WorldWideScience

Sample records for behavior trac-it phase

  1. TRAC User's Guide

    International Nuclear Information System (INIS)

    Boyack, B.E.; Stumpf, H.; Lime, J.F.

    1985-11-01

    This guide has been prepared to assist users in applying the Transient Reactor Analysis Code (TRAC). TRAC is an advanced best-estimate systems code for analyzing transients in thermal-hydraulic systems. The code is very general. Because it is general, efforts to model specific nuclear power plants or experimental facilities often present a challenge to the TRAC user. This guide has been written to assist first-time or intermediate users. It is specifically written for the TRAC version designated TRAC-PF1/MOD1. The TRAC User's Guide should be considered a companion document to the TRAC Code Manual; the user will need both documents to use TRAC effectively. 18 refs., 45 figs., 19 tabs

  2. Implementation of JAERI's reflood model into TRAC-PF1/MOD1 code

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio

    1993-02-01

    Selected physical models of REFLA code, that is a reflood analysis code developed at JAERI, were implemented into the TRAC-PF1/MOD1 code in order to improve the predictive capability of the TRAC-PF1/MOD1 code for the core thermal hydraulic behaviors during the reflood phase in a PWR LOCA. Through comparisons of physical models between both codes, (1) Murao-Iguchi void fraction correlation, (2) the drag coefficient correlation acting to drops, (3) the correlation for wall heat transfer coefficient in the film boiling regime, (4) the quench velocity correlation and (5) heat transfer correlations for the dispersed flow regime were selected from the REFLA code to be implemented into the TRAC-PF1/MOD1 code. A method for the transformation of the void fraction correlation to the equivalent interfacial friction model was developed and the effect of the transformation method on the stability of the solution was discussed. Through assessment calculation using data from CCTF (Cylindrical Core Test Facility) flat power test, it was confirmed that the predictive capability of the TRAC code for the core thermal hydraulic behaviors during the reflood can be improved by the implementation of selected physical models of the REFLA code. Several user guidelines for the modified TRAC code were proposed based on the sensitivity studies on fluid cell number in the hydraulic calculation and on node number and effect of axial heat conduction in the heat conduction calculation of fuel rod. (author)

  3. Methodology, status, and plans for development and assessment of the TRAC code

    International Nuclear Information System (INIS)

    Boyack, B.E.; Nelson, R.A.; Jolly-Woodruff, S.

    1996-01-01

    The Transient Reactor Analysis Code (TRAC) is a state-of-the-art, best-estimate, transient system analysis computer code for analyzing geometrically complex multidimensional thermal hydraulic systems, primarily nuclear reactor power plants. TRAC is used by government and industry organizations for design and safety analysis, phenomenological studies, operational transient analysis, evaluating emergency operating procedures, simulator support and operator training, and for assessment of data involving basic experiments, separate effects tests, and plant operations. TRAC will calculate one- and three-dimensional (rectilinear and cylindrical coordinates) fluid flow involving gas, liquid, and mixture states. Although TRAC has many capabilities, it also has limitations. Some limitations arise from its implementation, dating from the 1970s. Rapid advances in hardware and software engineering highlight TRAC's inefficiencies; however, other limitations relate to the level of scientific knowledge regarding two-phase flow physics. These limitations will continue until such time as the fundamental understanding of two-phase flows is extended. Presently, several development activities are either in progress or soon to begin that will fundamentally improve TRAC. Foremost among these are reimplementation of the current TRAC data structures in Fortran 90 and the integrated development of closure packages for large-break loss-of-coolant accident applications

  4. TRAC-PF1 choked-flow model

    International Nuclear Information System (INIS)

    Sahota, M.S.; Lime, J.F.

    1983-01-01

    The two-phase, two-component choked-flow model implemented in the latest version of the Transient Reactor analysis Code (TRAC-PF1) was developed from first principles using the characteristic analysis approach. The subcooled choked-flow model in TRAC-PF1 is a modified form of the Burnell model. This paper discusses these choked-flow models and their implementation in TRAC-PF1. comparisons using the TRAC-PF1 choked-flow models are made with the Burnell model for subcooled flow and with the homogeneous-equilibrium model (HEM) for two-phae flow. These comparisons agree well under homogeneous conditions. Generally good agreements have been obtained between the TRAC-PF1 results from models using the choking criteria and those using a fine mesh (natural choking). Code-data comparisons between the separate-effects tests of the Marviken facility and the Edwards' blowdown experiment also are favorable. 10 figures

  5. Assessment of one dimensional reflood model in REFLA/TRAC code

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio

    1993-12-01

    Post-test calculations for twelve selected SSRTF, SCTF and CCTF tests were performed to assess the predictive capability of the one-dimensional reflood model in the REFLA/TRAC code for core thermal behavior during the reflood in a PWR LOCA. Both core void fraction profile and clad temperature transients were predicted excellently by the REFLA/TRAC code including parameter effect of core inlet subcooling, core flooding rate, core configuration, core power, system pressure, initial clad temperature and so on. The peak clad temperature was predicted within an error of 50 K. Based on these assessment results, it is verified that the core thermal hydraulic behaviors during the reflood can be predicted excellently with the REFLA/TRAC code under various conditions where the reflood may occur in a PWR LOCA. (author)

  6. TRAC Searchable Research Library

    Science.gov (United States)

    2016-05-01

    Relational Data Modeling (VRDM) computational paradigm. VRDM has the key attributes of being cloud available, using domain semantics for configured...Figure 1. Methodology for TRAC Searchable Research Library Development. ........................... 5 Figure 2. The conceptual model for the cloud ...TRAC Searchable Research Library project was initiated by TRAC- HQ to address a current capability gap in the TRAC organization. Currently TRAC does not

  7. Two phase nonequilibrium heat transfer in the TRAC-PD2 code

    International Nuclear Information System (INIS)

    Mandell, D.A.; Liles, D.R.

    1980-01-01

    TRAC is a best-estimate, multidimensional, nonequilibrium computer code intended for the analysis of loss-of-coolant accidents (LOCA's) in light water reactors. TRAC-PD2 is the third, detailed, pressurized water reactor version of the code. The TRAC code is modular both by components and by function. That is, vessels, pipes, pumps, etc. can be coupled together in any manner in order to simulate a reactor or a particular experimental facility. Individual physical phenomena are also coded in separate subroutines. This paper discusses the wall to fluid heat transfer coefficient correlations, the interfacial heat transfer models, and presents results for several experimental facilities

  8. 76 FR 32227 - Core Industries, Inc., DBA Star Trac and/or Unisen, Inc., DBA STAR TRAC and/or Trac Strength...

    Science.gov (United States)

    2011-06-03

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,192; TA-W-75,192A] Core Industries, Inc., DBA Star Trac and/or Unisen, Inc., DBA STAR TRAC and/or Trac Strength, Including On-Site Leased Workers From Aerotek, Helpmates, Mattson, and Empire Staffing, Irvine, CA; Core Industries, Inc., DBA Star Trac and/ar Unisen, Inc., DBA Star...

  9. TRAC-PF1/MOD1 computer code

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1984-01-01

    The TRAC-P1 program was designed primarily for the analysis of large-break loss-of-coolant accidents (LOCAs) in pressurized water reactors (PWRs). Because of its versatility, however, it can be applied directly to many analyses ranging from blowdowns in simple pipes to integral LOCA tests in multiloop facilities. A refined version, called TRAC-P1A, was released to the National Energy Software Center (NESC) in March 1979. Although it still treats the same class of problems, TRAC-P1A is more efficient than TRAC-P1 and incorporates improved hydrodynamic and heat-transfer models. It also is easier to implement on various computers. TRAC-PD2 contains improved reflood and heat-transfer models and improvements in the numerical solution methods. Although a large LOCA code, it has been applied successfully to small-break problems and to the Three Mile Island incident. Distinguishing characteristics of the TRAC-PF1/MOD1 are summarized

  10. Introduction and immigration of TRAC-PF1 code

    International Nuclear Information System (INIS)

    Yan Yuhua; Gao Zuying; Gao Cheng; Li Jincai

    1997-01-01

    TRAC-PF1 code performs best-estimate predictions of postulated accidents for pressurized light water reactors. It is one of the few system analyse codes which use two fluid model to treat two phase problems in nuclear system. In order to use this advanced software in China and make it possible to be run in different compute systems, IBM version of TRAC-PF1 code, imported from USA National Energy Software Center, is immigrated to CDC NOS/VE system and SUN workstation. The differences in computer languages from IBM 370 to CDC NOS/VE and to SUN workstation are modified properly. All the benchmark problems are calculated, and the results show that the immigration is successful

  11. TRAC calculations of a loss-of-coolant accident in a reactor scale model

    International Nuclear Information System (INIS)

    Pyun, J.J.

    1981-01-01

    The TRAC (Transient Reactor Analysis Code) is being developed at the Los Alamos National Laboratory as an advanced best-estimate computer program for analysis of postulated hypothetical accidents in pressurized water reactors. As a part of the TRAC developmental verification efforts, a TRAC posttest analysis of Semiscale Mod-3 Test S-07-6 was conducted. The results of this analysis show that the agreement between TRAC calculations and experimental data is not very good. In particular, TRAC does not predict the long term doncomer and core liquid level oscillations during the reflood phase

  12. COBRA/TRAC analysis of two-dimensional thermal-hydraulic behavior in SCTF reflood tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Ohnuki, Akira; Sobajima, Makoto; Adachi, Hiromichi

    1987-01-01

    The effects of radial power distribution and non-uniform upper plenum water accumulation on thermal-hydraulic behavior in the core were observed in the reflood tests with Slab Core Test Facility (SCTF). In order to examine the predictability of these two effects by a multi-dimensional analysis code, the COBRA/TRAC calculations were made. The calculated results indicated that the heat transfer enhancement in high power bundles above quench front was caused by high vapor flow rate in those bundles due to the radial power distribution. On the other hand, the heat transfer degradation in the peripheral bundles under the condition of non-uniform upper plenum water accumulation was caused by the lower flow rates of vapor and entrained liquid above the quench front in those bundles by the reason that vapor concentrated in the center bundles due to the cross flow induced by the horizontal pressure gradient in the core. The above-mentioned two-dimensional heat transfer behaviors calculated with the COBRA/TRAC code is similar to those observed in SCTF tests and therefore those calculations are useful to investigate the mechanism of the two-dimensional effects in SCTF reflood tests. (author)

  13. TRAC-CFD code integration and its application to containment analysis

    International Nuclear Information System (INIS)

    Tahara, M.; Arai, K.; Oikawa, H.

    2004-01-01

    Several safety systems utilizing natural driving force have been recently adopted for operating reactors, or applied to next-generation reactor design. Examples of these safety systems are the Passive Containment Cooling System (PCCS) and the Drywell Cooler (DWC) for removing decay heat, and the Passive Auto-catalytic Recombiner (PAR) for removing flammable gas in reactor containment during an accident. DWC is used in almost all Boiling Water Reactors (BWR) in service. PAR has been introduced for some reactors in Europe and will be introduced for Japanese reactors. PCCS is a safety device of next-generation BWR. The functional mechanism of these safety systems is closely related to the transient of the thermal-hydraulic condition of the containment atmosphere. The performance depends on the containment atmospheric condition, which is eventually affected by the mass and energy changes caused by the safety system. Therefore, the thermal fluid dynamics in the containment vessel should be appropriately considered in detail to properly estimate the performance of these systems. A computational fluid dynamics (CFD) code is useful for evaluating detailed thermal hydraulic behavior related to this equipment. However, it also requires a considerable amount of computational resources when it is applied to whole containment system transient analysis. The paper describes the method and structure of the integrated analysis tool, and discusses the results of its application to the start-up behavior analysis of a containment cooling system, a drywell local cooler. The integrated analysis code was developed and applied to estimate the DWC performance during a severe accident. The integrated analysis tool is composed of three codes, TRAC-PCV, CFD-DW and TRAC-CC, and analyzes the interaction of the natural convection and steam condensation of the DWC as well as analyzing the thermal hydraulic transient behavior of the containment vessel during a severe accident in detail. The

  14. TRAC-PF1 code verification with data from the OTIS test facility

    International Nuclear Information System (INIS)

    Childerson, M.T.; Fujits, R.K.

    1985-01-01

    A computer code (TRAC-PFI/MODI; denoted as TRAC) developed for predicting transient thermal and hydraulic integral nuclear steam supply system (NSSS) response was benchmarked. Post-small break loss-of-coolant accident (LOCA) data from a scaled, experimental facility, designated the Once-Through Integral Systems (OTIS), were obtained for the Babcock and Wilcox NSSS and compared to TRAC predictions. The OTIS tests provided a challenging small break LOCA data set for TRAC verification. The major phases of a small break LOCA observed in the OTIS tests included pressurizer draining and saturation, intermittent reactor coolant system circulation, boiler-condenser mode and the initial stages of refill. The TRAC code was successful in predicting OTIS loop conditions (system pressures and temperatures) after modification of the steam generator model. In particular, the code predicted both pool- and auxiliary- feedwater initiated boiler-condenser mode heat transfer

  15. TRAC-PF1/MOD3 calculations of Savannah River Laboratory Rig FA single-annulus heated experiments

    International Nuclear Information System (INIS)

    Fischer, S.R.; McDaniel, C.K.

    1992-01-01

    This paper presents the results of TRAC-PF1/MOD3 benchmarks of the Rig FA experiments performed at the Savannah River Laboratory to simulate prototypic reactor fuel assembly behavior over a range of fluid conditions typical of the emergency cooling system (ECS) phase of a loss-of-coolant accident (LOCA). The primary purpose of this work was to use the SRL Rig FA tests to qualify the TRAC-PF1/MOD3 computer code and models for computing Mark-22 fuel assembly LOCA/ECS power limits. This qualification effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to independently confirm power limits for the Savannah River Site K Reactor. The results of this benchmark effort as discussed in this paper demonstrate that TRAC/PF1/MOD3 coupled with proper modeling is capable of simulating thermal-hydraulic phenomena typical of that encountered in Mark-22 fuel assembly during LOCA/ECS conditions

  16. Fluid dynamics and heat transfer methods for the TRAC code

    International Nuclear Information System (INIS)

    Reed, W.H.; Kirchner, W.L.

    1977-01-01

    A computer code called TRAC is being developed for analysis of loss-of-coolant accidents and other transients in light water reactors. This code involves a detailed, multidimensional description of two-phase flow coupled implicitly through appropriate heat transfer coefficients with a simulation of the temperature field in fuel and structural material. Because TRAC utilizes about 1000 fluid mesh cells to describe an LWR system, whereas existing lumped parameter codes typically involve fewer than 100 fluid cells, new highly implicit difference techniques are developed that yield acceptable computing times on modern computers. Several test problems for which experimental data are available, including blowdown of single pipe and loop configurations with and without heated walls, have been computed with TRAC. Excellent agreement with experimental results has been obtained

  17. Review of solution approach, methods, and recent results of the TRAC-PF1 system code

    International Nuclear Information System (INIS)

    Mahaffy, J.H.; Liles, D.R.; Knight, T.D.

    1983-01-01

    The current version of the Transient Reactor Analysis Code (TRAC-PF1) was created to improve on the capabilities of its predecessor (TRAC-PD2) for analyzing slow reactor transients such as small-break loss-of-coolant accidents. TRAC-PF1 continues to use a semi-implicit finite-difference method for modeling three-dimensional flows in the reactor vessel. However, it contains a new stability-enhancing two-step (SETS) finite-difference tecnique for one-dimensional flow calculations. This method is not restricted by a material Courant stability condition, allowing much larger time-step sizes during slow transients than would a semi-implicit method. These have been successfully applied to the analysis of a variety of experiments and hypothetical plant transients covering a full range of two-phase flow regimes

  18. One-dimensional nodal neutronics routines for the TRAC-BD1 thermal-hydraulics program

    International Nuclear Information System (INIS)

    Nigg, D.W.

    1983-09-01

    Nuclear reactor core transient neutronic behavior is currently modeled in the TRAC-BD1 code using a point-reactor kinetics formulation. This report describes a set of subroutines based on the Analytic Nodal Method that were written to provide TRAC-BD1 with a one-dimensional space-dependent neutronics capability. Use of the routines is illustrated with several test problems. The results of these problems show that the Analytic Nodal neutronics routines have desirable accuracy and computing time characteristics and should be a useful addition to TRAC-BD1

  19. TRAC methods and models

    International Nuclear Information System (INIS)

    Mahaffy, J.H.; Liles, D.R.; Bott, T.F.

    1981-01-01

    The numerical methods and physical models used in the Transient Reactor Analysis Code (TRAC) versions PD2 and PF1 are discussed. Particular emphasis is placed on TRAC-PF1, the version specifically designed to analyze small-break loss-of-coolant accidents

  20. TRAC development at General Electric

    International Nuclear Information System (INIS)

    Andersen, J.G.M.; Shaug, J.C.; Shiralkar, B.S.

    1987-01-01

    TRAC is a computer code for transient analysis of light water reactors. The BWR version of TRAC has been developed as a result of a close cooperation between General Electric Company and Idaho National Engineering Laboratory. Up through 1985 the development work at General Electric was jointly funded by General Electric, the Nuclear Regulatory Commission and Electric Power Research Institute under the Refill-Reflood and FIST programs. At INEL (which has the main responsibility for the NRC version of TRAC-BWR) this work has led to the development of TRACBD1 and TRACBF1, while at GE, TRACB04 was the final product of the Refill-Reflood and FIST programs. TRAC development has continued at General Electric after the completion of these programs with the evolution of the TRACG code. The purpose of the paper is to describe this work. The TRAC development at General Electric can be divided into two main categories: extended benchmark capability and improved user convenience

  1. TRAC-PF1 code verification with data from the OTIS test facility

    International Nuclear Information System (INIS)

    Childerson, M.T.; Fujita, R.K.

    1985-01-01

    A computer code (TRAC-PF1/MOD1) developed for predicting transient thermal and hydraulic integral nuclear steam supply system (NSSS) response was benchmarked. Post-small break loss-of-coolant accident (LOCA) data from a scaled, experimental facility, designated the One-Through Integral System (OTIS), were obtained for the Babcock and Wilcox NSSS and compared to TRAC predictions. The OTIS tests provided a challenging small break LOCA data set for TRAC verification. The major phases of a small break LOCA observed in the OTIS tests included pressurizer draining and loop saturation, intermittent reactor coolant system circulation, boiler-condenser mode, and the initial stages of refill. The TRAC code was successful in predicting OTIS loop conditions (system pressures and temperatures) after modification of the steam generator model. In particular, the code predicted both pool and auxiliary-feedwater initiated boiler-condenser mode heat transfer

  2. Tests of the TRAC code against known analytical solutions for stratified flow

    International Nuclear Information System (INIS)

    Black, P.S.; Leslie, D.C.; Hewitt, G.F.

    1987-01-01

    The area averaged equations for gas-liquid flow are briefly summarized and related, for the specific case of stratified flow, to the shallow water equations commonly used in hydraulics. These equations are then compared to the equations used in TRAC-PF/MOD1 and are shown to differ in their treatment of the gravity head terms. A modification of the TRAC code is therefore necessary to bring it into line with established shallow water theory. The corrected form of the code was compared with a number of specific cases, each of which throws further light on the code behavior. The following areas are discussed in the paper: (1) the dam break problem; (2) Kelvin-Helmholtz instability; (3) counter-current flow; and (4) slug flow. It is concluded that detailed comparisons of the code with known analytic solutions and with a number of the more complex phenomenological experiments can give useful insights into its behavior

  3. Fluid dynamics and heat transfer methods for the TRAC code

    International Nuclear Information System (INIS)

    Reed, W.H.; Kirchner, W.L.

    1977-01-01

    A computer code called TRAC is being developed for analysis of loss-of-coolant accidents and other transients in light water reactors. This code involves a detailed, multidimensional description of two-phase flow coupled implicitly through appropriate heat transfer coefficients with a simulation of the temperature field in fuel and structural material. Because TRAC utilizes about 1000 fluid mesh cells to describe an LWR system, whereas existing lumped parameter codes typically involve fewer than 100 fluid cells, we have developed new highly implicit difference techniques that yield acceptable computing times on modern computers. Several test problems for which experimental data are available, including blowdown of single pipe and loop configurations with and without heated walls, have been computed with TRAC. Excellent agreement with experimental results has been obtained. (author)

  4. Prediction of reflood behavior for tests with differing axial power shapes using WCOBRA/TRAC

    International Nuclear Information System (INIS)

    Bajorek, S.M.; Hochreiter, L.E.

    1991-01-01

    The rector core power shape can vary over the fuel cycle due to load follow, control rod movement, burnup effects and Xenon transients. a best estimate thermal-hydraulic code must be able to accurately predict the reflooding behavior for different axial power shapes in order to find the power shapes effects on the loss-of-coolant peak cladding temperature. Several different reflood heat transfer experiments have been performed at the same or similar PWR reflood conditions with different axial power shapes. These experiments have different rod diameters, were full length, 3.65 m (12 feet) in height, and had simple egg crate grids. The WCOBRA/TRAC code has been used to model several different tests from these three experiments to examine the code's capability to predict the reflood transient for different power shapes, with a consistent model and noding scheme. This paper describes these different experiments, their power shapes, and the test conditions. The WCOBRA/TRAC code is described as well as the noding scheme, and the calculated results will be compared in detail with the test data rod temperatures. An overall assessment of the code's predictions of these experiments is presented

  5. Assessment of TRAC-PF1/MOD3 Mark-22 assembly model using SRL ''A'' tank single-assembly flow experiments

    International Nuclear Information System (INIS)

    Fischer, S.R.; Lam, K.; Lin, J.C.

    1991-01-01

    This paper summarizes the results of an assessment of our TRAC-PF1/MOD3 Mark-22 prototype fuel assembly model against single-assembly data obtained from the ''A'' Tank single-assembly tests that were performed at the Savannah River Laboratory. We felt the data characterize prototypic assembly behavior over a range of air-water flow conditions of interest for loss-of-coolant accident (LOCA) calculations. This study was part of a benchmarking effort performed to evaluate and validate a multiple-assembly, full-plant model that is being developed by Los Alamos National Laboratory to study various aspects of the Savannah River plant operating conditions, including LOCA transients, using TRAC-PF1/MOD3 Version 1.10. The results of this benchmarking effort demonstrate that TRAC-PF1/MOD3 is capable pf calculating plenum conditions and assembly flows during conditions thought to be typical of the Emergency Cooling System (ECS) phase of a LOCA. 10 refs., 12 fig

  6. BWR Refill-Reflood Program, Task 4.7 - model development: TRAC-BWR component models

    International Nuclear Information System (INIS)

    Cheung, Y.K.; Parameswaran, V.; Shaug, J.C.

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation

  7. The application of the TRAC-PD2 code in the CANON experiment

    International Nuclear Information System (INIS)

    Neves Conti, T. das; Freitas, R.L.

    1991-09-01

    The TRAC code (Transient Reactor Analysis Code), developed in the Los Alamos National Laboratory, is used to accident analysis in light water reactor. The TRAC-PD2 version, used in this paper, has a refined dynamic flow model for two fluids, which is based on the conservation equations of mass, momentum and energy for liquid and vapor, allowing then a mechanical and thermal unbalance between phases. This paper presents a comparison of the TRAC-PD2 code with the CANON experiment, which simulates a Loss of Coolant Accident (LOCA) by depressurizing a horizontal tube filled with water at different temperatures. The experiment consists in a instantaneous rupture in one of the tube's edge, taking measures of pressure and void fraction during the transient. The TRAC-PD2 code results are in a good agreement with the pressure and void fraction evolution obtained in the CANON experiment. (author)

  8. TRAC-BDl/MOD1 post-dryout wall heat transfer

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1984-01-01

    A comparison of TRAC-BWR heat transfer package with 766 data points is presented. On the average, TRAC-BWR provides a better prediction of the data compared to any single correlation although there is still a large scatter in TRAC-BWR prediction. Regarding any potential changes in the TRAC-BD1/MOD1 wall heat transfer package, it is concluded that no significant improvement in the film boiling area can be made until data with better measurements are obtained and analyzed. Specifically, data is needed which has a wide range of accurately measured void fractions. Heated tube data is also needed which addresses the countercurrent flow transition conditions

  9. TRAC-BWR development

    International Nuclear Information System (INIS)

    Weaver, W.L.; Rouhani, S.Z.

    1983-01-01

    The TRAC-BD1/MOD1 code containing many new or improved models has been assembled and is undergoing developmental assessment and testing and should be available shortly. The preparation of the manual for this code version is underway and should be available to the USNRC and their designated contractors by April of 1984. Finally work is currently underway on a fast running version of TRAC-BWR which will contain a one-dimensional neutron kinetics model

  10. TRAC-PF1/MOD1 assessment at Los Alamos

    International Nuclear Information System (INIS)

    Knight, T.D.

    1984-01-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide an advanced best-estimate predictive capability for the analysis of postulated accidents in pressurized water reactors (PWRs). Over the past several years, four distinct versions of the code have been released; each new version introduced improvements to the existing models and numerics and added new models to extend the applications of the code. The first goal of the code was to analyze large-break loss-of-coolant accidents (LOCAs), and the TRAC-P1A and TRAC-PD2 codes primarily addressed the large-break LOCA. (The TRAC-PD2/MOD1 code is essentially the same as the TRAC-PD2 code but it also includes a released set of error corrections.) The TRAC-PF1 code contained major changes to the models and trips and to the numerical methods. These modifications enhanced the computational speed of the code and improved the application to small-break LOCAs. The TRAC-PF1/MOD1 code, the latest released version, added improved steam-generator modeling, a turbine component, and a control system together with modified constitutive relations to model the balance of plant on the secondary side and to extend the applications to non-LOCA transients. The TRAC-PF1/MOD1 code also contains reasonably general reactor-kinetics modeling to facilitate the simulation of transients with delayed scram or without scram. 13 references, 24 figures

  11. Assessment of predictive capability of REFLA/TRAC code for large break LOCA transient in PWR using LOFT L2-5 test data

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio

    1994-03-01

    The REFLA/TRAC code is a best estimate code developed at Japan Atomic Energy Research Institute (JAERI) to provide advanced predictions of thermal hydraulic transient in light water reactors (LWRs). The REFLA/TRAC code uses the TRAC-PF1/MOD1 code as the framework of the code. The REFLA/TRAC code is expected to be used for the calibration of licensing codes, accident analysis, accident simulation of LWRs, and design of advanced LWRs. Several models have been implemented to the TRAC-PF1/MOD1 code at JAERI including reflood model, condensation model, interfacial and wall friction models, etc. These models have been verified using data from various separate effect tests. This report describes an assessment result of the REFLA/TRAC code, which was performed to assess the predictive capability for integral system behavior under large break loss of coolant accident (LBLOCA) using data from the LOFT L2-5 test. The assessment calculation confirmed that the REFLA/TRAC code can predict break mass flow rate, emergency core cooling water bypass and clad temperature excellently in the LOFT L2-5 test. The CPU time of the REFLA/TRAC code was about 1/3 of the TRAC-PF1/MOD1 code. The REFLA/TRAC code can perform stable and fast simulation of thermal hydraulic behavior in PWR LBLOCA with enough accuracy for practical use. (author)

  12. Development of computer aided engineering system for TRAC applications

    International Nuclear Information System (INIS)

    Arai, Kenji; Itoya, Seihiro; Uematsu, Hitoshi; Tsunoyama, Shigeaki

    1990-01-01

    An advanced best estimate computer program for nuclear reactor transient analysis, TRAC has been extensively used to carry out various thermal hydraulic calculations in the nuclear engineering field, because of its versatility. To perform efficiently a wide variety of TRAC calculation, the efficient utilization of computers and the convenient environment for input and output processing is necessary. We have applied a computer network comprising a super-computer, engineering work stations and personal computers to TRAC calculations and have assigned the appropriate functions to each computer. We have also been developing an interactive graphics system for input and output processing on an EWS. This hardware and software environment can improve the effectiveness of TRAC utilization for various thermal hydraulic calculations. (author)

  13. TRAC-PD2 analysis of FLECHT experiments

    International Nuclear Information System (INIS)

    Bott, T.F.; Mandell, D.A.

    1981-01-01

    This report describes TRAC-PD2 calculations of FLECHT (Full Length Emergency Cooling Heat Transfer) tests 4831 and 17201. The calculations were performed as part of the TRAC-PD2 developmental assessment where the objective was to assess TRAC-PD2 reflood modeling under forced flooding conditions. Calculated and experimental values for peak fuel-rod clad temperature, clad quenching time, and rod bundle effluent rates are compared; and calculations with an approximate radiation heat-transfer model added to the basic TRAC-PD2 code are performed. Findings demonstrate the potential importance of surface-to-surface radiation heat transfer in these tests

  14. Comparison of TRAC calculations with experimental data

    International Nuclear Information System (INIS)

    Jackson, J.F.; Vigil, J.C.

    1980-01-01

    TRAC is an advanced best-estimate computer code for analyzing postulated accidents in light water reactors. This paper gives a brief description of the code followed by comparisons of TRAC calculations with data from a variety of separate-effects, system-effects, and integral experiments. Based on these comparisons, the capabilities and limitations of the early versions of TRAC are evaluated

  15. TRAC code development status and plans

    International Nuclear Information System (INIS)

    Spore, J.W.; Liles, D.R.; Nelson, R.A.

    1986-01-01

    This report summarizes the characteristics and current status of the TRAC-PF1/MOD1 computer code. Recent error corrections and user-convenience features are described, and several user enhancements are identified. Current plans for the release of the TRAC-PF1/MOD2 computer code and some preliminary MOD2 results are presented. This new version of the TRAC code implements stability-enhancing two-step numerics into the 3-D vessel, using partial vectorization to obtain a code that has run 400% faster than the MOD1 code

  16. TRAC-PF1/MOD1 computer code

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1983-01-01

    TRAC-PF1 was designed to improve the ability of TRAC-PD2 to handle small-break LOCAs and other transients. TRAC-PF1 has all of the major improvements of TRAC-PD2 but, in addition, uses a full two-fluid model with two-step numerics in the one-dimensional components. The two-fluid model, in conjunction with a stratified-flow regime, handles countercurrent flow better than the drift-flux model previously used. The two-step numerics allow large time steps to be taken for slow transients. TRAC-PF1/MOD1 was designed to provide full balance-of-plant modeling capabilities. This required addition of a general capability for modeling plant control systems. The steam generator model was replaced to allow a wider variety of feedwater connections and better modeling of steam tube ruptures. A special turbine component also has been added, but new components were not required for adequate modeling of condensors, heaters, and pumps in the secondary system

  17. TRAC analyses for CCTF and SCTF tests and UPTF design/operation

    International Nuclear Information System (INIS)

    Williams, K.A.

    1983-01-01

    The 2D/3D Program is a multinational (Germany, Japan, and the United States) experimental and analytical nuclear reactor safety research program. The Los Alamos analysis effort is functioning as a vital part of the 2D/3D program. The CCTF and SCTF analyses have demonstrated that TRAC-PF1 can correctly predict multidimensional, nonequilibrium behavior in large-scale facilities prototypical of actual PWR's. Through these and future TRAC analyses the experimental findings can be related from facility to facility, and the results of this research program can be directly related to licensing concerns affecting actual PWR's

  18. TRAC analysis of passive containment cooling system performance

    International Nuclear Information System (INIS)

    Arai, Kenji; Kataoka, Kazuyoshi; Nagasaka, Hideo

    1993-01-01

    A passive containment cooling system (PCCS) is a promising concept to improve the reliability of decay heat removal during an accident. Toshiba has carried out analytical studies for PCCS development in addition to experimental studies, using a best estimate thermal hydraulic computer code TRAC. In order to establish an analytical model for the PCCS performance analysis, it is necessary for the analytical model to be qualified against experimental results and thoroughly address the phenomena important for PCCS performance analysis. In this paper, the TRAC qualification for PCCS application is reported. A TRAC model has been verified against a drain line break simulation test conducted at the PCCS integral test facility, GIRAFFE. The result shows that the TRAC model can accurately predict the major system response and the PCCS performance in the drain line break test. In addition, the results of several sensitivity analyses, showing various points concerning the modeling in the PCCS performance analysis, have been reported. The analyses have been carried out for the SBWR and the analytical points are closely related to important phenomena which can affect PCCS performance

  19. Atucha II NPP full scope simulator modelling with the thermal hydraulic code TRAC{sub R}T

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Pablo Rey; Ruiz, Jose Antonio; Rivero, Norberto, E-mail: prey@tecnatom.e, E-mail: jaruiz@tecnatom.e, E-mail: nrivero@tecnatom.e [Tecnatom S.A., Madrid (Spain)

    2011-07-01

    In February 2010 NA-SA (Nucleoelectrica Argentina S.A.) awarded Tecnatom the Atucha II full scope simulator project. NA-SA is a public company owner of the Argentinean nuclear power plants. Atucha II is due to enter in operation shortly. Atucha II NPP is a PHWR type plant cooled by the water of the Parana River and has the same design as the Atucha I unit, doubling its power capacity. Atucha II will produce 745 MWe utilizing heavy water as coolant and moderator, and natural uranium as fuel. A plant singular feature is the permanent core refueling. TRAC{sub R}T is the first real time thermal hydraulic six-equations code used in the training simulation industry for NSSS modeling. It is the result from adapting to real time the best estimate code TRACG. TRAC{sub R}T is based on first principle conservation equations for mass, energy and momentum for liquid and steam phases, with two phase flows under non homogeneous and non equilibrium conditions. At present, it has been successfully implemented in twelve full scope replica simulators in different training centers throughout the world. To ease the modeling task, TRAC{sub R}T includes a graphical pre-processing tool designed to optimize this process and alleviate the burden of entering alpha numerical data in an input file. (author)

  20. Improved gap conductance model for the TRAC code

    International Nuclear Information System (INIS)

    Hatch, S.W.; Mandell, D.A.

    1980-01-01

    The purpose of the present work, as indicated earlier, is to improve the present constant fuel clad spacing in TRAC-P1A without significantly increasing the computer costs. It is realized that the simple model proposed may not be accurate enough for some cases, but for the initial calculations made the DELTAR model improves the predictions over the constant Δr results of TRAC-P1A and the additional computing costs are negligible

  1. Assessment of the turbine trip transient in Cofrentes NPP with TRAC-BF1

    International Nuclear Information System (INIS)

    Castrillo, F.; Gomez, A.; Gallego, I.

    1993-06-01

    This report presents the results of the assessment of TRAC-BF1 (G1-J1) code with the model of C. N. Cofrentes for simulation of the transient originated by the manual trip of the main turbine. C. N. Cofrentes is a General Electric designed BWR/6 plant, with a nominal core thermal power of 2894 Mwt, in commercial operation since 1985, owned and operated by Hidroelectrica Espanola, S. A. The plant incorporates all the characteristics of BWR/6 reactors, with two turbine driven FW pumps. As a result of this assessment a model of C. N. Cofrentes has been developed for TRAC-BF1 that fairly reproduces operational transient behavior of the plant. A special purpose code was generated to obtain reactivity coefficients, as required by TRAC-BF1, from the 3D simulator

  2. Technical Requirements Analysis and Control Systems (TRACS) Initial Operating Capability (IOC) documentation

    Science.gov (United States)

    Hammond, Dana P.

    1991-01-01

    The Technical Requirements Analysis and Control Systems (TRACS) software package is described. TRACS offers supplemental tools for the analysis, control, and interchange of project requirements. This package provides the fundamental capability to analyze and control requirements, serves a focal point for project requirements, and integrates a system that supports efficient and consistent operations. TRACS uses relational data base technology (ORACLE) in a stand alone or in a distributed environment that can be used to coordinate the activities required to support a project through its entire life cycle. TRACS uses a set of keyword and mouse driven screens (HyperCard) which imposes adherence through a controlled user interface. The user interface provides an interactive capability to interrogate the data base and to display or print project requirement information. TRACS has a limited report capability, but can be extended with PostScript conventions.

  3. Post-processing of the TRAC code's results

    International Nuclear Information System (INIS)

    Baron, J.H.; Neuman, D.

    1987-01-01

    The TRAC code serves for the analysis of accidents in nuclear installations from the thermohydraulic point of view. A program has been developed with the aim of processing the information rapidly generated by the code, with screening graph capacity, both in high and low resolution, or either in paper through printer or plotter. Although the programs are intended to be used after the TRAC runs, they may be also used even when the program is running so as to observe the calculation process. The advantages of employing this type of tool, its actual capacity and its possibilities of expansion according to the user's needs are herein described. (Author)

  4. TRAC posttest calculations of Semiscale Test S-06-3

    International Nuclear Information System (INIS)

    Ireland, J.R.; Bleiweis, P.B.

    1980-01-01

    A comparison of Transient Reactor Analysis Code (TRAC) steady-state and transient results with Semiscale Test S-06-3 (US Standard Problem 8) experimental data is discussed. The TRAC model used employs fewer mesh cells than normal data comparison models so that TRAC's ability to obtain reasonable results with less computer time can be assessed. In general, the TRAC results are in good agreement with the data and the major phenomena found in the experiment are reproduced by the code with a substantial reduction in computing times

  5. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Findlay, J.A.; Hwang, W.S.

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation

  6. MINI-TRAC code: a driver program for assessment of constitutive equations of two-fluid model

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio

    1991-05-01

    MINI-TRAC code, a driver program for assessment of constitutive equations of two-fluid model, has been developed to perform assessment and improvement of constitutive equations of two-fluid model widely and efficiently. The MINI-TRAC code uses one-dimensional conservation equations for mass, momentum and energy based on the two-fluid model. The code can work on a personal computer because it can be operated with a core memory size less than 640 KB. The MINI-TRAC code includes constitutive equations of TRAC-PF1/MOD1 code, TRAC-BF1 code and RELAP5/MOD2 code. The code is modulated so that one can easily change constitutive equations to perform a test calculation. This report is a manual of the MINI-TRAC code. The basic equations, numerics, constitutive, equations included in the MINI-TRAC code will be described. The user's manual such as input description will be presented. The program structure and contents of main variables will also be mentioned in this report. (author)

  7. Independent assessment of TRAC-PD2 and RELAP5/MOD1 codes at BNL in FY 1981

    International Nuclear Information System (INIS)

    Saha, P.; Jo, J.H.; Neymotin, L.; Rohatgi, U.S.; Slovik, G.

    1982-12-01

    This report documents the independent assessment calculations performed with the TRAC-PD2 and RELAP/MOD1 codes at Brookhaven National Laboratory (BNL) during Fiscal Year 1981. A large variety of separate-effects experiments dealing with (1) steady-state and transient critical flow, (2) level swell, (3) flooding and entrainment, (4) steady-state flow boiling, (5) integral economizer once-through steam generator (IEOTSG) performance, (6) bottom reflood, and (7) two-dimensional phase separation of two-phase mixtures were simulated with TRAC-PD2. In addition, the early part of an overcooling transient which occurred at the Rancho Seco nuclear power plant on March 20, 1978 was also computed with an updated version of TRAC-PD2. Three separate-effects tests dealing with (1) transient critical flow, (2) steady-state flow boiling, and (3) IEOTSG performance were also simulated with RELAP5/MOD1 code. Comparisons between the code predictions and the test data are presented

  8. Comparison of TRAC-PF1/MOD1 to a no-failure UPI test in the Cylindrical Core Test Facility

    International Nuclear Information System (INIS)

    Cappiello, M.; Spore, J.

    1986-01-01

    TRAC-PF1/MOD1 is compared to a no-failure upper plenum injection reflood test in the Cylindrical Core Test Facility. The results show that TRAC can accurately predict the asymmetric channeling of fluid from upper plenum into the core and that a multidimensional modeling capability is required to do so. The rod temperature behavior is accurately predicted for both the peak cladding temperature and the quench time in the high- and low-power zones. Excessive downflow of liquid at the tie plate is predicted as a result of the interfacial drag model used in TRAC. 10 figs

  9. TRAC-P validation test matrix. Revision 1.0

    International Nuclear Information System (INIS)

    Hughes, E.D.; Boyack, B.E.

    1997-01-01

    This document briefly describes the elements of the Nuclear Regulatory Commission's (NRC's) software quality assurance program leading to software (code) qualification and identifies a test matrix for qualifying Transient Reactor Analysis Code (TRAC)-Pressurized Water Reactor Version (-P), or TRAC-P, to the NRC's software quality assurance requirements. Code qualification is the outcome of several software life-cycle activities, specifically, (1) Requirements Definition, (2) Design, (3) Implementation, and (4) Qualification Testing. The major objective of this document is to define the TRAC-P Qualification Testing effort

  10. Improved timestep-size diagnostic edits for TRAC-P

    International Nuclear Information System (INIS)

    Giguere, P.T.

    1996-04-01

    Improvements have been made to the timestep-size selection logic diagnostic edits of the Transient Reactor Analysis Code (TRAC), specifically to the TRAC-P version. These include both a precise account of the reason for the selection for individual timesteps and thermal-hydraulic information on mesh cells that control the timestep size. The new edits can be specified by user input as a range of timestep numbers, problem time, or both. A description of the current timestep controls in effect in TRAC-P is also given

  11. Improved timestep-size diagnostic edits for TRAC-P

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, P.T. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1996-04-01

    Improvements have been made to the timestep-size selection logic diagnostic edits of the Transient Reactor Analysis Code (TRAC), specifically to the TRAC-P version. These include both a precise account of the reason for the selection for individual timesteps and thermal-hydraulic information on mesh cells that control the timestep size. The new edits can be specified by user input as a range of timestep numbers, problem time, or both. A description of the current timestep controls in effect in TRAC-P is also given.

  12. TRAC-PD2 modeling of LOFT and PWR small cold-leg breaks

    International Nuclear Information System (INIS)

    Knight, T.D.; Willcutt, G.J.E. Jr.; Lime, J.F.

    1981-01-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light-water reactors. TRAC-PD2, the latest publicly released version of the code, is currently being tested against small-break and other transients in experimental facilities; it is also being used to analyze postulated accidents in commercial power reactors. Calculated results for LOFT small-break experiments are compared to data, and the results from two small-break calculations for two different reactor systems are presented. It is concluded that TRAC-PD2 is useful for the analysis of cold-leg small-break accidents

  13. TRAC-P validation test matrix. Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, E.D.; Boyack, B.E.

    1997-09-05

    This document briefly describes the elements of the Nuclear Regulatory Commission`s (NRC`s) software quality assurance program leading to software (code) qualification and identifies a test matrix for qualifying Transient Reactor Analysis Code (TRAC)-Pressurized Water Reactor Version (-P), or TRAC-P, to the NRC`s software quality assurance requirements. Code qualification is the outcome of several software life-cycle activities, specifically, (1) Requirements Definition, (2) Design, (3) Implementation, and (4) Qualification Testing. The major objective of this document is to define the TRAC-P Qualification Testing effort.

  14. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided

  15. Software design implementation document for TRAC-M data structures

    Energy Technology Data Exchange (ETDEWEB)

    Jolly-Woodruff, S. [Ogden Environmental and Energy Services (United States); Mahaffy, J. [Pennsylvania State Univ., University Park, PA (United States); Giguere, P.; Dearing, J.; Boyack, B. [Los Alamos National Lab., NM (United States)

    1997-07-01

    The Transient Reactor Analysis Code (TRAC)-M system-wide and component data structures are to be reimplemented by using the new features of Fortran 90 (F90). There will be no changes to the conceptual design, data flow, or computational flow with respect to the current TRAC-P, except that readability, maintainability, and extensibility will be improved. However, the task described here is a basic step that does not meet all future needs of the code, especially regarding extensibility. TRAC-M will be fully functional and will produce null computational changes with respect to TRAC-P, Version 5.4.25; computational efficiency will not be degraded significantly. The existing component and functional modularity and possibilities for coarse-grained parallelism will be retained.

  16. Software design implementation document for TRAC-M data structures

    International Nuclear Information System (INIS)

    Jolly-Woodruff, S.; Mahaffy, J.; Giguere, P.; Dearing, J.; Boyack, B.

    1997-07-01

    The Transient Reactor Analysis Code (TRAC)-M system-wide and component data structures are to be reimplemented by using the new features of Fortran 90 (F90). There will be no changes to the conceptual design, data flow, or computational flow with respect to the current TRAC-P, except that readability, maintainability, and extensibility will be improved. However, the task described here is a basic step that does not meet all future needs of the code, especially regarding extensibility. TRAC-M will be fully functional and will produce null computational changes with respect to TRAC-P, Version 5.4.25; computational efficiency will not be degraded significantly. The existing component and functional modularity and possibilities for coarse-grained parallelism will be retained

  17. TRACE and TRAC-BF1 benchmark against Leibstadt plant data during the event inadvertent opening of relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Sekhri, A.; Baumann, P. [KernkraftwerkLeibstadt AG, 5325 Leibstadt (Switzerland); Wicaksono, D. [Swiss Federal Inst. of Technology Zurich ETH, 8092 Zurich (Switzerland); Miro, R.; Barrachina, T.; Verdu, G. [Inst. for Industrial, Radiophysical and Environmental Safety ISIRYM, Universitat Politecnica de Valencia UPV, Cami de Vera s/n, 46021 Valencia (Spain)

    2012-07-01

    In framework of introducing TRACE code to transient analyses system codes for Leibstadt Power Plant (KKL), a conversion process of existing TRAC-BF1 model to TRACE has been started within KKL. In the first step, TRACE thermal-hydraulic model for KKL has been developed based on existing TRAC-BF1 model. In order to assess the code models a simulation of plant transient event is required. In this matter simulations of inadvertent opening of 8 relief valves event have been performed. The event occurs at KKL during normal operation, and it started when 8 relief valves open resulting in depressurization of the Reactor Pressure Vessel (RPV). The reactor was shutdown safely by SCRAM at low level. The high pressure core spray (HPCS) and the reactor core isolation cooling (RCIC) have been started manually in order to compensate the level drop. The remaining water in the feedwater (FW) lines flashes due to saturation conditions originated from RPV depressurization and refills the reactor downcomer. The plant boundary conditions have been used in the simulations and the FW flow rate has been adjusted for better prediction. The simulations reproduce the plant data with good agreement. It can be concluded that the TRAC-BF1 existing model has been used successfully to develop the TRACE model and the results of the calculations have shown good agreement with plant recorded data. Beside the modeling assessment, the TRACE and TRAC-BF1 capabilities to reproduce plant physical behavior during the transient have shown satisfactory results. The first step of developing KKL model for TRACE has been successfully achieved and this model is further developed in order to simulate more complex plant behavior such as Turbine Trip. (authors)

  18. TRACE and TRAC-BF1 benchmark against Leibstadt plant data during the event inadvertent opening of relief valves

    International Nuclear Information System (INIS)

    Sekhri, A.; Baumann, P.; Wicaksono, D.; Miro, R.; Barrachina, T.; Verdu, G.

    2012-01-01

    In framework of introducing TRACE code to transient analyses system codes for Leibstadt Power Plant (KKL), a conversion process of existing TRAC-BF1 model to TRACE has been started within KKL. In the first step, TRACE thermal-hydraulic model for KKL has been developed based on existing TRAC-BF1 model. In order to assess the code models a simulation of plant transient event is required. In this matter simulations of inadvertent opening of 8 relief valves event have been performed. The event occurs at KKL during normal operation, and it started when 8 relief valves open resulting in depressurization of the Reactor Pressure Vessel (RPV). The reactor was shutdown safely by SCRAM at low level. The high pressure core spray (HPCS) and the reactor core isolation cooling (RCIC) have been started manually in order to compensate the level drop. The remaining water in the feedwater (FW) lines flashes due to saturation conditions originated from RPV depressurization and refills the reactor downcomer. The plant boundary conditions have been used in the simulations and the FW flow rate has been adjusted for better prediction. The simulations reproduce the plant data with good agreement. It can be concluded that the TRAC-BF1 existing model has been used successfully to develop the TRACE model and the results of the calculations have shown good agreement with plant recorded data. Beside the modeling assessment, the TRACE and TRAC-BF1 capabilities to reproduce plant physical behavior during the transient have shown satisfactory results. The first step of developing KKL model for TRACE has been successfully achieved and this model is further developed in order to simulate more complex plant behavior such as Turbine Trip. (authors)

  19. Evaluation of the Trac-PF1 code for simulating the Neptun reflooding experiment

    International Nuclear Information System (INIS)

    Pontedeiro, A.C.; Galetti, M.R.S.

    1991-01-01

    The present work presents an assessment of the TRAC-BF1 code using the results of the NEPTUN experiment which simulates the reflooding in a loss-of-coolant accident (LOCA) in a PWR. The NEPTUN experiment is composed of an array of electrically-heated tubes where the reflooding condition can be tested. Two types of tests results are presented and compared with the values obtained with the TRAC-BF1 code. From this comparison it is concluded that TRAC is suitable for verifying accident analysis. (author)

  20. Comparison of a TRAC calculation to the data from LSTF run SB-CL-05

    International Nuclear Information System (INIS)

    Motley, F.; Schultz, R.

    1986-01-01

    Run SB-CL-05 is a 5% break in the side of the cold leg. The test results show that the core was uncovered briefly and that the rods overheated at certain core locations. Liquid holdup on the upflow side of the steam generator tubes was observed. When the loop seal cleared, the core refilled and the rods cooled. The TRAC results are in reasonable agreement with the test data, meaning that TRAC correctly predicted the major trends and phenomena. TRAC predicted the core uncovery, the resulting rod heatup, and the liquid holdup on the upflow side of the steam generator tubes correctly. The clearing of the loop seal allowed core recovery and cooled the overheated rods just as it had in the data, but TRAC predicted its occurrence 20 s late. The experimental and TRAC analysis results of run SB-CL-05 are similar to those for Semiscale Run S-UT-8. In both runs there was core uncovery, rod overheating, and steam generator liquid holdup. These results confirm scaling of these phenomena from Semiscale (1/1650) to LSTF (1/48)

  1. Hazardous chemical tracking system (HAZ-TRAC)

    International Nuclear Information System (INIS)

    Bramlette, J.D.; Ewart, S.M.; Jones, C.E.

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA)

  2. Hazardous chemical tracking system (HAZ-TRAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bramlette, J D; Ewart, S M; Jones, C E

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA).

  3. Assessment of TRAC-BF1 1D reflood model with CCTF and SCTF data

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio; Abe, Yutaka.

    1993-03-01

    Post test calculations for six selected Cylindrical Core Test Facility (CCTF) and Slab Core Test Facility (SCTF) tests were performed to assess the core thermal hydraulic models of the TRAC-BF1 code during the reflood in a PWR LOCA. A special version of the TRAC code was developed at JAERI by implementing the constitutive package of the TRAC-BF1 code into the TRAC-PF1 code for this assessment. The TRAC-BF1 model predicted well the void fraction at either bottom or top part of the core and overpredicted the void fraction at the center part of the core in the CCTF and SCTF tests performed under so-called licensing conditions. The TRAC-BF1 model overpredicted the clad temperatures at the center part of the core. The TRAC-BF1 model predicted a jump of void fraction where the flow pattern transition between the bubbly/slug flow and the annular/dispersed flow regimes occurred. The jump caused the water mass flow rate to be unstable and resulted in the overprediction of the void fraction at the center part of the core. It was also found that the TRAC-BF1 film boiling model underestimated the heat transfer coefficient in the vicinity of the quench front and caused the quench front propagation to be delayed. These assessment results suggest the following areas should be improved in future to apply the TRAC-BF1 code to the reflood in a PWR LOCA: (1) Core hydraulic model where flow pattern transition occurs, (2) Core heat transfer model in the film boiling regime, especially for the dependence on the distance from the quench front. (author)

  4. Improvements to TRAC models of condensing stratified flow. Pt. 1

    International Nuclear Information System (INIS)

    Zhang, Q.; Leslie, D.C.

    1991-12-01

    Direct contact condensation in stratified flow is an important phenomenon in LOCA analyses. In this report, the TRAC interfacial heat transfer model for stratified condensing flow has been assessed against the Bankoff experiments. A rectangular channel option has been added to the code to represent the experimental geometry. In almost all cases the TRAC heat transfer coefficient (HTC) over-predicts the condensation rates and in some cases it is so high that the predicted steam is sucked in from the normal outlet in order to conserve mass. Based on their cocurrent and countercurrent condensing flow experiments, Bankoff and his students (Lim 1981, Kim 1985) developed HTC models from the two cases. The replacement of the TRAC HTC with either of Bankoff's models greatly improves the predictions of condensation rates in the experiment with cocurrent condensing flow. However, the Bankoff HTC for countercurrent flow is preferable because it is based only on the local quantities rather than on the quantities averaged from the inlet. (author)

  5. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    International Nuclear Information System (INIS)

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-01-01

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect

  6. Posttest TRAC-PD2/MOD1 predictions for FLECHT SEASET test 31504

    International Nuclear Information System (INIS)

    Booker, C.P.

    1982-01-01

    TRAC-PD2/MOD1 is a publicly released version of TRAC that is used primarily to analyze large-break loss-of-coolant accidents in pressurized-water reactors (PWRs). TRAC-PD2 can calculate, among other things, reflood phenomena. TRAC posttest predictions are compared with test 31504 reflood data from the Full-Length Emergency Core Heat Transfer (FLECHT) System Effects and Separate Effects Tests (SEASET) facility. A false top-down quench is predicted near the top of the core and the subcooling is underpredicted at the bottom of the core. However, the overall TRAC predictions are good, especially near the center of the core

  7. Development of a graphical user interface for the TRAC plant/safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A.E.; Harkins, C.K.; Smith, R.J.

    1995-09-01

    A graphical user interface (GUI) for the Transient Reactor Analysis Code (TRAC) has been developed at Knolls Atomic Power Laboratory. This X Window based GUI supports the design and analysis process, acting as a preprocessor, runtime editor, help system and post processor to TRAC-PF1/MOD2. TRAC was developed at the Los Alamos National Laboratory (LANL). The preprocessor is an icon-based interface which allows the user to create a TRAC model. When the model is complete, the runtime editor provides the capability to execute and monitor TRAC runs on the workstation or supercomputer. After runs are made, the output processor allows the user to extract and format data from the TRAC graphics file. The TRAC GUI is currently compatible with TRAC-PF1/MOD2 V5.3 and is available with documentation from George Niederauer, Section Leader of the Software Development Section, Group TSA-8, at LANL. Users may become functional in creating, running, and interpreting results from TRAC without having to know Unix commands and the detailed format of any of the data files. This reduces model development and debug time and increases quality control. Integration with post-processing and visualization tools increases engineering effectiveness.

  8. Development of a graphical user interface for the TRAC plant/safety analysis code

    International Nuclear Information System (INIS)

    Kelly, A.E.; Harkins, C.K.; Smith, R.J.

    1995-01-01

    A graphical user interface (GUI) for the Transient Reactor Analysis Code (TRAC) has been developed at Knolls Atomic Power Laboratory. This X Window based GUI supports the design and analysis process, acting as a preprocessor, runtime editor, help system and post processor to TRAC-PF1/MOD2. TRAC was developed at the Los Alamos National Laboratory (LANL). The preprocessor is an icon-based interface which allows the user to create a TRAC model. When the model is complete, the runtime editor provides the capability to execute and monitor TRAC runs on the workstation or supercomputer. After runs are made, the output processor allows the user to extract and format data from the TRAC graphics file. The TRAC GUI is currently compatible with TRAC-PF1/MOD2 V5.3 and is available with documentation from George Niederauer, Section Leader of the Software Development Section, Group TSA-8, at LANL. Users may become functional in creating, running, and interpreting results from TRAC without having to know Unix commands and the detailed format of any of the data files. This reduces model development and debug time and increases quality control. Integration with post-processing and visualization tools increases engineering effectiveness

  9. Implementation of an implicit method into heat conduction calculation of TRAC-PF1/MOD2 code

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio

    1990-08-01

    A two-dimensional unsteady heat conduction equation is solved in the TRAC-PF/MOD2 code to calculate temperature transients in fuel rod. A large CPU time is often required to get stable solution of temperature transients in the TRAC calculation with a small axial node size (less than 1.0 mm), because the heat conduction equation is discretized explicitly. To eliminate the restriction of the maximum time step size by the heat conduction calculation, an implicit method for solving the heat condition equation was developed and implemented into the TRAC code. Several assessment calculations were performed with the original and modified TRAC codes. It is confirmed that the implicit method is reliable and is successfully implemented into the TRAC code through comparison with theoretical solutions and assessment calculation results. It is demonstrated that the implicit method makes the heat conduction calculation practical even for the analyses of temperature transients with the axial node size less than 0.1 mm. (author)

  10. TRAC-P1: an advanced best estimate computer program for PWR LOCA analysis. I. Methods, models, user information, and programming details

    International Nuclear Information System (INIS)

    1978-05-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations

  11. TRAC Innovation Report (FY15 to FY18)

    Science.gov (United States)

    2017-11-01

    Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction...inside and outside of TRAC. Rapid, successful adoption of ideas requires leadership and support, but innovation is fundamentally a bottom up phenomena...the organizational environment. TRAC provides a knowledge management system and communities of interest and practice to foster teamwork

  12. Development of REFLA/TRAC code for engineering work station

    International Nuclear Information System (INIS)

    Ohnuki, Akira; Akimoto, Hajime; Murao, Yoshio

    1994-03-01

    The REFLA/TRAC code is a best-estimate code which is expected to check reactor safety analysis codes for light water reactors (LWRs) and to perform accident analyses for LWRs and also for an advanced LWR. Therefore, a high predictive capability is required and the assessment of each physical model becomes important because the models govern the predictive capability. In the case of the assessment of three-dimensional models in REFLA/TRAC code, a conventional large computer is being used and it is difficult to perform the assessment efficiently because the turnaround time for the calculation and the analysis is long. Then, a REFLA/TRAC code which can run on an engineering work station (EWS) was developed. Calculational speed of the current EWS is the same order as that of large computers and the EWS has an excellent function for multidimensional graphical drawings. Besides, the plotting processors for X-Y drawing and for two-dimensional graphical drawing were developed in order to perform efficient analyses for three-dimensional calculations. In future, we can expect that the assessment of three-dimensional models becomes more efficient by introducing an EWS with higher calculational speed and with improved graphical drawings. In this report, each outline for the following three programs is described: (1) EWS version of REFLA/TRAC code, (2) Plot processor for X-Y drawing and (3) Plot processor for two-dimensional graphical drawing. (author)

  13. Updated TRAC analysis of an 80% double-ended cold-leg break for the AP600 design

    International Nuclear Information System (INIS)

    Lime, J.F.; Boyack, B.E.

    1995-01-01

    An updated TRAC 80% large-break loss-of-coolant accident (LBLOCA) has been calculated for the Westinghouse AP600 advanced reactor design, The updated calculation incorporates major code error corrections, model corrections, and plant design changes. The 80% break size was calculated by Westinghouse to be the most severe large-break size for the AP600 design. The LBLOCA transient was calculated to 144 s. Peak cladding temperatures (PCTS) were well below the Appendix K limit of 1,478 K (2,200 F), but very near the cladding oxidation temperature of 1,200 K (1,700 F). Transient event times and PCT for the TRAC calculation were in reasonable agreement with those calculated by Westinghouse using their WCOBRA/TRAC code. However, there were significant differences in the detailed phenomena calculated by the two codes, particularly during the blowdown phase. The reasons for these differences are still being investigated. Additional break sizes and break locations need to be analyzed to confirm the most severe break postulated by Westinghouse

  14. Implementation and assessment of improved models and options in TRAC-BF1

    International Nuclear Information System (INIS)

    Analytis, G.Th.

    1996-07-01

    A summary of modifications and options introduced in TRAC-BF1 is presented and it is shown that the predicting capabilities of the modified version of the core are greatly improved. These changes include the introduction of a different heat transfer package during reflooding, the implementation of a simple single-phase limit procedure for forcing the two phases to acquire the same velocity if one phase disappears, a close assessment of the annular flow interfacial shear correlation, implementation of a simple radiation model which seems to alleviate some numerical-oscillations problems induced by the existing highly complex model. Furthermore, different options were introduced and tested like upwinding some terms of the momentum equations (which seems to solve a number of problems reported in the past), the second upwind scheme for the convective terms of the phasic momentum equations and the implementation and assessment of a completely different annular flow interfacial shear correlation. The modified TRAC-BF1 is assessed against some bottom-flooding separate-effect experiments, a 'benchmark' top flooding simulation as well as against the TLTA test Nr. 6423. In the process of this task, the different options are assessed and discussed and is shown that the predictions of the modified code are physically sound and close to the measurements, while almost all the predicted variables are free of unphysical spurious oscillations. The modifications introduced solve a number of problems associated with the frozen version of the code and result in a version which can be confidently used for LB-LOCA analyses. (author) 19 figs., 16 refs

  15. Fuel models and results from the TRAC-PF1/MIMAS TMI-2 accident calculation

    International Nuclear Information System (INIS)

    Schwegler, E.C.; Maudlin, P.J.

    1983-01-01

    A brief description of several fuel models used in the TRAC-PF1/MIMAS analysis of the TMI-2 accident is presented, and some of the significant fuel-rod behavior results from this analysis are given. Peak fuel-rod temperatures, oxidation heat production, and embrittlement and failure behavior calculated for the TMI-2 accident are discussed. Other aspects of fuel behavior, such as cladding ballooning and fuel-cladding eutectic formation, were found not to significantly affect the accident progression

  16. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  17. One dimensional neutron kinetics in the TRAC-BF1 code

    International Nuclear Information System (INIS)

    Weaver, W.L. III; Wagner, K.C.

    1987-01-01

    The TRAC-BWR code development program at the Idaho National Engineering Laboratory is developing a version of the TRAC code for the U.S. Nuclear Regulatory Commission (USNRC) to provide a best-estimate analysis capability for the simulation of postulated accidents in boiling water reactor (BWR) power systems and related experimental facilities. Recent development efforts in the TRAC-BWR program have focused on improving the computational efficiency through the incorporation of a hybrid Courant- limit-violating numerical solution scheme in the one-dimensional component models and on improving code accuracy through the development of a one-dimensional neutron kinetics model. Many other improvements have been incorporated into TRAC-BWR to improve code portability, accuracy, efficiency, and maintainability. This paper will describe the one- dimensional neutron kinetics model, the generation of the required input data for this model, and present results of the first calculations using the model

  18. TRAC development and assessment status

    International Nuclear Information System (INIS)

    Vigil, J.C.; Knight, T.D.

    1981-01-01

    TRAC is being developed at the Los Alamos National Laboratory to provide an advanced systems code for light-water reactor accident analysis. The released TRAC versions (P1, P1A, and PD2) were intended primarily as benchmark codes for large-break loss-of-coolant accidents but PD2 has been applied successfully to TMI-type transients and other small-break transients. A fast-running version, PFl, is currently under development to address more efficiently and accurately these types of transients. All of the released versions have been subjected to testing against separate-effects, system-effects, and integral experiments covering a wide range of scales. Assessment results indicate that PD2 does a credible job overall; needed improvements are being addressed in PFl and in modifications to PD2

  19. Presentation of geometries and transient results of TRAC-calculations

    International Nuclear Information System (INIS)

    Lutz, A.; Lang, U.; Ruehle, R.

    1985-02-01

    The computer code TRAC is used to analyze the transient behaviour of nuclear reactors. The input of a TRAC-Calculation, as well as the produced result files serve for the graphical presentation of the geometries and transient results. This supports the search for errors during input generation and the understanding of complex processes by dynamic presentation of calculational result in colour. (orig.) [de

  20. EYE-TRAC: monitoring attention and utility for mTBI

    Science.gov (United States)

    Maruta, Jun; Tong, Jianliang; Lee, Stephanie W.; Iqbal, Zarah; Schonberger, Alison; Ghajar, Jamshid

    2012-06-01

    Attention is a core function in cognition and also the most prevalent cognitive deficit in mild traumatic brain injury (mTBI). Predictive timing is an essential element of attention functioning because sensory processing and execution of goal-oriented behavior are facilitated by temporally accurate prediction. It is hypothesized that impaired synchronization between prediction and external events accounts for the attention deficit in mTBI. Other cognitive and somatic or affective symptoms associated with mTBI may be explained as secondary consequences of impaired predictive timing. Eye-Tracking Rapid Attention Computation (EYE-TRAC) is the quantification of predictive timing with indices of dynamic visuo-motor synchronization (DVS) between the gaze and the target during continuous predictive visual tracking. Such quantification allows for cognitive performance monitoring in comparison to the overall population as well as within individuals over time. We report preliminary results of normative data and data collected from subjects with a history of mTBI within 2 weeks of injury and post-concussive symptoms at the time of recruitment. A substantial proportion of mTBI subjects demonstrated DVS scores worse than 95% of normal subjects. In addition, longitudinal monitoring of acute mTBI subjects showed that initially abnormal DVS scores were followed by improvement toward the normal range. In summary, EYE-TRAC provides fast and objective indices of DVS that allow comparison of attention performance to a normative standard and monitoring of within-individual changes.

  1. GPS-based Microenvironment Tracker (MicroTrac) Model to ...

    Science.gov (United States)

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared to 24 h diary data from 7 participants on workdays and 2 participants on nonworkdays, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize

  2. Evaluation of fuel-temperature feedback mechanisms in TRAC-PF1/MOD2/NESTLE

    International Nuclear Information System (INIS)

    Knepper, Paula L.; Feltus, Madeline; Hochreiter, L.E.; Ivanov, Kostadin

    1999-01-01

    Coupled spatial kinetics and thermal-hydraulics system codes provide a means to model transient nuclear reactor behavior more accurately. Transients marked by strong perturbations, both with thermal-hydraulics and neutronics, such as a control-rod ejection or a main steam-line break, are especially of interest. It is now feasible to model complex reactor behavior with a coupled thermal-hydraulics and spatial kinetics code that provides a means to forecast safety margins. Recently, the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, was coupled with the NESTLE code. This coupled code (TRAC-PF1/MOD2/NESTLE) is used to examine effective fuel-temperature models. The Electric Power Research Institute (EPRI) rod-ejection benchmark was analyzed to evaluate the influence of effective fuel temperature. The rod-ejection transient tests only the fuel-rod, heat-conduction coupling. The coolant thermal-hydraulic coupling is not tested because of the speed of the transient. The neutronics solution changes extremely rapidly, whereas the convective heat transfer at the fuel surface requires more time to influence the coolant temperature of the system. The need to model the response of the system coolant temperature is not crucial in this analysis. The influence of the effective fuel temperature is the key component of this study. Various models were examined using the coupled code to calculate effective fuel temperatures. The influence of different, effective fuel-temperature models on the coupled-code results is studied. Three effective fuel-temperature models are examined: (l) volume average effective fuel temperature, (2) the effective fuel-temperature model suggested by the Office of Economic Cooperation and Development (OECD) rod-ejection benchmark, and (3) the NESTLE effective fuel-temperature model. A discussion is provided describing the effective fuel-temperature models examined in TRAC-PF1/MOD2/NESTLE and the influence of effective fuel temperature in

  3. TracWorks - global fuel assembly data management

    International Nuclear Information System (INIS)

    Cooney, B.F.

    1997-01-01

    The TracWorks Data Management System is a workstation-based software product that provides a utility with a single, broadly available, regularly updated source for virtually every data item available for a fuel assembly or core component. TracWorks is designed to collect, maintain and provide information about assembly and component locations and movements during the refuelling process and operation, assembly burnup and isotopic inventory (both in-core and out-of-core), pin burnup and isotopics for pins that have been removed from their original assemblies, assembly and component inspection results (including video) and manufacturing data provided by the fabrication plant. (UK)

  4. Post-test analysis of semiscale large-break test S-06-3 using TRAC-PF1

    International Nuclear Information System (INIS)

    Boyack, B.E.

    1982-01-01

    The Transient Reactor Analysis Code (TRAC) is an advanced systems code for light-water-reactor accident analysis. The code was developed originally to analyze large-break loss-of-coolant accidents (LOCAs) and running time was not a primary development criterion. TRAC-PF1 was developed because increased application of the code to long transients such as small-break LOCAs required a faster-running code version. Although developed for long transients, its performance on large-break transients is still important. This paper assesses the ability of TRAC-PF1 to predict large-break-LOCA Test S-06-3 conducted in the Semiscale Mod-1 facility

  5. TRAC-PF1 analysis of LOFT steam-generator feedwater transient test L9-1

    International Nuclear Information System (INIS)

    Meier, J.K.

    1983-01-01

    The Transient Reactor Analysis Code (TRAC-PF1) calculations were compared to test data from Loss-of-Fluid Test (LOFT) L9-1, which was a loss-of-feedwater transient. This paper includes descriptions of the test and the TRAC input and compares the TRAC-calculated results with the test data. We conclude that the code predicted the experiment well, given the uncertainties in the boundary conditions. The analysis indicates the need to model all the flow paths and heat structures, and to improve the TRAC wall condensation heat-transfer model

  6. TRAC analysis of design basis events for the accelerator production of tritium target/blanket

    International Nuclear Information System (INIS)

    Lin, J.C.; Elson, J.

    1997-01-01

    A two-loop primary cooling system with a residual heat removal system was designed to mitigate the heat generated in the tungsten neutron source rods inside the rungs of the ladders and the shell of the rungs. The Transient Reactor Analysis Code (TRAC) was used to analyze the thermal-hydraulic behavior of the primary cooling system during a pump coastdown transient; a cold-leg, large-break loss-of-coolant accident (LBLOCA); a hot-leg LBLOCA; and a target downcomer LBLOCA. The TRAC analysis results showed that the heat generated in the tungsten neutron source rods can be mitigated by the primary cooling system for the pump coastdown transient and all the LBLOCAs except the target downcomer LBLOCA. For the target downcomer LBLOCA, a cavity flood system is required to fill the cavity with water at a level above the large fixed headers

  7. Numerical analysis on ingress-of-coolant events in fusion reactors with TRAC-PF1 code

    International Nuclear Information System (INIS)

    Ose, Yasuo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    As for accident events related with thermal-hydraulics, in a fusion experimental reactor an ingress-of-coolant event (ICE) and a loss-of-vacuum-accident event (LOVA) should be considered. An integrated ICE/LOVA test apparatus is under planning in order to estimate quantitatively heat transfer and fluid flow characteristics under ICE and LOVA events. This study was carried out to predict numerically the thermal-hydraulic characteristics in fusion reactors at the ICE events before construction of the integrated ICE/LOVA test apparatus. The TRAC-PF1 code, which was originally developed for the thermal-hydraulic safety analysis in light water reactors, was used. The numerical analyses were performed for two kinds of system configuration with/without a pressure-suppression tank:the former for is investigation of the pressure rise characteristics and two-phase flow behavior; the latter for estimation of an effect of the pressure reduction due to the pressure-suppression tank. From the present analytical results, effects of the ingress water flow rate and vessel temperatures on the pressure rise ware clarified quantitatively. Furthermore, the pressure-rise suppression effect due to the vapor condensation in the pressure-suppression tank was predicted numerically. In addition, the useful information regarding to the design of the integrated ICE/LOVA test apparatus and the knowledge with respect to the effective usage of the TRAC-PF1 code were obtained through the present numerical study. (author)

  8. Nodal kinetics model upgrade in the Penn State coupled TRAC/NEM codes

    International Nuclear Information System (INIS)

    Beam, Tara M.; Ivanov, Kostadin N.; Baratta, Anthony J.; Finnemann, Herbert

    1999-01-01

    The Pennsylvania State University currently maintains and does development and verification work for its own versions of the coupled three-dimensional kinetics/thermal-hydraulics codes TRAC-PF1/NEM and TRAC-BF1/NEM. The subject of this paper is nodal model enhancements in the above mentioned codes. Because of the numerous validation studies that have been performed on almost every aspect of these codes, this upgrade is done without a major code rewrite. The upgrade consists of four steps. The first two steps are designed to improve the accuracy of the kinetics model, based on the nodal expansion method. The polynomial expansion solution of 1D transverse integrated diffusion equation is replaced with a solution, which uses a semi-analytic expansion. Further the standard parabolic polynomial representation of the transverse leakage in the above 1D equations is replaced with an improved approximation. The last two steps of the upgrade address the code efficiency by improving the solution of the time-dependent NEM equations and implementing a multi-grid solver. These four improvements are implemented into the standalone NEM kinetics code. Verification of this code was accomplished based on the original verification studies. The results show that the new methods improve the accuracy and efficiency of the code. The verification of the upgraded NEM model in the TRAC-PF1/NEM and TRAC-BF1/NEM coupled codes is underway

  9. TracWorksTM-global fuel assembly data management

    International Nuclear Information System (INIS)

    Cooney, B.F.

    1997-01-01

    The TracWorks TM Data Management System is a workstation-based software product that provides a utility with a single, broadly available, regularly updated source for virtually every data item available for a fuel assembly or core component. TracWorks is designed to collect, maintain and provide information about assembly and component locations and movements during the refueling process and operation, assembly burnup and isotopic inventory (both in-core and out-of-core), pin burnup and isotopics for pins that have been removed from their original assemblies, assembly and component inspection results (including video) and manufacturing data provided by the fabrication plant

  10. TRAC, a collaborative computer tool for tracer-test interpretation

    Directory of Open Access Journals (Sweden)

    Fécamp C.

    2013-05-01

    Full Text Available Artificial tracer tests are widely used by consulting engineers for demonstrating water circulation, proving the existence of leakage, or estimating groundwater velocity. However, the interpretation of such tests is often very basic, with the result that decision makers and professionals commonly face unreliable results through hasty and empirical interpretation. There is thus an increasing need for a reliable interpretation tool, compatible with the latest operating systems and available in several languages. BRGM, the French Geological Survey, has developed a project together with hydrogeologists from various other organizations to build software assembling several analytical solutions in order to comply with various field contexts. This computer program, called TRAC, is very light and simple, allowing the user to add his own analytical solution if the formula is not yet included. It aims at collaborative improvement by sharing the tool and the solutions. TRAC can be used for interpreting data recovered from a tracer test as well as for simulating the transport of a tracer in the saturated zone (for the time being. Calibration of a site operation is based on considering the hydrodynamic and hydrodispersive features of groundwater flow as well as the amount, nature and injection mode of the artificial tracer. The software is available in French, English and Spanish, and the latest version can be downloaded from the web site http://trac.brgm.fr.

  11. Resuspension parameters for TRAC dispersion model

    International Nuclear Information System (INIS)

    Langer, G.

    1987-01-01

    Resuspension factors for the wind erosion of soil contaminated with plutonium are necessary to run the Rocky Flats Plant Terrain Responsive Atmospheric Code (TRAC). The model predicts the dispersion and resulting population dose due to accidental plutonium releases

  12. Assessment of a new interfacial friction correlation in TRAC-BD1/MOD1

    International Nuclear Information System (INIS)

    Analytis, G.T.

    1986-01-01

    Analysis of a number of 5-bar (and one 1-bar) boiloff experiments in the electrically heated 33-rod bundle NEPTUN at the Swiss Federal Institute for Reactor Research by TRAC-BD1 version 12 and MOD1 has shown that the code consistently underpredicts the collapsed liquid level histories, hence predicting earlier critical heat fluxes and higher peak rod surface temperatures than the measurements showed. Moreover, recent work has demonstrated that these differences can be attributed to the bubbly/churn interfacial friction model in TRAC-BD1 (resulting in rather large interfacial drag) whose appropriateness for rod bundles is questionable; decreasing the interfacial drag resulted in excellent agreement between measurements and code predictions. Recent analysis of boiloff experiments with the French code CATHARE and with a bubbly/churn interfacial drag force f/sub i/ similar to the one of TRAC-BD1 has also resulted in the underprediction of collapsed liquid level histories. In this work, it was shown that the usual vapor drift velocity correlations (through which f/sub i/ is derived) for this flow regime developed for tubes are not appropriate for rod bundles. Moreover, a new f/sub i/ correlation for bubbly/churn flow in rod bundles was developed based on the Froude number. The authors have modified this correlation slightly, implemented it in TRAC-BD1/MOD1, and reanalyzed most of the boiloff experiments in NEPTUN

  13. LINK codes TRAC-BF1/PARCSv2.7 in LINUX without external communication interface; Acoplamiento de los codigos TRAC-BF1/PARCSv2.7 en Linux sin interfaz externa de comunicacion

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, T.; Garcia-Fenoll, M.; Abarca, A.; Miro, R.; Verdu, G.; Concejal, A.; Solar, A.

    2014-07-01

    The TRAC-BF1 code is still widely used by the nuclear industry for safety analysis. The plant models developed using this code are highly validated, so it is advisable to continue improving this code before migrating to another completely different code. The coupling with the NRC neutronic code PARCSv2.7 increases the simulation capabilities in transients in which the power distribution plays an important role. In this paper, the procedure for the coupling of TRAC-BF1 and PARCSv2.7 codes without PVM and in Linux is presented. (Author)

  14. Analysis on ingress of coolant event in vacuum vessel using modified TRAC-BF1 code

    International Nuclear Information System (INIS)

    Ajima, Toshio; Kurihara, Ryoichi; Seki, Yasushi

    1999-08-01

    The Transient Reactor Analysis Code (TRAC-BF1) was modified on the basis of ICE experimental results so as to analyze the Ingress of Coolant Event (ICE) in the vacuum vessel of a nuclear fusion reactor. In the previous report, the TRAC-BF1 code, which was originally developed for the safety analysis of a light water reactor, had been modified for the ICE of the fusion reactor. And the addition of the flat structural plate model to the VESSEL component and arbitrary appointment of the gravity direction had been added in the TRAC-BF1 code. This TRAC-BF1 code was further modified. The flat structural plate model of the VESSEL component was enabled to divide in multi layers having different materials, and a part of the multi layers could take a buried heater into consideration. Moreover, the TRAC-BF1 code was modified to analyze under the low-pressure condition close to vacuum within range of the steam table. This paper describes additional functions of the modified TRAC-BF1 code, analytical evaluation using ICE experimental data and the ITER model with final design report (FDR) data. (author)

  15. Two-phase flow phenomena in broken recirculation line of BWR

    International Nuclear Information System (INIS)

    Kato, Masami; Arai, Kenji; Narabayashi, Tadashi; Amano, Osamu.

    1986-01-01

    When a primary recirculation line of BWR is ruptured, a primary recirculation pump may be subjected to very high velocity two-phase flow and its speed may be accelerated by this flow. It is important for safety evaluation to estimate the pump behavior during blowdown. There are two problems involved in analyzing this behavior. One problem concerns the pump characteristics under two-phase flow. The other involves the two-phase conditions at the pump inlet. If the rupture occurs at a suction side of the pump, choking is considered to occur at a broken jet pump nozzle. Then, a void fraction becomes larger downstream from the jet pump nozzle and volumetric flow through the pump will be very high. However, there is little experimental data available on two-phase flow downstream from a choking plane. Blowdown tests were performed using a simulated broken recirculation line and measured data were analyzed by TRAC-PlA. Analytical results agreed with measured data. (author)

  16. TRAC-PF1/MOD2 status and plans

    International Nuclear Information System (INIS)

    Spore, J.W.; Steinke, R.G.; Nelson, R.A.; Cappiello, M.W.; Jenks, R.

    1989-01-01

    The development of the TRAC-PF1/MOD1 code was completed in July 1988 with the release of Version 14.4. A TRAC-PF1/MOD2 code development plan addresses code deficiencies identified in the MOD1 code in order to provide an accurate and defensible tool that can be used to simulate large-break loss-of-coolant accidents (LOCAs), small-break LOCAs, and operational transients. The MOD2 code development plan is an international cooperative effort that includes contributions from Los Alamos National Laboratory, Idaho National Engineering Laboratory (INEL), Japanese Atomic Energy Research Institute (JAERI), Cray Research, Central Electricity Generating Board (CEGB), and United Kingdom Atomic Energy Authority (UKAEA)

  17. LINK codes TRAC-BF1/PARCSv2.7 in LINUX without external communication interface

    International Nuclear Information System (INIS)

    Barrachina, T.; Garcia-Fenoll, M.; Abarca, A.; Miro, R.; Verdu, G.; Concejal, A.; Solar, A.

    2014-01-01

    The TRAC-BF1 code is still widely used by the nuclear industry for safety analysis. The plant models developed using this code are highly validated, so it is advisable to continue improving this code before migrating to another completely different code. The coupling with the NRC neutronic code PARCSv2.7 increases the simulation capabilities in transients in which the power distribution plays an important role. In this paper, the procedure for the coupling of TRAC-BF1 and PARCSv2.7 codes without PVM and in Linux is presented. (Author)

  18. TRAC Innovative Visualization Techniques

    Science.gov (United States)

    2016-11-14

    5Benjamin Jotham Fry. “Computational information design”. PhD thesis . Massachusetts Institute of Technology, 2004, p. 39. 6Ibid., p. 39. 7Tamara Munzner...central capacity limit to the simultaneous storage of visual and auditory arrays in working memory.” In: Journal of Experimental Psychology : General...GAT scores. 18 August 2016 TRAC Brief Template (AE Method) 2 1Q 2Q 3Q SpiritualService 4Q Rank Gender Spiritual LowVery Low High Initial Model Final

  19. TRAC-Monterey FY16 Work Program Development and Report of Research Elicitation

    Science.gov (United States)

    2016-01-01

    any changes to priorities or additional projects that require immediate research. Work Program; Research Elicitation Unclassified UU UU UU UU 35 MAJ...conduct analysis for the Army. 1 Marks, Chris, Nesbitt, Peter. TRAC FY14 Research Requirements Elicitation . Technical Report TRAC-M-TM-13-059. 700 Dyer... Requirements Elicitation Interviews Interview Guide: 1. Describe a research requirement in the areas of topics, techniques, and methodologies. 2

  20. TRAC-BD1: transient reactor analysis code for boiling-water systems

    International Nuclear Information System (INIS)

    Spore, J.W.; Weaver, W.L.; Shumway, R.W.; Giles, M.M.; Phillips, R.E.; Mohr, C.M.; Singer, G.L.; Aguilar, F.; Fischer, S.R.

    1981-01-01

    The Boiling Water Reactor (BWR) version of the Transient Reactor Analysis Code (TRAC) is being developed at the Idaho National Engineering Laboratory (INEL) to provide an advanced best-estimate predictive capability for the analysis of postulated accidents in BWRs. The TRAC-BD1 program provides the Loss of Coolant Accident (LOCA) analysis capability for BWRs and for many BWR related thermal hydraulic experimental facilities. This code features a three-dimensional treatment of the BWR pressure vessel; a detailed model of a BWR fuel bundle including multirod, multibundle, radiation heat transfer, leakage path modeling capability, flow-regime-dependent constitutive equation treatment, reflood tracking capability for both falling films and bottom flood quench fronts, and consistent treatment of the entire accident sequence. The BWR component models in TRAC-BD1 are described and comparisons with data presented. Application of the code to a BWR6 LOCA is also presented

  1. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  2. 78 FR 24313 - Proposed Collection; Comment Request for Tip Reporting Alternative Commitment Agreement (TRAC...

    Science.gov (United States)

    2013-04-24

    ... Reporting Alternative Commitment Agreement (TRAC) For Use in Industries Other Than the Food and Beverage... Use in Industries Other than the Food and Beverage Industry and The Cosmetology and Barber Industry... Commitment Agreement (TRAC) For Use in Industries Other than the Food and Beverage Industry and The...

  3. 75 FR 11225 - Proposed Collection; Comment Request for Tip Reporting Alternative Commitment Agreement (TRAC...

    Science.gov (United States)

    2010-03-10

    ... Reporting Alternative Commitment Agreement (TRAC) for Use in Industries Other Than the Food and Beverage... Use in Industries Other Than the Food and Beverage Industry and the Cosmetology and Barber Industry... Alternative Commitment Agreement (TRAC) for Use in Industries Other Than the Food and Beverage Industry and...

  4. Polymorphic Behavior and Phase Transition of Poly(1-Butene and Its Copolymers

    Directory of Open Access Journals (Sweden)

    Rui Xin

    2018-05-01

    Full Text Available The properties of semicrystalline polymeric materials depend remarkably on their structures, especially for those exhibiting a polymorphic behavior. This offers an efficient way to tailor their properties through crystal engineering. For control of the crystal structure, and therefore the physical and mechanical properties, a full understanding of the polymorph selection of polymers under varied conditions is essential. This has stimulated a mass of research work on the polymorphic crystallization and related phase transformation. Considering that the isotactic poly(1-butene (iPBu exhibits pronounced polymorphs and complicated transition between different phases, the study on its crystallization and phase transformation has attracted considerable attention during the past decades. This review provides the context of the recent progresses made on the crystallization and phase transition behavior of iPBu. We first review the crystal structures of known crystal forms and then their formation conditions and influencing factors. In addition, the inevitable form II to form I spontaneous transition mechanism and the transformation kinetics is reviewed based on the existing research works, aiming for it to be useful for its processing in different phases and the further technical development of new methods for accelerating or even bypass its form II to form I transformation.

  5. PWR plant transient analyses using TRAC-PF1

    International Nuclear Information System (INIS)

    Ireland, J.R.; Boyack, B.E.

    1984-01-01

    This paper describes some of the pressurized water reactor (PWR) transient analyses performed at Los Alamos for the US Nuclear Regulatory Commission using the Transient Reactor Analysis Code (TRAC-PF1). Many of the transient analyses performed directly address current PWR safety issues. Included in this paper are examples of two safety issues addressed by TRAC-PF1. These examples are pressurized thermal shock (PTS) and feed-and-bleed cooling for Oconee-1. The calculations performed were plant specific in that details of both the primary and secondary sides were modeled in addition to models of the plant integrated control systems. The results of these analyses show that for these two transients, the reactor cores remained covered and cooled at all times posing no real threat to the reactor system nor to the public

  6. 75 FR 11226 - Proposed Collection; Comment Request for Tip Reporting Alternative Commitment Agreement (TRAC...

    Science.gov (United States)

    2010-03-10

    ... Reporting Alternative Commitment Agreement (TRAC) for Use in the Food and Beverage Industry AGENCY: Internal... Reporting Alternative Commitment Agreement (TRAC) for Use in the Food and Beverage Industry. DATES: Written... in the Food and Beverage Industry. OMB Number: 1545-1549. Abstract: Announcement 2000-22, 2000-19 I.R...

  7. Development of Transient-Reactor Analysis Code (TRAC) for real-time applications

    International Nuclear Information System (INIS)

    Niederauer, G.F.; Giguere, P.T.; Lime, J.F.; Knight, T.D.; Ashy, O.; Fakory, R.

    1997-01-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Nuclear-plant training simulators employ simplified one-dimensional thermal-hydraulics codes because of the demands to run in real time and with limited computing power. The objective of this project was to investigate the feasibility of using the advanced Transient-Reactor Analysis Code (TRAC) in a simulator to increase the fidelity of a simulator. Many issues need to be addressed to take such a complex code from a batch engineering environment to a real-time environment. Working with simulator vendor, GSE, the authors investigated the technical issues relating to integrating TRAC into a real-time environment. They also modified a nuclear power plant model for simulator purposes and investigated its performance in real time

  8. PROF-TRAC D.4.1 Overview and structure of available material

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per Kvols

    This report introduces available educational and training material from the recent IEE projects adapted in the PROF/TRAC repository. An explanation to the categorisation principle of the material in the repository is the key part of this report. The categorisation schema for educational material...... in the repository is developed using the skills and qualifications structure, developed in WP 2 of PROF/TRAC project. In this way the continuity of the work is well established and the achievements from between the work packages are harmonised....

  9. Three-dimensional two-fluid numerical treatment of a reactor vessel in TRAC

    International Nuclear Information System (INIS)

    Liles, D.R.

    1979-01-01

    A three-dimensional two-fluid finite difference model has been used in TRAC (Transient Reactor Analysis Code) to represent a pressurized water reactor vessel. Mesh cells may be blocked off completely to represent large flow obstructions such as downcomer walls. The hydrodynamic volumes and flow areas may also be reduced in order to provide a porous matrix simulation of smaller scale strucuture. The finite difference equations are semi-implicit so that stability time scales are associated with material movement and not wave propagation. The block matrix structure is reduced during the implicit pass to a single element seven stripe system which is easily solved iteratively. This procedure has successfully performed numerous simulations of both full sized reactor accidents and smaller scale experments. It has proven to be a useful feature of the TRAC effort

  10. Improvement of neutron kinetics module in TRAC-BF1code: one-dimensional nodal collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jambrina, Ana; Barrachina, Teresa; Miro, Rafael; Verdu, Gumersindo, E-mail: ajambrina@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidade Politecnica de Valencia (UPV), Valencia (Spain); Soler, Amparo, E-mail: asoler@iberdrola.es [SEA Propulsion S.L., Madrid (Spain); Concejal, Alberto, E-mail: acbe@iberdrola.es [Iberdrola Ingenieria y Construcion S.A.U., Madrid (Spain)

    2013-07-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method. (author)

  11. Assessment of TRAC-PF1/MOD1 code for large break LOCA in PWR

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio; Abe, Yutaka.

    1993-03-01

    As the first step of the REFLA/TRAC code development, the TRAC/PF1/MOD1 code has been assessed for various experiments that simulate postulated large-break loss-of-coolant accident (LBLOCA) in PWR to understand the predictive capability and to identify the problem areas of the code. The assessment calculations were performed for separate effect tests for critical flow, counter current flow, condensation at cold leg and reflood as well as integral tests to understand predictability for individual phenomena. This report summarizes results from the assessment calculations of the TRAC-PF1/MOD1 code for LBLOCA in PWR. The assessment calculations made clear the predictive capability and problem areas of the TRAC-PF1/MOD1 code for LBLOCA in PWR. The areas, listed below, should be improved for more realistic and effective simulation of LBLOCA in PWR: (1) core heat transfer model during blowdown, (2) ECC bypass model at downcomer during refill, (3) condensation model during accumulator injection, and (4) core thermal hydraulic model during reflood. (author) 57 refs

  12. Clinical accuracy of ExacTrac intracranial frameless stereotactic system

    International Nuclear Information System (INIS)

    Ackerly, T.; Lancaster, C. M.; Geso, M.; Roxby, K. J.

    2011-01-01

    Purpose: In this paper, the authors assess the accuracy of the Brainlab ExacTrac system for frameless intracranial stereotactic treatments in clinical practice. Methods: They recorded couch angle and image fusion results (comprising lateral, longitudinal, and vertical shifts, and rotation corrections about these axes) for 109 stereotactic radiosurgery and 166 stereotactic radiotherapy patient treatments. Frameless stereotactic treatments involve iterative 6D image fusion corrections applied until the results conform to customizable pass criteria, theirs being 0.7 mm and 0.5 deg. for each axis. The planning CT slice thickness was 1.25 mm. It has been reported in the literature that the CT slices' thickness impacts the accuracy of localization to bony anatomy. The principle of invariance with respect to patient orientation was used to determine spatial accuracy. Results: The data for radiosurgery comprised 927 image pairs, of which 532 passed (pass ratio of 57.4%). The data for radiotherapy comprised 15983 image pairs, of which 10 050 passed (pass ratio of 62.9%). For stereotactic radiotherapy, the combined uncertainty of ExacTrac calibration, image fusion, and intrafraction motion was (95% confidence interval) 0.290-0.302 and 0.306-0.319 mm in the longitudinal and lateral axes, respectively. The combined uncertainty of image fusion and intrafraction motion in the anterior-posterior coordinates was 0.174-0.182 mm. For stereotactic radiosurgery, the equivalent ranges are 0.323-0.393, 0.337-0.409, and 0.231-0.281 mm. The overall spatial accuracy was 1.24 mm for stereotactic radiotherapy (SRT) and 1.35 mm for stereotactic radiosurgery (SRS). Conclusions: The ExacTrac intracranial frameless stereotactic system spatial accuracy is adequate for clinical practice, and with the same pass criteria, SRT is more accurate than SRS. They now use frameless stereotaxy exclusively at their center.

  13. Evaluation of accuracy in the ExacTrac 6D image induced radiotherapy using CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Chun; Kim, Hyo Jung; Kim, Jong Deok; Ji, Dong Hwa; Song, Ju Young [Dept. of Radiation Oncology, Chonnam National University School, Gwangju (Korea, Republic of)

    2016-12-15

    To verify the accuracy of the image guided radiotherapy using ExacTrac 6D couch, the error values in six directions are randomly assigned and corrected and then the corrected values were compared with CBCT image to check the accurateness of ExacTrac. The therapy coordination values in the Rando head Phantom were moved in the directions of X, Y and Z as the translation group and they were moved in the directions of pitch, roll and yaw as the rotation group. The corrected values were moved in 6 directions with the combined and mutual reactions. The Z corrected value ranges from 1mm to 23mm. In the analysis of errors between CBCT image of the phantom which is corrected with therapy coordinate and 3D/3D matching error value, the rotation group showed higher error value than the translation group. In the distribution of dose for the error value of the therapy coordinate corrected with CBCT, the restricted value of dosage for the normal organs in two groups meet the prescription dose. In terms of PHI and PCI values which are the dose homogeneity of the cancerous tissue, the rotation group showed a little higher in the low dose distribution range. This study is designed to verify the accuracy of ExacTrac 6D couch using CBCT. It showed that in terms of the error value in the simple movement, it showed the comparatively accurate correction capability but in the movement when the angle is put in the couch, it showed the inaccurate correction values. So, if the body of the patient is likely to have a lot of changes in the direction of rotation or there is a lot of errors in the pitch, roll and yaw in ExacTrac correction, it is better to conduct the CBCT guided image to correct the therapy coordinate in order to minimize any side effects.

  14. TechTracS: NASA's commercial technology management system

    Science.gov (United States)

    Barquinero, Kevin; Cannon, Douglas

    1996-03-01

    The Commercial Technology Mission is a primary NASA mission, comparable in importance to those in aeronautics and space. This paper will discuss TechTracS, NASA Commercial Technology Management System that has been put into place in FY 1995 to implement this mission. This system is designed to identify and capture the NASA technologies which have commercial potential into an off-the-shelf database application, and then track the technologies' progress in realizing the commercial potential through collaborations with industry. The management system consists of four stages. The first is to develop an inventory database of the agency's entire technology portfolio and assess it for relevance to the commercial marketplace. Those technologies that are identified as having commercial potential will then be actively marketed to appropriate industries—this is the second stage. The third stage is when a NASA-industry partnership is entered into for the purposes of commercializing the technology. The final stage is to track the technology's success or failure in the marketplace. The collection of this information in TechTracS enables metrics evaluation and can accelerate the establishment on direct contacts between and NASA technologist and an industry technologist. This connection is the beginning of the technology commercialization process.

  15. Uncertainties in modelling and scaling of critical flows and pump model in TRAC-PF1/MOD1

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Yu, Wen-Shi.

    1987-01-01

    The USNRC has established a Code Scalability, Applicability and Uncertainty (CSAU) evaluation methodology to quantify the uncertainty in the prediction of safety parameters by the best estimate codes. These codes can then be applied to evaluate the Emergency Core Cooling System (ECCS). The TRAC-PF1/MOD1 version was selected as the first code to undergo the CSAU analysis for LBLOCA applications. It was established through this methodology that break flow and pump models are among the top ranked models in the code affecting the peak clad temperature (PCT) prediction for LBLOCA. The break flow model bias or discrepancy and the uncertainty were determined by modelling the test section near the break for 12 Marviken tests. It was observed that the TRAC-PF1/MOD1 code consistently underpredicts the break flow rate and that the prediction improved with increasing pipe length (larger L/D). This is true for both subcooled and two-phase critical flows. A pump model was developed from Westinghouse (1/3 scale) data. The data represent the largest available test pump relevant to Westinghouse PWRs. It was then shown through the analysis of CE and CREARE pump data that larger pumps degrade less and also that pumps degrade less at higher pressures. Since the model developed here is based on the 1/3 scale pump and on low pressure data, it is conservative and will overpredict the degradation when applied to PWRs

  16. SAFARI 2000 FPAR TRAC Data for Mongu, Zambia, 1999-2002

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from the Tracing Architecture and Radiation of Canopies (TRAC) instrument were processed to determine the fraction of intercepted photosynthetically active...

  17. The improvement of the heat transfer coupling between the flow field and the conduction slab for TRAC-PF1

    International Nuclear Information System (INIS)

    Wang, Lang Chen.

    1990-01-01

    A semi-implicit coupling technique (treating only the fluid temperature in the energy source term implicitly) of fluid heat-transfer to conduction slabs is presently used in TRAC-PF1. In this study, a fully implicit coupling scheme between the flow field and conduction slab for the one-dimensional capability of TRAC-PF1 has been developed. The new methods treat the heat-transfer coefficient and wall temperature in the energy source term of both the convection and the conduction equation implicitly. In order to test the accuracy of the standard TRAC coupling method and the new methods used in TRAC-PF1, a series of simple tube experiments were modeled with TRAC-PF1 version 3.9B. Additional studies showed the current TRAC-PF1 convergence variables (pressure fraction change and temperature change) and the current convergence criteria are not appropriate for obtaining an accurate result. Use of these values would produce non-physical double values or would adversely affect results in the reflood calculation. Another study also had been done to determine the importance of each HTC variable on computational accuracy and speed by using the non-linear oterative method. It is found that the heat-transfer correlations have a strong dependency on the local void fraction rather than on fluid velocity, fluid temperature, and wall surface temperature in the film boiling heat-transfer regime. At the beginning of a cooldown transient, the old time void fraction is always higher than the new time void fraction in the same time step. The old time void fraction evaluates a lower heat-transfer coefficient for that cell and initiates cooldown later and more slowly. This then leads to a longer quench time and lowers the fluid temperature and the wall temperature plateau for the downstream control volumes

  18. Best-estimate analysis of a loss-of-coolant accident in a four-loop US PWR using TRAC-PD2

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1982-01-01

    A 200-percent double-ended cold-leg break loss-of-coolant accident (LOCA) in a typical US pressurized water reactor (PWR) was simulated using the Transient Reactor Analysis Code (TRAC-PD2). The reactor system modeled represented a typical US PWR with four loops (three intact, one broken) and cold-leg emergency-core-cooling systems (ECCS). The finely noded TRAC model employed 440 three dimensional (r, THETA, z) vessel cells along with approximately 300 one-dimensional cells that modeled the primary system loops. The calculated peak-clad temperature of 950 0 K occurred during blowdown and the clad temperature excursion was terminated at 175 s, when complete core quenching occurred. Accumulator flows were initiated at 10 s, when the system pressure reached 4.08 MPa, and the refill phase ended at 36 s when the lower plenum refilled. During reflood, both bottom and falling film quench fronts were calculated

  19. Comparison of SCDAP/RELAP5/MOD3 to TRAC-PF1/MOD1 for timing analysis of PWR fuel pin failures

    International Nuclear Information System (INIS)

    Jones, K.R.; Katsma, K.R.; Wade, N.L.; Siefken, L.J.; Straka, M.

    1991-01-01

    A comparison has been made of SCDAP/RELAP5/MOD3- and TRAC-PF1/MOD1- based calculations of the fuel pin failure timing (time from containment isolation signal to first fuel pin failure) in a loss-of-coolant accident (LOCA). The two codes were used to calculate the thermal-hydraulic boundary conditions for a complete, double-ended, offset-shear break of a cold leg in a Westinghouse 4-loop pressurized water reactor. Both calculations used the FRAPCON-2 code to calculate the steady-state fuel rod behavior and the FRAP-T6 code to calculate the transient fuel rod behavior. The analysis was performed for 16 combinations of fuel burnups and power peaking factors extending up to the Technical Specifications limits. While all calculations were made on a best-estimate basis, the SCDAP/RELAP5/MOD3 code has not yet been fully assessed for large-break LOCA analysis. The results indicate that SCDAP/RELAP5/MOD3 yields conservative fuel pin failure timing results in comparison to those generated using TRAC-PF1/MOD1. 7 refs., 5 figs

  20. Phase behavior of the modified-Yukawa fluid and its sticky limit.

    Science.gov (United States)

    Schöll-Paschinger, Elisabeth; Valadez-Pérez, Néstor E; Benavides, Ana L; Castañeda-Priego, Ramón

    2013-11-14

    Simple model systems with short-range attractive potentials have turned out to play a crucial role in determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D. Gazzillo [J. Chem. Phys. 134, 124504 (2011)], one of these widely used model potentials, namely, the attractive hard-core Yukawa potential, shows an unphysical behavior when one approaches its sticky limit, since the second virial coefficient is diverging. However, it is exactly this second virial coefficient that is typically used to depict the experimental phase diagram for a large variety of complex fluids and that, in addition, plays an important role in the Noro-Frenkel scaling law [J. Chem. Phys. 113, 2941 (2000)], which is thus not applicable to the Yukawa fluid. To overcome this deficiency of the attractive Yukawa potential, D. Gazzillo has proposed the so-called modified hard-core attractive Yukawa fluid, which allows one to correctly obtain the second and third virial coefficients of adhesive hard-spheres starting from a system with an attractive logarithmic Yukawa-like interaction. In this work we present liquid-vapor coexistence curves for this system and investigate its behavior close to the sticky limit. Results have been obtained with the self-consistent Ornstein-Zernike approximation (SCOZA) for values of the reduced inverse screening length parameter up to 18. The accuracy of SCOZA has been assessed by comparison with Monte Carlo simulations.

  1. A methodology for the coupling of RAMONA-3B neutron kinetics and TRAC-BF1 thermal-hydraulics

    International Nuclear Information System (INIS)

    Lopez, Arsenio Procopio; Morales Sandoval, Jaime B.

    2005-01-01

    The initial objective of this project was to directly couple the RAMONA and TRAC codes running on different PCs. The idea was to use the best part of each one and eliminate some of their limitations and widen the applicability of these codes to simulate different BWR and system components. It was required to try to minimize the amount of changes to present code subroutines and calculation procedures. If possible, just substitute values obtained in the parallel code. Preliminary results indicated that using a CHAN component of TRAC to model thermal-hydraulic phenomena for each neutronic channel modeled in RAMONA is rather difficult. Large amounts of CPU time consumption are obtained and lots of PCs would make this solution difficult, besides considerable large transients are introduced by the differences in thermal-hydraulic results of these codes. The substitution of the thermal-hydraulics of RAMONA, by the TRAC channel calculations, is possible but simulation of a null transient on both codes must be planed and a gradual change must be controlled by an additional supervisory subroutine. An indirect coupling of these codes, it is therefore proposed, in order to eliminate most of these limitations. In this indirect coupling, a thermal-hydraulic model of the average tube in a bundle and the global channel cooling fluid dynamics is programmed for each neutronic channel while the global reactor vessel and core is modeled by TRAC with just four channels and four rings. Results are more reliable, coupling is simpler and faster simulations are possible

  2. FTK: the hardware Fast TracKer of the ATLAS experiment at CERN

    CERN Document Server

    Maznas, Ioannis; The ATLAS collaboration

    2016-01-01

    FTK: the hardware Fast TracKer of the ATLAS experiment at CERN In the ever increasing pile-up of the Large Hadron Collider environment, the trigger systems of the experiments have to be exceedingly sophisticated and fast at the same time, in order to select the relevant physics processes against the background processes. The Fast TracKer (FTK) is a track finding implementation at hardware level that is designed to deliver full-scan tracks with $p_{T}$ above 1 GeV to the ATLAS trigger system for every L1 accept (at a maximum rate of 100kHz). To accomplish this, FTK is a highly parallel system which is currently under installation in ATLAS. It will first provide the trigger system with tracks in the central region of the ATLAS detector, and next year it is expected to cover the whole detector. The system is based on pattern matching between hits coming from the silicon trackers of the ATLAS detector and 1 billion simulated patterns stored in specially designed ASIC chips (Associative memory – AM06). In a firs...

  3. TRAC code assessment using data from SCTF Core-III, a large-scale 2D/3D facility

    International Nuclear Information System (INIS)

    Boyack, B.E.; Shire, P.R.; Harmony, S.C.; Rhee, G.

    1988-01-01

    Nine tests from the SCTF Core-III configuration have been analyzed using TRAC-PF1/MOD1. The objectives of these assessment activities were to obtain a better understanding of the phenomena occurring during the refill and reflood phases of a large-break loss-of-coolant accident, to determine the accuracy to which key parameters are calculated, and to identify deficiencies in key code correlations and models that provide closure for the differential equations defining thermal-hydraulic phenomena in pressurized water reactors. Overall, the agreement between calculated and measured values of peak cladding temperature is reasonable. In addition, TRAC adequately predicts many of the trends observed in both the integral effect and separate effect tests conducted in SCTF Core-III. The importance of assessment activities that consider potential contributors to discrepancies between the measured and calculated results arising from three sources are described as those related to (1) knowledge about the facility configuration and operation, (2) facility modeling for code input, and (3) deficiencies in code correlations and models. An example is provided. 8 refs., 7 figs., 2 tabs

  4. Poster - 48: Clinical assessment of ExacTrac stereoscopic imaging of spine alignment for lung SBRT

    International Nuclear Information System (INIS)

    Sattarivand, Mike; Summers, Clare; Robar, James

    2016-01-01

    Purpose: To evaluate the validity of using spine as a surrogate for tumor positioning with ExacTrac stereoscopic imaging in lung stereotactic body radiation therapy (SBRT). Methods: Using the Novalis ExacTrac x-ray system, 39 lung SBRT patients (182 treatments) were aligned before treatment with 6 degrees (6D) of freedom couch (3 translations, 3 rotations) based on spine matching on stereoscopic images. The couch was shifted to treatment isocenter and pre-treatment CBCT was performed based on a soft tissue match around tumor volume. The CBCT data were used to measure residual errors following ExacTrac alignment. The thresholds for re-aligning the patients based on CBCT were 3mm shift or 3° rotation (in any 6D). In order to evaluate the effect of tumor location on residual errors, correlations between tumor distance from spine and individual residual errors were calculated. Results: Residual errors were up to 0.5±2.4mm. Using 3mm/3° thresholds, 80/182 (44%) of the treatments required re-alignment based on CBCT soft tissue matching following ExacTrac spine alignment. Most mismatches were in sup-inf, ant-post, and roll directions which had larger standard deviations. No correlation was found between tumor distance from spine and individual residual errors. Conclusion: ExacTrac stereoscopic imaging offers a quick pre-treatment patient alignment. However, bone matching based on spine is not reliable for aligning lung SBRT patients who require soft tissue image registration from CBCT. Spine can be a poor surrogate for lung SBRT patient alignment even for proximal tumor volumes.

  5. Poster - 48: Clinical assessment of ExacTrac stereoscopic imaging of spine alignment for lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Sattarivand, Mike; Summers, Clare; Robar, James [Nova Scotia Cancer Centre, Nova Scotia Cancer Centre, Nova Scotia Cancer Centre (Canada)

    2016-08-15

    Purpose: To evaluate the validity of using spine as a surrogate for tumor positioning with ExacTrac stereoscopic imaging in lung stereotactic body radiation therapy (SBRT). Methods: Using the Novalis ExacTrac x-ray system, 39 lung SBRT patients (182 treatments) were aligned before treatment with 6 degrees (6D) of freedom couch (3 translations, 3 rotations) based on spine matching on stereoscopic images. The couch was shifted to treatment isocenter and pre-treatment CBCT was performed based on a soft tissue match around tumor volume. The CBCT data were used to measure residual errors following ExacTrac alignment. The thresholds for re-aligning the patients based on CBCT were 3mm shift or 3° rotation (in any 6D). In order to evaluate the effect of tumor location on residual errors, correlations between tumor distance from spine and individual residual errors were calculated. Results: Residual errors were up to 0.5±2.4mm. Using 3mm/3° thresholds, 80/182 (44%) of the treatments required re-alignment based on CBCT soft tissue matching following ExacTrac spine alignment. Most mismatches were in sup-inf, ant-post, and roll directions which had larger standard deviations. No correlation was found between tumor distance from spine and individual residual errors. Conclusion: ExacTrac stereoscopic imaging offers a quick pre-treatment patient alignment. However, bone matching based on spine is not reliable for aligning lung SBRT patients who require soft tissue image registration from CBCT. Spine can be a poor surrogate for lung SBRT patient alignment even for proximal tumor volumes.

  6. TRAC analyses of severe overcooling transients for the Oconee-1 PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ireland, J R [comp.

    1985-05-01

    This report describes the results of several Transient Reactor Analysis Code (TRAC)-PF1 calculations of overcooling transients in a Babcock and Wilcox lowered-loop, pressurized water reactor (Oconee-1). The purpose of this study is to provide detailed input on thermal-hydraulic data to Oak Ridge National Laboratory for pressurized thermal-shock analyses. The transient calculations performed were plant specific in that details of the primary system, the secondary system, and the plant-integrated control system of Oconee-1 were included in the TRAC input model. The results of the calculations indicate that the turbine-bypass valve failure transient was the most severe in terms of resulting in relatively cold liquid temperatures in the downcomer region of the vessel. The power-operated relief valve loss-of-coolant accident transient was the least severe in terms of downcomer liquid temperatures because of vent-valve fluid mixing and near-saturated conditions in the primary system. It is recommended that future calculations consider a wider range of operator actions to cover the spectra of overcooling transient sequences more completely. 6 refs., 287 figs., 32 tabs.

  7. TRAC analyses of severe overcooling transients for the Oconee-1 PWR

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1985-05-01

    This report describes the results of several Transient Reactor Analysis Code (TRAC)-PF1 calculations of overcooling transients in a Babcock and Wilcox lowered-loop, pressurized water reactor (Oconee-1). The purpose of this study is to provide detailed input on thermal-hydraulic data to Oak Ridge National Laboratory for pressurized thermal-shock analyses. The transient calculations performed were plant specific in that details of the primary system, the secondary system, and the plant-integrated control system of Oconee-1 were included in the TRAC input model. The results of the calculations indicate that the turbine-bypass valve failure transient was the most severe in terms of resulting in relatively cold liquid temperatures in the downcomer region of the vessel. The power-operated relief valve loss-of-coolant accident transient was the least severe in terms of downcomer liquid temperatures because of vent-valve fluid mixing and near-saturated conditions in the primary system. It is recommended that future calculations consider a wider range of operator actions to cover the spectra of overcooling transient sequences more completely. 6 refs., 287 figs., 32 tabs

  8. TRAC-PF1/MOD 1 independent assessment: Semiscale MOD-2A feedwater-line break (S-SF-3) and steam-line break (S-SF-5) tests

    International Nuclear Information System (INIS)

    Dobranich, D.

    1985-11-01

    The TRAC-PF1/MOD1 independent assessment project at Sandia is part of an overall effort funded by the NRC to determine the ability of various systems codes to predict the detailed thermal/hydraulic response of LWRs during accident and off-normal conditions. As part of this effort, calculations for Semiscale Mod-2A test S-SF-3, a feedwater-line break test, and S-SF-5, a steam-line break test, were performed with TRAC-PF1/MOD1. Most aspects of both the S-SF-3 and S-SF-5 steady-state calculations were found to be in good agreement with data. However, the need for a better steam separator model was identified from the S-SF-3 calculation. Overall, the qualitative behavior of both transients was calculated reasonably well; however, there were some discrepancies in the prediction of the quantitative behavior. The results for the S-SF-3 transient calculation indicate that the primary-to-secondary heat transfer degradation began too early. This was possibly due to overprediction of entrainment in the steam generator boiler, leading to an incorrect calculation of the secondary-side fluid distribution during the steady state. However, there was insufficient data to verify this. Results for the S-SF-5 transient calculation indicate that the primary-side fluid temperature response to a steam-line break was in reasonable agreement with data but the pressure response did not coincide with the data. Uncertainties in the data are sufficient to prevent us from determining the exact cause of this discrepancy, but there is indirect evidence that the calculated rate of phase change in the pressurizer was incorrect. 16 refs., 73 figs., 13 tabs

  9. AP600 large-break loss-of-collant-accident developmental assessment plan for TRAC-PF1/MOD2

    International Nuclear Information System (INIS)

    Knight, T.D.

    1996-07-01

    The Westinghouse AP600 reactor is an advanced pressurized water reactor with passive safety systems to protect the plant against possible accidents and transients. The design has been submitted to the U.S. NRC for design certification. The NRC has selected the Transient Reactor Analysis Code (TRAC)-PF1/MOD2 for performing large break loss-of coolant-accident (LBLOCA) analysis to support the certification effort. This document defines the tests to be used in the current phase of developmental assessment related to AP600 LBLOCA

  10. Application of the TRAC-PD2 code to the simulation of the CANON experiment

    International Nuclear Information System (INIS)

    Neves Conti, T. das; Freitas, R.L.

    1985-01-01

    A comparison between the TRAC -PD2 code calculations and results from the CANON experiment is presented. The CANON experiment simulates the loss of coolant accident through the depressurization of a horizontal tube containing water at different temperatures. The experiment consist of the instantaneous rupture at one end of the tubing and the corresponding pressure and void fraction measurements during the transient. The comparison shows that the TRAC-PD2 code predicts satisfactorily the pressure and void fraction evolution in the CANON experiment. (F.C.) [pt

  11. Study plan for the sensitivity analysis of the Terrain-Responsive Atmospheric Code (TRAC)

    International Nuclear Information System (INIS)

    Restrepo, L.F.; Deitesfeld, C.A.

    1987-01-01

    Rocky Flats Plant, Golden, Colorado is presently developing a computer code to model the dispersion of potential or actual releases of radioactive or toxic materials to the environment, along with the public consequences from these releases. The model, the Terrain-Responsive Atmospheric Code (TRAC), considers several complex features which could affect the overall dispersion and consequences. To help validate TRAC, a sensitivity analysis is being planned to determine how sensitive the model's solutions are to input variables. This report contains a brief description of the code, along with a list of tasks and resources needed to complete the sensitivity analysis

  12. Turbine trip transient analysis in peach bottom NPP with TRAC-BF1 code and Simtab-1D methodology

    International Nuclear Information System (INIS)

    Barrachina, T.; Miro, R.; Verdu, G.; Collazo, I.; Gonzalez, P.; Concejal, A.; Ortego, P.; Melara, J.

    2010-01-01

    In TRAC-BF1 nuclear cross-sections are specified in the input deck in as a polynomial expansion. Therefore, it is necessary to obtain the coefficients of this polynomial function. One of the methods proposed in the literature is the KINPAR methodology. This methodology uses the results from different perturbations of the original state to obtain the coefficients of the polynominal expansion. The simulations are performed using the SIMULATE3 code. In this work, a new methodology to obtain the cross-sections set in 1D is presented. The first step consists of the application of the SIMTAB methodology, developed in UPV, to obtain the 3D cross-sections sets from CASMO4/SIMULATE3. These 3D cross-sections sets are collapsed to 1D, using as a weighting factor the 3D thermal and rapid neutron fluxes obtained from SIMULATE3. The 1D cross-sections obtained are in the same format as the 3D sets, hence, it has been necessary to modify the TRAC-BF1 code in order to be able to read and interpolate between these tabulated 1D cross-sections. With this new methodology it is not necessary to perform simulations of different perturbations of the original state, and also the variation range of the moderator density can be higher than using the former KINPAR methodology. This is important for simulating severe accidents in which the variables vary in a wide range. This new methodology is applied to the simulation of the turbine trip transient Benchmark in Peach Bottom NPP using the TRAC-BF1 code. The results of the transient simulation in TRAC-BF1 using the KINPAR methodology and the new methodology, SIMTAB-1D, are compared. (author)

  13. SU-E-J-34: Setup Accuracy in Spine SBRT Using CBCT 6D Image Guidance in Comparison with 6D ExacTrac

    Energy Technology Data Exchange (ETDEWEB)

    Han, Z; Yip, S; Lewis, J; Mannarino, E; Friesen, S; Wagar, M; Hacker, F [Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-06-15

    Purpose Volumetric information of the spine captured on CBCT can potentially improve the accuracy in spine SBRT setup that has been commonly performed through 2D radiographs. This work evaluates the setup accuracy in spine SBRT using 6D CBCT image guidance that recently became available on Varian systems. Methods ExacTrac radiographs have been commonly used for Spine SBRT setup. The setup process involves first positioning patients with lasers followed by localization imaging, registration, and repositioning. Verification images are then taken providing the residual errors (ExacTracRE) before beam on. CBCT verification is also acquired in our institute. The availability of both ExacTrac and CBCT verifications allows a comparison study. 41 verification CBCT of 16 patients were retrospectively registered with the planning CT enabling 6D corrections, giving CBCT residual errors (CBCTRE) which were compared with ExacTracRE. Results The RMS discrepancies between CBCTRE and ExacTracRE are 1.70mm, 1.66mm, 1.56mm in vertical, longitudinal and lateral directions and 0.27°, 0.49°, 0.35° in yaw, roll and pitch respectively. The corresponding mean discrepancies (and standard deviation) are 0.62mm (1.60mm), 0.00mm (1.68mm), −0.80mm (1.36mm) and 0.05° (0.58°), 0.11° (0.48°), −0.16° (0.32°). Of the 41 CBCT, 17 had high-Z surgical implants. No significant difference in ExacTrac-to-CBCT discrepancy was observed between patients with and without the implants. Conclusion Multiple factors can contribute to the discrepancies between CBCT and ExacTrac: 1) the imaging iso-centers of the two systems, while calibrated to coincide, can be different; 2) the ROI used for registration can be different especially if ribs were included in ExacTrac images; 3) small patient motion can occur between the two verification image acquisitions; 4) the algorithms can be different between CBCT (volumetric) and ExacTrac (radiographic) registrations.

  14. Posttest analysis of MIST Test 330302 using TRAC-PF1/MOD1

    International Nuclear Information System (INIS)

    Boyack, B.E.

    1992-09-01

    This report discusses a posttest analysis of Multi-Loop Integral System Test (MIST) 330302 which has been performed using TRAC-PF1/MOD1. This test was one of group performed in the MIST facility to investigate high-pressure injection (HPI)-power-operated relief valve (PORV) cooling, also known as feed-and-bleed cooling. In Test 330302, HPI cooling was delayed 20 min after opening and locking the PORV open to induce extensive system voiding. We have concluded that the TRAC-calculated results are in reasonable overall agreement with the data for Test 330302. All major trends and phenomena were correctly predicted. Differences observed between the measured and calculated results have been traced and related, in part, to deficiencies in our knowledge of the facility configuration and operation. We have identified two models forwhich additional review is appropriate. However, in general, the TRAC closure models and correlations appear to be adequate for the prediction of the phenomena expected to occur during feed-and-bleed transientsin the MIST facility. We believe that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications. Conclusions reached regarding use of the code to calculate similar phenomena in full-size plants (scaling implications) and regulatory implications of this work are also presented

  15. Improved coupling of the conduction and flow equations in TRAC

    International Nuclear Information System (INIS)

    Addessio, F.L.

    1981-01-01

    Recent nuclear-reactor-systems modeling efforts have been directed toward the development of computer codes capable of simulating transients in short computational times. For this reason, a stability enhancing two-stem method (SETS) has been applied to the two-phase flow equations in the Transient Reactor Analysis Code (TRAC) allowing the Courant limit to be violated. Unfortunately, the coupling between the wall conduction equation and the fluid-dynamics equations is performed semi-implicitly, that is, the wall-heat transfer term, is evaluated using old-time heat-transfer coefficients and wall temperatures and new-time coolant temperatures. This coupling may lead to numerical instabilities at large time steps because of large variations in the heat-transfer coefficient in certain regimes of the boiling curve. Consequently, simply using new-time wall temperatures is not sufficient. A technique that also incorporates new-time heat-transfer coefficients must be used

  16. SU-E-J-47: Comparison of Online Image Registrations of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac Imaging Systems

    International Nuclear Information System (INIS)

    Li, J; Shi, W; Andrews, D; Werner-Wasik, M; Yu, Y; Liu, H

    2015-01-01

    Purpose To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac imaging systems. Methods Tests were performed on a Varian TrueBeam STx linear accelerator (Version 2.0), which is integrated with a BrainLab ExacTrac imaging system (Version 6.0.5). The study was focused on comparing the online image registrations for translational shifts. A Rando head phantom was placed on treatment couch and immobilized with a BrainLab mask. The phantom was shifted by moving the couch translationally for 8 mm with a step size of 1 mm, in vertical, longitudinal, and lateral directions, respectively. At each location, the phantom was imaged with CBCT and ExacTrac x-ray. CBCT images were registered with TrueBeam and ExacTrac online registration algorithms, respectively. And ExacTrac x-ray image registrations were performed. Shifts calculated from different registrations were compared with nominal couch shifts. Results The averages and ranges of absolute differences between couch shifts and calculated phantom shifts obtained from ExacTrac x-ray registration, ExacTrac CBCT registration with default window, ExaxTrac CBCT registration with adjusted window (bone), Truebeam CBCT registration with bone window, and Truebeam CBCT registration with soft tissue window, were: 0.07 (0.02–0.14), 0.14 (0.01–0.35), 0.12 (0.02–0.28), 0.09 (0–0.20), and 0.06 (0–0.10) mm, in vertical direction; 0.06 (0.01–0.12), 0.27 (0.07–0.57), 0.23 (0.02–0.48), 0.04 (0–0.10), and 0.08 (0– 0.20) mm, in longitudinal direction; 0.05 (0.01–0.21), 0.35 (0.14–0.80), 0.25 (0.01–0.56), 0.19 (0–0.40), and 0.20 (0–0.40) mm, in lateral direction. Conclusion The shifts calculated from ExacTrac x-ray and TrueBeam CBCT registrations were close to each other (the differences between were less than 0.40 mm in any direction), and had better agreements with couch shifts than those from ExacTrac CBCT registrations. There were no significant differences between True

  17. Implantation of TRAC-PF1 computer code of VAX-11/750

    International Nuclear Information System (INIS)

    Madeira, A.A.; Souza Gouvea, L. de; Galetti, M.R.S.

    1988-01-01

    The implantation of TRAC-PF1 code, IBM version, in VAX-11/750 is described. This work provides Reator Department with an advanced best-estimate tool to perform loss-of-coolant accident analysis. (Author) [pt

  18. Phase behavior and phase inversion for dispersant systems

    International Nuclear Information System (INIS)

    Solheim, A.; Brandvik, P.J.

    1991-06-01

    This report describes some preliminary phase behavior studies and phase inversion temperature measurements in seawater, bunker oil and dispersant. The objectives have been to find new ways of characterizing dispersants for dispersing oil spill at sea and, perhaps, to throw new lights on the mechanism of dispersion formation (oil-in-water emulsification). The work has been focussed on the relation to phase behavior and the existence of microemulsion in equilibrium with excess oil and water phases. The dispersing process is also compared to the recommended conditions for emulsion formation. When forming an oil-in-water emulsion in an industrial process, it is recommended to choose an emulsifier which gives a phase inversion temperature (PIT) which is 20 - 60 o C higher than the actual temperature for use. The emulsification process must take place close to the PIT which is the temperature at which the emulsion change from oil-in-water emulsion to water-in-oil emulsion when the system is stirred. This condition corresponds to the temperature where the phase behavior change character. The purpose has been to find out if the composition of the dispersants corresponds to the recommendations for oil-in-water emulsification. The amount of experimental work has been limited. Two kinds of experiments have been carried out. Phase behavior studies have been done for seawater, bunker oil and four different dispersants where one had an optimal composition. The phase behavior was hard to interpret and is not recommended for standard dispersants test. The other experimental technique was PIT-measurements by conductivity measurements versus temperature. 4 figs., 1 tab., 4 refs

  19. TRAC-PF1 code assessment using OECD LOFT LP-FP-1 experiment

    International Nuclear Information System (INIS)

    Barbero, F.J.

    1992-04-01

    This report assesses thermal-hydraulic aspects of LOFT LP-FP-1 experiment making use of TRAC-PF1/MOD1. LP-FP-1 experiment studies the system thermal-hydraulic and core thermal response for initial and boundary conditions similar to a large-break design basis LOCA leading to fission product release from the fuel cladding gap region. It also assesses the fission product retention effectiveness of the PWR-ECCS in best estimate conditions

  20. TRAC-PF1 MOD1 post test calculations of the OECD LOFT Experiment LP-SB-1

    International Nuclear Information System (INIS)

    Allen, E.J.

    1990-04-01

    Analysis of the small, hot leg break, OECD LOFT Experiment LP-SB-1. using the ''best-estimate'' computer code TRAC-PF1/MOD1 is presented. Descriptions of the LOFT facility and the LP-SB-1 experiment are given and development of the TRAC-PF1/MOD1 input model is detailed. The calculations performed in achieving the steady state conditions, from which the experiment was initiated, and the specification of experimental boundary conditions are outlined. 24 refs., 66 figs., 12 tabs

  1. Atarse a estacas como trepar a mástiles: El trac piñeriano

    Directory of Open Access Journals (Sweden)

    Gallardo Saborido, Emilio J.

    2007-12-01

    Full Text Available This essay thoroughly studies the last stage of Virgilio Piñera Llera’s dramatic production and the biographical and political context in which it was written. This is to be done by means of the study of El trac (1974. It is highlighted the image of a dynamic Piñera in his work as playwright. So, he was able to adapt and melt the main worries that had been the core of his work till that very moment.

    A través del análisis de El trac (1974 se repasa la fase final de la producción teatral de Virgilio Piñera, así como las circunstancias vitales y políticas que la rodearon. Se enfatiza la visión de un Piñera dinámico en su quehacer como dramaturgo, capaz de aprovechar las últimas corrientes teatrales y fundirlas con las preocupaciones vertebrales que hasta entonces habían determinado sus piezas.

  2. Using Extracted Behavioral Features to Improve Privacy for Shared Route Tracks

    DEFF Research Database (Denmark)

    Andersen, Mads Schaarup; Kjærgaard, Mikkel Baun; Grønbæk, Kaj

    2012-01-01

    . In this paper, we present the concept of privacy by substitution that addresses the problem without degrading service quality by substituting location tracks with less privacy invasive behavioral data extracted from raw tracks of location data or other sensing data. We explore this concept by designing...... and implementing TracM, a track-based community service for runners to share and compare their running performance. We show how such a service can be implemented by substituting location tracks with less privacy invasive behavioral data. Furthermore, we discuss the lessons learned from building TracM and discuss...

  3. The EDRO board connected to the Associative Memory: a "Baby" FastTracKer processor for the ATLAS experiment

    CERN Document Server

    Annovi, A; Bevacqua, V; Cervigni, F; Crescioli, F; Fabbri, L; Giannetti, P; Giorgi, F; Magalotti, D; Negri, A; Piendibene, M; Roda, C; Sbarra, C; Villa, M; Vitillo, RA; Volpi, G

    2012-01-01

    The FastTracKer (FTK), a hardware dedicated processor, performs fast and precise online full track reconstruction at the ATLAS experiment, within an average latency of few dozens of microseconds. \\ It is made of two pipelined processors, the Associative Memory finding low precision tracks, and the Track Fitter refining the track quality with high precision fits. FTK has to face the Large Hadron Collider (LHC) Phase I luminosity. So, while the new processor requires the best of the available technology for tracking in high occupancy conditions, we want to use already existing prototypes to exercise soon the FTK functions in the new ATLAS environment. Few boards connected together constitute a "baby FTK" that will grow soon becoming the "vertical slice".\\ The vertical slice will cover a small projective wedge in the detector, but it will be functionally complete. It will provide a full test of the entire FTK data chain, in the laboratory first and on beam-on conditions after. It will require early development a...

  4. TRAC analysis of the Crystal River Unit-3 Plant transient of February 26, 1980

    International Nuclear Information System (INIS)

    Coddington, P.; Willcutt, G.J.E. Jr.

    1983-01-01

    This paper describes the application of the TRAC-PD2 and TRAC-PF1 codes to analyze the Crystal River transient. The PD2 and PF1 analyses used the three-dimensional and one-dimensional vessel models, respectively. Both calculations predicted the plant depressurization caused by the open PORV and the subsequent repressurization caused by closing the PORV and continuing high-pressure injection flow. Also, natural circulation was calculated in loop B following reestablishment of feedwater to the loop-B steam generator. After system repressurization, the codes calculated that pressure was relieved through the safety valves, and an intermittent flow occurred in loop A because of high-pressure-injection-driven density variations

  5. Post-test analysis of semiscale tests S-UT-6 and S-UT-7 using TRAC PF1

    International Nuclear Information System (INIS)

    Boyack, B.E.

    1983-01-01

    A posttest study of Semiscale Tests S-UT-6 and S-UT-7 has been completed to assess TRAC-PFl predictions of pressurized water-reactor (PWR) small-break transients. The comparisons of the TRAC calculations and experimental results show that the correct qualitative influence of upper-head injection (UHI) was predicted. The major phenomenological difference predicted was the mode of core voiding. The data show a slow boiloff from the top of the core resulting in a dryout near the top of the core only. TRAC predicted a more extensive voiding with fluid forced from the bottom of the core by a pressure increase in the upper vessel plenum. The pressure increase was the primary consequence of a failure to predict a complete clearance of the seal in the intact-loop pump-suction upflow leg. Further review of the interphasic drag correlations, entrainment correlations, and critical-flow model is recommended. 20 figures

  6. Conversion of the thermal hydraulics components of Almaraz NPP model from RELAP5 into TRAC-M

    International Nuclear Information System (INIS)

    Queral, C.; Mulas, J.; Collazo, I.; Concejal, A.; Burbano, N.; Gallego, I.; Lopez Lechas, A.

    2002-01-01

    In the scope of a joint project between the Spanish Nuclear Regulatory Commission (CSN) and the electric energy industry of Spain (UNESA) on the USNRC state-of-the-art thermal hydraulic code, TRAC-M, there is a task relating to the translation of the Spanish NPP models from other TH codes to the new one. As part of this project, our team is working on the translation of Almaraz NPP model from RELAP5/MOD3.2 to TRAC-M. At present, several portions of the input deck have been converted to TRAC-M, and the output data have also been compared with RELAP5 data. This paper refers to the translation of the following thermal hydraulic models: pressurizer, hot and cold legs (including the pumps and the injection systems), and steam generators. The comparison of the results obtained with both codes shows a good agreement. However, some difficulties have been found in the translation of some code components, like pipes, heat structures, pumps, branchs, valves and boundary conditions. In this paper, these translation problems and their solutions are described.(author)

  7. TRAC-PF1 analyses of potential pressurized-thermal-shock transients at a Combustion-Engineering PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.; Spriggs, G.D.; Smith, R.C.

    1984-01-01

    Los Alamos is participating in a program to assess the risk of pressurized thermal shock (PTS) to a reactor vessel. Our role is to provide best-estimate thermal-hydraulic analyses of 12 postulated overcooling transients using TRAC-PF1. These transients are hypothetical and include multiple operator/equipment failures. Calvert Cliffs/Unit-1, a Combustion-Engineering plant, is the pressurized water reactor modeled for this study. The utility and the vendor supplied information for the comprehensive TRAC-PF1 model. Secondary and primary breaks from both hot-zero-power and full-power conditions were simulated for 7200 s (2 h). Low bulk temperatures and loop-flow stagnation while the system was at a high pressure were of particular interest for PTS analysis. Three transients produced primary temperatures below 405 K (270 0 F - the NRC screening criterion) with system repressurization. Six transients indicated flow stagnation would occur in one loop but not both. One transient showed flow stagnation might occur in both loops. Oak Ridge National Laboratory will do fracture-mechanics analysis using these TRAC-PF1 results and make the final determination of the risk of PTS

  8. Special small-break applications with TRAC

    International Nuclear Information System (INIS)

    Dobranich, D.; DeMuth, N.S.; Henninger, R.J.; Burns, R.D. III.

    1981-01-01

    Input models for the Transient Reactor Analysis Code (TRAC) are described and applications of these models to reactor transients involving small breaks in the primary coolant pressure boundary are demonstrated. The operation of the primary overpressure protection system (relief and safety valves) and the thermal-hydraulic response of the reactor to these transients are obtained from numerical simulations. Also, the effects of steam generator recirculation, steam generator tube rupture, Emergency Core Cooling (ECC) injection and reactivity feedback on the course and consequences of these transients are investigated. These models allow reliable predictions of accident signatures that can help determine the adequacy of equipment and procedures at nuclear power plants to prevent and to control severe accidents

  9. Computational simulation of natural circulation and rewetting experiments using the TRAC/PF1 code; Simulacao computacional dos experimentos: circulacao natural no CTE-150 e remolhamento na ITR utilizando o TRAC-PF1

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.D. da

    1994-05-01

    In this work the TRAC code was used to simulate experiments of natural circulation performed in the first Brazilian integral test facility at (COPESP), Sao Paulo and a rewetting experiment in a single tube test section carried out at CDTN, Belo Horizonte, Brazil. In the first simulation the loop behavior in two transient conditions with different thermal power, namely 20 k W and 120 k W, was verified in the second one the quench front propagation, the liquid mass collected in the carry over measuring tube and the wall temperature at different elevations during the flooding experiment was measured. A comparative analysis, for code consistency, shows a good agreement between the code results and experimental data, except for the quench from velocity. (author). 15 refs, 19 figs, 12 tabs.

  10. Level tracking in detailed reactor simulations

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, B.; Mahaffy, J.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-09-01

    We introduce a useful test problem for judging the performance of reactor safety codes in situations where moving two-phase mixture levels are present. The test problem tracks a two-phase liquid level as it rises and then falls back to its original position. Pure air exists above the level, and a low void air-water mixture is below the level. Conditions are subcooled and isothermal to remove complications resulting from failures of interfacial heat transfer packages to properly account for the level. Comparisons are made between the performance of current versions of CATHARE, RELAP5, TRAC-BF1, and TRAC-PF1. These system codes are based on finite-difference methods with a fixed, Eulerian staggered grid in space. When a partially filled cell with a mixture level discontinuity becomes the donor cell, the sharp changes in fluid properties across the interface results in numerical oscillations of various terms. Furthermore, the cell-to-cell convection of mass, momentum and energy are inaccurately predicted nearby a mixture level. To adequately model moving mixture levels, an efficient discontinuity tracking method for the finite-difference Eulerian approximations is described. This model had been implemented in the TRAC-BWR code for the two-phase mixture level tracking since the TRAC-BD1 Version (released April 1984). The result of the test problem run by the current version of TRAC-BF1/MOD1 with the mixture level tracking model shows some peculiar behavior of the variables such as velocities, pressures and interfacial terms. A systematic approach to improving performance of the tracking method is described. Implementing this approach in TRAC-BF1/MOD1 has shown a major improvement in the results.

  11. Independent assessment of the TRAC-BD1/MOD1 computer code at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wilson, G.E.; Charboneau, B.L.; Dallman, R.J.; Kullberg, C.M.; Wagner, K.C.; Wheatley, P.D.

    1984-01-01

    Under auspices of the United States Nuclear Regulatory Commission, their primary boiling water reactor safety analysis code (TRAC-BWR) is being assessed with simulations of a wide range of experimental data. The FY-1984 assessment activities were associated with the latest version (TRAC-BD1/MOD1) of this code. Typical results of the assessment studies are given. Conclusions formulated from these results are presented. These calculations relate to the overall applicability of the current code to safety analysis, and to future work which would further enhance the code's quality and ease of use

  12. Computational simulation of natural circulation and rewetting experiments using the TRAC/PF1 code

    International Nuclear Information System (INIS)

    Silva, J.D. da.

    1994-05-01

    In this work the TRAC code was used to simulate experiments of natural circulation performed in the first Brazilian integral test facility at (COPESP), Sao Paulo and a rewetting experiment in a single tube test section carried out at CDTN, Belo Horizonte, Brazil. In the first simulation the loop behavior in two transient conditions with different thermal power, namely 20 k W and 120 k W, was verified in the second one the quench front propagation, the liquid mass collected in the carry over measuring tube and the wall temperature at different elevations during the flooding experiment was measured. A comparative analysis, for code consistency, shows a good agreement between the code results and experimental data, except for the quench from velocity. (author). 15 refs, 19 figs, 12 tabs

  13. SU-E-T-19: A New End-To-End Test Method for ExacTrac for Radiation and Plan Isocenter Congruence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Nguyen, N; Liu, F; Huang, Y [Rhode Island Hospital / Warren Alpert Medical, Providence, RI (United States); Sio, T [Mayo Clinic, Rochester, MN (United States); Jung, J [East Carolina University, Greenville, North Carolina (United States); Pyakuryal, A [UniversityIllinois at Chicago, Chicago, IL (United States); Jang, S [Princeton Radiation Oncology Ctr., Jamesburg, NJ (United States)

    2014-06-01

    Purpose: To combine and integrate quality assurance (QA) of target localization and radiation isocenter End to End (E2E) test of BrainLAB ExacTrac system, a new QA approach was devised using anthropomorphic head and neck phantom. This test insures the target localization as well as radiation isocenter congruence which is one step ahead the current ExacTrac QA procedures. Methods: The head and neck phantom typically used for CyberKnife E2E test was irradiated to the sphere target that was visible in CT-sim images. The CT-sim was performed using 1 mm thickness slice with helical scanning technique. The size of the sphere was 3-cm diameter and contoured as a target volume using iPlan V.4.5.2. A conformal arc plan was generated using MLC-based with 7 fields, and five of them were include couch rotations. The prescription dose was 5 Gy and 95% coverage to the target volume. For the irradiation, two Gafchromic films were perpendicularly inserted into the cube that hold sphere inside. The linac used for the irradiation was TrueBeam STx equipped with HD120 MLC. In order to use ExacTrac, infra-red head–array was used to correlate orthogonal X-ray images. Results: Using orthogonal X-rays of ExacTrac the phantom was positioned. For each field, phantom was check again with X-rays and re-positioned if necessary. After each setup using ExacTrac, the target was irradiated. The films were analyzed to determine the deviation of the radiation isocenter in all three dimensions: superior-inferior, left-right and anterior-posterior. The total combining error was found to be 0.76 mm ± 0.05 mm which was within sub-millimeter accuracy. Conclusion: Until now, E2E test for ExacTrac was separately implemented to test image localization and radiation isocenter. This new method can be used for periodic QA procedures.

  14. Comparisons of TRAC-PD2 calculations with Semiscale Mod-3 small-break tests

    International Nuclear Information System (INIS)

    Gilbert, J.S.; Sahota, M.S.; Boyack, B.E.; Booker, C.P.; Meier, J.K.

    1981-01-01

    Five experiments conducted in the Semiscale Mod-3 facility at the Idaho National Engineering Laboratory (INEL) were calculated using the latest released version of the Transient Reactor Analysis Code (TRAC-PD2). The results were used to assess TRAC-PD2 predictions of thermal-hydraulic phenomena and the effects of pump operation on system response during slow transients. Tests S-SB-P1, S-SB-P2, and S-SB-P7 simulated equivalent 2.5% communicative cold-leg breaks for early pump-trip (pumps-off), intermediate pump-trip (pumps-on), and late pump-trip (pumps-on) operation, respectively. Tests S-SB-P3 and S-SB-P4 simulated equivalent 2.5% communicative hot-leg breaks for pumps-off and pumps-on operation, respectively. Parameters examined in the study included primary system mass distribution, mass inventory, and void fraction distribution

  15. Multi-dimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus during LBLOCA Reflood Phase with a DVI Injection Mode

    International Nuclear Information System (INIS)

    Kwon, T.S.; Yun, B.J.; Euh, D.J.; Chu, I.C.; Song, C.H.

    2002-01-01

    Multi-dimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor vessel with a Direct Vessel Injection (DVI) mode is presented based on the experimental observation in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a Large Break Loss-of-Coolant Accidents(LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of 1400 MWe PWR type of a nuclear reactor, focused on understanding multi-dimensional thermalhydraulic phenomena in downcomer annulus with various types of safety injection during the refill or reflood phase of a LBLOCA. The initial and the boundary conditions are scaled from the pre-test analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer. (authors)

  16. Independent assessment of TRAC and RELAP5 codes through separate effects tests

    International Nuclear Information System (INIS)

    Saha, P.; Rohatgi, U.S.; Jo, J.H.; Neymotin, L.; Slovik, G.; Yuelys-Miksis, C.; Pu, J.

    1983-01-01

    Independent assessment of TRAC-PF1 (Version 7.0), TRAC-BD1 (Version 12.0) and RELAP5/MOD1 (Cycle 14) that was initiated at BNL in FY 1982, has been completed in FY 1983. As in the previous years, emphasis at Brookhaven has been in simulating various separate-effects tests with these advanced codes and identifying the areas where further thermal-hydraulic modeling improvements are needed. The following six catetories of tests were simulated with the above codes: (1) critical flow tests (Moby-Dick nitrogen-water, BNL flashing flow, Marviken Test 24); (2) Counter-Current Flow Limiting (CCFL) tests (University of Houston, Dartmouth College single and parallel tube test); (3) level swell tests (G.E. large vessel test); (4) steam generator tests (B and W 19-tube model S.G. tests, FLECHT-SEASET U-tube S.G. tests); (5) natural circulation tests (FRIGG loop tests); and (6) post-CHF tests (Oak Ridge steady-state test)

  17. Evaluations of the setup discrepancy between BrainLAB 6D ExacTrac and cone-beam computed tomography used with the imaging guidance system Novalis-Tx for intracranial stereotactic radiosurgery.

    Science.gov (United States)

    Oh, Se An; Park, Jae Won; Yea, Ji Woon; Kim, Sung Kyu

    2017-01-01

    The objective of this study was to evaluate the setup discrepancy between BrainLAB 6 degree-of-freedom (6D) ExacTrac and cone-beam computed tomography (CBCT) used with the imaging guidance system Novalis Tx for intracranial stereotactic radiosurgery. We included 107 consecutive patients for whom white stereotactic head frame masks (R408; Clarity Medical Products, Newark, OH) were used to fix the head during intracranial stereotactic radiosurgery, between August 2012 and July 2016. The patients were immobilized in the same state for both the verification image using 6D ExacTrac and online 3D CBCT. In addition, after radiation treatment, registration between the computed tomography simulation images and the CBCT images was performed with offline 6D fusion in an offline review. The root-mean-square of the difference in the translational dimensions between the ExacTrac system and CBCT was <1.01 mm for online matching and <1.10 mm for offline matching. Furthermore, the root-mean-square of the difference in the rotational dimensions between the ExacTrac system and the CBCT were <0.82° for online matching and <0.95° for offline matching. It was concluded that while the discrepancies in residual setup errors between the ExacTrac 6D X-ray and the CBCT were minor, they should not be ignored.

  18. Pre-Test Analysis of the MEGAPIE Spallation Source Target Cooling Loop Using the TRAC/AAA Code

    International Nuclear Information System (INIS)

    Bubelis, Evaldas; Coddington, Paul; Leung, Waihung

    2006-01-01

    A pilot project is being undertaken at the Paul Scherrer Institute in Switzerland to test the feasibility of installing a Lead-Bismuth Eutectic (LBE) spallation target in the SINQ facility. Efforts are coordinated under the MEGAPIE project, the main objectives of which are to design, build, operate and decommission a 1 MW spallation neutron source. The technology and experience of building and operating a high power spallation target are of general interest in the design of an Accelerator Driven System (ADS) and in this context MEGAPIE is one of the key experiments. The target cooling is one of the important aspects of the target system design that needs to be studied in detail. Calculations were performed previously using the RELAP5/Mod 3.2.2 and ATHLET codes, but in order to verify the previous code results and to provide another capability to model LBE systems, a similar study of the MEGAPIE target cooling system has been conducted with the TRAC/AAA code. In this paper a comparison is presented for the steady-state results obtained using the above codes. Analysis of transients, such as unregulated cooling of the target, loss of heat sink, the main electro-magnetic pump trip of the LBE loop and unprotected proton beam trip, were studied with TRAC/AAA and compared to those obtained earlier using RELAP5/Mod 3.2.2. This work extends the existing validation data-base of TRAC/AAA to heavy liquid metal systems and comprises the first part of the TRAC/AAA code validation study for LBE systems based on data from the MEGAPIE test facility and corresponding inter-code comparisons. (authors)

  19. Assessment of TRAC-PD2 reflood core thermo-hydraulic model by CCTF Test C1-16

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1982-11-01

    The TRAC-PD2 reflood core thermo-hydraulic model was assessed by CCTF Test C1-16. The measured data were utilized as core boundary conditions in the TRAC calculations. The results indicate that the core inlet liquid temperature and the core heater rod temperatures are in reasonable agreement with data, but the pressure distribution in the core and water pool formation in the upper plenum are not in good agreement. The parametric effects of the droplet critical Weber number, the material properties of the heater rod, the noding of the upper plenum, and the minimum stable film boiling temperature are also discussed. (author)

  20. SU-F-J-42: Comparison of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Cranial Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, J; Shi, W; Andrews, D; Werner-Wasik, M; Lu, B; Yu, Y; Dicker, A; Liu, H [Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac x-ray imaging systems for cranial radiotherapy. Method: Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (Version 2.5), which is integrated with a BrainLab ExacTrac imaging system (Version 6.1.1). The phantom study was based on a Rando head phantom, which was designed to evaluate isocenter-location dependence of the image registrations. Ten isocenters were selected at various locations in the phantom, which represented clinical treatment sites. CBCT and ExacTrac x-ray images were taken when the phantom was located at each isocenter. The patient study included thirteen patients. CBCT and ExacTrac x-ray images were taken at each patient’s treatment position. Six-dimensional image registrations were performed on CBCT and ExacTrac, and residual errors calculated from CBCT and ExacTrac were compared. Results: In the phantom study, the average residual-error differences between CBCT and ExacTrac image registrations were: 0.16±0.10 mm, 0.35±0.20 mm, and 0.21±0.15 mm, in the vertical, longitudinal, and lateral directions, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.36±0.11 degree, 0.14±0.10 degree, and 0.12±0.10 degree, respectively. In the patient study, the average residual-error differences in the vertical, longitudinal, and lateral directions were: 0.13±0.13 mm, 0.37±0.21 mm, 0.22±0.17 mm, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.30±0.10 degree, 0.18±0.11 degree, and 0.22±0.13 degree, respectively. Larger residual-error differences (up to 0.79 mm) were observed in the longitudinal direction in the phantom and patient studies where isocenters were located in or close to frontal lobes, i.e., located superficially. Conclusion: Overall, the average residual-error differences were within 0.4 mm in the translational

  1. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: model evaluation in central North Carolina.

    Science.gov (United States)

    Breen, Michael S; Long, Thomas C; Schultz, Bradley D; Crooks, James; Breen, Miyuki; Langstaff, John E; Isaacs, Kristin K; Tan, Yu-Mei; Williams, Ronald W; Cao, Ye; Geller, Andrew M; Devlin, Robert B; Batterman, Stuart A; Buckley, Timothy J

    2014-07-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies.

  2. Light phase testing of social behaviors: not a problem

    Directory of Open Access Journals (Sweden)

    Mu Yang

    2008-12-01

    Full Text Available The rich repertoire of mouse social behaviors makes it possible to use mouse models to study neurodevelopmental disorders characterized by social deficits. The fact that mice are naturally nocturnal animals raises a critical question of whether behavioral experiments should be strictly conducted in the dark phase and whether light phase testing is a major methodologically mistake. Although mouse social tasks have been performed in both phases in different laboratories, there seems to be no general consensus on whether testing phase is a critical factor or not. A recent study from our group showed remarkably similar social scores obtained from inbred mice tested in the light and the dark phase, providing evidence that light phase testing could yield reliable results as robust as dark phase testing for the sociability test. Here we offer a comprehensive review on mouse social behaviors measured in light and dark phases and explain why it is reasonable to test laboratory mice in experimental social tasks in the light phase.

  3. Laguna Verde simulator: A new TRAC-RT based application

    International Nuclear Information System (INIS)

    Munoz Cases, J.J.; Tanarro Onrubia, A.

    2006-01-01

    In a partnership with GSE Systems, TECNATOM is developing a full scope training simulator for Laguna Verde Unit 2 (LV2). The simulator design is based upon the current 'state-of-the art technology' regarding the simulation platform, instructor station, visualization tools, advanced thermalhydraulics and neutronics models, I/O systems and automated model building technology. When completed, LV2 simulator will achieve a remarkable level of modeling fidelity by using TECNATOM's TRAC-RT advanced thermalhydraulic code for the reactor coolant and main steam systems, and NEMO neutronic model for the reactor core calculations. These models have been utilized up to date for the development or upgrading of nine NPP simulators in Spain and abroad, with more than 8000 hours of training sessions, and have developed an excellent reputation for its robustness and high fidelity. (author)

  4. Assessment of TRAC-BD1/MOD1 using FIST data

    International Nuclear Information System (INIS)

    Jo, J.H.; Connell, H.R.

    1985-01-01

    This report is concerned with the assessment of the TRAC-BD1/MOD1 Code, developed at Idaho National Engineering Laboratory. The assessment was conducted using data from the FIST (Full Integral Simulation Test) facility, which is a BWR safety test facility which was built to investigate small break LOCA and operational transients in BWR's and to complement earlier large break LOCA test results from TLTA (Two-Loop Test Apparatus). 21 figs

  5. Application programming interface document for the modernized Transient Reactor Analysis Code (TRAC-M)

    International Nuclear Information System (INIS)

    Mahaffy, J.; Boyack, B.E.; Steinke, R.G.

    1998-05-01

    The objective of this document is to ease the task of adding new system components to the Transient Reactor Analysis Code (TRAC) or altering old ones. Sufficient information is provided to permit replacement or modification of physical models and correlations. Within TRAC, information is passed at two levels. At the upper level, information is passed by system-wide and component-specific data modules at and above the level of component subroutines. At the lower level, information is passed through a combination of module-based data structures and argument lists. This document describes the basic mechanics involved in the flow of information within the code. The discussion of interfaces in the body of this document has been kept to a general level to highlight key considerations. The appendices cover instructions for obtaining a detailed list of variables used to communicate in each subprogram, definitions and locations of key variables, and proposed improvements to intercomponent interfaces that are not available in the first level of code modernization

  6. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients

  7. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  8. Conversion of control systems, protection and engineering safeguard system signals of Almaraz NPP model from RELAP5 into TRAC-M

    International Nuclear Information System (INIS)

    Mulas, J.; Queral, C.; Collazo, I.; Concejal, A.; Burbano, N.; Lopez Lechas, A.; Tarrega, I.

    2002-01-01

    In the scope of a joint project between the Spanish Regulatory Commission (CSN) and the electric energy industry of Spain (UNESA) about the USNRC state-of-art thermal hydraulic code, TRAC-M, there is a task relating to the translation of the Spanish NPP models from other TH codes to the new one. As a part of this project, our team is working on the translation of Almaraz NPP model from RELAP5/MOD3.2 to TRAC-M. One of the goals of the project is to analyze the conversion of control blocks, signal variables and trips in order to correct modelling all instrumentation and control systems, and also protection and engineering safeguard system-signals of the NPP. At present, several portions of the input deck have been converted to TRAC-M, and the output data have also been compared with RELAP5 data. This paper describes the problems found in the conversion and the solutions achieved.(author)

  9. GPS-based microenvironment tracker (MicroTrac) model to estimate time–location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina

    Science.gov (United States)

    Breen, Michael S.; Long, Thomas C.; Schultz, Bradley D.; Crooks, James; Breen, Miyuki; Langstaff, John E.; Isaacs, Kristin K.; Tan, Yu-Mei; Williams, Ronald W.; Cao, Ye; Geller, Andrew M.; Devlin, Robert B.; Batterman, Stuart A.; Buckley, Timothy J.

    2014-01-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time–location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. PMID:24619294

  10. The EDRO board connected to the Associative Memory: a "Baby" FastTracKer processor for the ATLAS experiment

    CERN Document Server

    Annovi, A; The ATLAS collaboration; Villa, M; Bevacqua, V; Vitillo, R A; Giorgi, F; Magalotti, D; Roda, C; Cervigni, F; Giannetti, P; Negri, A; Piendibene, M; Volpi, G; Fabbri, L; Sbarra, C

    2011-01-01

    The FastTracKer (FTK) is a dedicated hardware system able to perform online fast and precise track reconstruction of the full events at the Atlas experiment, within an average latency of few dozens of microseconds. It is made of two pipelined processors: the Associative Memory (AM), finding low precision tracks called "roads", and the Track Fitter (TF), refining the track quality with high precision fits. The FTK design [1] that works well at the Large Hadron Collider (LHC) Phase I luminosity requires the best of the available technology for tracking in high occupancy conditions. While the new processor is designed for the most demanding LHC conditions, we want to use already existing prototypes, part of them developed for the SLIM5 collaboration [2], to exercise the FTK functions in the new Atlas environment. During Laboratory tests, the EDRO board (Event Dispatch and Read-Out) receives on a clustering mezzanine (able to calculate the pixel and SCT cluster centroids) "fake" detector raw data on S-links from ...

  11. Calculations of Edwards' pipe blowdown tests using the code TRAC P1

    International Nuclear Information System (INIS)

    O'Mahoney, R.

    1979-05-01

    The paper describes the results obtained using the non-thermal equilibrium LOCA code TRAC-P1 for two of a series of Pipe Blowdown Tests. Comparisons are made with the experimental values and RELAP-UK Mark IV predictions. Some discrepancies between prediction and experiment are observed, and certain aspects of the model are considered to warrant possible further attention. (U.K.)

  12. Simulation of LOFT anticipated-transient experiments L6-1, L6-2, and L6-3 using TRAC-PF1/MOD1

    International Nuclear Information System (INIS)

    Sahota, M.S.

    1984-01-01

    Anticipated-transient experiments L6-1, L6-2, and L6-3, performed at the Loss-of-fluid Test (LOFT) facility, are analyzed using the latest released version of the Transient Reactor Analysis Code (TRAC-PF1/MOD1). The results are used to assess TRAC-PF1/MOD1 trip and control capabilities, and predictions of thermal-hydraulic phenomena during slow transients. Test L6-1 simulated a loss-of-stream load in a large pressurized-water reactor (PWR), and was initiated by closing the main steam-flow control valve (MSFCV) at its maximum rate, which reduced the heat removal from the secondary-coolant system and increased the primary-coolant system pressure that initiated a reactor scram. Test L6-2 simulated a loss-of-primary coolant flow in a large PWR, and was initiated by tripping the power to the primary-coolant pumps (PCPs) allowing the pumps to coast down. The reduced primary-coolant flow caused a reactor scram. Test L6-3 simulated an excessive-load increase incident in a large PWR, and was initiated by opening the MSFCV at its maximum rate, which increased the heat removal from the secondary-coolant system and decreased the primary-coolant system pressure that initiated a reactor scram. The TRAC calculations accurately predict most test events. The test data and the calculated results for most parameters of interest also agree well

  13. TRAC-PF1/MOD2 best-estimate analysis of a large-break LOCA in a 15 x 15 generic four-loop Westinghouse nuclear power plant

    International Nuclear Information System (INIS)

    Spore, J.W.; Lin, J.C.; Schnurr, N.M.; White, J.R.; Cappiello, M.C.

    1992-01-01

    Calculations of a large-break loss-of-coolant accident (LOCA) in a 15 x 15 generic four-loop Westinghouse nuclear power plant with both the TRAC-PF1/MOD1 and TRAC-PF1/MOD2 computer codes will be presented. The Transient Reactor Analysis Code (TRAC) has been developed by Los Alamos National Laboratory to provide advanced best-estimate simulations of real postulated transients in pressurized light-water reactors (LWRs) and for many related thermal-hydraulic facilities. The latest released version of TRAC is TRAC-PF1/MOD2. Significant improvements and enhancements over the MOD1 version were implemented in the MOD2 heat-transfer and constitutive models. One of the most significant improvements in the MOD2 code has been the implementation of the two-step numerics method in the three-dimensional components, which can significantly reduce run times for long, slow transients. A very important area of improvement has been in the reflood heat-transfer models. Developmental assessment results (i.e., code comparisons with experimental data) will be discussed for several separate-effects and integral test, including analysis of the Upper Plenum Test Facility (UPTF), the Cylindrical Core Test Facility (CCTF), and the Loss-of-Fluid Test Facility (LOFT). The assessment results provide information on the anticipated accuracy for the best-estimate models in the MOD2 computer code. The MOD1 to MOD2 comparison will provide an estimate for the effect of improved heat-transfer models on predicted peak cladding temperatures

  14. MELPROG/TRAC: update and applications

    International Nuclear Information System (INIS)

    Henninger, R.J.; Kelly, J.E.

    1986-01-01

    The first complete, coupled, and mechanistic analysis of a core meltdown sequence has been made with MELPROG-PWR/MOD1 and MELPROG/TRAC. The sequence analyzed was a station blackout accident for the Surry plant. Through vessel failure, all important aspects of the meltdown sequence were calculated. This version of MELPROG permits a full two-dimensional treatment of the in-vessel phenomena. Natural circulation can thus be modeled. Comparison to one-dimensional MELPROG and MARCH calculations shows that natural circulation reduces the rate of core heating, but increases the rate of heating of upper plenum structures and primary piping. This increased heating can inhibit fission product deposition and may lead to an early failure of the primary system. Because of uncertainty, sensitivity studies were performed to assess the relative importance of modeling assumptions. Changes in the modeling of the initial fuel rod melting and relocation were found to vary the hydrogen source by a factor of 2 and alter the timing of key events. These results imply that accurate and mechanistic modeling is important for severe accident sequence analysis

  15. Horizontal stratified flow model for the 1-D module of WCOBRA/TRAC-TF2: modeling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Frepoli, C.; Ohkawa, K., E-mail: liaoj@westinghouse.com [Westinghouse Electric Company LLC, LOCA Integrated Services I, Cranberry Twp, Pennsylvania (United States)

    2011-07-01

    For a two-phase flow in a horizontal pipe, the individual phases may separate by gravity. This horizontal stratification significantly impacts the interfacial drag, interfacial heat transfer and wall drag of the two phase flow. For a PWR small break LOCA, the horizontal stratification in cold legs is a highly important phenomenon during loop seal clearance, boiloff and recovery periods. The low interfacial drag in the stratified flow directly controls the time period for the loop clearance and the level of residual water in the loop seal. Horizontal stratification in hot legs also impacts the natural circulation stage of a small break LOCA. In addition, the offtake phenomenon and cold leg condensation phenomenon are also affected by the occurrence of horizontal stratification in the cold legs. In the 1-D module of the WCOBRA/TRAC-TF2 computer code, a horizontal stratification criterion was developed by combining the Taitel-Dukler model and the Wallis-Dobson model, which approximates the viscous Kelvin-Helmholtz neutral stability boundary. The objective of this paper is to present the horizontal stratification model implemented in the code and its assessment against relevant data. The adequacy of the horizontal stratification transition criterion is confirmed by examining the code-predicted flow regime in a horizontal pipe with the measured data in the flow regime map. The void fractions (or liquid level) for the horizontal stratified flow in cold leg or hot leg are predicted with a reasonable accuracy. (author)

  16. Comparison of Online 6 Degree-of-Freedom Image Registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Intracranial Radiosurgery.

    Science.gov (United States)

    Li, Jun; Shi, Wenyin; Andrews, David; Werner-Wasik, Maria; Lu, Bo; Yu, Yan; Dicker, Adam; Liu, Haisong

    2017-06-01

    The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient's treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences were cone-beam computed tomography image registration in intracranial treatments.

  17. TRAC analysis of steam-generator overfill transients for TMI-1

    International Nuclear Information System (INIS)

    Bassett, B.

    1983-01-01

    A reactor safety issue concerning the overfilling of once-through steam generators leading to combined primary/secondary blowdown has been raised recently. A series of six calculations, performed with the LWR best-estimate code, TRAC-PD2, on a Babcock and Wilcox Plant (TMI-1), was performed to investigate this safety issue. The base calculation assumed runaway main feedwater to one steam generator causing it to overfill and to break the main steam line. Four additional calculations build onto the base case with combinations of a pump-seal failure, a steam-generator tube rupture, and the pilot-operated relief valve not reseating. A sixth calculation involved only the rupture of a single steam-generator tube. The results of these analyses indicate that for the transients investigated, the emergency cooling system provided an adequate make-up coolant flow to mitigate the accidents

  18. First intermediate break test 6IB1 data comparison with a TRAC-BD1/MOD1 blind calculation

    International Nuclear Information System (INIS)

    Wheatley, P.D.

    1985-04-01

    TRAC-BD1/MOD1 has been used to calculate the behavior in the FIST (Full Integral Test Facility) facility during an intermediate break in one of the recirculation loops. Results of the calculation are compared with the data from the experiment, and the analysis is discussed in this report. The calculation was blind with only the initial and boundary conditions available prior to performance of the calculation. The calculation has been previously documented without reference to the experimental data (i.e., prior to release of the data). This report extends the prior report by discussing the analysis of the data to code comparisons. This work was performed as part of the Nuclear Regulatory Commission's support to the FIST program which is being provided at the Idaho National Engineering Laboratory

  19. Traders' behavioral coupling and market phase transition

    Science.gov (United States)

    Ma, Rong; Zhang, Yin; Li, Honggang

    2017-11-01

    Traditional economic theory is based on the assumption that traders are completely independent and rational; however, trading behavior in the real market is often coupled by various factors. This paper discusses behavioral coupling based on the stock index in the stock market, focusing on the convergence of traders' behavior, its effect on the correlation of stock returns and market volatility. We find that the behavioral consensus in the stock market, the correlation degree of stock returns, and the market volatility all exhibit significant phase transitions with stronger coupling.

  20. Application of a generalized interface module to the coupling of PARCS with both RELAPS and TRAC-M

    International Nuclear Information System (INIS)

    Barber, D.A.; Wang, W.; Miller, R.M.; Downar, T.J.; Joo, H.G.; Mousseau, V.A.; Ebert, D.E.

    1999-01-01

    In an effort to more easily assess various combinations of 3-D neutronic/thermal-hydraulic codes, the USNRC has sponsored the development of a generalized interface module for the coupling of any thermal-hydraulics code to any spatial kinetics code. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine (PVM) software to manage inter-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCS, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for an OECD/NEA main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated; nonetheless, the capabilities of the coupled code are presented for the OECD/NEA main steam line break benchmark problem

  1. Big Data Challenges in High Energy Physics Experiments: The ATLAS (CERN) Fast TracKer Approach

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration

    2016-01-01

    We live in the era of “Big Data” problems. Massive amounts of data are produced and captured, data that require significant amounts of filtering to be processed in a realistically useful form. An excellent example of a “Big Data” problem is the data processing flow in High Energy Physics experiments, in our case the ATLAS detector in CERN. In the Large Hadron Collider (LHC) 40 million collisions of bunches of protons take place every second, which is about 15 trillion collisions per year. For the ATLAS detector alone 1 Mbyte of data is produced for every collision or 2000 Tbytes of data per year. Therefore what is needed is a very efficient real-time trigger system to filter the collisions (events) and identify the ones that contain “interesting” physics for processing. One of the upgrades of the ATLAS Trigger system is the Fast TracKer system. The Fast TracKer is a real-time pattern matching machine able to reconstruct the tracks of the particles in the inner silicon detector of the ATLAS experim...

  2. Translation of the model plant of the CN code TRAC-BF1 Cofrentes of a SNAP-TRACE; Traduccion del modelo de planta de CN Cofrentes del codigo TRAC-BF1 a SNAP-TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Escriva, A.; Munuz-Cobo, J. L.; Concejal, A.; Melara, J.; Albendea, M.

    2012-07-01

    It aims to develop a three-dimensional model of the CN Cofrentes whose consistent results Compared with those in current use programs (TRAC-BFl, RETRAN) validated with data of the plant. This comparison should be done globally and that you can not carry a compensation of errors. To check the correct translation of the results obtained have been compared with TRACE and the programs currently in use and the relevant adjustments have been made, taking into account that both the correlations and models are different codes. During the completion of this work we have detected several errors that must be corrected in future versions of these tools.

  3. TRAC analysis of an 80% pump-side, cold-leg, large-break loss-of-coolant accident for the Westinghouse AP600 advanced reactor design

    International Nuclear Information System (INIS)

    Lime, J.F.; Boyack, B.E.

    1996-01-01

    An updated TRAC 80% pump-side, cold-leg, large-break (LB) loss-of-coolant accident (LOCA) has been calculated for the Westinghouse AP600 advanced reactor design. The updated calculation incorporates major code error corrections, model corrections, and plant design changes. The break size and location were calculated by Westinghouse to be the most severe LBLOCA for the AP600 design. The LBLOCA transient was calculated to 280 s, which is the time of in-containment refueling water-storage-tank injection. All fuel rods were quenched completely by 240 s. Peak cladding temperatures (PCTs) were well below the licensing limit of 1,478 K (2,200 F) but were very near the cladding oxidation temperature of 1,200 K (1,700 F). Transient event times and PCTs for the TRAC calculation were in reasonable agreement with those calculated by Westinghouse using their WCOBRA/TRAC code. However, there were significant differences in the detailed phenomena calculated by the two codes, particularly during the blowdown and refill periods. The reasons for these differences are still being investigated

  4. Application of a generalized interface module to the coupling of PARCS with both RELAP5 and TRAC-M

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D.A.; Wang, W. [SCIENTECH, Inc. (United States); Miller, R.M.; Downar, T.J. [Purdue Univ., West Lafayette, IN (United States); Joo, H.G. [Korean Atomic Energy Research Inst., Seoul (Korea, Republic of); Mousseau, V.A. [Los Alamos National Lab., NM (United States); Ebert, D.E. [Nuclear Regulatory Commission, Washington, DC (United States)

    1999-04-01

    In an effort to more easily assess various combinations of 3-D neutronic/thermal-hydraulic codes, the USNRC has sponsored the development of a generalized interface module for the coupling of any thermal-hydraulics code to any spatial kinetics code. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine (PVM) software to manage inter-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCS, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for an OECD/NEA main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated; nonetheless, the capabilities of the coupled code are presented for the OECD/NEA main steam line break benchmark problem.

  5. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C. [LOCA Integrated Services I, Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  6. Non-Darcy behavior of two-phase channel flow.

    Science.gov (United States)

    Xu, Xianmin; Wang, Xiaoping

    2014-08-01

    We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.

  7. Application of TRAC-BD1/MOD1 to a BWR/4 feedwater control failure ATWS

    International Nuclear Information System (INIS)

    Rouhani, S.Z.; Giles, M.M.; Mohr, C.M. Jr.; Weaver, W.L. III.

    1984-01-01

    This paper begins with a short description of the Transient Reactor Analysis Code for Boiling Water Reactors (TRAC-BWR), briefly mentioning some of its main features such as specific BWR models and input structure. Next, an input model of a BWR/4 is described, and, the assumptions used in performing an analysis of the loss of a feedwater controller without scram are listed. The important features of the calculated trends in flows, pressure, reactivity, and power are shown graphically and commented in the text. A comparison of some of the main predicted trends with the calculated results from a similar study by General Electric is also presented

  8. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  9. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    Science.gov (United States)

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  10. TRAC-B thermal-hydraulic analysis of the Black Fox boiling water reactor

    International Nuclear Information System (INIS)

    Martin, R.P.

    1993-05-01

    Thermal-hydraulic analyses of six hypothetical accident scenarios for the General Electric Black Fox Nuclear Project boiling water reactor were performed using the TRAC-BF1 computer code. This work is sponsored by the US Nuclear Regulatory Commission and is being done in conjunction with future analysis work at the US Nuclear Regulatory Commission Technical Training Center in Chattanooga, Tennessee. These accident scenarios were chosen to assess and benchmark the thermal-hydraulic capabilities of the Black Fox Nuclear Project simulator at the Technical Training Center to model abnormal transient conditions

  11. Controlling block copolymer phase behavior using ionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India E-mail: debes.phys@gmail.com (India)

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  12. Balance of plant modeling in TRAC-BD1/MOD1

    International Nuclear Information System (INIS)

    Weaver, W.L.; Giles, M.M.; Mohr, C.M.

    1983-01-01

    The mission of the TRAC-BD1/MOD1 code is to provide a best-estimate analysis capability for Boiling Water Reactor systems and related experimental facilities for the full range of accidents from large and small break Loss-of-Coolant accidents to operational transients including anticipated transients without scram (ATWS), for which point reactor kinetics is adequate (as a first approximation). Recent model developments allow a complete reactor system including the containment and the balance of plant to be modeled. This paper describes the balance of plant models and presents the results of a simulation of a loss-of-feedwater heater transients which was used to assess the performance of the balance of plant models

  13. TRACMAB. A computer code to form part of the link between the codes TRAC and MABEL

    International Nuclear Information System (INIS)

    Newbon, S.

    1982-05-01

    This report describes the function of the link program TRACMAB and provides a guide for users. The program is required to convert the thermal disequilibrium data output by the transient code TRAC into equilibrium data in a format compatible with the input data required by the code CAIN which in turn produces input data for MABEL. (author)

  14. Reactor safety issues resolved by the 2D/3D Program

    International Nuclear Information System (INIS)

    Damerell, P.S.; Simons, J.W.

    1993-07-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated

  15. Two-dimensional thermal-hydraulic behavior in core in SCTF Core-II forced feed reflood tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Sobajima, Makoto; Okubo, Tsutomu; Ohnuki, Akira; Abe, Yutaka; Adachi, Hiromichi

    1987-01-01

    Major purpose of the Slab Core Test Program is to investigate the two-dimensional thermal-hydraulic behavior in the core during the reflood phase of a PWR-LOCA. It was revealed in the previous Slab Core Test Facility (SCTF) Core-II test results that the heat transfer was enhanced in the higher power bundles and degraded in the lower power bundles in the non-uniform radial power profile tests. In order to separately evaluate the effect of the radial power (Q) distribution itself and the effect of the radial temperature (T) distribution, four tests were performed with steep Q and T, flat Q and T, steep Q and flat T, and flat Q and steep T. Based on the test results, it was concluded that the radial temperature distribution which accompanied the radial power distribution was the dominant factor of the two-dimensional thermal-hydraulic behavior in the core during the initial period. Selected data from these four tests are also presented in this report. Some data from Test S2-12 (steep Q, T) were compared with TRAC post-test calculations performed by the Los Alamos National Laboratory. (author)

  16. Modelling of coupled self-actuating safety, relief and damped check valve systems with the codes TRAC-PF1 and ROLAST

    International Nuclear Information System (INIS)

    Neumann, U.; Puzalowski, R.; Grimm, I.

    1985-01-01

    Numerical valve models for simulation of selfactuating safety valves and damped check valves are introduced for the computer programs TRAC-PF1 and ROLAST. As examples of application post-test calculations and stability analysis are given. (orig.)

  17. POST: a postprocessor computer code for producing three-dimensional movies of two-phase flow in a reactor vessel

    International Nuclear Information System (INIS)

    Taggart, K.A.; Liles, D.R.

    1977-08-01

    The development of the TRAC computer code for analysis of LOCAs in light-water reactors involves the use of a three-dimensional (r-theta-z), two-fluid hydrodynamics model to describe the two-phase flow of steam and water through the reactor vessel. One of the major problems involved in interpreting results from this code is the presentation of three-dimensional flow patterns. The purpose of the report is to present a partial solution to this data display problem. A first version of a code which produces three-dimensional movies of flow in the reactor vessel has been written and debugged. This code (POST) is used as a postprocessor in conjunction with a stand alone three-dimensional two-phase hydrodynamics code (CYLTF) which is a test bed for the three-dimensional algorithms to be used in TRAC

  18. FTK: The hardware Fast TracKer of the ATLAS experiment at CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00525014; The ATLAS collaboration

    2017-01-01

    In the ever increasing pile-up of the Large Hadron Collider environment the trigger systems of the experiments have to be exceedingly sophisticated and fast at the same time in order to increase the rate of relevant physics processes with respect to background processes. The Fast TracKer (FTK) is a track finding implementation at hardware level that is designed to deliver full-scan tracks with $p_{T}$ above 1GeV to the ATLAS trigger system for every L1 accept (at a maximum rate of 100kHz). To accomplish this, FTK is a highly parallel system which is currently under installation in ATLAS. It will first provide the trigger system with tracks in the central region of the ATLAS detector, and next year it is expected that it will cover the whole detector. The system is based on pattern matching between hits coming from the silicon trackers of the ATLAS detector and 1 billion simulated patterns stored in specially designed ASIC chips (Associative Memory – AM06). In a first stage, coarse resolution hits are matche...

  19. TRAC-PF1/MOD1 independent assessment: Semiscale Mod-2A intermediate break test S-IB-3

    International Nuclear Information System (INIS)

    Kmetyk, L.N.

    1986-02-01

    The TRAC-PF1/MOD1 independent assessment project at Sandia National Laboratories is part of an overall effort funded by the NRC to determine the ability of various system codes to predict the detailed thermal/hydraulic response of light water reactors during accident and off-normal conditions. The TRAC code is being assessed at SNLA against test data from various integral and separate effects test facilities. As part of this assessment matrix, an intermediate break test (S-IB-3), performed at the Semiscale Mod-2A facility, has been analyzed. Using an input model with a 3-D VESSEL component, the vessel and downcomer inventories during 3-IB-3 were generally well predicted, but the core heatup was underpredicted compared to data. An equivalent calculation with an all 1-D input model ran about twice as fast as our basecase analysis using a 3-D VESSEL in the input model, but the results of the two calculations diverged significantly for many parameters of interest, with the 3-D VESSEL model results in better agreement with data. 22 refs., 100 figs

  20. A plan for the modification and assessment of TRAC-PF1/MOD2 for use in analyzing CANDU 3 transient thermal-hydraulic phenomena

    International Nuclear Information System (INIS)

    Siebe, D.A.; Boyack, B.E.; Giguere, P.T.

    1994-11-01

    This report presents the results of the review and planning done for the United States Nuclear Regulatory Commission to identify the thermal-hydraulic phenomena that could occur in the CANDU 3 reactor design during transient conditions, plan modifications to the TRAC-PF1/MOD2 (TRAC) computer code needed to adequately predict CANDU 3 transient thermal-hydraulic phenomena, and identify an assessment program to verify the ability of TRAC, when modified, to predict these phenomena. This work builds on analyses and recommendations produced by the Idaho National Engineering Laboratory (INEL). To identify the thermal-hydraulic phenomena, a large-break loss-of-coolant accident simulation, performed as part of earlier work by INEL with an Atomic Energy of Canada, Limited (AECL) thermal-hydraulic computer code (CATHENA), was analyzed in detail. Other accident scenarios were examined for additional phenomena. A group of Los Alamos National Laboratory reactor thermal-hydraulics experts ranked the phenomena to produce a preliminary phenomena identification and ranking table (PIRT). The preliminary nature of the PIRT was a result of a lack of direct expertise with the unique processes and phenomena of the CANDU 3. Nonetheless, this PIRT provided an adequate foundation for planning a program of code modifications. We believe that this PIRT captured the most important phenomena and that refinements to the PIRT will mainly produce clarification of the relative importance (ranking) of phenomena. A plan for code modifications was developed based on this PIRT and on information about the modeling methodologies for CANDU-specific phenomena used in AECL codes. AECL thermal-hydraulic test facilities and programs were reviewed and the information used in developing an assessment plan to ensure that TRAC-PF1/MOD2, when modified, will adequately predict CANDU 3 phenomena

  1. Comparisons of TRAC-PF-1 calculations with semiscale Mod-3 small-break tests S-SB-P1 and S-SB-P7

    International Nuclear Information System (INIS)

    Sahota, M.S.

    1982-01-01

    Semiscale Tests S-SB-P1 and S-SB-P7 conducted in the Semiscale Mod-3 facility at the Idaho National Engineering Laboratory are analyzed using the latest released version of the Transient Reactor Analysis Code (TRAC-PF1). The results are used to assess TRAC-PF1 predictions of thermal-hydraulic phenomena and the effects of break size and pump operation on system response during slow transients. Tests S-SB-P1 and S-SB-P7 simulated an equivalent pressurized-water-reactor (PWR) 2.5% communicative cold-leg break for early and late pump trips, respectively, with only high-pressure injection (HPI) into the cold legs. The parameters examined include break flow, primary-system pressure response, primary-system mass distribution, and core characteristics

  2. Input data preparation and simulation of the second standard problem of IAEA using the Trac/PF1 code

    International Nuclear Information System (INIS)

    Madeira, A.A.; Pontedeiro, A.C.; Silva Galetti, M.R. da; Borges, R.C.

    1989-10-01

    The second Standard Problem sponsored by IAEA consists in the simulation of a small LOCA located in the downcomer of a PMK-NVH integral test facility, which models WWER/440 type reactor. This report presents input data preparation and comparison between TRAC-PF1 results and experimental measurements. (author) [pt

  3. Anisotropic colloids: bulk phase behavior and equilibrium sedimentation

    NARCIS (Netherlands)

    Marechal, M.A.T.

    2009-01-01

    This thesis focuses on the phase behavior of anisotropically shaped (i.e. non-spherical) colloids using computer simulations. Only hard-core interactions between the colloids are taken into account to investigate the effects of shape alone. The bulk phase behavior of three different shapes of

  4. FTK: The hardware Fast TracKer of the ATLAS experiment at CERN

    Directory of Open Access Journals (Sweden)

    Maznas Ioannis

    2017-01-01

    Full Text Available In the ever increasing pile-up environment of the Large Hadron Collider, trigger systems of the experiments must use more sophisticated techniques in order to increase purity of signal physics processes with respect to background processes. The Fast TracKer (FTK is a track finding system implemented in custom hardware that is designed to deliver full-scan tracks with pT above 1 GeV to the ATLAS trigger system for every Level-1 (L1 accept (at a maximum rate of 100 kHz. To accomplish this, FTK is a highly parallel system which is currently being installed in ATLAS. It will first provide the trigger system with tracks in the central region of the ATLAS detector, and next year it is expected that it will cover the whole detector. The system is based on pattern matching between hits coming from the silicon trackers of the ATLAS detector and one billion simulated patterns stored in specially designed ASIC Associative Memory chips. This document will provide an overview of the FTK system architecture, its design and information about its expected performance.

  5. Reverse primary-side flow in steam generators during natural circulation cooling

    International Nuclear Information System (INIS)

    Stumpf, H.; Motley, F.; Schultz, R.; Chapman, J.; Kukita, Y.

    1987-01-01

    A TRAC model of the Large Scale Test Facility with a 3-tube steam-generator model was used to analyze natural-circulation test ST-NC-02. For the steady state at 100% primary mass inventory, TRAC was in excellent agreement with the natural-circulation flow rate, the temperature distribution in the steam-generator tubes, and the temperature drop from the hot leg to the steam-generator inlet plenum. TRAC also predicted reverse flow in the long tubes. At reduced primary mass inventories, TRAC predicted the three natural-circulation flow regimes: single phase, two phase, and reflux condensation. TRAC did not predict the cyclic fill-and-dump phenomenon seen briefly in the test. TRAC overpredicted the two-phase natural-circulation flow rate. Since the core is well cooled at this time, the result is conservative. An important result of the analysis is that TRAC was able to predict the core dryout and heatup at approximately the same primary mass inventory as in the test. 4 refs., 8 figs., 2 tabs

  6. Numerically induced pressure excursions in two-phase-flow calculations. Final report

    International Nuclear Information System (INIS)

    Mahaffy, J.H.; Liles, D.R.

    1983-01-01

    Pressure spikes that cannot be traced to any physical origin sometimes are observed when standard Eulerian finite-difference methods are used to calculate two-phase-flow transients. This problem occurs with varying frequency in nuclear reactor safety codes such as RELAP, RETRAN, COBRA, and TRAC. These spikes usually result from numerical water packing or from interactions between spatial discretization and heat transfer

  7. Translation of the model plant of the CN code TRAC-BF1 Cofrentes of a SNAP-TRACE

    International Nuclear Information System (INIS)

    Escriva, A.; Munuz-Cobo, J. L.; Concejal, A.; Melara, J.; Albendea, M.

    2012-01-01

    It aims to develop a three-dimensional model of the CN Cofrentes whose consistent results Compared with those in current use programs (TRAC-BFl, RETRAN) validated with data of the plant. This comparison should be done globally and that you can not carry a compensation of errors. To check the correct translation of the results obtained have been compared with TRACE and the programs currently in use and the relevant adjustments have been made, taking into account that both the correlations and models are different codes. During the completion of this work we have detected several errors that must be corrected in future versions of these tools.

  8. The Associative Memory Serial Link Processor for the Fast TracKer (FTK) at ATLAS

    International Nuclear Information System (INIS)

    Andreani, A; Citterio, M; Liberali, V; Annovi, A; Beretta, M; Beccherle, R; Crescioli, F; Biesuz, N; Billereau, W; Combe, J M; Cipriani, R; Citraro, S; Donati, S; Giannetti, P; Luciano, P; Colombo, A; Dimas, D; Gentsos, C; Kordas, K; Lanza, A

    2014-01-01

    The Fast TracKer (FTK) is an extremely powerful and very compact processing unit, essential for efficient Level 2 trigger selection in future high-energy physics experiments at the LHC. FTK employs Associative Memories (AM) to perform pattern recognition; input and output data are transmitted over serial links at 2 Gbit/s to reduce routing congestion at the board level. Prototypes of the AM chip and of the AM board have been manufactured and tested, in preparation of the imminent design of the final version

  9. System calculations related to the accident at Three-Mile Island using TRAC

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1980-01-01

    The Three Mile Island nuclear plant (Unit 2) was modeled using the Transient Reactor Analysis Code (TRAC-P1A) and a base case calculation, which simulated the initial part of the accident that occurred on March 28, 1979, was performed. In addition to the base case calculation, several parametric calculations were performed in which a single hypothetical change was made in the system conditions, such as assuming the high pressure injection (HPI) system operated as designed rather than as in the accident. Some of the important system parameter comparisons for the base case as well as some of the parametric case results are presented

  10. Financial Health of the Higher Education Sector: Financial Results and TRAC Outcomes 2013-14. Issues Paper 2015/07

    Science.gov (United States)

    Higher Education Funding Council for England, 2015

    2015-01-01

    This report provides an overview of the financial health of the Higher Education Funding Council for England (HEFCE)-funded higher education sector in England. The analysis covers financial results for the academic year 2013-14, as submitted to HEFCE in December 2014, as well as the outcomes from the sector's Transparent Approach to Costing (TRAC)…

  11. Generating realistic environments for cyber operations development, testing, and training

    Science.gov (United States)

    Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.

    2012-06-01

    Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.

  12. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  13. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  14. Proposal for the transmittal of data to LASL and the reporting of TRAC analyses for the multinational reflood experimental program

    International Nuclear Information System (INIS)

    Bleiweis, P.B.; Kirchner, W.L.; Sicilian, J.M.

    1979-04-01

    The proposed form of the digital tape containing the reduced experimental data from any of the 2D/3D facilities (CCTF, SCTF, UPTF, and possibly PKL Core-II) and the procedures which LASL will use in performing TRAC calculations and reporting results are described in this document

  15. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.

    2017-11-08

    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh\\'s equation and is coupled to phase behavior so that simultaneous tuning of both interfacial tension (IFT) and phase behavior is possible. The oil-water interfacial tension and characteristic length are shown to be related to each other through the hydrophilic-lipophilic deviation (HLD). The phase behavior is tied to the micelle curvatures, without the need for using the net average curvature (NAC). The interfacial tension model is related to solubilization ratios in order to introduce a coupled interfacial tension-phase behavior model for all phase environments. The approach predicts two- and three-phase interfacial tensions and phase behavior (i.e., tie lines and tie triangles) for changes in composition and HLD input parameters, such as temperature, pressure, surfactant structure, and oil equivalent alkane carbon number. Comparisons to experimental data show excellent fits and predictive capability.

  16. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-05-06

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  17. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-01-01

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  18. Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers

    Directory of Open Access Journals (Sweden)

    Nobutake Tamai

    2013-01-01

    Full Text Available Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs, depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC, which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature–pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.

  19. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.

    Science.gov (United States)

    Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-06-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

  20. Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?

    International Nuclear Information System (INIS)

    Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba; Cozzolino, Mariella; Oliviero, Caterina; Califano, Giorgia; Caivano, Rocchina; Fusco, Vincenzo; Simeon, Vittorio

    2013-01-01

    Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences in shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients

  1. CARTOTOOL: un utilitaire de tracé de cartes sur stations de travail et micro-ordinateurs

    Directory of Open Access Journals (Sweden)

    Xavier Bemardet

    1990-05-01

    Full Text Available CARTOTOOL, logiciel interactif de tracé de cartes à différentes échelles, fonctionne, aussi bien sur écran monochrome que couleur, dans un environnement multifenêtrage SUNTOOLS. Développé pour utiliser WORLD DATA BASE II, il peut aussi tracer n'importe quel type de fichier de contours ayant un format compatible avec celui de la base. Outre ses fonctions de dessin, CARTOTOOL permet la recherche manuelle de coordonnées de points et le positionnement de relevés.

  2. Multiple-phase behavior and memory effect of polymer gel

    CERN Document Server

    Annaka, M; Nakahira, T; Sugiyama, M; Hara, K; Matsuura, T

    2002-01-01

    A poly(4-acrylamidosalicylic acid) gel (PASA gel) exhibits multiple phases as characterized by distinct degrees of swelling; the gel can take one of four different swelling values, but none of the intermediate values. The gel has remarkable memory: the phase behavior of the gel depends on whether the gel has experienced the most swollen phase or the most collapsed phase in the immediate past. The information is stored and reversibly erased in the form of a macroscopic phase transition behavior. The structure factors corresponding to these four phases were obtained by SANS, which indicated the presence of characteristic structures depending on pH and temperature, particularly in the shrunken state. (orig.)

  3. Measuring laves phase particle size and thermodynamic calculating its growth and coarsening behavior in P92 steels

    DEFF Research Database (Denmark)

    Yao, Bing-Yin; Zhou, Rong-Can; Fan, Chang-Xin

    2010-01-01

    The growth of Laves phase particles in three kinds of P92 steels were investigated. Laves phase particles can be easily separated and distinguished from the matrix and other particles by atom number contrast using comparisons of the backscatter electrons (BSE) images and the secondary electrons (SE......) images in scanning electron microscope (SEM). The smaller Laves phase particle size results in higher creep strength and longer creep exposure time at the same conditions. DICTRA software was used to model the growth and coarsening behavior of Laves phase in the three P92 steels. Good agreements were...... attained between measurements in SEM and modeling by DICTRA. Ostwald ripening should be used for the coarsening calculation of Laves phase in P92 steels for time longer than 20000 h and 50000 h at 650°C and 600°C, respectively. © 2010 Chin. Soc. for Elec. Eng....

  4. Phase Transition Behavior in a Neutral Evolution Model

    Science.gov (United States)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  5. Millisecond X-ray Star Tracker, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CrossTrac Engineering, in cooperation with its subcontractors Dr Suneel Sheikh of ASTER Labs, Inc, and Mr Paul Graven of Cateni, Inc, proposes to develop a next...

  6. Phase behavior of the 38-atom Lennard-Jones cluster

    International Nuclear Information System (INIS)

    Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.

    2014-01-01

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ 38 ). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space, we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ 38 cluster

  7. Assessment of flooding in a best estimate thermal hydraulic code (WCOBRA/TRAC)

    International Nuclear Information System (INIS)

    Takeuchi, K.; Young, M.Y.

    1998-01-01

    The performance of WCOBRA/TRAC code in predicting the flooding, the counter-current flow limit, is evaluated in three geometries important to nuclear reactor loss-of-coolant accident evaluation; a vertical pipe, a perforated plate, and a downcomer annulus. These flow limits are computationally evaluated through transient conditions. The flooding in the vertical pipe is compared with the classical Wallis flooding limit. The flooding on the perforated plate is compared with the Northwestern flooding data correlation. The downcomer flooding in 1/15th and 1/5th scale model is compared with the Creare data. Finally, full scale downcomer flooding is compared with the UPTF test data. The prediction capability of the code for the flooding is found to be very good. (orig.)

  8. Analysis of the FIST integral tests 4DBA1, 6SB2C and T1QUV with TRAC-BFl/v2001.2

    International Nuclear Information System (INIS)

    Analytis, G.Th.

    2004-01-01

    As part of the assessment of the frozen version of the PSU TRAC-BFl/v2001.2 and its qualification as a LB-LOCA and SB-LOCA code, in this work, we shall outline the comparisons between measurements and code predictions for three FIST tests: The LB-LOCA test 4DBA1, the SB-LOCA test 6SB2C and the failure to maintain water level test T1QUV. We shall study the effect of the number of axial levels in the active core as well as (in the case of the SB-LOCA test 6SB2C) the effect of the timing of the activation of the reflooding options/heat transfer package on the code predictions. Furthermore, we shall show that by using the upwinding option of some terms of the three-dimensional momentum equations, severe mass-error problems appearing in the analysis of the test T1QUV can be resolved. Generally, we shall show that although there are some differences between measurements and predictions, TRAC-BF1 captures quite well the overall behaviour of the LB-LOCA transient (depending on the number of axial nodes in the core) but underpredicts the rod surface temperatures of the SB-LOCA test 6SB2C

  9. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Venema, P.; Bot, A.; Flöter, E.; Adel, den R.; Linden, van der E.

    2015-01-01

    The phase behavior of binary mixtures of ¿-oryzanol and ß-sitosterol and ternary mixtures of ¿-oryzanol and ß-sitosterol in sunflower oil was studied. Binary mixtures of ¿-oryzanol and ß-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was

  10. Assessment of TRAC-PF1/MOD1 against a loss-of-grid transient in Ringhals 4 power plant

    International Nuclear Information System (INIS)

    Sjoberg, A.; Almberger, J.; Sandervag, O.

    1989-07-01

    A loss of grid transient in a three loop Westinghouse PWR has been simulated with the frozen version of TRAC-PF1/MOD1 computer code. The results reveal the capability of the code to qualitatively predict the different pertinent phenomena and the data comparison was quite encouraging. Accurate predictions of the system response required careful determination of the boundary conditions simulating the turbine governor valves and steam dump valves behaviour. An explicit modeling of the steam generator internals was also found to be important for the results. It was also revealed that the pressurizer system including spray and heaters and their operation should be modeled in some detail for proper response. 4 refs., 18 figs

  11. TRAC analysis and support of Oconee-1 PTS studies

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1983-01-01

    This paper describes the overall pressurized thermal shock (PTS) program at Los Alamos with emphasis on TRAC-PF1 calculations of severe overcooling transients for the Oconee-1 pressurized water reactor (PWR). A summary of results for several calculations are presented for the Oconee-1 PWR along with detailed discussions of two of the most severe overcooling transients predicted [main steam-line break and turbine-bypass valve (TBV) failures]. The calculations performed were plant specific in that details of both the primary and secondary sides were modeled in addition to a detailed model of the plant Integrated Control System (ICS). For the Oconee-1 main steam-line break transient, a minimum downcomer fluid temperature of approx. 405 K was predicted. For the TBV transient involving the failure of one bank of TBVs to close after initially opening following reactor and turbine trips, an extrapolated downcomer fluid temperature of approx. 365 K was estimated. The latter temperature is at the nil-ductility temperature (NDT) limit (approx. 365 K) for Oconee-1

  12. Universality in the phase behavior of soft matter: a law of corresponding states.

    Science.gov (United States)

    Malescio, G

    2006-10-01

    We show that the phase diagram of substances whose molecular structure changes upon varying the thermodynamic parameters can be mapped, through state-dependent scaling, onto the phase diagram of systems of molecules having fixed structure. This makes it possible to identify broad universality classes in the complex phase scenario exhibited by soft matter, and enlightens a surprisingly close connection between puzzling phase phenomena and familiar behaviors. The analysis presented provides a straightforward way for deriving the phase diagram of soft substances from that of simpler reference systems. This method is applied here to study the phase behavior exhibited by two significative examples of soft matter with temperature-dependent molecular structure: thermally responsive colloids and polymeric systems. A region of inverse melting, i.e., melting upon isobaric cooling, is predicted at relatively low pressure and temperature in polymeric systems.

  13. The Associative Memory Serial Link Processor of the ALTAS Fast TracKer Processing System

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration

    2017-01-01

    The upgraded Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at the LHC will improve the capability of the detector to select the events with the greatest scientific potential. The Fast TracKer (FTK) is one of the ATLAS TDAQ upgrades that is presently under commissioning. FTK is a custom hardware system that feeds the High Level Trigger (HLT) with charged particle tracks reconstructed from hits in silicon detectors at the rate of 105 events per second. The main processing element of FTK is the Associative Memory (AM) system that is used to perform pattern matching with a high degree of parallelism. Its implementation is called the AM Board Serial Link Processor (AMBSLP) and it is a very efficient pattern matching machine that handles in parallel massive data samples. The AMBSLP consists of two types of boards: the Little Associative Memory Board (LAMB), a mezzanine where the AM chips are mounted, and the Associative Memory Board (AMB), a 9U VME motherboard that hosts four LAMB daughter-boar...

  14. Reactor safety issues resolved by the 2D/3D program

    International Nuclear Information System (INIS)

    1995-09-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated. This report was prepared in a coordination among US, Germany and Japan. US and Germany have published the report as NUREG/IA-0127 and GRS-101 respectively. (author)

  15. Reactor safety issues resolved by the 2D/3D program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated. This report was prepared in a coordination among US, Germany and Japan. US and Germany have published the report as NUREG/IA-0127 and GRS-101 respectively. (author).

  16. Two-phase flow dynamics in ECC

    International Nuclear Information System (INIS)

    Albraaten, P.J.

    1981-07-01

    The present report summarizes the achievements within the project ''Two-phase Systems and ECC''. The results during 1978 - 1980 are accounted for in brief as they have been documented in earlier reports. The results during the first half of 1981 are accounted for in greater detail. They contain a new model for the Basset force and test runs with this model using the test code RISQUE. Furthermore, test runs have been performed with TRAC-PD2 MOD 1. This code was implemented on Edwards Pipe Blowdown experiment (a standard test case) and UC-Berkeley Reflooding experiment (a non-standard test case.) (Auth.)

  17. Implementation and Performance of FPGA based track fitting for the Atlas Fast TracKer

    CERN Document Server

    Zou, Rui; The ATLAS collaboration

    2018-01-01

    The Fast TracKer (FTK) within the ATLAS trigger system provides global track reconstruction for all events passing the ATLAS Level 1 trigger by dividing the detector into parallel processing pipelines that implement pattern matching in custom integrated circuits and data routing, reduction, and parameter extraction in FPGAs. In this presentation we will describe the implementation of a critical component of the system which does partial track fitting using a method based on a principal component analysis at a rate of greater than 1 fit per 10 ps, system-wide, to reduce the output of the pattern matching. Firmware design, timing performance and preliminary results will be discussed.

  18. Scaling behavior in first-order quark-hadron phase transition

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1994-01-01

    It is shown that in the Ginzburg-Landau description of first-order quark-hadron phase transition the normalized factorial moments exhibit scaling behavior. The scaling exponent ν depends on only one effective parameter g, which characterizes the strength of the transition. For a strong first-order transition, we find ν=1.45. For weak transition it is 1.30 in agreement with the earlier result on second-order transition

  19. Poly(trimethylene terephthalate)/Poly(butylenes succinate) blend: Phase behavior and mechanical property control using its transesterification system as the compatibilizer

    International Nuclear Information System (INIS)

    Chen, Jianxiang; Wu, Defeng

    2014-01-01

    Poly(trimethylene terephthalate)/poly(butylenes succinate) (PTT/PBS) blends and their ester-exchanged system were prepared by melt mixing for the phase behavior and the viscoelasticity studies. A typical two-phase structure can be seen on the blends because two polymers are immiscible thermodynamically. The phase inversion behavior of the blends can be well determined by the blending ratio dependence of their dynamic rheological responses, which can also be predicted by the viscous Utracki model based on the viscosity ratio. However, the dynamic viscoelastic responses of the blends cannot be well described by the emulsion model because two polymers are highly asymmetric in their viscoelasticity. Besides, transesterification is an effective approach of reducing interfacial tension and improving final phase morphology of the blends, which can be evaluated qualitatively from viscoelastic response alterations after ester exchange reaction. The mechanical properties of PTT/PBS blends were also studied. The results reveal that the ester-exchanged blends show mechanical strengths even lower than the pristine ones because of bulk degradation accompanied with transesterification, despite their improved phase structure. However, they can be used as the good compatibilizer to improve phase adhesion of the pristine blends, enhancing strengths of the PTT based blends or toughness of the PBS based blends evidently. - Highlights: • Phase inversion of the blends can be determined by their rheological responses. • Improved phase morphology can be evaluated from viscoelasticity alterations. • The ester-exchanged system is suitable to be used as the compatibilizer. • Mechanical properties can be controlled by introducing ester-exchanged system

  20. Effect of three-body forces on the phase behavior of charged colloids

    International Nuclear Information System (INIS)

    Wu, J. Z.; Bratko, D.; Blanch, H. W.; Prausnitz, J. M.

    2000-01-01

    Statistical-thermodynamic theory for predicting the phase behavior of a colloidal solution requires the pair interaction potential between colloidal particles in solution. In practice, it is necessary to assume pairwise additivity for the potential of mean force between colloidal particles, but little is known concerning the validity of this assumption. This paper concerns interaction between small charged colloids, such as surfactant micelles or globular proteins, in electrolyte solutions and the multibody effect on phase behavior. Monte Carlo simulations for isolated colloidal triplets in equilateral configurations show that, while the three-body force is repulsive when the three particles are near contact, it becomes short-ranged attractive at further separations, contrary to a previous study where the triplet force is attractive at all separations. The three-body force arises mainly from hard-sphere collisions between colloids and small ions; it is most significant in solutions of monovalent salt at low concentration where charged colloids experience strong electrostatic interactions. To illustrate the effect of three-body forces on the phase behavior of charged colloids, we calculated the densities of coexisting phases using van der Waals-type theories for colloidal solutions and for crystals. For the conditions investigated in this work, even though the magnitude of the three-body force may be as large as 10% of the total force at small separations, three-body forces do not have a major effect on the densities of binary coexisting phases. However, coexisting densities calculated using Derjaguin-Landau-Verwey-Overbeek theory are much different from those calculated using our simulated potential of mean force. (c) 2000 American Institute of Physics

  1. Valuable, but not maximal: it's time behavior therapy attend to its behaviorism.

    Science.gov (United States)

    Staats, A W

    1999-04-01

    The field of behavior therapy is not in touch with itself in terms of its overarching behaviorism. Many erroneously consider its basic behaviorism to have been radical behaviorism and continue to look to develop behavior therapy (including behavior analysis and behavioral assessment) within that framework. But that approach turns out to be much less than maximal because there is a more advanced, better developed behaviorism within which to conduct and project the field. There is much that behavior therapy is not doing in practice and research because it is not making full use of that behaviorism foundation.

  2. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    Science.gov (United States)

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  3. Multiphase, multicomponent phase behavior prediction

    Science.gov (United States)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using

  4. Effects of sodium β-sitosteryl sulfate on the phase behavior of dipalmitoylphosphatidylcholine.

    Science.gov (United States)

    Kafle, Ananda; Misono, Takeshi; Bhadani, Avinash; Sakai, Kenichi; Kaise, Chihiro; Kaneko, Teruhisa; Sakai, Hideki

    2018-01-01

    We have studied the phase behavior of dipalmitoylphosphatidylcholine (DPPC) containing sodium β-sitosteryl sulfate (PSO 4 ). PSO 4 was found to lower the phase transition temperature of DPPC to a higher degree than cholesterol or β-sitosterol. It also gave rise to the formation of a modulated (ripple) phase (P β ) at low to moderate concentrations. At concentrations greater than 25 mol%, it completely changed the membrane into a fluid phase. This shows that PSO 4 is capable of disordering the hydrocarbon chains of PC efficiently. The characteristics of PSO 4 for fluidizing the membrane can be useful for the pharmaceutical and cosmetics industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Modeling study of droplet behavior during blowdown period of large break LOCA based on experimental data

    International Nuclear Information System (INIS)

    Sakaba, Hiroshi; Umezawa, Shigemitsu; Teramae, Tetsuya; Furukawa, Yuji

    2004-01-01

    During LOCA (Loss Of Coolant Accident) in PWR, droplets behavior during blowdown period is one of the important phenomena. For example, the spattering from falling liquid film that flows from upper plenum generates those droplets in core region. The behavior of droplets in such flow has strong effect for cladding temperature behavior because these droplets are able to remove heat from a reactor core by its direct contact on fuel rods and its evaporation at the surface. For safety analysis of LOCA in PWR, it is necessary to evaluate droplet diameter precisely in order to predict fuel cladding temperature changing by the calculation code. Based on the test results, a new droplet behavior model was developed for the MCOBRA/TRC code that predicts the droplet behavior during such LOCA events. Furthermore, the verification calculations that simulated some blowdown tests were performed using by the MCOBRA/TRAC code. These results indicated the validity of this droplet model during blow down cooling period. The experiment was focused on investigating the Weber number of steady droplet in the blow down phenomenon of large break LOCA. (author)

  6. Crystallization of Trehalose in Frozen Solutions and its Phase Behavior during Drying

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthi, Prakash; Patapoff, Thomas W.; Suryanarayanan, Raj (Genentech); (UMM)

    2015-02-19

    To study the crystallization of trehalose in frozen solutions and to understand the phase transitions during the entire freeze-drying cycle. Aqueous trehalose solution was cooled to -40 C in a custom-designed sample holder. The frozen solution was warmed to -18 C and annealed, and then dried in the sample chamber of the diffractometer. XRD patterns were continuously collected during cooling, annealing and drying. After cooling, hexagonal ice was the only crystalline phase observed. However, upon annealing, crystallization of trehalose dihydrate was evident. Seeding the frozen solution accelerated the solute crystallization. Thus, phase separation of the lyoprotectant was observed in frozen solutions. During drying, dehydration of trehalose dihydrate yielded a substantially amorphous anhydrous trehalose. Crystallization of trehalose, as trehalose dihydrate, was observed in frozen solutions. The dehydration of the crystalline trehalose dihydrate to substantially amorphous anhydrate occurred during drying. Therefore, analyzing the final lyophile will not reveal crystallization of the lyoprotectant during freeze-drying. The lyoprotectant crystallization can only become evident by continuous monitoring of the system during the entire freeze-drying cycle. In light of the phase separation of trehalose in frozen solutions, its ability to serve as a lyoprotectant warrants further investigation.

  7. Best-estimate analysis of a loss-of-coolant accident in a four-loop US PWR using TRAC-PD2

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1982-01-01

    A 200% double-ended cold-leg break loss-of-coolant accident (LOCA) in a typical US pressurized water reactor (PWR) was simulated using the Transient Reactor Analysis Code (TRAC-PD2). The reactor system modeled represented a typical US PWR with four loops and cold-leg emergency-core-cooling systems (ECCS). The calculated peak cladding temperature of 950 K occurred during blowdown and the cladding temperature excursion was terminated at 175 s when complete core quenching occurred. Accumulator flows were initiated at 10 s when the system pressure reached 4.08 MPa, and the refill phase ended at 36 s when the lower plenum refilled. During reflood, both bottom and falling film quench fronts were calculated. Top quenching was caused by entrainment from the lower plenum and lower core regions. The entrained liquid was sufficient to form a small, saturated pool (0.3 m deep) above the upper core support plate. Also, some of the entrained liquid was carried out the hot legs and vaporized in the steam generators. Strong multidimensional effects were calculated in the reactor vessel, particularly with respect to rod quenching

  8. Growth Kinetics of Laves Phase and Its Effect on Creep Rupture Behavior in 9Cr Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    Zhi-xin XIA; Chuan-yang WANG; Chen LEI; Yun-ting LAI; Yan-fen ZHAO; Lu ZHANG

    2016-01-01

    The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission elec-tron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe2 (W,Mo) Laves phase has formed during creep with 200 MPa applied stress at 883 K for 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.

  9. PHASE BEHAVIOR OF LIGHT GASES IN HYDROCARBON AND AQUEOUS SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

    1998-08-31

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present period, the Park-Gasem-Robinson (PGR) equation of state (EOS) has been modified to improve its volumetric and equilibrium predictions. Specifically, the attractive term of the PGR equation was modified to enhance the flexibility of the model, and a new expression was developed for the temperature dependence of the attractive term in this segment-segment interaction model. The predictive capability of the modified PGR EOS for vapor pressure, and saturated liquid and

  10. Integrated TRAC/MELPROG analysis of core damage from a severe feedwater transient in the Oconee-1 PWR

    International Nuclear Information System (INIS)

    Henninger, R.J.; Boyack, B.E.

    1986-01-01

    A postulated complete loss-of-feedwater event in the Oconee-1 pressurized water reactor has been analyzed. With an initial version of the lonked TRAC and MELPROG codes, we have modeled the loss-of-feedwater event from initiation to the time of complete disruption of the core, which was calculated to occur by 6800 s. The highest structure temperatures otuside the vessel are on the flow path from the vessel to the pressurizer relief valve. Temperatures in excess of 1200 K could result in failure and depressurization of the primary system before vessel failure

  11. A Hardware Fast Tracker for the ATLAS Trigger: The Fast TracKer (FTK) Project.

    CERN Document Server

    Asbah, Nedaa; The ATLAS collaboration

    2015-01-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 10^{34} cm^{-2} s{-1}. After a successful period of data taking from 2010 to early 2013, the LHC is restarting in 2015 with much higher instantaneous luminosity and this will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide, at every level-1 accept (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast extensive access to tracking information, with resolution comparable to the offline reconstruction, the Fast Tracker will for example help the High Level Trigger...

  12. Hardware-based Tracking at Trigger Level for ATLAS: The Fast TracKer (FTK) Project

    CERN Document Server

    Gramling, Johanna; The ATLAS collaboration

    2015-01-01

    Physics collisions at 13 TeV are expected at the LHC with an average of 40-50 proton-proton collisions per bunch crossing. Tracking at trigger level is an essential tool to control the rate in high-pileup conditions while maintaining a good efficiency for relevant physics processes. The Fast TracKer (FTK) is an integral part of the trigger upgrade for the ATLAS detector. For every event passing the Level 1 trigger (at a maximum rate of 100 kHz) the FTK receives data from the 80 million channels of the silicon detectors, providing tracking information to the High Level Trigger in order to ensure a selection robust against pile-up. The FTK performs a hardware- based track reconstruction, using associative memory (AM) that is based on the use of a custom chip, designed to perform pattern matching at very high speed. It finds track candidates at low resolution (roads) that seed a full-resolution track fitting done by FPGAs. Narrow roads permit a fast track fitting but need many patterns stored in the AM to ensure...

  13. Hardware-based Tracking at Trigger Level for ATLAS the Fast TracKer (FTK) Project

    CERN Document Server

    INSPIRE-00245767

    2015-01-01

    Physics collisions at 13 TeV are expected at the LHC with an average of 40-50 proton-proton collisions per bunch crossing under nominal conditions. Tracking at trigger level is an essential tool to control the rate in high-pileup conditions while maintaining a good efficiency for relevant physics processes. The Fast TracKer is an integral part of the trigger upgrade for the ATLAS detector. For every event passing the Level-1 trigger (at a maximum rate of 100 kHz) the FTK receives data from all the channels of the silicon detectors, providing tracking information to the High Level Trigger in order to ensure a selection robust against pile-up. The FTK performs a hardware-based track reconstruction, using associative memory that is based on the use of a custom chip, designed to perform pattern matching at very high speed. It finds track candidates at low resolution (roads) that seed a full-resolution track fitting done by FPGAs. An overview of the FTK system with focus on the pattern matching procedure will be p...

  14. BWR Full Integral Simulation Test (FIST). Phase I test results

    International Nuclear Information System (INIS)

    Hwang, W.S.; Alamgir, M.; Sutherland, W.A.

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report

  15. Mechanisms of Se(IV) Co-precipitation with Ferrihydrite at Acidic and Alkaline Conditions and Its Behavior during Aging

    DEFF Research Database (Denmark)

    Francisco, Paul Clarence M.; Sato, Tsutomu; Otake, Tsubasa

    2018-01-01

    in nanopore and defect structures. These results demonstrate a potential long-term immobilization pathway for Se(IV) even after phase transformation. This work presents one of the first direct insights on Se(IV) co-precipitation and its behavior in response to iron phase transformations.......Understanding the form of Se(IV) co-precipitated with ferrihydrite and its subsequent behavior during phase transformation is critical to predicting its long-term fate in a range of natural and engineered settings. In this work, Se(IV)-ferrihydrite co-precipitates formed at different pH were......, Se(IV) was removed dominantly as a ferric selenite-like phase intimately associated with ferrihydrite, while at pH 10, it was mostly present as a surface species on ferrihydrite. Similarly, the behavior of Se(IV) and the extent of its retention during phase transformation varied with pH. At pH 5, Se...

  16. An HMS/TRAC analysis of a high-level radioactive waste tank

    International Nuclear Information System (INIS)

    Travis, J.R.; Nichols, B.D.; Spore, J.W.; Wilson, T.L.

    1991-01-01

    It has been observed that a high-level radioactive waste tank generates quantities of hydrogen and nitrous oxide mixtures that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste material. The slurry is covered by a thick crust composed of sodium nitrate and nitrite salts. Significant amounts of the combustible and reactant gases are produced over a 3- to 4-month period before the crust ruptures and the gases are vented into the air cover gas space above the crust. Postulating an ignition of the hydrogen/nitrous oxide/air mixture after this venting into the cover gas, we have calculated the pressure and temperature loading on the double-walled waste tank with the three-dimensional, time-dependent fluid dynamics coupled with chemical kinetics HMS (Hydrogen Mixing Studies) computer code. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during steady-state operation. We have modeled the ventilation system with TRAC (the Transient Reactor Analysis Code), and we have coupled these two best-estimate accident analysis tools to provide the ventilation response to pressure and temperatures generated by the hydrogen burn. Significant pressures are produced by this event, and the threat to the tank's integrity currently is being evaluated. 3 refs., 4 figs

  17. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides.

    Science.gov (United States)

    Sagalowicz, L; Guillot, S; Acquistapace, S; Schmitt, B; Maurer, M; Yaghmur, A; de Campo, L; Rouvet, M; Leser, M; Glatter, O

    2013-07-02

    The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.

  18. Reversed-phase thin-layer chromatography behavior of aldopentose derivatives

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2012-01-01

    Full Text Available Quantitative structure-retention relationships (QSRR have been used to study the chromatographic behavior of some aldopentose. The behavior of aldopentose derivatives was investigated by means of the reversed-phase thin-layer chromatography (RP TLC on the silica gel impregnated with paraffin oil stationary phases. Binary mixtures of methanol-water, acetone-water and dioxane-water were used as mobile phases. Retention factors, RM0, corresponding to zero percent organic modifier in the aqueous mobile phase was determined. Lipophilicity C0 was calculated as the ratio of the intercept and slope values. There was satisfactory correlation between them and log P values calculated using different theoretical procedures. Some of these correlations offer very good predicting models, which are important for a better understanding of the relationships between chemical structure and retention. The study showed that the hydrophobic parameters RM0 and C0 can be used as a measures of lipophilicity of investigated compounds.

  19. Effects of Si and Ti on the phase stability and swelling behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Kenik, E.A.

    1979-01-01

    The swelling behavior of neutron irradiated stainless steels is strongly influenced by solute segregation and precipitation phenomena. The extent to which in-reactor swelling behavior may be simulated by heavy ion irradiation depends upon the extent to which in-reactor phase changes are reproduced; this question is addressed by comparing the precipitation behavior under neutron irradiation with behavior during 4 MeV Ni ion irradiation for AISI 316 stainless steel and a related stainless steel containing additions of titanium and silicon. The results are discussed qualitatively in terms of the effects of damage rate on solute segregation and the effects of displacement cascades on the dissolution of particles. It is shown that the partitioning of elements into various phases during irradiation is not a sufficient condition for the iniatiation of swelling in stainless steels modified with silicon and titanium. It is also necessary for helium to be generated simultaneously with the breakdown of the matrix into various phases; it is believed that helium trapping at the growing particle-matrix interface is responsible for the observed physical association between voids and precipitates. (Auth.)

  20. Effects of Si and Ti on the phase stability and swelling behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Kenik, E.A.

    1978-01-01

    Swelling behavior of neutron irradiated stainless steels is influenced by solute segregation and preciptation phenomena. The extent to which in-reactor swelling behavior may be simulated by heavy ion irradiation depends upon the extent to which in-reactor phase changes are reproduced; this question is addressed by comparing the precipitation behavior under neutron irradiation with behavior during 4 MeV Ni ion irradiation for AISI 316 stainless steel and a related stainless steel containing additions of titanium and silicon. The results are discussed qualitatively in terms of the effects of damage rate on solute segregation and the effects of displacement cascades on the dissolution of particles. It is shown that the partitioning of elements into various phases during irradiation is not a sufficient condition for the initiation of swelling in stainless steels modified with silicon and titanium. It is also necessary for helium to be generated simultaneously with the breakdown of the matrix into various phases; it is believed that helium trapping at the growing particle-matrix interface is responsible for the observed physical association between voids and precipitates

  1. Unexpectedly normal phase behavior of single homopolymer chains

    International Nuclear Information System (INIS)

    Paul, W.; Strauch, T.; Rampf, F.; Binder, K.

    2007-01-01

    Employing Monte Carlo simulations, we show that the topology of the phase diagram of a single flexible homopolymer chain changes in dependence on the range of an attractive square well interaction between the monomers. For a range of attraction larger than a critical value, the equilibrium phase diagram of the single polymer chain and the corresponding polymer solution phase diagram exhibit vapor (swollen coil, dilute solution), liquid (collapsed globule, dense solution), and solid phases. Otherwise, the liquid-vapor transition vanishes from the equilibrium phase diagram for both the single chain and the polymer solution. This change in topology of the phase diagram resembles the behavior known for colloidal dispersions. The interplay of enthalpy and conformational entropy in the polymer case thus can lead to the same topology of phase diagrams as the interplay of enthalpy and translational entropy in simple liquids

  2. Characteristic behavior of bubbles and slugs in transient two-phase flow using image-processing method

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishizaki, Yasuo; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Simulation of transient two-phase flow has been performed by solving transient hydrodynamic equations. However, constitution relations used in this simulation are primarily based on steady-state experimental results. Thus it is important to understand the transient behavior of bubbles and slugs, in particular, transient behavior of the void fraction, the interfacial area and the flow pattern, to confirm the applicability of the present simulation method and to advance two-phase flow simulation further. The present study deals with measurement of transient two-phase flow. We have measured local and instantaneous void fractions using imaging techniques, and compared the experimental data with simulation results. (author)

  3. SU-F-J-24: Setup Uncertainty and Margin of the ExacTrac 6D Image Guide System for Patients with Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Oh, S; Yea, J; Park, J [Yeungnam University Medical Center, Daegu, Daegu (Korea, Republic of)

    2016-06-15

    Purpose: This study evaluated the setup uncertainties for brain sites when using BrainLAB’s ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Methods: Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27–33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Results: Optimal PTV margins were calculated based on van Herk et al.’s [margin recipe = 2.5∑ + 0.7σ − 3 mm] and Stroom et al.’s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.’s and Stroom et al.’s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Conclusion: Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.∑σ.

  4. PKL

    International Nuclear Information System (INIS)

    Probst, P.; Szabo, I.

    1985-01-01

    This study concerns the simulation of the behavior of a PWR during a LOCA. One studies more particularly the refilling and reflooding phase (PKLI) and the end of the depressurization phase (PKLII). The aim of this test program is to provide the information needed for the validation/verification of computer codes (RELAP4 MOD6, TRAC PF1) and to test an instrumentation realized for the 2D/3D program. A comparison calculation/experiment is presented. 5 refs [fr

  5. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.

    Science.gov (United States)

    Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan

    2018-05-21

    In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.

    Science.gov (United States)

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik

    The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.

  7. An evaluation of TRAC-PF1/MOD1 computer code performance during posttest simulations of Semiscale MOD-2C feedwater line break transients

    International Nuclear Information System (INIS)

    Hall, D.G.; Watkins, J.C.

    1987-01-01

    This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In addition to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use

  8. Unusual crystallization behavior in Ga-Sb phase change alloys

    Directory of Open Access Journals (Sweden)

    Magali Putero

    2013-12-01

    Full Text Available Combined in situ X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by in situ X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.% and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.

  9. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Martínez, R.; Kumar, Ashok; Scott, J.F.; Katiyar, Ram S.

    2011-01-01

    Graphical abstract: (a) Curie–Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/ε − 1/ε m ) as function of log (T − T m ) for ceramics at 1 kHz. Highlights: ► Retaining phase pure structure with quaternary complex stoichiometric compositions. ► P–E loops with good saturation polarization (P s ∼ 30.7 μC/cm 2 ). ► Diffused relaxor phase transition behavior with γ estimated is ∼1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr 0.52 Ti 0.48 O 3 ) + 0.25(PbFe 0.5 Ta 0.5 O 3 ) + 0.25 (PbF 0.67 W 0.33 O 3 ) + 0.25(PbFe 0.5 Nb 0.5 O 3 ) – (PZT–PFT–PFW–PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature ∼261 K and other above ∼410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm–3 μm. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P s ∼ 30.68 μC/cm 2 ) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT–PFT–PFW–PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/ε versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The compositional variation on the phase transition temperature, dielectric constant, and ferroelectric to paraelectric phase transitions are discussed.

  10. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: pvsri123@gmail.com [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Martinez, R.; Kumar, Ashok [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Scott, J.F. [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Cavendish Laboratory, Dept. Physics, University of Cambridge, Cambridge CB0 3HE (United Kingdom); Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2011-12-15

    Graphical abstract: (a) Curie-Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/{epsilon} - 1/{epsilon}{sub m}) as function of log (T - T{sub m}) for ceramics at 1 kHz. Highlights: Black-Right-Pointing-Pointer Retaining phase pure structure with quaternary complex stoichiometric compositions. Black-Right-Pointing-Pointer P-E loops with good saturation polarization (P{sub s} {approx} 30.7 {mu}C/cm{sup 2}). Black-Right-Pointing-Pointer Diffused relaxor phase transition behavior with {gamma} estimated is {approx}1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) + 0.25(PbFe{sub 0.5}Ta{sub 0.5}O{sub 3}) + 0.25 (PbF{sub 0.67}W{sub 0.33}O{sub 3}) + 0.25(PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}) - (PZT-PFT-PFW-PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature {approx}261 K and other above {approx}410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm-3 {mu}m. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P{sub s} {approx} 30.68 {mu}C/cm{sup 2}) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT-PFT-PFW-PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/{epsilon} versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The

  11. Methods for the development of large computer codes under LTSS

    International Nuclear Information System (INIS)

    Sicilian, J.M.

    1977-06-01

    TRAC is a large computer code being developed by Group Q-6 for the analysis of the transient thermal hydraulic behavior of light-water nuclear reactors. A system designed to assist the development of TRAC is described. The system consists of a central HYDRA dataset, R6LIB, containing files used in the development of TRAC, and a file maintenance program, HORSE, which facilitates the use of this dataset

  12. Phase Behavior and Equations of State of the Actinide Oxides

    Science.gov (United States)

    Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.

  13. Pressure Dependence of the Liquid-Liquid Phase Transition of Nanopore Water Doped Slightly with Hydroxylamine, and a Phase Behavior Predicted for Pure Water

    Science.gov (United States)

    Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi

    2014-09-01

    Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid-liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (ΔtrsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ΔtrsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid-liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.

  14. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  15. On the frontier of boiling curve and beyond design of its origin

    International Nuclear Information System (INIS)

    Stosic, Z.V.

    2005-01-01

    An advanced approach of Extended Design of the Boiling Curve beyond its origin is proposed. It is developed from the fact that both CHF (Critical Heat Flux) and rewetting affect the Boiling Curve on the heating surface through two simultaneous processes taking place on both sides of the heating surface. The first is two-phase flow thermal-hydraulics with resultant heat transferred from the heating surface to the coolant. The second one is the heat conduction through material itself, allied with the balance of generated and accumulated energy. Both of these processes are triggered by the change in HTC (Heat Transfer Coefficient) on the heating surface, which accordingly influences the Boiling Curve. Depending on direction of the Transition - from nucleate to film boiling or vice versa - these processes act differently and direct the Boiling Curve to diverse paths. The proposed physically based concept recognises this fact and introduces HTC as the triggering parameter with instant effect. It is implemented in the subchannel code COBRA 3-CP providing stable rewetting which has been deficient in COBRA since its origin. Results of validation and obtained agreements with transient measured data prove legality of the advanced concept of Boiling Curve. This approach is being used for transient analyses of PWR (Pressurised Water Reactor) gaining benefits from properly predicting the rewetting. The method is well-qualified to be applied also in other thermal-hydraulic codes like COBRA/TRAC, COBRA-TF, TRAC and/or RELAP, where the classical steady-state and poolboiling approach has been originally implemented. (author)

  16. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    Science.gov (United States)

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  17. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    Science.gov (United States)

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present

  18. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Musko, Nikolai E.; Baiker, Alfons

    2013-01-01

    to predict the phase behavior of the multicomponent systems. It was shown that CPA is capable of predicting the phase behavior of such complex systems containing polar and associating components at high temperatures and pressures with reasonable accuracy considering the non-ideality of such mixtures......-Plus-Association (CPA) equation of state was applied to model the phase behavior of the experimentally studied systems. In this regard, the CPA binary interaction parameters were estimated based on experimental data for the corresponding binary systems available in the literature, and subsequently the model was applied...

  19. Phase behavior of charged colloids on spherical surfaces

    Science.gov (United States)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  20. Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model

    International Nuclear Information System (INIS)

    Muraca, D.; Sanchez, F.H.; Pampillo, L.G.; Saccone, F.D.

    2010-01-01

    Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.

  1. Impact of the Swap It, Don't Stop It Australian National Mass Media Campaign on Promoting Small Changes to Lifestyle Behaviors.

    Science.gov (United States)

    O'Hara, Blythe J; Grunseit, Anne; Phongsavan, Philayrath; Bellew, William; Briggs, Megan; Bauman, Adrian E

    2016-12-01

    Mass media campaigns aimed at influencing lifestyle risk factors are one way that governments are attempting to address chronic disease risk. In Australia, a national campaign aimed at encouraging Australians to make changes in lifestyle-related behaviors was implemented from 2008 to 2011. The first phase, Measure Up (2008-2009), focused on why lifestyle changes are needed by increasing awareness of the link between waist circumference and chronic disease risk. The second phase, Swap It, Don't Stop It (2011), emphasized how adults can change their behaviors. Cross-sectional telephone surveys (after the campaign) were undertaken in July and November 2011 to evaluate the Swap It, Don't Stop It campaign and included measures of campaign awareness and lifestyle-related behavior change. Survey participants (N = 5,097) were similar across the two survey periods. Prompted campaign awareness was 62% (16% for unprompted awareness); females, younger respondents (18-44 years), those in paid employment, and those who spoke English at home were more likely to report prompted/unprompted campaign awareness. Moreover, 16% of survey respondents reported any swapping behavior in the previous 6 months, with the majority (14%) reporting only one swap; younger respondents and those in paid employment were significantly more likely to report having implemented a swapping behavior. The campaign achieved modest population awareness but demonstrated limited effect in terms of nudging behaviors. This evaluation indicates that encouraging swapping behaviors as a prelude to lifestyle change may not result from a mass media campaign alone; a comprehensive multicomponent population approach may be required.

  2. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  3. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    Science.gov (United States)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  4. Are separate-phase thermal-hydraulic models better than mixture-fluid approaches? It depends. Rather not

    International Nuclear Information System (INIS)

    Hoeld, A.

    2004-01-01

    The thermal-hydraulic theory of single- and especially two-phase flow systems used for plant transient analysis is dominated by separate-phase models. The corresponding mostly very comprehensive codes (TRAC, RELAP, CATHARE, ATHLET etc.) are looked as to be by far more efficient than a 3 eq. mixture-fluid approach and code also if they show deficiencies in describing flow situations within inner loops as for example the distribution into parallel channels (and thus the simulation of 3D thermal-hydraulic phenomena). This may be justified if comparing them to the very simple 'homogeneous equilibrium models (HEM)', but not if looking to the more refined non-homogeneous 'separate-region' mixture-fluid approaches based on appropriate drift-flux correlation packages which can have, on the contrary, enormous advantages with respect to such separate-phase models. Especially if comparing the basic (and starting) eqs. of such theoretical models of both types the differences are remarkable. Single-phase and mixture-fluid models start from genuine conservation eqs. for mass, energy and momentum, demanding (in case of two-phase flow) additionally an adequate drift flux package (in order to get a relation for a fourth independent variable), a heat transfer coefficients package (over the whole range of the possible fields of application) and correlations for single- and two-phase friction. The other types of models are looking at each phase separately with corresponding 'field' eqs. for each phase, connected by exchange (=closure) terms which substitute the classical constitutive packages for drift, heat transfer and friction. That the drift-flux, heat transfer into a coolant channel and friction along a wall and between the phases is described better by a separate-phase approach is at least doubtful. The corresponding mixture-fluid correlations are based over a wide range on a treasure of experience and measurements, their pseudo-stationary treatment can (due to their small time

  5. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  6. Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.

    Science.gov (United States)

    Jung, Jin-Mi; Mezzenga, Raffaele

    2010-01-05

    We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of

  7. Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane

    Science.gov (United States)

    Lee, Byung-Chul

    2017-10-01

    The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.

  8. High-pressure phase behavior of systems with ionic liquids: Part V. The binary system carbon dioxide+1-butyl-3-methylimidazolium tetrafluoroborate

    NARCIS (Netherlands)

    Kroon, M.C.; Shariati - Sarabi, A.; Costantini, M.; Spronsen, van J.; Witkamp, G.J.; Sheldon, R.A.; Peters, C.J.

    2005-01-01

    The phase behavior of the binary system consisting of the supercritical fluid carbon dioxide (CO2) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) was studied experimentally. A synthetic method was used to measure its phase behavior. Bubble-point pressures of the

  9. Effect of oxygen on the thermomechanical behavior of tantalum thin films during the β-α phase transformation

    International Nuclear Information System (INIS)

    Knepper, Robert; Stevens, Blake; Baker, Shefford P.

    2006-01-01

    Tantalum thin films were prepared in the metastable β phase, and their thermomechanical behaviors were investigated in situ in an ultrahigh vacuum environment. Controlled levels of oxygen were incorporated into the films either during deposition, by surface oxidation after deposition, or during thermomechanical testing. The transformation from the β phase to the stable α phase takes place in conjunction with a distinct increase in tensile stress. The thermomechanical behavior is strongly affected by the amount of oxygen to which the film is exposed and the method of exposure. Increasing oxygen content inhibits the phase transformation, requiring higher temperatures to reach completion. It is shown that the phase transformation takes place by a nucleation and growth process that is limited by growth. Changes in the activation energy for the phase transformation due to solute drag are estimated as a function of oxygen content and the mechanisms behind the stress evolution are elucidated

  10. Phase behavior of model ABC triblock copolymers

    Science.gov (United States)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  11. Intervening to promote pay-it-forward behavior: Does perceived self-motivation of the benefactor matter?

    Science.gov (United States)

    Furrow, Cory B; McCarty, Shane M; Geller, E Scott

    2016-01-01

    Pay-it-forward behavior reflects actively caring for people (AC4P) and the reciprocity principle. Interventions to increase the frequency of pay-it-forward behavior were evaluated. At a buffet-style dining hall, a research assistant (RA) entered the line and paid for the next person's meal. In the Sign Intervention Phase, the RA discreetly paid for the next person's meal. In the Verbal + Sign Intervention Phase, the RA verbally activated reciprocity and paid for the next diner's meal. For Baseline and Withdrawal, a sign prompted the purchase of another person's meal. The Verbal + Sign Intervention was significantly more effective at activating pay-it-forward behavior (24.6% of 171) than the Sign Intervention (15.6% of 122), Baseline (6.8% of 148), and Withdrawal (12.6% of 95). These results were contrary to the research hypothesis that verbal and sign prompting would decrease perceived self-motivation of the benefactor and thereby reduce the beneficiary's perceived obligation to pay it forward.

  12. Critical behavior at the deconfinement phase phase transition of SU(2) lattice gauge theory in (2+1) dimensions

    International Nuclear Information System (INIS)

    Christensen, J.; Damgaard, P.H.

    1991-01-01

    The finite-temperature deconfinement phase transition of SU(2) lattice gauge theory in (2+1) dimensions is studied by Monte Carlo methods. Comparison is made with the expected form of correlation functions on both sides of the critical point. The critical behavior is compared with expectations based on universality arguments. Attempts are made to extract unbiased values of critical exponents on several lattices sizes. The behavior of Polyakov loops in higher representations of the gauge group is studied close to the phase transition. (orig.)

  13. Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends: Congruent First-Order Lamellar–Disorder Transition

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.; Morse, David C.; Lodge, Timothy P.; Bates, Frank S. (UMM)

    2016-10-13

    We have established the existence of a line of congruent first-order lamellar-to-disorder (LAM–DIS) transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with a corresponding compositionally symmetric CE diblock copolymer. The line of congruent transitions, or the congruent isopleth, terminates at the bicontinuous microemulsion (BμE) channel, and its trajectory appears to be influenced by the critical composition of the C/E binary homopolymer blend. Blends satisfying congruency undergo a direct LAM–DIS transition without passing through a two-phase region. We present complementary optical transmission, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical spectroscopy (DMS) results that establish the phase behavior at constant copolymer volume fraction and varying C/E homopolymer volume ratios. Adjacent to the congruent composition at constant copolymer volume fraction, the lamellar and disordered phases are separated by two-phase coexistence windows, which converge, along with the line of congruent transitions, at an overall composition in the phase prism coincident with the BμE channel. Hexagonal and cubic (double gyroid) phases occur at higher diblock copolymer concentrations for asymmetric amounts of C and E homopolymers. These results establish a quantitative method for identifying the detailed phase behavior of ternary diblock copolymer–homopolymer blends, especially in the vicinity of the BμE.

  14. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  15. Detailed behavioral modeling of bang-bang phase detectors

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Andreani, Pietro; Keil, U. D.

    2006-01-01

    In this paper, the metastability of current-mode logic (CML) latches and flip-flops is studied in detail. Based on the results of this analysis, a behavioral model of bang-bang phase detectors (BBPDs) is proposed, which is able to reliably capture the critical deadzone effect. The impact of jitter...

  16. Ion-pair high performance liquid chromatographic retention behavior of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.W.; Chung, Y.S. [Chungbuk National University, Cheongju (Korea); Oh, S.K. [Handok Pharmaceuticals Co. Ltd., Chungbuk (Korea)

    1999-06-01

    The ion-pair high performance liquid chromatographic elution behavior of salicylic acid and its derivatives was studied with measuring capacity factor, k', changing the concentration of ion-pairing reagent (tetrabutylammonium chloride, TBACl) in mobile phase. As a result, it was found that k' of the samples increase at pH 7.2 as the TBACl concentration increase. The derivatives of salicylic acid were separated each other at an optimum mobile phase condition which was found from the observation of the retention behavior. The optimum mobile phase condition was methanol solution(MeOH:H{sub 2}O 30:70) containing 20 mM TBACl for the determination of salicylic acid and methanol solution (MeOH:H{sub 2}O 20:80) containing 40 mM TBACl for p-aminosalicylic acid at pH 7.2. The method has been applied for the analysis of the contents of salicylic acid derivatives in an aspirin tablet and a tuberculosis curing agent. 8 refs., 4 figs., 2 tabs.

  17. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    Science.gov (United States)

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  18. Plasma resistance behavior during the linear decay phase of RFPs in ETA BETA II

    International Nuclear Information System (INIS)

    Nalesso, G.F.

    1982-01-01

    In the aided-reversal mode RFP discharges produced in ETA BETA II, the plasma current is characterized by a linear decay phase, which follows an approximately exponential phase. During the same period the measured toroidal voltage is negative and initially increasing in absolute value (exponential phase) and then decreasing to almost zero during the linear phase before the current termination. The same behavior of the current has been observed in the quiescent phase in Zeta where a negative toroidal electric field was also observed. In this note we present a model that can explain the linear decay phase and fits with the experimental parameters and allows us to estimate the plasma resistance behavior during the linear phase of slow reversed field pinch discharges

  19. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  20. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  1. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel

    International Nuclear Information System (INIS)

    Hosoi, Y.; Wade, N.; Kunimitsu, S.; Urita, T.

    1986-01-01

    This study clarified the relationship between the toughness of a 9Cr-2Mo dual phase steel and precipitates formed during aging, with special attention to the Laves phase (Fe 2 Mo). The ductile-brittle transition temperature (DBTT) is increased and the upper shelf energy decreased when the Laves phase begins to precipitate during aging. Electron microscopy and X-ray diffraction indicate that elimination of Si in the steel reduces the precipitation of the Laves phase and results in maintaining good toughness. It is also noted that the toughness of the steel is controlled by the total amount of precipitates (Laves + carbides) in the aging at 873 K for more than 3.6x10 3 ks. A time-temperature-precipitation diagram for the Laves phase is established and it clearly shows that the precipitation of the Laves phase is markedly retarded by the decrease of Si content. In Si-free steel, no Laves phase is observed in the temperature and time range investigated. (orig.)

  2. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.; Beelman, R.J.; Charlton, T.R.; Hampton, N.L.; Burtt, J.D.

    1985-01-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. The NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR, and TRAC-PWR, with well-developed computer graphics programs and large repositories of reactor design and experimental data. An important feature of the NAP is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual CDS Cyber-176 mainframe computers at the INEL and is being converted to operate on a Cray-1S computer at the LANL. The subject of this paper is the program conducted at the INEL

  3. Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel.

    Science.gov (United States)

    Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M; Kapteyn, Henry C; Tao, Zhensheng; Murnane, Margaret M

    2018-03-01

    It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization.

  4. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    International Nuclear Information System (INIS)

    Park, Nam Ku; Bae, Young Chan

    2010-01-01

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim] [PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim] [PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  5. Investigation of electrochemical corrosion behavior in a 3.5 wt.% NaCl solution of boronized dual-phase steel

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Anaturk, Bilal

    2013-01-01

    Highlights: ► Corrosion behaviors in a 3.5% NaCl solution of boronized Dual-Phase (DP) steels were examined. ► The martensite ratio increased with an increase in the intercritical annealing temperature. ► The corrosion resistance decreased with increase of the martensite ratio. ► The boride layer increased the corrosion resistance of DP steel 2–3-fold. ► The superior properties of DP steel as well as poor corrosion properties were improved by the boriding process. - Abstract: In this study, corrosion behaviors of boronized and non-boronized dual-phase steel were investigated with Tafel extrapolation and linear polarization methods in a 3.5 wt.% NaCl solution. Microstructure analyses show that the boride layer on the dual-phase steel surface had a flat and saw smooth morphology. It was detected by X-ray diffraction (XRD) analysis that the boride layer contained FeB and Fe 2 B phases. The amount of martensite increases with an increase in the intercritical annealing temperature. Both the amount of martensite and the morphology of the phase constituents have an influence on the corrosion behavior of dual-phase steel. A higher corrosion tendency was observed with an increased amount of martensite. The corrosion resistance of boronized dual-phase steel is higher compared with that of dual-phase steel

  6. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  7. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    International Nuclear Information System (INIS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2015-01-01

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology

  8. Phase change heat transfer and bubble behavior observed on twisted wire heater geometries in microgravity

    International Nuclear Information System (INIS)

    Munro, Troy R.; Koeln, Justin P.; Fassmann, Andrew W.; Barnett, Robert J.; Ban, Heng

    2014-01-01

    Highlights: • Subcooled water boiled in microgravity on twists of thin wires. • Wire twisting creates heat transfer enhancements because of high local temperatures. • A preliminary version of a new bubble dynamics method is discussed. • A critical distance that fluid must be superheated for boiling onset is presented. - Abstract: Phase change is an effective method of transferring heat, yet its application in microgravity thermal management systems requires greater understanding of bubble behavior. To further this knowledge base, a microgravity boiling experiment was performed (floating) onboard an aircraft flying in a parabolic trajectory to study the effect of surface geometry and heat flux on phase change heat transfer in a pool of subcooled water. A special emphasis was the investigation of heat transfer enhancement caused by modifying the surface geometry through the use of a twist of three wires and a twist of four wires. A new method for bubble behavior analysis was developed to quantify bubble growth characteristics, which allows a quantitative comparison of bubble dynamics between different data sets. It was found that the surface geometry of the three-wire twist enhanced heat transfer by reducing the heat flux needed for bubble incipience and the average wire temperature in microgravity. Simulation results indicated that increased local superheating in wire crevices may be responsible for the change of bubble behavior seen as the wire geometry configuration was varied. The convective heat transfer rate, in comparison to ground experiments, was lower for microgravity at low heating rates, and higher at high heating rates. This study provides insights into the role of surface geometry on superheating behavior and presents an initial version of a new bubble behavior analysis method. Further research on these topics could lead to new designs of heater surface geometries using phase change heat transfer in microgravity applications

  9. Assessment of selected TRAC and RELAP5 calculations for Oconee-1 pressurized thermal shock study

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Pu, J.; Saha, P.; Jo, J.

    1984-11-01

    Several Oconee-1 overcooling transients that were computed by LANL and INEL using the latest versions of TRAC-PF1 and RELAPS/MOD1.5 codes have been reviewed by BNL. Three of these transients were selected for detailed review as they either had the potential of challenging the integrity of the pressure vessel or highlighted the effect of code differences. These are: (1) Main Steam Line Break (MSLB); (2) All Turbine Bypass Valves Stuck Open; and (3) 2-Inch Small Break LOCA. Both codes were reasonably successful in modeling these transients. However, there were differences in the code results even though the specified scenarios were exactly the same for two transients (MSLB and Small Break LOCA). This report compares the code results and explains the possible reasons for these differences. Recommendations have been made regarding which result seems more reasonable for a specific transient

  10. Behavior of pumps conveying two-phase liquid flow

    International Nuclear Information System (INIS)

    Grison, Pierre; Lauro, J.-F.

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320 0 C respectively are compared with the theoretical model data [fr

  11. Behavior of pumps conveying two-phase liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Lauro, J F [Electricite de France, 78 - Chatou. Direction des Etudes et Recherches

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320/sup 0/C respectively are compared with the theoretical model data.

  12. Phase behavior of random copolymers in quenched random media

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Shakhnovich, E.I.

    1995-01-01

    In this paper, we consider the behavior of random heteropolymers in a quenched disordered medium. We develop a field theory and obtain a mean-field solution that allows for replica symmetry breaking. The presence of an external disorder leads to the formation of compact states; a homopolymeric effect. We compute the phase diagram for two classes of problems. First, we consider the situation wherein the bare heteropolymer prefers like segments to segregate, and second, we examine cases where the bare heteropolymer prefers unlike segments to mix. For the first class of systems, we find a phase diagram characterized by a replica symmetry broken phase that exists below a particular temperature. This temperature grows with the strength of the external disorder. In the second class of situations, the phase diagram is much richer. Here we find two replica symmetry broken phases with different patterns separated by a reentrant phase. The reentrant phase and one of the two replica symmetry broken phases are induced by interactions with the external disorder. The dependence of the location of the phase boundaries on the strength of the external disorder are elucidated. We discuss our results from a physical standpoint, and note the testable experimental consequences of our findings. copyright 1995 American Institute of Physics

  13. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  14. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.

    1986-10-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR and TRAC-PWR, with well-developed computer color graphics programs and large repositories of reactor design and experimental data. An important feature of the NPA is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual Control Data Corporation Cyber 176 mainframe computers at the Idaho National Engineering Laboratory and Cray-1S computers at the Los Alamos National Laboratory (LANL) and Kirtland Air Force Weapons Laboratory (KAFWL)

  15. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  16. The strength evaluation and σ-phase aging behavior of cast stainless steel

    International Nuclear Information System (INIS)

    Kwon, Jae Do; Park, Joong Cheul; Lee, Woo Ho; Jang, Sun Sik

    1999-01-01

    σ-phase of cast stainless steel(CF8M) was artificially precipitated by means of thermal aging at 700 deg C with various holding time (0.33, 5, 15, 50 and 150 hrs) to evaluate the behavior of thermal aging status of strength change. The structure observation, hardness test, tensile test, impact test and fatigue crack growth rates test for as-received and degraded material were also performed to evaluate static strength, toughness and fatigue crack growth behavior corresponding to the aging condition of CF8M. The results showed that the area fraction of σ-phase and hardness value increased with thermal aging time. But, for the impact values, upper shelf energy decreased and fatigue crack growth rates increased with σ-phase aging progressed than that of virgin material

  17. Microstructure and magnetic behavior of Mn doped GeTe chalcogenide semiconductors based phase change materials

    Science.gov (United States)

    Adam, Adam Abdalla Elbashir; Cheng, Xiaomin; Abuelhassan, Hassan H.; Miao, Xiang Shui

    2017-06-01

    Phase-change materials (PCMs) are the most promising candidates to be used as an active media in the universal data storage and spintronic devices, due to their large differences in physical properties of the amorphous-crystalline phase transition behavior. In the present study, the microstructure, magnetic and electrical behaviors of Ge0.94Mn0.06Te thin film were investigated. The crystallographic structure of Ge0.94Mn0.06Te thin film was studied sing X-ray diffractometer (XRD) and High Resolution Transmission Electron Microscope (HR-TEM). The XRD pattern showed that the crystallization structure of the film was rhombohedral phase for GeTe with a preference (202) orientation. The HR-TEM image of the crystalline Ge0.94Mn0.06Te thin film demonstrated that, there were two large crystallites and small amorphous areas. The magnetization as a function of the magnetic field analyses of both amorphous and crystalline states showed the ferromagnetic hysteretic behaviors. Then, the hole carriers concentration of the film was measured and it found to be greater than 1021 cm-3 at room temperature. Moreover, the anomalous of Hall Effect (AHE) was clearly observed for the measuring temperatures 5, 10 and 50 K. The results demonstrated that the magnitude of AHE decreased when the temperature was increasing.

  18. 17th International Conference on Petroleum Phase Behavior and Fouling

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Yan, Wei; Andersen, Simon

    2017-01-01

    This special section of Energy & Fuels contains contributedpapers from the 17th International Conference on PetroleumPhase Behavior and Fouling (Petrophase 2016). Petrophase 2016 was organized by the Technical University of Denmark and Schlumberger and took place in Elsinore (Helsingør) Denmark...... from June 19th to 23rd at the Beach Hotel Marienlyst. Petrophase is an international conference aimed at researchers in industry and academia dedicated to the study of the properties and chemistry of petroleum fluids and their effect on producing, processing, and refining in the upstream, midstream......, and downstream industries. The conference started in 1999 as “The International Conference on Petroleum Phase Behavior & Fouling” and has since evolved into an annual event taking place in countries all around the world. Petrophase has been fortunate to have enjoyed financial and organizational support from many...

  19. Association of menstrual phase with smoking behavior, mood and menstrual phase-associated symptoms among young Japanese women smokers.

    Science.gov (United States)

    Sakai, Hiroko; Ohashi, Kazutomo

    2013-03-02

    Previous studies of the relationship between the menstrual phases and smoking behavior have been problematic, so the association of menstrual phases with smoking behavior and correlations among smoking, psychological and physical conditions in each phase of the menstrual cycle are unclear. To accurately examine the association between menstrual phases and the amount of smoking (number of cigarettes smoked and breath CO concentration), craving of smoking on visual analogue scale (VAS), depression in the Center for Epidemiologic Studies Depression (CES-D) Scale, and menstrual phase-associated symptoms in the Menstrual Distress Questionnaire (MDQ), we improved various methodological issues, specifically, 1) Ovulation was confirmed by measuring the basal body temperature and identifying a urinary luteinizing hormone (LH) surge in two cycles; 2) The menstrual, follicular, and luteal phases were clearly defined for subjects with different menstrual cycles; 3) The breath CO concentration was measured every day. A notice was posted on public bulletin boards to recruit research subjects and twenty-nine young Japanese women smokers aged 19 to 25 years old were analyzed. The number of cigarettes smoked was greater and the CO concentration was higher in the luteal phase than in the follicular phase. The levels of craving for smoking (VAS), depressiveness (CES-D), and menstrual phase-associated symptoms (MDQ) in the menstrual and luteal phases were higher than those in the follicular phase. The mean score for CES-D was 16 points (the cut-off value in screening for depression) or higher in the menstrual (16.9 ± 8.2) and luteal phases (17.2 ± 8.4).The number of cigarettes smoked and CO concentration were significantly correlated with the levels of craving for smoking, depressiveness, and menstrual phase-associated symptoms in all phases except for MDQ scores in follicular phase. The amount of smoking in the luteal phase was most strongly correlated with these symptoms

  20. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  1. Molecular dynamics simulations of melting behavior of alkane as phase change materials slurry

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Zhang Yanlai; Li Fuhuo

    2012-01-01

    Highlights: ► The melting behavior of phase change materials slurry was investigated by molecular dynamics simulation method. ► Four different PCM slurry systems including pure water and water/n-nonadecane composite were constructed. ► Amorphous structure and periodic boundary conditions were used in the molecular dynamics simulations. ► The simulated melting temperatures are very close to the published experimental values. - Abstract: The alkane based phase change materials slurry, with high latent heat storage capacity, is effective to enhance the heat transfer rate of traditional fluid. In this paper, the melting behavior of composite phase change materials slurry which consists of n-nonadecane and water was investigated by using molecular dynamics simulation. Four different systems including pure water and water/n-nonadecane composite were constructed with amorphous structure and periodic boundary conditions. The results showed that the simulated density and melting temperature were very close to the published experimental values. Mixing the n-nonadecane into water decreased the mobility but increased the energy storage capacity of composite systems. To describe the melting behavior of alkane based phase change materials slurry on molecular or atomic scale, molecular dynamics simulation is an effective method.

  2. Continuous phase transition and critical behaviors of 3D black hole with torsion

    International Nuclear Information System (INIS)

    Ma, Meng-Sen; Liu, Fang; Zhao, Ren

    2014-01-01

    We study the phase transition and the critical behavior of the BTZ black hole with torsion obtained in (1 + 2)-dimensional Poincaré gauge theory. According to Ehrenfest’s classification, when the parameters in the theory are arranged properly, the BTZ black hole with torsion may possess the second-order phase transition which is also a smaller mass/larger mass black hole phase transition. Nevertheless, the critical behavior is different from the one in the van der Waals liquid/gas system. We also calculated the critical exponents of the relevant thermodynamic quantities, which are the same as the ones obtained in the Hořava-Lifshitz black hole and the Born–Infeld black hole. (paper)

  3. Driver response to the TetraStar Navigation Assistance System by age and sex

    Science.gov (United States)

    1997-07-01

    This study is part of the evaluation of the FAST-TRAC operational test of an Intelligent Transportation System (ITS) in Michigan and is concerned with user perceptions and behaviors with Advanced Traveler Information Systems (ATIS). The use and perce...

  4. Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.

    Science.gov (United States)

    Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J

    2015-03-31

    Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.

  5. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    Science.gov (United States)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  6. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al4Sr and Al2Y phases. The dynamic recrystallization (DRX kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress–strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al4Sr phases and spheroidal Al2Y particles, which can accelerate the nucleation. The continuous Al4Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  7. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy.

    Science.gov (United States)

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-03-09

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al₄Sr and Al₂Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress-strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al₄Sr phases and spheroidal Al₂Y particles, which can accelerate the nucleation. The continuous Al₄Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  8. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.

    2009-01-01

    The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.

  9. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    Science.gov (United States)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  10. XRD and SEM study on the phase separation and crystallization behavior for an amorphous Cu+ conductor

    International Nuclear Information System (INIS)

    Yang Yuan; Hou Jianguo; Yu Wenhai

    1990-01-01

    The X-ray diffraction (XRD) and scanning electron microscopy (SEM) study was carried out for an amorphous Cu + conductor 0.4 CuI-0.3 Cu 2 O-0.3 P 2 O 5 with the simultaneous conductivity measurement in the isothermal heat treament process. The results indicated that the initial amorphous material was phase-separated. In the course of time the separated amorphous phase disappeared, the crystalline γ-CuI and Cu 2 P 2 O 7 formed in sequence and grew up gradually. The correlation of the phase separation and crystallization behavior with the conductivity anomaly confirmed again the interface effect between different phases in amorphous fast ionic conductors and its universality

  11. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    International Nuclear Information System (INIS)

    Mottola, E.; Bhattacharya, T.; Cooper, F.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys

  12. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  13. Phase behavior of UCST blends: Effects of pristine nanoclay as an effective or ineffective compatibilizer

    Directory of Open Access Journals (Sweden)

    F. Hemmati

    2013-12-01

    Full Text Available The effects of unmodified nanoclay (natural montmorillonite on the miscibility, phase behavior and phase separation kinetics of polyethylene (PE/ethylene vinyl acetate copolymer (EVA blends have been investigated. Depending on the blend composition, it was observed that the intercalated pristine nanoclay influences the biphasic morphology either as an effective compatibilizer or just as an ineffectual modifier. In spite of the presence of micrometer-sized agglomerated tactoids, natural nanoclay can play a thermodynamic role in reducing the interfacial tension of polymer components. The addition of clay nanoparticles was found to change the phase diagram slightly and diminishes the composition dependency of the binodal temperatures. Moreover, it was observed that a small amount of unmodified layered silicate slows down the phase separation process considerably and enhances the solubility of each polymer in the domains of its counterpart. The findings of this study verify that even poorly dispersed nanoclay with high surface tension can act as a conventional compatibilizer and change the immiscible PE/EVA blends to the partially miscible ones.

  14. Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling

    Science.gov (United States)

    Li, M. P.; Sun, Q. P.

    2018-01-01

    We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.

  15. Multiphase flow problems on thermofluid safety for fusion reactors

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    2003-01-01

    As the thermofluid safety study for the International Thermonuclear Experimental Reactor (ITER), thermal-hydraulic characteristics of Tokamak fusion reactors under transient events were investigated experimentally and analyzed numerically. As severe transient events an ingress-of-coolant event (ICE) and a loss-of-vacuum event (LOVA) were considered. An integrated ICE test facility was constructed to demonstrate that the ITER safety design approach and parameters are adequate. Water-vapor two-phase flow behavior and performance of the ITER pressure suppression system during the ICE were clarified by the integrated ICE experiments. The TRAC was modified to specify the two-phase flow behavior under the ICE. The ICE experimental results were verified using the modified TRAC code. On the other hand, activated dust mobilization and air ingress characteristics in the ITER vacuum vessel during the LOVA were analyzed using a newly developed analysis code. Some physical models on the motion of dust were considered. The rate of dust released from the vacuum vessel through breaches to the outside was characterized quantitatively. The predicted average pressures in the vacuum vessel during the LOVA were in good agreement with the experimental results. Moreover, direct-contact condensation characteristics between water and vapor inside the ITER suppression tank were observed visually and simulated by the direct two-phase flow analysis. Furthermore, chemical reaction characteristics between vapor and ITER plasma-facing component materials were predicted numerically in order to obtain qualitative estimation on generation of inflammable gases such as hydrogen and methane. The experimental and numerical results of the present studies were reflected in the ITER thermofluid safety design. (author)

  16. Atucha II NPP full scope simulator modelling with the thermal hydraulic code TRACRT

    International Nuclear Information System (INIS)

    Alonso, Pablo Rey; Ruiz, Jose Antonio; Rivero, Norberto

    2011-01-01

    In February 2010 NA-SA (Nucleoelectrica Argentina S.A.) awarded Tecnatom the Atucha II full scope simulator project. NA-SA is a public company owner of the Argentinean nuclear power plants. Atucha II is due to enter in operation shortly. Atucha II NPP is a PHWR type plant cooled by the water of the Parana River and has the same design as the Atucha I unit, doubling its power capacity. Atucha II will produce 745 MWe utilizing heavy water as coolant and moderator, and natural uranium as fuel. A plant singular feature is the permanent core refueling. TRAC R T is the first real time thermal hydraulic six-equations code used in the training simulation industry for NSSS modeling. It is the result from adapting to real time the best estimate code TRACG. TRAC R T is based on first principle conservation equations for mass, energy and momentum for liquid and steam phases, with two phase flows under non homogeneous and non equilibrium conditions. At present, it has been successfully implemented in twelve full scope replica simulators in different training centers throughout the world. To ease the modeling task, TRAC R T includes a graphical pre-processing tool designed to optimize this process and alleviate the burden of entering alpha numerical data in an input file. (author)

  17. The effects of Nitinol phases on corrosion and fatigue behavior

    Science.gov (United States)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  18. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.; Johns, R. T.

    2017-01-01

    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh's equation and is coupled to phase behavior

  19. Precipitation kinetics and mechanical behavior in a solution treated and aged dual phase stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Badji, R., E-mail: riadbadji1@yahoo.fr [Welding and NDT Research Centre (CSC), B.P. 64, Cheraga (Algeria); Kherrouba, N.; Mehdi, B.; Cheniti, B. [Welding and NDT Research Centre (CSC), B.P. 64, Cheraga (Algeria); Bouabdallah, M. [LGSDS – ENP, 10, Avenue Hassan Badi, 16200 El Harrah, Alger (Algeria); Kahloun, C.; Bacroix, B. [LSPM – CNRS, Université Paris 13, 93430 Villetaneuse (France)

    2014-12-15

    The precipitation kinetics and the mechanical behavior in a solution treated and aged dual phase stainless steel (DSS) are investigated. X-ray diffraction, transmission and scanning electron microscopy techniques are used to characterize the microstructure and to identify its constituents. The precipitation kinetics analysis shows that the ferrite to σ phase transformation follows the modified Johnson Mehl Avrami (JMA) model containing an impingement parameter c that is adjusted to 0.3. Activation energies calculation leads to conclude that interface reaction is the main mechanism that controls the σ phase formation. Detailed analysis of the extent of the different tensile deformation domains reveals the significant contribution of both σ phase particles and dislocation accumulation to the strain hardening of the material. - Highlights: • The precipitation kinetics of the σ phase is affected by both soft and hard impingement phenomena. • Interface reaction is found to be the main mechanism that controls the ferrite to σ phase transformation. • Both σ phase particles and dislocation accumulation contribute to the strain hardening of the dual phase steel studied.

  20. Dynamic travel information personalized and delivered to your cell phone : addendum.

    Science.gov (United States)

    2011-03-01

    Real-time travel information must reach a significant amount of travelers to create a large amount of travel behavior change. For this project, since the TRAC-IT mobile phone application is used to monitor user context in terms of location, the mobil...

  1. Non-power law behavior of the radial profile of phase-space density of halos

    International Nuclear Information System (INIS)

    Popolo, A. Del

    2011-01-01

    We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  2. The nuclear liquid gas phase transition and phase coexistence

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2001-01-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  3. The nuclear liquid gas phase transition and phase coexistence

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    2001-07-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  4. Effects of elongation on the phase behavior of the Gay-Berne fluid

    Science.gov (United States)

    Brown, Julian T.; Allen, Michael P.; Martín del Río, Elvira; Miguel, Enrique De

    1998-06-01

    In this paper we present a computer simulation study of the phase behavior of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation κ. We study a range of length-to-width parameters 3moves to lower temperature until it falls below the I-SB coexistence line, around κ=3.4, where liquid-vapor coexistence proves hard to establish. The liquid-vapor critical point seems to be completely absent at κ=4.0. Another dramatic effect is the growth of a stable SA ``island'' in the phase diagram at elongations slightly above κ=3.0. The SA range extends to both higher and lower temperatures as κ is increased. Also as κ is increased, the I-N transition is seen to move to lower density (and pressure) at given temperature. The lowest temperature at which the nematic phase is stable does not vary dramatically with κ. On cooling, no SB-crystal transition can be identified in the equation of state for any of these elongations; we suggest that, on the basis of simulation evidence, SB and crystal are really the same phase for these models.

  5. International Code Assessment and Applications Program: Summary of code assessment studies concerning RELAP5/MOD2, RELAP5/MOD3, and TRAC-B

    International Nuclear Information System (INIS)

    Schultz, R.R.

    1993-12-01

    Members of the International Code Assessment Program (ICAP) have assessed the US Nuclear Regulatory Commission (USNRC) advanced thermal-hydraulic codes over the past few years in a concerted effort to identify deficiencies, to define user guidelines, and to determine the state of each code. The results of sixty-two code assessment reviews, conducted at INEL, are summarized. Code deficiencies are discussed and user recommended nodalizations investigated during the course of conducting the assessment studies and reviews are listed. All the work that is summarized was done using the RELAP5/MOD2, RELAP5/MOD3, and TRAC-B codes

  6. Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail

    NARCIS (Netherlands)

    Knecht, Volker; Mark, Alan E.; Marrink, Siewert-Jan

    2006-01-01

    Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar

  7. Development of the Multi-Phase/Multi-Dimensional Code BUBBLEX

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Kim, Shin Whan; Kim, Eun Kee

    2005-01-01

    A test version of the two-fluid program has been developed by extending the PISO algorithm. Unlike the conventional industry two-fluid codes, such as, RELAP5 and TRAC, this scheme does not need to develop a pressure matrix. Instead, it adopts the iterative procedure to implement the implicitness of the pressure. In this paper, a brief introduction to the numerical scheme will be presented. Then, its application to bubble column simulation will be described. Some concluding remarks will be followed

  8. High-pressure phase behavior of propyl lactate and butyl lactate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Cho, Dong Woo; Shin, Jungin; Shin, Moon Sam; Bae, Won; Kim, Hwayong

    2012-01-01

    Highlights: ► The phase behavior of propyl lactate and butyl lactate in scCO 2 was measured. ► Experimental data were correlated by the PR-EOS. ► The critical constants were estimated by the three group contribution methods. ► Acentric factor was estimated by the Lee–Kesler method. ► The Nannoolal–Rarey and Lee–Kesler method shows the best correlation results. - Abstract: Lactate esters synthesized with lactic acid and ester are used as solvents and reactants in various industries, including agricultural chemistry, pharmaceuticals, electronics, and fine chemicals. Among lactate esters, high purity propyl lactate and butyl lactate are used to produce fine chemicals and in the synthesis of chiral intermediates for use in pesticides and drugs. However, distillation for the removal of propyl lactate and butyl lactate alters or degenerates products due the high boiling points of these two lactate esters. This problem can be solved by supercritical fluid extraction (SCFE) at lower temperatures. SCFE process requires high-pressure phase behavior data on CO 2 and lactates for its design and operation. In this study, high-pressure phase behavior of propyl lactate and butyl lactate in CO 2 was measured from (323.2 to 363.2) K using a variable-volume view cell apparatus. Experimental data were well correlated by the Peng–Robinson equation of state using the van der Waals one-fluid mixing rules. The critical constants were estimated by the Joback method, the Constantinou–Gani method, and the Nannoolal–Rarey method. Acentric factor was estimated by the Lee–Kesler method.

  9. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  10. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  11. Anharmonic behavior and structural phase transition in Yb2O3

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2013-12-01

    Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.

  12. Investigating Phase Transform Behavior in Indium Selenide Based RAM and Its Validation as a Memory Element

    Directory of Open Access Journals (Sweden)

    Swapnil Sourav

    2016-01-01

    Full Text Available Phase transform properties of Indium Selenide (In2Se3 based Random Access Memory (RAM have been explored in this paper. Phase change random access memory (PCRAM is an attractive solid-state nonvolatile memory that possesses potential to meet various current technology demands of memory design. Already reported PCRAM models are mainly based upon Germanium-Antimony-Tellurium (Ge2Sb2Te5 or GST materials as their prime constituents. However, PCRAM using GST material lacks some important memory attributes required for memory elements such as larger resistance margin between the highly resistive amorphous and highly conductive crystalline states in phase change materials. This paper investigates various electrical and compositional properties of the Indium Selenide (In2Se3 material and also draws comparison with its counterpart mainly focusing on phase transform properties. To achieve this goal, a SPICE model of In2Se3 based PCRAM model has been reported in this work. The reported model has been also validated to act as a memory cell by associating it with a read/write circuit proposed in this work. Simulation results demonstrate impressive retentivity and low power consumption by requiring a set pulse of 208 μA for a duration of 100 μs to set the PCRAM in crystalline state. Similarly, a reset pulse of 11.7 μA for a duration of 20 ns can set the PCRAM in amorphous state. Modeling of In2Se3 based PCRAM has been done in Verilog-A and simulation results have been extensively verified using SPICE simulator.

  13. Phase behavior of poly(dimethylsiloxane)-poly(ethylene oxide) amphiphilic block and graft copolymers in compressed carbon dioxide

    International Nuclear Information System (INIS)

    Stoychev, Ivan; Peters, Felix; Kleiner, Matthias; Sadowski, Gabriele; Clerc, Sebastien; Ganachaud, Francois; Chirat, Mathieu; Lacroix-Desmazes, Patrick; Fournel, Bruno

    2012-01-01

    The phase behavior of triblock and graft-type poly(dimethylsiloxane) (PDMS)-poly(ethylene oxide) (PEO) copolymer surfactants has been investigated in compressed carbon dioxide (CO 2 ). For this purpose, cloud-point pressures have been measured in the pressure and temperature range from P=10 to 40 MPa and from T= 293 to 338 K. The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS) has been applied to model the experimental data in order to better understand the influence of the structure of the copolymers on the phase behavior of the system. The pure-component parameters for PDMS have been fitted originally to PDMS/n-pentane system. These parameters are successfully applied for PDMS in CO 2 by adjusting a temperature-dependent binary interaction parameter. The phase behavior of the triblock copolymers was successfully predicted by PC-SAFT. In contrast, the phase behavior of the graft copolymers was difficult to predict accurately at this stage. (authors)

  14. Possible effects of two-phase flow pattern on the mechanical behavior of mudstones

    Science.gov (United States)

    Goto, H.; Tokunaga, T.; Aichi, M.

    2016-12-01

    To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled

  15. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull

    Science.gov (United States)

    Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin

    2013-01-01

    Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  16. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  17. Complex phase behavior in solvent-free nonionic surfactants

    DEFF Research Database (Denmark)

    Hillmyer, M.A.; Bates, F.S.; Almdal, K.

    1996-01-01

    Unsolvated block copolymers and surfactant solutions are ''soft materials'' that share a common set of ordered microstructures, A set of polyethyleneoxide-polyethylethylene (PEG-PEE) block copolymers that are chemically similar to the well-known alkane-oxyethylene (C(n)EO(m)) nonionic surfactants...... was synthesized here. The general phase behavior in these materials resembles that of both higher molecular weight block copolymers and lower molecular weight nonionic surfactant solutions. Two of the block copolymers exhibited thermally induced order-order transitions and were studied in detail by small...

  18. Use of I.G.R.T. for prostate cancers (O.B.I.-C.B.C.T. VarianTM, ExacTrac BrainLABTM and M.V.C.T. Tomo-therapy)

    International Nuclear Information System (INIS)

    Delpon, G.; Llagostera, C.; Lisbona, A.; Le Blanc, M.; Rio, E.; Supiot, S.; Mahe, M.A.

    2009-01-01

    Introduction: The aim of this work was to report the experience of image-guided radiotherapy at the C.L.C.C. Nantes-Atlantique using three repositioning imaging devices, the ExacTrac (BrainLABTM), the on-board imager cone beam computed tomography (O.B.I.-C.B.C.T.) (Varian TM ) and the M.V.C.T. (Tomotherapy Inc TM ), in the case of prostate external radiotherapy.Material and methods: For each linac and its imaging device, a treatment plan was described. Moreover, studies concerning calculated shifts after imaging sessions were achieved. Using ExacTrac, for eight patients, a study compared daily shifts based on bony anatomy or on implanted markers. Considering mean values of displacements over a course of radiotherapy, dosimetric impact was evaluated. With the O.B.I.-C.B.C.T., two imaging modalities were used, kV-kV (0. and 270.) and C.B.C.T.. Up to now, whatever the images, displacements were calculated using the bony anatomy. For both modalities and for 26 patients, shifts were compared. Since the beginning of the Tomotherapy HiArt use, mega voltage cone tomography (M.V.C.T.) was performed for each session of each patient. For 12 patients, mean displacements were calculated after five fractions. Then the deviations to those values were calculated. This was done to show the relevance of daily M.V.C.T.. Results and conclusion: This work allows us to report the use of three repositioning imaging devices in the radiotherapy department. At least: they provide an efficient positioning tool. And they let us see the future radiotherapy which would probably be the dose-guided radiotherapy. (N.C.)

  19. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ''as low as reasonably achievable'' (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford's OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types

  20. Comparative calculations on selected two-phase flow phenomena using major PWR system codes

    International Nuclear Information System (INIS)

    1990-01-01

    In 1988 a comparative study on important features and models in six major best estimate thermal hydraulic codes for PWR systems was implemented (Comparison of thermal hydraulic safety codes for PWR Graham, Trotman, London, EUR 11522). It was a limitation of that study that the source codes themselves were not available but the comparison had to be based on the available documentation. In the present study, the source codes were available and the capability of four system codes to predict complex two-phase flow phenomena has been assessed. Two areas of investigation were selected: (a) pressurized spray phenomena; (b) boil-up phenomena in rod bundles. As regards the first area, experimental data obtained in 1972 on the Neptunus Facility (Delft University of Technology) were compared with the results of the calculations using Athlet, Cathare, Relap 5 and TRAC-PT1 and, concerning the second area, the results of two experimental facilities obtained in 1980 and 1985 on Thetis (UKEA) and Pericles (CEA-Grenoble) were considered

  1. Tensioned Rollable Ultra-light Solar array System (TRUSS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRUSS is a structurally efficient solar array concept that utilizes a TRAC rollable boom and tension-stiffened structure to exceed the program requirements for very...

  2. SU-E-T-659: Quantitative Evaluation of Patient Setup Accuracy of Stereotactic Radiotherapy with the Frameless 6D-ExacTrac System Using Statistical Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, V; Jin, H; Hossain, S; Algan, O; Ahmad, S; Ali, I [University of Oklahoma Health Science Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless-6D-ExacTrac system. Methods: A statistical model was used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the BrainLAB 6D-ExacTrac system using the positioning shifts of 35 patients having cranial lesions (49 total lesions treated in 1, 3, 5 fractions). All these patients were immobilized with rigid head-and-neck masks, simulated with BrainLAB-localizer and planned with iPlan treatment planning system. Infrared imaging (IR) was used initially to setup patients. Then, stereoscopic x-ray images (XC) were acquired and registered to corresponding digitally-reconstructed-radiographs using bony-anatomy matching to calculate 6D-translational and rotational shifts. When the shifts were within tolerance (0.7mm and 1°), treatment was initiated. Otherwise corrections were applied and additional x-rays were acquired (XV) to verify that patient position was within tolerance. Results: The uncertainties from the mask, localizer, IR-frame, x-ray imaging, MV and kV isocentricity were quantified individually. Mask uncertainty (Translational: Lateral, Longitudinal, Vertical; Rotational: Pitch, Roll, Yaw) was the largest and varied with patients in the range (−1.05−1.50mm, −5.06–3.57mm, −5.51−3.49mm; −1.40−2.40°, −1.24−1.74°, and −2.43−1.90°) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88,2.12,1.40mm, and 0.64,0.83,0.96°) was extracted from standard-deviation of XC. Systematic uncertainties of the localizer (−0.03,−0.01,0.03mm, and −0.03,0.00,−0.01°) and frame (0.18,0.25,−1.27mm,−0.32,0.18, and 0.47°) were extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the

  3. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

  4. Microstructural evolution and tensile behavior of Ti{sub 2}AlNb alloys based α{sub 2}-phase decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: gackmol@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Zeng, Weidong, E-mail: zengwd@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Dong; Zhu, Bin; Zheng, Youping [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Liang, Xiaobo [Beijing Iron & Steel Research Institute, Beijing 100081 (China)

    2016-04-26

    The formation mechanism of the fine plate-like O-phases within α{sub 2}-phases and tensile behavior of an isothermally forged Ti–22Al–25Nb (at%) orthorhombic alloy at 1040 °C during heat treatment were investigated. The investigation indicated that the alloys were heat-treated in O+B2 phase region after α{sub 2}+B2 phase region isothermally forging, the equiaxed α{sub 2}-phase was not stable and decomposed into O+α{sub 2} phases. The α{sub 2} phases formed during isothermal forging process have higher concentration of Nb and begun to decompose during O+B2 phase region heat treatment. And then the α{sub 2} phases separated into Niobium-lean and Niobium-rich regions through the Niobium diffusion: α{sub 2}→α{sub 2} (Nb-lean)+O (Nb-rich). Nb-rich regions with composition similar to Ti{sub 2}AlNb transformed to the O-phase, while the Nb-lean regions remained untransformed and retained the α{sub 2}-phase. The deformation behavior and fracture mechanism of Ti–22Al–25Nb alloy at room temperature were discussed. The deformation behavior and microstructural evolution of this alloy at different temperatures and stain rates were also investigated using uniaxial tensile test.

  5. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull.

    Directory of Open Access Journals (Sweden)

    Sebastian M Cruz

    Full Text Available Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  6. Quantitative analysis of tensile deformation behavior by in-situ neutron diffraction for ferrite-martensite type dual-phase steels

    International Nuclear Information System (INIS)

    Morooka, Satoshi; Umezawa, Osamu; Harjo, Stefanus; Hasegawa, Kohei; Toji, Yuki

    2012-01-01

    The yielding and work-hardening behavior of ferrite-martensite type dual-phase (DP) alloys were clearly analyzed using the in-situ neutron diffraction technique. We successfully established a new method to estimate the stress and strain partitioning between ferrite and martensite phase during loading. Although these phases exhibit the same lattice structure with similar lattice parameters, their lattice strains on (110), (200) and (211) are obviously different from each other under an applied stress. The misfit strains between those phases were clearly accompanied with the phase-scaled internal stream (phase stress). Thus, the martensite phase yielded by higher applied stress than macro-yield stress, which resulted in high work-hardening rate of the DP steel. We also demonstrated that ferrite phase fraction influenced work-hardening behavior. (author)

  7. Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase.

    Science.gov (United States)

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2017-09-01

    Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.

  8. Assessment of MSIV full closure for Santa Maria de Garona Nuclear Power Plant using TRAC-BF1 (G1J1)

    International Nuclear Information System (INIS)

    Crespo, J.L.

    1993-06-01

    This document presents a spurious Main Steam Isolation Value (MSIV) closure analysis for Santa Maria de Garorta Nuclear Power Plan describing the problems found when comparing calculated and real data. The plant is a General Electric Boiling Water Reactor 3, containment type Mark 1. It is operated by NUCLENOR, S.A. and was connected to the grid in 1971. The analysis has been performed by the Apphed Physics Department from the University of Cantabria and the Analysis and Operation Section from NUCLENOR, S.A. as a part of an agreement for developing an engineering simulator of operational transients and accidents for Santa Maria de Gamma Power Plant. The analysis was performed using the frozen version of TRAC-BFI (GlJl) code and is the second of two NUCLENOR contributions to the International Code Applications and Assessment Program (ICAP). The code was run in a Cyber 932 with operating system NOS/VE, property of NUCLENOR, S.A.. A programming effort was carried out in order to provide suitable graphics from the output file

  9. A cluster phase analysis for collective behavior in team sports.

    Science.gov (United States)

    López-Felip, Maurici A; Davis, Tehran J; Frank, Till D; Dixon, James A

    2018-06-01

    Collective behavior can be defined as the ability of humans to coordinate with others through a complex environment. Sports offer exquisite examples of this dynamic interplay, requiring decision making and other perceptual-cognitive skills to adjust individual decisions to the team self-organization and vice versa. Considering players of a team as periodic phase oscillators, synchrony analyses can be used to model the coordination of a team. Nonetheless, a main limitation of current models is that collective behavior is context independent. In other words, players on a team can be highly synchronized without this corresponding to a meaningful coordination dynamics relevant to the context of the game. Considering these issues, the aim of this study was to develop a method of analysis sensitive to the context for evidence-based measures of collective behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghm@lanl.gov [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Jeong, Y. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Clausen, B.; Liu, Y.; McCabe, R.J. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Barlat, F. [Graduate Institute of Ferrous Technology, POSTECH (Korea, Republic of); Tomé, C.N. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-01-01

    The present work integrates in-situ neutron diffraction, electron backscatter diffraction and crystal plasticity modeling to investigate the effect of martensitic phase transformation on the behavior of 304 stainless steel under uniaxial tension. The macroscopic stress strain response, evolution of the martensitic phase fraction, texture evolution of each individual phase, and internal elastic strains were measured at room temperature and at 75 °C. Because no martensitic transformation was observed at 75 °C, the experimental results at 75 °C were used as a reference to quantify the effect of formed martensitic phase on the behavior of 304 stainless steel at room temperature. A crystallographic phase transformation model was implemented into an elastic–viscoplastic self-consistent framework. The phase transformation model captured the macroscopic stress strain response, plus the texture and volume fraction evolution of austenite and martensite. The model also predicts the internal elastic strain evolution with loading in the austenite, but not in the martensite. The results of this work highlight the mechanisms that control phase transformation and the sensitivity of modeling results to them, and point out to critical elements that still need to be incorporated into crystallographic phase transformation models to accurately describe the internal strain evolution during phase transformation.

  11. Co-operation and Phase Behavior under the Mixed Updating Rules

    International Nuclear Information System (INIS)

    Zhang Wen; Li Yao-Sheng; Xu Chen

    2015-01-01

    We present a model by considering two updating rules when the agents play prisoner's dilemma on a square lattice. Agents can update their strategies by referencing one of his neighbors of higher payoffs under the imitation updating rule or directly replaced by one of his neighbors according to the death-birth updating rule. The frequency of co-operation is related to the probability q of occurrence of the imitation updating or the death-birth updating and the game parameter b. The death-birth updating rule favors the co-operation while the imitation updating rule favors the defection on the lattice, although both rules suppress the co-operation in the well-mixed population. Therefore a totally co-operative state may emerge when the death-birth updating is involved in the evolution when b is relatively small. We also obtain a phase diagram on the q-b plane. There are three phases on the plane with two pure phases of a totally co-operative state and a totally defective state and a mixing phase of mixed strategies. Based on the pair approximation, we theoretically analyze the phase behavior and obtain a quantitative agreement with the simulation results. (paper)

  12. Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide

    Science.gov (United States)

    Young, Nicholas Philip

    constituent species. The presence of scCO2 in the mixtures appears to eliminate the existence of the metastable state that epitomizes most polymer-polymer mixtures. Thus it is shown that knowledge of the individual pairwise interactions in such multicomponent mixtures can greatly influence the resulting phase behavior, and provide insight into the design of improved functional materials with decreased environmental impacts.

  13. Two-dimensional thermal-hydraulic behavior in core in SCTF Core-II cold leg injection tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Sobajima, Makoto; Okubo, Tsutomu; Ohnuki, Akira; Abe, Yutaka; Adachi, Hiromichi

    1985-07-01

    Major purpose of the Slab Core Test Program is to investigate the two-dimensional thermal-hydraulic behavior in the core during the reflood phase in a PWR-LOCA. In order to investigate the effects of radial power profile, three cold leg injection tests with different radial power profiles under the same total heating power and core stored energy were performed by using the Slab Core Test Facility (SCTF) Core-II. It was revealed by comparing these three tests that the heat transfer was enhanced in the higher power bundles and degraded in the lower power bundles in the non-uniform radial power profile tests. The turnaround temperature in the high power bundles were evaluated to be reduced by about 40 to 120 K. On the other hand, a two-dimensional flow in the core was also induced by the non-uniform water accumulation in the upper plenum and the quench was delayed resultantly in the bundles corresponding to the peripheral bundles of a PWR. However, the effect of the non-uniform upper plenum water accumulation on the turnaround temperature was small because the effect dominated after the turnaround of the cladding temperature. Selected data from Tests S2-SH1, S2-SH2 and S2-O6 are also presented in this report. Some data from Tests S2-SH1 and S2-SH2 were compared with TRAC post-test calculations performed by the Los Alamos National Laboratory. (author)

  14. Microstructural characterization, formation mechanism and fracture behavior of the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn [School of Materials Science & Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Huang, Shibo [Anshan Iron & Steel Group Corporation Bayuquan Subsidiary Company, Bayuquan 115007 (China); Fu, M.W. [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Dong, Jie [Inspection & Research Institute of Boiler & Pressure Vessel of Jiangxi Province, Nanchang 330029 (China)

    2015-11-15

    Microstructural characterization, formation mechanism and fracture behavior of the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content (GH4169, equivalent to Inconel 718) have been quantitatively investigated in this research. The typical microstructures of δ phases with the stick, mixed and needle shapes obviously present in Inconel 718 after the isothermal upsetting at the temperature of 980–1060 °C with the initial strain rate of 10{sup −3}–10{sup −1} s{sup −1}. It is found that the shape of the δ phase has a great effect on the mechanical properties of the alloy, viz., the stick δ phase behaves good plasticity and the needle δ phase has good strength. In addition, the needle δ phase can be used to control the grain size as it can prevent grain growth. The combined effect of the localized necking and microvoid coalescence leads to the final ductile fracture of the GH4169 components with the needle δ phase. Both dislocation motion and atom diffusion are the root-cause for the needle δ phase to be firstly separated at grain boundary and then at sub-boundary. The formation mechanism of the needle δ phase is the new finding in this research. Furthermore, it is the primary mechanism for controlling the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content. - Highlights: • Shape of the δ phase takes great effect on mechanical property. • Needle δ phase plays a great role to prevent grain growth. • Needle δ phase can enhance the fracture strength. • Microstructure mechanism of the needle δ phase has been investigated. • Fracture behavior of the needle δ phase has been studied.

  15. The phase behavior of polydisperse multiblock copolymer melts : (a theoretical study)

    NARCIS (Netherlands)

    Angerman, Hindrik Jan

    1998-01-01

    Summary The main theme of this thesis is the influence of polydispersity on the phase behavior of copolymer melts. With “polydispersity” we do not only refer to polydispersity in overall chain length, but also to polydispersity in the composition and the monomer sequence of the chains. Study of the

  16. Study on thermo-hydraulic behavior during reflood phase of a PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1989-01-01

    This paper describes thermo-hydraulic behavior during the reflood phase in a postulated large-break loss-of-coolant accident (LOCA) of a PWR. In order to better predict the reflood transient in a nuclear safety analysis specific analytical models have been developed for, saturated film boiling heat transfer in inverted slung flow, the effect of grid spacers on core thermo-hydraulics, overall system thermo-hydraulic behavior, and the thermal response similarity between nuclear fuel rods and simulated rods. A heat transfer correlation has been newly developed for saturated film boiling based on a 4 x 4-rod experiment conducted at JAERI. The correlation provides a good agreement with existing experiments except in the vicinity of grid spacer locations. An analytical model has then been developed addressing the effect of grid spacers. The thermo-hydraulic behavior near the grid spacers was found to be predicted well with this model by considering the breakup of droplets in dispersed flow and water accumulation above the grid spacers in inverted slung flow. A system analysis code has been developed which couples the one-dimensional core and multi-loop primary system component models. It provides fairly good agreement with system behavior obtained in a large-scale integral reflood experiment with active primary system components. An analytical model for the radial temperature distribution in a rod has been developed and verified with data from existing experiments. It was found that a nuclear fuel rod has a lower cladding temperature and an earlier quench time than an electrically heated rod in a typical reflood condition. (author)

  17. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-07-22

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700-900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350-550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  18. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fan.zhang@wsu.edu [School of Mechanical and Material Eng., Washington State University (United States); Ruimi, Annie [Department of Mechanical Eng., Texas A& M University at Qatar, Doha (Qatar); Wo, Pui Ching; Field, David P. [School of Mechanical and Material Eng., Washington State University (United States)

    2016-04-06

    Among generations of advanced high-strength steel alloys, dual-phase steels exhibit a unique combination of strength and formability making them excellent candidates for use in the automotive industry. In this study, we seek to establish a relation between mechanical properties and microstructure of DP980. Electron backscatter diffraction (EBSD)and nanoindentation are used to identify and characterize martensite and ferrite phases. Spatial distributions of martensite and ferrite phases of subjected to various annealing treatments are found using a 2-point correlation function. Micro- and macro-mechanical properties are measured with nanoindentation, Vickers hardness and tensile tests and the results are used to determine the relation between martensite and ferrite phases and the strength of the metal. During the annealing/recovery process, the strength of the martensite phase decreases, the dislocation structure relaxes in the phase boundary region of the ferrite, and the martensite alignment along the rolling direction decreases resulting in the observed metal strength reduction. It is also shown that the higher the annealing temperature, the more homogeneous and equiaxed the distribution of martensite.

  19. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior

    International Nuclear Information System (INIS)

    Zhang, Fan; Ruimi, Annie; Wo, Pui Ching; Field, David P.

    2016-01-01

    Among generations of advanced high-strength steel alloys, dual-phase steels exhibit a unique combination of strength and formability making them excellent candidates for use in the automotive industry. In this study, we seek to establish a relation between mechanical properties and microstructure of DP980. Electron backscatter diffraction (EBSD)and nanoindentation are used to identify and characterize martensite and ferrite phases. Spatial distributions of martensite and ferrite phases of subjected to various annealing treatments are found using a 2-point correlation function. Micro- and macro-mechanical properties are measured with nanoindentation, Vickers hardness and tensile tests and the results are used to determine the relation between martensite and ferrite phases and the strength of the metal. During the annealing/recovery process, the strength of the martensite phase decreases, the dislocation structure relaxes in the phase boundary region of the ferrite, and the martensite alignment along the rolling direction decreases resulting in the observed metal strength reduction. It is also shown that the higher the annealing temperature, the more homogeneous and equiaxed the distribution of martensite.

  20. Two-phase wall friction model for the trace computer code

    International Nuclear Information System (INIS)

    Wang Weidong

    2005-01-01

    The wall drag model in the TRAC/RELAP5 Advanced Computational Engine computer code (TRACE) has certain known deficiencies. For example, in an annular flow regime, the code predicts an unphysical high liquid velocity compared to the experimental data. To address those deficiencies, a new wall frictional drag package has been developed and implemented in the TRACE code to model the wall drag for two-phase flow system code. The modeled flow regimes are (1) annular/mist, (2) bubbly/slug, and (3) bubbly/slug with wall nucleation. The new models use void fraction (instead of flow quality) as the correlating variable to minimize the calculation oscillation. In addition, the models allow for transitions between the three regimes. The annular/mist regime is subdivided into three separate regimes for pure annular flow, annular flow with entrainment, and film breakdown. For adiabatic two-phase bubbly/slug flows, the vapor phase primarily exists outside of the boundary layer, and the wall shear uses single-phase liquid velocity for friction calculation. The vapor phase wall friction drag is set to zero for bubbly/slug flows. For bubbly/slug flows with wall nucleation, the bubbles are presented within the hydrodynamic boundary layer, and the two-phase wall friction drag is significantly higher with a pronounced mass flux effect. An empirical correlation has been studied and applied to account for nucleate boiling. Verification and validation tests have been performed, and the test results showed a significant code improvement. (authors)

  1. Three-field modeling with droplet entrainment and de-entrainment models for TRAC-M

    International Nuclear Information System (INIS)

    Lee, Sang Ik

    2005-02-01

    A three-field modeling has been developed and implemented to the basic one-dimensional components of TRAC-M/F90 (Modernized Transient Reactor Analysis Code, Fortran90) to improve the estimation of the behavior of droplet entrainment. the divide and conquer algorithmic technique is adjusted for the implementation after considering the verifications. The governing equations are composed of the conservation equations of each field with thermal-equilibrium assumption between the two liquid fields. As a result, three momentum equations, four mass equations including noncondensable gas mass equation and two energy equations are used. In the development of the momentum equation for an entrained droplet, two different kinds of approaches are tested: the simple force balance on a single droplet and the field-type equation based on the continuum assumption. The first showed unstable nature and the latter was chosen. All of the necessary empirical correlations were obtained from literatures, in particular, the physical models of COBRA-TF. The sensitivities of each empirical correlation were investigated where the effect of droplet diameter and droplet drag was found to be negligible. The advantages of the SETS numerical scheme in comparison with the semi-implicit nimerical scheme were addressed in the simulation time and the maximum allowed time-step size. Finally, the simulations of Collier and Hewitt's experiment were performed and it is concluded that the three-field model developed in the present study is reasonable. The predictions by the present code agree with the measured values within the RMS errors of 16.5% and 9.6% in the entrained liquid mass flow rates and the pressure gradients, respectively. Assessment on the physical models is performed. The wall and interfacial drag models were determined at first. After that, the assessments of entrainment model were performed. Wurtz's entrainment model, which was used in COBRA-TF and Kataoka and Ishii's model, were mainly

  2. Mechanical properties and deformation behavior of Al/Al7075, two-phase material

    International Nuclear Information System (INIS)

    Sherafat, Z.; Paydar, M.H.; Ebrahimi, R.; Sohrabi, S.

    2010-01-01

    In the present study, mechanical properties and deformation behavior of Al/Al7075, two-phase material were investigated. The two-phase materials were fabricated by mixing commercially pure Al powder with Al7075 chips and consolidating the mixture through hot extrusion process at 500 o C. Mechanical properties and deformation behavior of the fabricated samples were evaluated using tensile and compression tests. A scanning electron microscope was used to study the fracture surface of the samples including different amount of Al powder, after they were fractured in tensile test. The results of the tensile and compression tests showed that with decreasing the amount of Al powder, the strength increases and ductility decreases. Calculation of work hardening exponent (n) indicated that deformation behavior does not follow a regular trend. In a way that the n value was approved to be variable and a strong function of strain and Al powder wt% of the sample. The results of the fractography studies indicate that the type of fracture happened changes from completely ductile to nearly brittle by decreasing the wt% of Al powder from 90% to 40%.

  3. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. ...

  4. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. T...

  5. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    Energy Technology Data Exchange (ETDEWEB)

    Khan, I. John [The State Univ. of New Jersey, Piscataway, NJ (United States); Murthy, N. Sanjeeva [The State Univ. of New Jersey, Piscataway, NJ (United States); Kohn, Joachim [The State Univ. of New Jersey, Piscataway, NJ (United States)

    2015-10-30

    Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  6. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    Directory of Open Access Journals (Sweden)

    Joachim Kohn

    2012-10-01

    Full Text Available Voclosporin is a highly potent, new cyclosporine-A derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. We therefore selected it as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE and desaminotyrosyl-tyrosine (DT, and the hydrophilic component is poly(ethylene glycol (PEG. Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide (PLGA, which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  7. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    Science.gov (United States)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  8. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    International Nuclear Information System (INIS)

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-01-01

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame

  9. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2014-07-01

    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  10. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  11. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  12. Phase behavior in diffraction

    International Nuclear Information System (INIS)

    Checon, A.

    1983-01-01

    Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt

  13. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  14. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  15. Thermodynamic phase behavior of API/polymer solid dispersions.

    Science.gov (United States)

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  16. Phase Behavior Modeling of Asphaltene Precipitation for Heavy Crudes: A Promising Tool Along with Experimental Data

    Science.gov (United States)

    Tavakkoli, M.; Kharrat, R.; Masihi, M.; Ghazanfari, M. H.; Fadaei, S.

    2012-12-01

    Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of Iranian heavy crudes, under pressure depletion and CO2 injection conditions. A significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. Especially for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed. For gas injection conditions, comparison of the thermodynamic micellization model and the improved solid model showed that the thermodynamic micellization model cannot predict the maximum of precipitation as well as the improved solid model. The non-isothermal improved solid model has been used for predicting asphaltene precipitation data under pressure depletion conditions. The pressure depletion tests were done at different levels of temperature and pressure, and the parameters of a non-isothermal model were tuned using three onset pressures at three different temperatures for the considered crude. The results showed that the model is highly sensitive to the amount of solid molar volume along with the interaction coefficient parameter between the asphaltene component and light hydrocarbon components. Using a non-isothermal improved solid model, the asphaltene phase envelope was developed. It has been revealed that at high temperatures, an

  17. Two-phase behavior and compression effects in the PEFC gas diffusion medium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Schulz, Volker P [APL-LANDAU GMBH; Wang, Chao - Yang [PENN STATE UNIV; Becker, Jurgen [NON LANL; Wiegmann, Andreas [NON LANL

    2009-01-01

    A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.

  18. Phase behavior of mixtures of oppositely charged nanoparticles: Heterogeneous Poisson-Boltzmann cell model applied to lysozyme and succinylated lysozyme

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Lindhoud, S.; Vries, de R.J.; Stuart, M.A.C.

    2006-01-01

    We study the phase behavior of mixtures of oppositely charged nanoparticles, both theoretically and experimentally. As an experimental model system we consider mixtures of lysozyme and lysozyme that has been chemically modified in such a way that its charge is nearly equal in magnitude but opposite

  19. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    Science.gov (United States)

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations

  20. The phase behavior of a hard sphere chain model of a binary n-alkane mixture

    International Nuclear Information System (INIS)

    Malanoski, A. P.; Monson, P. A.

    2000-01-01

    Monte Carlo computer simulations have been used to study the solid and fluid phase properties as well as phase equilibrium in a flexible, united atom, hard sphere chain model of n-heptane/n-octane mixtures. We describe a methodology for calculating the chemical potentials for the components in the mixture based on a technique used previously for atomic mixtures. The mixture was found to conform accurately to ideal solution behavior in the fluid phase. However, much greater nonidealities were seen in the solid phase. Phase equilibrium calculations indicate a phase diagram with solid-fluid phase equilibrium and a eutectic point. The components are only miscible in the solid phase for dilute solutions of the shorter chains in the longer chains. (c) 2000 American Institute of Physics

  1. Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures

    International Nuclear Information System (INIS)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo

    2016-01-01

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO 2 , as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO 2 . The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO 2 at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO 2 +20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO 2 +DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO 2 shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  2. A study of Two-Phase Flow Regime Maps in Vertical and Horizontal Pipes

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Kang, Doo Hyuk

    2007-10-01

    A safety analysis code to design a pressurized water reactor and to obtain the licences including entire proprietary rights is under development in domestic research and development project. The purpose and scope of this report is to develop the flow regimes related models for inter-phase friction, wall frictions, wall heat transfer, and inter-phase heat and mass transfer in two-phase three-field equations. In order to choose choose the flow regime criteria, we have investigated various exiting best-estimate T/H codes in this chapter 2. They are the RELAP5-3D, TRAC-M, CATHARE, MARS codes. Around 500 references used in these codes have been collected and reviewed. Also we have investigated eleven papers in detail. In chapter 3, based on the selected flow regimes, the flow regime maps for a gas-liquid flow in horizontal and vertical tubes have decided including the mechanisms of flow regime transition regions. Conclusively, the process will be presented for choosing the best flow regime maps which occur in gas-liquid two-phase flow in horizontal and vertical pipes. We will look forward to decide the constitutive relations based upon the flow regime maps that are determined in this works. The constitutive relations will be used for the code under development

  3. Immune Biomarkers Predictive for Disease-Free Survival with Adjuvant Sunitinib in High-Risk Locoregional Renal Cell Carcinoma: From Randomized Phase III S-TRAC Study.

    Science.gov (United States)

    George, Daniel J; Martini, Jean-François; Staehler, Michael; Motzer, Robert J; Magheli, Ahmed; Escudier, Bernard; Gerletti, Paola; Li, Sherry; Casey, Michelle; Laguerre, Brigitte; Pandha, Hardev S; Pantuck, Allan J; Patel, Anup; Lechuga, Maria J; Ravaud, Alain

    2018-04-01

    Purpose: Adjuvant sunitinib therapy compared with placebo prolonged disease-free survival (DFS) in patients with locoregional high-risk renal cell carcinoma (RCC) in the S-TRAC trial (ClinicalTrials.gov number NCT00375674). A prospectively designed exploratory analysis of tissue biomarkers was conducted to identify predictors of treatment benefit. Experimental Design: Tissue blocks were used for immunohistochemistry (IHC) staining of programmed cell death ligand 1 (PD-L1), CD4, CD8, and CD68. DFS was compared between < versus ≥ median IHC parameter using the Kaplan-Meier method. For biomarkers with predictive potential, receiver operating characteristics curves were generated. Results: Baseline characteristics were similar in patients with ( n = 191) and without ( n = 419) IHC analysis. Among patients with IHC, longer DFS was observed in patients with tumor CD8 + T-cell density ≥ versus < median [median (95% CI), not reached (6.83-not reached) versus 3.47 years (1.73-not reached); hazard ratio (HR) 0.40 (95% CI, 0.20-0.81); P = 0.009] treated with sunitinib ( n = 101), but not with placebo ( n = 90). The sensitivity and specificity for CD8 + T-cell density in predicting DFS were 0.604 and 0.658, respectively. Shorter DFS was observed in placebo-treated patients with PD-L1 + versus PD-L1 - tumors (HR 1.75; P = 0.103). Among all patients with PD-L1 + tumors, DFS was numerically longer with sunitinib versus placebo (HR 0.58; P = 0.175). Conclusions: Greater CD8 + T-cell density in tumor tissue was associated with longer DFS with sunitinib but not placebo, suggesting predictive treatment effect utility. Further independent cohort validation studies are warranted. The prognostic value of PD-L1 expression in primary tumors from patients with high-risk nonmetastatic RCC should also be further explored. Clin Cancer Res; 24(7); 1554-61. ©2018 AACR . ©2018 American Association for Cancer Research.

  4. X-ray diffraction study of elastic strains for modelling γ/γ' two-phase behavior

    International Nuclear Information System (INIS)

    Durand, L.; Massaoudi, M.; Lavelle, B.

    2005-01-01

    To describe the two-phase monocrystals behavior, we used has X-rays diffraction method. Our study is based on the mechanics of the continuous media framework in elasticity. We extend to the quadratic structure the study by X-rays developed at the laboratory on cubic materials with coarse grains. We show that the two phases γ and γ' undergo a tetragonal distortion and that the strains are not constant in each phase. Our results are in agreement with a study by the finite element method developed in addition

  5. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  6. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  7. Dynamic Viscoelastic Behavior and Phase Morphology of HIPS/HDPE Blends

    OpenAIRE

    LIU Jing-ru; XIA Yang-yang; GAO Li-qun; YU Qiang

    2017-01-01

    The dynamic viscoelastic behavior and phase morphology of high impact polystyrene (HIPS)/high density polyethylene (HDPE) blends were investigated by dynamic rheological test and scanning electron microscopy (SEM). The compatibilizing effect of 1%(mass fraction, same as below) micron-CaCO3 and nano-CaCO3 on HIPS/HDPE(30/70) immiscible blend was compared. The results indicate that the complex viscosity and storage modulus of HIPS/HDPE blends at low frequencies show positive deviation from the ...

  8. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Yoshida, Hiroyuki; Abe, Yutaka

    2016-01-01

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  9. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Naoki, E-mail: s1430215@u.tsukuba.ac.jp [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Yoshida, Hiroyuki [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Abe, Yutaka [University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)

    2016-12-15

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  10. Phase behavior of polystyrene-block-poly(n-alkyl methacrylate) copolymers investigated by SANS, SAXS, and temperature-dependent FTIR spectroscopy

    International Nuclear Information System (INIS)

    Ryu, Du Yeol; Lee, Dong Hyun; Kim, Hye Jeong; Kim, Jin Kon; Jung, Y. M.; Kim, S. B.

    2005-01-01

    The phase behavior of polystyrene-block -poly(n-alkyl methacrylate) (PS-PnAMA) copolymer were investigated by Small-Angle Neutron Scattering (SANS), Small-Angle X-ray Scattering (SAXS), and temperature-dependent Fourier Transform Infrared (FTIR) spectroscopy. Also, the effect of hydrostatic pressure on the transition temperatures was studied by using SANS with pressure controller. Phase behavior was changed significantly with the change of alkyl number (n). For n = 2∼4, only Lower Disordered-to-Order Tansition (LDOT) was observed, whereas the Ordered-to-Disorder (ODT) was found for n =1 and n =6. Finally, a closed-loop phase behavior was found for n =5. Using incompressible random phase approximation, the segmental interactions (χ) between PS and PnAMA for all n values were obtained. The standard expression of χ = a + b/T (where T is the absolute temperature) was valid only for n =1 and n =6. But, this relationship was not valid any more for n = 2∼4. For n =5, a more complex behavior of χ upon temperature was observed. We investigated, by using temperature-dependent FTIR, the mechanism why as closed loop phase behavior was observed for n =5. Interestingly, the conformation of C-C-O stretching band of the PnPMA chain (n=5) (and thus the directional enthapic gain) was different in the two disordered states, and, therefore, the driving force to induce the disordered state at lower temperatures was different from that at higher temperatures

  11. Adiabatic quantum games and phase-transition-like behavior between optimal strategies

    Science.gov (United States)

    de Ponte, M. A.; Santos, Alan C.

    2018-06-01

    In this paper we propose a game of a single qubit whose strategies can be implemented adiabatically. In addition, we show how to implement the strategies of a quantum game through controlled adiabatic evolutions, where we analyze the payment of a quantum player for various situations of interest: (1) when the players receive distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when the device that implements the strategy is inefficient. Through a graphical analysis, it is possible to notice that the curves that represent the gains of the players present a behavior similar to the curves that give rise to a phase transition in thermodynamics. These transitions are associated with optimal strategy changes and occur in the absence of entanglement and interaction between the players.

  12. Estimate of LOCA-FI plenum pressure uncertainty for a five-ring RELAP5 production reactor model

    International Nuclear Information System (INIS)

    Griggs, D.P.

    1993-03-01

    The RELAP5/MOD2.5 code (RELAP5) is used to perform best-estimate analyses of certain postulated Design Basis Accidents (DBAs) in SRS production reactors. Currently, the most limiting DBA in terms of reactor power level is an instantaneous double-ended guillotine break (DEGB) loss of coolant accident (LOCA). A six-loop RELAP5 K Reactor model is used to analyze the reactor system behavior dozing the Flow Instability (FI) phase of the LOCA, which comprises only the first 5 seconds following the DEGB. The RELAP5 K Reactor model includes tank and plenum nodalizations having five radial rings and six azimuthal sectors. The reactor system analysis provides time-dependent plenum and tank bottom pressures for use as boundary conditions in the FLOWTRAN code, which models a single fuel assembly in detail. RELAP5 also performs the system analysis for the latter phase of the LOCA, denoted the Emergency Cooling System (ECS) phase. Results from the RELAP analysis are used to provide boundary conditions to the FLOWTRAN-TF code, which is an advanced two-phase version of FLOWTRAN. The RELAP5 K Reactor model has been tested for LOCA-FI and Loss-of-Pumping Accident analyses and the results compared with equivalent analyses performed with the TRAC-PF1/MOD1 code (TRAC). An equivalent RELAP5 six-loop, five-ring, six-sector L Reactor model has been benchmarked against qualified single-phase system data from the 1989 L-Area In-Reactor Test Program. The RELAP5 K and L Reactor models have also been subjected to an independent Quality Assurance verification

  13. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    Science.gov (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  14. The effect of aluminum content on phase constitution and heat treatment behavior of Ti-Cr-Al alloys for healthcare application

    International Nuclear Information System (INIS)

    Sugano, Daisuke; Ikeda, Masahiko

    2005-01-01

    As life expectancy steadily increases, developing reliable functional materials for healthcare applications gains importance. Titanium and its alloys, while attractive for such applications, are expensive. The present investigation suggests that it may be possible to reduce costs by using new, low-cost beta Ti alloys. To assess their reliability, the heat treatment behavior of beta Ti alloys, Ti-7 mass% Cr with varying Al content (0%, 1.5%, 3.0% and 4.5%), was investigated through electrical resistivity and Vickers hardness measurements. In the Ti-7Cr-0Al alloy quenched from 1173 K, only the beta phase was identified by X-ray diffraction (XRD). In Ti-7Cr-1.5 to 4.5 Al alloys, XRD detected both beta and orthorhombic martensite. On isochronal heat treatment behavior of Ti-7Cr-3.0, 4.5 Al alloys, resistivity at liquid nitrogen temperature and resistivity ratio increased between 423 and 523 K.These increases are due to reverse transformation of orthorhombic martensite to the metastable beta phase

  15. Statistical safety evaluation of BWR turbine trip scenario using coupled neutron kinetics and thermal hydraulics analysis code SKETCH-INS/TRACE5.0

    International Nuclear Information System (INIS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    2012-01-01

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal-hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method. (author)

  16. B. F. Skinner's Science and Human Behavior: its antecedents and its consequences.

    Science.gov (United States)

    Catania, A Charles

    2003-11-01

    Skinner's Science and Human Behavior marked a transition from a treatment of behavior that took physics as its reference science to one that emphasized behavior as a fundamental part of the subject matter of biology. The book includes what may be Skinner's earliest statement about the similarity of operant selection to Darwinian natural selection in phylogeny. Other major topics discussed in the book included multiple causation, private events, the self, and social contingencies. Among the important antecedents were Skinner's own Behavior of Organisms and Keller & Schoenfeld's Pincinples of Psychology. Current developments in education, behavioral economics, and some behavior therapies can be attributed at least in part to Skinner's seminal work. The effective behavioral analysis of governmental and religious systems will probably depend on elaborations of our understanding of verbal behavior.

  17. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction

    International Nuclear Information System (INIS)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-01-01

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter’s two-component sticky hard sphere model with a Percus–Yevick closure to solve the Ornstein–Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms. (paper)

  18. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction.

    Science.gov (United States)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-11-16

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  19. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    Science.gov (United States)

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  20. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    Directory of Open Access Journals (Sweden)

    Mohd Idzat Idris

    2016-12-01

    Full Text Available Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV and the irradiation is performed at temperatures lower than 973K. However, the recovery behavior of SiC fabricated by the nanoinfiltrated and transient eutectic phase (NITE process is not well understood. In this study, the effects of secondary phases on the irradiation-related swelling and recovery behavior of monolithic NITE-SiC after post-irradiation annealing were studied. The NITE-SiC specimens were irradiated in the BR2 reactor at fluences of up to 2.0–2.5×1024 n/m2 (E>0.1MeV at 333–363K. This resulted in the specimens swelling up ∼1.3%, which is 0.1% higher than the increase seen in concurrently irradiated high-purity SiC. The recovery behaviors of the specimens after post-irradiation thermal annealing were examined using a precision dilatometer; the specimens were heated at temperatures of up to 1673K using a step-heating method. The recovery curves were analyzed using a first-order model, and the rate constants for each annealing step were obtained to determine the activation energy for volume recovery. The NITE-A specimen (containing 12 wt% sintering additives recovered completely after annealing at ∼1573K; however, it shrank because of the volatilization of the oxide phases at 1673K. The NITE-B specimen (containing 18wt% sintering additives did not recover fully, since the secondary phase (YAG was crystallized during the annealing process. The recovery mechanism of NITE-A SiC was based on the recombination of the C and Si Frenkel pairs, which were very closely sited or only slightly separated at temperatures lower than 1223K, as well as the recombination of the slightly separated C Frenkel pairs and the migration of C and Si interstitials at temperatures of 1223–1573K. That is to say, the

  1. Fabrication of Phased Array EMAT and Its Characteristics

    International Nuclear Information System (INIS)

    Ahn, Bong Young; Cho, Seung Hyun; Kim, Young Joo; Kim, Ki Bok

    2010-01-01

    EMAT has been applied in various fields for flaw detection and material characterization because it has noncontact property in wave generation and a good mode selectivity. Unfortunately, however, EMAT shows low signal to noise ratio relative to commercial contact transducer because of low energy conversion efficiency. If the phase matching through the control of time delay between each coil consisting of the array EMAT is accomplished, it is expected that it will be a solution for the improvement of low signal to noise ratio. In this experiment, the phased array EMATs which consists of 3 or 4 meander coils and one big magnet were fabricated for surface and vertical shear wave generation. Effect of phased delay control on signal directivity and amplitude enhancement was verified. A slit with the depth of 0.5 mm and a side-drill hole of 0.5 mm diameter were clearly detected by fabricated phased array EMATs, respectively

  2. A High Performance Multi-Core FPGA Implementation for 2D Pixel Clustering for the ATLAS Fast TracKer (FTK) Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Beretta, M; Gkaitatzis, S; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The high performance multi-core 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors read out drivers (RODs) at 760Gbps, the full rate of level 1 triggers. Clustering is required as a method to reduce the high rate of the received data before further processing, as well as to determine the cluster centroid for obtaining obtain the best spatial measurement. Our implementation targets the pixel detectors and uses a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The design is fully generic and the cluster detection window size can be adjusted for optimizing the cluster identification process. Τhe implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility mak...

  3. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  4. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    International Nuclear Information System (INIS)

    Schwaighofer, Emanuel; Clemens, Helmut; Lindemann, Janny; Stark, Andreas; Mayer, Svea

    2014-01-01

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s −1 up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti 5 Si 3 silicides and h-type carbides Ti 2 AlC enhance the dynamic recrystallization behavior during deformation within

  5. Validation of thermohydraulic codes by comparison of experimental results with computer simulations

    International Nuclear Information System (INIS)

    Madeira, A.A.; Galetti, M.R.S.; Pontedeiro, A.C.

    1989-01-01

    The results obtained by simulation of three cases from CANON depressurization experience, using the TRAC-PF1 computer code, version 7.6, implanted in the VAX-11/750 computer of Brazilian CNEN, are presented. The CANON experience was chosen as first standard problem in thermo-hydraulic to be discussed at ENFIR for comparing results from different computer codes with results obtained experimentally. The ability of TRAC-PF1 code to prevent the depressurization phase of a loss of primary collant accident in pressurized water reactors is evaluated. (M.C.K.) [pt

  6. Analysis of large two phase uranium dioxide bubble behavior in water and sodium pools

    International Nuclear Information System (INIS)

    Webb, R.L.

    1984-05-01

    An understanding of the behavior of large, two-phase UO 2 bubbles is important in assessing the consequences of a hypothetical core disruptive accident in a fast reactor. The UVABUBL II computer program was written to study the dynamics and heat and mass transfer in large UO 2 bubbles, and the code was used to analyze data from the underwater and undersodium FAST experiments conducted at Oak Ridge National Laboratory in which the behavior of UO 2 bubbles under a wide variety of conditions was examined. Significant understanding of the phenomena that govern UO 2 bubble behavior in both water and sodium was obtained by matching calculations of pressure, bubble size, and bubble growth and collapse rate to the experimental data. Heat and mass transfer included radiative heat losses and coolant entrainment. Larger heat transfer rates were calculated for the water tests with significant surface vaporization occurring. Because of the high thermal conductivity of sodium, no surface vaporization was calculated for the sodium tests. Entrainment was not found to be necessary for either the water or sodium tests, but calculations that included entrainment implied that it may be occurring. 38 references

  7. Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase.

    Science.gov (United States)

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2018-02-01

    Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.

  8. Phase behavior and radiation effects in high level waste class

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.

    1977-02-01

    Results are presented that demonstrate that detailed and reproducible data can be obtained for complex waste glasses. For the major glass composition examined, thermal treatment was shown to cause formation of several crystalline phases which contribute to an increased leachability. Although not discussed in detail here, Zn 2 SiO 4 formation results in microcracking due to a thermal expansion mismatch with the glass matrix, and SrMoO 4 has a higher leachability than the glass matrix. The temperature dependence describing equilibrium concentrations of these two phases and a qualitative understanding of ingrowth kinetics have been established, hence conditions necessary to eliminate their formation during processing and early storage, are known. Radiation damage effects, when extrapolated to long times, suggest energy storage of approximately 50 cal/gram and either positive or negative density changes occur (depending on the glass composition) in the 1 percent range. No radiation damage-related changes of serious concern have been found for homogeneous glasses by 244 Cm doping experiments now approaching a simulated damage time of approximately 10 3 years (for UO 2 fuel wastes). More work is needed concerning heterogeneous damage which will occur in devitrified glasses. As a final point, the complications with respect to understanding behavior of polyphase systems with respect to either radiation damage or leaching behavior, are self evident. Homogeneous glasses with improved leach resistance, and thermal and radiation stability are clear objectives for future glass development

  9. Peach Bottom transient analysis with BWR TRACB02

    International Nuclear Information System (INIS)

    Alamgir, M.; Sutherland, W.A.

    1984-01-01

    TRAC calculations have been performed for a Turbine Trip transient (TT1) in the Peach Bottom BWR power plant. This study is a part of the qualification of the BWR-TRAC code. The simulation is aimed at reproducing the observed thermal hydraulic behavior in a pressurization transient. Measured core power is an input to the calculation. Comparison with data show the code reasonably well predicts the generation and propagation of the pressure waves in the main steam line and associated pressurization of the reactor vessel following the closure of the turbine stop valve

  10. Effects of Phytoplankton Growth Phase on Delayed Settling Behavior of Marine Snow Aggregates at Sharp Density Transitions

    Science.gov (United States)

    Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.

    2016-02-01

    Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.

  11. XTV users guide

    International Nuclear Information System (INIS)

    Dearing, J.F.; Johns, R.C.

    1996-09-01

    XTV is an X-Windows based Graphical User Interface for viewing results of Transient Reactor Analysis Code (TRAC) calculations. It provides static and animated color mapped visualizations of both thermal-hydraulic and heat conduction components in a TRAC model of a nuclear power plant, as well as both on-screen and hard copy two-dimensional plot capabilities. XTV is the successor to TRAP, the former TRAC postprocessor using the proprietary DISSPLA graphics library. This manual describes Version 2.0, which requires TRAC version 5.4.20 or later for full visualization capabilities

  12. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    Science.gov (United States)

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Retention behavior of resorcinarene-based cavitands on C8 and C18 stationary phases.

    Science.gov (United States)

    Bartó, Endre; Prauda, Ibolya; Kilár, Ferenc; Kiss, Ibolya; Felinger, Attila

    2015-09-01

    The understanding of the retention behavior of large molecules is an area of interest in liquid chromatography. Resorcinarene-based cavitands are cavity-shaped cyclic oligomers that can create host-guest interactions. We have investigated the chromatographic behavior of two types of cyclic tetramers as analytes in high-performance liquid chromatography. The experiments were performed at four different temperatures (15, 25, 35, 45°C) on two types of reversed stationary phases (C8 and C18 ) from two different manufacturers. We have found a huge difference between the retention of resorcinarenes and cavitands. In some cases, the retention factor of cavitands was even a hundred times larger than the retention factor of resorcinarenes. The retention of methylated derivates was two to four times larger compared to that of demethylated compounds on every column. The opposite retention behavior of the resorcinarenes and cavitands on the two types of stationary phases showed well the difference of the selectivity of the XTerra and BDS Hypersil columns. The retention mechanism was studied by the thermodynamic parameters calculated from the van't Hoff equation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    Science.gov (United States)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  15. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases

    Science.gov (United States)

    Peng, Qiuming; Guo, Jianxin; Fu, Hui; Cai, Xuecheng; Wang, Yanan; Liu, Baozhong; Xu, Zhigang

    2014-01-01

    Long-period stacking ordered (LPSO) phases play an essential role in the development of magnesium alloys because they have a direct effect on mechanical and corrosion properties of the alloys. The LPSO structures are mostly divided to 18R and 14H. However, to date there are no consistent opinions about their degradation properties although both of them can improve mechanical properties. Herein we have successfully obtained two LPSO phases separately in the same Mg-Dy-Zn system and comparatively investigated the effect of different LPSO phases on degradation behavior in 0.9 wt.% NaCl solution. Our results demonstrate that a fine metastable 14H-LPSO phase in grain interior is more effective to improve corrosion resistance due to the presence of a homogeneous oxidation film and rapid film remediation ability. The outstanding corrosion resistant Mg-Dy-Zn based alloys with a metastable 14H-LPSO phase, coupled with low toxicity of alloying elements, are highly desirable in the design of novel Mg-based biomaterials, opening up a new avenue in the area of bio-Mg.

  16. The phase behavior of polydisperse multiblock copolymer melts: (a theoretical study)

    OpenAIRE

    Angerman, Hindrik Jan

    1998-01-01

    Summary The main theme of this thesis is the influence of polydispersity on the phase behavior of copolymer melts. With “polydispersity” we do not only refer to polydispersity in overall chain length, but also to polydispersity in the composition and the monomer sequence of the chains. Study of the influence of polydispersity is important because synthesizing purely monodisperse copolymers is very difficult, and for most polymerization techniques the occurrence of a certain degree of polydisp...

  17. Microstructure, Corrosion and Magnetic Behavior of an Aged Dual-Phase Stainless Steel

    Science.gov (United States)

    Ziouche, A.; Haddad, A.; Badji, R.; Zergoug, M.; Zoubiri, N.; Bedjaoui, W.; Abaidia, S.

    2018-03-01

    In the present work, the effect of the precipitation phenomena on corrosion and magnetic behavior of an aged dual-phase stainless steel was investigated. Aging treatment caused the precipitation of the σ phase, chromium carbides and secondary austenite, which was accompanied by the shifting of the δ/γ interfaces inside the δ ferrite grains. Aging between 700 and 850 °C strongly deteriorated the pitting corrosion resistance of the studied material. Magnetic investigation of the aged material using the vibration sample magnetic technique revealed the sensitivity of the intrinsic magnetic properties to the smallest microstructural change. This was confirmed by the Eddy current technique that led also to the evaluation of the aging-induced localized corrosion.

  18. Translational Research: It's Not 1960s Behavior Analysis

    Science.gov (United States)

    Poling, Alan; Edwards, Timothy L.

    2011-01-01

    The authors find Critchfield's article ("Translational Contributions of the Experimental Analysis of Behavior," "The Behavior Analyst," v34, p3-17, 2011) scholarly, clear, and insightful. In it, Critchfield provides an excellent overview of translational research in behavior analysis and suggests several general strategies for increasing the…

  19. Phase behavior for the poly(alkyl methacrylate)+supercritical CO{sub 2}+DME mixture at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-01-15

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO{sub 2}, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO{sub 2}. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO{sub 2} at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO{sub 2}+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO{sub 2}+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO{sub 2} shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  20. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    International Nuclear Information System (INIS)

    Ali, A.N.; Son, S.F.; Asay, B.W.; Sander, R.K.

    2005-01-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6 mm±0.4 mm exists below which ignition by CO 2 laser is not possible at the tested irradiances of 29 W/cm 2 and 38 W/cm 2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials

  1. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    Science.gov (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  2. The effect of the number of condensed phases modeled on aerosol behavior during an induced steam generator tube rupture sequence

    International Nuclear Information System (INIS)

    Bixler, N.E.; Schaperow, J.H.

    1998-06-01

    VICTORIA is a mechanistic computer code designed to analyze fission product behavior within a nuclear reactor coolant system (RCS) during a severe accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS. A recently completed independent peer review of VICTORIA, while confirming the overall adequacy of the code, recommended a number of modeling improvements. One of these recommendations, to model three rather than a single condensed phase, is the focus of the work reported here. The recommendation has been implemented as an option so that either a single or three condensed phases can be treated. Both options have been employed in the study of fission product behavior during an induced steam generator tube rupture sequence. Differences in deposition patterns and mechanisms predicted using these two options are discussed

  3. Gamification: what it is and why it matters to digital health behavior change developers.

    Science.gov (United States)

    Cugelman, Brian

    2013-12-12

    This editorial provides a behavioral science view on gamification and health behavior change, describes its principles and mechanisms, and reviews some of the evidence for its efficacy. Furthermore, this editorial explores the relation between gamification and behavior change frameworks used in the health sciences and shows how gamification principles are closely related to principles that have been proven to work in health behavior change technology. Finally, this editorial provides criteria that can be used to assess when gamification provides a potentially promising framework for digital health interventions.

  4. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  5. Gamification: What It Is and Why It Matters to Digital Health Behavior Change Developers

    Science.gov (United States)

    2013-01-01

    This editorial provides a behavioral science view on gamification and health behavior change, describes its principles and mechanisms, and reviews some of the evidence for its efficacy. Furthermore, this editorial explores the relation between gamification and behavior change frameworks used in the health sciences and shows how gamification principles are closely related to principles that have been proven to work in health behavior change technology. Finally, this editorial provides criteria that can be used to assess when gamification provides a potentially promising framework for digital health interventions. PMID:25658754

  6. Effect of vision angle on the phase transition in flocking behavior of animal groups

    Science.gov (United States)

    Nguyen, P. The; Lee, Sang-Hee; Ngo, V. Thanh

    2015-09-01

    The nature of the phase transition in a system of self-propelling particles has been extensively studied during the past few decades. A theoretical model was proposed by [T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995), 10.1103/PhysRevLett.75.1226] with a simple rule for updating the direction of motion of each particle. Based on the model of Vicsek et al., in this paper, we consider a group of animals as particles moving freely in a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle φ =ϕ /2 (ϕ is called the angle of view) of a circle centered at its position of radius R . We obtained a phase diagram in the space (φ ,ηc ) with ηc being the critical noise. We show that the phase transition exists only in the case of a wide view's angle φ ≥0.5 π . The flocking of animals is a universal behavior of the species of prey but not the one of the predator. Our simulation results are in good agreement with experimental observation [C. Beccoa et al., Physica A 367, 487 (2006), 10.1016/j.physa.2005.11.041].

  7. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh

    2016-02-01

    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  8. Effect of the Heusler phase formation on the magnetic behavior of the Cu–10 wt.%Mn alloy with Al and Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M., E-mail: thaisa.mary@gmail.com [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra – UNIFESP, 09972-270 Diadema, SP (Brazil); Magnani, M. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The presence of the Cu{sub 2}MnAl phase was observed in annealed alloys. • Al and Ag additions shift the equilibrium concentration to higher Al values. • There is a correlation between the Ag-rich phase and the Cu{sub 2}MnAl phase. - Abstract: In this work, the formation of the Cu{sub 2}AlMn Heusler phase and its influence on the magnetic behavior of the Cu–Mn–Al–Ag alloys in the range of 8–10 wt.% of aluminum and 2–4 wt.% of silver were studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and saturation magnetization measurements at 4 K. The results showed that there is a correlation between the presence of the Ag-rich phase and the formation of the Cu{sub 2}MnAl phase.

  9. An Equation-of-State Compositional In-Situ Combustion Model: A Study of Phase Behavior Sensitivity

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, M. G.; Thomsen, Per Grove

    2009-01-01

    phase behavior sensitivity for in situ combustion, a thermal oil recovery process. For the one-dimensional model we first study the sensitivity to numerical discretization errors and provide grid density guidelines for proper resolution of in situ combustion behavior. A critical condition for success...... to ignition. For a particular oil we show that the simplified approach overestimates the required air injection rate for sustained front propagation by 17% compared to the equation of state-based approach....

  10. Transportation research : the Department of Transportation has made progress in coordinating and reviewing its research activities : testimony before the Subcommittee on Technology and Innovation, Committee on Science and Technology, House of Representatives

    Science.gov (United States)

    2009-02-12

    The FAST-TRAC (Faster and Safer Travel through Traffic Routing and Advanced Controls) Operational Field Test (OFT) is an Intelligent Transportation Systems (ITS) project being conducted in Southeast Michigan, managed by the Road Commission of Oakland...

  11. Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space

    Directory of Open Access Journals (Sweden)

    Amin Dehyadegari

    2017-05-01

    Full Text Available It has been argued that charged Anti-de Sitter (AdS black holes have similar thermodynamic behavior as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic variable (pressure in an extended phase space. In this paper, we disclose the deep connection between charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider the mass of an AdS black hole as a function of square of the charge Q2 instead of the standard Q, i.e. M=M(S,Q2,P. We first justify such a change of view mathematically and then ask if a phase transition can occur as a function of Q2 for fixed P. Therefore, we write the equation of state as Q2=Q2(T,Ψ where Ψ (conjugate of Q2 is the inverse of the specific volume, Ψ=1/v. This allows us to complete the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition as well as critical exponents of the system. We identify a thermodynamic instability in this new picture with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore study the critical behavior of isotherms in Q2–Ψ diagram and deduce all the critical exponents of the system and determine that the system exhibits a small–large black hole phase transition at the critical point (Tc,Qc2,Ψc. This alternative view is important as one can imagine such a change for a given single black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large as one moves away from the critical point along the transition line. Therefore, we are able to attribute the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at the phase transition.

  12. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    International Nuclear Information System (INIS)

    Hubert, Olivier; Lazreg, Said

    2017-01-01

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  13. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Olivier, E-mail: olivier.hubert@lmt.ens-cachan.fr; Lazreg, Said

    2017-02-15

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  14. Phase Transformation Behavior of Oxide Particles Formed in Mechanically Alloyed Fe-5Y{sub 2}O{sub 3} Powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Eon; Choi, Jung-Sun; Noh, Sanghoon; Kang, Suk Hoon; Choi, Byoung Kwon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Kim, Young Do [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    The phase transformation behavior of the oxides formed in mechanically alloyed Fe-5Y{sub 2}O{sub 3} powder is investigated. Non-stoichiometric Y-rich and Fe-rich oxides with sizes of less than 300 nm are observed in the mechanically alloyed powder. The diffusion and redistribution reactions of the elements in these oxides during heating of the powder above 800 ℃ were observed, and these reactions result in the formation of a Y{sub 3}Fe{sub 5}O{sub 12} phase after heating at 1050 ℃. Thus, it is considered that the Y{sub 2}O{sub 3} powder and some Fe powder are formed from the non-stoichiometric Y-rich and Fe-rich oxides after the mechanical alloying process, and a considerable energy accumulated during the mechanical alloying process leads to a phase transformation of the Y-rich and Fe-rich oxides to Y{sub α}Fe{sub β}O{sub γ}-type phase during heating.

  15. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D

    2008-11-01

    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  16. On phase and ray directions of magnetosonic waves

    International Nuclear Information System (INIS)

    Lerche, I.

    1978-01-01

    The behavior of phase speed for the 'slow' and 'fast' magnetosonic waves is well documented in the literature. Not so well documented is the behavior of the ray direction and its relation to the phase direction - indeed the author has not found the ray behavior recorded in most of the standard plasma physics texts. This situation is rectified and some of the curiosities associated with the direction of the 'slow' ray relative to the direction of the 'slow' phase wave are pointed out. These calculations have been performed as a necessary basis for discussion of phase and ray evolution of magnetosonic waves in differentially shearing plasmas, which subject is the topic of a later paper. (Auth.)

  17. Oculomotor Behavior Metrics Change According to Circadian Phase and Time Awake

    Science.gov (United States)

    Flynn-Evans, Erin E.; Tyson, Terence L.; Cravalho, Patrick; Feick, Nathan; Stone, Leland S.

    2017-01-01

    There is a need for non-invasive, objective measures to forecast performance impairment arising from sleep loss and circadian misalignment, particularly in safety-sensitive occupations. Eye-tracking devices have been used in some operational scenarios, but such devices typically focus on eyelid closures and slow rolling eye movements and are susceptible to the intrusion of head movement artifacts. We hypothesized that an expanded suite of oculomotor behavior metrics, collected during a visual tracking task, would change according to circadian phase and time awake, and could be used as a marker of performance impairment.

  18. Phase behavior of supported lipid bilayers: A systematic study by coarse-grained molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poursoroush, Asma; Sperotto, Maria Maddalena; Laradji, Mohamed

    2017-01-01

    Solid-supported lipid bilayers are utilized by experimental scientists as models for biological membranes because of their stability. However, compared to free standing bilayers, their close proximity to the substrate may affect their phase behavior. As this is still poorly understood, and few co...

  19. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    International Nuclear Information System (INIS)

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed

  20. Novel Topology of Three-Phase Electric Spring and Its Control

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2017-01-01

    A novel topology is proposed for three-phase electric spring (TPES) to achieve specific functionalities. With respect to the existing one, the novel topology contains an additional three-phase transformer with the primaries located at the position of the non-critical three-phase load (NCL......) of the existing topology and its secondaries connected to the new three-phase NCL, thus forming a new three-phase smart load (SL). To control the novel topology, the so-called modified δ control utilized for the single-phase electric springs is extended to the three-phase case. Thanks to these solutions, TPES...

  1. Formation of tungsten blue oxide and its phase constitution

    International Nuclear Information System (INIS)

    Zou, Z.; Wu, E.; Tan, A.; Qian, C.

    1984-01-01

    By means of X-ray diffraction structure analysis, SEM observation, chemical analysis and particle specific surface analysis etc., an investigation was made in order to determine the regularity of tungsten blue oxide formation during reductional calcine process of APT. It was found that the oxygen index (OI) decreased continuously with increasing calcine temperature. The decrease rate of OI variated as the calcine atmosphere being changed, the stronger the reductivity of the atmosphere is, the more OI decreases. The deammonia-dewater process and the phase constitution variation during calcine was studied, some idea for description of phase transformation path was suggested. It was found that the most important parameter affecting phase constitution and transformation is calcine temperature. At the temperature lower than 450 0 C, the main formed phase was ATB, while at higher temperature, the different phase like W/sub 20/O/sub 58/, WO/sub 3/ etc., could be formed by different ways depending on the atmosphere reductivity. The composition and the OI of ATB are changeable. An experiment for some blue oxides reduction at low temperature was carried out. It was found that OI and the constitution of blue oxide strongly affected the particle size of the formed W-powder

  2. Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.

    Science.gov (United States)

    Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok

    2011-04-28

    A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.

  3. Emotions and Behavior

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Emotions & Behavior Is it just a phase or a ... whether it's toddler tantrums or teenage depression. Feelings & Emotions "Am I Pretty?": What Moms, Daughters Really Think ...

  4. Generalized definitions of phase transitions

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Gulminelli, F.

    2001-09-01

    We define a first order phase transition as a bimodality of the event distribution in the space of observations and we show that this is equivalent to a curvature anomaly of the thermodynamical potential and that it implies the Yang Lee behavior of the zeros of the partition sum. Moreover, it allows to study phase transitions out of equilibrium. (authors)

  5. Generalized drift-flux correlation

    International Nuclear Information System (INIS)

    Takeuchi, K.; Young, M.Y.; Hochreiter, L.E.

    1991-01-01

    A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve

  6. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand

    Institute of Scientific and Technical Information of China (English)

    Yi-ran Liu; Jian-liang Zhang; Zheng-jian Liu; Xiang-dong Xing

    2016-01-01

    The reduction of titanomagnetite (TTM) ironsand, which contains 11.41wt% TiO2 and 55.63wt% total Fe, by graphite was per-formed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: FeO + FeTiO3→ Fe2TiO4→ FeTiO3→ FeTi2O5→ TiO2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 kJ·mol−1.

  7. Effect of vision angle on the phase transition in flocking behavior of animal groups.

    Science.gov (United States)

    Nguyen, P The; Lee, Sang-Hee; Ngo, V Thanh

    2015-09-01

    The nature of the phase transition in a system of self-propelling particles has been extensively studied during the past few decades. A theoretical model was proposed by [T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995)PRLTAO0031-900710.1103/PhysRevLett.75.1226] with a simple rule for updating the direction of motion of each particle. Based on the model of Vicsek et al., in this paper, we consider a group of animals as particles moving freely in a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle φ=ϕ/2 (ϕ is called the angle of view) of a circle centered at its position of radius R. We obtained a phase diagram in the space (φ,η_{c}) with η_{c} being the critical noise. We show that the phase transition exists only in the case of a wide view's angle φ≥0.5π. The flocking of animals is a universal behavior of the species of prey but not the one of the predator. Our simulation results are in good agreement with experimental observation [C. Beccoa et al., Physica A 367, 487 (2006)PHYADX0378-437110.1016/j.physa.2005.11.041].

  8. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonghan; Chang, Rakwoo [Kwangwoon University, Seoul (Korea, Republic of)

    2016-07-15

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L{sub β}' or P{sub β}') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L{sub α}). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  9. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    International Nuclear Information System (INIS)

    Kim, Seonghan; Chang, Rakwoo

    2016-01-01

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L_β' or P_β') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L_α). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  10. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    International Nuclear Information System (INIS)

    Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material

  11. The chromatographic behavior of arsenic compounds on anion exchange columns with binary organic acids as mobile phases

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J.; Goessler, W.; Kosmus, W. [Graz Univ. (Austria). Inst. fuer Analytische Chemie

    1998-03-01

    Identification and quantification of arsenic compounds was performed with high-performance liquid chromatography (HPLC) and flame atomic absorption spectrometry (FAAS) as element-specific detector. Arsenous acid, methylarsonic acid, dimethylarsinic acid, arsenic acid, arsenobetaine, and arsenocholine were separated on two anion-exchange columns (Synchropak Q 300 and PRP-X 100) with different binary organic acids as mobile phases. The influence of chromatographic parameters, such as pH and the concentration of the mobile phase were investigated. An unusual chromatographic behavior of arsenous acid was observed when tartaric acid was used as mobile phase. (orig.)

  12. The phases formed by the dehydration of disodium zirconium (IV) bis(orthophosphate) trihydrate and their ion-exchange behavior

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamada, Yoshimune

    1982-01-01

    The phase transformation of Na 2 Zr(PO 4 ) 2 .3H 2 O which had been obtained from zirconium (IV) bis(hydrogenphosphate) monohydrate(α-zirconium phosphate), prepared by the direct precipitation method, was studied by means of gravimetry, X-ray analysis, and acid-base titration. When the material was heated for 2d, it was transformed to a monohydrate at 80 0 C and then successively to three anhydrous phases, depending on the temperature. The monohydrate was also formed by letting the trihydrate stand over P 2 O 5 at room temperature for longer than two weeks. The processes were confirmed to be irreversible by an examination of the rehydration behavior, from which the conditions of the storage of five modifications of disodium zirconium (IV) bis(orthophosphate) were established. It is of special interest that the second anhydrous phase reverted to the first one when it was allowed to stand at room temperature in air or in a desiccator. The rate of the reversion decreased with the temperature of heat-treatment and with a decrease in the relative humidity of the surroundings. The difference between the present results and Clearfield's was clarified and attributed mainly to the difference in the crystallinity of the starting α-zirconium phosphate. (author)

  13. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Charles E. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zwanikken, Jos W.; Olvera de la Cruz, Monica [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-01-21

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers.

  14. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    International Nuclear Information System (INIS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-01-01

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers

  15. Relationship transitions and change in health behavior: A four-phase, twelve-year longitudinal study.

    Science.gov (United States)

    Josefsson, Kim; Elovainio, Marko; Stenholm, Sari; Kawachi, Ichiro; Kauppi, Maarit; Aalto, Ville; Kivimäki, Mika; Vahtera, Jussi

    2018-03-19

    Extensive scientific evidence shows an association between involvement in social relationships and healthy lifestyle. Prospective studies with many participants and long follow-ups are needed to study the dynamics and change in social factors within individuals over time. Our aim was to determine whether a change in relationship status (single, married, divorced, widow, cohabiting) is followed by a change in health behavior (smoking, alcohol consumption, physical activity, and body mass index). We used data from 81,925 healthy adults participating in the prospective longitudinal Finnish Public Sector Study in the period 2000-2013. We analyzed 327,700 person-observations from four data collection phases. Missing data were multiply imputed. A within-individual methodology was used to minimize the possibility of selection effects affecting the interpretation. All four health behaviors showed associations with relationship status. The effects were very similar and in the same direction in women and men, although there were gender differences in the magnitudes of the effects. The end of a relationship was followed by a decrease in body mass index, increased odds of being a smoker, increase in physical activity, and increase in alcohol consumption (widowed men). The effects were reverse when forming a new relationship. A change in relationship status is associated with a change in health behavior. The association is not explained by socioeconomic status, subjective health status, or anxiety level. People leaving or losing a relationship are at increased risk of unhealthy behavior (smoking and alcohol consumption), but at the same time they have a lower BMI and show higher physical activity compared to the time they were in a relationship. It is not clear if the cumulative health effect of these health behavior changes is positive or negative. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Comparison of steam-generator liquid holdup and core uncovery in two facilities of differing scale

    International Nuclear Information System (INIS)

    Motley, F.; Schultz, R.

    1987-01-01

    This paper reports on Run SB-CL-05, a test similar to Semiscale Run S-UT-8. The test results show that the core was uncovered briefly during the accident and that the rods overheated at certain core locations. Liquid holdup on the upflow side of the steam-generator tubes was observed. After the loop seal cleared, the core refilled and the rods cooled. These behaviors were similar to those observed in the Semiscale run. The Large-Scale Test Facility (LSTF) Run SB-CL-06 is a counterpart test to Semiscale Run S-LH-01. The comparison of the results of both tests shows similar phenomena. The similarity of phenomena in these two facilities build confidence that these results can be expected to occur in a PWR. Similar holdup has now been observed in the 6 tubes of Semiscale and in the 141 tubes of LSTF. It is now more believable that holdup may occur in a full-scale steam generator with 3000 or more tubes. These results confirm the scaling of these phenomena from Semiscale (1/1705) to LSTF (1/48). The TRAC results for SB-CL-05 are in reasonable agreement with the test data. TRAC predicted the core uncovery and resulting rod heatup. The liquid holdup on the upflow side of the steam-generator tubes was also correctly predicted. The clearing of the loop seal allowed core recovery and cooled the overheated rods just as it had in the data. The TRAC analysis results of Run SB-CL-05 are similar to those from Semiscale Run S-UT-8. The ability of the TRAC code to calculate the phenomena equally well in the two experiments of different scales confirms the scalability of the many models in the code that are important in calculating this small break

  17. Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chabab, M.; Iraoui, S.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Science Semlalia, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Science Semlalia, Marrakesh (Morocco); Ibn Zohr University, LMTI, Physics Department, Faculty of Sciences, Agadir (Morocco)

    2016-12-15

    In this work we use the quasinormal frequencies of a massless scalar perturbation to probe the phase transition of the high dimension charged AdS black hole. The signature of the critical behavior of this black hole solution is detected in the isobaric as well as in isothermal process. This paper is a natural generalization of Liu et al. (JHEP 1409:179, 2014) to higher dimensional spacetime. More precisely our study shows a clear signal for any dimension d in the isobaric process. As to the isothermal case, we find that this signature can be affected by other parameters like the pressure and the horizon radius. We conclude that the quasinormal modes can be an efficient tool to investigate the first-order phase transition, but fail to disclose the signature of the second-order phase transition. (orig.)

  18. PRECIPITATION BEHAVIOR OF Co PHASES IN B2-ORDERED(Ni,Co)Al COMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; A.L. Fan; M. Nemoto

    2002-01-01

    The precipitation behavior of Co phases in B2-ordered (Ni, Co)Al has been investigatedin terms of transmission electron microscopy. Fine precipitation off cc-Co occurs in(Ni, Co)Al by aging at temperature over 973K. The orientation relationship betweenthe fcc-Co precipitates and the B2-(Ni, Co)Al matrix follows the Kurdjumow-Sachs(K-S) orientation relation. But when the aging temperature is under 873K the Coprecipitates have a hcp crystal structure. The orientation relationship between thehcp-Co precipitates and the B2-(Ni, Co)Al matrix follows the Burgers orientation re-lation. (Ni, Co)Al is hardened appreciably by the fine precipitation of both the fcc-Coand hcp-Co phases. The temperature dependence of the yield strength of precipitate-containing B2-ordered (Ni, Co)Al was investigated by compression tests over the rangeof 298-1273K. The fine precipitation of Co phases enhances greatly the low and in-termediate temperature yield strength. When the deformation temperature was over873K, the strength of precipitate-containing (Ni, Co)Al is comparable to ternary dual-phase (Ni, Co)Al+Ni3Al alloy.

  19. A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys

    International Nuclear Information System (INIS)

    Wen, Y.H.; Lill, J.V.; Chen, S.L.; Simmons, J.P.

    2010-01-01

    A ternary phase-field model was developed that is linked directly to commercial CALPHAD software to provide quantitative thermodynamic driving forces. A recently available diffusion mobility database for ordered phases is also implemented to give a better description of the diffusion behavior in alloys. Because the targeted application of this model is the study of precipitation in Ni-based superalloys, a Ni-Al-Cr model alloy was constructed. A detailed description of this model is given in the paper. We have considered the misfit effects of the partitioning of the two solute elements. Transformation rules of the dual representation of the γ+γ ' microstructure by CALPHAD and by the phase field are established and the link with commercial CALPHAD software is described. Proof-of-concept tests were performed to evaluate the model and the results demonstrate that the model can qualitatively reproduce observed γ ' precipitation behavior. Uphill diffusion of Al is observed in a few diffusion couples, showing the significant influence of Cr on the chemical potential of Al. Possible applications of this model are discussed.

  20. Membrane fusion and inverted phases

    International Nuclear Information System (INIS)

    Ellens, H.; Siegel, D.P.; Alford, D.; Yeagle, P.L.; Boni, L.; Lis, L.J.; Quinn, P.J.; Bentz, J.

    1989-01-01

    We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31 P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31 P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates

  1. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.; Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.

    2015-01-01

    Recent modifications to fast reactor metallic fuels have been directed toward improving the melting and phase behaviors of the fuel alloy, for the purpose of ultra-high burnup and transuranic (TRU) burning. Improved melting temperatures increase the safety margin for uranium-based fast reactor fuel alloys, which is especially important for transuranic burning because the introduction of plutonium and neptunium acts to lower the alloy melting temperature. Improved phase behavior—single-phase, body-centered cubic—is desired because the phase is isotropic and the alloy properties are more predictable. An optimal alloy with both improvements was therefore sought through a comprehensive literature survey and theoretical analyses, and the creation and testing of some alloys selected by the analyses. Summarized here are those analyses, the impact of alloy modifications, and recent experimental results for selected pseudo-binary alloy systems that are hoped to accomplish the goals in a short timeframe. (author)

  2. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Toshiyuki [Materials Science and Analysis Technology Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Yamada, Noboru [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Kojima, Rie [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Shamoto, Shinichi [Neutron Science Research Centre, Japan Atomic Energy Research Institute, Ibaraki (Japan); Sato, Masugu; Tanida, Hajime; Uruga, Tomoya; Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Hyogo (Japan); Takata, Masaki [SPring-8/RIKEN, Hyogo, Japan, Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, Chiba (Japan); Zalden, Peter; Bruns, Gunnar; Wuttig, Matthias [I. Physikalisches Institut und JARA-FIT, RWTH Aachen Univ. (Germany); Sergueev, Ilya [European Synchrotron Radiation Facility, Grenoble (France); Wille, Hans Christian [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Hermann, Raphael Pierre [Juelich Centre for Neutron Science JCNS and Peter Gruenberg, Institut PGI, JARA-FIT, Forschungszentrum Juelich GmbH (Germany); Faculte des Sciences, Universite de Liege (Belgium)

    2011-06-21

    Crystallization of an amorphous solid is usually accompanied by a significant change of transport properties, such as an increase in thermal and electrical conductivity. This fact underlines the importance of crystalline order for the transport of charge and heat. Phase-change materials, however, reveal a remarkably low thermal conductivity in the crystalline state. The small change in this conductivity upon crystallization points to unique lattice properties. The present investigation reveals that the thermal properties of the amorphous and crystalline state of phase-change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization, which leads to an increase of the sound velocity and a softening of the optical phonon modes at the same time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory

    Science.gov (United States)

    Tuinier, R.; de Kruif, C. G.

    1999-05-01

    Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.

  4. SU-E-J-24: Can Fiducial Marker-Based Setup Using ExacTrac Be An Alternative to Soft Tissue-Based Setup Using Cone-Beam CT for Prostate IMRT?

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, S [Department of Radiation Oncology, Niigata University Medical and Dental Hospital (Japan); Utsunomiya, S; Abe, E; Aoyama, H [Department of Radiology, Niigata University Graduate School of Medical and Dental Sciences (Japan); Satou, H [Department of Radiation Oncology, Niigata Cancer Center Hospital (Japan); Sakai, H; Yamada, T [Section of Radiology, Department of Clinical Support, Niigata University Medical and Dental Hospital (Japan)

    2015-06-15

    Purpose: To assess an accuracy of fiducial maker-based setup using ExacTrac (ExT-based setup) as compared with soft tissue-based setup using Cone-beam CT (CBCT-based setup) for patients with prostate cancer receiving intensity-modulated radiation therapy (IMRT) for the purpose of investigating whether ExT-based setup can be an alternative to CBCT-based setup. Methods: The setup accuracy was analyzed prospectively for 7 prostate cancer patients with implanted three fiducial markers received IMRT. All patients were treated after CBCT-based setup was performed and corresponding shifts were recorded. ExacTrac images were obtained before and after CBCT-based setup. The fiducial marker-based shifts were calculated based on those two images and recorded on the assumption that the setup correction was carried out by fiducial marker-based auto correction. Mean and standard deviation of absolute differences and the correlation between CBCT and ExT shifts were estimated. Results: A total of 178 image dataset were analyzed. On the differences between CBCT and ExT shifts, 133 (75%) of 178 image dataset resulted in smaller differences than 3 mm in all dimensions. Mean differences in the anterior-posterior (AP), superior-inferior (SI), and left-right (LR) dimensions were 1.8 ± 1.9 mm, 0.7 ± 1.9 mm, and 0.6 ± 0.8 mm, respectively. The percentages of shift agreements within ±3 mm were 76% for AP, 90% for SI, and 100% for LR. The Pearson coefficient of correlation for CBCT and ExT shifts were 0.80 for AP, 0.80 for SI, and 0.65 for LR. Conclusion: This work showed that the accuracy of ExT-based setup was correlated with that of CBCT-based setup, implying that ExT-based setup has a potential ability to be an alternative to CBCT-based setup. The further work is to specify the conditions that ExT-based setup can provide the accuracy comparable to CBCT-based setup.

  5. Micro-Raman scattering and dielectric investigations of phase transitions behavior in the PbHf0.7Sn0.3O3 single crystal

    Science.gov (United States)

    Jankowska-Sumara, Irena; Ko, Jae-Hyeon; Podgórna, Maria; Oh, Soo Han; Majchrowski, Andrzej

    2017-09-01

    Raman light scattering was used to detect the sequence of transitions in a PbHf1-xSnxO3 (PHS) single crystal with x = 0.30 in a temperature range of 77-873 K. Changes of Raman spectra were observed in the vicinity of structural phase transitions: between the antiferroelectric (AFE1)-antiferroelectric (AFE2)—intermediate—paraelectric phases. Light scattering and dielectric investigations were used to find out the nature and sequence of the phase transition, as well as the large dielectric permittivity values measured at the phase transition, by searching for the soft-phonon-mode behavior. The experimentally recorded spectra were analyzed in terms of the damped-harmonic oscillator model for the phonon bands. It is demonstrated that the structural phase transformations in PHS can be considered as the result of softening of many modes, not only the ferroelectric one. It was also proved that locally broken symmetry effects are present at temperatures far above the Curie temperature and are connected with the softening of two optic modes of different nature.

  6. Neuroendocrine regulation of appetitive ingestive behavior

    Directory of Open Access Journals (Sweden)

    Erin eKeen-Rhinehart

    2013-11-01

    Full Text Available Food availability in nature is often irregular, and famine is commonplace. Increased motivation to engage in ingestive behaviors increases the chance of survival, providing additional potential opportunities for reproduction. Because of the advantages conferred by entraining ingestive behavior to environmental conditions, neuroendocrine mechanisms regulating the motivation to acquire and ingest food have evolved to be responsive to exogenous (i.e. food stored for future consumption and endogenous (i.e. body fat stores fuel availability. Motivated behaviors like eating occur in two phases. The appetitive phase brings animals into contact with food (e.g. foraging, food hoarding, and the more reflexive consummatory phase results in ingestion (e.g., chewing, swallowing. Quantifiable appetitive behaviors are part of many the natural ingestive behavioral repertoire of species such as hamsters and humans. This review summarizes current knowledge about neuroendocrine regulators of ingestive behavior, with an emphasis appetitive behavior. We will discuss hormonal regulators of appetitive ingestive behaviors, including the orexigenic hormone ghrelin, which potently stimulates foraging and food hoarding in Siberian hamsters. This section includes a discussion of the hormone leptin, its relation to endogenous fat stores, and its role in food deprivation-induced increases in appetitive ingestive behaviors. Next, we discuss how hormonal regulators interact with neurotransmitters involved in the regulation of ingestive behaviors, such as NPY, AgRP and alpha-MSH, to regulate ingestive behavior. Finally, we discuss the potential impact that perinatal nutrient availability can have on the neuroendocrine regulation of ingestive behavior. Understanding the hormonal mechanisms that connect metabolic fuel availability to central appetite regulatory circuits should provide a better understanding of the neuroendocrine regulation of the motivation to engage in ingestive

  7. Etude sur la prédiction de l'inversion de phase Phase Inversion Behavior for Liquid Dispersions

    Directory of Open Access Journals (Sweden)

    Decarre S.

    2006-12-01

    Full Text Available En écoulement diphasique eau-huile dans lequel une des phases est dispersée dans l'autre, il peut se produire sous certaine condition d'écoulement une inversion de phase, la phase continue devenant dispersée. Ce phénomène, qui contrôle la nature de la phase mouillant la paroi de la conduite dans laquelle s'écoulent les phases, a des conséquences importantes sur la corrosion et sur la perte de charge. Nous présentons un modèle d'inversion, basé sur une approche thermodynamique, valable pour tous les régimes d'écoulement. Les données expérimentales utilisées pour la validation du modèle sont issues d'une étude bibliographique. En écoulement laminaire, cette approche conduit à des résultats similaires à ceux du modèle de Yeh. Pour la plupart des données disponibles, ce modèle prédit bien la fraction critique pour laquelle l'inversion de phase se produit. In two phase oil-water dispersed flow, a phase inversion may occur whereby the continuous phase becomes dispersed. This phenomenon which controls the nature of the phase in contact with the pipe has a great importance on the corrosion and on the pressure drop. A model for the phase inversion is presented, it is based on a thermodynamic approach, and it is valid for all flow regimes. Experimental data from the litterature are used to validate the model. In laminar flow, this approach gives similar results to those obtained by Yeh. For most data, the model agrees well with the experimental data.

  8. Increased amount of phosphorylated proinflammatory osteopontin in rheumatoid arthritis synovia is associated to decreased tartrate-resistant acid phosphatase 5B/5A ratio.

    Directory of Open Access Journals (Sweden)

    Jani Luukkonen

    Full Text Available Osteopontin (OPN is an immunoregulatory protein which production increases in both rheumatoid arthritis (RA and osteoarthritis (OA. Phosphorylated osteopontin (Phospho-OPN is known to increase macrophage and osteoclast activation, this process is controlled by extracellular tartrate-resistant acid phosphatase (TRAcP, also a biomarker for RA. Here, we evaluated the phosphorylation status of OPN in RA and OA synovia, as well as its correlation with TRAcP isoforms.Synovial tissue and fluid were obtained from 24 RA (14 seropositive and 10 seronegative and 24 OA patients. Western blotting was used to analyze the extent of OPN phosphorylation. TRAcP isoforms were measured in synovial fluid using ELISA; immunohistochemistry assessed the distribution of OPN and TRAcP expressing cells in the synovial tissue, especially distinguishing between the TRAcP isoforms.Full-length OPN was more phosphorylated in RA than in OA (p<0.05. The thrombin cleaved C-terminal end of OPN was also more phosphorylated in RA (p<0.05. RA patients had a lower concentration of TRAcP 5B and higher concentration of less active 5A in their synovial fluid compared to OA patients. The TRAcP 5B/5A ratio was decreased in RA and correlated negatively with the amount of phospho-OPN (p<0.05. TRAcP positive cells for both isoforms were found all along the synovial lining; OPN antibody staining was localized in the extracellular matrix.Our data suggests that in RA the synovial fluid contains insufficient amounts of TRAcP 5B which increase levels of the proinflammatory phospho-OPN. This may lead to increased macrophage and osteoclast activation, resulting in the increased local inflammation and bone resorption present in RA joints.

  9. Crowd Behavior Algorithm Development for COMBAT XXI

    Science.gov (United States)

    2017-05-30

    non-combatants to military operations in an urban area. We show how to link this model with COMBATXXI at the application programming interface (API...level so that the model can be run in tight conjunction with COMBATXXI. TRAC and other anaytic organizations can use this type of crowd model to... organizations , and materiel. crowd, agent-based modeling , combat models , COMBATXXI, NetLogo, mega-cities, civilians on the battlefield Unclassified U U U U 39

  10. Behavior Plan, Does It Work?

    Science.gov (United States)

    Gonzalez, Blanca M.; Brown, D.

    2015-01-01

    As educators, we are responsible for teaching academic skills. However, some students not only need to learn academic skills but they need behavior support, due to problematic behaviors that are happening in the school setting. In this article, we will learn more of what are the implications, requirements and best strategies for a behavior plan.…

  11. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    Science.gov (United States)

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  12. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  13. Quantitative research on microscopic deformation behavior of Ti-6Al-4V two-phase titanium alloy based on finite element method

    Science.gov (United States)

    Peng, Yan; Chen, Guoxing; Sun, Jianliang; Shi, Baodong

    2018-04-01

    The microscopic deformation of Ti-6Al-4V titanium alloy shows great inhomogeneity due to its duplex-microstructure that consists of two phases. In order to study the deformation behaviors of the constituent phases, the 2D FE model based on the realistic microstructure is established by MSC.Marc nonlinear FE software, and the tensile simulation is carried out. The simulated global stress-strain response is confirmed by the tensile testing result. Then the strain and stress distribution in the constituent phases and their evolution with the increase of the global strain are analyzed. The results show that the strain and stress partitioning between the two phases are considerable, most of the strain is concentrated in soft primary α phase, while hard transformed β matrix undertakes most of the stress. Under the global strain of 0.05, the deformation bands in the direction of 45° to the stretch direction and the local stress in primary α phase near to the interface between the two phases are observed, and they become more significant when the global strain increases to 0.1. The strain and stress concentration factors of the two phases are obviously different at different macroscopic deformation stages, but they almost tend to be stable finally.

  14. Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy

    International Nuclear Information System (INIS)

    Liu Xianbin; Shan Dayong; Song Yingwei; Chen Rongshi; Han Enhou

    2011-01-01

    The influence of the quantity of the Mg 2 Sn phase on the corrosion behavior of different solution temperature treated Mg-7Sn magnesium alloy has been investigated by electrochemical measurements, scanning electron microscope (SEM) observation, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. With the increase of solution temperature, the quantity of Mg 2 Sn phase decreased and the tin concentration of matrix increased. The dissolved tin in Mg matrix took part in the film formation and the constituent of film was magnesium oxide and stannic oxide. The corrosion mode and corrosion rate were associated with the quantity of Mg 2 Sn phases and tin concentration of the matrix. If most of tin was present as Mg 2 Sn, the corrosion mode was pitting corrosion and it accelerated the corrosion rate. If most of tin was dissolved in matrix, the corrosion mode was filiform corrosion and it decreased the corrosion rate. The experiment evidences demonstrated that the corrosion resistance can be improved by increasing the tin concentration of matrix and the lowest corrosion rate was observed for sample solution treated at 540 o C.

  15. Assessment Of Ethical Behavior Among Professionals At Procurement And After Tendering Process With Its Impacts And Drivers In Nepalese Construction Industry

    Directory of Open Access Journals (Sweden)

    Ram Sagar Yadav

    2015-08-01

    Full Text Available Objective of this study is to assess ethical behavior among professionals at procurement and after tendering process with its impacts and drivers in Nepalese Construction Industry. Different literatures were reviewed to assess ethical practices along with its cause and effect inside Nepalese Construction Industry. Pilot study was conducted for the validity of the questionnaire. One key informant from each selected organization was interviewed. The questionnaire contains shortcomings of ethical behavior at procurement and after tendering phase impact of shortcomings of ethical practices and factors leading to these ethical practices based on the objectives of the research. Five ranking Likert Scale were used. The collected data were analyzed based on relative importance index RII in three different categories as Investigating Offices 3 numbers Professional Associations 4 numbers and Government Departments 4 numbers with total of 11 organizations. All together 240 respondents were targeted out of which 170 response were collected with response rate of 70.83. The research shows that for commitment of professionals The overall level of unethical conduct in construction industry is placed at first rank with agreement level of 72.7. For Professionals shortcomings of ethical behavior at procurement phase Individuals or organizations undertaking work without adequate qualification experience training is placed at first rank with agreement level of 68.00. For Professionals shortcomings of ethical behavior after awarding the Tender Contractors professional dont dispose waste in suitable and safe ways which is friendly with the environment is placed at first rank with agreement level of 67.50. For factors lead to shortcomings of ethical behavior Personal culture or personal behavior is placed at first rank with agreement level of 78.20. From the research it is clear that shortcomings of ethical behaviors have negative impact firstly on cost as it affects

  16. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  17. Theoretical consideration on phase behaviors of poly(ethylene oxide-block-propylene oxide)/LiCF3SO3 systems in lithium battery

    International Nuclear Information System (INIS)

    Ko, Sung Jin; Kim, Sun Joon; Kong, Sung Ho; Bae, Young Chan

    2004-01-01

    A new thermodynamic model is developed based on the extended perturbed hard sphere chain (PHSC) model and melting point depression theory to describe the phase behaviors of copolymer electrolyte/salt systems. The phase behaviors of poly(ethylene oxide-block-propylene oxide)/LiCF 3 SO 3 systems are investigated by thermo-optical analysis (TOA) technique. Quantitative descriptions according to the proposed model are in good agreement with experimental data. The obtained results show that monomer ratio and sequence type of copolymers play a great role in determining eutectic points of the given systems

  18. Modeling of the wind turbine with doubly fed induction machine and its dynamic behavior in distribution networks

    International Nuclear Information System (INIS)

    Mendez Rodriguez, Christian; Badilla Solorzano, Jorge Adrian

    2014-01-01

    Wind turbines equipped with doubly fed induction generator (DFIG) are described. A model is constructed to represent the behavior of wind turbines during the connection with distribution networks. The main systems that compose a wind turbine with DFIG are specified to develop a mathematical model of each of them. The behavior of the wind turbine in the stable and transient regimes is investigated to explain its dynamics during nominal operation and contingency situations when they are connected to distribution networks. In addition, strategies to mitigate the negative effects of such situations and control strategies to contribute to the dynamics of the network are included. An integrated model of the parts of the wind turbine is built in the program SIMULINK® of MATLAB® to validate the models of the systems and to obtain a tool that allows their simulation. The wind turbine model developed is simulated in order to evaluate and to analyze the dynamic behavior under different operating conditions. The results from validations have revealed an adequate behavior for the model under normal operating conditions. In the case of behavior in contingency situations, the study is limited to the response to three-phase faults and voltage variations, and frequency under conditions of balance in the power system [es

  19. Neuroendocrine regulation of appetitive ingestive behavior.

    Science.gov (United States)

    Keen-Rhinehart, Erin; Ondek, Katelynn; Schneider, Jill E

    2013-11-15

    Food availability in nature is often irregular, and famine is commonplace. Increased motivation to engage in ingestive behaviors increases the chance of survival, providing additional potential opportunities for reproduction. Because of the advantages conferred by entraining ingestive behavior to environmental conditions, neuroendocrine mechanisms regulating the motivation to acquire and ingest food have evolved to be responsive to exogenous (i.e., food stored for future consumption) and endogenous (i.e., body fat stores) fuel availability. Motivated behaviors like eating occur in two phases. The appetitive phase brings animals into contact with food (e.g., foraging, food hoarding), and the more reflexive consummatory phase results in ingestion (e.g., chewing, swallowing). Quantifiable appetitive behaviors are part of the natural ingestive behavioral repertoire of species such as hamsters and humans. This review summarizes current knowledge about neuroendocrine regulators of ingestive behavior, with an emphasis appetitive behavior. We will discuss hormonal regulators of appetitive ingestive behaviors, including the orexigenic hormone ghrelin, which potently stimulates foraging and food hoarding in Siberian hamsters. This section includes a discussion of the hormone leptin, its relation to endogenous fat stores, and its role in food deprivation-induced increases in appetitive ingestive behaviors. Next, we discuss how hormonal regulators interact with neurotransmitters involved in the regulation of ingestive behaviors, such as neuropeptide Y (NPY), agouti-related protein (AgRP) and α-melanocyte stimulating hormone (α-MSH), to regulate ingestive behavior. Finally, we discuss the potential impact that perinatal nutrient availability can have on the neuroendocrine regulation of ingestive behavior. Understanding the hormonal mechanisms that connect metabolic fuel availability to central appetite regulatory circuits should provide a better understanding of the

  20. Unique crystallization behavior of sodium manganese pyrophosphate Na2MnP2O7 glass and its electrochemical properties

    Directory of Open Access Journals (Sweden)

    Morito Tanabe

    2017-06-01

    Full Text Available Crystallization behavior of Na2MnP2O7 precursor glass was examined. Layered type Na2MnP2O7 was formed at 461 °C for 3 h in N2 filled electric furnace. Irreversible phase change was confirmed from layered Na2MnP2O7 to β-Na2MnP2O7 over 600 °C. At 650 °C crystallized phase was completely changed to β-phase. By means of charge and discharge testing it is found that layered Na2MnP2O7 is also active as cathode in sodium ion batteries. We found glass-ceramics technology is one of the suitable process for the synthesis of layered Na2MnP2O7 cathode without any complicate process.