)

    Noël, Xavier; Van der Linden, Martial; Brevers, Damien; Campanella, Salvatore; Verbanck, Paul; Hanak, Catherine; Kornreich, Charles; Verbruggen, Frederick

    2013-03-01

    Impulsivity is a hallmark of addictive behaviors. Addicts' weakened inhibition of irrelevant prepotent responses is commonly thought to explain this association. However, inhibition is not a unitary mechanism. This study investigated the efficiency of overcoming competition due to irrelevant responses (i.e., inhibition of a prepotent response) and overcoming competition in memory (i.e., resistance to proactive interference) in sober and recently detoxified alcohol-dependent individuals. Three cognitive tasks assessing the inhibition of a prepotent response (Hayling task, anti-saccade task and Stroop task) and two tasks tapping into the capacity to resist proactive interference (cued recall, Brown-Peterson variant) were administered to 30 non-amnesic recently detoxified alcohol-dependent individuals and 30 matched healthy participants without alcohol dependency. In addition, possible confounds such as verbal updating in working memory was assessed. Alcohol-dependent subjects performed worse than healthy participants on the three cognitive tasks assessing the inhibition of irrelevant prepotent responses but group performance was similar in the tasks assessing overcoming proactive interference in memory, updating of working memory and abstract reasoning. These findings suggest that alcohol-dependence is mainly associated with impaired capacity to intentionally suppress irrelevant prepotent response information. Control of proactive interference from memory is preserved. Theoretical and clinical implications are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Microstructure Evolution and Protrusion of Electroplated Cu-Filled Through-Silicon Vias Subjected to Thermal Cyclic Loading

    Science.gov (United States)

    Chen, Si; An, Tong; Qin, Fei; Chen, Pei

    2017-10-01

    Through-silicon vias (TSVs) have become an important technology for three-dimensional integrated circuit (3D IC) packaging. Protrusion of electroplated Cu-filled vias is a critical reliability issue for TSV technology. In this work, thermal cycling tests were carried out to identify how the microstructure affects protrusion during thermal cycling. Cu protrusion occurs when the loading temperature is higher than 149°C. During the first five thermal cycles, the grain size of Cu plays a dominant role in the protrusion behavior. Larger Cu grain size before thermal cycling results in greater Cu protrusion. With increasing thermal cycle number, the effect of the Cu grain size reduces and the microstrain begins to dominate the Cu protrusion behavior. Higher magnitude of microstrain within Cu results in greater protrusion increment during subsequent thermal cycles. When the thermal cycle number reaches 25, the protrusion rate of Cu slows down due to strain hardening. After 30 thermal cycles, the Cu protrusion stabilizes within the range of 1.92 μm to 2.09 μm.

  20. The collective benefits of feeling good and letting go: positive emotion and (dis)inhibition interact to predict cooperative behavior.

    Science.gov (United States)

    Rand, David G; Kraft-Todd, Gordon; Gruber, June

    2015-01-01

    Cooperation is central to human existence, forming the bedrock of everyday social relationships and larger societal structures. Thus, understanding the psychological underpinnings of cooperation is of both scientific and practical importance. Recent work using a dual-process framework suggests that intuitive processing can promote cooperation while deliberative processing can undermine it. Here we add to this line of research by more specifically identifying deliberative and intuitive processes that affect cooperation. To do so, we applied automated text analysis using the Linguistic Inquiry and Word Count (LIWC) software to investigate the association between behavior in one-shot anonymous economic cooperation games and the presence inhibition (a deliberative process) and positive emotion (an intuitive process) in free-response narratives written after (Study 1, N = 4,218) or during (Study 2, N = 236) the decision-making process. Consistent with previous results, across both studies inhibition predicted reduced cooperation while positive emotion predicted increased cooperation (even when controlling for negative emotion). Importantly, there was a significant interaction between positive emotion and inhibition, such that the most cooperative individuals had high positive emotion and low inhibition. This suggests that inhibition (i.e., reflective or deliberative processing) may undermine cooperative behavior by suppressing the prosocial effects of positive emotion.

  1. Basic characterization of 64Cu-ATSM as a radiotherapy agent

    International Nuclear Information System (INIS)

    Obata, Atsushi; Kasamatsu, Shingo; Lewis, Jason S.; Furukawa, Takako; Takamatsu, Shinji; Toyohara, Jun; Asai, Tatsuya; Welch, Michael J.; Adams, Susan G.; Saji, Hideo; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    64 Cu-diacetyl-bis(N 4 -methylthiosemicarbazone) ( 64 Cu-ATSM) is a promising radiotherapy agent for the treatment of hypoxic tumors. In an attempt to elucidate the radiobiological basis of 64 Cu-ATSM radiotherapy, we have investigated the cellular response patterns in vitro cell line models. Cells were incubated with 64 Cu-ATSM, and the dose-response curves were obtained by performing a clonogenic survival assay. Radiation-induced damage in DNA was evaluated using the alkali comet assay and apoptotic cells were detected using Annexin V-FITC and propidium iodide staining methods. Washout rate and subcellular distribution of 64 Cu in cells were investigated to further assess the effectiveness of 64 Cu-ATSM therapy on a molecular basis. A direct comparison of subcellular localization of Cu-ATSM was made with the flow tracer analog Cu-pyruvladehyde-bis(N 4 -methylthiosemicarbazone). In this study, 64 Cu-ATSM was shown to reduce the clonogenic survival rate of tumor cells in a dose-dependent manner. Under hypoxic conditions, cells took up 64 Cu-ATSM and radioactive 64 Cu was highly accumulated in the cells. In the 64 Cu-ATSM-treated cells, DNA damage by the radiation emitted from 64 Cu was detected, and inhibition of cell proliferation and induction of apoptosis was observed at 24 and 36 h after the treatment. The typical features of postmitotic apoptosis induced by radiation were observed following 64 Cu-ATSM treatment. The majority of the 64 Cu taken up into the cells remained in the postmitochondrial supernatant (the cellular residue after removal of the nuclei and mitochondria), which indicates that the β - particle emitted from 64 Cu may be as effective as the Auger electrons in 64 Cu-ATSM therapy. These data allow us to postulate that 64 Cu-ATSM will be able to attack the hypoxic tumor cells directly, as well as potentially affecting the peripheral nonhypoxic regions indirectly by the β - particle decay of 64 Cu

  2. Synthesis and characterization of a multifunctional inorganic-organic hybrid mixed-valence copper(I/II) coordination polymer: {[CuCN][Cu(isonic)2]}n

    Science.gov (United States)

    Liu, Dong-Sheng; Chen, Wen-Tong; Ye, Guang-Ming; Zhang, Jing; Sui, Yan

    2017-12-01

    A new multifunctional mixed-valence copper(I/II) coordination polymer, {[CuCN][Cu(isonic)2]}n(1) (Hisonic = isonicotinic acid), was synthesized by treating isonicotinic acid and 5-amino-tetrazolate (Hatz = 5-amino-tetrazolate) with copper(II) salts under hydrothermal conditions, and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction, respectively. The X-ray diffraction analysis reveals that compound exhibit noncentrosymmetric polar packing arrangement. It is three-dimensional (3D) framework with (3,5)-connected 'seh-3' topological network constructed from metal organic framework {[Cu(isonic)2]}n and the inorganic linear chain{Cu(CN)}n subunits. A remarkable feature of 1 is the rhombic open channels that are occupied by a linear chain of {Cu(CN)}n. Impressively compound 1 displays not only a second harmonic generation (SHG) response, but also a ferroelectric behavior and magnetic properties.

  3. Contextual startle responses moderate the relation between behavioral inhibition and anxiety in middle childhood.

    Science.gov (United States)

    Barker, Tyson V; Reeb-Sutherland, Bethany; Degnan, Kathryn A; Walker, Olga L; Chronis-Tuscano, Andrea; Henderson, Heather A; Pine, Daniel S; Fox, Nathan A

    2015-11-01

    Behavioral inhibition (BI), a temperament characterized in early childhood by wariness and avoidance of novelty, is a risk factor for anxiety disorders. An enhanced startle response has been observed in adolescents characterized with BI in childhood, particularly when they also manifest concurrent symptoms of anxiety. However, no prior study has examined relations among BI, startle responsivity, and anxiety in a prospective manner. Data for the present study were from a longitudinal study of infant temperament. Maternal reports and observations of BI were assessed at ages 2 and 3. At age 7, participants completed a startle procedure, while electromyography was collected, where participants viewed different colors on a screen that were associated with either the delivery of an aversive stimulus (i.e., puff of air to the larynx; threat cue) or the absence of the aversive stimulus (i.e., safety cue). Parental reports of child anxiety were collected when children were 7 and 9 years of age. Results revealed that startle responses at age 7 moderated the relation between early BI and 9-year anxiety. These findings provide insight into one potential mechanism that may place behaviorally inhibited children at risk for anxiety. © 2015 Society for Psychophysiological Research.

  4. Metallic behavior and enhanced adsorption energy of graphene on BN layer induced by Cu(111) substrate

    International Nuclear Information System (INIS)

    Hashmi, Arqum; Hong, Jisang

    2014-01-01

    We have investigated the adsorption properties and the electronic structure of graphene/BN and graphene/BN/Cu(111) systems by using van der Waals density functional theory. The ground-state adsorption site of graphene on BN/Cu(111) is found to be the same as that of graphene/BN. The Cu(111) substrate did not induce a significant change in the geometrical feature of graphene/BN. However, the adsorption energy of graphene on BN/Cu(111) is observed to be enhanced due to the Cu(111) substrate. In addition, we have found that the graphene layer displays a weak metallic character in graphene/BN/Cu(111) whereas an energy band gap is observed in the graphene in the graphene/BN bilayer system. Therefore, we have found that the metallic Cu(111) substrate affects the electronic structure and adsorption properties of graphene on BN/Cu(111), although it has no significant effect on the geometrical features.

  5. Interface Microstructure and Deformation Behavior of an Al-Cu Dissimilar Metal Plate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Seok; Lee, Su Eun; Kwon, Yong-Nam [Korea Institute of Materials Science, Changwon (Korea, Republic of); Kim, Jung Su [Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Min Jung; Bae, Dong Hyun [Korea Clad Tech. Co. Ltd., Daegu (Korea, Republic of)

    2013-07-15

    The aim of this article is to elucidate the influence of reduction ratio during roll bonding on the microstructural evolution, mechanical properties and room-temperature formability of Al-Cu 2-ply clad metal. The evolution of the interface microstructure was first characterized by a scanning electron microscope (SEM) and transmission electron microscope (TEM) attached with energy dispersive spectroscopy (EDS). The presence of an intermetallic compound as well as severe grain refinement was detected at the interface of the Al-Cu bimetal fabricated under the highest reduction ratio of 65% adopted in this study. Taking into account the difference of the microstructure with a reduction the ratio, mechanical properties and bonding strength were then evaluated by uniaxial tensile and peel tests. It was observed that the bonding strength, elongation and tensile strength for Al-Cu 2-ply sheets were incomparably reduced by decreasing the reduction ratio during the roll bonding process, which directly correlated with the microstructural evolution at the interface. Moreover, the higher reduction ratio during the roll bonding, the more room temperature formability could be achieved for Al-Cu 2-ply sheet by applying both three-point bending and Erichsen tests.

  6. Use of thermodynamic calculation to predict the effect of Si on the ageing behavior of Al-Mg-Si-Cu alloys

    International Nuclear Information System (INIS)

    Ji, Yanli; Zhong, Hao; Hu, Ping; Guo, Fuan

    2011-01-01

    Research highlights: → Thermodynamic calculation can predict the ageing behavior of 6xxx alloys. → The hardness level of the alloys depends on the Si content in as-quenched matrix. → The precipitation strengthening effect depends on the Mg 2 Si level of the alloys. -- Abstract: Thermodynamic calculation was employed to predict the influence of Si content on the ageing behavior of Al-Mg-Si-Cu alloys. In addition, experiments were carried out to verify the predictions. The results show that thermodynamic calculation can predict the effect of Si content on the ageing behavior of the studied alloys. This study further proposes that the hardness level of alloys during ageing is directly related to the Si content in the as-quenched supersaturated solution, while the precipitation strengthening effect is directly related to the Mg 2 Si level of the alloys.

  7. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  8. Screening of drugs inhibiting in vitro oligomerization of Cu/Zn-superoxide dismutase with a mutation causing amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Itsuki Anzai

    2016-08-01

    Full Text Available Dominant mutations in Cu/Zn-superoxide dismutase (SOD1 gene have been shown to cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS. A major pathological hallmark of this disease is abnormal accumulation of mutant SOD1 oligomers in the affected spinal motor neurons. While no effective therapeutics for SOD1-ALS is currently available, SOD1 oligomerization will be a good target for developing cures of this disease. Recently, we have reproduced the formation of SOD1 oligomers abnormally cross-linked via disulfide bonds in a test tube. Using our in vitro model of SOD1 oligomerization, therefore, we screened 640 FDA-approved drugs for inhibiting the oligomerization of SOD1 proteins, and three effective classes of chemical compounds were identified. Those hit compounds will provide valuable information on the chemical structures for developing a novel drug candidate suppressing the abnormal oligomerization of mutant SOD1 and possibly curing the disease.

  9. Data concerning the psychometric properties of the Behavioral Inhibition/Behavioral Activation Scales for the Portuguese population.

    Science.gov (United States)

    Moreira, Diana; Almeida, Fernando; Pinto, Marta; Segarra, Pilar; Barbosa, Fernando

    2015-09-01

    The behavioral inhibition/behavioral activation (BIS/BAS) scales (Carver & White, 1994), which allow rating the Gray's motivational systems, were translated and adapted into Portuguese. In this study, the authors present the procedure and the psychometric analyses of the Portuguese version of the scales, which included basic item and scales psychometric characteristics, as well as confirmatory and exploratory factor analyses. After the psychometric analyses provided evidence for the quality of the Portuguese version of the scales, the normative data was provided by age and school grade. The confirmatory factor analysis of the BIS/BAS scales that the authors performed did not demonstrate satisfactory fit for the 2- or 4-factor solution. The authors also tested the more recent 5-factor model, but the fit indices remained inadequate. As fit indices were not satisfactory they proceeded with an exploratory factor analysis to examine the structure of the Portuguese scales. These psychometric analyses provided evidence of a successful translation of the original scales. Therefore these scales can now be used in future research with Portuguese or Brazilian population. (c) 2015 APA, all rights reserved.

  10. Zinc-doping enhanced cadmium sulfide electrochemiluminescence behavior based on Au-Cu alloy nanocrystals quenching for insulin detection.

    Science.gov (United States)

    Zhu, Wenjuan; Wang, Chao; Li, Xiaojian; Khan, Malik Saddam; Sun, Xu; Ma, Hongmin; Fan, Dawei; Wei, Qin

    2017-11-15

    Novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated for insulin detection. Au-ZnCd 14 S combined nitrogen doping mesoporous carbons (Au-ZnCd 14 S/NH 2 -NMCs) acted as sensing platform and Au-Cu alloy nanocrystals were employed as labels to quench the ECL of Au-ZnCd 14 S/NH 2 -NMCs. Zinc-doping promoted the ECL behavior of CdS nanocrystals, with the best ECL emission obtained when the molar ratio of Zn/Cd was 1:14. Simultaneously, the modification of gold nanoparticles (Au NPs) and combination with NH 2 -NMC further enhanced the ECL emission of ZnCd 14 S due to its excellent conductivity and large specific surface area, which is desirable for the immunosensor construction. Au-Cu alloy nanocrystals were employed in the ECL system of ZnCd 14 S/K 2 S 2 O 8 triggering ECL quenching effects. The ECL spectra of ZnCd 14 S, acting as the energy donor, exhibited well overlaps with the absorption band of Au-Cu alloy nanocrystals which acted as the energy acceptor, leading to an effective ECL resonance energy transfer (ECL-RET). On the basis of the ECL quenching effects, a sensitive ECL immunosensor for insulin detection was successfully constructed with a linear response range of insulin concentration from 0.1pg/mL to 30ng/mL and the limit of detection was calculated to be 0.03pg/mL (S/N = 3). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Magnetic versus nonmagnetic ion substitution effects on Tc in the La-Sr-Cu-O and Nd-Ce-Cu-O systems

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Wang, E.; Kivelson, S.; Bagley, B.G.; Hull, G.W.; Ramesh, R.

    1990-01-01

    The effects of a substitution for Cu by other 3d metals (Ni, Co, and Zn) on T c in the Nd-Ce-Cu-O system was studied and compared with effects of the same ions on T c in the La-Sr-Cu-O system. We found (1) Zn suppresses T c more slowly in the Nd than in the La systems, so the disorder produced by the nonmagnetic ions is less important in the Nd system, (2) Ni and Co depress T c more quickly in the Nd than in the La system, showing that the magnetic pair breaking is stronger in the Nd system, and (3) in the La system the magnetism of the dopant has no effect on T c . Thus, within the same chemical system (cuprates) we find that as the correlation length is increased one obtains more familiar BCS-type behavior. We suggest that much of the behavior of the various high-T c oxides may be simply a function of the correlation length

  12. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yun; Liu, Qing, E-mail: qingliu@cqu.edu.cn; Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn; Xing, Yuan; Ding, Lipeng; Wang, Xueli

    2017-05-31

    Highlights: • High Cu alloy with high Mg/Si ratio has the best comprehensive property. • Addition of excess Mg could improve the intergranular corrosion resistance. • Si containing particles on the grain boundaries of Si-rich alloys promote IGC. • IGC susceptibility depends primarily on Cu content and secondarily on Mg/Si ratio. - Abstract: 6000-series aluminium alloys with high Cu or excess Si addition were susceptible to intergranular corrosion (IGC). In order to obtain good IGC resistance, four alloys with low/high Cu and various Mg/Si ratios were designed. The corrosion behaviour of four alloys was investigated by accelerated corrosion test, electrochemical test and electron microscopies. It was revealed that IGC susceptibility of alloys was the result of microgalvanic coupling between the noble grain boundary precipitates and the adjacent precipitates free zone (PFZ), which was closely related to a combination of Cu content and the Mg/Si ratio. Excess Mg could improve the IGC resistance of alloys by forming discontinuous precipitates on the grain boundaries. The designed alloy with high Cu and excess Mg has the same corrosion level as the commercial alloy with low Cu and excess Si, which provides possibility for developing new alloy.

  13. Anisotropic thermal expansion behaviors of copper matrix in β-eucryptite/copper composite

    International Nuclear Information System (INIS)

    Wang Lidong; Xue Zongwei; Qiao Yingjie; Fei, W.D.

    2012-01-01

    Highlights: ► The thermal expansion behaviors of Cu matrix were studied by in situ XRD. ► The expansion of Cu{1 1 1} plane is linear, that of Cu{2 0 0} is nonlinear. ► The anisotropic thermal expansion of Cu is related to the twinning of Cu matrix. ► The twinning of Cu matrix makes the CTE of the composite increasing. - Abstract: A β-eucryptite/copper composite was fabricated by spark plasma sintering process. The thermal expansion behaviors of Cu matrix of the composite were studied by in situ X-ray diffraction during heating process. The results show that Cu matrix exhibits anisotropic thermal expansion behaviors for different crystallographic directions, the expansion of Cu{1 1 1} plane is linear in the temperature range from 20 °C to 300 °C and the expansion of Cu{2 0 0} is nonlinear with a inflection at about 180 °C. The microstructures of Cu matrix before and after thermal expansion testing were investigated using transmission electronic microscope. The anisotropic thermal expansion behavior is related to the deformation twinning formed in the matrix during heating process. At the same time, the deformation twinning of Cu matrix makes the average coefficient of thermal expansion of the composite increase.

  14. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    Science.gov (United States)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  15. Distinction of [220] and [204] textures of Cu(In,Ga)Se{sub 2} film and their growth behaviors depending on substrate nature and Na incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae-Hyung, E-mail: dhcho@etri.re.kr [IT Components and Materials Industry Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Kim, Jeha [Department of Solar & Energy Engineering, Cheongju University, 298 Daeseongro, Sangdang-gu, Cheongju, Chungbuk 360-764 (Korea, Republic of); Chung, Yong-Duck [IT Components and Materials Industry Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2015-08-31

    For better understanding of the structural property of polycrystalline tetragonal Cu(In,Ga)Se{sub 2} (CIGS) thin films grown on soda-lime glass, it is necessary to characterize the [220]- and [204]-oriented textures clearly that are related to the different physical properties. However, the distinction between the [220]- and [204]-oriented textures is very difficult because of their nearly identical plane spacings and atomic arrangements. Using X-ray diffraction techniques of high resolution θ–2θ scanning and reciprocal space mapping, we distinguished the [220]- and [204]-oriented textures of CIGS films and observed that the behaviors of [220] and [204] textures independently depended on both substrate nature and Na presence. We report the Na- and substrate-related dependence of the physical properties of the CIGS film was attributed to the independent growth behaviors of the [220] and [204] textures in the CIGS. - Highlights: • We investigated [220]- and [204]-oriented textures of Cu(In,Ga)Se{sub 2} (CIGS) films. • X-ray diffraction methods distinguished two textures. • The growth behaviors were influenced by underlying substrate and Na. • The [220] and [204] textures in CIGS should be differentially observed.

  16. The grinding behavior of ground copper powder for Cu/CNT nanocomposite fabrication by using the dry grinding process with a high-speed planetary ball mill

    Science.gov (United States)

    Choi, Heekyu; Bor, Amgalan; Sakuragi, Shiori; Lee, Jehyun; Lim, Hyung-Tae

    2016-01-01

    The behavior of ground copper powder for copper-carbon nanotube (copper-CNT) nanocomposite fabrication during high-speed planetary ball milling was investigated because the study of the behavior characteristics of copper powder has recently gained scientific interest. Also, studies of Cu/CNT composites have widely been done due to their useful applications to enhanced, advanced nano materials and components, which would significantly improve the properties of new mechatronics-integrated materials and components. This study varied experimental conditions such as the rotation speed and the grinding time with and without CNTs, and the particle size distribution, median diameter, crystal structure and size, and particle morphology were monitored for a given grinding time. We observed that pure copper powders agglomerated and that the morphology changed with changing rotation speed. The particle agglomerations were observed with maximum experiment conditions (700 rpm, 60 min) in this study of the grinding process for mechanical alloys in the case of pure copper powders because the grinding behavior of Cu/CNT agglomerations was affected by the addition of CNTs. Indeed, the powder morphology and the crystal size of the composite powder could be changed by increasing the grinding time and the rotation speed.

  17. Attempting to realize n-type BiCuSeO

    Science.gov (United States)

    Zhang, Xiaoxuan; Feng, Dan; He, Jiaqing; Zhao, Li-Dong

    2018-02-01

    As an intrinsic p-type semiconductor, BiCuSeO has been widely researched in the thermoelectric community, however, n-type BiCuSeO has not been reported so far. In this work, we successfully realized n-type BiCuSeO through carrying out several successive efforts. Seebeck coefficient of BiCuSeO was increased through introducing extra Bi/Cu to fill the Bi/Cu vacancies that may produce holes, and the maximum Seebeck coefficient was increase from +447 μVK-1 for undoped BiCuSeO to +638 μVK-1 for Bi1.04Cu1.05SeO. The Seebeck coefficient of Bi1.04Cu1.05SeO was changed from p-type to n-type through electron doping through introducing Br/I in Se sites, the maximum negative Seebeck coefficient can reach ∼ -465 μVK-1 and -543 μVK-1 for Bi1.04Cu1.05Se1-xIxO and Bi1.04Cu1.05Se1-xBrxO, respectively. Then, after compositing Bi1.04Cu1.05Se0.99Br0.01O with Ag, n-type BiCuSeO can be absolutely obtained in the whole temperature range of 300-873 K, the maximum ZT 0.05 was achieved at 475 K in the Bi1.04Cu1.05Se0.99Br0.01O+15% Ag. Our report indicates that it is possible to realize n-type conducting behaviors in BiCuSeO system.

  18. Synthesis of Cu and Ce co-doped ZnO nanoparticles: crystallographic, optical, molecular, morphological and magnetic studies

    Directory of Open Access Journals (Sweden)

    Rawat Mohit

    2017-07-01

    Full Text Available In the present research work, crystallographic, optical, molecular, morphological and magnetic properties of Zn1-xCuxO (ZnCu and Zn1-x-yCeyCuxO (ZnCeCu nanoparticles have been investigated. Polyvinyl alcohol (PVA coated ZnCu and ZnCeCu nanoparticles have been synthesized by chemical sol-gel method and thoroughly studied using various characterization techniques. X-ray diffraction pattern indicates the wurtzite structure of the synthesized ZnCu and ZnCeCu particles. Transmission electron microscopy analysis shows that the synthesized ZnCu and ZnCeCu particles are of spherical shape, having average sizes of 27 nm and 23 nm, respectively. The incorporation of Cu and Ce in the ZnO lattice has been confirmed through Fourier transform infrared spectroscopy. Room temperature photoluminescence spectra of the ZnO doped with Cu and co-doped Ce display two emission bands, predominant ultra-violet near-band edge emission at 409.9 nm (3 eV and a weak green-yellow emission at 432.65 nm (2.27 eV. Room temperature magnetic study confirms the diamagnetic behavior of ZnCu and ferromagnetic behavior of ZnCeCu.

  19. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn- xAg-0.7Cu

    Science.gov (United States)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-12-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  20. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    Science.gov (United States)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  1. Dynamic Recrystallization Behavior and Critical Conditions of SiCp/A1-Cu Composite

    Directory of Open Access Journals (Sweden)

    HAO Shiming

    2017-08-01

    Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of 40%SiCP/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10 s-1. The stress-strain curves were obtained during the tests. The critical conditions of dynamic recrystallization for onset of DRX during deformation of 40%SiCP/Al-Cu composite was obtained by computation of the strain hardening rate (θ from initial stress-strain data and introduction of the inflection point criterion of ln θ-ε curves and the minimum value criterion of (-∂(ln θ/∂ε-ε curves. The results indicate that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow stress strain curves of the composites, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate. The inflection point in the ln θ-ε curve appears, and the minimum value of the (-∂(ln θ/∂ε-ε curve is presented when the critical state is attained for this composite. The critical strain decreases with the decrease of strain rate and the increase of deformation temperature. There is linear relationship between critical strain and peak strain, i.e. εc=0.528εp. The predicting model of critical strain is described by the function of εc=4.58×10-3Z0.09. Electron microscopic analysis show that the dynamic recrystallization occurs when the strain is 0.06 (T=400℃, ε=10 s-1, and the dynamic recrystallization grains fully grow up when the strain is 0.2.

  2. Synthesis and characterization of Cu{sub 3}TaIn{sub 3}Se{sub 7} and CuTa{sub 2}InTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, E.; Munoz-Pinto, M.; Duran-Pina, S.; Quintero, M.; Quintero, E.; Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Romero, H. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Briceno, J.M.; Fernandez, J. [Laboratorio de Analisis Quimico y Estructural (LAQUEM), Departamento de Fisica, Facultad de Ciencias, Merida (Venezuela); Grima-Gallardo, P.

    2008-07-15

    Polycrystalline samples of Cu{sub 3}TaIn{sub 3}Se{sub 7} and CuTa{sub 2}InTe{sub 4} were synthesized by the usual melt and anneal technique. X-ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a=5.794{+-}0.002 A, c=11.66{+-}0.01 A, c/a=2.01, V=391{+-}1 A{sup 3} and a=6.193{+-}0.001 A, c=12.400 {+-}0.002A, c/a=2.00, V=475{+-}1 A{sup 3}, respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero-field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T=70 K (Cu{sub 3}TaIn{sub 3}Se{sub 7}) and 42 K (CuTa{sub 2}InTe{sub 4}). A spin-glass transition was observed in Cu{sub 3}TaIn{sub 3}Se{sub 7} with T{sub f}{approx}50 K. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Behavioral Inhibition System activity is associated with increased amygdala and hippocampal gray matter volume: A voxel-based morphometry study.

    Science.gov (United States)

    Barrós-Loscertales, A; Meseguer, V; Sanjuán, A; Belloch, V; Parcet, M A; Torrubia, R; Avila, C

    2006-11-15

    Recent research has examined anxiety and hyperactivity in the amygdala and the anterior hippocampus while processing aversive stimuli. In order to determine whether these functional differences have a structural basis, optimized voxel-based morphometry was used to study the relationship between gray matter concentration in the brain and scores on a Behavioral Inhibition System measure (the Sensitivity to Punishment scale) in a sample of 63 male undergraduates. Results showed a positive correlation between Sensitivity to Punishment scores and gray matter volume in the amygdala and the hippocampal formation, that is, in areas that Gray, J.A., and McNaughton, N.J. (2000). The neuropsychology of anxiety. Oxford: Oxford Medical Publications. associated with the Behavioral Inhibition System.

  4. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils.

    Science.gov (United States)

    Adriaensen, K; Vrålstad, T; Noben, J-P; Vangronsveld, J; Colpaert, J V

    2005-11-01

    Natural populations thriving in heavy-metal-contaminated ecosystems are often subjected to selective pressures for increased resistance to toxic metals. In the present study we describe a population of the ectomycorrhizal fungus Suillus luteus that colonized a toxic Cu mine spoil in Norway. We hypothesized that this population had developed adaptive Cu tolerance and was able to protect pine trees against Cu toxicity. We also tested for the existence of cotolerance to Cu and Zn in S. luteus. Isolates from Cu-polluted, Zn-polluted, and nonpolluted sites were grown in vitro on Cu- or Zn-supplemented medium. The Cu mine isolates exhibited high Cu tolerance, whereas the Zn-tolerant isolates were shown to be Cu sensitive, and vice versa. This indicates the evolution of metal-specific tolerance mechanisms is strongly triggered by the pollution in the local environment. Cotolerance does not occur in the S. luteus isolates studied. In a dose-response experiment, the Cu sensitivity of nonmycorrhizal Pinus sylvestris seedlings was compared to the sensitivity of mycorrhizal seedlings colonized either by a Cu-sensitive or Cu-tolerant S. luteus isolate. In nonmycorrhizal plants and plants colonized by the Cu-sensitive isolate, root growth and nutrient uptake were strongly inhibited under Cu stress conditions. In contrast, plants colonized by the Cu-tolerant isolate were hardly affected. The Cu-adapted S. luteus isolate provided excellent insurance against Cu toxicity in pine seedlings exposed to elevated Cu levels. Such a metal-adapted Suillus-Pinus combination might be suitable for large-scale land reclamation at phytotoxic metalliferous and industrial sites.

  5. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery

    Science.gov (United States)

    Rohatgi, Aashish; Vecchio, Kenneth S.; Gray, George T.

    2001-01-01

    The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ˜78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ˜75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ˜1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

  6. Nuclear relaxation behavior of the superconducting cuprates: Bi2Sr2CaCu2O8

    Science.gov (United States)

    Walstedt, R. E.; Bell, R. F.; Mitzi, D. B.

    1991-10-01

    Nuclear-magnetic-resonance data are presented and analyzed for the high-Tc compound Bi2Sr2CaCu2O8 for two oxygen doping levels. Both sample conditions lead to spin-gap behavior for the NMR shift, with a precursive downturn in the data at T>Tc. In addition, the relaxation times T1 obey the relation (T1T)-1~Ks(T) at low temperatures (T<~100 K), where Ks(T) is the spin paramagnetic shift. This relation, which is also obeyed by other superconductors, is argued to be related to the spin-gap effects and thus incompatible with a Fermi-liquid approach to the understanding of these systems.

  7. Deuterium transport in Cu, CuCrZr, and Cu/Be

    Science.gov (United States)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.

    This paper presents the results of deuterium implantation/permeation experiments and TMAP4 simulations for a CuCrZr alloy, for OFHC-Cu and for a Cu/Be bi-layered structure at temperatures from 700 to 800 K. Experiments used a mass-analyzed, 3-keV D 3+ ion beam with particle flux densities of 5 × 10 19 to 7 × 10 19 D/m 2 s. Effective diffusivities and surface molecular recombination coefficients were derived giving Arrhenius pre-exponentials and activation energies for each material: CuCrZr alloy, (2.0 × 10 -2 m 2/s, 1.2 eV) for diffusivity and (2.9 × x10 -14 m 4/s, 1.92 eV) for surface molecular recombination coefficients; OFHC Cu, (2.1 × 10 -6 m 2/s, 0.52 eV) for diffusivity and (9.1 × 10 -18 m 4/s, 0.99 eV) for surface molecular recombination coefficients. TMAP4 simulation of permeation data measured for a Cu/Be bi-layer sample was achieved using a four-layer structure (Cu/BeO interface/Be/BeO back surface) and recommended values for diffusivity and solubility in Be, BeO and Cu.

  8. Thermochemical properties of oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems

    International Nuclear Information System (INIS)

    Moiseev, G.K.; Vatolin, N.A.; Il'inykh, N.I.

    2000-01-01

    Thermochemical properties (ΔH 0 298 , S 0 298 , H 0 298 -H 0 0 , C p (T), C p at T>T melt ) of complex oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems obtained with application of calculation methods are presented. Nonexperimental methods of estimation, revision and correction of standard formation enthalpies of inorganic compounds are described [ru

  9. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  10. Corrosion Resistance Of Electroless Ni-P/Cu/Ni-P Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhao G.L.

    2015-06-01

    Full Text Available Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.

  11. Preparation and Optoelectrical Properties of p-CuO/n-Si Heterojunction by a Simple Sol-Gel Method

    Science.gov (United States)

    He, Bo; Xu, Jing; Ning, Huanpo; Zhao, Lei; Xing, Huaizhong; Chang, Chien-Cheng; Qin, Yuming; Zhang, Lei

    The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol-gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol-gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.

  12. Overexpression of Cu-Zn SOD in Brucella abortus suppresses bacterial intracellular replication via down-regulation of Sar1 activity

    Science.gov (United States)

    Liu, Xiaofeng; Zhou, Mi; Yang, Yanling; Wu, Jing; Peng, Qisheng

    2018-01-01

    Brucella Cu-Zn superoxide dismutase (Cu-Zn SOD) is a periplasmic protein, and immunization of mice with recombinant Cu-Zn SOD protein confers protection against Brucella abortus infection. However, the role of Cu-Zn SOD during the process of Brucella infection remains unknown. Here, we report that Cu-Zn SOD is secreted into culture medium and is translocated into host cells independent of type IV secretion systems (T4SS). Furthermore, co-immunoprecipitation and immunofluorescence studies reveal that Brucella abortus Cu-Zn SOD interacts with the small GTPase Sar1. Overexpression of Cu-Zn SOD in Brucella abortus inhibits bacterial intracellular growth by abolishing Sar1 activity in a manner independent of reactive oxygen species (ROS) production. PMID:29515756

  13. The association of Internet addiction symptoms with impulsiveness, loneliness, novelty seeking and behavioral inhibition system among adults with attention-deficit/hyperactivity disorder (ADHD).

    Science.gov (United States)

    Li, Wendi; Zhang, Wei; Xiao, Lin; Nie, Jia

    2016-09-30

    The aims of this study were to test the associations of the Internet addiction symptoms with impulsiveness, loneliness, novelty seeking and behavioral inhibition systems among adults with attention-deficit/hyperactivity disorder (ADHD) and adults with non-ADHD. A total of 146 adults aged between 19 and 33 years involved in this study. Participants were assessed with the Chinese version of the adult ADHD Self-report scale (ASRS), the Revised Chen Internet Addiction Scale (CIAS-R), the Barratt Impulsiveness Scale 11 (BIS-11), the Tridimensional Personality Questionnaire (TPQ), the UCLA loneliness scale, and the Behavioral Inhibition System and Behavioral Activation System Scale (BIS/BAS Scale). The results of hierarchical regression analysis indicated that impulsiveness, loneliness, and behavioral inhibition system were significant predictors of Internet addition among adults with ADHD. Higher loneliness was significantly associated with more severe Internet addition symptoms among the non-ADHD group. Adults with high impulsiveness, loneliness, and BIS should be treated with caution for preventing Internet addiction. In addition, adults with and without ADHD should be provided with different preventative strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. NMR of Cu satellites in the Kondo alloy CuCr

    International Nuclear Information System (INIS)

    Azevedo, L.J.; Follstaedt, D.; Narath, A.

    1978-01-01

    Using pulsed NMR techniques, resonances of Cu nuclei which are near neighbors to Cr impurities (c = 100 and 200 ppM) in CuCr (theta/sub k/ approx. 3K) have been studied in the temperature range 1 to 4K and applied fields H 0 = 20 to 125 kOe. At the highest fields and lowest temperatures the satellite shifts approach saturation. Above approx. 40 kOe the spin-lattice relaxation rate T 1 -1 is proportional to T/H 0 2 , indicating that the dominant relaxation mechanism arises from transverse fluctuations of a polarized local moment. The measured rates yield a local-moment/conduction-electron exchange interaction vertical bar J 0 vertical bar/g = 0.30, where g is the Cr g-value. Below approx. 40 kOe T 1 -1 appears to be slightly enhanced in comparison with the high-field behavior, but becomes field independent below approx. 30 kOe. Both effects are attributed to Kondo anomalies

  15. Sad facial cues inhibit temporal attention: evidence from an event-related potential study.

    Science.gov (United States)

    Kong, Xianxian; Chen, Xiaoqiang; Tan, Bo; Zhao, Dandan; Jin, Zhenlan; Li, Ling

    2013-06-19

    We examined the influence of different emotional cues (happy or sad) on temporal attention (short or long interval) using behavioral as well as event-related potential recordings during a Stroop task. Emotional stimuli cued short and long time intervals, inducing 'sad-short', 'sad-long', 'happy-short', and 'happy-long' conditions. Following the intervals, participants performed a numeric Stroop task. Behavioral results showed the temporal attention effects in the sad-long, happy-long, and happy-short conditions, in which valid cues quickened the reaction times, but not in the sad-short condition. N2 event-related potential components showed sad cues to have decreased activity for short intervals compared with long intervals, whereas happy cues did not. Taken together, these findings provide evidence for different modulation of sad and happy facial cues on temporal attention. Furthermore, sad cues inhibit temporal attention, resulting in longer reaction time and decreased neural activity in the short interval by diverting more attentional resources.

  16. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  17. Three-peak behavior in giant magnetoimpedance effect in Fe73.5-x Cr x Nb3Cu1Si13.5B9 amorphous ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Pineda-Gomez, P.

    2007-01-01

    A systematic study of the giant magnetoimpedance (GMI) effect in Fe 73.5- x Cr x Nb 3 Cu 1 Si 13.5 B 9 amorphous ribbons with x=0, 2, 4, 6, 8 and 10 is presented. The complex impedance in these compounds was measured for applied fields from -80 to 80 Oe at room temperature, via the so-called four-probe technique. Depending on the frequency, the experimentally observed GMI curves usually exhibit two types of behavior, namely single-peak (SP), and two-peak (TP). In this work, we emphasize the presence of a 'three-peak behavior' in GMI curves. It occurs between SP and TP behaviors. The mechanisms leading to the three-peak behavior are discussed

  18. Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yao Wang

    Full Text Available Cucurbitacin IIb (CuIIb is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27(Kip1 and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3(+ T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65, it blocked the nuclear translocation of NF-κB (p65. In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response.

  19. Controlled preparation of Ag–Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Yang, Siyuan; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Fang, Yueping; Peng, Feng

    2015-01-01

    Graphical abstract: The corncob-like Ag–Cu 2 O nanostructure with suitably exposed Ag surface exhibited much higher photocatalytic activity than Ag@Cu 2 O nanocables and Cu 2 O nanowires. - Highlights: • Ag–Cu 2 O nanocorncobs have been controllably prepared by a simple synthesis. • The possible formation mechanism of Ag–Cu 2 O has been studied. • Ag–Cu 2 O exhibits noticeable improved photocurrent compared with the pure Cu 2 O NWs. • Ag–Cu 2 O with suitably exposed Ag surface shows much higher photocatalytic activity. - Abstract: Novel corncob-like nano-heterostructured Ag–Cu 2 O photocatalyst has been controllably prepared by adjusting the synthetic parameters, and the possible formation mechanism has been also studied. The photoelectrochemical and photocatalytic performances demonstrated that the as-prepared Ag–Cu 2 O nanocorncobs exhibited higher photocatalytic activity than both pure Cu 2 O nanowires and cable-like Ag@Cu 2 O nano-composites. It was concluded that Ag–Cu 2 O nanocorncobs with suitably exposed Ag surface not only effectively inhibit the recombination of electron–hole pairs but also suitably increase the active sites of electronic conduction, and thus increasing the photocatalytic activity under visible light irradiation

  20. Evaluation of [64Cu]Cu-DOTA and [64Cu]Cu-CB-TE2A Chelates for Targeted Positron Emission Tomography with an αvβ6-Specific Peptide

    Directory of Open Access Journals (Sweden)

    Sven H. Hausner

    2009-03-01

    Full Text Available Significant upregulation of the integrin αvβ6 has been described as a prognostic indicator in several cancers, making it an attractive target for tumor imaging. This study compares variants of a PEGylated αvβ6-targeting peptide, bearing either an [>18F]fluorobenzoyl prosthetic group ([18F]FBA-PEG-A20FMDV2 or different [64Cu]copper chelators (DOTA-PEG-A20FMDV2, CB-TE2A-PEG-A20FMDV2. The compounds were evaluated in vitro by enzyme-linked immunosorbent assay (against the integrin αvβ6 and the closely related integrin αvβ6 and by cell labeling (αvβ6-positive DX3puroβ6/αvβ6-negative DX3puro and in vivo using micro-positron emission tomography in a mouse model bearing paired DX3puroβ6/Dx3puro xenografts. In vitro, all three compounds showed excellent αvβ6-specific binding (50% inhibitory concentration [IC50](αvβ6 = 3 to g nmol/L; IC50(αvβ3 > 10 (μmol/L. In vivo, they displayed comparable, preferential uptake for the αvβ6-expressmg xenograft over the αvβ6-negative control (> 4:1 ratio at 4 hours postinjection. Whereas [64Cu]Cu-DOTA-PEG-A20FMDV2 resulted in increased levels of radioactivity in the liver, [64Cu]Cu-CB-TE2A-PEG-A20FMDV2 did not. Significantly, both 64Cu-labeled tracers showed unexpectedly high and persistent levels of radioactivity in the kidneys (> 40% injected dose/g at 4 and 12 hours postinjection. The findings underscore the potential influence of the prosthetic group on targeted in vivo imaging of clinically relevant markers such as αvβ6. Despite identical targeting peptide moiety and largely equal in vitro behavior, both 64Cu-labeled tracers displayed inferior pharmacokinetics, making them in their present form less suitable candidates than the 18F-labeled tracer for in vivo imaging of αvβ6

  1. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    Science.gov (United States)

    Ganz, P. R.; Schaadt, D. M.

    2011-12-01

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  2. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    International Nuclear Information System (INIS)

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-01-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr_2O_3, CrO_2, WO_3, Cu_2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;

  3. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanjin; Zhao, Chaoqian [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Guo, Sai; Gan, Yiliang [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Wu, Songquan; Lin, Junjie; Huang, Tingting [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Lin, Jinxin, E-mail: franklin@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China)

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr{sub 2}O{sub 3}, CrO{sub 2}, WO{sub 3}, Cu{sub 2}O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;.

  4. Serotonin Transporter Genotype Moderates the Link between Children's Reports of Overprotective Parenting and Their Behavioral Inhibition

    Science.gov (United States)

    Burkhouse, Katie L.; Gibb, Brandon E.; Coles, Meredith E.; Knopik, Valerie S.; McGeary, John E.

    2011-01-01

    The goal of the current study was to examine environmental and genetic correlates of children's levels of behavioral inhibition (BI). Participants were 100 mother child pairs drawn from the community who were part of a larger study of the intergenerational transmission of depression. Results indicated that higher levels of maternal overprotection,…

  5. Effects of Chlorine Ions on the Dissolution Mechanism of Cu Thin Film in Phosphoric Acid Based Solution.

    Science.gov (United States)

    Seo, Bo-Hyun; Kim, Byoung O; Seo, Jong Hyun

    2015-10-01

    The dissolution mechanisms of Cu thin film were studied with a focus on the effect of chlorine ion concentrations in mixture solutions of phosphoric and nitric acid. The dissolution behaviors of Cu thin film were investigated by using potentio-dynamic curves and impedance spectroscopy with varying chlorine ion concentrations. The copper dissolution rate decreased and as a result of this change, CuCl, salt films formed on the Cu surface in the presence of chlorine ions in the mixture solution. Such behavior was interpreted as being competitive adsorption between chlorine and nitrate ions on the copper surface. The passive oxide film on the Cu surface was further investigated in detail using X-ray photoelectron spectroscopy in both the absence and presence of differing chlorine ion concentrations.

  6. Failure behavior of ITO diffusion barrier between electroplating Cu and Si substrate annealed in a low vacuum

    International Nuclear Information System (INIS)

    Hsieh, S.H.; Chien, C.M.; Liu, W.L.; Chen, W.J.

    2009-01-01

    A structure of Cu/ITO(10 nm)/Si was first formed and then annealed at various temperatures for 5 min in a rapid thermal annealing furnace under 10 -2 Torr pressure. In Cu/ITO(10 nm)/Si structure, the ITO(10 nm) film was coated on Si substrate by sputtering process and the Cu film was deposited on ITO film by electroplating technique. The various Cu/ITO(10 nm)/Si samples were characterized by a four-point probe, a scanning electron microscope, an X-ray diffractometer, and a transmission electron microscope. The results showed that when the annealing temperature increases near 600 deg. C the interface between Cu and ITO becomes unstable, and the Cu 3 Si particles begin to form; and when the annealing temperature increases to 650 deg. C, a good many of Cu 3 Si particles about 1 μm in size form and the sheet resistance of Cu/ITO(10 nm)/Si structure largely increases.

  7. Lack of dependence between intrinsic magnetic damping and perpendicular magnetic anisotropy in Cu(t{sub Cu})/[Ni/Co]{sub N} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minghong [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Li, Wei [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Ren, Yang [School of Physics and Astronomy, Yunnan University, Kunming 650000 (China); Zhang, Zongzhi, E-mail: zzzhang@fudan.edu.cn [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Jin, Q.Y. [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2017-04-15

    The correlation between magnetic damping and perpendicular magnetic anisotropy has been investigated in Cu(t{sub Cu})/[Ni/Co]{sub N} multilayers by time-resolved magneto-optical Kerr effect. The uniaxial magnetic anisotropy constant K{sub u} is varied in the range of 3.0–3.6 Merg/cm{sup 3} by tuning either multilayer repetition number N or Cu thickness t{sub Cu}. It is found that the PMA strength K{sub u} increases with the increase of N, while the damping constant α{sub 0} keeps nearly a constant of 0.025, implying the intrinsic damping is independent of the K{sub u} tuned by N. In contrast, as t{sub Cu} increases from 2.5 to 20 nm, the α{sub 0} value rises continuously up to 0.040, in spite of the rather weak enhancement in K{sub u} and its non-monotonic variation behavior. We consider the constant α{sub 0} with N is due to the unchanged spin-orbit coupling strength at each Co/Ni interface, while the obvious enhancement in α{sub 0} with t{sub Cu} results mainly from the increased degree of spin disordering at the rougher Cu/Ni interface. - Highlights: • The perpendicular magnetic anisotropy K{sub u} is tuned in Cu(t{sub Cu})/[Ni/Co]{sub N} system. • The intrinsic magnetic damping is found to be independent K{sub u}. • Extrinsic damping increases with t{sub Cu} due to large interfacial spin disordering.

  8. College students with Internet addiction decrease fewer Behavior Inhibition Scale and Behavior Approach Scale when getting online.

    Science.gov (United States)

    Ko, Chih-Hung; Wang, Peng-Wei; Liu, Tai-Ling; Yen, Cheng-Fang; Chen, Cheng-Sheng; Yen, Ju-Yu

    2015-09-01

    The aim of the study is to compare the reinforcement sensitivity between online and offline interaction. The effect of gender, Internet addiction, depression, and online gaming on the difference of reinforcement sensitivity between online and offline were also evaluated. The subjects were 2,258 college students (1,066 men and 1,192 women). They completed the Behavior Inhibition Scale and Behavior Approach Scale (BIS/BAS) according to their experience online or offline. Internet addiction, depression, and Internet activity type were evaluated simultaneously. The results showed that reinforcement sensitivity was lower when interacting online than when interacting offline. College students with Internet addiction decrease fewer score on BIS and BAS after getting online than did others. The higher reward and aversion sensitivity are associated with the risk of Internet addiction. The fun seeking online might contribute to the maintenance of Internet addiction. This suggests that reinforcement sensitivity would change after getting online and would contribute to the risk and maintenance of Internet addiction. © 2014 Wiley Publishing Asia Pty Ltd.

  9. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  10. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    Science.gov (United States)

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  11. Effect of copper valence on the glass structure and crystallization behavior of Bi-Pb-Cu-O glasses

    International Nuclear Information System (INIS)

    Hu, Yi; Lin, U.-L.; Liu, N.-H.

    1997-01-01

    Bi 0.43 Pb 0.35 Cu 0.22 O y glasses with different Cu + contents were prepared by melting at different temperatures. The glass structure consists of [BiO 3 [ and [BiO 6 [ units and the ratio of [BiO 3 [/[BiO 6 [ increases with increasing Cu + content. The glass transition temperature, the first crystallization temperature peak, and the thermal stability of the glasses decreases with increasing Cu + content. The value of the activation energy, E a , varies as a function of the Cu + content. The crystallization mechanism in the glasses is closely related to the glass structure, which is mainly affected by the Cu + content. (orig.)

  12. Sorption Behavior of Cu(II From Acidic SolutionUsing Weathered Basalt Andesite Products

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2007-01-01

    Full Text Available Wastewater discharged from electroplating industry pose a serioushazard due to their heavy metal load. The objective of this work is to evaluatethe removal of Cu(II from acidic solution by sorption onto Weathered BasaltAndesite Products (WBAP. WBAP has been characterized and utilized forremoval of copper from aqueous solution over wide range of initial metal ionconcentration (25 mg/L to 500 mg/L, contact duration (0-8 h, sorbent dose(5-35 g/L, pH (1.0 to 6.0, and temperature (276 K to 333 K. The sorptionpattern of Cu ions onto WBAP followed Langmuir, Freundlich, and Dubinin-Kaganer-Radushkevich isotherms. The thermodynamic parameters (∆H0, ∆S0,and ∆G0 for Cu sorption onto WBAP were also determined.

  13. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    Science.gov (United States)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  14. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  15. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  16. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    Science.gov (United States)

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  17. One-Pot Synthesis of Cu(II Complex with Partially Oxidized TTF Moieties

    Directory of Open Access Journals (Sweden)

    Hiroki Oshio

    2012-07-01

    Full Text Available The one-pot synthesis of a Cu(II complex with partially oxidized tetrathiafulvalene (TTF moieties in its capping MT-Hsae-TTF ligands, [CuII(MT-sae-TTF2] [CuICl2] was realized by the simultaneous occurrence of Cu(II complexation and CuIICl2 mediated oxidation of TTF moieties. The crystal structure was composed of one-dimensional columns formed by partially oxidized TTF moieties and thus the cation radical salt showed relatively high electrical conductivity. Tight binding band structure calculations indicated the existence of a Peierls gap due to the tetramerization of the TTF moieties in the one-dimensional stacking column at room temperature, which is consistent with the semiconducting behavior of this salt.

  18. Temperature dependence of magnetotransport behavior and its correlation with inter-particle interaction in Cu100−xCox granular films

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2013-01-01

    Granular Cu 100−x Co x (x=15.1-30.9) films were deposited by magnetron co-sputtering and their magnetotransport properties were investigated as a function of temperature. We observed that with increasing cobalt content the room temperature magnetoresistance (MR) shows a maximum at x=20.9. With decreasing temperature, it is observed that the cobalt concentration at which the maximum MR occurs shifts progressively towards lower Co concentration. This behavior has been discussed in terms of the inter-particle magnetic interactions.

  19. MicroPET/CT Imaging of AXL Downregulation by HSP90 Inhibition in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Wanqin Wang

    2017-01-01

    Full Text Available AXL receptor tyrosine kinase is overexpressed in a number of solid tumor types including triple-negative breast cancer (TNBC. AXL is considered an important regulator of epithelial-to-mesenchymal transition (EMT and a potential therapeutic target for TNBC. In this work, we used microPET/CT with 64Cu-labeled anti-human AXL antibody (64Cu-anti-hAXL to noninvasively interrogate the degradation of AXL in vivo in response to 17-allylamino-17-demethoxygeldanamycin (17-AAG, a potent inhibitor of HSP90. 17-AAG treatment caused significant decline in AXL expression in orthotopic TNBC MDA-MB-231 tumors, inhibited EMT, and delayed tumor growth in vivo, resulting in significant reduction in tumor uptake of 64Cu-anti-hAXL as clearly visualized by microPET/CT. Our data indicate that 64Cu-anti-hAXL can be useful for monitoring anti-AXL therapies and for assessing inhibition of HSP90 molecular chaperone using AXL as a molecular surrogate.

  20. Evidence for a common high-temperature superconducting effect in La/sub 1.85/Sr/sub 0.15/CuO4 and YBa2Cu3O7

    International Nuclear Information System (INIS)

    Jean, Y.C.; Kyle, J.; Nakanishi, H.

    1988-01-01

    We report the positron-annihilation lifetime and Doppler-broadening energy spectra in La/sub 1.85/Sr/sub 0.15/CuO 4 superconductors for 10 4 and YBa 2 Cu 3 O 7 are similar and suggest that this is a consequence of a common physics involving the delicate balance between localized and itinerant-electron behavior

  1. Atomic simulations for configurations and solid-liquid interface of Li-Fe and Li-Cu icosahedra

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianyu, E-mail: hnieyjy@aliyun.com [Hunan Institute of Engineering (China); Hu, Wangyu [Hunan University, College of Materials Science and Engineering (China); Dai, Xiongying [Hunan Institute of Engineering, College of Science (China)

    2017-04-15

    The melting point of Li is lower than that of Fe (or Cu); thus, solid-liquid interfaces can be easily formed on Li-Fe and Li-Cu nanoalloys. In this work, the configurations and solid-liquid interfaces of Li-Fe and Li-Cu icosahedra are studied using Monte Carlo and molecular dynamics methods. The atomic interactions are described by the analytic embedded-atom method. The dependence of composition, temperature, and nanoparticle size on the configurations and thermal stabilities of nanoalloys is discussed. The behavior of the Li-Fe and Li-Cu nanoalloys in segregation, configuration, and thermal stability is investigated. A different behavior of surface segregation of Li atoms is observed for the two types of nanoalloys. The interface between the Li and Fe atoms is clear. Mixing of Li with Cu at larger nanoparticle sizes is found because of low heat of formation in the system. The configurations of the Li-Fe and Li-Cu nanoalloys are related to the competition between surface segregation and alloying. The thermal stability of Li in the two types of nanoalloys is enhanced by the support of the Fe (or Cu) solid substrate.

  2. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents.

    Science.gov (United States)

    Brown, Matthew R G; Benoit, James R A; Juhás, Michal; Dametto, Ericson; Tse, Tiffanie T; MacKay, Marnie; Sen, Bhaskar; Carroll, Alan M; Hodlevskyy, Oleksandr; Silverstone, Peter H; Dolcos, Florin; Dursun, Serdar M; Greenshaw, Andrew J

    2015-01-01

    High-risk behavior in adolescents is associated with injury, mental health problems, and poor outcomes in later life. Improved understanding of the neurobiology of high-risk behavior and impulsivity shows promise for informing clinical treatment and prevention as well as policy to better address high-risk behavior. We recruited 21 adolescents (age 14-17) with a wide range of high-risk behavior tendencies, including medically high-risk participants recruited from psychiatric clinics. Risk tendencies were assessed using the Adolescent Risk Behavior Screen (ARBS). ARBS risk scores correlated highly (0.78) with impulsivity scores from the Barratt Impulsivity scale (BIS). Participants underwent 4.7 Tesla functional magnetic resonance imaging (fMRI) while performing an emotional Go/NoGo task. This task presented an aversive or neutral distractor image simultaneously with each Go or NoGo stimulus. Risk behavior and impulsivity tendencies exhibited similar but not identical associations with fMRI activation patterns in prefrontal brain regions. We interpret these results as reflecting differences in response inhibition, emotional stimulus processing, and emotion regulation in relation to participant risk behavior tendencies and impulsivity levels. The results are consistent with high impulsivity playing an important role in determining high risk tendencies in this sample containing clinically high-risk adolescents.

  3. The synthetic evaluation of CuO-MnOx-modified pinecone biochar for simultaneous removal formaldehyde and elemental mercury from simulated flue gas.

    Science.gov (United States)

    Yi, Yaoyao; Li, Caiting; Zhao, Lingkui; Du, Xueyu; Gao, Lei; Chen, Jiaqiang; Zhai, Yunbo; Zeng, Guangming

    2018-02-01

    A series of low-cost Cu-Mn-mixed oxides supported on biochar (CuMn/HBC) synthesized by an impregnation method were applied to study the simultaneous removal of formaldehyde (HCHO) and elemental mercury (Hg 0 ) at 100-300° C from simulated flue gas. The metal loading value, Cu/Mn molar ratio, flue gas components, reaction mechanism, and interrelationship between HCHO removal and Hg 0 removal were also investigated. Results suggested that 12%CuMn/HBC showed the highest removal efficiency of HCHO and Hg 0 at 175° C corresponding to 89%and 83%, respectively. The addition of NO and SO 2 exhibited inhibitive influence on HCHO removal. For the removal of Hg 0 , NO showed slightly positive influence and SO 2 had an inhibitive effect. Meanwhile, O 2 had positive impact on the removal of HCHO and Hg 0 . The samples were characterized by SEM, XRD, BET, XPS, ICP-AES, FTIR, and H 2 -TPR. The sample characterization illustrated that CuMn/HBC possessed the high pore volume and specific surface area. The chemisorbed oxygen (O β ) and the lattice oxygen (O α ) which took part in the removal reaction largely existed in CuMn/HBC. What is more, MnO 2 and CuO (or Cu 2 O) were highly dispersed on the CuMn/HBC surface. The strong synergistic effect between Cu-Mn mixed oxides was critical to the removal reaction of HCHO and Hg 0 via the redox equilibrium of Mn 4+ + Cu + ↔ Mn 3+ + Cu 2+ .

  4. Charging effects and surface potential variations of Cu-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.gomes@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Calmeiro, T.R.; Nandy, S.; Pinto, J.V.; Pimentel, A.; Barquinha, P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Carvalho, P.A. [SINTEF Materials and Chemistry, PB 124 Blindern, NO-0314, Oslo (Norway); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa (Portugal); Walmsley, J.C. [SINTEF Materials and Chemistry, Materials and Nanotechnology, Høgskoleringen 5, 7034 Trondheim (Norway); Fortunato, E., E-mail: emf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-02-29

    The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO{sub 2} dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu{sub 2}O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WF{sub CuO} > WF{sub Cu} > WF{sub Cu{sub 2O}}. - Highlights: • Charge distribution study in Cu, Cu{sub 2}O and CuO nanowires through electrostatic force microscopy • Structural/surface defect role on the charge distribution along the Cu nanowires • Determination of the nanowire work functions by Kelvin probe force microscopy • Three types of nanowires give a broad idea of charge behavior on Cu based-nanowires.

  5. Copper transfer from Cu-Aβ to human serum albumin inhibits aggregation, radical production and reduces Aβ toxicity

    DEFF Research Database (Denmark)

    Perrone, Lorena; Mothes, Emmanuelle; Vignes, Maeva

    2010-01-01

    the catalytic HO· production in vitro and ROS production in neuroblastoma cells generated by Cu-Aβ and ascorbate, 4) HSA and DAHK were able to rescue these cells from the toxicity of Cu-Aβ with ascorbate, 5) DAHK was more potent in ROS suppression and restoration of neuroblastoma cell viability than HSA...

  6. IR and TPD studies of the interaction of alkenes with Cu + sites in CuNaY and CuNaX zeolites of various Cu content. The heterogeneity of Cu + sites

    Science.gov (United States)

    Datka, J.; Kukulska-Zajaç, E.; Kozyra, P.

    2006-08-01

    Cu + ions in zeolites activate organic molecules containing π electrons by π back donation, which results in a distinct weakening of multiple bonds. In this study, we followed the activation of alkenes (ethene and propene) by Cu + ions in CuY and CuX zeolites of various Cu content. We also studied the strength of bonding of alkenes to Cu + ions. IR studies have shown that there are two kinds of Cu + sites of various electron donor properties. We suppose that they could be attributed to the presence of Cu + ions of various number of oxygen atoms surrounding the cation. IR studies have shown that Cu ions introduced into Y and X zeolites in the first-order (at low Cu content) form Cu + ions of stronger electron donor properties (i.e. activate alkenes to larger extend) than Cu ions introduced in the next order (at higher Cu content). IR and TPD studies of alkenes desorption evidenced that Cu + ions of stronger electron donor properties bond alkenes stronger than less electron donor ones. It suggests that π back donation has more important contribution to the strength of bonding alkenes to cation than π donation.

  7. Ductile-to-brittle transition behavior of tungsten-copper composites

    International Nuclear Information System (INIS)

    Hiraoka, Y.; Inoue, T.; Akiyoshi, N.; Yoo, M.K.

    2001-01-01

    A series of W-Cu composites were fabricated alternatively by infiltration method (19-48 vol% Cu) or by pressing and sintering method (20-80 vol% Cu), and three-point bend tests were carried out at temperatures between 77 and 363 K. Ductile-to-brittle transition behavior of the composite was investigated and also effects of Cu content as well as fabrication method on the strength and ductility of the composite were discussed. Results were summarized as follows. (1) Composite containing 19-40 vol% of copper demonstrated ductile-to-brittle transition behavior. Transition temperature tended to decrease substantially with increasing Cu content, though ductility of the composite by infiltration method was much better than that by pressing and sintering method. (2) Composite containing 48-80 vol% of copper did not demonstrate transition behavior regardless of fabrication method. (3) These results were well interpreted in terms of microstructure and fractography. (author)

  8. Electrochemical performance of electroactive poly(amic acid)-Cu{sup 2+} composites

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ying [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China); Li, Fangfei [State Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Hanlon, Ashley M.; Berda, Erik B. [Department of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824 (United States); Liu, Xincai; Wang, Ce [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China); Chao, Danming, E-mail: chaodanming@jlu.edu.cn [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2017-01-15

    Graphical abstract: Electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites on the substrates have been prepared, whose electrochemical properties, including electroactivity, electrochromism and anticorrosion, reveal drastic enhancement after incorporation of Cu{sup 2+} ions. - Highlights: • The electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites were prepared. • A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was observed. • EPAA-Cu/ITO electrochromic electrodes reveals a shorter switching times. • Excellent corrosive protection for the CS was achieved by incorporating Cu{sup 2+} ions. - Abstract: Electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites on substrates were successfully prepared via nucleophilic polycondensation followed by the use of an immersing method. Analysis of the structure properties of EPAA-Cu composites was performed using scanning electron microscopy (SEM), X-ray photoelectron spectra (XPS) and Fourier-transform infrared spectra (FTIR). A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was found as evident from cyclic voltammetry (CV) measurements. In addition, Cu{sup 2+} ions were incorporated into the composites and had a positive effect on their electrochromic behaviors decreasing their switching times. The anticorrosive performance of EPAA-Cu composites coatings on the carbon steel in 3.5 wt% NaCl solution were also investigated in detail using tafel plots analysis and electrochemical impedance spectroscopy. The anticorrosive ability of these coatings significantly enhanced through the incorporation of Cu{sup 2+} ions.

  9. Electrochemical and spectroscopic evidences of corrosion inhibition of bronze by a triazole derivative

    International Nuclear Information System (INIS)

    Dermaj, A.; Hajjaji, N.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V.

    2007-01-01

    The electrochemical behavior of the bronze (Cu-8Sn in wt%) was investigated in 3% NaCl aqueous solution, in presence and in absence of a corrosion inhibitor, the 3-phenyl-1,2,4-triazole-5-thione (PTS). The inhibiting effect of the PTS was evidenced for concentrations higher than 1 mM for the cathodic process whereas its effect was clearly seen with a concentration as low as 0.1 mM for the anodic process. A significant positive shift of the corrosion potential was also observed, and its inhibiting effect increased with both its concentration and the immersion time of the sample. From voltammetry and electrochemical impedance spectroscopy experiments, the inhibiting efficiency of the PTS was found to be in the 94-99% range for 1 mM concentration. Scanning electron microscopy and X-ray energy dispersion analysis of the specimen surface show the presence of sulphur on the surface. Raman micro-spectrometry study confirms the protective effect of the PTS in aqueous solution through three types of interactions with the electrode, namely the adsorption of the inhibitor in a flat configuration, the formation of copper-thiol molecules, and when copper is released, the formation of a polymeric complex

  10. Observed parenting behaviors interact with a polymorphism of the brain-derived neurotrophic factor gene to predict the emergence of oppositional defiant and callous-unemotional behaviors at age 3 years.

    Science.gov (United States)

    Willoughby, Michael T; Mills-Koonce, Roger; Propper, Cathi B; Waschbusch, Daniel A

    2013-11-01

    Using the Durham Child Health and Development Study, this study (N = 171) tested whether observed parenting behaviors in infancy (6 and 12 months) and toddlerhood/preschool (24 and 36 months) interacted with a child polymorphism of the brain-derived neurotrophic factor gene to predict oppositional defiant disorder (ODD) and callous-unemotional (CU) behaviors at age 3 years. Child genotype interacted with observed harsh and intrusive (but not sensitive) parenting to predict ODD and CU behaviors. Harsh-intrusive parenting was more strongly associated with ODD and CU for children with a methionine allele of the brain-derived neurotrophic factor gene. CU behaviors were uniquely predicted by harsh-intrusive parenting in infancy, whereas ODD behaviors were predicted by harsh-intrusive parenting in both infancy and toddlerhood/preschool. The results are discussed from the perspective of the contributions of caregiving behaviors as contributing to distinct aspects of early onset disruptive behavior.

  11. Dislocation structure evolution and characterization in the compression deformed Mn-Cu alloy

    International Nuclear Information System (INIS)

    Zhong, Y.; Yin, F.; Sakaguchi, T.; Nagai, K.; Yang, K.

    2007-01-01

    Dislocation densities and dislocation structure arrangements in cold compressed polycrystalline commercial M2052 (Mn-20Cu-5Ni-2Fe) high damping alloy with various strains were determined in scanning mode by X-ray peak profile analysis and electron backscatter diffraction (EBSD). The results indicate that the Mn-Cu-Ni-Fe alloy has an evolution behavior quite similar to the dislocation structure in copper. The dislocation arrangement parameter shows a local minimum in the transition range between stages III and IV that can be related to the transformation of the dislocation arrangement in the cell walls from a polarized dipole wall (PDW) into a polarized tile wall (PTW) structure. This evolution is further confirmed by the results of local misorientation determined by EBSD. In addition, during deformation, the multiplication of dislocation densities in the MnCu alloy is significantly slower than that in copper, and the transition of the dislocation structure is strongly retarded in the MnCu alloy compared with copper. These results can be explained by the mechanism of elastic anisotropy on the dislocation dynamics, as the elastic anisotropy in the MnCu alloy is larger than that in copper, which can strongly retard the multiplication of the dislocation population and the transformation of the dislocation structure. These results are important for research into the plastic working behavior of Mn-Cu-Ni-Fe high damping alloy

  12. Effect of BSO addition on Cu-O bond of GdBa{sub 2}Cu{sub 3}O{sub 7-x} films with varying thickness probed by extended x-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. K.; Lee, J. K.; Yang, D. S.; Kang, B. [Chungbuk National University, Cheongju (Korea, Republic of); Kang, W. N. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    We investigated the relation between the Cu-O bond length and the superconducting properties of BaSnO{sub 3} (BSO)-added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films by using extended x-ray absorption fine structure (EXAFS) spectroscopy. 4 wt.% BaSnO{sub 3} (BSO) added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films with varying thickness from 0.2 μm to 1.0 μm were fabricated by using pulsed laser deposition (PLD) method. The transition temperature (T{sub c}) and the residual resistance ratio (RRR) of the GdBCO films increased with increasing thickness up to 0.8 μm, where the crystalline BSO has the highest peak intensity, and then decreased. This uncommon behaviors of T{sub c} and RRR are likely to be created by the addition of BSO, which may change the ordering of GdBCO atomic bonds. Analysis from the Cu K-edge EXAFS spectroscopy showed an interesting thickness dependence of ordering behavior of BSO-added GdBCO films. It is noticeable that the ordering of Cu-O bond and the transition temperature are found to show opposite behaviors in the thickness dependence. Based on these results, the growth of BSO seemingly have evident effect on the alteration of the local structure of GdBCO film.

  13. Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity

    Science.gov (United States)

    Yu, Cuiping; Cui, Jiewu; Wang, Yan; Zheng, Hongmei; Zhang, Jianfang; Shu, Xia; Liu, Jiaqin; Zhang, Yong; Wu, Yucheng

    2018-05-01

    Self-supported CuO/Cu2O@CuO/Cu2O core-shell nanowire arrays (NWAs) are successfully fabricated by a simple and efficient method in this paper. Anodized Cu(OH)2 NWAs could in-situ convert to HKUST-1 at room temperature easily. Cu(OH)2 NWAs cores and HKUST-1 shells transform into CuO/Cu2O simultaneously after calcinations and form CuO/Cu2O@CuO/Cu2O core-shell NWAs. This smart configuration of the core-shell structure not only avoids the agglomeration of the traditional MOF-derived materials in particle-shape, but also facilitates the ion diffusion and increases the active sites. This novel structure is employed as substrate to construct nonenzymatic glucose sensors. The results indicate that glucose sensor based on CuO/Cu2O@CuO/Cu2O core-shell NWAs presents ultrahigh sensitivity (10,090 μA mM-1 cm-2), low detection limit (0.48 μM) and wide linear range (0.99-1,330 μM). In addition, it also shows excellent anti-interference ability toward uric acid, ascorbic acid and L-Cysteine co-existing with glucose, good reproducibility and superior ability of real sample analysis.

  14. The Preparation of Cu-g-C3N4/AC Catalyst for Acetylene Hydrochlorination

    Directory of Open Access Journals (Sweden)

    Wenli Zhao

    2016-12-01

    Full Text Available A novel catalyst based on g-C3N4/activated carbon was prepared by adding CuCl2. The catalytic performance of the as-prepared catalyst was investigated in the acetylene hydrochlorination reaction. X-ray photoelectron spectroscopy, temperature programmed desorption, low temperature N2 adsorption/desorption (Brunauer–Emmett–Teller, and thermal gravity analysis showed that Cu-g-C3N4/AC significantly enhanced the catalytic performance of the original catalyst by increasing the relative pyrrolic N content. Cu-g-C3N4/AC also affected the adsorption of hydrogen chloride and acetylene, as well as inhibited the coke deposition during acetylene hydrochlorination.

  15. Precipitation under cyclic strain in solution-treated Al4wt%Cu I: mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, Adam M [Los Alamos National Laboratory; Laird, Campbell [UNIV OF PENNSYLVANIA

    2008-01-01

    Solution-treated AL-4wt%Cu was strain-cycled at ambient temperature and above, and the precipitation and deformation behaviors investigated by TEM. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain and the presence of a continually refreshed dislocation density to provide heterogeneous nucleation sites. Texture effects as characterized by Orientation Imaging Microscopy appear to be responsible for latent hardening in specimens tested at room temperature, with increasing temperatures leading to a gradual hardening throughout life due to precipitation. Specimens exhibiting rapid precipitation hardening appear to show a greater effect of texture due to the increased stress required to cut precipitates in specimens machined from rolled plate at an angle corresponding to a lower average Schmid factor. The accelerated formation of grain boundary precipitates appears to be partially responsible for rapid inter-granular fatigue failure at elevated temperatures, producing fatigue striations and ductile dimples coexistent on the fracture surface.

  16. Corrosion Inhibition of the Galvanic Couple Copper-Carbon Steel in Reverse Osmosis Water

    Directory of Open Access Journals (Sweden)

    Irene Carrillo

    2011-01-01

    Full Text Available The purpose of this paper is to evaluate the electrochemical behaviour of corrosion inhibition of the copper-carbon steel galvanic couple (Cu-CS, exposed to reverse osmosis water (RO used for rinsing of heat exchangers for heavy duty machinery, during manufacture. Molybdate and nitrite salts were utilized to evaluate the inhibition behaviour under galvanic couple conditions. Cu-CS couple was used as working electrodes to measure open circuit potential (OCP, potentiodynamic polarization (PP, and electrochemical impedance spectroscopy (EIS. The surface conditions were characterized by scanning electron microscopy (SEM and electron dispersive X-ray spectroscopy (EDS. The most effective concentration ratio between molybdate and nitrite corrosion inhibitors was determined. The morphological study indicated molybdate deposition on the anodic sites of the galvanic couple. The design of molybdate-based corrosion inhibitor developed in the present work should be applied to control galvanic corrosion of the Cu-CS couple during cleaning in the manufacture of heat exchangers.

  17. Comparative study of Cu-Zr and Cu-Ru alloy films for barrier-free Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Zhang Milin; Liu Yuntao

    2011-01-01

    The properties of Cu-Zr and Cu-Ru alloy films were comparatively studied to evaluate their potential use as alloying elements. Cu alloy films were deposited on SiO 2 /Si substrates by magnetron sputtering. Samples were subsequently annealed and analyzed by four-point probe measurement, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Auger electron spectroscopy. X-ray diffraction data suggest that Cu film has preferential (111) crystal orientation and no extra peak corresponding to any compound of Cu, Zr, Ru, and Si. According to transmission electron microscopy results, Cu grains grow in size for both systems but the grain sizes of the Cu alloy films are smaller than that of pure Cu films. These results indicate that Cu-Zr film is suitable for advanced barrier-free metallization in terms of interfacial stability and lower resistivity.

  18. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.

    Science.gov (United States)

    Gul, Sumera; Saleem, Darakhshan; Haleem, Muhammad A; Haleem, Darakhshan Jabeen

    2017-11-03

    Stress in known to alter hormonal systems. Pharmacological doses of tryptophan, the essential amino acid precursor of serotonin, increase circulating leptin and decrease ghrelin in normal healthy adults. Because systemically injected leptin inhibits stress-induced behavioral deficits and systemically injected serotonin modulates leptin release from the adipocytes, we used tryptophan as a pharmacological tool to modulate hormonal and behavioral responses in unstressed and stressed rats. Leptin, ghrelin, serotonin, tryptophan, and behavior were studied in unstressed and stressed rats following oral administration of 0, 100, 200, and 300 mg/kg of tryptophan. Following oral administration of tryptophan at a dose of 300 mg/kg, circulating levels of serotonin and leptin increased and those of ghrelin decreased in unstressed animals. No effect occurred on 24-hours cumulative food intake and elevated plus maze performance. Exposure to 2 hours immobilization stress decreased 24 hours cumulative food intake and impaired performance in elevated plus maze monitored next day. Serum serotonin decreased, leptin increased, and no effect occurred on ghrelin. Stress effects on serotonin, leptin, food intake, and elevated plus maze performance did not occur in tryptophan-pretreated animals. Tryptophan-induced decreases of ghrelin also did not occur in stressed animals. The findings show an important role of serum serotonin, leptin, and ghrelin in responses to stress and suggest that the essential amino acid tryptophan can improve therapeutics in stress-induced hormonal and behavioral disorders.

  19. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  20. Incorporation of Interfacial Intermetallic Morphology in Fracture Mechanism Map for Sn-Ag-Cu Solder Joints

    Science.gov (United States)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-01-01

    A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

  1. Crystallization of Pd40CU30Ni10P20 bulk metallic glass with and without pressure

    DEFF Research Database (Denmark)

    Yang, B.; Jiang, Jianzhong; Zhuang, Yanxin

    2007-01-01

    The glass-transition behavior of Pd40Cu30Ni10P20 bulk metallic glass was investigated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). The effect of pressure on the crystallization behavior of Pd40Cu30Ni10P20 bulk glass was studied by in situ high-pressure and high...

  2. Cu/Cu{sub 2}O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Anshuman [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Goswami, Navendu, E-mail: navendugoswami@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Kaushik, S.D. [UGC-DAE-Consortium for Scientific Research Mumbai Centre, R5 Shed, BARC, Mumbai 400085 (India); Tripathi, Shilpa [UGC-DAE Consortium for Scientific Research, Indore, M.P. (India)

    2016-12-30

    Highlights: The salient features of this research article are following: • Mixed phase synthesis of Cu/Cu{sub 2}O/CuO nanoparticles prepared by Exploding Wire Technique (EWT). • Predominant Cu/Cu{sub 2}O phases along with minor CuO phase revealed through XRD, TEM, Raman, FTIR, UV–Visible and PL analyses. • XPS analysis provided direct evidences of Cu{sup 2+} and Cu{sup +} along with O deficiency for prepared nanoparticles. • Room temperature weak ferromagnetic behaviour was demonstrated for Cu/Cu{sub 2}O/CuO nanoparticles. - Abstract: In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu{sub 2}O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu{sub 2}O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu{sub 2}-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu{sub 2}O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu{sub 2}O/CuO nanoparticles are reflected through UV–vis (UV–vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes

  3. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, I.; Takahashi, H.; Kojima, H.

    1992-01-01

    This paper reports that La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen

  4. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, L.; Takahashi, H.; Kojima, H.

    1992-01-01

    La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen. (orig.)

  5. Behavior of the irreversibility line in the new superconductor La1.5+xBa1.5+x-yCayCu3Oz

    International Nuclear Information System (INIS)

    Parra Vargas, C.A.; Pimentel, J.L.; Pureur, P.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2012-01-01

    The irreversibility properties of high-T c superconductors are of major importance for technological applications. For example, a high irreversibility magnetic field is a more desirable quality for a superconductor . The irreversibility line in the H-T plane is constituted by experimental points, which divides the irreversible and reversible behavior of the magnetization. The irreversibility lines for series of La 1.5+x Ba 1.5+x-y Ca y Cu 3 O z polycrystalline samples with different doping were investigated. The samples were synthesized using the usual solid estate reaction method. Rietveld-type refinement of x-ray diffraction patterns permitted to determine the crystallization of material in a tetragonal structure. Curves of magnetization ZFC-FC for the system La 1.5+x Ba 1.5+x-y Ca y Cu 3 O z , were measured in magnetic fields of the 10-20,000 Oe, and allowed to obtain the values for the irreversibility and critical temperatures. The data of irreversibility temperature allowed demarcating the irreversibility line, T irr (H). Two main lines are used for the interpretation of the irreversibility line: one of those which suppose that the vortexes are activated thermally and the other proposes that associated to T irr a phase transition occurs. The irreversibility line is described by a power law. The obtained results allow concluding that in the system La 1.5+x Ba 1.5+x-y Ca y Cu 3 O z a characteristic bend of the Almeida-Thouless (AT) tendency is dominant for low fields and a bend Gabay-Toulouse (GT) behavior for high magnetic fields. This feature of the irreversibility line has been reported as a characteristic of granular superconductors and it corroborates the topological effects of vortexes mentioned by several authors .

  6. Effect of microscopic structure on deformation in nano-sized copper and Cu/Si interfacial cracking

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp; Nakano, Takuya; Kitamura, Takayuki

    2013-03-01

    The purpose of this work is to examine the effect of microscopic structure on the mechanical properties of nano-sized components (nano-components). We developed a bending specimen with a substructure that can be observed by means of a transmission electron microscope (TEM). We examined the plastic behavior of a Cu bi-crystal and the Cu/Si interfacial cracking in a nano-component. TEM images indicated that an initial plastic deformation takes place near the interface edge (the junction between the Cu/Si interface and the surface) in the Cu film with a high critical resolved shear stress (400–420 MPa). The deformation developed preferentially in a single grain. Interfacial cracking took place at the intersection between the grain boundary and the Cu/Si interface, where a high stress concentration existed due to deformation mismatch. These results indicate that the characteristic mechanical behavior of a nano-component is governed by the microscopic stress field, which takes into account the crystallographic structure. - Highlights: ► A nano-component specimen including a bi-crystal copper layer was prepared. ► A loading test with in-situ transmission electron microscopy was conducted. ► The plastic and cracking behaviors were governed by microscopic stress. ► Stress defined under continuum assumption was still present in nano-components.

  7. Transient behavior of Cu/ZnO-based methanol synthesis catalysts

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Knudsen, Ida

    2009-01-01

    Time-resolved measurements of the methanol synthesis reaction over a Cu/ZnO-based catalyst reveal a transient methanol production that depends on the pretreatment gas. Specifically, the methanol production initially peaks after a pretreatment with an intermediate mixture of H2 and CO (20–80% H2...

  8. Investigations on the Structural and Mechanical Properties of Polyurethane Resins Based on Cu(IIphthalocyanines

    Directory of Open Access Journals (Sweden)

    Tamer E. Youssef

    2015-01-01

    Full Text Available This work report was reported on the effect of the addition of organic filler, that is, 2(3,9(10,16(17,23(24-octahydroxycopper(IIphthalocyanine [(OH8CuPc] (3, on the thermal, tensile, and morphological properties of a polyurethane matrix. The mechanical and dynamic mechanical thermal tests together with microstructural characterization of CuPc/PU composites were performed. The three PU composite films containing up to 1, 15, and 30 wt% of CuPc have different behaviors in terms of their morphological issues, thermal properties, and tensile behavior in comparison with the PU film as the reference material. Very high elongations at break from 910% to 1230%, as well as high tensile strengths, illustrate excellent ultimate tensile properties of the prepared samples. The best mechanical and thermomechanical properties were found for the sample filled with 30 wt% of CuPc.

  9. Resistance to high level of Cu (Copper) by arbuscular mycorrhizal, saprobe Fungi and Eucalyptus globules

    International Nuclear Information System (INIS)

    Arriagada, C.; Pereira, G.; Machuca, A.; Alvear, M.; Martin, J.; Ocampo, J.

    2009-01-01

    The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chorophyll, root length colonization and succinate dehydrogenase (SDH) activity was measured in Eucalyptus globulus Labill., plants growing in soil with high level of Cu were investigated. The application of Cu inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseae and G. deserticola in vitro. (Author)

  10. Resistance to high level of Cu (Copper) by arbuscular mycorrhizal, saprobe Fungi and Eucalyptus globules

    Energy Technology Data Exchange (ETDEWEB)

    Arriagada, C.; Pereira, G.; Machuca, A.; Alvear, M.; Martin, J.; Ocampo, J.

    2009-07-01

    The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chorophyll, root length colonization and succinate dehydrogenase (SDH) activity was measured in Eucalyptus globulus Labill., plants growing in soil with high level of Cu were investigated. The application of Cu inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseaae and G. deserticola in vitro. (Author)

  11. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  12. Enhanced GABAA-Mediated Tonic Inhibition in Auditory Thalamus of Rats with Behavioral Evidence of Tinnitus.

    Science.gov (United States)

    Sametsky, Evgeny A; Turner, Jeremy G; Larsen, Deb; Ling, Lynne; Caspary, Donald M

    2015-06-24

    Accumulating evidence suggests a role for inhibitory neurotransmitter dysfunction in the pathology of tinnitus. Opposing hypotheses proposed either a pathologic decrease or increase of GABAergic inhibition in medial geniculate body (MGB). In thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) and persistent tonic inhibition via high-affinity extrasynaptic GABAARs. Given that extrasynaptic GABAARs control the firing mode of thalamocortical neurons, we examined tonic GABAAR currents in MGB neurons in vitro, using the following three groups of adult rats: unexposed control (Ctrl); sound exposed with behavioral evidence of tinnitus (Tin); and sound exposed with no behavioral evidence of tinnitus (Non-T). Tonic GABAAR currents were evoked using the selective agonist gaboxadol. Months after a tinnitus-inducing sound exposure, gaboxadol-evoked tonic GABAAR currents showed significant tinnitus-related increases contralateral to the sound exposure. In situ hybridization studies found increased mRNA levels for GABAAR δ-subunits contralateral to the sound exposure. Tin rats showed significant increases in the number of spikes per burst evoked using suprathreshold-injected current steps. In summary, we found little evidence of tinnitus-related decreases in GABAergic neurotransmission. Tinnitus and chronic pain may reflect thalamocortical dysrhythmia, which results from abnormal theta-range resonant interactions between thalamus and cortex, due to neuronal hyperpolarization and the initiation of low-threshold calcium spike bursts (Walton and Llinás, 2010). In agreement with this hypothesis, we found tinnitus-related increases in tonic extrasynaptic GABAAR currents, in action potentials/evoked bursts, and in GABAAR δ-subunit gene expression. These tinnitus-related changes in GABAergic function may be markers for tinnitus pathology in the MGB. Copyright © 2015 the authors 0270-6474/15/359369-12$15.00/0.

  13. Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Karthikeyan [Nanomaterials and System Laboratory, Department of Mechanical Engineering, Jeju National University, Jeju 690 756 (Korea, Republic of); Kim, Sang-Jae, E-mail: kimsangj@jejunu.ac.kr [Nanomaterials and System Laboratory, Department of Mechanical Engineering, Jeju National University, Jeju 690 756 (Korea, Republic of); Department of Mechatronics Engineering, Jeju National University, Jeju 690 756 (Korea, Republic of)

    2013-09-01

    Graphical abstract: - Highlights: • Hierarchical CuO nanostructures were grown on Cu foil. • Monoclinic phase of CuO was grown. • XPS analysis revealed the presence of Cu(2p{sub 3/2}) and Cu(2p{sub 1/2}) on the surfaces. • Specific capacitance of 94 F/g was achieved for the CuO using cyclic voltammetry. • Impedance spectra show their pseudo capacitor applications. - Abstract: In this paper, we have investigated the electrochemical properties of hierarchical CuO nanostructures for pseudo-supercapacitor device applications. Moreover, the CuO nanostructures were formed on Cu substrate by in situ crystallization process. The as-grown CuO nanostructures were characterized using X-ray diffraction (XRD), Fourier transform-infra red spectroscopy (FT-IR), X-ray photoelectron spectroscopy and field emission-scanning electron microscope (FE-SEM) analysis. The XRD and FT-IR analysis confirm the formation of monoclinic CuO nanostructures. FE-SEM analysis shows the formation of leave like hierarchical structures of CuO with high uniformity and controlled density. The electrochemical analysis such as cyclic voltammetry and electrochemical impedance spectroscopy studies confirms the pseudo-capacitive behavior of the CuO nanostructures. Our experimental results suggest that CuO nanostructures will create promising applications of CuO toward pseudo-supercapacitors.

  14. Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications

    International Nuclear Information System (INIS)

    Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-01-01

    Graphical abstract: - Highlights: • Hierarchical CuO nanostructures were grown on Cu foil. • Monoclinic phase of CuO was grown. • XPS analysis revealed the presence of Cu(2p 3/2 ) and Cu(2p 1/2 ) on the surfaces. • Specific capacitance of 94 F/g was achieved for the CuO using cyclic voltammetry. • Impedance spectra show their pseudo capacitor applications. - Abstract: In this paper, we have investigated the electrochemical properties of hierarchical CuO nanostructures for pseudo-supercapacitor device applications. Moreover, the CuO nanostructures were formed on Cu substrate by in situ crystallization process. The as-grown CuO nanostructures were characterized using X-ray diffraction (XRD), Fourier transform-infra red spectroscopy (FT-IR), X-ray photoelectron spectroscopy and field emission-scanning electron microscope (FE-SEM) analysis. The XRD and FT-IR analysis confirm the formation of monoclinic CuO nanostructures. FE-SEM analysis shows the formation of leave like hierarchical structures of CuO with high uniformity and controlled density. The electrochemical analysis such as cyclic voltammetry and electrochemical impedance spectroscopy studies confirms the pseudo-capacitive behavior of the CuO nanostructures. Our experimental results suggest that CuO nanostructures will create promising applications of CuO toward pseudo-supercapacitors

  15. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  16. Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow

    Science.gov (United States)

    Russew, K.; Stojanova, L.; Yankova, S.; Fazakas, E.; Varga, L. K.

    2009-01-01

    Six Cu100-xZrx amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min-1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu64Zr36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.

  17. Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow

    International Nuclear Information System (INIS)

    Russew, K; Stojanova, L; Yankova, S; Fazakas, E; Varga, L K

    2009-01-01

    Six Cu 100-x Zr x amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min -1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu 64 Zr 36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.

  18. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    Science.gov (United States)

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  19. Fundamental studies of the effect of crystal defects on CuInSe{sub 2}/CdS heterojunction behavior: Final report, 28 June 1993--30 June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, A.

    1999-11-17

    This report describes the work performed by the University of Illinois at Urbana-Champaign. The following results were obtained under the work funded by this subcontract: (1) Point defects and electronic properties of Cu(In{sub 1-x}Ga{sub x})Se{sub 2}: New record results for hole mobilities in Cu(In{sub 1-x}Ga{sub x})Se{sub 2} based on single crystals grown by Rockett's group; Demonstrated the role of Ga in determining hole concentrations; Showed that Ga does not affect the hole mobility in this material and why this is the case; Determined the diffusion coefficient for Ga in single-crystal Cu(In{sub 1-x}Ga{sub x})Se{sub 2}; Demonstrated the structure and optoelectronic properties of the CuIn{sub 3}Se{sub 5} ordered-defect phase of CuInSe{sub 2}; Characterized the detailed effects of Na on Cu(In{sub 1-x}Ga{sub x})Se{sub 2} solar cells and on the fundamental properties of the material itself (reduces compensating donors in p-type materials); and In collaboration with groups at the Universities of Salford and Liverpool in the United Kingdom, studied the effect of ion implantation damage on Cu(In{sub 1-x}Ga{sub x})Se{sub 2} single-crystals. (2) Materials for and characterization of devices: Developed a novel contact metallurgy that improves adhesion to the underlying Mo back-contact in solar cells made with Cu(In{sub 1-x}Ga{sub x})Se{sub 2}; (This material has also yielded substantial novel materials science behaviors, including grain rotation and growth prior to phase separation in a metastable binary alloy.) Characterized the electroluminescence as a function of temperature and Ga content in Cu(In{sub 1-x}Ga{sub x})Se{sub 2} solar cells and showed that the radiative recombination pathways are not band-to-band as in normal semiconductors, but rather, proceed through defect states; and Working with a group at the University of Uppsala in Sweden, demonstrated novel aspects of the bonding and chemistry of dip-coated CdS heterojunction materials used as

  20. Detailed Visualization of Phase Evolution during Rapid Formation of Cu(InGa)Se2 Photovoltaic Absorber from Mo/CuGa/In/Se Precursors.

    Science.gov (United States)

    Koo, Jaseok; Kim, Sammi; Cheon, Taehoon; Kim, Soo-Hyun; Kim, Woo Kyoung

    2018-03-02

    Amongst several processes which have been developed for the production of reliable chalcopyrite Cu(InGa)Se 2 photovoltaic absorbers, the 2-step metallization-selenization process is widely accepted as being suitable for industrial-scale application. Here we visualize the detailed thermal behavior and reaction pathways of constituent elements during commercially attractive rapid thermal processing of glass/Mo/CuGa/In/Se precursors on the basis of the results of systematic characterization of samples obtained from a series of quenching experiments with set-temperatures between 25 and 550 °C. It was confirmed that the Se layer crystallized and then melted between 250 and 350 °C, completely disappearing at 500 °C. The formation of CuInSe 2 and Cu(InGa)Se 2 was initiated at around 450 °C and 550 °C, respectively. It is suggested that pre-heat treatment to control crystallization of Se layer should be designed at 250-350 °C and Cu(InGa)Se 2 formation from CuGa/In/Se precursors can be completed within a timeframe of 6 min.

  1. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Science.gov (United States)

    Sahai, Anshuman; Goswami, Navendu; Kaushik, S. D.; Tripathi, Shilpa

    2016-12-01

    In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu2O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu2O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu2-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu2O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu2O/CuO nanoparticles are reflected through UV-vis (UV-vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes occurring therein. Iterative X-ray photoelectron spectroscopy (XPS) fitting of core level spectra of Cu (2p3/2) and O (1s), divulges presence of Cu2+ and Cu+ in the lattice with an interesting evidence of O deficiency in the lattice structure and surface adsorption. Magnetic analysis illustrates that the prepared nanomaterial demonstrates ferromagnetic behaviour at room temperature.

  2. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin

    2016-01-01

    In this work, we accurately measure the electrical properties of individual Fe30Co61Cu9/Cu multilayered nanowires using nanomanipulators in in situ scanning electron microscopy to reveal that interfacial transition layers are influential in determining their transport behaviors. We investigate the morphology, crystal structure and chemistry of the Fe30Co61Cu9/Cu multilayered nanowires to characterize them at the nanoscale. We also compare the transport properties of these multilayered nanowires to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed analysis of the electrical data reveals that interfacial transition layers influence the electrical properties of multilayered nanowires and are likely to have a strong impact on the life of nanodevices. This work contributes to a basic understanding of the electrical parameters of individual magnetic multilayered nanowires for their application as functional building blocks and interconnecting leads in nanodevices and nanoelectronics, and also provides a clear physical picture of a single multilayered nanowire which explains its electrical resistance and its source of giant magnetoresistance. © The Royal Society of Chemistry 2016.

  3. Synthesis and electrical characterization of vertically-aligned ZnO–CuO hybrid nanowire p–n junctions

    International Nuclear Information System (INIS)

    Pukird, Supakorn; Song, Wooseok; Noothongkaew, Suttinart; Kim, Seong Ku; Min, Bok Ki; Kim, Seong Jun; Kim, Ki Woong; Myung, Sung; An, Ki-Seok

    2015-01-01

    Highlights: • Vertically-aligned ZnO–CuO hybrid nanowire arrays were synthesized by a two-step thermal chemical vapor deposition process. • The diameter of parallel-connected ZnO and CuO NWs were estimated to be 146 ± 12 nm and 55 ± 11 nm, respectively, and the formation of high-quality hexagonal ZnO and monoclinic CuO NWs were observed. • Clear rectifying behavior related with thermionic emission of carriers and the presence of an electrical potential barrier between the ZnO and CuO NWs were observed. - Abstract: In order to form nanowire (NW)-based p–n junctions, vertically-aligned ZnO–CuO hybrid NW arrays were synthesized by a two-step thermal chemical vapor deposition process. The diameter of parallel-connected ZnO and CuO NWs were estimated to be 146 ± 12 nm and 55 ± 11 nm, respectively, as observed by scanning electron microscopy. Chemical and structural characterizations of ZnO–CuO hybrid NW arrays were performed using X-ray photoelectron spectroscopy and X-ray diffraction, resulting in the formation of high-quality hexagonal ZnO and monoclinic CuO NWs. The temperature dependence of I–V curves and impedance spectra suggested that clear rectifying behavior related with thermionic emission of carriers and the presence of an electrical potential barrier between the ZnO and CuO NWs

  4. Ductile shape memory alloys of the Cu-Al-Mn system

    International Nuclear Information System (INIS)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1995-01-01

    Cu-Al-Mn shape memory alloys with enhanced ductility have been developed by decreasing the degree of order in the β parent phase. Cu-Al-Mn alloys with Al contents lower than 18% exhibit good ductility with elongations of about 15% and excellent cold-workability arising from a lower degree of order in the Heusler (L21) β 1 parent phase, without any loss in their shape memory behavior. In this paper the mechanical and shape memory characteristics, such as the cold-workability, the Ms temperatures, the shape memory effect and the pseudo-elasticity of such ductile Cu-Al-Mn alloys are presented. (orig.)

  5. Transparent Cu4O3/ZnO heterojunction photoelectric devices

    Science.gov (United States)

    Kim, Hong-Sik; Yadav, Pankaj; Patel, Malkeshkumar; Kim, Joondong; Pandey, Kavita; Lim, Donggun; Jeong, Chaehwan

    2017-12-01

    The present article reports the development of flexible, self-biased, broadband, high speed and transparent heterojunction photodiode, which is essentially important for the next generation electronic devices. We grow semitransparent p-type Cu4O3 using the reactive sputtering method at room temperature. The structural and optical properties of the Cu4O3 film were investigated by using the X-ray diffraction and UV-visible spectroscopy, respectively. The p-Cu4O3/n-ZnO heterojunction diode under dark condition yields rectification behavior with an extremely low saturation current value of 1.8 × 10-10 A and a zero bias photocurrent under illumination condition. The transparent p-Cu4O3/n-ZnO heterojunction photodetector can be operated without an external bias, due to the light-induced voltage production. The metal oxide heterojunction based on Cu4O3/ZnO would provide a route for the transparent and flexible photoelectric devices, including photodetectors and photovoltaics.

  6. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review.

    Science.gov (United States)

    Wang, Zhuhong; Chen, Jiubin; Zhang, Ting

    2017-05-18

    Copper (Cu) is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ 65 Cu (-16.49 to +20.04‰) in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals) behaviors in the environment and biological systems.

  7. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review

    Directory of Open Access Journals (Sweden)

    Zhuhong Wang

    2017-05-01

    Full Text Available Copper (Cu is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ65Cu (−16.49 to +20.04‰ in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals behaviors in the environment and biological systems.

  8. Cu2O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO2 photoreduction

    Science.gov (United States)

    Iqbal, Muzaffar; Wang, Yanjie; Hu, Haifeng; He, Meng; Hassan Shah, Aamir; Lin, Lin; Li, Pan; Shao, Kunjuan; Reda Woldu, Abebe; He, Tao

    2018-06-01

    The design of Cu2O-tipped ZnO nanorods is proposed here aiming at enhanced photoelectrochemical properties. The tip-selective deposition of Cu2O is confirmed by scanning transmission electron microscopy (STEM). The photoinduced charge behavior like charge generation, separation and transport has been thoroughly studied by UV-vis absorption analysis and different photoelectrochemical characterizations, including transient photocurrent, incident photon-to-current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS), and Mott-Schottky measurements. The photoelectrochemical characterizations clearly indicate that ZnO/Cu2O structures exhibit much higher performance than pristine ZnO, due to the formation of p-n junction, as well as the tip selective growth of Cu2O on ZnO. Photocatalytic CO2 reduction in aqueous solution under UV-visible light illumination shows that CO is the main product, and with the increase of the Cu2O content in the heterostructure, the CO yield increases. This work shows that Cu2O-tipped ZnO nanorods possess improved behavior of charge generation, separation and transport, which may work as a potential candidate for photocatalytic CO2 reduction.

  9. Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)

    Science.gov (United States)

    Jacobberger, Robert; Arnold, Michael

    2013-03-01

    Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio rationally tailor the graphene crystal morphology and orientation.

  10. Adolescent Development of Inhibition as a Function of SES & Gender: Converging Evidence from Behavior & fMRI

    Science.gov (United States)

    Spielberg, Jeffrey M.; Galarce, Ezequiel M.; Ladouceur, Cecile D.; McMakin, Dana L.; Olino, Thomas M.; Forbes, Erika E.; Silk, Jennifer S.; Ryan, Neal D.; Dahl, Ronald E.

    2015-01-01

    The ability to adaptively inhibit responses to tempting/distracting stimuli in the pursuit of goals is an essential set of skills necessary for adult competence and wellbeing. These inhibitory capacities develop throughout childhood, with growing evidence of important maturational changes occurring in adolescence. There also has been intense interest in the role of social adversity on the development of executive function, including inhibitory control. We hypothesized that the onset of adolescence could be a time of particular opportunity/vulnerability in the development of inhibition due to the large degree of maturational changes in neural systems involved in regulatory control. We investigated this hypothesis in a longitudinal study of adolescents by examining the impact of socioeconomic status (SES) on the maturation of inhibition and concurrent brain function. Furthermore, we examined gender as a potential moderator of this relationship, given evidence of gender-specificity in the developmental pathways of inhibition as well as sex differences in adolescent development. Results reveal that lower SES is associated with worse behavioral inhibition over time and a concurrent increase in anterior cingulate (ACC) activation, but only in girls. We also found that lower SES girls exhibited decreased ACC↔dorsolateral prefrontal cortex (dlPFC) coupling over time. Our findings suggest that female adolescents with lower SES appear to develop less efficient inhibitory processing in dlPFC, requiring greater and relatively unsuccessful compensatory recruitment of ACC. In summary, the present study provides a novel window into the neural mechanisms by which the influence of SES on inhibition may be transmitted during adolescence. PMID:26010995

  11. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  12. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  13. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure.

    Science.gov (United States)

    Migliorini, Robyn; Moore, Eileen M; Glass, Leila; Infante, M Alejandra; Tapert, Susan F; Jones, Kenneth Lyons; Mattson, Sarah N; Riley, Edward P

    2015-10-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons

    International Nuclear Information System (INIS)

    Avila, Mario; Morales, J.R.; Riquelme, H.O.

    1996-01-01

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, β + ) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 ± 0,1 MeV energy has been obtained total yields of 1,103 ± 0,011 μCl/μAh medium for 62 Cu and of 0,148 ± 0,015 μCl/μAh for 64 Cu

  15. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    Science.gov (United States)

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Thermomechanical behavior of tin-rich (lead-free) solders

    Science.gov (United States)

    Sidhu, Rajen Singh

    In order to adequately characterize the behavior of ball-grid-array (BGA) Pb-free solder spheres in electronic devices, the microstructure and thermomechanical behavior need to be studied. Microstructure characterization of pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-3.9Ag-0.7Cu alloys was conducted using optical microscopy, scanning electron microscopy, transmission electron microscopy, image analysis, and a novel serial sectioning 3D reconstruction process. Microstructure-based finite-element method (FEM) modeling of deformation in Sn-3.5Ag alloy was conducted, and it will be shown that this technique is more accurate when compared to traditional unit cell models for simulating and understanding material behavior. The effect of cooling rate on microstructure and creep behavior of bulk Sn-rich solders was studied. The creep behavior was evaluated at 25, 95, and 120°C. Faster cooling rates were found to increase the creep strength of the solders due to refinement of the solder microstructure. The creep behavior of Sn-rich single solder spheres reflowed on Cu substrates was studied at 25, 60, 95, and 130°C. Testing was conducted using a microforce testing system, with lap-shear geometry samples. The solder joints displayed two distinct creep behaviors: (a) precipitation-strengthening (Sn-3.5Ag and Sn-3.9Ag-0.7Cu) and (b) power law creep accommodated by grain boundary sliding (GBS) (Sn and Sn-0.7Cu). The relationship between microstructural features (i.e. intermetallic particle size and spacing), stress exponents, threshold stress, and activation energies are discussed. The relationship between small-length scale creep behavior and bulk behavior is also addressed. To better understand the damage evolution in Sn-rich solder joints during thermal fatigue, the local damage will be correlated to the cyclic hysteresis behavior and crystal orientations present in the Sn phase of solder joints. FEM modeling will also be utilized to better understand the macroscopic and local

  17. The effect of age on word-stem cued recall: a behavioral and electrophysiological study.

    Science.gov (United States)

    Osorio, Alexandra; Ballesteros, Soledad; Fay, Séverine; Pouthas, Viviane

    2009-09-15

    The present study investigated the effects of aging on behavioral cued-recall performance and on the neural correlates of explicit memory using event-related potentials (ERPs) under shallow and deep encoding conditions. At test, participants were required to complete old and new three-letter word stems using the letters as retrieval cues. The main results were as follows: (1) older participants exhibited the same level of explicit memory as young adults with the same high level of education. Moreover older adults benefited as much as young ones from deep processing at encoding; (2) brain activity at frontal sites showed that the shallow old/new effect developed and ended earlier for older than young adults. In contrast, the deep old/new effect started later for older than for young adults and was sustained up to 1000 ms in both age groups. Moreover, the results suggest that the frontal old/new effect was bilateral but greater over the right than the left electrode sites from 600 ms onward; (3) there were no differences at parietal sites between age groups: the old/new effect developed from 400 ms under both encoding conditions and was sustained up to 1000 ms under the deep condition but ended earlier (800 ms) under the shallow condition. These ERP results indicate significant age-related changes in brain activity associated with the voluntary retrieval of previously encoded information, in spite of similar behavioral performance of young and older adults.

  18. Early behavioral inhibition and increased error monitoring predict later social phobia symptoms in childhood.

    Science.gov (United States)

    Lahat, Ayelet; Lamm, Connie; Chronis-Tuscano, Andrea; Pine, Daniel S; Henderson, Heather A; Fox, Nathan A

    2014-04-01

    Behavioral inhibition (BI) is an early childhood temperament characterized by fearful responses to novelty and avoidance of social interactions. During adolescence, a subset of children with stable childhood BI develop social anxiety disorder and concurrently exhibit increased error monitoring. The current study examines whether increased error monitoring in 7-year-old, behaviorally inhibited children prospectively predicts risk for symptoms of social phobia at age 9 years. A total of 291 children were characterized on BI at 24 and 36 months of age. Children were seen again at 7 years of age, when they performed a Flanker task, and event-related potential (ERP) indices of response monitoring were generated. At age 9, self- and maternal-report of social phobia symptoms were obtained. Children high in BI, compared to those low in BI, displayed increased error monitoring at age 7, as indexed by larger (i.e., more negative) error-related negativity (ERN) amplitudes. In addition, early BI was related to later childhood social phobia symptoms at age 9 among children with a large difference in amplitude between ERN and correct-response negativity (CRN) at age 7. Heightened error monitoring predicts risk for later social phobia symptoms in children with high BI. Research assessing response monitoring in children with BI may refine our understanding of the mechanisms underlying risk for later anxiety disorders and inform prevention efforts. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. All rights reserved.

  19. The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance.

    Science.gov (United States)

    Heise, Kirstin-F; Zimerman, Maximo; Hoppe, Julia; Gerloff, Christian; Wegscheider, Karl; Hummel, Friedhelm C

    2013-05-22

    Since GABAA-mediated intracortical inhibition has been shown to underlie plastic changes throughout the lifespan from development to aging, here, the aging motor system was used as a model to analyze the interdependence of plastic alterations within the inhibitory motorcortical network and level of behavioral performance. Double-pulse transcranial magnetic stimulation (dpTMS) was used to examine inhibition by means of short-interval intracortical inhibition (SICI) of the contralateral primary motor cortex in a sample of 64 healthy right-handed human subjects covering a wide range of the adult lifespan (age range 20-88 years, mean 47.6 ± 20.7, 34 female). SICI was evaluated during resting state and in an event-related condition during movement preparation in a visually triggered simple reaction time task. In a subgroup (N = 23), manual motor performance was tested with tasks of graded dexterous demand. Weak resting-state inhibition was associated with an overall lower manual motor performance. Better event-related modulation of inhibition correlated with better performance in more demanding tasks, in which fast alternating activation of cortical representations are necessary. Declining resting-state inhibition was associated with weakened event-related modulation of inhibition. Therefore, reduced resting-state inhibition might lead to a subsequent loss of modulatory capacity, possibly reflecting malfunctioning precision in GABAAergic neurotransmission; the consequence is an inevitable decline in motor function.

  20. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants

    Science.gov (United States)

    Zhang, Lan; Guo, Jiaqi; Yan, Ting; Han, Yong

    2018-03-01

    In order to enhance skin integration and antibacterial activity of Ti percutaneous implants, microporous TiO2 coatings co-doped with different doses of Cu2+ and Zn2+ were directly fabricated on Ti via micro-arc oxidation (MAO). The structures of coatings were investigated; the behaviors of fibroblasts (L-929) as well as the response of Staphylococcus aureus (S. aureus) were evaluated. During the MAO process, a large number of micro-arc discharges forming on Ti performed as penetrating channels; O2-, Ca2+, Zn2+, Cu2+ and PO43- delivered via the channels, giving rise to the formation of doped TiO2. Surface characteristics including phase component, topography, surface roughness and wettability were almost the same for different coatings, whereas, the amount of Cu doped in TiO2 decreased with the increased Zn amount. Compared with Cu single-doped TiO2 (0.77 Wt% Cu), the co-doped with appropriate amounts of Cu and Zn, for example, 0.55 Wt% Cu and 2.53 Wt% Zn, further improved proliferation of L-929, facilitated fibroblasts to switch to fibrotic phenotype, and enhanced synthesis of collagen I as well as the extracellular collagen secretion; the antibacterial properties including contact-killing and release-killing were also enhanced. By analyzing the relationship of Cu/Zn amount in TiO2 and the behaviors of L-929 and S. aureus, it can be deduced that when the doped Zn is in a low dose (<1.79 Wt%), the behaviors of L-929 and S. aureus are sensitive to the reduced amount of Cu2+, whereas, Zn2+ plays a key role in accelerating fibroblast functions and reducing S. aureus when its dose obviously increases from 2.63 to 6.47 Wt%.

  1. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-03-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  2. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-06-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  3. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    Science.gov (United States)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  4. Inhibiting effects of imidazole on copper corrosion in 1 M HNO3 solution

    International Nuclear Information System (INIS)

    Lee, Woo-Jin

    2003-01-01

    The present work deals with the inhibiting effects of imidazole on the pure copper (Cu) corrosion in 1 M HNO 3 solution analysing potentiodynamic polarisation curves, potentiostatic anodic current transient, AC impedance spectra and X-ray photoelectron spectra (XPS). By adding imidazole to HNO 3 solution, the polarisation curves showed decrease in the corrosion current and the cathodic current, suggesting that imidazole acts as an effective cathodic inhibitor to Cu corrosion. From the measured anodic current transients, it is inferred that the protective Cu-imidazole complex film is simultaneously formed with the Cu oxide in the presence of imidazole during the early stage of the anodic polarisation. Analysis of the AC impedance spectra revealed that the values of the charge transfer resistance R ct obtained in imidazole-containing HNO 3 solution were greater than that value in imidazole-free one and at the same time steadily increased with immersion time to the constant value. Contrarily, the capacitance value was abruptly lowered from the double layer capacitance C dl to the complex film capacitance C cf in the progress of immersion time. Furthermore, the Warburg coefficient σ value for the ion diffusion through the complex film was observed to increase with immersion time. This means that the Cu(N-OH) complex film becomes thicker during immersion in the HNO 3 solution with imidazole through the inward growth of the N-rich outer layer to the O-rich inner layer, as well validated by XPS. Based upon the experimental results, it is suggested that the Cu corrosion in 1 M HNO 3 solution is efficiently inhibited with the addition of imidazole by retarding both the charge transfer on cathodic sites of the Cu surface in the early stage of immersion time and the subsequent ion diffusion through the steadily growing complex film

  5. Magnetism of CuCl{sub 2}·2D{sub 2}O and CuCl{sub 2}·2H{sub 2}O, and of CuBr{sub 2}·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Hampton, A.S.; Van Dongen, M.J.; Komatsu, C.H.; Benday, N.S.; Davis, C.M. [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Hays, K.; Wagner, M.J. [Department of Chemistry, George Washington University, Washington, D.C. 20052 (United States)

    2017-07-15

    Highlights: • CuCl{sub 2}·2D{sub 2}O is examined magnetically and compared with CuCl{sub 2}·2H{sub 2}O. • Slightly lower magnetic characteristic temperatures occur for deuterated dihydrate. • The new compound CuBr{sub 2}·6H{sub 2}O is examined magnetically. • Unexpected relationships appears between magnetic behaviors of CuBr{sub 2}·6H{sub 2}O and CuBr{sub 2}. • Two alternative monoclinic unit cells can account for diffraction data on CuBr{sub 2}·6H{sub 2}O. - Abstract: The magnetic properties of little examined CuCl{sub 2}·2D{sub 2}O are studied and compared with those of CuCl{sub 2}·2H{sub 2}O. New CuBr{sub 2}·6H{sub 2}O is also examined. Susceptibility maxima appear for chlorides at 5.35 and 5.50 K, in the above order, with estimated antiferromagnetic ordering at 4.15 and 4.25 K. Curie-Weiss fits yield g of 2.210 and 2.205, and Weiss θ of −6.0 and −4.7 K, respectively, in χ{sub M} = C/(T − θ). One-dimensional Heisenberg model fits to susceptibilities, including interchain exchange in a mean-field approximation, are performed. Interchain exchange is significant but much weaker than intrachain. The bromide hexahydrate strongly differs magnetically from any chloride hydrate, but exhibits notable similarities and differences compared to previously studied CuBr{sub 2}. A broad susceptibility maximum occurs near 218 K, only 4% lower than for CuBr{sub 2}, but with almost twice the magnitude. Powder X-ray diffraction data for CuBr{sub 2}·6H{sub 2}O may be best accounted for by a monoclinic unit cell that is metrically orthorhombic. The volume per formula unit is consistent with trends in metal ionic radii. However, an alternative monoclinic cell with 5% smaller volume more readily rationalizes the magnetism.

  6. Less approach, more avoidance: Response inhibition has motivational consequences for sexual stimuli that reflect changes in affective value not a lingering global brake on behavior.

    Science.gov (United States)

    Driscoll, Rachel L; de Launay, Keelia Quinn; Fenske, Mark J

    2018-02-01

    Response inhibition negatively impacts subsequent hedonic evaluations of motivationally relevant stimuli and reduces the behavioral incentive to seek and obtain such items. Here we expand the investigation of the motivational consequences of inhibition by presenting sexually appealing and nonappealing images in a go/no-go task and a subsequent image-viewing task. Each initially obscured image in the viewing task could either be made more visible or less visible by repeatedly pressing different keys. Fewer key presses were made to obtain better views of preferred-sex images when such images had previously been inhibited as no-go items than when previously encountered as noninhibited go items. This finding replicates prior results and is consistent with the possibility that motor-response suppression has lingering effects that include global reductions in all behavioral expression. However, for nonpreferred images, prior inhibition resulted in more key presses to obscure their visibility than when such images had not been inhibited. This novel finding suggests that the motivational consequences of response inhibition are not due to a global brake on action but are instead linked to negative changes in stimulus value that induce corresponding increases in avoidance and decreases in approach.

  7. Microstructure, transformation behavior and mechanical properties of a (Ti{sub 50}Ni{sub 38}Cu{sub 12}){sub 93}Nb{sub 7} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Daqiang, E-mail: daqiang.jiang@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Department of Materials Science and Engineering, China University of Petroleum, Beijing (China); Liu, Yinong [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Liu, Weilong; Song, Lixie; Jiang, Xiaohua [Department of Materials Science and Engineering, China University of Petroleum, Beijing (China); Yang, Hong [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Cui, Lishan [Department of Materials Science and Engineering, China University of Petroleum, Beijing (China)

    2015-03-11

    A (Ti{sub 50}Ni{sub 38}Cu{sub 12}){sub 93}Nb{sub 7} alloy is fabricated by arc melting, forging and drawing. The microstructure, transformation behavior and mechanical properties were investigated by means of scanning electron microscope (SEM), differential scanning calorimeter (DSC), dynamic mechanical analyzer (DMA) and tensile test machine. SEM observation showed that the as cast alloy is composed of TiNiCu and Nb-rich phases. After drawing, the alloy showed single step transformations during heating and cooling within the whole annealing temperature range from 400 °C to 800 °C. With the increase of the annealing temperature, both the transformation temperatures and the damping capacity increased first and then decreased. The ultimate strength of the alloy after annealing at 400 °C is over 1500 MPa and the maximum elongation of the alloy after annealing at 800 °C is more than 20%.

  8. Fundamental studies of the effect of crystal defects on CuInSe (sub 2)/CdS heterojunction behavior: Final report, 28 June 1993--30 June 1998; FINAL

    International Nuclear Information System (INIS)

    Rockett, A.

    1999-01-01

    This report describes the work performed by the University of Illinois at Urbana-Champaign. The following results were obtained under the work funded by this subcontract: (1) Point defects and electronic properties of Cu(In(sub 1-x)Ga(sub x))Se(sub 2): New record results for hole mobilities in Cu(In(sub 1-x)Ga(sub x))Se(sub 2) based on single crystals grown by Rockett's group; Demonstrated the role of Ga in determining hole concentrations; Showed that Ga does not affect the hole mobility in this material and why this is the case; Determined the diffusion coefficient for Ga in single-crystal Cu(In(sub 1-x)Ga(sub x))Se(sub 2); Demonstrated the structure and optoelectronic properties of the CuIn(sub 3)Se(sub 5) ordered-defect phase of CuInSe(sub 2); Characterized the detailed effects of Na on Cu(In(sub 1-x)Ga(sub x))Se(sub 2) solar cells and on the fundamental properties of the material itself (reduces compensating donors in p-type materials); and In collaboration with groups at the Universities of Salford and Liverpool in the United Kingdom, studied the effect of ion implantation damage on Cu(In(sub 1-x)Ga(sub x))Se(sub 2) single-crystals. (2) Materials for and characterization of devices: Developed a novel contact metallurgy that improves adhesion to the underlying Mo back-contact in solar cells made with Cu(In(sub 1-x)Ga(sub x))Se(sub 2); (This material has also yielded substantial novel materials science behaviors, including grain rotation and growth prior to phase separation in a metastable binary alloy.) Characterized the electroluminescence as a function of temperature and Ga content in Cu(In(sub 1-x)Ga(sub x))Se(sub 2) solar cells and showed that the radiative recombination pathways are not band-to-band as in normal semiconductors, but rather, proceed through defect states; and Working with a group at the University of Uppsala in Sweden, demonstrated novel aspects of the bonding and chemistry of dip-coated CdS heterojunction materials used as heterojunction

  9. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

    Science.gov (United States)

    Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom

    2006-10-01

    Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

  10. Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles.

    Science.gov (United States)

    Li, Yueming; Zhang, Qian; Li, Jinghong

    2010-11-15

    It is one of main challenges to find the suitable materials to enhance the direct electron transfer between the electrode and redox protein for direct electrochemistry field. Nano-structured metal oxides have attracted considerable interest because of unique properties, well biocompatibility, and good stability. In this paper, the copper oxide nanowire bundles (CuO NWBs) were prepared via a template route, and the bioelectrochemical performances of hemoglobin (Hb) on the CuO NWBs modified glass carbon electrodes (denoted as Hb-CuO NWBs/GC) were studied. TEM and XRD were used to characterize the morphology and structure of the as synthesized CuO NWBs. Fourier transform-infrared spectroscopy (FT-IR) proved that Hb in the CuO NWBs matrix could retain its native secondary structure. A pair of well-defined and quasi-reversible redox peaks at approximately -0.325 V (vs. Ag/AgCl saturated KCl) were shown in the cyclic voltammogram curve for the Hb-CuO NWBs/GC electrode, which indicated the direct electrochemical behavior. The Hb-CuO NWBs/GC electrode also displayed a good electrocatalytic activity toward the reduction of hydrogen peroxide. These results indicate that the CuO NWBs are good substrates for immobilization of biomolecules and might be promising in the fields of (bio) electrochemical analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 Catalysts for Direct NO Decomposition

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christiansen, Sofie E.

    2006-01-01

    Cu-ZSM-5 has for many years been recognized as a unique catalyst for direct NO decomposition. Here, it is discovered that both Cu-ZSM-11 and Cu-ZSM-12 are about twice as active as Cu-ZSM-5. This difference is attributed to the active sites located almost exclusively in the straight zeolite pores...

  12. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/ hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Manuel Tobias Munz

    2015-08-01

    Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  13. Electromigration in Cu(Al) and Cu(Mn) damascene lines

    Science.gov (United States)

    Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.

    2012-05-01

    The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."

  14. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O{sub 3} multiferroic materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeuvrey, L., E-mail: laurent.jeuvrey@univ-rennes1.fr [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Pena, O. [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Moure, A.; Moure, C. [Electroceramics Department, Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain)

    2012-03-15

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO{sub 3} material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn{sub 1-x}Cu{sub x}O{sub 3}; x<0.15) and self-doping at the A-site (Y{sub 1+y}MnO{sub 3}; y<0.10) successfully maintained the hexagonal structure. Self-doping was limited to y(Y)=2 at% and confirmed that excess yttrium avoids formation of ferromagnetic manganese oxide impurities but creates vacancies at the Mn site. Chemical substitution at the B-site inhibits the geometrical frustration of the Mn{sup 3+} two-dimensional lattice. The magnetic transition at T{sub N} decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn{sup 3+}-Mn{sup 4+} interactions created by the substitution of Mn{sup 3+} by Cu{sup 2+}, are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn{sup 3+}-Mn{sup 4+} pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: Black-Right-Pointing-Pointer Hexagonal-type solid solutions of Y(Mn,Cu)O{sub 3} synthesized by Pechini process. Black-Right-Pointing-Pointer Chemical substitution at B site inhibits geometrical magnetic frustration. Black-Right-Pointing-Pointer Magnetic transition decreases with Cu-doping. Black-Right-Pointing-Pointer Local ferromagnetic Mn-Mn interactions coexist with the frustrated state.

  15. Precipitation Behavior and Quenching Sensitivity of a Spray Deposited Al-Zn-Mg-Cu-Zr Alloy

    Directory of Open Access Journals (Sweden)

    Xiaofei Sheng

    2017-09-01

    Full Text Available Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr alloy during isothermal heat treatment have been studied systematically. Results demonstrate that both the hardness and the ultimate tensile strength of the studied alloy decreased with the isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly after the isothermal heat treatment. During isothermal heat treatment processing, precipitates readily nucleated in the medium-temperature zone (250–400 °C, while the precipitation nucleation was scarce in the low-temperature zone (<250 °C and in the high-temperature zone (>400 °C. Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield strength, while the ones with a larger size than 300 nm would contribute little strengthening effect. Quenching sensitivity is high in the medium-temperature zone (250–400 °C, and corresponding time-temperature-property (TTP curves of the studied alloy have been established.

  16. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  17. Removal of Cu(II) metal ions from aqueous solution by amine functionalized magnetic nanoparticles

    Science.gov (United States)

    Kothavale, V. P.; Karade, V. C.; Waifalkar, P. P.; Sahoo, Subasa C.; Patil, P. S.; Patil, P. B.

    2018-04-01

    The adsorption behavior of Cu(II) metal cations was investigated on the amine functionalized magnetic nanoparticles (MNPs). TheMNPs were synthesized by thesolvothermal method and functionalized with (3-Aminopropyl)triethoxysilane (APTES). MNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The MNPs have pure magnetite phase with particle size around 10-12 nm. MNPs exhibits superparamagnetic behavior with asaturation magnetization of 68 emu/g. The maximum 38 % removal efficiency was obtained for Cu(II) metal ions from the aqueous solution.

  18. Development of in-Situ Al-Si/CuAl₂ Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior.

    Science.gov (United States)

    Tash, Mahmoud M; Mahmoud, Essam R I

    2016-06-02

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl₂, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl₂ at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  19. A coumarin-derived Cu2 +-fluorescent chemosensor and its direct application in aqueous media

    Science.gov (United States)

    Mergu, Naveen; Kim, Myeongjin; Son, Young-A.

    2018-01-01

    A novel coumarin-based receptor bearing a benzohydrazide (FCBH) was developed as a fluorescent chemosensor with high selectivity toward Cu2 +. The sensor was successfully applied to the monitoring of Cu2 + in aqueous solution. After the addition of Cu2 + to FCBH, the color of the solution changed from greenish-yellow to red, and the absorption band at 457 nm red-shifted to 517 nm. The fluorescent green color of FCBH disappeared and the fluorescence emission was completely quenched in the presence of Cu2 +. Upon the addition of Cu2 +, deprotonation of FCBH occurred, and a 1:1 metal-ligand complex formed. DFT theoretical investigation was carried out to understand the behavior of the sensing probe toward Cu2 +. Additionally, the quenched fluorescence of the FCBH-Cu2 + complex was restored upon the addition of CN- ions. The possible sensing mechanism of FCBH toward Cu2 + was derived from experimental and theoretical examinations.

  20. A comparative study of structural and mechanical properties of Al–Cu composites prepared by vacuum and microwave sintering techniques

    Directory of Open Access Journals (Sweden)

    Penchal Reddy Matli

    2018-04-01

    Full Text Available In this paper, the aluminum metal matrix composite reinforced with copper particulates (3, 6 and 9 vol.% were fabricated by high energy ball milling, followed by vacuum sintering (VS and microwave sintering techniques (MS separately. The effects of Cu content and preparation methods on the microstructure and compression mechanical behavior of Al–Cu matrix composites were investigated. The microstructural characterizations revealed a homogeneous distribution of Cu particles in the Al matrix and also fine microstructures of microwave sintered samples. The microwave sintered specimen exhibited the highest hardness and better mechanical properties compared to vacuum sintered specimens. Furthermore, the hardness and compressive strength increased 137.2% and 30.3% for the microwave sintered Al–9 vol.% Cu composite, respectively. The increase in mechanical properties with the increasing volume fraction of Cu particulates can be ascribed to the presence of harder Cu particles reinforcement. The developed materials of the microwave sintered Al–Cu composite in this investigation could be successfully used for industrial applications due to improved mechanical properties. Keywords: Al matrix composites, Microwave sintering, Microstructure, Mechanical behavior