WorldWideScience

Sample records for bee cell cultures

  1. Co-culture with NK-92MI cells enhanced the anti-cancer effect of bee venom on NSCLC cells by inactivation of NF-κB.

    Science.gov (United States)

    Kollipara, Pushpa Saranya; Kim, Jung Hyun; Won, Dohee; Lee, Sang Min; Sung, Ha Chang; Chang, Hyun Sok; Lee, Kang Tae; Lee, Kang Sik; Park, Mi Hee; Song, Min Jong; Song, Ho Sueb; Hong, Jin Tae

    2014-03-01

    In the present study we experimented on a multimodal therapeutic approach, such as combining chemotherapy agent (Bee venom) with cellular (NK-92MI) immunotherapy. Previously bee venom has been found to show anti-cancer effect in various cancer cell lines. In lung cancer cells bee venom showed an IC(50) value of 3 μg/ml in both cell lines. The co-culture of NK-92MI cell lines with lung cancer cells also show a decrease in viability upto 50 % at 48 h time point. Hence we used bee venom treated NK-92MI cells to co-culture with NSCLC cells and found that there is a further decrease in cell viability upto 70 and 75 % in A549 and NCI-H460 cell lines respectively. We further investigated the expression of various apoptotic and anti-apoptotic proteins and found that Bax, cleaved caspase-3 and -8 were increasing where as Bcl-2 and cIAP-2 was decreasing. The expression of various death receptor proteins like DR3, DR6 and Fas was also increasing. Concomitantly the expression of various death receptor ligands (TNFalpha, Apo3L and FasL) was also increasing of NK-92MI cells after co-culture. Further the DNA binding activity and luciferase activity of NF-κB was also inhibited after co-culture with bee venom treated NK-92MI cell lines. The knock down of death receptors with si-RNA has reversed the decrease in cell viability and NF-κB activity after co-culture with bee venom treated NK-92MI cells. Thus this new approach can enhance the anti-cancer effect of bee venom at a much lower concentration.

  2. A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues

    OpenAIRE

    Goblirsch, Michael J.; Spivak, Marla S.; Kurtti, Timothy J.

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to la...

  3. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    Full Text Available Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin or presumed (surfactin or no (paromomycin activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.

  4. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells.

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.

  5. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues.

    Science.gov (United States)

    Goblirsch, Michael J; Spivak, Marla S; Kurtti, Timothy J

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  6. A cell line resource derived from honey bee (Apis mellifera embryonic tissues.

    Directory of Open Access Journals (Sweden)

    Michael J Goblirsch

    Full Text Available A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711 has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32 and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1 gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  7. Do sexist organizational cultures create the Queen Bee?

    Science.gov (United States)

    Derks, Belle; Ellemers, Naomi; van Laar, Colette; de Groot, Kim

    2011-09-01

    'Queen Bees' are senior women in masculine organizational cultures who have fulfilled their career aspirations by dissociating themselves from their gender while simultaneously contributing to the gender stereotyping of other women. It is often assumed that this phenomenon contributes to gender discrimination in organizations, and is inherent to the personalities of successful career women. We argue for a social identity explanation and examine organizational conditions that foster the Queen Bee phenomenon. Participants were 94 women holding senior positions in diverse companies in The Netherlands who participated in an on-line survey. In line with predictions, indicators of the Queen Bee phenomenon (increased gender stereotyping and masculine self-descriptions) were found mostly among women who indicated they had started their career with low gender identification and who had subsequently experienced a high degree of gender discrimination on their way up. By contrast, the experience of gender discrimination was unrelated to signs of the Queen Bee phenomenon among women who indicated to be highly identified when they started their career. Results are discussed in light of social identity theory, interpreting the Queen Bee phenomenon as an individual mobility response of low gender identified women to the gender discrimination they encounter in their work. ©2010 The British Psychological Society.

  8. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    OpenAIRE

    Min-Ki Kim; Si Hyeong, Lee; Jo Young Shin; Kang San Kim; Nam Guen Cho; Ki Rok Kwon; Tae Jin Rhim

    2007-01-01

    Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Ve...

  9. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  10. Rearing Drones in Queen Cells of Apis mellifera Honey Bees

    Directory of Open Access Journals (Sweden)

    Goras Georgios

    2016-12-01

    Full Text Available We investigated the rearing of drone larvae grafted in queen cells. From the 1200 drone larvae that were grafted during spring and autumn, 875 were accepted (72.9% and reared as queens. Drone larvae in false queen cells received royal jelly of the same composition and of the same amounts as queen larvae. Workers capped the queen cells as if they were drones, 9-10 days after the egg laying. Out of 60 accepted false queen cells, 21 (35% were capped. The shape of false queen cells with drone larvae is unusually long with a characteristically elongate tip which is probably due to the falling of larvae. Bees start the destruction of the cells when the larvae were 3 days old and maximised it before and after capping. Protecting false queen cells in the colony by wrapping, reversing them upside down, or placing in a horizontal position, did not help. The only adult drones that emerged from the false queen cells were those protected in an incubator and in push-in cages. Adult drones from false queen cells had smaller wings, legs, and proboscis than regular drones. The results of this study verify previous reports that the bees do not recognise the different sex of the larvae at least at the early stage of larval development. The late destruction of false queen cells, the similarity in quality and quantity of the produced royal jelly, and the bigger drone cells, allow for the use of drone larvae in cups for the production of royal jelly.

  11. Invasion of Varroa mites into honey bee brood cells

    NARCIS (Netherlands)

    Boot, W.J.

    1995-01-01

    The parasitic mite Varroa-jacobsoni is one of the most serious pests of Western honey bees, Apis mellifera. The mites parasitize adult bees, but reproduction only occurs while parasitizing on honey bee brood. Invasion into a

  12. Bee venom enhances the differentiation of human regulatory T cells.

    Science.gov (United States)

    Caramalho, I; Melo, A; Pedro, E; Barbosa, M M P; Victorino, R M M; Pereira Santos, M C; Sousa, A E

    2015-10-01

    Venom-specific immunotherapy (VIT) is well recognized by its efficacy, and compelling evidence implicates regulatory T cells (Tregs) in the underlying tolerogenic mechanisms. Additionally, hymenoptera venom has for a long time been claimed to modulate immunity. Here, we investigated the putative role of bee venom (Bv) in human FOXP3-expressing Treg homeostasis and differentiation, irrespective of the donors' allergic status. We found that Bv significantly enhanced the differentiation of FOXP3-expressing cells both from conventional naïve CD4 T cells and mature CD4 thymocytes, a property that may contribute to the VIT's capacity to expand circulating Tregs in allergic individuals. We expect that our data enlightening the Treg-mediated immunomodulatory properties of Bv regardless of TCR specificity, to have application in other allergies, as well as in other clinical settings, such as autoimmunity and transplantation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Science.gov (United States)

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  14. Immunology of Bee Venom.

    Science.gov (United States)

    Elieh Ali Komi, Daniel; Shafaghat, Farzaneh; Zwiener, Ricardo D

    2017-01-20

    Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

  15. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  16. Application of Artificial Bee Colony in Model Parameter Identification of Solar Cells

    Directory of Open Access Journals (Sweden)

    Rongjie Wang

    2015-07-01

    Full Text Available The identification of values of solar cell parameters is of great interest for evaluating solar cell performances. The algorithm of an artificial bee colony was used to extract model parameters of solar cells from current-voltage characteristics. Firstly, the best-so-for mechanism was introduced to the original artificial bee colony. Then, a method was proposed to identify parameters for a single diode model and double diode model using this improved artificial bee colony. Experimental results clearly demonstrate the effectiveness of the proposed method and its superior performance compared to other competing methods.

  17. Do sexist organizational cultures create the queen bee?

    OpenAIRE

    Derks, Belle; Ellemers, Naomi; van Laar, Colette; De Groot, Kim

    2011-01-01

    ‘Queen Bees’ are senior women in masculine organizational cultures who have fulfilled their career aspirations by dissociating themselves from their gender while simultaneously contributing to the gender stereotyping of other women. It is often assumed that this phenomenon contributes to gender discrimination in organizations, and is inherent to the personalities of successful career women. We argue for a social identity explanation and examine organizational conditions that foster the Queen ...

  18. Bacterial cell culture

    OpenAIRE

    sprotocols

    2014-01-01

    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  19. Role of spinal glial cells in bee-toxin-induced spontaneous pain, hyperalgesia, and inflammation

    Directory of Open Access Journals (Sweden)

    Yao LU

    2012-08-01

    Full Text Available Objective To observe the effects of intrathecal injection of fluorocitrate, a glial metabolism inhibitor, on bee-toxin-induced spontaneous pain, hyperalgesia and inflammatory response. Methods Forty adult male SD rats with intrathecal catheterization were randomly divided into five groups (8 each: (1 bee-toxin alone group; (2 vehicle (solvent group; (3 low dose (1nmol fluorocitrate group; (4 middle dose (10nmol fluorocitrate group; (5 high dose (50nmol fluorocitrate group. After the measurement of rat paw withdrawal mechanical threshold (PWMT and paw volume (PV, the drug or vehicle was administered intrathecally. Twenty minutes later, bee-toxin (0.2mg/50μl was intraplantarly injected into the left hind paw of every rat, and spontaneous flinching reflexes (SFR were observed instantly for 1 hour. Two hours later, PWMT and PV were measured again. Results Intraplantar injection of bee-toxin into one hind paw of rat induced persistent SFR lasting for 1 hour, with PWMT decreased and PV increased in the injected paw. Compared with control group, pretreatment with intrathecal injection of fluorocitrate produced a significant inhibition of bee-toxin-induced persistent SFR (P < 0.05, P < 0.01, decreased the PWMT in a dose-dependent manner (P < 0.05, but it had no effect on bee-toxin-induced paw edema. Conclusion Activation of spinal glial cells may participate in bee-toxin-induced spontaneous pain and mechanical hyperalgesia, but not inflammatory response.

  20. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  1. Basic cell culture.

    Science.gov (United States)

    Pollard, J W

    1990-01-01

    This article will describe the basic techniques required for successful cell culture. It will also act to introduce some of the other chapters in this volume. It is not intended, as this volume is not, to describe the establishment of a tissue culture laboratory, nor to provide a historical or theoretical survey of cell culture. There are several books that adequately cover these areas, including the now somewhat dated but still valuable volume by Paul (1), the multi-authored Methods in Enzymology volume edited by Jakoby and Pastan (2), and the new edition of Freshney (3). Instead, this chapter's focus will be on the techniques for establishing primary rodent cell cultures from embryos and adult skin, maintaining and subculturing these fibro-blasts and their transformed derivatives, and the isolation of genetically pure strains. The cells described are all derived from Chinese hamsters since, to date, these cells, have proved to be the most useful for somatic cell genetics (4,5). The techniques, however, are generally applicable to most fibroblastic cell types.

  2. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  3. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  4. Implementation of the Bee Colony Optimization method for the design of fuel cells; Implementacion del metodo Bee Colony Optimization para el diseno de celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J.; Ortiz S, J. J., E-mail: jaime.esquivel@fi.uaemex.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The present work shows the results obtained after applying the Bee Colony Optimization algorithm in the design of fuel cells for a BWR. The algorithm that is implemented, works following the behavior that have the bees when pollinating a flowers field. The bees carry out an exhaustive analysis in the cell, so they leave generating diverse configurations where different fuel bars are placed with different uranium enrichments to reach a value mean, with a specific number of gadolinium bars. The behavior of the generated cell is evaluated by means of the use of the commercial code CASMO-4, which shows the variables that allow fixing if the cell fulfills the requirements. Such variables are the local potential peak factor and the neutrons multiplication factor in an infinite medium. (Author)

  5. Bee venom induces apoptosis through intracellular Ca2+ -modulated intrinsic death pathway in human bladder cancer cells.

    Science.gov (United States)

    Ip, Siu-Wan; Chu, Yung-Lin; Yu, Chun-Shu; Chen, Po-Yuan; Ho, Heng-Chien; Yang, Jai-Sing; Huang, Hui-Ying; Chueh, Fu-Shin; Lai, Tung-Yuan; Chung, Jing-Gung

    2012-01-01

    To focus on bee venom-induced apoptosis in human bladder cancer TSGH-8301 cells and to investigate its signaling pathway to ascertain whether intracellular calcium iron (Ca(2+)) is involved in this effect. Bee venom-induced cytotoxic effects, productions of reactive oxygen species and Ca(2+) and the level of mitochondrial membrane potential (ΔΨm) were analyzed by flow cytometry. Apoptosis-associated proteins were examined by Western blot analysis and confocal laser microscopy. Bee venom-induced cell morphological changes and decreased cell viability through the induction of apoptosis in TSGH-8301 cell were found. Bee venom promoted the protein levels of Bax, caspase-9, caspase-3 and endonuclease G. The enhancements of endoplasmic reticulum stress-related protein levels were shown in bee venom-provoked apoptosis of TSGH-8301 cells. Bee venom promoted the activities of caspase-3, caspase-8, and caspase-9, increased Ca(2+) release and decreased the level of ΔΨm. Co-localization of immunofluorescence analysis showed the releases of endonuclease G and apoptosis-inducing factor trafficking to nuclei for bee venom-mediated apoptosis. The images revealed evidence of nuclear condensation and formation of apoptotic bodies by 4',6-diamidino-2-phenylindole staining and DNA gel electrophoresis showed the DNA fragmentation in TSGH-8301 cells. Bee venom treatment induces both caspase-dependent and caspase-independent apoptotic death through intracellular Ca(2+) -modulated intrinsic death pathway in TSGH-8301 cells. © 2011 The Japanese Urological Association.

  6. The Effects of Bee Venom on PLA2 and Calcium Concentration in Raw 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jong-Il Yun

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide, sodium nitroprusside and hydrogen peroxide induced expression phospholipase A2 and calcium concentration in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of phospholipase A2 was determined by western blotting with corresponding antibodies, and the generation of intracellular calcium concentration was investigated by delta scan system in RAW 264.7 cells. Results : 1. Compared with control, expressions of lipopolysaccharide-induced phospholipase A2 were decreased significantly by 1 ㎍/㎕ of bee venom and decreased by 0.5, 5 ㎍/㎕ of bee venom. 2. Compared with control, expressions of sodium nitroprusside-induced phospholipase A2 were decreased significantly by 5 ㎍/㎕ of bee venom but increased by 0.5, 5 ㎍/㎕ of bee venom. 3. Compared with control, expressions of hydrogen peroxide-induced phospholipase A2 were decreased significaltly by 1 ㎍/㎕ of bee venom and decreased by 0.5 ㎍/㎕ of bee venom but increased by 5 ㎍/㎕ of bee venom. 4. Compared with control, lipopolysaccharide, sodium nitroprusside and hydrogen peroxide- induced intracellular calcium concentrations were decreased by 0.5, 1, 5 ㎍/㎕ of bee venom and by indomethacin

  7. High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers.

    Science.gov (United States)

    Boonpiyathad, T; Meyer, N; Moniuszko, M; Sokolowska, M; Eljaszewicz, A; Wirz, O F; Tomasiak-Lozowska, M M; Bodzenta-Lukaszyk, A; Ruxrungtham, K; van de Veen, W

    2017-03-01

    The involvement of B cells in allergen tolerance induction remains largely unexplored. This study investigates the role of B cells in this process, by comparing B-cell responses in allergic patients before and during allergen immunotherapy (AIT) and naturally exposed healthy beekeepers before and during the beekeeping season. Circulating B cells were characterized by flow cytometry. Phospholipase A2 (PLA)-specific B cells were identified using dual-color staining with fluorescently labeled PLA. Expression of regulatory B-cell-associated surface markers, interleukin-10, chemokine receptors, and immunoglobulin heavy-chain isotypes, was measured. Specific and total IgG1, IgG4, IgA, and IgE from plasma as well as culture supernatants of PLA-specific cells were measured by ELISA. Strikingly, similar responses were observed in allergic patients and beekeepers after venom exposure. Both groups showed increased frequencies of plasmablasts, PLA-specific memory B cells, and IL-10-secreting CD73 - CD25 + CD71 + B R 1 cells. Phospholipase A2-specific IgG4-switched memory B cells expanded after bee venom exposure. Interestingly, PLA-specific B cells showed increased CCR5 expression after high-dose allergen exposure while CXCR4, CXCR5, CCR6, and CCR7 expression remained unaffected. This study provides the first detailed characterization of allergen-specific B cells before and after bee venom tolerance induction. The observed B-cell responses in both venom immunotherapy-treated patients and naturally exposed beekeepers suggest a similar functional immunoregulatory role for B cells in allergen tolerance in both groups. These findings can be investigated in other AIT models to determine their potential as biomarkers of early and successful AIT responses. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  9. Behavior of varroa mites in worker brood cells of Africanized honey bees.

    Science.gov (United States)

    Calderón, Rafael A; Fallas, Natalia; Zamora, Luis G; van Veen, Johan W; Sánchez, Luis A

    2009-12-01

    The ectoparasitic mite Varroa destructor is currently the most important pest of the honey bee, Apis mellifera. Because mite reproduction occurs within the sealed cell, the direct observation of varroa activity inside the cell is difficult. A video observation method using transparent polystyrol cells containing infested brood was used to analyze the behavior of varroa mites in worker brood of Africanized honey bees. We recorded how mites feed on the larva and pupa, construct a fecal accumulation site and how the bee larva carried out some longitudinal movements around the cell. The feeding activity of the foundress mite varies during the course of the cycle. On the prepupa mites were found to feed often (0.3 +/- 0.2 bouts h(-1)) for a period of 8.7 +/- 8.4 min h(-1) and there was no preference for a specific segment as feeding site. On the opposite, during the pupal stage mites fed less often (0.1 +/- 0.1 bouts h(-1)) for a period of 6.2 +/- 4.0 min h(-1) and almost always at a particular site (92.4%). On pupa, 83.7% of the feeding was on the 2nd abdominal segment (n = 92), and only few perforations were found on the thorax. Varroa shows a preference for defecation in the posterior part of the cell (cell apex), close to the bee's anal zone. We found a high correlation between the position of the feeding site on the pupa and the position of the fecal accumulation on the cell wall. Most infested cells have only one fecal accumulation site and it was the favorite resting site for the mite, where it spent 24.3 +/- 3.9 min h(-1). Longitudinal displacements were observed in 28.0% (n = 25) of the analyzed bee larvae. Turning movements around the cell, from the bottom to the top, were carried out by these larvae, mainly during the second day (47.7 +/- 22.5 min h(-1)), just before pupation, with a total time of 874.9 +/- 262.2 min day(-1) (n = 7 individuals). These results in worker brood of Africanized bees demonstrate adaptations of varroa mites to parasitizing the

  10. Action of the poison of Apis mellifera bee and gamma radiation on bone marrow cells of Wistar rats and on lymphocytes of human peripheral blood

    International Nuclear Information System (INIS)

    Varanda, E.A.

    1987-01-01

    ''In vivo'' and ''in vitro'' experiments are performed to determine the radioprotective action of the poison of Apis mellifera bees. The frequency of chromosome aberrations, induced by gamma radiation, is studied in two assays: ''in vivo'' in bone marrow cells from Wistar rats and ''in vitro'' in human peripheral blood lymphocyte cultures. The sister chromatid exchanges (SCE) are studied in the ''in vitro'' assays. (M.A.C.) [pt

  11. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  12. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  13. Exposure to cell phone radiations produces biochemical changes in worker honey bees

    OpenAIRE

    Kumar, Neelima R.; Sangwan, Sonika; Badotra, Pooja

    2011-01-01

    The present study was carried out to find the effect of cell phone radiations on various biomolecules in the adult workers of Apis mellifera L. The results of the treated adults were analyzed and compared with the control. Radiation from the cell phone influences honey bees’ behavior and physiology. There was reduced motor activity of the worker bees on the comb initially, followed by en masse migration and movement toward “talk mode” cell phone. The initial quiet period was characterized by ...

  14. Cytotoxic and Pro-Apoptotic Effects of Honey Bee Venom and Chrysin on Human Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elaheh Amini

    2015-06-01

    Full Text Available Background: The anti-cancer effects of honey bee venom (BV and chrysin might open a new window for treatment of chemo-resistant cancers. This study was designed to evaluate cytotoxic and pro-apoptotic effects of BV and chrysin on A2780cp cistplatin- resistant human ovarian cancer cells. Methods: As per the study objectives, A2780cp cells were categorized to 4 groups: 3 experiment groups (treated either with BV or chrysin or BV + chrysin and 1 control group (untreated cells.  Experiment group cells were cultured and treated by different concentrations of BV and chrysin for 24 hours. Then, experiment and control cells were studied with MTT assay, Annexin V-FITC, DAPI and Acridine Orange / Propidium Iodide statining, flow cytometry, caspase-3 and -9 assay, measurement of intracellular level of reactive oxygen species (ROS and RT-PCR. Results: MTT assay showed that 8 μg/mL BV, 40 µg/ml chrysin and 6 + 15 μg/mL BV + chrysin co-treatment induced 50% cell death on A2780cp cells compared with controls (P < 0.001. Morphological observations by inverted and fluorescent microscopy revealed ROS generation and apoptotic cell death under exposure to BV or chrysin or BV + chrysin co-treatment. Caspase-3 and -9 assay demonstrated that BV and chrysin triggered apoptosis through intrinsic pathway and RT-PCR demonstrated down-regulation of Bcl-2. Conclusion: Honey bee venom and chrysin are effective for destroying chemoresistant ovarian cancer cells through activation of intrinsic apoptosis, which propose them as potential candidates to be used in development of improved chemotherapeutic agents in the future.

  15. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seol Ah, E-mail: s6022029@korea.ac.kr; Choi, Young-Im, E-mail: yichoi99@forest.go.kr; Cho, Jin-Seong, E-mail: jinsung3932@gmail.com; Lee, Hyoshin, E-mail: hslee@forest.go.kr

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.

  16. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    International Nuclear Information System (INIS)

    Noh, Seol Ah; Choi, Young-Im; Cho, Jin-Seong; Lee, Hyoshin

    2015-01-01

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem

  17. Antiproliferative effects of Tubi-bee propolis in glioblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Kleiton Silva Borges

    2011-01-01

    Full Text Available Propolis is a resin formed by a complex chemical composition of substances that bees collect from plants. Since ancient times, propolis has been used in folk medicine, due to its biological properties, that include antimicrobial, anti-inflammatory, antitumoral and immunomodulatory activities. Glioblastoma is the most common human brain tumor. Despite the improvements in GBM standard treatment, patients' prognosis is still very poor. The aim of this work was to evaluate in vitro the Tubi-bee propolis effects on human glioblastoma (U251 and U343 and fibroblast (MRC-5 cell lines. Proliferation, clonogenic capacity and apoptosis were analyzed after treatment with 1 mg/mL and 2 mg/mL propolis concentrations for different time periods. Additionally, glioblastoma cell lines were submitted to treatment with propolis combined with temozolomide (TMZ. Data showed an antiproliferative effect of tubi-bee propolis against glioblastoma and fibroblast cell lines. Combination of propolis with TMZ had a synergic antiproliferative effect. Moreover, propolis caused decrease in colony formation in glioblastoma cell lines. Propolis treatment had no effects on apoptosis, demonstrating a cytostatic action. Further investigations are needed to elucidate the molecular mechanism of the antitumor effect of propolis, and the study of its individual components may reveal specific molecules with antiproliferative capacity.

  18. Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.

    Science.gov (United States)

    Doo, Ah-Reum; Kim, Seung-Nam; Kim, Seung-Tae; Park, Ji-Yeun; Chung, Sung-Hyun; Choe, Bo-Young; Chae, Younbyoung; Lee, Hyejung; Yin, Chang-Shik; Park, Hi-Joon

    2012-01-06

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by progressive selective loss of dopaminergic neurons in the substantia nigra. Recently, bee venom was reported to protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mice PD model, however, the underlying mechanism is not fully understood. The objective of the present study is to investigate the neuroprotective mechanism of bee venom against Parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP(+)), in SH-SY5Y human neuroblastoma cells. Our results revealed that bee venom pretreatment (1-100 ng/ml) increased the cell viability and decreased apoptosis assessed by DNA fragmentation and caspase-3 activity assays in MPP(+)-induced cytotoxicity in SH-SY5Y cells. Bee venom increased the anti-apoptotic Bcl-2 expression and decreased the pro-apoptotic Bax, cleaved PARP expressions. In addition, bee venom prevented the MPP(+)-induced suppression of Akt phosphorylation, and the neuroprotective effect of bee venom against MPP(+)-induced cytotoxicity was inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. These results suggest that the anti-apoptotic effect of bee venom is mediated by the cell survival signaling, the PI3K/Akt pathway. These results provide new evidence for elucidating the mechanism of neuroprotection of bee venom against PD. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A2-induced degranulation in mast cells

    International Nuclear Information System (INIS)

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-01-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G M1 ), di-sialoganglioside (G D1a ) and tri-sialoganglioside (G T1b ). In contrast, honeybee venom-derived phospholipase A 2 induced the net degranulation directly without cytotoxicity, which was not inhibited by G M1 , G D1a and G T1b . For analysis of distribution of Gα q and Gα i protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα q and Gα i at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A 2 -induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A 2 -induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  20. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A(2)-induced degranulation in mast cells.

    Science.gov (United States)

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-05-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G(M1)), di-sialoganglioside (G(D1a)) and tri-sialoganglioside (G(T1b)). In contrast, honeybee venom-derived phospholipase A(2) induced the net degranulation directly without cytotoxicity, which was not inhibited by G(M1), G(D1a) and G(T1b). For analysis of distribution of Gα(q) and Gα(i) protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα(q) and Gα(i) at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A(2)-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A(2)-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jae-Young Sim

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS, sodium nitroprusside(SNP, hydrogen peroxide(H2O2-induced expressions of cyclooxygenase-2(COX-2, p38, jun N-terminal Kinase(JNK and extra-signal response kinase(ERK in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies.\\ Results : 1. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly H2O2-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS, SNP and H2O2-induced expression of p38 compared with control, respectively. 3. The 1 and 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and H2O2-induced expression of JNK compared with control, respectively. 4. The 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of ERK, the 0.5 ㎍/㎖ of bee venom increased significantly H2O2-induced expression of ERK compared with control. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.

  2. Ureaplasma infection of cell cultures.

    Science.gov (United States)

    Kotani, H; McGarrity, G J

    1986-05-01

    Studies were performed to characterize the effects of ureaplasmas in HeLa, 3T6, and CV-1 cell cultures. The ureaplasmas studied were human Ureaplasma urealyticum T960 (serotype VIII), bovine U. diversum T95, simian strain T167-2, ovine strain 1202, canine strain D1M-C, and feline strains 382 and FT2-B. FT2-B was the only ureaplasma to grow in the cell free culture medium, Dulbecco modified Eagle-Earle medium containing 10% fetal bovine serum. The growth pattern of the ureaplasmas varied in the different cell cultures, but each strain grew in at least two of the cell cultures, suggesting a requirement for a product of the cell culture and for low concentrations of urea. When growth occurred, organisms grew to concentrations that approached, but did not equal, those observed in 10B broth. Most, but not all, ureaplasmas grew quickly, reaching peak titers 2 days after infection. Canine strain D1M-C did not grow in 3T6, but showed rapid growth in HeLa and CV-1 cells, killing both cultures, In some systems, e.g., U. urealyticum T960 and simian strain T167-2, the infection persisted, and ureaplasmas could be recovered from cell cultures four passages after infection, when studies were terminated. The cell culture ureaplasmas grew on T agar, but not on mycoplasma agar medium.

  3. Elevated and cross‐responsive CD1a‐reactive T cells in bee and wasp venom allergic individuals

    Science.gov (United States)

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A.; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch

    2015-01-01

    The role of CD1a‐reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a‐reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom‐responsive CD1a‐reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a‐transfected K562 cells in the presence of wasp or bee venom. T‐cell response was evaluated based on IFNγ, GM‐CSF, and IL‐13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN‐γ, GM‐CSF, and IL‐13 producing CD1a‐reactive T cells responsive to venom and venom‐derived phospholipase than healthy individuals. Venom‐responsive CD1a‐reactive T cells were cross‐responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a‐reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein‐specific T cell and antibody responses. Here, we show that lipid antigens and CD1a‐reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. PMID:26518614

  4. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway

    International Nuclear Information System (INIS)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya; An, Byeong Jun; Song, Ho Sueb; Han, Sang Bae; Kim, Jang Heub; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1–5 μg/ml) and melittin (0.5–2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. -- Highlights: ► Some studies have showed that bee venom and/or melittin have anti-cancer effects. ► We found that bee venom and melittin inhibited cell growth in ovarian cancer cells. ► Bee venom and melittin induce apoptosis in SKOV3 and PA-1.

  5. Interaction between the solitary bee Chelostoma florisomne and its nest parasite Sapyga clavicornis - empty cells reduce the impact of parasites

    DEFF Research Database (Denmark)

    Münster-Swendsen (deceased), Mikael; Calabuig, Isabel

    2000-01-01

    a cell closure. A cell closure does not prevent the nest parasite from oviposition inside the brood cell, however, and parasite eggs deposited through the cell closure are not detected and removed by the bee. Only an additional cell closure, i.e. the formation of an empty cell, may protect a brood cell...... without an anterior, empty cell; 27.4% of the empty cells contained dead parasite offspring (eggs and larvae). Thus, the empty cells provided significant protection and, combined with additional means of protection of brood cells, led to a low degree of parasitism. More than 77% of the wasp offspring died......Summary 1. Nesting behaviour and interactions between the bee Chelostoma florisomne (L.) (Megachilidae) and its nest parasite Sapyga clavicornis (L.) (Sapygidae) were studied through continual observations of individuals and dissections of bee nests. Protection of bee offspring is based on (1...

  6. Regulation of oogenesis in honey bee workers via programed cell death.

    Science.gov (United States)

    Ronai, Isobel; Barton, Deborah A; Oldroyd, Benjamin P; Vergoz, Vanina

    2015-10-01

    Reproductive division of labour characterises eusociality. Currently little is known about the mechanisms that underlie the 'sterility' of the worker caste, but queen pheromone plays a major role in regulating the reproductive state. Here we investigate oogenesis in the young adult honey bee worker ovary in the presence of queen pheromone and in its absence. When queen pheromone is absent, workers can activate their ovaries and have well-developed follicles. When queen pheromone is present, even though workers have non-activated ovaries, they continually produce oocytes which are aborted at an early stage. Therefore, irrespective of the presence of the queen, the young adult worker ovary contains oocytes. By this means young workers retain reproductive plasticity. The degeneration of the germ cells in the ovarioles of workers in the presence of queen pheromone has the morphological hallmarks of programmed cell death. Therefore the mechanistic basis of 'worker sterility' relies in part on the regulation of oogenesis via programmed cell death. Our results suggest that honey bees have co-opted a highly conserved checkpoint at mid-oogenesis to regulate the fertility of the worker caste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB.

    Science.gov (United States)

    Park, Mi Hee; Choi, Myoung Suk; Kwak, Dong Hoon; Oh, Ki-Wan; Yoon, Do Young; Han, Sang Bae; Song, Ho Sueb; Song, Min Jong; Hong, Jin Tae

    2011-06-01

    Bee venom has been used as a traditional medicine to treat arthritis, rheumatism, back pain, cancerous tumors, and skin diseases. However, the effects of bee venom on the prostate cancer and their action mechanisms have not been reported yet. To determine the effect of bee venom and its major component, melittin on the prostate cancer cells, apoptosis is analyzed by tunnel assay and apoptotic gene expression. For xenograft studies, bee venom was administrated intraperitoneally twice per week for 4 weeks, and the tumor growth was measured and the tumor were analyzed by immunohistochemistry. To investigate whether bee venom and melittin can inactivate nuclear factor kappa B (NF-κB), we assessed NF-κB activity in vitro and in vivo. Bee venom (1-10 µg/ml) and melittin (0.5-2.5 µg/ml) inhibited cancer cell growth through induction of apoptotic cell death in LNCaP, DU145, and PC-3 human prostate cancer cells. These effects were mediated by the suppression of constitutively activated NF-κB. Bee venom and melittin decreased anti-apoptotic proteins but induced pro-apoptotic proteins. However, pan caspase inhibitor abolished bee venom and melittin-induced apoptotic cell death and NF-κB inactivation. Bee venom (3-6 mg/kg) administration to nude mice implanted with PC-3 cells resulted in inhibition of tumor growth and activity of NF-κB accompanied with apoptotic cell death. Therefore, these results indicated that bee venom and melittin could inhibit prostate cancer in in vitro and in vivo, and these effects may be related to NF-κB/caspase signal mediated induction of apoptotic cell death. Copyright © 2010 Wiley-Liss, Inc.

  8. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.

    1982-01-01

    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  9. Cell culture compositions

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  10. Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals.

    Science.gov (United States)

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2016-01-01

    The role of CD1a-reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a-reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom-responsive CD1a-reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a-transfected K562 cells in the presence of wasp or bee venom. T-cell response was evaluated based on IFNγ, GM-CSF, and IL-13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN-γ, GM-CSF, and IL-13 producing CD1a-reactive T cells responsive to venom and venom-derived phospholipase than healthy individuals. Venom-responsive CD1a-reactive T cells were cross-responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a-reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein-specific T cell and antibody responses. Here, we show that lipid antigens and CD1a-reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Youth Culture and Cell Phone

    Directory of Open Access Journals (Sweden)

    mohammad saeed zokaei

    2009-11-01

    Full Text Available Iranian youth’s leisure culture has been immediately affected by the digital media culture. As a communicative media, cell phone has crossed borders of youth norms and identity; and in addition to facilitating their communication, has changed its patterns. Applying Bourdieu’s concepts of habitus and field, and relied on the qualitative and quantitative data gathered from the mobile youth users, the present study argues that mobile has produced a new field in which youth’s opportunities for leisure, entertainment, communication, and independence have extended. In addition, cell phone has facilitated and compensated for some defects in public sphere, and therefore empowered youth agency, individuality, and power. Despite this strengthening, cell phone does not cross borders of gender and class differences, or the levels of social capital.

  12. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera.

    Science.gov (United States)

    Eyer, Michael; Neumann, Peter; Dietemann, Vincent

    2016-01-01

    Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved.

  13. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  14. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  15. Bee poison

    Science.gov (United States)

    ... and yellow jacket stings contain a substance called venom. Africanized bee colonies are very sensitive to being disturbed. When ... Bee, wasp, hornet, and yellow jacket venom can cause an allergic reaction in some people.

  16. Ultrastructural analysis of early toxic effects produced by bee venom phospholipase A2 and melittin in Sertoli cells in rats.

    Science.gov (United States)

    Tilinca, Mariana; Florea, Adrian

    2018-01-01

    In this study, we aimed to investigate the testicular toxicity of two molecules derived from bee venom (BV): phospholipase A2 (PlA2) and melittin (Mlt). Ultrastructural effects of purified BV PlA2 and Mlt were assessed consecutive to repeated dose (30 days) and acute toxicity studies. For the subchronic treatment, PlA2 and Mlt were injected in daily doses equivalent to those released by a bee sting (105 μg PlA2/kg/day and 350 μg Mlt/kg/day), while in the acute treatment their doses corresponded to those released by 100 bee stings (9.3 mg PlA2/kg and 31 mg Mlt/kg). Both PlA2 and Mlt affected the Leydig cells and the cells in seminiferous tubules, the Sertoli cells first of all. PlA2 injection resulted in detachment of the Sertoli cells from the surrounding cells, and extracellular vacuolations, cytoplasmic vacuolations in their basal region and in branches as well, detachment of spermatids, residual bodies and sometimes even spermatocytes into the lumen, changes that had a higher magnitude after the acute treatment. Mlt injection induced similar ultrastructural alterations, but more severe, including degeneration of cellular organelles and cellular necrosis, resulting into rarefaction of the seminiferous epithelium; the ultrastructural changes had a higher magnitude after the 30 repeated dose treatment. We concluded that either of the two molecules tested here, PlA2 and Mlt, were Sertoli cells toxicants at the used doses, and they participated both in the BV testicular toxicity. We consider the observed changes as part of a preceding mechanism of the more severe alterations produced by the BV. It also remains possible that these early unspecific changes reported here could represent the response of the SCs not only to the components of bee venom, but to molecules of other venoms as well. The Sertoli cells were the primary target of PlA2 and Mlt in the spermatogenic epithelium, and their alteration led to further degenerative changes of the germ cells. Since

  17. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway.

    Science.gov (United States)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya; An, Byeong Jun; Song, Ho Sueb; Han, Sang Bae; Kim, Jang Heub; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1-5 μg/ml) and melittin (0.5-2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Non-immunological activation of peritoneal mast cells of rats by means of mast cell degranulating peptide from bee toxic

    International Nuclear Information System (INIS)

    Martin, W.

    1982-01-01

    The subject of this dissertation is the interaction of MCD-peptide with the mast cell with regard to binding properties and histamine-liberating activity. The peptide is labelled with Na 125 I, its binding characteristics on degranulating and deactivating mast cells recorded and compared to binding on periteneal macrophages and neutrophilic granulocytes. Further, the non-lytic mode of action of MCD-peptide is pointed out, whereby the surface-active toxic peptide of the bee, melittin, finds application in parallel studies. In order to establish to what extent the binding property of the peptide to the mast cell is inhibited by IgE-antibodies charged on the later, rats are immunized with dead Bordetella pertussis microorganisms as adjuvant and ovalbumin as antigen. The induced IgE specific immune response provides active sensitized mast cells and enriches reagin antibodies in the sera of immunized animals. The binding of peptides is studied on active and passive sensitized mast cells and compared to the situation found with normal mast cells. A further section of work deals with the question whether an altered binding pattern is caused by enzymatic treatment of the cell surface. A possible interference of the MCD-peptide with the IgE-receptor could thus be indicated or other types of binding position demonstrated. The influence of granular secretion on mast cell binding is illustrated by means of studies on isolated mast cell granula. (orig./MG) [de

  19. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan Shi

    Full Text Available BACKGROUND: Young larvae of the honey bee (Apis mellifera are totipotent; they can become either queens (reproductives or workers (largely sterile helpers. DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation. METHODOLOGY/PRINCIPAL FINDINGS: We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene dynactin p62; as well as morphological characteristics of adult bees developed either from larvae fed with worker jelly or royal jelly; and larvae raised in either queen or worker cells. We show that both diet type and cell size contributed to the queen-worker differentiation, and that the two factors affected different methylation sites inside the same gene dynactin p62. CONCLUSIONS/SIGNIFICANCE: We confirm previous findings that Dnmt3 plays a critical role in honey bee caste differentiation. Further, we show for the first time that cell size also plays a role in influencing larval development when diet is kept the same.

  20. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae).

    Science.gov (United States)

    Shi, Yuan Yuan; Huang, Zachary Y; Zeng, Zhi Jiang; Wang, Zi Long; Wu, Xiao Bo; Yan, Wei Yu

    2011-04-26

    Young larvae of the honey bee (Apis mellifera) are totipotent; they can become either queens (reproductives) or workers (largely sterile helpers). DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation. We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene dynactin p62; as well as morphological characteristics of adult bees developed either from larvae fed with worker jelly or royal jelly; and larvae raised in either queen or worker cells. We show that both diet type and cell size contributed to the queen-worker differentiation, and that the two factors affected different methylation sites inside the same gene dynactin p62. We confirm previous findings that Dnmt3 plays a critical role in honey bee caste differentiation. Further, we show for the first time that cell size also plays a role in influencing larval development when diet is kept the same.

  1. Basic Techniques in Mammalian Cell Tissue Culture.

    Science.gov (United States)

    Phelan, Katy; May, Kristin M

    2016-11-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  2. Diet and Cell Size Both Affect Queen-Worker Differentiation through DNA Methylation in Honey Bees (Apis mellifera, Apidae)

    OpenAIRE

    Shi, Yuan Yuan; Huang, Zachary Y.; Zeng, Zhi Jiang; Wang, Zi Long; Wu, Xiao Bo; Yan, Wei Yu

    2011-01-01

    BACKGROUND: Young larvae of the honey bee (Apis mellifera) are totipotent; they can become either queens (reproductives) or workers (largely sterile helpers). DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation. METHODOLOGY/PRINCIPAL FINDINGS: We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene ...

  3. Antitumour action on human glioblastoma A1235 cells through cooperation of bee venom and cisplatin.

    Science.gov (United States)

    Gajski, Goran; Čimbora-Zovko, Tamara; Rak, Sanjica; Osmak, Maja; Garaj-Vrhovac, Vera

    2016-08-01

    Cisplatin (cDDP) is one of the most widely used anticancer-drugs in both therapy and research. However, cDDP-resistance is the greatest obstacle for the successful treatment of cancer patients. In the present study, the possible joint anticancer effect of bee venom (BV), as a natural toxin, and cDDP towards human glioblastoma A1235 cells was evaluated. Treatment with BV alone in concentrations of 2.5-30 μg/ml displayed dose-dependent cytotoxicity towards A1235 cells, as evaluated with different cytotoxicity assays (MTT, Cristal violet and Trypan blue exclusion assay), with an IC50 value of 22.57 μg/ml based on the MTT results. Furthermore, BV treatment induced necrosis, which was confirmed by typical morphological features and fast staining with ethidium-bromide dye. Pre-treatment with BV induced cell sensitization to cDDP, indicating that BV could improve the killing effect of selected cells when combined with cDDP. The isobologram method used to determine the extent of synergism in combining two agents to examine their possible therapeutic effect showed that combined treatment induced an additive and/or synergistic effect towards selected cells depending on the concentration of both. Hence, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. The obtained results indicate that joint treatment with BV could be useful from the point of minimizing the cDDP concentration during chemotherapy, thus reducing and/or postponing the development of drug resistance. Our data, in accordance with previously reported results, suggests that BV could be used in the development of a new strategy for cancer treatment.

  4. 9 CFR 101.6 - Cell cultures.

    Science.gov (United States)

    2010-01-01

    ... used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES...

  5. Design of the Remote Climate Control System for Cultural Buildings Utilizing ZigBee Technology

    Directory of Open Access Journals (Sweden)

    Jingcheng ZHANG

    2010-07-01

    Full Text Available A wireless solution of remote climate control for cultural buildings is presented in this paper. The system allows users to use web service to control climate in different cultural buildings, like churches. The wireless sensor networks deployed in churches receive the control commands and manage the indoor climate. The whole system is modularly designed, which makes possible an easy service extension, system reconfiguration and modification. This paper includes the system overview and the software design of each part within the system.

  6. Role of spinal glial cells in bee-toxin-induced spontaneous pain, hyperalgesia, and inflammation

    OpenAIRE

    Yao LU; Jian-xiu WANG; Zhi-guo YAO; Hui-sheng CHEN

    2012-01-01

    Objective To observe the effects of intrathecal injection of fluorocitrate, a glial metabolism inhibitor, on bee-toxin-induced spontaneous pain, hyperalgesia and inflammatory response. Methods Forty adult male SD rats with intrathecal catheterization were randomly divided into five groups (8 each): (1) bee-toxin alone group; (2) vehicle (solvent) group; (3) low dose (1nmol) fluorocitrate group; (4) middle dose (10nmol) fluorocitrate group; (5) high dose (50nmol) fluorocitrate group. After the...

  7. Brain transcriptomes of honey bees (Apis mellifera experimentally infected by two pathogens: Black queen cell virus and Nosema ceranae

    Directory of Open Access Journals (Sweden)

    Vincent Doublet

    2016-12-01

    Full Text Available Regulation of gene expression in the brain plays an important role in behavioral plasticity and decision making in response to external stimuli. However, both can be severely affected by environmental factors, such as parasites and pathogens. In honey bees, the emergence and re-emergence of pathogens and potential for pathogen co-infection and interaction have been suggested as major components that significantly impaired social behavior and survival. To understand how the honey bee is affected and responds to interacting pathogens, we co-infected workers with two prevalent pathogens of different nature, the positive single strand RNA virus Black queen cell virus (BQCV, and the Microsporidia Nosema ceranae, and explored gene expression changes in brains upon single infections and co-infections. Our data provide an important resource for research on honey bee diseases, and more generally on insect host-pathogen and pathogen-pathogen interactions. Raw and processed data are publicly available in the NCBI/GEO database: (http://www.ncbi.nlm.nih.gov/geo/ under accession number GSE81664.

  8. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    Science.gov (United States)

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel

    2016-06-15

    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    Science.gov (United States)

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    Science.gov (United States)

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway.

  11. Expression of a bee venom phospholipase A2 from Apis cerana cerana in the baculovirus-insect cell*

    OpenAIRE

    Shen, Li-rong; Ding, Mei-hui; Zhang, Li-wen; Zhang, Wei-guang; Liu, Liang; Li, Duo

    2010-01-01

    Bee venom phospholipase A2 (BvPLA2) is a lipolytic enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerophospholipids to liberate free fatty acids and lysophospholipids. In this work, a new BvPLA2 (AccPLA2) gene from the Chinese honeybee (Apis cerana cerana) venom glands was inserted into bacmid to construct a recombinant transfer vector. Tn-5B-4 (Tn) cells were transfected with the recombinant bacmid DNA for expression. Sodium dodecylsulfate-polyacrylamide gel electrophoresis...

  12. Bee health

    DEFF Research Database (Denmark)

    Lecocq, Antoine

    of the year. The successful running of the colony is also affected by the numerous pests mentioned above. Part two of the thesis deals with what effects a microsporidian gut parasite, Nosema ceranae can have on the behaviour of groups of honey bees exposed from early-on in their adult life. The creation...... pathogens to other pollinators. The threat of inter-specific pathogen transmission appears to be real, and testing the infectivity of honey bee pathogens on other bee pollinators, represents a logical step following on from the recent detection of those pathogens using molecular methods. The preliminary...

  13. Digestive and regenerative cells in the midgut of haploid and diploid males of the stingless bee Melipona quadrifasciata anthidioides (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Kenner M. Fernandes

    2012-10-01

    Full Text Available In eusocial bees, workers and queens are diploid (2n, whereas males are haploid (n. However, in some species, including the stingless bee Melipona quadrifasciata anthidioides Lepeletier, 1836, 2n males arise from fertilized eggs resulting from the crossing between a queen and her brother. In the present study, we provide a comparative analysis of the digestive and regenerative cells in n and 2n pupae and adult males of M. quadrifasciata anthidioides. In n and 2n pupae and adult males, the number of regenerative cells/nest was similar. In n and 2n pupae, the mean number of digestive cells/midgut area was 2076 ± 0.60, whereas in adults it was 1234 ± 1.42 digestive cells/midgut area. The nuclear area of the digestive cells was also similar in both n and 2n adult males (~154 µm² and smaller in pupae (~91 µm²; this variation might be a result of DNA amplification in digestive cells during bee development. The results from our current study provide further understanding of the morphological and physiological aspects of the digestive tract of bees and show that the ploidy difference between n and 2n male stages does not affect the number of digestive and regenerative cells in the midgut of M. quadrifasciata anthidioides.

  14. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  15. Bee Pollen

    Science.gov (United States)

    ... Pollen Extract, Buckwheat Pollen, Extrait de Pollen d’Abeille, Honeybee Pollen, Honey Bee Pollen, Maize Pollen, Pine Pollen, Polen de Abeja, Pollen, Pollen d'Abeille, Pollen d’Abeille de Miel, Pollen de Sarrasin.

  16. Isolation and culture of pulmonary endothelial cells.

    OpenAIRE

    Ryan, U S

    1984-01-01

    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vas...

  17. Advances in 3D neuronal cell culture

    NARCIS (Netherlands)

    Frimat, Jean Philippe; Xie, Sijia; Bastiaens, Alex; Schurink, Bart; Wolbers, Floor; Den Toonder, Jaap; Luttge, Regina

    2015-01-01

    In this contribution, the authors present our advances in three-dimensional (3D) neuronal cell culture platform technology contributing to controlled environments for microtissue engineering and analysis of cellular physiological and pathological responses. First, a micromachined silicon sieving

  18. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    OpenAIRE

    Lee, Sang Min; Yang, Eun Jin; Choi, Sun-Mi; Kim, Seon Hwy; Baek, Myung Gi; Jiang, Jing Hua

    2012-01-01

    Bee venom (BV), which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS). Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzh...

  19. Programmed Cell Death in the Honey Bee (Apis mellifera) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid.

    Science.gov (United States)

    Wu, Yan-Yan; Zhou, Ting; Wang, Qiang; Dai, Ping-Li; Xu, Shu-Fa; Jia, Hui-Ru; Wang, Xing

    2015-08-01

    Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  1. Isolation and culture of pulmonary endothelial cells.

    Science.gov (United States)

    Ryan, U S

    1984-06-01

    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vasoactive substances, in responding to hormones and other agonists and in cell-cell interactions with other cell types of the vascular wall, with blood cells and with cellular products. Consequently, a new requirement has arisen for cells in vitro that maintain the differentiated properties of their counterparts in vivo. The deleterious effects of trypsin and other proteolytic enzymes commonly used in cell culture on surface structures of endothelial cells such as enzymes, receptors and junctional proteins, as well as on extracellular layers such as the glycocalyx or "endothelial fuzz," have led to the development of methods that avoid use of proteolytic enzymes at both the isolation step and during subsequent subculture. This chapter describes traditional methods for isolating pulmonary endothelial cells but emphasizes newer approaches using mechanical harvest and scale-up using microcarriers. The new methods allow maintenance of long-term, large-scale cultures of cells that retain the full complement of surface properties and that maintain the cobblestone monolayer morphology and differentiated functional properties. Methods for identification of isolated cells are therefore also considered as methods for validation of cultures during their in vitro lifespan.

  2. Melphalan metabolism in cultured cells

    International Nuclear Information System (INIS)

    Seagrave, J.C.; Valdez, J.G.; Tobey, R.A.; Gurley, L.R.

    1985-06-01

    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC1 2 , one being increased in amount while the other was reduced to an insignificant level. In ZnC1 2 -treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC1 2 -treated cells. While ZnC1 2 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC1 2 -treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC1 2 -treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  3. Henrietta Lacks, HeLa cells, and cell culture contamination.

    Science.gov (United States)

    Lucey, Brendan P; Nelson-Rees, Walter A; Hutchins, Grover M

    2009-09-01

    Henrietta Lacks died in 1951 of an aggressive adenocarcinoma of the cervix. A tissue biopsy obtained for diagnostic evaluation yielded additional tissue for Dr George O. Gey's tissue culture laboratory at Johns Hopkins (Baltimore, Maryland). The cancer cells, now called HeLa cells, grew rapidly in cell culture and became the first human cell line. HeLa cells were used by researchers around the world. However, 20 years after Henrietta Lacks' death, mounting evidence suggested that HeLa cells contaminated and overgrew other cell lines. Cultures, supposedly of tissues such as breast cancer or mouse, proved to be HeLa cells. We describe the history behind the development of HeLa cells, including the first published description of Ms Lacks' autopsy, and the cell culture contamination that resulted. The debate over cell culture contamination began in the 1970s and was not harmonious. Ultimately, the problem was not resolved and it continues today. Finally, we discuss the philosophical implications of the immortal HeLa cell line.

  4. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.

    2010-01-01

    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific

  5. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  6. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  7. A Brazilian social bee must cultivate fungus to survive.

    Science.gov (United States)

    Menezes, Cristiano; Vollet-Neto, Ayrton; Marsaioli, Anita Jocelyne; Zampieri, Davila; Fontoura, Isabela Cardoso; Luchessi, Augusto Ducati; Imperatriz-Fonseca, Vera Lucia

    2015-11-02

    The nests of social insects provide suitable microenvironments for many microorganisms as they offer stable environmental conditions and a rich source of food [1-4]. Microorganisms in turn may provide several benefits to their hosts, such as nutrients and protection against pathogens [1, 4-6]. Several examples of symbiosis between social insects and microorganisms have been found in ants and termites. These symbioses have driven the evolution of complex behaviors and nest structures associated with the culturing of the symbiotic microorganisms [5, 7, 8]. However, while much is known about these relationships in many species of ants and termites, symbiotic relationships between microorganisms and social bees have been poorly explored [3, 4, 9, 10]. Here, we report the first case of an obligatory relationship between the Brazilian stingless bee Scaptotrigona depilis and a fungus of the genus Monascus (Ascomycotina). Fungal mycelia growing on the provisioned food inside the brood cell are eaten by the larva. Larvae reared in vitro on sterilized larval food supplemented with fungal mycelia had a much higher survival rate (76%) compared to larvae reared under identical conditions but without fungal mycelia (8% survival). The fungus was found to originate from the material from which the brood cells are made. Since the bees recycle and transport this material between nests, fungus would be transferred to newly built cells and also to newly founded nests. This is the first report of a fungus cultivation mutualism in a social bee. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  9. Cell Culture on MEMS Platforms: A Review

    Science.gov (United States)

    Ni, Ming; Tong, Wen Hao; Choudhury, Deepak; Rahim, Nur Aida Abdul; Iliescu, Ciprian; Yu, Hanry

    2009-01-01

    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented. PMID:20054478

  10. Effects of radiation on cultured fish cells

    International Nuclear Information System (INIS)

    Etoh, Hisami; Suyama, Ippei

    1980-01-01

    A new fibroblastic cell line was established in our laboratory from the caudal fin of the goldfish, C. auratus. The cells, designated CAF, have been subcultured over 80 passages since initiation in August, 1977. A brief description of cell cultivation and colony formation is presented. The plating efficiency obtained was considerably higher than those reported for other fish cell lines. CAF cells were irradiated with 250, 500, 1,000, 2,000, and 3,000 R of x-rays at a dose rate of 80 R/min in air. The survival parameters changed when the number of passages of culture increased. Values for D 0 , D sub(q), and n obtained from cells irradiated at the 70th passage were calculated to be 650 R, 700 R, and 2.7 respectively. Thus CAF cells would be several times as resistant in general as cultured mammalian cells. The cells irradiated with 1,000 R of x-rays received a second dose from 250 to 2,000 R at intervals of 3, 6, and 24 hr. The cells kept at 26 0 C showed a pronounced recovery from sublethal damage during the intervals between two doses. Magnitude of recovery was larger if the interval was longer under the present experimental conditions. These results may indicate that the recovery observed at an individual level accounts partly for that in vitro. (author)

  11. Honey Bee Hemocyte Profiling by Flow Cytometry

    Science.gov (United States)

    Marringa, William J.; Krueger, Michael J.; Burritt, Nancy L.; Burritt, James B.

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure. PMID:25285798

  12. Reproduction of Varroa destructor and offspring mortality in worker and drone brood cells of Africanized honey bees.

    Science.gov (United States)

    Calderón, R A; Ureña, S; van Veen, J W

    2012-04-01

    Varroa destructor is known to be the most serious parasite of Apis mellifera worldwide. In order to reproduce varroa females enter worker or drone brood shortly before the cell is sealed. From March to December 2008, the reproductive rate and offspring mortality (mature and immature stages), focusing on male absence and male mortality of V. destructor, was investigated in naturally infested worker and drone brood of Africanized honey bees (AHB) in Costa Rica. Data were obtained from 388 to 403 single infested worker and drone brood cells, respectively. Mite fertility in worker and drone brood cells was 88.9 and 93.1%, respectively. There was no difference between the groups (X(2) = 3.6, P = 0.06). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring in drone cells (64.8%) compared to worker cells (37.6%) (X(2) = 57.2, P drone cells was high in the protonymph stage (mobile and immobile). A significant finding was the high rate of male mortality. The worker and drone brood revealed that 23.9 and 6.9%, respectively, of the adult male offspring was found dead. If the absence (missing) of the male and adult male mortality are taken together the percentage of cells increased to 40.0 and 21.3% in worker and drone cells, respectively (X(2) = 28.8, P < 0.05). The absence of the male or male mortality in a considerable number of worker cells naturally infested with varroa is the major factor in our study which reduces the production of viable daughters in AHB colonies in Costa Rica.

  13. Embryo forming cells in carrot suspension cultures

    NARCIS (Netherlands)

    Toonen, M.A.J.

    1997-01-01


    Somatic cells of many plant species can be cultured in vitro and induced to form embryos that are able to develop into mature plants. This process, termed somatic embryogenesis, was originally described in carrot (Daucus carota L.). Somatic embryos develop through the same characteristic

  14. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  15. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  16. Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

    Directory of Open Access Journals (Sweden)

    Kyung Eun Choi

    2014-07-01

    Full Text Available Our previous findings have demonstrated that bee venom (BV has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB activity assay. BV (1–5 μg/mL inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.

  17. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  18. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  19. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  20. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...... culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...

  1. Histopathological and ultrastructural changes experimentally induced by bee venom in seminiferous epithelium via structural-functional alteration of Sertoli cells.

    Science.gov (United States)

    Florea, Adrian; Puică, Constantin; Hamed, Sami; Tilinca, Mariana; Matei, Horea

    2017-11-01

    We tested here the ability of bee venom (BV) to interfere with spermatogenesis in rats in two experimental conditions. The histopathological changes were assessed with brightfield microscopy using a novel staining technique, based on methylene blue, orange G and ponceau xylidine. Transmission electron microscopy was also used to identify fine subcellular changes. BV injection for 30days in daily doses of 700μg BV/kg resulted in reducing testicular weight, along with significant larger diameters of seminiferous tubules and reduced number of Sertoli cells (SCs). SCs were vacuolated, detached from the basement membrane, many necrosed, leading to the basement membrane denudation. Germ cells layers were separated by empty spaces conferring a rarefied aspect to the tissue, and spermatids were detached into lumen. Thus, the seminiferous epithelium was significantly thinned. Many Leydig cells (LCs) were in a necrotic state, with disrupted plasma membrane and without smooth endoplasmic reticulum. The acute treatment with a single LD50 of 62mgBV/kg, was followed by focal disruptions of the basement membrane and localized areas of necrosis, mainly affecting the SCs. Most of the observed SCs as well as some spermatogonia were highly vacuoled, empty spaces being observed within the epithelium. The SCs count was significantly decreased. Spermatids had also the tendency of separation from the SCs, and the significant larger diameter of the tubules found was associated with a thicker epithelium. Many LCs were necrosed, with disrupted plasma membrane, swollen mitochondria, no endoplasmic reticulum and implicitly showing rarefied cytoplasm. We concluded that BV was a testicular toxicant affecting both the LCs and the seminiferous tubules. The SCs cells represented the primary target site of BV whose effects were next extended upon the germ cells. In all cells, BV triggered unspecific degenerative changes that could impaire spermatogenesis. The present study also proposes an

  2. Acetaldehyde and hexanaldehyde from cultured white cells

    Directory of Open Access Journals (Sweden)

    Zaldivar Frank

    2009-04-01

    Full Text Available Abstract Background Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds. Methods To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium. Results HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene. Conclusion This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured in vitro in trace amounts.

  3. Expression of a bee venom phospholipase A2 from Apis cerana cerana in the baculovirus-insect cell.

    Science.gov (United States)

    Shen, Li-Rong; Ding, Mei-Hui; Zhang, Li-Wen; Zhang, Wei-Guang; Liu, Liang; Li, Duo

    2010-05-01

    Bee venom phospholipase A(2) (BvPLA(2)) is a lipolytic enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerophospholipids to liberate free fatty acids and lysophospholipids. In this work, a new BvPLA(2) (AccPLA(2)) gene from the Chinese honeybee (Apis cerana cerana) venom glands was inserted into bacmid to construct a recombinant transfer vector. Tn-5B-4 (Tn) cells were transfected with the recombinant bacmid DNA for expression. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed a double band with molecular weights of 16 and 18 kDa. Products of hexahistidine AccPLA(2) fusion protein accumulated up to 5.32% of the total cellular proteins. The AccPLA(2) fusion protein was cross reactive with the anti-AmPLA(2) (BvPLA(2) of the European honeybee, Apis mellifera) polyclonal serum. The reaction resulted in a double glycosylation band, which agrees with the band generated by the native AmPLA(2) in Western blot analysis. The PLA(2) activity of the total extracted cellular protein in the hydrolyzing egg yolk is about 3.16 micromol/(min.mg). In summary, the recombinant AccPLA(2) protein, a native BvPLA(2)-like structure with corresponding biological activities, can be glycosylated in Tn cells. These findings provided fundamental knowledge for potential genetic engineering to produce AccPLA(2) in the pharmaceutical industry.

  4. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  5. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    of growth regulators were observed to be 3 × 10−6M indoleacetic acid (JAA) combined with 3 × 10−6M benzylaminopurin (BAP) or 10−6M 2,4-dichlorophenoxy acetic acid (2,4-D) alone. IAA + BAP caused a 100 fold increase in fresh weight over 4 weeks at 25°C. Addition of casein hydrolysate increased growth further....... Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  6. Bee venom in cancer therapy.

    Science.gov (United States)

    Oršolić, Nada

    2012-06-01

    Bee venom (BV) (api-toxin) has been widely used in the treatment of some immune-related diseases, as well as in recent times in treatment of tumors. Several cancer cells, including renal, lung, liver, prostate, bladder, and mammary cancer cells as well as leukemia cells, can be targets of bee venom peptides such as melittin and phospholipase A2. The cell cytotoxic effects through the activation of PLA2 by melittin have been suggested to be the critical mechanism for the anti-cancer activity of BV. The induction of apoptotic cell death through several cancer cell death mechanisms, including the activation of caspase and matrix metalloproteinases, is important for the melittin-induced anti-cancer effects. The conjugation of cell lytic peptide (melittin) with hormone receptors and gene therapy carrying melittin can be useful as a novel targeted therapy for some types of cancer, such as prostate and breast cancer. This review summarizes the current knowledge regarding potential of bee venom and its compounds such as melittin to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. The recent applications of melittin in various cancers and a molecular explanation for the antiproliferative properties of bee venom are discussed.

  7. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions.

    Science.gov (United States)

    Nagamatsu, Go; Suda, Toshio

    2013-01-01

    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  8. Indirect immunofluorescence staining of cultured neural cells.

    Science.gov (United States)

    Barbierato, Massimo; Argentini, Carla; Skaper, Stephen D

    2012-01-01

    Immunofluorescence is a technique allowing the visualization of a specific protein or antigen in cells or tissue sections by binding a specific antibody chemically conjugated with a fluorescent dye such as fluorescein isothiocyanate. There are two major types of immunofluorescence staining methods: (1) direct immunofluorescence staining in which the primary antibody is labeled with fluorescence dye and (2) indirect immunofluorescence staining in which a secondary antibody labeled with fluorochrome is used to recognize a primary antibody. This chapter describes procedures for the application of indirect immunofluorescence staining to neural cells in culture.

  9. Cultured epidermal stem cells in regenerative medicine.

    Science.gov (United States)

    Jackson, Catherine J; Tønseth, Kim Alexander; Utheim, Tor Paaske

    2017-07-04

    Transplantation of cultured epidermal cell sheets (CES) has long been used to treat patients with burns, chronic wounds, and stable vitiligo. In patients with large area burns this can be a life-saving procedure. The ultimate goal, however, is to restore all normal functions of the skin and prevent scar formation. Increased focus on the incorporation of epidermal stem cells (EpiSCs) within CES transplants may ultimately prove to be key to achieving this. Transplanted EpiSCs contribute to restoring the complete epidermis and provide long-term renewal.Maintenance of the regenerative potential of EpiSCs is anchorage-dependent. The extracellular matrix (ECM) provides physical cues that are interpreted by EpiSCs and reciprocal signaling between cells and ECM are integrated to determine cell fate. Thus, the carrier scaffold chosen for culture and transplant influences maintenance of EpiSC phenotype and may enhance or detract from regenerative healing following transfer.Long-term effectiveness and safety of genetically modified EpiSCs to correct the severe skin blistering disease epidermolysis bullosa has been shown clinically. Furthermore, skin is gaining interest as an easily accessible source of adult epithelial stem cells potentially useful for restoration of other types of epithelia. This review highlights the role of EpiSCs in the current treatment of skin injury and disease, as well as their potential in novel regenerative medicine applications involving other epithelia.

  10. Ascorbic acid transport into cultured pituitary cells

    International Nuclear Information System (INIS)

    Cullen, E.I.; May, V.; Eipper, R.A.

    1986-01-01

    An amidating enzyme designated peptidyl-glycine α-amidating monooxygenase (PAM) has been studied in a variety of tissues and is dependent on molecular oxygen and stimulated by copper and ascorbic acid. To continue investigating the relationship among cellular ascorbic acid concentrations, amidating ability, and PAM activity, the authors studied ascorbic acid transport in three cell preparations that contain PAM and produce amidated peptides: primary cultures of rat anterior and intermediate pituitary and mouse AtT-20 tumor cells. When incubated in 50 μM [ 14 C]ascorbic acid all three cell preparations concentrated ascorbic acid 20- to 40-fold, producing intracellular ascorbate concentrations of 1 to 2 mM, based on experimentally determined cell volumes. All three cell preparations displayed saturable ascorbic acid uptake with half-maximal initial rates occurring between 9 and 18 μM ascorbate. Replacing NaCl in the uptake buffer with choline chloride significantly diminished ascorbate uptake in all three preparations. Ascorbic acid efflux from these cells was slow, displaying half-lives of 7 hours. Unlike systems that transport dehydroascorbic acid, the transport system for ascorbic acid in these cells was not inhibited by glucose. Thus, ascorbate is transported into pituitary cells by a sodium-dependent, active transport system

  11. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    Science.gov (United States)

    van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd

    2012-01-01

    Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421

  12. Hygienic behaviour in Brazilian stingless bees

    Directory of Open Access Journals (Sweden)

    Hasan Al Toufailia

    2016-11-01

    Full Text Available Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera. Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony. These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001, and a positive correlation with the cleaning out of brood cells (P=0.0008. This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because

  13. Hygienic behaviour in Brazilian stingless bees

    Science.gov (United States)

    Alves, Denise A.; Bento, José M. S.; Marchini, Luis C.; Ratnieks, Francis L. W.

    2016-01-01

    ABSTRACT Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera. Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula) in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony). These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001), and a positive correlation with the cleaning out of brood cells (P=0.0008). This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because they lack

  14. Obtaining phenolic acids from cell cultures of various Artemisia ...

    African Journals Online (AJOL)

    Plant cell cultures represent a high valuable source for the production of bioactive secondary metabolites which can be used in food industry, medicine and cosmetic industry. In our study, we focused on obtaining phenolic acids from plant cell cultures. We compared cell cultures obtained from nine plant species of two ...

  15. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    Science.gov (United States)

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  16. Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Pettis Jeffery S

    2009-12-01

    Full Text Available Abstract Background For years, the understanding of the pathogenetic mechanisms that underlie honey bee viral diseases has been severely hindered because of the lack of a cell culture system for virus propagation. As a result, it is very imperative to develop new methods that would permit the in vitro pathogenesis study of honey bee viruses. The identification of virus replication is an important step towards the understanding of the pathogenesis process of viruses in their respective hosts. In the present study, we developed a strand-specific RT-PCR-based method for analysis of Deformed Wing Virus (DWV replication in honey bees and in honey bee parasitic mites, Varroa Destructor. Results The results shows that the method developed in our study allows reliable identification of the virus replication and solves the problem of falsely-primed cDNA amplifications that commonly exists in the current system. Using TaqMan real-time quantitative RT-PCR incorporated with biotinylated primers and magnetic beads purification step, we characterized the replication and tissue tropism of DWV infection in honey bees. We provide evidence for DWV replication in the tissues of wings, head, thorax, legs, hemolymph, and gut of honey bees and also in Varroa mites. Conclusion The strategy reported in the present study forms a model system for studying bee virus replication, pathogenesis and immunity. This study should be a significant contribution to the goal of achieving a better understanding of virus pathogenesis in honey bees and to the design of appropriate control measures for bee populations at risk to virus infections.

  17. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    Science.gov (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  18. A simple and distinctive microbiota associated with honey bees and bumble bees.

    Science.gov (United States)

    Martinson, Vincent G; Danforth, Bryan N; Minckley, Robert L; Rueppell, Olav; Tingek, Salim; Moran, Nancy A

    2011-02-01

    Specialized relationships with bacteria often allow animals to exploit a new diet by providing a novel set of metabolic capabilities. Bees are a monophyletic group of Hymenoptera that transitioned to a completely herbivorous diet from the carnivorous diet of their wasp ancestors. Recent culture-independent studies suggest that a set of distinctive bacterial species inhabits the gut of the honey bee, Apis mellifera. Here we survey the gut microbiotae of diverse bee and wasp species to test whether acquisition of these bacteria was associated with the transition to herbivory in bees generally. We found that most bee species lack phylotypes that are the same or similar to those typical of A. mellifera, rejecting the hypothesis that this dietary transition was symbiont-dependent. The most common bacteria in solitary bee species are a widespread phylotype of Burkholderia and the pervasive insect associate, Wolbachia. In contrast, several social representatives of corbiculate bees do possess distinctive bacterial phylotypes. Samples of A. mellifera harboured the same microbiota as in previous surveys, and closely related bacterial phylotypes were identified in two Asian honey bees (Apis andreniformis and Apis dorsata) and several bumble bee (Bombus) species. Potentially, the sociality of Apis and Bombus species facilitates symbiont transmission and thus is key to the maintenance of a more consistent gut microbiota. Phylogenetic analyses provide a more refined taxonomic placement of the A. mellifera symbionts. © 2010 Blackwell Publishing Ltd.

  19. Wild Bee Community Composition and Foraging Behaviour in Commercial Strawberries

    DEFF Research Database (Denmark)

    Ahrenfeldt, Erica Juel

    despite the fact that value of bee pollination of cultured crops is estimated to approach 800 million DKK. This thesis explores how regional, landscape and local differences affect biodiversity and abundance of wild bees (paper I and II) and wild bee foraging behaviour in terms of spatial distribution...... and small clusters of trees positively affected activity-density of bees at scales from 100 m - 2000 m from where the bees were trapped, which shows the conservation value these habitats represent for wild bees in the agricultural land. Forest negatively affected activity-density at all spatial scales...... possibly due to the low biodiversity offered by many commercially driven, single species, Danish forests. At field scale (I) bee species richness was higher in field margins compared to field centres but there was no difference between centre and margin in body-size or activity-density. Sampling time had...

  20. PHYTOCHEMICAL STUDY OF CELL CULTURE JATROPHA CURCAS

    Directory of Open Access Journals (Sweden)

    KOMAR RUSLAN

    2011-01-01

    Full Text Available Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation.

  1. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled c...... compared to cell cultured in culture flasks incubated in a dark and CO2 conditioned incubator....

  2. Good cell culture practices &in vitro toxicology.

    Science.gov (United States)

    Eskes, Chantra; Boström, Ann-Charlotte; Bowe, Gerhard; Coecke, Sandra; Hartung, Thomas; Hendriks, Giel; Pamies, David; Piton, Alain; Rovida, Costanza

    2017-12-01

    Good Cell Culture Practices (GCCP) is of high relevance to in vitro toxicology. The European Society of Toxicology In Vitro (ESTIV), the Center for Alternatives for Animal Testing (CAAT) and the In Vitro Toxicology Industrial Platform (IVTIP) joined forces to address by means of an ESTIV 2016 pre-congress session the different aspects and applications of GCCP. The covered aspects comprised the current status of the OECD guidance document on Good In Vitro Method Practices, the importance of quality assurance for new technological advances in in vitro toxicology including stem cells, and the optimized implementation of Good Manufacturing Practices and Good Laboratory Practices for regulatory testing purposes. General discussions raised the duality related to the difficulties in implementing GCCP in an academic innovative research framework on one hand, and on the other hand, the need for such GCCP principles in order to ensure reproducibility and robustness of in vitro test methods for toxicity testing. Indeed, if good cell culture principles are critical to take into consideration for all uses of in vitro test methods for toxicity testing, the level of application of such principles may depend on the stage of development of the test method as well as on the applications of the test methods, i.e., academic innovative research vs. regulatory standardized test method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  4. Bee-Wild about Pollinators!

    Science.gov (United States)

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  5. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy.

    Science.gov (United States)

    Rady, Islam; Siddiqui, Imtiaz A; Rady, Mohamad; Mukhtar, Hasan

    2017-08-28

    Melittin (MEL), a major peptide component of bee venom, is an attractive candidate for cancer therapy. This agent has shown a variety of anti-cancer effects in preclinical cell culture and animal model systems. Despite a convincing efficacy data against variety of cancers, its applicability to humans has met with challenges due to several issues including its non-specific cytotoxicity, degradation and hemolytic activity. Several optimization approaches including utilization of nanoparticle based delivery of MEL have been utilized to circumvent the issues. Here, we summarize the current understanding of the anticancer effects of bee venom and MEL on different kinds of cancers. Further, we also present the available information for the possible mechanism of action of bee venom and/or MEL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  7. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Science.gov (United States)

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  8. Structural studies of bee melittin

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, D.; Terwilliger, T.C.; Tsui, F.

    1980-10-01

    The question of how proteins refold in passing from an aqueous phase to an amphipathic environment such as a membrane is beig addressed by a structural study of bee melittin. Melittin is the toxic, main protein of bee venom, and has been shown by others to integrate into natural and synthetic membranes and to lyse a variety of cells. This function is presumably related to its unusual sequence. Except for charges at the N-terminus and at lysine 7, the first 20 residues are largely apolar. In contrast, the last six residues contain four charges and two polar residues.

  9. Equipment for large-scale mammalian cell culture.

    Science.gov (United States)

    Ozturk, Sadettin S

    2014-01-01

    This chapter provides information on commonly used equipment in industrial mammalian cell culture, with an emphasis on bioreactors. The actual equipment used in the cell culture process can vary from one company to another, but the main steps remain the same. The process involves expansion of cells in seed train and inoculation train processes followed by cultivation of cells in a production bioreactor. Process and equipment options for each stage of the cell culture process are introduced and examples are provided. Finally, the use of disposables during seed train and cell culture production is discussed.

  10. [Research progress of cell co-culture method].

    Science.gov (United States)

    Qin, Yanqin; Chen, Yulong; Li, Jiansheng

    2016-08-01

    Cell culture technology is the most commonly used method in the in vitro experiments at present. However, monolayer cell culture technology has been unable to meet the demand of the researchers. This is because that monolayer cell culture cannot mimic the cellular environment in which multiple cells interact with each other in the body. We cannot discuss the relationship of many cells, because we do not know the relationship between cells through a single kind of cell. So cell co-culture medicine arises at the historic moment for the demand. With the development of research method in recent years, cell co-culture method also has been improved in practice: from direct contact co-cultures to indirect contact co-cultures, from two-dimensional co-cultures to three-dimensional co-cultures. Cell co-culture method is closer to the human body. It is also more advantageous to study the interaction among cells. Nowadays, there are more researchers tend to select this method to study the physiological and pathological in vitro model, tissue engineering, and cell differentiation research. At the same time, it has become the focus of drug research and development, drug analysis, mechanism of drug action, and drug targets. This article will review the studies of cell co-culture method, summarize advantages and disadvantages of various methods, so as to promote improvement of cell culture methods, to build cells co-culture system that more close to human body, and build the in vitro model that simulate internal circulation of human body further.

  11. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-04-30

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.

  12. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    Directory of Open Access Journals (Sweden)

    Dasom Shin

    2016-04-01

    Full Text Available Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2 has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA2 six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA2 treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA2 treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA2 on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA2 in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA2 are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA2 in radiation pneumonitis and fibrosis treatments.

  13. Nationwide Survey of Patient Knowledge and Attitudes towards Human Experimentation Using Stem Cells or Bee Venom Acupuncture for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    2014-10-01

    Full Text Available ObjectiveStem cell treatment is a well-recognized experimental treatment among patients with Parkinson’s disease (PD, for which there are high expectations of a positive impact. Acupuncture with bee venom is one of the most popular complementary and alternative treatments for PD. Patient knowledge and attitudes towards these experimental treatments are unknown. MethodsUsing a 12-item questionnaire, a nationwide survey was conducted of 963 PD patients and 267 caregivers in 44 Korean Movement Disorders Society member hospitals from April 2013 to June 2013. The survey was performed by trained interviewers using conventional methods. ResultsRegarding questions on experimental treatments using stem cells or bee venom acupuncture, 5.1–17.7% of PD patients answered questions on safety, efficacy, and evidence-based practice incorrectly; however, more than half responded that they did not know the correct answer. Although safety and efficacy have not been established, 55.5% of PD patients responded that they were willing to receive stem cell treatment. With regard to participating in experimental treatments, there was a strong correlation between stem cell treatment and bee venom acupuncture (p < 0.0001, odds ratio = 5.226, 95% confidence interval 3.919–6.969. Younger age, higher education, and a longer duration of PD were all associated with a correct understanding of experimental treatments. ConclusionsOur data suggest that relatively few PD patients correctly understand the safety and efficacy of experimental treatments and that PD patients are greatly interested in new treatments. We hope that our data will be used to educate or to plan educational programs for PD patients and caregivers.

  14. Protection of cultured mammalian cells by rebamipide

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi

    1997-06-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  15. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  16. Critical PO2 of developing Megachile rotundata, the alfalfa leaf-cutting bee

    Science.gov (United States)

    The alfalfa leaf-cutting bee, Megachile rotundata, is a solitary, cavity-nesting bee. Juvenile bees develop inside brood cells constructed out of leaf pieces. During development inside the brood cell, pre-pupae may experience hypoxic conditions from both the cavity nesting behavior and brood cell ...

  17. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    Science.gov (United States)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  18. Blackawton bees.

    Science.gov (United States)

    Blackawton, P S; Airzee, S; Allen, A; Baker, S; Berrow, A; Blair, C; Churchill, M; Coles, J; Cumming, R F-J; Fraquelli, L; Hackford, C; Hinton Mellor, A; Hutchcroft, M; Ireland, B; Jewsbury, D; Littlejohns, A; Littlejohns, G M; Lotto, M; McKeown, J; O'Toole, A; Richards, H; Robbins-Davey, L; Roblyn, S; Rodwell-Lynn, H; Schenck, D; Springer, J; Wishy, A; Rodwell-Lynn, T; Strudwick, D; Lotto, R B

    2011-04-23

    Real science has the potential to not only amaze, but also transform the way one thinks of the world and oneself. This is because the process of science is little different from the deeply resonant, natural processes of play. Play enables humans (and other mammals) to discover (and create) relationships and patterns. When one adds rules to play, a game is created. the process of playing with rules that enables one to reveal previously unseen patterns of relationships that extend our collective understanding of nature and human nature. When thought of in this way, science education becomes a more enlightened and intuitive process of asking questions and devising games to address those questions. But, because the outcome of all game-playing is unpredictable, supporting this 'messyness', which is the engine of science, is critical to good science education (and indeed creative education generally). Indeed, we have learned that doing 'real' science in public spaces can stimulate tremendous interest in children and adults in understanding the processes by which we make sense of the world. The present study (on the vision of bumble-bees) goes even further, since it was not only performed outside my laboratory (in a Norman church in the southwest of England), but the 'games' were themselves devised in collaboration with 25 8- to 10-year-old children. They asked the questions, hypothesized the answers, designed the games (in other words, the experiments) to test these hypotheses and analysed the data. They also drew the figures (in coloured pencil) and wrote the paper. Their headteacher (Dave Strudwick) and I devised the educational programme (we call 'i,scientist'), and I trained the bees and transcribed the childrens' words into text (which was done with smaller groups of children at the school's local village pub). So what follows is a novel study (scientifically and conceptually) in 'kids speak' without references to past literature, which is a challenge. Although the

  19. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses.

    Science.gov (United States)

    Lee, Min Jung; Jang, Minhee; Choi, Jonghee; Lee, Gihyun; Min, Hyun Jung; Chung, Won-Seok; Kim, Jong-In; Jee, Youngheun; Chae, Younbyoung; Kim, Sung-Hoon; Lee, Sung Joong; Cho, Ik-Hyun

    2016-04-01

    The protective and therapeutic mechanism of bee venom acupuncture (BVA) in neurodegenerative disorders is not clear. We investigated whether treatment with BVA (0.25 and 0.8 mg/kg) at the Zusanli (ST36) acupoints, located lateral from the anterior border of the tibia, has a beneficial effect in a myelin basic protein (MBP)(68-82)-induced acute experimental autoimmune encephalomyelitis (EAE) rat model. Pretreatment (every 3 days from 1 h before immunization) with BVA was more effective than posttreatment (daily after immunization) with BVA with respect to clinical signs (neurological impairment and loss of body weight) of acute EAE rats. Treatment with BVA at the ST36 acupoint in normal rats did not induce the clinical signs. Pretreatment with BVA suppressed demyelination, glial activation, expression of cytokines [interferon (IFN)-γ, IL-17, IL-17A, tumor necrosis factor-alpha (TNF-α), and IL-1β], chemokines [RANTES, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein (MIP)-1α], and inducible nitric oxide synthase (iNOS), and activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB (p65 and phospho-IκBα) signaling pathways in the spinal cord of acute EAE rats. Pretreatment with BVA decreased the number of CD4(+), CD4(+)/IFN-γ(+), and CD4(+)/IL-17(+) T cells, but increased the number of CD4(+)/Foxp3(+) T cells in the spinal cord and lymph nodes of acute EAE rats. Treatment with BVA at six placebo acupoints (SP9, GB39, and four non-acupoints) did not have a positive effect in acute EAE rats. Interestingly, onset and posttreatment with BVA at the ST36 acupoint markedly attenuated neurological impairment in myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced chronic EAE mice compared to treatment with BVA at six placebo acupoints. Our findings strongly suggest that treatment with BVA with ST36 acupoint could delay or attenuate the development and progression of EAE by upregulating regulatory T cells and

  20. X-ray microanalysis of single and cultured cells

    International Nuclear Information System (INIS)

    Wroblewski, J.; Roomans, G.M.

    1984-01-01

    X-ray microanalysis of single or cultured cells is often a useful alternative or complement to the analysis of the corresponding tissue. It also allows the analysis of individual cells in a cell population. Preparation for X-ray microanalysis poses a number of typical problems. Suspensions of single cells can be prepared by either of two pathways: (1) washing - mounting - drying, or (2) centrifugation - freezing or fixation - sectioning. The washing step in the preparation of single or cultured cells presents the most severe problems. Cultured cells are generally grown on a substrate that is compatible with both the analysis and the culture, washed and dried. In some cases, sectioning of cultured cell monolayers has been performed. Special problems in quantitative analysis occur in those cases where the cells are analyzed on a thick substrate, since the substrate contributes to the spectral background

  1. Cholera toxin stimulation of human mammary epithelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  2. Establishment and characterization of American elm cell suspension cultures

    Science.gov (United States)

    Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy

    2000-01-01

    Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...

  3. Electrospinning of microbial polyester for cell culture

    International Nuclear Information System (INIS)

    Kwon, Oh Hyeong; Lee, Ik Sang; Ko, Young-Gwang; Meng, Wan; Jung, Kyung-Hye; Kang, Inn-Kyu; Ito, Yoshihiro

    2007-01-01

    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture

  4. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    of the microfluidic perfusion cell culture system is shown by investigation of adipose-derived stem cell (ASC) differentiation into adipocytes, where we have revealed that paracrine/autocrine signaling is involved in differentiation of a population of ASCs into adipocytes. We have thereby demonstrated......Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs...

  5. Can established cultured papilloma cells harbor bovine papillomavirus?

    Science.gov (United States)

    Campos, S R C; Trindade, C; Ferraz, O P; Giovanni, D N S; Lima, A A; Caetano, H V A; Carvalho, R F; Birgel, E H; Dagli, M L Z; Mori, E; Brandão, P E; Richtzenhain, L J; Beçak, W; Stocco, R C

    2008-10-21

    Papillomaviruses have been reported to be very difficult to grow in cell culture. Also, there are no descriptions of cell cultures from lesions of bovine cutaneous papillomatosis, with identification of different bovine papilloma virus (BPV) DNA sequences. In the present report, we describe primary cell cultures from samples of cutaneous lesions (warts). We investigated the simultaneous presence of different BPV DNA sequences, comparing the original lesion to different passages of the cell cultures and to peripheral blood. BPV 1, 2 and 4 DNA sequences were found in lesion samples, and respective cell cultures and peripheral blood, supporting our previous hypothesis of the possible activity of these sequences in different samples and now also showing how they can be maintained in different passages of cell cultures.

  6. [Effects on proliferation ability of vascular smooth muscle cells by static and/or dynamic cell culture: utility of pre-seeding technique for dynamic cell culture].

    Science.gov (United States)

    Yokomuro, Hiroki; Ozawa, Tsukasa; Fujii, Takeshiro; Shiono, Noritsugu; Watanabe, Yoshinori; Yoshihara, Katsunori; Koyama, Nobuya; Okada, Mitsumasa

    2007-11-01

    Conventional biomaterials are not viable, do not grow, and do not provide contractile effects in cardiac tissue. Foreign synthetic material may become thrombogenic or infected. The most recent cardiac constructs consist of biodegradable material which has the potential to solve these problems. However, dynamic three-dimensional cell culture is necessary because conventional culture is limited to construct tough biografts. Vascular smooth muscle cells derived from rat aorta were seeded to poly-L-lactide-epsilon-capro-lactone copolymer in three groups; static culture group (static cell seeding + static cell culture), dynamic culture group (dynamic cell seeding + dynamic cell culture), and pre-seeding group [static cell seeding and culture for 1 week (pre-seeding) + dynamic cell culture]. The dynamic cell culture system used an original spinner flask. The pre-seeding technique used static cell seeding and culture before dynamic culture. The three groups were evaluated by cell proliferation and histologic studies. Vascular smooth muscle cells could be proliferated in/on the biodegradable materials. The pre-seeding group cells grew much more efficiently than the other groups. Very few cells were found in the biodegradable materials with the dynamic groups. However, there were many cells in the materials with the static culture group and pre-seeding group, especially the pre-seeding group. Dynamic culture is useful for constructing tough biografts by the pre-seeding technique.

  7. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Jennifer A Berry

    Full Text Available In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate and Check Mite+ (coumaphos and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  8. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    Science.gov (United States)

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  9. Bee Hunt! Ecojustice in Practice for Earth's Buzzing Biodiversity

    Science.gov (United States)

    Mueller, Michael P.; Pickering, John

    2010-01-01

    The Bee Hunt! project and curriculum are designed with cultural and environmental sensitivity in mind. In this project, K-12 students develop their awareness and understanding of science and investigate North American pollinator declines. Bees, butterflies, and other pollinators are integrally connected to the pollination of the world's crops for…

  10. Isolation and culture of larval cells from C. elegans.

    Directory of Open Access Journals (Sweden)

    Sihui Zhang

    Full Text Available Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4 cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81% of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.

  11. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  12. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  13. Synthesis of polymer materials for use as cell culture substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lakard, Sophie [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, IUT, 30 Avenue de l' Observatoire, 25009 Besancon (France)], E-mail: sophie.lakard@univ-fcomte.fr; Morrand-Villeneuve, Nadege [Laboratoire de Neurosciences, University of Franche-Comte, Place Leclerc, 25030 Besancon (France); Lesniewska, Eric [Laboratoire de Physique de l' Universite de Bourgogne, University of Bourgogne, 9 Avenue Savary, 21078 Dijon (France); Lakard, Boris [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Michel, Germaine [Laboratoire de Neurosciences, University of Franche-Comte, Place Leclerc, 25030 Besancon (France); Herlem, Guillaume [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Gharbi, Tijani [Laboratoire d' Optique P.M. Duffieux, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Fahys, Bernard [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France)

    2007-12-20

    Up to today, several techniques have been used to maintain cells in culture for studying many aspects of cell biology and physiology. More often, cell culture is dependent on proper anchorage of cells to the growth surface. Thus, poly-L-lysine, fibronectin or laminin are the most commonly used substrates. In this study, electrosynthesized biocompatible polymer films are proposed as an alternative to these standard substrates. The electrosynthesized polymers tested were polyethylenimine, polypropylenimine and polypyrrole. Then, the adhesion, proliferation and morphology of rat neuronal cell lines were investigated on these polymer substrates in an attempt to develop new and efficient polymer materials for cell culture. During their growth on the polymers, the evolution of the cell morphology was monitored using both confocal microscopy and immunohistochemistry, leading to the conclusion of a normal development. An estimation of the adhesion and proliferation rates of rat neuronal cell cultures indicated that polyethylenimine and polypropylenimine were the best substrates for culturing olfactory neuronal cells. A method to favour the differentiation of the neuronal cells was also developed since the final aim of this work is to develop a biosensor for odour detection using differentiated neuronal cells as transducers. Consequently, a biosensor was microfabricated using silicon technology. This microsystem allowed us to culture the cells on a silicon wafer and to position the cells on certain parts of the silicon wafer.

  14. Development of a microfluidic perfusion 3D cell culture system

    Science.gov (United States)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  15. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy

    OpenAIRE

    Rady, Islam; Siddiqui, Imtiaz A.; Rady, Mohamad; Mukhtar, Hasan

    2017-01-01

    Melittin (MEL), a major peptide component of bee venom, is an attractive candidate for cancer therapy. This agent has shown a variety of anti-cancer effects in preclinical cell culture and animal model systems. Despite a convincing efficacy data against variety of cancers, its applicability to humans has met with challenges due to several issues including its non-specific cytotoxicity, degradation and hemolytic activity. Several optimization approaches including utilization of nanoparticle ba...

  16. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Science.gov (United States)

    Kim, Hyunseong; Keum, Dong June; Kwak, Jung won; Chung, Hwan-Suck; Bae, Hyunsu

    2014-01-01

    The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2) from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/-) mice were injected with PLA2 once a day for five days and sacrificed 24 h (h) after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  17. Aeroponics for the culture of organisms, tissues and cells.

    Science.gov (United States)

    Weathers, P J; Zobel, R W

    1992-01-01

    Characteristics of aeroponics are discussed. Contrast is made, where appropriate, with hydroponics and aero-hydroponics as applies to research and commercial applications of nutrient mist technology. Topics include whole plants, plant tissue cultures, cell and microbial cultures, and animal tissue cultures with regard to operational considerations (moisture, temperature, minerals, gaseous atmosphere) and design of apparati.

  18. A method for culturing human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1981-01-01

    For the first time a method for culturing human hair follicle cells is described. The bovine eye lens capsule, a basement membrane-like structure, is used as the substrate for the cultures. In a culture medium supplemented with hydrocortisone and insulin about 70% of the original follicles will form growing colonies of diploid keratinocytes.

  19. Evaluation of royal jelly as an alternative to fetal bovine serum in cell culture using cell proliferation assays and live cell imaging.

    Science.gov (United States)

    Musa, Marahaini; Nasir, Nurul Fatihah Mohamad; Thirumulu, Kannan Ponnuraj

    2014-01-01

    Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth and proliferation. The aim of this study was to evaluate the effect of royal jelly as an alternative to fetal bovine serum (FBS) in cell culture using cell proliferation assays and live cell imaging. MRC-5 cells were treated with various concentrations of royal jelly extract in MTT assay. The control groups were comprised of Alpha-Minimal Essential Medium (α-MEM) alone and α-MEM with 10% FBS. Subsequently, the cell proliferation was studied for 10 days using Alamar Blue assay and live cell imaging from 48 to 72 h. The population doubling time (PDT) was determined using trypan blue assay after live cell imaging. In MTT assay, 0.156 and 0.078 mg/ml of royal jelly produced higher cell viability compared to positive control group but were not significantly different (P > 0.05). In the Alamar Blue assay, 0.156 and 0.078 mg/ml of royal jelly produced greater percentage of reduction at day 3 even though no significant difference was found (P > 0.05). Based on live cell imaging, the PDT for positive, negative, 0.156 and 0.078 mg/ml of royal jelly groups were 29.09, 62.50, 41.67 and 41.67 h respectively. No significant difference was found in the PDT between all the groups (P > 0.05). Royal jelly does not exhibit similar ability like FBS to facilitate cell growth under the present test conditions.

  20. Rabbit uterine epithelial cells: Co-culture with spermatozoa

    International Nuclear Information System (INIS)

    Boice, M.L.

    1988-01-01

    A primary culture of rabbit uterine epithelial cells was established and their effects on sperm function were examined in vitro. Epithelial cells were isolated from uteri of estrous rabbits and cultured on floating collagen gels in phenol red-free medium supplemented with 5% fetal bovine serum. Light microscopy and keratin staining showed that the epithelial cell population established in culture had morphological characteristics similar to that seen in the intact endometrium. Cells were cultured with 3 H-leucine and uptake of label by cells and its incorporation into cellular and secretory proteins determined. When compared to cells cultured for 24-48 h, incorporation of label into cellular protein was lower at 72-96 h, but secretion increased. Estradiol 17-β did not affect label uptake or incorporation, but did enhance proliferation of cells as judged by total DNA content of the cell population. Analysis of proteins in media by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography suggested that epithelial and stromal cells synthesis proteins that may be secretory in nature during 72-96 h culture. Twenty-nine to thirty-one h after initiation of epithelial cultures, 1-2 x 10 6 sperm were co-incubated with cells and sperm viability, motility, loss of acrosome and fertilizing ability determined

  1. Response to Dengue virus infections altered by cytokine-like substances from mosquito cell cultures

    Directory of Open Access Journals (Sweden)

    Laosutthipong Chaowanee

    2010-11-01

    Full Text Available Abstract Background With both shrimp and commercial insects such as honey bees, it is known that stable, persistent viral infections characterized by absence of disease can sometimes shift to overt disease states as a result of various stress triggers and that this can result in serious economic losses. The main research interest of our group is to understand the dynamics of stable viral infections in shrimp and how they can be destabilized by stress. Since there are no continuous cell lines for crustaceans, we have used a C6/36 mosquito cell line infected with Dengue virus to test hypotheses regarding these interactions. As a result, we accidentally discovered two new cytokine-like substances in 5 kDa extracts from supernatant solutions of acutely and persistently infected mosquito cells. Results Naïve C6/36 cells were exposed for 48 h to 5 kDa membrane filtrates prepared from the supernatant medium of stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Subsequent challenge of naïve cells with a virulent stock of Dengue virus 2 (DEN-2 and analysis by confocal immunofluorescence microscopy using anti-DEN-2 antibody revealed a dramatic reduction in the percentage of DEN-2 infected cells when compared to control cells. Similar filtrates prepared from C6/36 cells with acute DEN-2 infections were used to treat stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Confocal immunofluorescence microscopy revealed destabilization in the form of an apoptosis-like response. Proteinase K treatment removed the cell-altering activities indicating that they were caused by small polypeptides similar to those previously reported from insects. Conclusions This is the first report of cytokine-like substances that can alter the responses of mosquito cells to Dengue virus. This simple model system allows detailed molecular studies on insect cytokine production and on cytokine activity in a standard insect cell line.

  2. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  3. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R

    2003-01-01

    A streamlined, simple technique for primary cell culture from E17 rat tissue is presented. In an attempt to standardize culturing methods for all neuronal cell types in the embryo, we evaluated a commercial medium without serum and used similar times for trypsinization and tested different surfaces...

  4. Induction of interdigitating cell processes in podocyte culture.

    Science.gov (United States)

    Yaoita, Eishin; Yoshida, Yutaka; Nameta, Masaaki; Takimoto, Hiroki; Fujinaka, Hidehiko

    2018-02-01

    Highly organized cell processes characterize glomerular podocytes in vivo. However, podocytes in culture have a simple morphology lacking cell processes, especially upon reaching confluence. Here, we aimed to establish culture conditions under which cultured podocytes extend cell processes at confluence. Among various culture conditions that could possibly cause phenotypic changes in podocytes, we examined the effects of heparin, all-trans retinoic acid, fetal bovine serum, and extracellular matrices on the morphology of podocytes in rat primary culture. Consequently, long arborized cell processes were observed to radiate extensively from the cell body only when cells were cultured in the presence of heparin and all-trans retinoic acid on laminin-coated dishes with decreasing concentrations of fetal bovine serum. Primary processes branching repeatedly into terminal processes and cell process insertion under adjacent cell bodies were evident by electron microscopy-based analysis. Immunostaining for podocin showed conspicuous elongations of intercellular junctions. Under these conditions, the expression levels of podocyte-specific proteins and genes were markedly upregulated. Thus, we succeeded in establishing culture conditions in which the cultured podocytes exhibit phenotypes similar to those under in vivo conditions. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. Viable Cell Culture Banking for Biodiversity Characterization and Conservation.

    Science.gov (United States)

    Ryder, Oliver A; Onuma, Manabu

    2018-02-15

    Because living cells can be saved for indefinite periods, unprecedented opportunities for characterizing, cataloging, and conserving biological diversity have emerged as advanced cellular and genetic technologies portend new options for preventing species extinction. Crucial to realizing the potential impacts of stem cells and assisted reproductive technologies on biodiversity conservation is the cryobanking of viable cell cultures from diverse species, especially those identified as vulnerable to extinction in the near future. The advent of in vitro cell culture and cryobanking is reviewed here in the context of biodiversity collections of viable cell cultures that represent the progress and limitations of current efforts. The prospects for incorporating collections of frozen viable cell cultures into efforts to characterize the genetic changes that have produced the diversity of species on Earth and contribute to new initiatives in conservation argue strongly for a global network of facilities for establishing and cryobanking collections of viable cells.

  6. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    Science.gov (United States)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  7. The release of iron by Sertoli cells in culture

    NARCIS (Netherlands)

    Wauben-Penris, P. J.; Veldscholte, J.; van der Ende, A.; van der Donk, H. A.

    1988-01-01

    In seminiferous tubules, iron transport from the blood to the abluminal germinal cells must occur through the Sertoli cell cytoplasm. We investigated the release of previously accumulated iron by cultured Sertoli cells. We found that Sertoli cells contain easily releasable and less easily releasable

  8. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures

  9. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-02-22

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  10. Widespread occurrence of honey bee pathogens in solitary bees.

    Science.gov (United States)

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  12. Tryptophan oxidation catabolite, N-formylkynurenine, in photo degraded cell culture medium results in reduced cell culture performance.

    Science.gov (United States)

    McElearney, Kyle; Ali, Amr; Gilbert, Alan; Kshirsagar, Rashmi; Zang, Li

    2016-01-01

    Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC-MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N-formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers.

  13. Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep

    Science.gov (United States)

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  14. A kinetic model for flavonoid production in tea cell culture.

    Science.gov (United States)

    Shibasaki-Kitakawa, Naomi; Iizuka, Yasuhiro; Takahashi, Atsushi; Yonemoto, Toshikuni

    2017-02-01

    As one of the strategies for efficient production of a metabolite from cell cultures, a kinetic model is very useful tool to predict productivity under various culture conditions. In this study, we propose a kinetic model for flavonoid production in tea cell culture based on the cell life cycle and expression of PAL, the gene encoding phenylalanine ammonia-lyase (PAL)-the key enzyme in flavonoid biosynthesis. The flavonoid production rate was considered to be related to the amount of active PAL. Synthesis of PAL was modelled based on a general gene expression/translation mechanism, including the transcription of DNA encoding PAL into mRNA and the translation of PAL mRNA into the PAL protein. The transcription of DNA was assumed to be promoted at high light intensity and suppressed by a feedback regulatory mechanism at high flavonoid concentrations. In the model, mRNA and PAL were considered to self-decompose and to be lost by cell rupture. The model constants were estimated by fitting the experimental results obtained from tea cell cultures under various light intensities. The model accurately described the kinetic behaviors of dry and fresh cell concentrations, glucose concentration, cell viability, PAL specific activity, and flavonoid content under a wide range of light intensities. The model simulated flavonoid productivity per medium under various culture conditions. Therefore, this model will be useful to predict optimum culture conditions for maximum flavonoid productivity in cultured tea cells.

  15. [Application of cell co-culture techniques in medical studies].

    Science.gov (United States)

    Luo, Yun; Sun, Gui-Bo; Qin, Meng; Yao, Fan; Sun, Xiao-Bo

    2012-11-01

    As the cell co-culture techniques can better imitate an in vivo environment, it is helpful in observing the interactions among cells and between cells and the culture environment, exploring the effect mechanisms of drugs and their possible targets and filling the gaps between the mono-layer cell culture and the whole animal experiments. In recently years, they has attracted much more attention from the medical sector, and thus becoming one of research hotspots in drug research and development and bio-pharmaceutical fields. The cell co-culture techniques, including direct and indirect methods, are mainly used for studying pathological basis, new-type treatment methods and drug activity screening. Existing cell co-culture techniques are used for more pharmacological studies on single drug and less studies on interaction of combined drugs, such as collaborative compatibility and attenuation and synergistic effect among traditional Chinese medicines (TCMs). In line with the action characteristics of multi-component and multi-target, the cell co-culture techniques provide certain reference value for future studies on the effect and mechanism of combined TCMs on organisms as well as new methods for studies on TCMs and their compounds. This essay summarizes cell co-culture methods and their application and look into the future of their application in studies on TCMs and compounds.

  16. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  17. Bumblebees and solitary bees

    DEFF Research Database (Denmark)

    Henriksen, Casper Christian I

    organic fields than in those bordering conventional fields. This was due to the absence of herbicides and to practices inherent to organic farming systems, such as use of clover (a high value bee plant) as a green manure and fodder crop. Solitary bees responded with significantly higher numbers......Summary: The effects of farming system, flower resources and semi-natural habitats on bumblebees and solitary bees in intensively cultivated landscapes in Denmark were investigated in two sets of studies, in 2011 and 2012. The pan trap colour preferences of bumblebees and solitary bees were also...... use as a proxy at four different scales (250, 500, 750 and 1000 m). In 2012, the effect of a four-fold larger area of organic arable fields in simple, homogeneous landscapes on bumblebees and solitary bees was investigated in eight circular landscapes (radius 1000 m). Bumblebees and solitary bees were...

  18. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been te...... tested successfully with brain slices and PC12 cells. The culture substrate can be modified using metal electrodes and/or nanostructures for conducting electrical measurements while culturing and for better mimicking the in vivo conditions.......In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been...

  19. The anti-tumor effect of bee honey in Ehrlich ascite tumor model of mice is coincided with stimulation of the immune cells.

    Science.gov (United States)

    Attia, W Y; Gabry, M S; El-Shaikh, K A; Othman, G A

    2008-01-01

    Honey is thought to exhibit a broad spectrum of therapeutic properties including antibacterial, antifungal, cytostatic and anti-inflammatory activity and has been used for the treatment of gastric ulcers, burns, and for storage of skin grafts. The present study investigated the antitumor effect of bee honey against Ehrlich ascites tumor in mice and the possible mode of antitumor action. Peroral administration of mice with honey (10, 100 or 1000 mg/ 100 g BW) every other day for 4 weeks before intraperitoneal inoculation with Ehrlich ascites tumor (EAT, 1 x 10(6) cells) increased the number bone marrow cells as well as peritoneal macrophages, but not peripheral blood leukocytes nor splenocytes. The phagocytic function of macrophages as well as the T- and B-cell functions were also increased. Honey pre-treatment also recovered the total lipids, total proteins, as well as liver and kidney enzyme activities in EAT-bearing mice. In vitro studies on EAT cells demonstrated inhibitory effect of honey on tumor cell proliferation, viability % of tumor cells as well as the size of solid tumor. The present results indicate that the preventive treatment with honey is considerably effective against EAT in mice both in vivo and in vitro. The antitumor activity of honey may occur through the activation of macrophages, T-cells and B-cells.

  20. Neutralization of Apis mellifera bee venom activities by suramin.

    Science.gov (United States)

    El-Kik, Camila Z; Fernandes, Fabrício F A; Tomaz, Marcelo Amorim; Gaban, Glauco A; Fonseca, Tatiane F; Calil-Elias, Sabrina; Oliveira, Suellen D S; Silva, Claudia L M; Martinez, Ana Maria Blanco; Melo, Paulo A

    2013-06-01

    In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Radiosensitivity of primary cultured fish cells with different ploidy

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Egami, Nobuo; Kobayashi, Hiromu.

    1986-01-01

    The radiosensitivity of primary cultured goldfish cells (Carassius auratus) was investigated by colony formation assay. The radiosensitivity of cells from two varieties of goldfish, which show different sensitivity to lethal effect of ionizing radiation in vivo, was almost identical. Primary cultured cells from diploid, triploid and tetraploid fish retained their DNA content as measured by microfluorometry, and the nuclear size increases as ploidy increases. However, radiosensitivity was not related to ploidy. (author)

  2. Treatment of Mycoplasma Contamination in Cell Cultures with Plasmocin

    OpenAIRE

    Uphoff, Cord C.; Denkmann, Sabine-A.; Drexler, Hans G.

    2012-01-01

    A high percentage of cell lines are chronically infected with various mycoplasma species. The addition of antibiotics that are particularly effective against these contaminants to the culture medium during a limited period of time is a simple, inexpensive, and very practical approach for decontaminating cell cultures. Here, we examined the effectiveness of the new antimycoplasma compound Plasmocin that has been employed routinely to cleanse chronically infected cell lines. In a first round of...

  3. Africanized Honey Bee

    OpenAIRE

    Hodgson, Erin W.; Stanley, Cory A.; Roe, Alan H.; Downey, Danielle

    2010-01-01

    African honey bees (Apis mellifera scutellata) are native to sub-Saharan Africa and were introduced in the Americas to improve honey production in the tropics. These African honey bees were accidentally released and began to interbreed with European honey bees (Apis mellifera ligustica), the most common subspecies used for pollination and honey production in the United States (Fig. 1). As a result, the hybrid offspring are called “Africanized” because of their shared characteristics. Africani...

  4. Multizone Paper Platform for 3D Cell Cultures

    Science.gov (United States)

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  5. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  6. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  7. The biochemical mechanism of hypoxia-induced mobilization of glycogen in cultured cancer cell

    OpenAIRE

    Mung, KL; Wong, NS

    2014-01-01

    BACKGROUND: Metabolic reprogramming is one of the strategies adopted by cancer cells to survive hypoxic conditions. Recent findings suggest that hypoxic cancer cells derive the energy that they need through glycolysis using glucose mobilized from intracellular glycogen reserve. Glycogen phosphorylase (GP) is the major rate-determining enzyme for glycogen mobilization in many normal cells under the condition of starvation or physical exercise. The lysosomal alpha-glucosidase (GAA) has also bee...

  8. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    Science.gov (United States)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  9. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  10. The ultrastructure of separated and cultured cell of Porphyra yezoensis

    Science.gov (United States)

    Mei, Jun-Xue; Fei, Xiu-Geng

    2001-03-01

    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  11. Monitoring of cell cultures with LTCC microelectrode array.

    Science.gov (United States)

    Ciosek, P; Zawadzki, K; Łopacińska, J; Skolimowski, M; Bembnowicz, P; Golonka, L J; Brzózka, Z; Wróblewski, W

    2009-04-01

    Monitoring of cell cultures in microbioreactors is a crucial task in cell bioassays and toxicological tests. In this work a novel tool based on a miniaturized sensor array fabricated using low-temperature cofired ceramics (LTCC) technology is presented. The developed device is applied to the monitoring of cell-culture media change, detection of the growth of various species, and in toxicological studies performed with the use of cells. Noninvasive monitoring performed with the LTCC microelectrode array can be applied for future cell-engineering purposes.

  12. Nylon-3 polymers that enable selective culture of endothelial cells.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Gellman, Samuel H; Masters, Kristyn S

    2013-11-06

    Substrates that selectively encourage the growth of specific cell types are valuable for the engineering of complex tissues. Some cell-selective peptides have been identified from extracellular matrix proteins; these peptides have proven useful for biomaterials-based approaches to tissue repair or regeneration. However, there are very few examples of synthetic materials that display selectivity in supporting cell growth. We describe nylon-3 polymers that support in vitro culture of endothelial cells but do not support the culture of smooth muscle cells or fibroblasts. These materials may be promising for vascular biomaterials applications.

  13. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  14. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  15. Stimulation and support of haemopoietic stem cell proliferation by irradiated stroma cell colonies in bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, Hiroko; Seto, Akira

    1981-01-01

    A culture system was established in which haemopoietic stem cells can undergo a recovery proliferation after a depletion of the stem cells, completely in vitro. To elucidate the source of the stimulatory factors, normal bone marrow cells were overlayed on top of the irradiated adherent 'stromal' cell colonies in the bone marrow cell culture. This stimulated the proliferation of haemopoietic stem cells in the cultured cells in suspension. The present results indicate that the stromal cells produce factors which stimulate stem cell proliferation. Whether the stimulation is evoked by direct cell-cell interactions or by humoral factors is as yet to be studied. (author)

  16. Immunodissection and culture of rabbit cortical collecting tubule cells

    International Nuclear Information System (INIS)

    Spielman, W.S.; Sonnenburg, W.K.; Allen, M.L.; Arend, L.J.; Gerozissis, K.; Smith, W.L.

    1986-01-01

    A mouse monoclonal antibody designated IgG 3 (rct-30) has been prepared that reacts specifically with an antigen on the surface of all cells comprising the cortical and medullary rabbit renal collecting tubule including the arcades. Plastic culture dishes coated with IgG 3 (rct-30) were used to isolate collecting tubule cells from collagenase dispersions of rabbit renal cortical cells by immunoadsorption. Typically, 10 6 rabbit cortical collecting tubule (RCCT) cells were obtained from 5 g of renal cortex (2 kidneys). Between 20 and 30% of the RCCT cells were reactive with peanut lectin suggesting that RCCT cells are a mixture of principal and intercalated cells. Approximately 10 7 RCCT cells were obtained after 4 to 5 days in primary culture. Moreover, RCCT cells continued to proliferate after passaging with a doubling time of ∼32 h. RCCT cells passaged once and then cultured 4-5 days were found 1) to synthesize cAMP in response to arginine vasopressin (AVP), prostaglandin E 2 (PGE 2 ), isoproterenol, and parathyroid hormone, but not calcitonin, prostaglandin D 2 , or prostaglandin I, and 2) to release PGE 2 in response to bradykinin but not arginine vasopressin or isoproterenol. The results indicate that cultured RCCT cells retain many of the hormonal, histochemical, and morphological properties expected for a mixture of principal and intercalated rabbit cortical collecting tubule epithelia. RCCT cells should prove useful both for studying hormonal interactions in the cortical collecting tubule and as a starting population for isolating intercalated collecting tubule epithelia

  17. In vitro production of azadirachtin from cell suspension cultures of ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    to affect the growth and metabolism of cultured cells, and have been studied extensively in different species in .... Specific growth rate of neem cell suspensions in altered nitrate: ammonium ratio. MS, Murashige and Skoog medium; MS medium with .... Stimulated caffeine production has been reported in Coffea arabica cell ...

  18. Management of Corneal Bee Sting Injuries.

    Science.gov (United States)

    Rai, Ruju R; Gonzalez-Gonzalez, Luis A; Papakostas, Thanos D; Siracuse-Lee, Donna; Dunphy, Robert; Fanciullo, Lisa; Cakiner-Egilmez, Tulay; Daly, Mary K

    2017-01-01

    To review the management of keratitis after corneal bee stings and to report a case of deep stromal corneal infiltrate secondary to a retained bee stinger managed conservatively in a patient who presented three days after unsanitary manipulation of the stinger apparatus. Case report and review of literature. A 57-year-old male beekeeper was evaluated for pain, blurry vision, and photosensitivity after a corneal bee sting. Of note, the venom sac had been removed with dirty tweezers three days prior to his visit. On exam, a focal infiltrate with diffuse edema was seen surrounding a retained bee stinger in the peripheral cornea. Trace cells in the anterior chamber were also noted. Based on a high suspicion for infectious keratitis, a conservative treatment strategy was elected. Administration of broad-spectrum topical antibiotics with concomitant abstention of corticosteroids led to rapid resolution of the symptoms. Over 16 months of follow-up, the stinger has remained in situ without migration and the patient has maintained 20/20 visual acuity without complications. There is debate on the preferred method for the management of corneal injury secondary to bee stings, especially when it is associated with a retained stinger. We herein present our findings in our appraisal of reported cases. In the aftermath of an ocular bee sting, close surveillance for inflammation and infection is essential. Individual manifestations of these injuries vary in timing, type, and severity; therefore, the accessibility of the stinger and the evolving clinical picture should guide therapeutic decisions.

  19. Protein biosynthesis in cultured human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1980-10-31

    A new technique has been used for culturing human keratinocytes. The cells grow on the basement membrane-like capsules of bovine lenses. Lens cells were removed from the capsules by rigid trypsinization. In order to exclude any contamination with remaining living cells the isolated capsules were irradiated with X-rays at a dose of 10,000 rad. In this way human epithelial cells can be brought in culture from individual hair follicles. Since feeder cells are not used in this culture technique, the biosynthesis of keratinocyte proteins can be studied in these cultures. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble, and a urea-insoluble fraction. Product analysis has been performed on the first two fractions revealing protein patterns identical to those of intact hair follicles. Product analysis of the urea-soluble fractions of microdissected hair follicles shows that the protein pattern of the cultured keratinocytes resembles the protein pattern of the hair follicle sheath. Studies on the metabolism of benzo(a)pyrene revealed that the enzyme aryl hydrocarbon hydroxylase (AHH) is present in cultured hair follicle cells. A possible use of our culture system for eventual detection of inherited predisposition for smoking-dependent lung cancer is discussed.

  20. Effect of Australian Propolis from Stingless Bees (Tetragonula carbonaria) on Pre-Contracted Human and Porcine Isolated Arteries

    Science.gov (United States)

    Massaro, Flavia C.; Brooks, Peter R.; Wallace, Helen M.; Nsengiyumva, Vianne; Narokai, Lorraine; Russell, Fraser D.

    2013-01-01

    Bee propolis is a mixture of plant resins and bee secretions. While bioactivity of honeybee propolis has been reported previously, information is limited on propolis from Australian stingless bees (Tetragonula carbonaria). The aim of this study was to investigate possible vasomodulatory effects of propolis in KCl-precontracted porcine coronary arteries using an ex vivo tissue bath assay. Polar extracts of propolis produced a dose-dependent relaxant response (EC50=44.7±7.0 μg/ml), which was unaffected by endothelial denudation, suggesting a direct effect on smooth muscle. Propolis markedly attenuated a contractile response to Ca2+ in vessels that were depolarised with 60 mM KCl, in Ca2+-free Krebs solution. Propolis (160 µg/ml) reduced vascular tone in KCl pre-contracted vessels to near-baseline levels over 90 min, and this effect was partially reversible with 6h washout. Some loss in membrane integrity, but no loss in mitochondrial function was detected after 90 min exposure of human cultured umbilical vein endothelial cells to 160 µg/ml propolis. We conclude that Australian stingless bee (T. carbonaria) propolis relaxes porcine coronary artery in an endothelial-independent manner that involves inhibition of voltage-gated Ca2+ channels. This effect is partially and slowly reversible upon washout. Further studies are required to determine the therapeutic potential of Australian stingless bee propolis for conditions in which vascular supply is compromised. PMID:24260567

  1. Control of fibronectin synthesis by rat granulosa cells in culture

    International Nuclear Information System (INIS)

    Skinner, M.K.; Dorrington, J.H.

    1984-01-01

    The secreted and cellular [ 35 S]methionine-radiolabeled proteins of cultured rat granulosa cells were separated by electrophoresis on sodium dodecylsulfate (SDS) polyacrylamide gradient slab gels. From 24 to 72 h of culture FSH increased the intensity of labeling of most of the secreted proteins. A 220,000-dalton protein, however, increased in intensity only in control cultures and became the major secreted protein after 72 h, comprising 20% of the total radiolabeled proteins. This protein was identified as fibronectin by immunoprecipitation. There was no increase in the secreted or cellular fibronectin in FSH- or testosterone- and insulin-treated cultures. These studies indicate that a component of extracellular matrix is a major secretory product of unstimulated immature granulosa cells. As hormones induce the differentiated functions of granulosa cells in culture, the secretion of fibronectin is inhibited

  2. Characterization of a novel miniature cell culture device

    Science.gov (United States)

    Moore, Sandra K.; Kleis, Stanley J.

    2008-05-01

    Recent advancements in the field of microfluidics have generated much interest in the advent of a miniaturized cell culture device. In this study, we developed a novel miniature culture system (cells, either prokaryotic or eukaryotic in type, for both 1 g and microgravity applications. The miniature culture system may advance the development of microanalytical remote monitoring tools such as biological sentinels, biosensors, and lab-on-a-chip. Integrating the autonomous miniature culture system with a microanalytical device makes a powerful biological tool. Cells can be cultured long-term, harvested, and released directly into an analytical tool without the need for human interaction through fluid dynamic manipulations. This work characterizes the miniature bioreactor system through numerical and experimental proof of concept studies.

  3. Radiosensitivity of cultured insect cells: II. Diptera

    Energy Technology Data Exchange (ETDEWEB)

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  4. Radiosensitivity of cultured insect cells: II. Diptera

    International Nuclear Information System (INIS)

    Koval, T.M.

    1983-01-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D 0 values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells

  5. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  6. Generation of a patterned co-culture system composed of adherent cells and immobilized nonadherent cells.

    Science.gov (United States)

    Yamazoe, Hironori; Ichikawa, Takashi; Hagihara, Yoshihisa; Iwasaki, Yasuhiko

    2016-02-01

    Patterned co-culture is a promising technique used for fundamental investigation of cell-cell communication and tissue engineering approaches. However, conventional methods are inapplicable to nonadherent cells. In this study, we aimed to establish a patterned co-culture system composed of adherent and nonadherent cells. Nonadherent cells were immobilized on a substrate using a cell membrane anchoring reagent conjugated to a protein, in order to incorporate them into the co-culture system. Cross-linked albumin film, which has unique surface properties capable of regulating protein adsorption, was used to control their spatial localization. The utility of our approach was demonstrated through the fabrication of a patterned co-culture consisting of micropatterned neuroblastoma cells surrounded by immobilized myeloid cells. Furthermore, we also created a co-culture system composed of cancer cells and immobilized monocytes. We observed that monocytes enhanced the drug sensitivity of cancer cells and its influence was limited to cancer cells located near the monocytes. Therefore, the incorporation of nonadherent cells into a patterned co-culture system is useful for creating culture systems containing immune cells, as well as investigating the influence of these immune cells on cancer drug sensitivity. Various methods have been proposed for creating patterned co-culture systems, in which multiple cell types are attached to a substrate with a desired pattern. However, conventional methods, including our previous report published in Acta Biomaterialia (2010, 6, 526-533), are unsuitable for nonadherent cells. Here, we developed a novel method that incorporates nonadherent cells into the co-culture system, which allows us to precisely manipulate and study microenvironments containing nonadherent and adherent cells. Using this technique, we demonstrated that monocytes (nonadherent cells) could enhance the drug sensitivity of cancer cells and that their influence had a

  7. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long-te...

  8. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture.

    Science.gov (United States)

    Lestard, Nathalia R; Capella, Marcia A M

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  9. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    Total soluble proteins (TSP) and culture filtrate (CF) proteins were extracted from the cell culture system and solubilised in urea buffer (9 M urea, 2 M thiourea and 4% CHAPS). Both onedimensional (1D) and two-dimensional (2D) gel analysis of these two proteomes show that the TSP and CF proteomes have different ...

  10. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  11. Enhancement of Diosgenin Production in Plantlet and Cell Cultures ...

    African Journals Online (AJOL)

    Enhancement of Diosgenin Production in Plantlet and Cell Cultures of Dioscorea zingiberensis by Palmarumycin C13 from the Endophytic fungus, Berkleasmium sp. Dzf12. Y Mou, K Zhou, D Xu, R Yu, J Li, C Yin, L Zhou ...

  12. Impact of cell culture on recombinant monoclonal antibody product heterogeneity.

    Science.gov (United States)

    Liu, Hongcheng; Nowak, Christine; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa

    2016-09-01

    Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103-1112, 2016. © 2016 American Institute of Chemical Engineers.

  13. Viral risk mitigation for Mammalian cell culture media.

    Science.gov (United States)

    Weaver, Bob; Rosenthal, Scott

    2010-01-01

    Adventitious viral contamination in mammalian cell culture manufacturing facilities can lead to loss of product due to regulatory concerns regarding potential health risks. These events can also result in manufacturing shutdowns for extended periods of time. Numerous measures are currently taken to minimize these risks. Nonetheless, raw materials remain a high-risk entry point for viral contamination of mammalian cell cultures. Two virucidal technologies, ultraviolet radiation in the C band and high-temperature short-time pasteurization, were tested for the treatment of mammalian cell culture media. The results demonstrated no impact to the cell culture process or the quality of the products produced at the chosen dosage while providing robust viral protection.

  14. Elicitation of Diacetylenic Compounds in Suspension Cultured Cells of Eggplant

    Science.gov (United States)

    Imoto, Setsuko; Ohta, Yoshimoto

    1988-01-01

    Induction of stress metabolites in the suspension cultured cells of eggplant (Solanum melongena L.) was examined. When autoclaved RNase A or nigeran, both of which are nonspecific phytoalexin elicitors in bean cells, were added to the cell culture of eggplant, greatly enhanced levels of three compounds were observed. One of them was cis-pentadeca-6-ene-1,3-diyne-5,15-diol, a novel diacetylenic compound. This compound has considerable fungitoxic activity. Also identified was falcarindiol, another fungitoxic diacetylenic compound previously reported as one of the phytoalexins in infected tomato fruits and leaves. Elicited compounds preferentially accumulated in the culture medium rather than in the cells and decreased to original levels during prolonged culturing. The elicitation of these compounds was closely correlated with cellular damage in terms of the decrease of growth rate and was inhibited by 10 micromolar cycloheximide. PMID:16665862

  15. Cell/Tissue Culture Radiation Exposure Facility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  16. One World: Service Bees

    Science.gov (United States)

    Thomason, Rhonda

    2009-01-01

    Bees are a vital part of the ecology. People of conscience are a vital part of society. In Nina Frenkel's "One World" poster, the bee is also a metaphor for the role of the individual in a diverse society. This article presents a lesson that uses Frenkel's poster to help early-grades students connect these ideas and explore both the importance of…

  17. Geok Bee Teh

    Indian Academy of Sciences (India)

    Geok Bee Teh. Articles written in Sadhana. Volume 35 Issue 1 February 2010 pp 87-95. Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes · S Ramesh Geok Bee Teh Rong-Fuh Louh Yong Kong Hou Pung Yen Sin Lim Jing Yi · More Details Abstract Fulltext PDF.

  18. Bee deaths need analysing

    NARCIS (Netherlands)

    Boonekamp, P.M.

    2011-01-01

    Alarm bells are ringing all over the world about the death of bee populations. Although it is not known exactly how severe the decline is, it is important to take the problem seriously. The signals are alarming and the bee is important, not just for natural ecosystems but also for the pollination of

  19. Characterization of Tight Junction Proteins in Cultured Human Urothelial Cells

    Science.gov (United States)

    Rickard, Alice; Dorokhov, Nikolay; Ryerse, Jan; Klumpp, David J.; McHowat, Jane

    2010-01-01

    Tight junctions (TJs) are essential for normal function of epithelia, restricting paracellular diffusion and contributing to the maintainance of cell surface polarity. Superficial cells of the urothelium develop TJs, the basis for the paracellular permeability barrier of the bladder against diffusion of urinary solutes. Focusing on the superficial cell layer of stratified cell cultures of an immortalized human ureteral cell line, TEU-2 cells, we have examined the presence of TJ and TJ-associated proteins. TEU-2 cells were treated with calcium chloride and fetal bovine serum culture conditions used to induce stratification that resembles the normal transitional epithelial phenotype. Cultures were examined for TJ and TJ-associated proteins by confocal immuno-fluorescence microscopy and evaluated for TJ mRNA by reverse transcriptase-polymerase chain reaction (RT- PCR). TEU-2 cultures exhibited immunoreactivity at intercellular margins for claudins 1, 4, 5, 7, 14 and 16 whereas claudins 2, 8 and 12 were intracellular. RT-PCR corroborated the presence of these claudins at the mRNA level. The TJ-associated proteins occludin, JAM-1, and zonula occludens (ZO-1, ZO-2 and ZO-3) were localized at cell margins. We have found that numerous TJs and TJ-associated proteins are expressed in stratified TEU-2 cultures. Further, we propose TEU-2s provide a useful ureteral model for future studies on the involvement of TJs proteins in the normal and pathological physiology of the human urinary system. PMID:18553212

  20. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...... in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...

  1. High honey bee losses in the winter of 2016-2017 in Timiș county, Romania

    Directory of Open Access Journals (Sweden)

    Daniela Marina Mot

    2017-05-01

    Full Text Available Beginning with November 2016 beekeepers from Timiș county reported bee colonies losses. During the winter months the situation became more the situation has become more severe, increasing losses of bee families. From November 2016, untill February 2017 were been received samples of dead bees from 23 different apiaries in Timiș county. The dead honey bees were analized in the way to discover what kind of causes produced all these losses. Was also proceeded to analyze the bacterial flora from bees intestine. Bacteriological examination of bees intestine and the cultivation on special medium of culture emphasized rich cultures of Paenibacillus larvae subsp. larvae (Bacillus larvae, etiologic agent for American foulbrood. These bacteria were been isolated from bee intestine in samples provided from 18 apiaries (78.26%. There are many causes of high degree of bee mortality in winter 2016-2017 but the isolation of Paenibacillus larvae subsp. larvae maybe was one of them.

  2. Honey bee toxicology.

    Science.gov (United States)

    Johnson, Reed M

    2015-01-07

    Insecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed.

  3. Bumblebees and solitary bees

    DEFF Research Database (Denmark)

    Henriksen, Casper Christian I

    Summary: The effects of farming system, flower resources and semi-natural habitats on bumblebees and solitary bees in intensively cultivated landscapes in Denmark were investigated in two sets of studies, in 2011 and 2012. The pan trap colour preferences of bumblebees and solitary bees were also...... assessed. In 2011, bumblebees and solitary bees were trapped in road verges bordering 14 organic (organic sites) and 14 conventional (conventional sites) winter wheat fields. The quantity and quality of local flower resources in the road verge and adjacent field headland were estimated as overall density...... use as a proxy at four different scales (250, 500, 750 and 1000 m). In 2012, the effect of a four-fold larger area of organic arable fields in simple, homogeneous landscapes on bumblebees and solitary bees was investigated in eight circular landscapes (radius 1000 m). Bumblebees and solitary bees were...

  4. CULTURE OF EMBRYONIC CELLS OF DROSOPHILA MELANOGASTER IN VITRO.

    Science.gov (United States)

    HORIKAWA, M; FOX, A S

    1964-09-25

    Embryonic cells isolated from eggs ofDrosophila melanogasterhave been cultured continuously in a new medium. Generation time for cell division is 30 hours. Chromosome number remains constant for at least 10 days. Cells from embryos of the mutant maroon-like grow at the same rate as those from wild-type embryos, but cells from rosy-2 grow slower and at a lower optimum temperature.

  5. Topological defects control collective dynamics in neural progenitor cell cultures

    Science.gov (United States)

    Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki

    2017-04-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.

  6. Cell proliferation and radiosensitivity of cow lymphocytes in culture

    International Nuclear Information System (INIS)

    Modave, C.; Fabry, L.; Leonard, A.

    1982-01-01

    The harlequin-staining technique has been used to study, after PHA-stimulation, the cell proliferation of cow lymphocytes in culture and to assess the radiosensitivity in first mitosis cells. At the 48 h fixation time, only 34% of the cells are in first mitosis whereas 55% are already in second and 11% in third mitosis. The exposure of cow lymphocytes to 200 rad X-rays result in the production of 16% dicentric chromosomes in first mitosis cells [fr

  7. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan.

    Science.gov (United States)

    Kojima, Yuriko; Toki, Taku; Morimoto, Tomomi; Yoshiyama, Mikio; Kimura, Kiyoshi; Kadowaki, Tatsuhiko

    2011-11-01

    Invasion of alien species has been shown to cause detrimental effects on habitats of native species. Insect pollinators represent such examples; the introduction of commercial bumble bee species for crop pollination has resulted in competition for an ecological niche with native species, genetic disturbance caused by mating with native species, and pathogen spillover to native species. The European honey bee, Apis mellifera, was first introduced into Japan for apiculture in 1877, and queen bees have been imported from several countries for many years. However, its effects on Japanese native honey bee, Apis cerana japonica, have never been addressed. We thus conducted the survey of honey bee viruses and Acarapis mites using both A. mellifera and A. c. japonica colonies to examine their infestation in native and non-native honey bee species in Japan. Honey bee viruses, Deformed wing virus (DWV), Black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and Sacbrood virus (SBV), were found in both A. mellifera and A. c. japonica colonies; however, the infection frequency of viruses in A. c. japonica was lower than that in A. mellifera colonies. Based on the phylogenies of DWV, BQCV, and SBV isolates from A. mellifera and A. c. japonica, DWV and BQCV may infect both honey bee species; meanwhile, SBV has a clear species barrier. For the first time in Japan, tracheal mite (Acarapis woodi) was specifically found in the dead honey bees from collapsing A. c. japonica colonies. This paper thus provides further evidence that tracheal-mite-infested honey bee colonies can die during cool winters with no other disease present. These results demonstrate the infestation of native honey bees by parasite and pathogens of non-native honey bees that are traded globally.

  8. Why does bee health matter? The science surrounding honey bee health concerns and what we can do about it

    Science.gov (United States)

    Spivak, Marla S; Browning, Zac; Goblirsch, Mike; Lee, Katie; Otto, Clint R.; Smart, Matthew; Wu-Smart, Judy

    2017-01-01

    A colony of honey bees is an amazing organism when it is healthy; it is a superorganism in many senses of the word. As with any organism, maintaining a state of health requires cohesiveness and interplay among cells and tissues and, in the case of a honey bee colony, the bees themselves. The individual bees that make up a honey bee colony deliver to the superorganism what it needs: pollen and nectar collected from flowering plants that contain nutrients necessary for growth and survival. Honey bees with access to better and more complete nutrition exhibit improved immune system function and behavioral defenses for fighting off effects of pathogens and pesticides (Evans and Spivak 2010; Mao, Schuler, and Berenbaum 2013; Wahl and Ulm 1983). Sadly, as this story is often told in the headlines, the focus is rarely about what it means for a honey bee colony to be healthy and is instead primarily focused on colony survival rates. Bee colonies are chronically exposed to parasitic mites, viruses, diseases, miticides, pesticides, and poor nutrition, which weaken and make innate defenses insufficient at overcoming these combined stressors. Colonies that are chronically weakened can be even more susceptible to infections and levels of pesticide exposure that might otherwise be innocuous, further promoting a downward spiral of health. Sick and weakened bees diminish the colony’s resiliency, ultimately leading to a breakdown in the social structure, production, efficiency, immunity, and reproduction of the colony, and eventual or sudden colony death.

  9. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  10. Culturing intestinal stem cells: applications for colorectal cancer research

    Directory of Open Access Journals (Sweden)

    Masayuki eFujii

    2014-06-01

    Full Text Available Recent advance of sequencing technology has revealed genetic alterations in colorectal cancer. The biological function of recurrently mutated genes has been intensively investigated through mouse genetic models and colorectal cancer cell lines. Although these experimental models may not fully reflect biological traits of human intestinal epithelium, they provided insights into the understanding of intestinal stem cell self-renewal, leading to the development of novel human intestinal organoid culture system. Intestinal organoid culture enabled to expand normal or tumor epithelial cells in vitro retaining their stem cell self-renewal and multiple differentiation. Gene manipulation of these cultured cells may provide an attractive tool for investigating genetic events involved in colorectal carcinogenesis.

  11. Production of recombinant proteins in suspension-cultured plant cells.

    Science.gov (United States)

    Plasson, Carole; Michel, Rémy; Lienard, David; Saint-Jore-Dupas, Claude; Sourrouille, Christophe; de March, Ghislaine Grenier; Gomord, Véronique

    2009-01-01

    Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis

  12. Determination of thymidine in serum used for cell culture media

    International Nuclear Information System (INIS)

    Schaer, J.C.; Maurer, U.; Schindler, R.

    1978-01-01

    Thymidine concentrations in serum used for cell culture media were determined with an assay based on isotope dilution. In this assay, incorporation of (3H)-thymidine into DNA of cultured cells was measured in the presence of 5 and 20% serum as a function of the concentration of unlabeled thymidine added to the medium. Thymidine concentrations were measured using horse serum as well as fetal calf serum in the culture media. Dialysis of serum resulted in a reduction of thymidine levels by factors of at least 10

  13. Contributions of 3D Cell Cultures for Cancer Research.

    Science.gov (United States)

    Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya

    2017-10-01

    Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Advances in culture and manipulation of human pluripotent stem cells.

    Science.gov (United States)

    Qian, X; Villa-Diaz, L G; Krebsbach, P H

    2013-11-01

    Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell-like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells.

  15. Cell culture supernatants for detection perforin ELISA

    African Journals Online (AJOL)

    Najwa

    2014-02-19

    Feb 19, 2014 ... (2001). The lymphocytes were isolated from the peripheral heap- rinized whole blood as follows: 3 ml of blood was centrifuged at. 1000 rpm for 15 min, buffy coat was collected in a 10 ml centrifuge tubes and diluted with 5 ml RPMI 1640 (cell suspension), 5 ml of the diluted cell suspension was layered on 3 ...

  16. Growth and phenotypic characteristics of human nevus cells in culture.

    Science.gov (United States)

    Mancianti, M L; Herlyn, M; Weil, D; Jambrosic, J; Rodeck, U; Becker, D; Diamond, L; Clark, W H; Koprowski, H

    1988-02-01

    Nevus cells were isolated from the three cutaneous components, epidermis, basal layer, and dermis, of nonmalignant pigmented lesions and were cultured separately in the presence or absence of the phorbol ester 12-0-tetradecanoyl phorbol-13-acetate in medium that supports the rapid proliferation of melanocytic cells. The separation procedure used provided cultures that were essentially free from normal melanocytes (dermis) or fibroblasts (epidermis). In short term culture, nevus cells of all skin compartments expressed markers associated with differentiated melanocytes, such as presence of premelanosomes and melanosomes and elevated tyrosinase levels. Nevus cells also expressed melanoma-associated antigens, such as NGF-receptor, transferrin-related p97, proteoglycan, and HLA-DR as detected with monoclonal antibodies. After several subpassages, cells showed a decreased expression of melanoma-associated antigens, decreased tyrrosinase levels, and melanosomes could no longer be detected. Morphologically, these cells were similar to fibroblasts. The disappearance of melanoma-associated cell surface antigens was concomitant with the appearance of a melanocyte-associated 145 kd protein that might serve as a marker of fibroblast-like differentiation in nevus cells and normal melanocytes. Nevus cell cultures grown in the presence of 12-0-tetradecanoyl phorbol-13-acetate maintained a stable differentiated phenotype throughout their lifespan. As reported earlier, nevus cells in culture, irrespective of the presence or absence of 12-0-tetradecanoyl phorbol-13-acetate, have a finite lifespan in vitro, grow anchorage-independent in soft agar, but do not form tumors when xenografted to nude mice. These studies demonstrate that nevus cells isolated from the epidermal, basal layer, and dermal components of lesional skin can serve as models to characterize the initial steps of tumor progression in a human cell system.

  17. Stability of resazurin in buffers and mammalian cell culture media

    DEFF Research Database (Denmark)

    Rasmussen, Eva; Nicolaisen, G.M.

    1999-01-01

    The utility of a ferricyanide/ferrocyanide system used in the AlamarBlue(TM) (Serotec, Oxford, UK) vital. dye to inhibit the reduction of resazurin by mammalian cell culture media is questioned. Resazurin was found to be relatively stable when dissolved in phosphate-buffered saline (PBS). The use...... of HEPES resulted in a huge immediate dye reduction, which was significantly enhanced by exposure to diffuse light from fluorescent tubes in the laboratory 8 h per day. The reduction of resazurin by various cell culture media was time and temperature dependent, and it was significantly enhanced......'s nutrient mixture F-10 and F-12. Fetal calf serum (5-20%) slightly decreased resazurin reduction during the first 2 days of incubation. The reduction of resazurin by mammalian cell culture media do not appear to be problematic under normal culture conditions, and it is primarily dependent upon the presence...

  18. Fabrication of a thermoresponsive cell culture dish: a key technology for cell sheet tissue engineering

    Directory of Open Access Journals (Sweden)

    Jun Kobayashi and Teruo Okano

    2010-01-01

    Full Text Available This article reviews the properties and characterization of an intelligent thermoresponsive surface, which is a key technology for cell sheet-based tissue engineering. Intelligent thermoresponsive surfaces grafted with poly(N-isopropylacrylamide exhibit hydrophilic/hydrophobic alteration in response to temperature change. Cultured cells are harvested on thermoresponsive cell culture dishes by decreasing the temperature without the use of digestive enzymes or chelating agents. Our group has developed cell sheet-based tissue engineering for therapeutic uses with single layer or multilayered cell sheets, which were recovered from the thermoresponsive cell culture dish. Using surface derivation techniques, we developed a new generation of thermoresponsive cell culture dishes to improve culture conditions. We also designed a new methodology for constructing well-defined organs using microfabrication techniques.

  19. Characterisation and germline transmission of cultured avian primordial germ cells.

    Science.gov (United States)

    Macdonald, Joni; Glover, James D; Taylor, Lorna; Sang, Helen M; McGrew, Michael J

    2010-11-29

    Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.

  20. Characterisation and germline transmission of cultured avian primordial germ cells.

    Directory of Open Access Journals (Sweden)

    Joni Macdonald

    Full Text Available BACKGROUND: Avian primordial germ cells (PGCs have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. PRINCIPAL FINDINGS: We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. CONCLUSIONS: The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.

  1. Integration of embryonic stem cells in metanephric kidney organ culture.

    Science.gov (United States)

    Steenhard, Brooke M; Isom, Kathryn S; Cazcarro, Patricia; Dunmore, Judy H; Godwin, Alan R; St John, Patricia L; Abrahamson, Dale R

    2005-06-01

    Many stages of nephrogenesis can be studied using cultured embryonic kidneys, but there is no efficient technique available to readily knockdown or overexpress transgenes for rapid evaluation of resulting phenotypes. Embryonic stem (ES) cells have unlimited developmental potential and can be manipulated at the molecular genetic level by a variety of methods. The aim of this study was to determine if ES cells could respond to developmental signals within the mouse embryonic day 12 to embryonic day 13 (E12 to E13) kidney microenvironment and incorporate into kidney structures. ROSA26 ES cells were shown to express beta-galactosidase ubiquitously when cultured in the presence of leukemia inhibitory factor to suppress differentiation. When these cells were microinjected into E12 to E13 metanephroi and then placed in transwell organ culture, ES cell-derived, beta-galactosidase-positive cells were identified in epithelial structures resembling tubules. On rare occasions, individual ES cells were observed in structures resembling glomerular tufts. Electron microscopy showed that the ES cell-derived tubules were surrounded by basement membrane and had apical microvilli and junctional complexes. Marker analysis revealed that a subset of these epithelial tubules bound Lotus tetragonolobus and expressed alpha(1) Na(+)/K(+) ATPase. ES cells were infected before injection with a cytomegalovirus promoter-green fluorescence protein (GFP) adenovirus and GFP expression was found as early as 18 h, persisting for up to 48 h in cultured kidneys. This ES cell technology may achieve the objective of obtaining a versatile cell culture system in which molecular interventions can be used in vitro and consequences of these perturbations on the normal kidney development program in vivo can be studied.

  2. Transcriptome analysis of primary bovine extra-embryonic cultured cells

    Directory of Open Access Journals (Sweden)

    Séverine A. Degrelle

    2015-12-01

    Full Text Available The dataset described in this article pertains to the article by Hue et al. (2015 entitled “Primary bovine extra-embryonic cultured cells: A new resource for the study of in vivo peri-implanting phenotypes and mesoderm formation” [1]. In mammals, extra-embryonic tissues are essential to support not only embryo patterning but also embryo survival, especially in late implanting species. These tissues are composed of three cell types: trophoblast (bTCs, endoderm (bXECs and mesoderm (bXMCs. Until now, it is unclear how these cells interact. In this study, we have established primary cell cultures of extra-embryonic tissues from bovine embryos collected at day-18 after artificial insemination. We used our homemade bovine 10K array (GPL7417 to analyze the gene expression profiles of these primary extra-embryonic cultured cells compared to the corresponding cells from in vivo micro-dissected embryos. Here, we described the experimental design, the isolation of bovine extra-embryonic cell types as well as the microarray expression analysis. The dataset has been deposited in Gene Expression Omnibus (GEO (accession number GSE52967. Finally, these primary cell cultures were a powerful tool to start studying their cellular properties, and will further allow in vitro studies on cellular interactions among extra-embryonic tissues, and potentially between extra-embryonic vs embryonic tissues.

  3. Animal-cell culture in aqueous two-phase systems

    NARCIS (Netherlands)

    Zijlstra, G.M.

    1998-01-01

    In current industrial biotechnology, animal-cell culture is an important source of therapeutic protein products. The conventional animal-cell production processes, however, include many unit operations as part of the fermentation and downstream processing strategy. The research described in

  4. Endothelial cell cultures as a tool in biomaterial research

    NARCIS (Netherlands)

    Kirkpatrick, CJ; Otto, M; van Kooten, T; Krump, [No Value; Kriegsmann, J; Bittinger, F

    1999-01-01

    Progress in biocompatibility and tissue engineering would today be inconceivable without the aid of in vitro techniques. Endothelial cell cultures represent a valuable tool not just in haemocompatibility testing, but also in the concept of designing hybrid organs. In the past endothelial cells (EC)

  5. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-...

  6. Isolation of Melittin from Iranian Honey Bee Venom and Investigation of Its Effect on Proliferation of Cervical Cancer- HeLa Cell Line

    Directory of Open Access Journals (Sweden)

    K Pooshang Bagheri

    2013-06-01

    Full Text Available Introduction: Cervical cancer is the second prevalent cancer in developing countries and the sixth prevalent cancer in USA. Since conventional treatment methods are associated with detrimental side effects, searching for new drugs using natural ingredients is very important. Previous studies have shown that melittin (main component of honey bee venom has anticancer properties along with the effect on cell membrane and activation of apoptosis. In this study, inhibitory effects of melittin on the viability and proliferation of cervical cancer cell line (HeLa was investigated. Methods: Melittin was purified from honeybee venom using reversed-phase HPLC method. Then, biological activity of melittin was examined by hemolytic activity analysis on the red blood cells. In order to investigate whether melittin inhibits proliferation of HeLa cell, MTT assay was performed. HeLa cells were plated in a 96-well plate and treated with serially diluted concentrations of melittin for 12 and 24 hours. The viability of the cells was measured via MTT assay at 540nm. Results: Melittin showed a strong hemolytic activity (HD50=0.5 µg/ml which can be reduced by FBS(HD50=2 µg/ml. Results of MTT assay indicated that melittin shows cytotoxic effect on cervical cancer cells with IC50 = 1.2 ug/ml at 12h incubation period. Conclusion: In this study, biological activity of melittin and inhibitory effect of FBS on hemolysis were determined via hemolytic activity analysis. MTT assay indicated that melittin induced cytotoxic effects in a dose dependent manner on cervical cancer cells and it also revealed dependence on incubation time as well.

  7. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models.

    Directory of Open Access Journals (Sweden)

    Efstathia Papafragkou

    Full Text Available Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407 or human epithelial colorectal adenocarcinoma cells (Caco-2 growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin. Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8. At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.

  8. Time evolution of cell size distributions in dense cell cultures

    Science.gov (United States)

    Khain, Evgeniy

    2015-03-01

    Living cells in a dense system are all in contact with each other. The common assumption is that such cells stop dividing due to a lack of space. Recent experimental observations have shown, however, that cells continue dividing for a while, but other cells in the system must shrink, to allow the newborn cells to grow to a normal size. Due to these ``pressure'' effects, the average cell size dramatically decreases with time, and the dispersion in cell sizes decreases, too. The collective cell behavior becomes even more complex when the system is expanding: cells near the edges are larger and migrate faster, while cells deep inside the colony are smaller and move slower. This exciting experimental data still needs to be described theoretically, incorporating the distribution of cell sizes in the system. We propose a mathematical model for time evolution of cell size distribution both in a closed and open system. The model incorporates cell proliferation, cell growth after division, cell shrinking due to ``pressure'' from other cells, and possible cell detachment from the interface of a growing colony. This research sheds light on physical and biological mechanisms of cell response to a dense environment and on the role of mechanical stresses in determining the distribution of cell sizes in the system.

  9. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    International Nuclear Information System (INIS)

    Fox, I.H.; Bertorini, T.; Palmieri, G.M.A.; Shefner, R.

    1986-01-01

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  10. Cytopathogenicity of Naegleria for cultured neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fulford, D.E.

    1985-01-01

    The cytopathic activity of live Naegleria amoebae and cell-free lysates of Naegleria for B-103 rat neuroblastoma cells was investigated using a /sup 51/Cr release assay. Live amoebae and cell-free lysates of N. fowleri, N. australiensis, N. lovaniensis, and N. gruberi all induced sufficient damage to radiolabeled B-103 cells to cause a significant release of chromium. The cytotoxic activity present in the cell-free lysates of N. fowleri can be recovered in the supernatant fluid following centrifugation at 100,000xg and precipitation of the 100,000xg supernatant fluid with ammonium sulfate. Initial characterization of the cytotoxic factor indicates that it is a heat labile, pH sensitive, soluble protein. The cytotoxic activity is abolished by either extraction, unaffected by repeated freeze-thawing, and is not sensitive to inhibitors of proteolytic enzymes. Phospholipase A activity was detected in the cytotoxic ammonium sulfate precipitable material, suggesting that this enzyme activity may have a role in the cytotoxic activity of the cell-free lysates.

  11. Establishing a stem cell culture laboratory for clinical trials

    Science.gov (United States)

    Sekiya, Elíseo Joji; Forte, Andresa; Kühn, Telma Ingrid Borges de Bellis; Janz, Felipe; Bydlowski, Sérgio Paulo; Alves, Adelson

    2012-01-01

    Adult stem/progenitor cells are found in different human tissues. An in vitro cell culture is needed for their isolation or for their expansion when they are not available in a sufficient quantity to regenerate damaged organs and tissues. The level of complexity of these new technologies requires adequate facilities, qualified personnel with experience in cell culture techniques, assessment of quality and clear protocols for cell production. The rules for the implementation of cell therapy centers involve national and international standards of good manufacturing practices. However, such standards are not uniform, reflecting the diversity of technical and scientific development. Here standards from the United States, the European Union and Brazil are analyzed. Moreover, practical solutions encountered for the implementation of a cell therapy center appropriate for the preparation and supply of cultured cells for clinical studies are described. Development stages involved the planning and preparation of the project, the construction of the facility, standardization of laboratory procedures and development of systems to prevent cross contamination. Combining the theoretical knowledge of research centers involved in the study of cells with the practical experience of blood therapy services that manage structures for cell transplantation is presented as the best potential for synergy to meet the demands to implement cell therapy centers. PMID:23049427

  12. Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals.

    Science.gov (United States)

    Soon, Chin Fhong; Omar, Wan Ibtisam Wan; Berends, Rebecca F; Nayan, Nafarizal; Basri, Hatijah; Tee, Kian Sek; Youseffi, Mansour; Blagden, Nick; Denyer, Morgan Clive Thomas

    2014-01-01

    This study aimed at examining the biophysical characteristics of human derived keratinocytes (HaCaT) cultured on cholesteryl ester liquid crystals (CELC). CELC was previously shown to improve sensitivity in sensing cell contractions. Characteristics of the cell integrin expressions and presence of extracellular matrix (ECM) proteins on the liquid crystals were interrogated using various immunocytochemical techniques. The investigation was followed by characterization of the chemical properties of the liquid crystals (LC) after immersion in cell culture media using Fourier transform infrared spectroscopy (FTIR). The surface morphology of cells adhered to the LC was studied using atomic force microscopy (AFM). Consistent with the expressions of the integrins α2, α3 and β1, extracellular matrix proteins (laminin, collagen type IV and fibronectin) were found secreted by the HaCaT onto CELC and these proteins were also secreted by cells cultured on the glass substrates. FTIR analysis of the LC revealed the existence of spectrum assigned to cholesterol and ester moieties that are essential compounds for the metabolizing activities of keratinocytes. The immunostainings indicated that cell adhesion on the LC is mediated by self-secreted ECM proteins. As revealed by the AFM imaging, the constraint in cell membrane spread on the LC leads to the increase in cell surface roughness and thickness of cell membrane. The biophysical expressions of cells on biocompatible CELC suggested that CELC could be a new class of biological relevant material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...... a sandwiched membrane. The culture chamber and perfusion chamber are separated by a sandwiched membrane and each chamber has separate inlet/outlets for easy loading/unloading of cells and perfusion of the media. The perfusion of media and exchange of nutrients occur through the sandwiched membrane, which...... was also verified with simulations. Finally, we present the application of this device for cytogenetic sample preparation, whereby we culture and arrest peripheral T-lymphocytes in metaphase and later fix them in the μBR. The expansion of T-lymphocytes from an unknown patient sample was quantified by means...

  14. Hydrodynamic effects on cells in agitated tissue culture reactors

    Science.gov (United States)

    Cherry, R. S.; Papoutsakis, E. T.

    1986-01-01

    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  15. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  16. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  17. The replacement of serum by hormones in cell culture media.

    Science.gov (United States)

    Sato, G; Hayashi, I

    1976-12-01

    The replacement of serum by hormones in cell culture media. (Reemplazo del suero por hormonas en el medio de cultivo de células). Arch. Biol. Med. Exper. 10: 120-121, 1976. The serum used in cell culture media can be replaced by a mixture of hormones and some accesory blood factors. The pituitary cell line GH3 can be grown in a medium in which serum is replaced by triiodothyronine, transferrin, parathormone, tyrotrophin releasing hormone and somatomedins. Hela and BHK cell strains can also be grown in serum free medium supplemented with hormones. Each cell type appears to have different hormonal requirements yet it may found that some hormones are required for most cell types.

  18. Therapeutic touch stimulates the proliferation of human cells in culture.

    Science.gov (United States)

    Gronowicz, Gloria A; Jhaveri, Ankur; Clarke, Libbe W; Aronow, Michael S; Smith, Theresa H

    2008-04-01

    Our objective was to assess the effect of Therapeutic Touch (TT) on the proliferation of normal human cells in culture compared to sham and no treatment. Several proliferation techniques were used to confirm the results, and the effect of multiple 10-minute TT treatments was studied. Fibroblasts, tendon cells (tenocytes), and bone cells (osteoblasts) were treated with TT, sham, or untreated for 2 weeks, and then assessed for [(3)H]-thymidine incorporation into the DNA, and immunocytochemical staining for proliferating cell nuclear antigen (PCNA). The number of PCNA-stained cells was also quantified. For 1 and 2 weeks, varying numbers of 10-minute TT treatments were administered to each cell type to determine whether there was a dose-dependent effect. TT administered twice a week for 2 weeks significantly stimulated proliferation of fibroblasts, tenocytes, and osteoblasts in culture (p = 0.04, 0.01, and 0.01, respectively) compared to untreated control. These data were confirmed by PCNA immunocytochemistry. In the same experiments, sham healer treatment was not significantly different from the untreated cultures in any group, and was significantly less than TT treatment in fibroblast and tenocyte cultures. In 1-week studies involving the administration of multiple 10-minute TT treatments, four and five applications significantly increased [(3)H]-thymidine incorporation in fibroblasts and tenocytes, respectively, but not in osteoblasts. With different doses of TT for 2 weeks, two 10-minute TT treatments per week significantly stimulated proliferation in all cell types. Osteoblasts also responded to four treatments per week with a significant increase in proliferation. Additional TT treatments (five per week for 2 weeks) were not effective in eliciting increased proliferation compared to control in any cell type. A specific pattern of TT treatment produced a significant increase in proliferation of fibro-blasts, osteoblasts, and tenocytes in culture. Therefore, TT may

  19. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.

    1990-01-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  20. Animal-cell culture media: History, characteristics, and current issues.

    Science.gov (United States)

    Yao, Tatsuma; Asayama, Yuta

    2017-04-01

    Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media. A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical-based synthetic media because naturally derived ingredients have their disadvantages such as large batch-to-batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum-containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.

  1. Dose verification by OSLDs in the irradiation of cell cultures

    International Nuclear Information System (INIS)

    Meca C, E. A.; Bourel, V.; Notcovich, C.; Duran, H.

    2015-10-01

    The determination of value of irradiation dose presents difficulties when targets are irradiated located in regions where electronic equilibrium of charged particle is not reached, as in the case of irradiation -in vitro- of cell lines monolayer-cultured, in culture dishes or flasks covered with culture medium. The present study aimed to implement a methodology for dose verification in irradiation of cells in culture media by optically stimulated luminescence dosimetry (OSLD). For the determination of the absorbed dose in terms of cell proliferation OSL dosimeters of aluminum oxide doped with carbon (Al 2 O 3 :C) were used, which were calibrated to the irradiation conditions of culture medium and at doses that ranged from 0.1 to 15 Gy obtained with a linear accelerator of 6 MV photons. Intercomparison measurements were performed with an ionization chamber of 6 cm 3 . Different geometries were evaluated by varying the thicknesses of solid water, air and cell culture medium. The results showed deviations below 2.2% when compared with the obtained doses of OSLDs and planning system used. Also deviations were observed below 3.4% by eccentric points of the irradiation plane, finding homogeneous dose distribution. Uncertainty in the readings was less than 2%. The proposed methodology contributes a contribution in the dose verification in this type of irradiations, eliminating from the calculation uncertainties, potential errors in settling irradiation or possible equipment failure with which is radiating. It also provides certainty about the survival curves to be plotted with the experimental data. (Author)

  2. The effect of honey bee venom on the differentiation potency of D-alpha tocopheryl succinate (vitamin E on HL-60 promyelocytic leukemia cell line.

    Directory of Open Access Journals (Sweden)

    mohammad Nabiuni

    2014-01-01

    Full Text Available Background: Acute promyelocytic leukemia is the most malignant type of myeloid leukemia characterized by chromosomal translocation (15 and 17 and also blocking the cells in promyelocytic stage of differentiation into myeloid. Nowadays, differentiation therapy is used to treat leukemia. Previous studies indicate that vitamin E inhibits proliferation and also induces differentiation of HL-60 cell line towards monocyte. Since high concentrations of vitamin E to induce differentiation have many side effects, the search for alternative compounds is inevitable. Regarding anti- proliferative and anti-cancer effect of bee venom (BV, in this study the effect of BV on alpha tocopheryl succinate function in differentiation was examined. Materials and Methods: In this study cellular differentiation was tested by immunocytochemistry ,Wright-Giemsa staining and NBT reduction.Data were analyzed using one-way ANOVA test and Instate 3 software. Results: The results showed that BV in non-toxic concentrations can increase the differentiation potency of vitamin E on HL-60 cancer cell line. Conclusion: Non- toxic concentration of BV can increase differentiational effects of vitamin E and it is expected that BV can increases the differentiating potential of differentiator components in the future .

  3. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B.

    Science.gov (United States)

    Zheng, Jie; Lee, Hye Lim; Ham, Young Wan; Song, Ho Sueb; Song, Min Jong; Hong, Jin Tae

    2015-12-29

    Bee venom (BV) has been used as a traditional medicine to treat arthritis, rheumatism, back pain, cancerous tumors, and skin diseases. However, the effects of BV on the colon cancer and their action mechanisms have not been reported yet. We used cell viability assay and soft agar colony formation assay for testing cell viability, electro mobility shift assay for detecting DNA binding activity of nuclear factor kappa B (NF-κB) and Western blotting assay for detection of apoptosis regulatory proteins. We found that BV inhibited growth of colon cancer cells through induction of apoptosis. We also found that the expression of death receptor (DR) 4, DR5, p53, p21, Bax, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 was increased by BV treatment in a dose dependent manner (0-5 μg/ml). Consistent with cancer cell growth inhibition, the DNA binding activity of nuclear factor kappa B (NF-κB) was also inhibited by BV treatment. Besides, we found that BV blocked NF-κB activation by directly binding to NF-κB p50 subunit. Moreover, combination treatment with BV and p50 siRNA or NF-κB inhibitor augmented BV-induced cell growth inhibition. However, p50 mutant plasmid (C62S) transfection partially abolished BV-induced cell growth inhibiton. In addition, BV significantly suppressed tumor growth in vivo. Therefore, these results suggested that BV could inhibit colon cancer cell growth, and these anti-proliferative effects may be related to the induction of apoptosis by activation of DR4 and DR5 and inhibition of NF-κB.

  4. Isolation and Culture of Postnatal Stem Cells from Deciduous Teeth

    OpenAIRE

    Olávez, Daniela; Facultad de Odontología Universidad de Los Andes; Salmen, Siham; Instituto de Inmunología Clínica, Universidad de Los Andes.; Padrón, Karla; Facultad de Odontología. Univerisdad de Los Andes.; Lobo, Carmine; Facultad de Odontología. Univerisdad de Los Andes.; Díaz, Nancy; Facultad de Odontología, Universidad de Los Andes.; Berrueta, Lisbeth; Doctora en Inmunología por Instituto Venezolano de Investigaciones Científicas (IVIC). Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Venezuela.; Solorzanio, Eduvigis; Facultad de Odontología, Universidad de Los Andes.

    2014-01-01

    Background: Currently, degenerative diseases represent a public health problem; therefore, the development and implementation of strategies to fully or partially recover of damaged tissues has a special interest in the biomedical field. Therapeutic strategies based on mesenchymal stem cells transplantation from dental pulp have been proposed as an alternative. Purpose: To develop a mesenchymal stem cells culture isolated from dental pulp of deciduous teeth. Methods: The mesenchymal stem cells...

  5. Pluronic polyols in human lymphocyte cell line cultures.

    Science.gov (United States)

    Mizrahi, A

    1975-01-01

    Pluronic polyols markedly improved the growth of two human lymphocyte cell lines when added to the growth medium in concentrations of 0.05 to 0.1%. The results of the current studies suggest that, in addition to the protective effect of polyols against mechanical damage of mammalian cells in submerged cultures, the pluronic compounds may also, by lowering surface tension, facilitate transport of metabolites into cells and thus increase the growth rate. PMID:1063740

  6. Formation and action of oxygen activated species in cell cultures

    International Nuclear Information System (INIS)

    Hoffmann, M.E.; Meneghini, R.

    1982-01-01

    The differences of hydrogen peroxide sensibility of mammal cell lineages (man, mouse, chinese hamster) in culture are studied. The cellular survival and the frequency of DNA induced breaks by hydrogen peroxide are analysed. The efficiency of elimination of DNA breaks by cells is determined. The possible relation between the cell capacity of repair and its survival to hydrogen peroxide action is also discussed. (M.A.) [pt

  7. A microwell cell culture platform for the aggregation of pancreatic β-cells.

    Science.gov (United States)

    Bernard, Abigail B; Lin, Chien-Chi; Anseth, Kristi S

    2012-08-01

    Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered.

  8. HUMAN CELLS IN CULTURE: REVISlTED*

    African Journals Online (AJOL)

    advantages, e.g. the generation time is reduced to about. 1/10000 that of the ... or less reflects the cellular biology of the donor tissut:'Y .... X-linked. Autosomal recessive. Autosomal recessive. Autosomal recessive mothers of affected males, however, show that only 50% of the cell population is defective, which furnishes an.

  9. Altered eicosanoid production and phospholipid remodeling during cell culture.

    Science.gov (United States)

    Okuno, Toshiaki; Gijón, Miguel A; Zarini, Simona; Martin, Sarah A; Barkley, Robert M; Johnson, Christopher A; Ohba, Mai; Yokomizo, Takehiko; Murphy, Robert C

    2018-03-01

    The remodeling of PUFAs by the Lands cycle is responsible for the diversity of phospholipid molecular species found in cells. There have not been detailed studies of the alteration of phospholipid molecular species as a result of serum starvation or depletion of PUFAs that typically occurs during tissue culture. The time-dependent effect of cell culture on phospholipid molecular species in RAW 264.7 cells cultured for 24, 48, or 72 h was examined by lipidomic strategies. These cells were then stimulated to produce arachidonate metabolites derived from the cyclooxygenase pathway, thromboxane B 2 , PGE 2 , and PGD 2 , and the 5-lipoxygenase pathway, leukotriene (LT)B 4 , LTC 4 , and 5-HETE, which decreased with increasing time in culture. However, the 5-lipoxygenase metabolites of a 20:3 fatty acid, LTB 3 , all trans -LTB 3 , LTC 3 , and 5-hydroxyeicosatrienoic acid, time-dependently increased. Molecular species of arachidonate containing phospholipids were drastically remodeled during cell culture, with a new 20:3 acyl group being populated into phospholipids to replace increasingly scarce arachidonate. In addition, the amount of TNFα induced by lipopolysaccharide stimulation was significantly increased in the cells cultured for 72 h compared with 24 h, suggesting that the remodeling of PUFAs enhanced inflammatory response. These studies supported the rapid operation of the Lands cycle to maintain cell growth and viability by populating PUFA species; however, without sufficient n-6 fatty acids, 20:3 n-9 accumulated, resulting in altered lipid mediator biosynthesis and inflammatory response. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees

    Directory of Open Access Journals (Sweden)

    Érica Donato Tanaka

    2009-01-01

    Full Text Available Queens and workers of social insects differ in the rates of egg laying. Using genomic information we determined the sequence of vasa, a highly conserved gene specific to the germ line of metazoans, for the honey bee and four stingless bees. The vasa sequence of social bees differed from that of other insects in two motifs. By RT-PCR we confirmed the germ line specificity of Amvasa expression in honey bees. In situ hybridization on ovarioles showed that Amvasa is expressed throughout the germarium, except for the transition zone beneath the terminal filament. A diffuse vasa signal was also seen in terminal filaments suggesting the presence of germ line cells. Oocytes showed elevated levels of Amvasa transcripts in the lower germarium and after follicles became segregated. In previtellogenic follicles, Amvasa transcription was detected in the trophocytes, which appear to supply its mRNA to the growing oocyte. A similar picture was obtained for ovarioles of the stingless bee Melipona quadrifasciata, except that Amvasa expression was higher in the oocytes of previtellogenic follicles. The social bees differ in this respect from Drosophila, the model system for insect oogenesis, suggesting that changes in the sequence and expression pattern of vasa may have occurred during social evolution.

  11. Mammary Gland Cell Culture of Macaca fascicularis as a Reservoir for Stem Cells

    Directory of Open Access Journals (Sweden)

    Silmi Mariya

    2017-07-01

    Full Text Available The mammary gland contains adult stem cells that are capable of self-renewal and are likely target for neoplastic transformation leading to breast cancer. In this study, we developed a cell culture derived from the mammary glands of cynomolgus monkeys (Macaca fascicularis (MfMC and furthermore identified the expression of markers for stemness and estrogen receptor-associated activities. We found that the primary culture can be successfully subcultured to at least 3 passages, primarily epithelial-like in morphology, the cultured cells remained heterogenous in phenotype as they expressed epithelial cell markers CD24, CK18, and marker for fibroblast S1004A. Importantly, the cell population also consistently expressed the markers of mammary stem cells (ITGB1 or CD29 and ITGA6 or CD49f, mesenchymal stem cells (CD73 and CD105 and pluripotency (NANOG, OCT4, SOX2. In addition to this, the cells were also positive for Estrogen Receptor (ER, and ER-activated marker Trefoil Factor 1, suggesting an estrogen responsiveness of the culture model. These results indicate that our cell culture model is a reliable model for acquiring a population of cells with mammary stem cell properties and that these cultures may also serve as a reservoir from which more purified populations of stem cell populations can be isolated in the future.

  12. Honey Bee Infecting Lake Sinai Viruses

    Directory of Open Access Journals (Sweden)

    Katie F. Daughenbaugh

    2015-06-01

    Full Text Available Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV, and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  13. Diffusion chamber culture of human peripheral mononuclear cells in mice

    International Nuclear Information System (INIS)

    Kawakami, Masahito; Shigeta, Chiharu; Enzan, Hideaki; Takahashi, Hiroshi; Ohkita, Takeshi

    1977-01-01

    The mononuclear cells isolated by Isopaque-Ficoll method from blood of three healthy men were cultured in diffusion chambers implanted to peritoneal cavity of mice pretreated by cyclophosphamide 300 mg/kg b. w. or 800 rad of 60 Co γ ray or 500 rad. For two of three men the cell growth was slightly higher in hosts pretreated by cyclophosphamide or 800 rad than in hosts pretreated by 500 rad, but, for another one it was slow in all hosts. Under these conditions the growth potential of mononuclear cells might be different from person to person. A few granulocytes as well as plasma cells, very few megakaryocytes and rare erythroblasts were found in diffusion chamber cultured cells. (auth.)

  14. Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays.

    Science.gov (United States)

    Huang, Song-Bin; Wu, Min-Hsien; Wang, Shih-Siou; Lee, Gwo-Bin

    2011-06-01

    This study reports a microfluidic cell culture chip consisting of 48 microbioreactors for high-throughput perfusion 3-dimensional (3-D) cell culture-based assays. Its advantages include the capability for multiplexed and backflow-free medium delivery, and both efficient and high-throughput micro-scale, 3-D cell culture construct loading. In this work, the microfluidic cell culture chip is fabricated using two major processes, specifically, a computer-numerical-controlled (CNC) mold machining process and a polydimethylsiloxane (PDMS) replication process. The chip is composed of micropumps, microbioreactors, connecting microchannels and a cell/agarose scaffold loading mechanism. The performance of the new pneumatic micropumps and the cell/agarose scaffold loading mechanism has been experimentally evaluated. The experimental results show that this proposed multiplexed medium-pumping design is able to provide a uniform pumping rate ranging from 1.5 to 298.3 μl hr(-1) without any fluid backflow and the resultant medium contamination. In addition, the simple cell/agarose loading method has been proven to be able to load the 3-D cell culture construct uniformly and efficiently in all 48 microbioreactors investigated. Furthermore, a micro-scale, perfusion, 3-D cell culture-based assay has been successfully demonstrated using this proposed cell culture chip. The experimental results are also compared to a similar evaluation using a conventional static 3-D cell culture with a larger scale culture. It is concluded that the choice of a cell culture format can influence assay results. As a whole, because of the inherent advantages of a miniaturized perfusion 3-D cell culture assay, the cell culture chip not only can provide a stable, well-defined and more biologically-meaningful culture environment, but it also features a low consumption of research resources. Moreover, due to the integrated medium pumping mechanism and the simple cell/agarose loading method, this chip is

  15. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  16. Crude subcellular fractionation of cultured mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Holden Paul

    2009-12-01

    Full Text Available Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this contamination and ensure complete recovery of the target protein. Currently published protocols involve time consuming centrifugation steps which may require expensive equipment and commercially available kits can be prohibitively expensive when handling large or multiple samples. Findings We have established a protocol to sequentially extract proteins from cultured mammalian cells in fractions enriched for cytosolic, membrane bound organellar, nuclear and insoluble proteins. All of the buffers used can be made inexpensively and easily and the protocol requires no costly equipment. While the method was optimized for a specific cell type, we demonstrate that the protocol can be applied to a variety of commonly used cell lines and anticipate that it can be applied to any cell line via simple optimization of the primary extraction step. Conclusion We describe a protocol for the crude subcellular fractionation of cultured mammalian cells that is both straightforward and cost effective and may facilitate the more accurate study of recombinant proteins and the generation of purer preparations of said proteins from cell extracts.

  17. Treatment of mycoplasma contamination in cell cultures with Plasmocin.

    Science.gov (United States)

    Uphoff, Cord C; Denkmann, Sabine-A; Drexler, Hans G

    2012-01-01

    A high percentage of cell lines are chronically infected with various mycoplasma species. The addition of antibiotics that are particularly effective against these contaminants to the culture medium during a limited period of time is a simple, inexpensive, and very practical approach for decontaminating cell cultures. Here, we examined the effectiveness of the new antimycoplasma compound Plasmocin that has been employed routinely to cleanse chronically infected cell lines. In a first round of treatment 45 out of 58 (78%) mycoplasma-positive cell lines could be cured. In a second attempt using back-up cryopreserved original cells, four additional cell lines were cured; thus, the overall cure rate was 84%. Even if the mycoplasma contamination was not eradicated by Plasmocin, the parallel treatment with several other antibiotics (Baytril, BM-Cyclin, Ciprobay, MRA, or MycoZap) led to the cure of all 58 cell lines. The successful decontamination was permanent as mycoplasmas were no longer detected at day +14 posttreatment and at later time points as examined by PCR which is the most sensitive and specific mycoplasma detection method. Collectively, our results highlight certain antibiotics as effective antimycoplasma reagents and support the therapeutic rationale for their use in the eradication of this notorious cell culture contaminant.

  18. Treatment of Mycoplasma Contamination in Cell Cultures with Plasmocin

    Directory of Open Access Journals (Sweden)

    Cord C. Uphoff

    2012-01-01

    Full Text Available A high percentage of cell lines are chronically infected with various mycoplasma species. The addition of antibiotics that are particularly effective against these contaminants to the culture medium during a limited period of time is a simple, inexpensive, and very practical approach for decontaminating cell cultures. Here, we examined the effectiveness of the new antimycoplasma compound Plasmocin that has been employed routinely to cleanse chronically infected cell lines. In a first round of treatment 45 out of 58 (78% mycoplasma-positive cell lines could be cured. In a second attempt using back-up cryopreserved original cells, four additional cell lines were cured; thus, the overall cure rate was 84%. Even if the mycoplasma contamination was not eradicated by Plasmocin, the parallel treatment with several other antibiotics (Baytril, BM-Cyclin, Ciprobay, MRA, or MycoZap led to the cure of all 58 cell lines. The successful decontamination was permanent as mycoplasmas were no longer detected at day +14 posttreatment and at later time points as examined by PCR which is the most sensitive and specific mycoplasma detection method. Collectively, our results highlight certain antibiotics as effective antimycoplasma reagents and support the therapeutic rationale for their use in the eradication of this notorious cell culture contaminant.

  19. Bridging the gap between cell culture and live tissue

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-11-01

    Full Text Available Traditional in vitro two-dimensional (2-D culture systems only partly imitate the physiological and biochemical features of cells in their original tissue. In vivo, in organs and tissues, cells are surrounded by a three-dimensional (3-D organization of supporting matrix and neighbouring cells, and a gradient of chemical and mechanical signals. Furthermore, the presence of blood flow and mechanical movement provides a dynamic environment (Jong et al., 2011. In contrast, traditional in vitro culture, carried out on 2-D plastic or glass substrates, typically provides a static environment, which, however is the base of the present understanding of many biological processes, tissue homeostasis as well as disease. It is clear that this is not an exact representation of what is happening in vivo and the microenvironment provided by in vitro cell culture models are significantly different and can cause deviations in cell response and behaviour from those distinctive of in vivo tissues. In order to translate the present basic knowledge in cell control, cell repair and regeneration from the laboratory bench to the clinical application, we need a better understanding of the cell and tissue interactions. This implies a detailed comprehension of the natural tissue environment, with its organization and local signals, in order to more closely mimic what happens in vivo, developing more physiological models for efficient in vitro systems. In particular, it is imperative to understand the role of the environmental cues which can be mainly divided into those of a chemical and mechanical nature.

  20. [In vitro cell culture technology in cosmetology research].

    Science.gov (United States)

    Gojniczek, Katarzyna; Garncarczyk, Agnieszka; Pytel, Agata

    2005-01-01

    For ages the humanity has been looking for all kind of active substances, which could be used in improving the health and the appearance of our skin. People try to find out how to protect the skin from harmful, environmental factors. Every year a lot of new natural and synthetic, chemical substances are discovered. All of them potentially could be used as a cosmetic ingredient. In cosmetology research most of new xenobiotics were tested in vivo on animals. Alternative methods to in vivo tests are in vitro tests with skin cell culture system. The aim of this work was to describe two-dimensional and tree-dimensional skin cell cultures. Additionally, in this work we wanted to prove the usefulness of in vitro skin cell cultures in cosmetology research.

  1. STUDY ON ANTIBACTERIAL ACTIVITY OF BEE VENOM.

    OpenAIRE

    Yeon Jo Ha; Chi Won Noh; Woo Young Bang; Sam Woong Kim; Sang Wan Gal.

    2018-01-01

    The purpose of this study was to investigate the antimicrobial activity against Salmonella infection which causes intestinal diseases from bee venom which is one of the social insects, and to find a way which use ghost vaccine. The minimum inhibitory concentration (MIC) of bee venom against Salmonella Typhimurium χ3339 was 101.81 ug/ml. Based on the result of MIC, the antimicrobial activity according to amount of the cells showed strong activities below 106 CFU/ml, but exhibited no and low ac...

  2. Isolation, culture and genetic manipulation of mouse pancreatic ductal cells.

    Science.gov (United States)

    Reichert, Maximilian; Takano, Shigetsugu; Heeg, Steffen; Bakir, Basil; Botta, Gregory P; Rustgi, Anil K

    2013-01-01

    The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles duct cells morphologically and, to some extent, at a molecular level. Recently, genetic-lineage labeling has become popular in the field of tumor biology in order to study cell-fate decisions or to trace cancer cells in the mouse. However, certain biological questions require a nongenetic labeling approach to purify a distinct cell population in the pancreas. Here we describe a protocol for isolating mouse pancreatic ductal epithelial cells and ductlike cells directly in vivo using ductal-specific Dolichos biflorus agglutinin (DBA) lectin labeling followed by magnetic bead separation. Isolated cells can be cultured (in two or three dimensions), manipulated by lentiviral transduction to modulate gene expression and directly used for molecular studies. This approach is fast (~4 h), affordable, results in cells with high viability, can be performed on the bench and is applicable to virtually all genetic and nongenetic disease models of the pancreas.

  3. Aragonite precipitation by "proto-polyps" in coral cell cultures.

    Science.gov (United States)

    Mass, Tali; Drake, Jeana L; Haramaty, Liti; Rosenthal, Yair; Schofield, Oscar M E; Sherrell, Robert M; Falkowski, Paul G

    2012-01-01

    The mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid. This novel coral culturing technique enables us to study the mechanisms of biomineralization and their implications for geochemical proxies. Viable cell cultures of the hermatypic, zooxanthellate coral, Stylophora pistillata, have been maintained for 6 to 8 weeks. Using an enriched seawater medium with aragonite saturation state similar to open ocean surface waters (Ω(arag)~4), the primary cell cultures assemble into "proto-polyps" which form an extracellular organic matrix (ECM) and precipitate aragonite crystals. These extracellular aragonite crystals, about 10 µm in length, are formed on the external face of the proto-polyps and are identified by their distinctive elongated crystallography and X-ray diffraction pattern. The precipitation of aragonite is independent of photosynthesis by the zooxanthellae, and does not occur in control experiments lacking coral cells or when the coral cells are poisoned with sodium azide. Our results demonstrate that proto-polyps, aggregated from primary coral tissue culture, function (from a biomineralization perspective) similarly to whole corals. This approach provides a novel tool for investigating the biophysical mechanism of calcification in these organisms.

  4. Aragonite precipitation by "proto-polyps" in coral cell cultures.

    Directory of Open Access Journals (Sweden)

    Tali Mass

    Full Text Available The mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid. This novel coral culturing technique enables us to study the mechanisms of biomineralization and their implications for geochemical proxies. Viable cell cultures of the hermatypic, zooxanthellate coral, Stylophora pistillata, have been maintained for 6 to 8 weeks. Using an enriched seawater medium with aragonite saturation state similar to open ocean surface waters (Ω(arag~4, the primary cell cultures assemble into "proto-polyps" which form an extracellular organic matrix (ECM and precipitate aragonite crystals. These extracellular aragonite crystals, about 10 µm in length, are formed on the external face of the proto-polyps and are identified by their distinctive elongated crystallography and X-ray diffraction pattern. The precipitation of aragonite is independent of photosynthesis by the zooxanthellae, and does not occur in control experiments lacking coral cells or when the coral cells are poisoned with sodium azide. Our results demonstrate that proto-polyps, aggregated from primary coral tissue culture, function (from a biomineralization perspective similarly to whole corals. This approach provides a novel tool for investigating the biophysical mechanism of calcification in these organisms.

  5. Honey bee venom combined with 1,25-dihydroxyvitamin D3as a highly efficient inducer of differentiation in human acute myeloid leukemia cells.

    Science.gov (United States)

    Mohseni-Kouchesfahani, Homa; Nabioni, Mohammad; Khosravi, Zahra; Rahimi, Maryam

    2017-01-01

    Most cancer cells exhibit a defect in their capacity to mature into nonreplicating adult cells and existing in a highly proliferating state. Differentiation therapy by agents such as 1,25-dihydroxyvitamin D3(1,25-(OH)2 VD3) represents a useful approach for the treatment of cancer including acute myeloid leukemia. Human myeloid leukemia cell lines are induced to terminal differentiation into monocyte lineage by 1,25-(OH)2 VD3. However, usage of these findings in the clinical trials is limited by calcemic effects of 1,25-(OH)2 VD3. Attempts to overcome this problem have focused on a combination of low concentrations 1,25-(OH)2 VD3 with other compounds to induce differentiation of HL-60 cells. In this study, the effect of honey bee venom (BV) and 1,25-(OH)2 VD3, individually and in combination, on proliferation and differentiation of human myeloid leukemia HL-60 cells were assayed. In this in vitro study, toxic and nontoxic concentrations of BV and 1,25-(OH)2 VD3 were tested using Trypan blue stained cell counting and (3[4, 5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. In addition, differentiation of cells was assayed using a Wright-Giemsa staining and nitroblue tetrazolium reduction test. Data were analyzed by a one-way analysis of the variance test using SPSS software. Our findings showed that both the BV and 1,25-(OH)2 VD3, in a dose and time-dependent manner, caused cell death at high concentrations and inhibited cell proliferation at lower concentrations. About 5 nM of 1,25-(OH)2 VD3 induced differentiation of HL-60 cells to monocytes after 72 h. 2.5 μg/ml of BV suppressed proliferation of HL-60 cells but had not any effects on their differentiation, whereas in combination with 5 nM of 1,25-(OH)2 VD3, it enhanced antiproliferative and differentiation potency of 1,25-(OH)2 VD3. These results indicate that BV potentiates the 1,25-(OH)2 VD3-induced HL-60 cell differentiation into monocytes.

  6. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis.

    Science.gov (United States)

    Roat, Thaisa Cristina; Landim, Carminda da Cruz

    2010-09-01

    Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.

  7. Disentangling metabolic functions of bacteria in the honey bee gut.

    Directory of Open Access Journals (Sweden)

    Lucie Kešnerová

    2017-12-01

    Full Text Available It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities.

  8. Karyotype changes in cultured human corneal endothelial cells

    OpenAIRE

    Miyai, Takashi; Maruyama, Yoko; Osakabe, Yasuhiro; Nejima, Ryohei; Miyata, Kazunori; Amano, Shiro

    2008-01-01

    Purpose To examine karyotype changes in cultured human corneal endothelial cells (HCECs). Methods HCECs with Descemet’s membrane were removed from 20 donors of various ages (range, 2–77 years; average, 43.7±26.4 years) and cultured on dishes coated with extracellular matrix produced by bovine corneal endothelial cells (BCECs). Karyotype changes were examined by G-band karyotyping of HCECs at the third passage from 12 donors and the fifth passage from 16 donors. The number of chromosomes was a...

  9. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    International Nuclear Information System (INIS)

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan

    2011-01-01

    Research highlights: → The proliferation of dramatic increased by co-cultured with Sertoli cells. → VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. → The MHC expression of ECs induced by INF-γ and IL-6, IL-8 and sICAM induced by TNF-α decreased respectively after co-cultured with Sertoli cells. → ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10 3 , 1 x 10 4 or 1 x 10 5 cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-γ and TNF-α were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10 4 cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P 4 cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-γ-induced MHC II antigen expression in co-cultured ECs compared with single

  10. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ping, E-mail: fanpinggoodluck@163.com [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China); He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China)

    2011-01-21

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  11. A study of chromosomal aberrations in amniotic fluid cell cultures.

    Science.gov (United States)

    Wolstenholme, J; Crocker, M; Jonasson, J

    1988-06-01

    This paper represents the analysis of 1916 routine amniotic fluid specimens harvested by an in situ fixation technique in a prospective study with regard to cultural chromosome anomalies. Excluding constitutional abnormalities, 2.9 per cent of 19,432 cells analysed showed some form of chromosome anomaly, terminal deletions (57 per cent) and chromatid/chromosome breaks and gaps (18 per cent) being the most frequent, followed by interchange aberrations (13 per cent) and trisomy (5 per cent). No case was found of more than one colony from the same culture showing the same anomaly without it being present in other cultures from the same fluid. The wholly abnormal colonies had a surplus of trisomies and from the mathematical considerations presented one may infer that these are likely to reflect the presence of abnormal cells in the amniotic fluid. Partly abnormal colonies appeared at a frequency that would correspond to virtual absence of selection against chromosomally abnormal cells when cultured in vitro. The aberrations found were similar to those seen as single cell anomalies, except for chromatid breaks and exchanges. The data suggest a basic preferential induction of trisomy for chromosomes 2, 18, 21, and the Y-chromosome. Structural aberrations showed a marked clustering of breakpoints around the centromeres. The frequency of mutant cells was low (1.4 X 10(-3)) before culture was initiated. At harvest, the frequency of abnormal cells was much higher (3 X 10(-2)) corresponding to 3 X 10(-3) mutations per cell per generation accumulating over approximately ten generations in vitro.

  12. Cell culture media impact on drug product solution stability.

    Science.gov (United States)

    Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J

    2016-07-08

    To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016. © 2016 American Institute of Chemical Engineers.

  13. Testing of serum atherogenicity in cell cultures: questionable data published

    Directory of Open Access Journals (Sweden)

    Sergei V. Jargin

    2012-01-01

    Full Text Available In a large series of studies was reported that culturing of smooth muscle cells with serum from atherosclerosis patients caused intracellular lipid accumulation, while serum from healthy controls had no such effect. Cultures were used for evaluation of antiatherogenic drugs. Numerous substances were reported to lower serum atherogenicity: statins, trapidil, calcium antagonists, garlic derivatives etc. On the contrary, beta-blockers, phenothiazines and oral hypoglycemics were reported to be pro-atherogenic. Known antiatherogenic agents can influence lipid metabolism and cholesterol synthesis, intestinal absorption or endothelium-related mechanisms. All these targets are absent in cell monocultures. Inflammatory factors, addressed by some antiatherogenic drugs, are also not reproduced. In vivo, relationship between cholesterol uptake by cells and atherogenesis must be inverse rather than direct: in familial hypercholesterolemia, inefficient clearance of LDL-cholesterol by cells predisposes to atherosclerosis. Accordingly, if a pharmacological agent reduces cholesterol uptake by cells in vitro, it should be expected to elevate cholesterol in vivo. Validity of clinical recommendations, based on serum atherogenicity testing in cell monocultures, is therefore questionable. These considerations pertain also to the drugs developed on the basis of the cell culture experiments.

  14. Arsenic exposure induces the Warburg effect in cultured human cells

    International Nuclear Information System (INIS)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-01-01

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect

  15. Scanning electroporation of selected areas of adherent cell cultures.

    Science.gov (United States)

    Olofsson, Jessica; Levin, Mikael; Strömberg, Anette; Weber, Stephen G; Ryttsén, Frida; Orwar, Owe

    2007-06-15

    We present a computer-controlled scanning electroporation method. Adherent cells are electroporated using an electrolyte-filled capillary in contact with an electrode. The capillary can be scanned over a cell culture and locally deliver both an electric field and an electroporation agent to the target area without affecting surrounding cells. The instantaneous size of the targeted area is determined by the dimensions of the capillary. The size and shape of the total electroporated area are defined by these dimensions in combination with the scanning pattern. For example, striped and serpentine patterns of electroporated cells in confluent cultures can be formed. As it is easy to switch between different electroporation agents, the method is suitable for design of cell cultures with complex composition. Finite element method simulations were used to study the spatial distributions of the electric field and the concentration of an electroporation agent, as well as the fluid dynamics related to scanning and flow of electroporation agent from the capillary. The method was validated for transfection by introduction of a 9-base-pair-long randomized oligonucleotide into PC12 cells and a pmaxGFP plasmid coding for green fluorescent protein into CHO and WSS cells.

  16. Schwann Cells Can Be Reprogrammed to Multipotency by Culture

    Science.gov (United States)

    Widera, Darius; Heimann, Peter; Zander, Christin; Imielski, Yvonne; Heidbreder, Meike; Heilemann, Mike; Kaltschmidt, Christian

    2011-01-01

    Adult neural crest related-stem cells persist in adulthood, making them an ideal and easily accessible source of multipotent cells for potential clinical use. Recently, we reported the presence of neural crest-related stem cells within adult palatal ridges, thus raising the question of their localization in their endogenous niche. Using immunocytochemistry, reverse transcription–polymerase chain reaction, and correlative fluorescence and transmission electron microscopy, we identified myelinating Schwann cells within palatal ridges as a putative neural crest stem cell source. Palatal Schwann cells expressed nestin, p75NTR, and S100. Correlative fluorescence and transmission electron microscopy revealed the exclusive nestin expression within myelinating Schwann cells. Palatal neural crest stem cells and nestin-positive Schwann cells isolated from adult sciatic nerves were able to grow under serum-free conditions as neurospheres in presence of FGF-2 and EGF. Spheres of palatal and sciatic origin showed overlapping expression pattern of neural crest stem cell and Schwann cell markers. Expression of the pluripotency factors Sox2, Klf4, c-Myc, Oct4, the NF-κB subunits p65, p50, and the NF-κB-inhibitor IκB-β were up-regulated in conventionally cultivated sciatic nerve Schwann cells and in neurosphere cultures. Finally, neurospheres of palatal and sciatic origin were able to differentiate into ectodermal, mesodermal, and endodermal cell types emphasizing their multipotency. Taken together, we show that nestin-positive myelinating Schwann cells can be reprogrammed into multipotent adult neural crest stem cells under appropriate culture conditions. PMID:21466279

  17. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  18. BEE VENOM TRAP DESIGN FOR PRODUCE BEE VENOM OF APIS MELLIFERA L. HONEY BEES

    OpenAIRE

    Budiaman

    2015-01-01

    Bee venom is one honey bee products are very expensive and are required in the pharmaceutical industry and as an anti-cancer known as nanobee, but the production technique is still done in the traditional way. The purpose of this study was to design a bee venom trap to produce bee venom of Apis mellifera L honey bees. The method used is to design several models of bee venom apparatus equipped weak current (DC current) with 3 variations of voltage, ie 12 volts, 15 volts and 18 volts coupled...

  19. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane

    and electrochemical sensor system that enables real time detection of metabolites, e.g. dopamine from cell cultures and brain slices. In summary we present results on culturing of brain slices and cells in the microfluidic system as well as on the incorporation of an electrochemical sensor system for characterization......The brain is the center of the nervous system, where serious neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s are products of functional loss in the neural cells (1). Typical techniques used to investigate these diseases lack precise control of the cellular surroundings......, in addition to isolating the neural tissue from nutrient delivery and to creating unwanted gradients (2). This means that typical techniques used to investigate neurodegenerative diseases cannot mimic in vivo conditions, as closely as desired. We have developed a novel microfluidic system for culturing PC12...

  20. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...... and a comprehensive fault model that captures permanent faults occurring during chip operation. Using the proposed modeling and simulation framework, we perform an architectural level evaluation of two cell culture chamber implementations. A qualitative success metric is also proposed to evaluate chip performance...

  1. Chikungunya virus isolation using simplified cell culture technique in Mauritius.

    Science.gov (United States)

    Pyndiah, M N; Pursem, V; Meetoo, G; Daby, S; Ramuth, V; Bhinkah, P; Chuttoo, R; Paratian, U

    2012-03-01

    During the chikungunya outbreak of 2005 - 2006, the only laboratory facilities available in Mauritius were virus isolation in cell culture tubes and serology. The laboratory was submerged with large numbers of blood samples. Comparative isolation was made in human embryonic lung (HEL) and VERO cells grown in 96-well plate. Culture on HEL cells was found to be more sensitive and presence of cytopathic effect (CPE) was observed earlier than in VERO cells. Out of the 18 300 blood samples inoculated on HEL, 11 165 were positive. This virus isolation method was of great help for the surveillance and control of the vectors. In cases of an outbreak a cheap, rapid and simple method of isolating chikungunya virus is described.

  2. Enhancement effect of shikonin in cell suspension culture and transfermanant culture by radiation application

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Lee, Young Keun; Chung, Byung Yeoup; Lee, Young Bok; Hwang Hye Yeon

    2004-10-01

    The cell lines 679, 679-29 and 622-46 of L. erythrorhizon could be selected on LS agar medium for the production shikonin in cell suspension culture. The shikonin was increased moderately in suspension culture of cell line 622-46 in LS liquid medium containing BA 2 mg·L -1 and IAA 0.2 mg·L -1 in the dark, and was increased by adding 1 μM Cu 2+ and 100 μM methyl jasmonate The accumulation of shikonin in the liquid medium was increased significantly by 2 Gy irradiation to callus of cell line 622-46 and culture in LS liquid medium containing BA 2 mg·L -1 and IAA 0.2 mg·L -1 in the dark and shikonin in cell debris was higher by 16 Gy irradiation. The activity of p-hydroxybenzoate geranyltransferase was increased by irradiation of 2 Gy and 16 Gy of γ radiation. Seedling hypocotyles of L. erythrorhizon were infected with Agrogacterium rhizogenes strain 15834 harboring a binary vector with an intron bearing the GUS (β-glucuronidase) gene driven by cauliflower mosaic virus (CaMV) 35S promotor as well as the HPT (hygromycin phosphotransferase) gene as the selection marker. Hairy roots isolated were hygromycin resistant and had integrated GUS gene in DNA. The root tip grown on M-9 medium showed normal pigment production pattern in border cells and root hairs

  3. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    OpenAIRE

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-01-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance o...

  4. Cultured meat from stem cells: challenges and prospects.

    Science.gov (United States)

    Post, Mark J

    2012-11-01

    As one of the alternatives for livestock meat production, in vitro culturing of meat is currently studied. The generation of bio-artificial muscles from satellite cells has been ongoing for about 15 years, but has never been used for generation of meat, while it already is a great source of animal protein. In order to serve as a credible alternative to livestock meat, lab or factory grown meat should be efficiently produced and should mimic meat in all of its physical sensations, such as visual appearance, smell, texture and of course, taste. This is a formidable challenge even though all the technologies to create skeletal muscle and fat tissue have been developed and tested. The efficient culture of meat will primarily depend on culture conditions such as the source of medium and its composition. Protein synthesis by cultured skeletal muscle cells should further be maximized by finding the optimal combination of biochemical and physical conditions for the cells. Many of these variables are known, but their interactions are numerous and need to be mapped. This involves a systematic, if not systems, approach. Given the urgency of the problems that the meat industry is facing, this endeavor is worth undertaking. As an additional benefit, culturing meat may provide opportunities for production of novel and healthier products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Hey! A Bee Stung Me!

    Science.gov (United States)

    ... of bee is the honeybee. These bees build nests out of wax in old trees and manmade ... black with white markings, and they build papery nests shaped like footballs in trees and shrubs. Yellowjackets ...

  6. Magnetic effect on dancing bees

    Science.gov (United States)

    Lindauer, M.; Martin, H.

    1972-01-01

    Bee sensitivity to the earth's magnetic field is studied. Data cover sensitivity range and the use of magnetoreception for orientation purposes. Experimental results indicate bee orientation is aided by gravity fields when the magnetic field is compensated.

  7. Stakeholder Conference on Bee Health

    Science.gov (United States)

    USDA and EPA released a comprehensive scientific report on honey bee health in May 2013. The report points to multiple factors playing a role in honey bee colony declines, including parasites and disease, genetics, poor nutrition, and pesticide exposure.

  8. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  9. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures.

    Science.gov (United States)

    Kisselbach, Lynn; Merges, Michael; Bossie, Alexis; Boyd, Ann

    2009-01-01

    Cluster Differentiation 90 (CD90) is a cell surface glycoprotein originally identified on mouse thymocytes. Although CD90 has been identified on a variety of stem cells and at varying levels in non-lymphoid tissues such as on fibroblasts, brain cells, and activated endothelial cells, the knowledge about the levels of CD90 expression on different cell types, including human primary cells, is limited. The goal of this study was to identify CD90 as a human primary cell biomarker and to develop an efficient and reliable method for eliminating unwanted or contaminating fibroblasts from human primary cell cultures suitable for research pursuant to cell based therapy technologies.

  10. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  11. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  12. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity

    Science.gov (United States)

    Bradley, Jillian H.; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P.; Gregg, Randal K.

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When

  13. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity.

    Science.gov (United States)

    Bradley, Jillian H; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P; Gregg, Randal K

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter

  14. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2016-01-01

    Accumulating evidences have demonstrated that mesenchymal stem cells (MSC) could be recruited to the tumor microenvironment. Umbilical cord mesenchymal stem cells (UCMSC) were attractive vehicles for delivering therapeutic agents against cancer. Nevertheless, the safety of UCMSC in the treatment of tumors including hepatocellular carcinoma (HCC) was still undetermined. In this study, an in vitro co-culture system was established to evaluate the effect of UCMSC on the cell growth, cancer stem cell (CSC) characteristics, drug resistance, metastasis of 3D-cultured HCC cells, and the underlying mechanism was also investigated. It was found that after co-cultured with UCMSC, the metastatic ability of 3D-cultured HCC cells was significantly enhanced as indicated by up-regulation of matrix metalloproteinase (MMP), epithelial-mesenchymal transition (EMT)-related genes, and migration ability. However, cell growth, drug resistance and CSC-related gene expression of HCC cells were not affected by UCMSC. Moreover, EMT was reversed, MMP-2 expression was down-regulated, and migration ability of HCC cell was significantly inhibited when TGF-β receptor inhibitor SB431542 was added into the co-culture system. Therefore, these data indicated that UCMSC could significantly enhance the tumor cell metastasis, which was due to the EMT of HCC cells induced by TGF-β. The online version of this article (doi:10.1186/s12885-016-2595-4) contains supplementary material, which is available to authorized users

  15. In vitro plant regeneration from embryogenic cell suspension culture ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... plasts in A. adsurgens (Luo and Jia, 1998a, b). There are only few reports available on plant regeneration systems via somatic embryogenesis (Luo et al., 1999; Hou and. Jia, 2004). Here, we report a protocol for plant regenera- tion from embryogenic cell suspension culture of endemic. A. chrysochlorus.

  16. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    with MK-801. Whole-cell recordings during wave formation showed cyclic EPSP barrages with an amplitude of 10-20 mV concurrent with wave activity. Local non-propagating putative transglial waves were also present in the cultures, and could be reproduced by pressure application of ATP. We hypothesize...

  17. Plant Cell Cultures as Source of Cosmetic Active Ingredients

    Directory of Open Access Journals (Sweden)

    Ani Barbulova

    2014-04-01

    Full Text Available The last decades witnessed a great demand of natural remedies. As a result, medicinal plants have been increasingly cultivated on a commercial scale, but the yield, the productive quality and the safety have not always been satisfactory. Plant cell cultures provide useful alternatives for the production of active ingredients for biomedical and cosmetic uses, since they represent standardized, contaminant-free and biosustainable systems, which allow the production of desired compounds on an industrial scale. Moreover, thanks to their totipotency, plant cells grown as liquid suspension cultures can be used as “biofactories” for the production of commercially interesting secondary metabolites, which are in many cases synthesized in low amounts in plant tissues and differentially distributed in the plant organs, such as roots, leaves, flowers or fruits. Although it is very widespread in the pharmaceutical industry, plant cell culture technology is not yet very common in the cosmetic field. The aim of the present review is to focus on the successful research accomplishments in the development of plant cell cultures for the production of active ingredients for cosmetic applications.

  18. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... The objective of this work was the optimization of the conditions of callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. The effects of different conditions on the callus growth and the production of condensed tannins were researched. The leaf tissue part of.

  19. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-03-18

    Mar 18, 2008 ... Key words: Sorghum, proteomics, callus, cell suspension cultures, total soluble protein, secretome. INTRODUCTION. Sorghum, a cereal crop native to Africa, is drought- tolerant, surviving periods of water deficit (Rosenow et al., 1983). The crop is grown in the semi-arid regions of. Africa and Asia primarily ...

  20. Test chambers for cell culture in static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Glinka, Marek, E-mail: mag@iq.pl [Research and Development Centre of Electrical Machines. 188 Rozdzienskiego Street, 40-203 Katowice (Poland); Gawron, Stanisław, E-mail: s.gawron@komel.katowice.pl [Research and Development Centre of Electrical Machines. 188 Rozdzienskiego Street, 40-203 Katowice (Poland); Sieroń, Aleksander, E-mail: sieron1@tlen.pl [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland); Pawłowska–Góral, Katarzyna, E-mail: kgoral@sum.edu.pl [Department of Food and Nutrition in Sosnowiec. Medical University of Silesia in Katowice. 8 Jednosci Street, 41-200 Sosnowiec (Poland); Cieślar, Grzegorz, E-mail: cieslar1@tlen.pl [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland); Sieroń–Stołtny, Karolina [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland)

    2013-04-15

    Article presents a test chamber intended to be used for in vitro cell culture in homogenous constant magnetic field with parametrically variable magnitude. We constructed test chambers with constant parameters of control homeostasis of cell culture for the different parameters of static magnetic field. The next step was the computer calculation of 2D and 3D simulation of the static magnetic field distribution in the chamber. The analysis of 2D and 3D calculations of magnetic induction in the cells' exposition plane reveals, in comparison to the detection results, the greater accuracy of 2D calculations (Figs. 9 and 10). The divergence in 2D method was 2–4% and 8 to 10% in 3D method (reaching 10% only out of the cells′ cultures margins). -- Highlights: ► We present test chamber to be used for in vitro cell culture in static magnetic field. ► The technical data of the chamber construction was presented. ► 2D versus 3D simulation of static magnetic field distribution in chamber was reported. ► We report the accuracy of 2D calculation than 3D.

  1. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    The objective of this work was the optimization of the conditions of callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. The effects of different conditions on the callus growth and the production of condensed tannins were researched. The leaf tissue part of E. angustifolia was ...

  2. Chloride secretion by cultures of pig tracheal gland cells

    Science.gov (United States)

    Borthwell, Rachel M.; Hajighasemi-Ossareh, Mohammad; Lachowicz-Scroggins, Marrah E.; Finkbeiner, W. E.; Stevens, Jeremy E.; Modlin, Sara

    2012-01-01

    Malfunction of airway submucosal glands contributes to the pathology of cystic fibrosis (CF), and cell cultures of CF human airway glands show defects in Cl− and water transport. Recently, a transgenic pig model of CF (the CF pig) has been developed. Accordingly, we have developed cell cultures of pig airway gland epithelium for use in investigating alterations in gland function in CF. Our cultures form tight junctions (as evidenced by high transepithelial electrical resistance) and show high levels of active anion secretion (measured as amiloride-insensitive short-circuit current). In agreement with recent results on human airway glands, neurohumoral agents that elevate intracellular Ca2+ potently stimulated anion secretion, while elevation of cAMP was comparatively ineffective. Our cultures express lactoferrin and lysozyme (serous gland cell markers) and MUC5B (the main mucin of airway glands). They are, therefore, potentially useful in determining if CF-related alterations in anion transport result in altered secretion of serous cell antimicrobial agents or mucus. PMID:22367783

  3. [Colorectal cancer: tissutal explantation and primary cell culture].

    Science.gov (United States)

    Spisni, Roberto; Failli, Alessandra; Orsini, Giulia; Kastsiuchenka, Olga; Natale, Gianfranco; Castagna, Maura; Legitimo, Annalisa; Aghasbabyan, Alekandr; Ambrosini, Carlo Enrico; Consolini, Rita; Miccoli, Paolo

    2009-01-01

    Setting of cellular cultures extracted from colorectal cancer tissue represents a valid model for in vitro study of biological and molecular characteristics of each single tumor finalized to obtain a tailored chemiotherapy. The end point of this study is to create primary cellular cultures from "fresh" cancer tissue in different stages of evolution. Cancer tissue samples are obtained by means of surgical excisional biopsy or by means of semi-automatic biopsy instrument (Sprig-Cut). After having compared different approaches, two experimental protocols have been selected to have the highest number or intact cells: enzimatic digestion with trypsin and explantation. Primary cell culture free of microbic contamination, obtained mainly by means of Spring-Cut methods, underwent immunohistochemical analysis to evaluate what kind of cell have been grown in vitro by measuring the expression of CK20 and GFAP both resulted positive. The possibility of setting a primary cell culture which represents the cancer of each patient allows a pharmacologic and biomolecular study which can contribute to the development of a tailored adjuvant therapy with many advantages for the patient in terms of positive answer to the treatment and reduced toxicity.

  4. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  5. CYTOTOXICITY TESTING OF WOUND DRESSINGS USING METHYLCELLULOSE CELL-CULTURE

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; JONKMAN, MF

    1992-01-01

    Wound dressings may induce cytotoxic effects. In this study, we check several, mostly commercially available, wound dressings for cytotoxicity. We used our previously described, newly developed and highly sensitive 7 d methylcellulose cell culture with fibroblasts as the test system. Cytotoxicity is

  6. Nosema ceranae escapes fumagillin control in honey bees.

    Science.gov (United States)

    Huang, Wei-Fone; Solter, Leellen F; Yau, Peter M; Imai, Brian S

    2013-03-01

    Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2) in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.

  7. Nosema ceranae escapes fumagillin control in honey bees.

    Directory of Open Access Journals (Sweden)

    Wei-Fone Huang

    2013-03-01

    Full Text Available Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2 in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.

  8. Lethal impacts of cigarette smoke in cultured tobacco cells

    Directory of Open Access Journals (Sweden)

    Kawano Tomonori

    2011-07-01

    Full Text Available Abstract Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.

  9. Mefloquine damage vestibular hair cells in organotypic cultures.

    Science.gov (United States)

    Yu, Dongzhen; Ding, Dalian; Jiang, Haiyan; Stolzberg, Daniel; Salvi, Richard

    2011-07-01

    Mefloquine is an effective and widely used anti-malarial drug; however, some clinical reports suggest that it can cause dizziness, balance, and vestibular disturbances. To determine if mefloquine might be toxic to the vestibular system, we applied mefloquine to organotypic cultures of the macula of the utricle from postnatal day 3 rats. The macula of the utricle was micro-dissected out as a flat surface preparation and cultured with 10, 50, 100, or 200 μM mefloquine for 24 h. Specimens were stained with TRITC-conjugated phalloidin to label the actin in hair cell stereocilia and TO-PRO-3 to visualize cell nuclei. Some utricles were also labeled with fluorogenic caspase-3, -8, or -9 indicators to evaluate the mechanism of programmed cell death. Mefloquine treatment caused a dose-dependent loss of utricular hair cells. Treatment with 10 μM caused a slight reduction, 50 μM caused a significant reduction, and 200 μM destroyed nearly all the hair cells. Hair cell nuclei in mefloquine-treated utricles were condensed and fragmented, morphological features of apoptosis. Mefloquine-treated utricles were positive for the extrinsic initiator caspase-8 and intrinsic initiator caspase-9 and downstream executioner caspase-3. These results indicate that mefloquine can induce significant hair cell degeneration in the postnatal rat utricle and that mefloquine-induced hair cell death is initiated by both caspase-8 and caspase-9.

  10. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi

    Science.gov (United States)

    Paula M. Pijut; R. Daniel Lineberger; Subhash C. Domir; Jann M. Ichida; Charles R. Krause

    1990-01-01

    Calli of American elm susceptible and resistant to Dutch elm disease were exposed to a culture filtrate of a pathogenic isolate of Ceratocystis ulmi. Cells from untreated tissue exhibited typical internal composition associated with healthy, actively growing cells. All cells exposed to culture filtrate showed appreciable ultrastructural changes....

  11. Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees

    Directory of Open Access Journals (Sweden)

    Evan C. Palmer-Young

    2017-05-01

    Full Text Available Phytochemicals produced by plants, including at flowers, function in protection against plant diseases, and have a long history of use against trypanosomatid infection. Floral nectar and pollen, the sole food sources for many species of insect pollinators, contain phytochemicals that have been shown to reduce trypanosomatid infection in bumble and honey bees when fed as isolated compounds. Nectar and pollen, however, consist of phytochemical mixtures, which can have greater antimicrobial activity than do single compounds. This study tested the hypothesis that pollen extracts would inhibit parasite growth. Extracts of six different pollens were tested for direct inhibitory activity against cell cultures of the bumble bee trypanosomatid gut parasite Crithidia bombi. Surprisingly, pollen extracts increased parasite growth rather than inhibiting it. Pollen extracts contained high concentrations of sugars, mainly the monosaccharides glucose and fructose. Experimental manipulations of growth media showed that supplemental monosaccharides (glucose and fructose increased maximum cell density, while a common floral phytochemical (caffeic acid with inhibitory activity against other trypanosomatids had only weak inhibitory effects on Crithidia bombi. These results indicate that, although pollen is essential for bees and other pollinators, pollen may promote growth of intestinal parasites that are uninhibited by pollen phytochemicals and, as a result, can benefit from the nutrients that pollen provides.

  12. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line.

    Directory of Open Access Journals (Sweden)

    Justyna Moskwa

    Full Text Available Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9 expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content. The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation. We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively. Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors.

  13. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...... a protein with an apparent molecular mass of 70 kDa and an isoelectric pH of 7.0 as early as 3 h after the initial hyperthermal treatment....

  14. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sunyoung Park

    Full Text Available Circulating tumor cell (CTC enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.

  15. Rapid Detection of Apoptosis in Cultured Mammalian Cells.

    Science.gov (United States)

    Kudryavtsev, Igor; Serebryakova, Maria; Solovjeva, Liudmila; Svetlova, Maria; Firsanov, Denis

    2017-01-01

    Flow cytometry is a powerful tool for the analysis of apoptosis, the process that directly determines cell fate after the action of different stresses. Here, we describe a flow cytometry method for the assessment of early and late stages of apoptosis in non-fixed cultured cells using SYTO16, DRAQ7, and PO-PRO1 dyes simultaneously. This multicolor flow cytometry procedure requires 45 min for completion and provides a quantitative assessment of cell viability. It can be useful in evaluating the cytotoxic properties of new drugs, and antitumor interventions.

  16. Effect of Micro Ridges on Orientation of Cultured Cell

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2014-06-01

    Full Text Available The effect of micro ridges on orientation of cultured cells has been studied in vitro. Several patterns of micro ridges have been fabricated on a transparent polydimethylsiloxane disk with the photo lithography technique. The ridges consist of several lines of rectangular column: the width of 0.003 mm, the interval of 0.007 mm. Variation has been made on the height of the ridge between 0.0003 mm and 0.0035 mm. C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse was cultured on the disk with the micro ridges for one week and was observed with an inverted phase contrast microscope. The experimental results show that cells adhere on the top of the ridge and align to the longitudinal direction of the micro ridges with the height between 0.0015 mm and 0.0025 mm.

  17. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  18. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  19. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding......' bioactivity, defining the lowest toxic level of tested substances etc....

  20. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase...

  1. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions.

    Science.gov (United States)

    Kaji, Hirokazu; Camci-Unal, Gulden; Langer, Robert; Khademhosseini, Ali

    2011-03-01

    Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  2. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  3. Cell Migration in Tissues: Explant Culture and Live Imaging.

    Science.gov (United States)

    Staneva, Ralitza; Barbazan, Jorge; Simon, Anthony; Vignjevic, Danijela Matic; Krndija, Denis

    2018-01-01

    Cell migration is a process that ensures correct cell localization and function in development and homeostasis. In disease such as cancer, cells acquire an upregulated migratory capacity that leads to their dissemination throughout the body. Live imaging of cell migration allows for better understanding of cell behaviors in development, adult tissue homeostasis and disease. We have optimized live imaging procedures to track cell migration in adult murine tissue explants derived from: (1) healthy gut; (2) primary intestinal carcinoma; and (3) the liver, a common metastatic site. To track epithelial cell migration in the gut, we generated an inducible fluorescent reporter mouse, enabling us to visualize and track individual cells in unperturbed gut epithelium. To image intratumoral cancer cells, we use a spontaneous intestinal cancer model based on the activation of Notch1 and deletion of p53 in the mouse intestinal epithelium, which gives rise to aggressive carcinoma. Interaction of cancer cells with a metastatic niche, the mouse liver, is addressed using a liver colonization model. In summary, we describe a method for long-term 3D imaging of tissue explants by two-photon excitation microscopy. Explant culturing and imaging can help understand dynamic behavior of cells in homeostasis and disease, and would be applicable to various tissues.

  4. Three-dimensional cell culture model utilization in cancer stem cell research.

    Science.gov (United States)

    Bielecka, Zofia F; Maliszewska-Olejniczak, Kamila; Safir, Ilan J; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Three-dimensional (3D) cell culture models are becoming increasingly popular in contemporary cancer research and drug resistance studies. Recently, scientists have begun incorporating cancer stem cells (CSCs) into 3D models and modifying culture components in order to mimic in vivo conditions better. Currently, the global cell culture market is primarily focused on either 3D cancer cell cultures or stem cell cultures, with less focus on CSCs. This is evident in the low product availability officially indicated for 3D CSC model research. This review discusses the currently available commercial products for CSC 3D culture model research. Additionally, we discuss different culture media and components that result in higher levels of stem cell subpopulations while better recreating the tumor microenvironment. In summary, although progress has been made applying 3D technology to CSC research, this technology could be further utilized and a greater number of 3D kits dedicated specifically to CSCs should be implemented. © 2016 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  5. [The effect of Solcoseryl on in-vitro cultured cells].

    Science.gov (United States)

    Lindner, G; Grosse, G; Lehmann, A

    1977-01-01

    Explants of peripherical nervous system (PNS), skin and ventriculus cordis from chick embryo were cultivated in Maximow chambers and the effect of Solcoseryl, Fa. Solco Basel AG, on some morphological parameters was tested. 1. The growth of tissue cultures is influenced by Solcoseryl in relation to concentration and time of application. The index of area in cultures of PNS and cor increased within the first days. By long time application up to 6 days in vitro the index of area decreased and the index was the same than in controls. Explants of skin showed no essential stimulation of growth. 2. The number of cells per unit of culture in the outgrowth of PNS, cor and skin was different influenced. The density of cells in cultures of PNS and skin decreased (signif. difference). In explants of heart we could not observe a difference between the inside and outside of the outgrowth. An influence of Solcoseryl on the degree of migration is discussed. 3. The area of cell nuclei from heartcells was observed. The area decreased under the influence of Solcoseryl. The difference is significant. 4. The mitotic index of heart cells increased by application of Solcoseryl within the first 2 and 3 days in vitro. 5. The number of nucleoli per nucleus of heart cells under experimental conditions increased significant. It is discussed, Solcoseryl influenced in vitro metabolic processes in suitable systems; stimulation of cell proliferation and migration and rns-synthesis was observed within the first days of cultivation. In-vitro-systems are important objects and they are suitable for tests of pharmaca in vitro.

  6. Viral antigen production in cell cultures on microcarriers Bovine parainfluenza 3 virus and MDBK cells.

    Science.gov (United States)

    Conceição, M M; Tonso, A; Freitas, C B; Pereira, C A

    2007-11-07

    Viral antigens can be obtained from infected mammalian cells cultivated on microcarriers. We have worked out parameters for the production of bovine parainfluenza 3 (PI-3) virus by Mandin-Darby Bovine Kidney (MDBK) cells cultivated on Cytodex 1 microcarriers (MCs) in spinners flasks and bioreactor using fetal bovine serum (FBS) supplemented Eagle minimal essential medium (Eagle-MEM). Medium renewal during the cell culture was shown to be crucial for optimal MCs loading (>90% MCs with confluent cell monolayers) and cell growth (2.5 x 10(6)cells/mL and a micro(x) (h(-1)) 0.05). Since cell cultures performed with lower amount of MCs (1g/L), showed good performances in terms of cell loading, we designed batch experiments with a lower concentration of MCs in view of optimizing the cell growth and virus production. Studies of cell growth with lower concentrations of MCs (0.85 g/L) showed that an increase in the initial cell seeding (from 7 to 40 cells/MC) led to a different kinetic of initial cell growth but to comparable final cell concentrations ((8-10)x10(5)cells/mL at 120 h) and cell loading (210-270 cells/MC). Upon infection with PI-3 virus, cultures showed a decrease in cell growth and MC loading directly related to the multiplicity of infection (moi) used for virus infection. Infected cultures showed also a higher consumption of glucose and production of lactate. The PI-3 virus and PI-3 antigen production among the cultures was not significantly different and attained values ranging from, respectively, 7-9 log(10) TCID(50)/mL and 1.5-2.2 OD. The kinetics of PI-3 virus production showed a sharp increase during the first 24h and those of PI-3 antigen increased after 24h. The differential kinetics of PI-3 virus and PI-3 antigen can be explained by the virus sensitivity to temperature. In view of establishing a protocol of virus production and based on the previous experiments, MDBK cell cultures performed under medium perfusion in a bioreactor of 1.2L were infected

  7. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    Science.gov (United States)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  8. Aging and senescence of skin cells in culture

    DEFF Research Database (Denmark)

    Rattan, Suresh

    2015-01-01

    Studying age-related changes in the physiology, biochemistry, and molecular biology of isolated skin cell populations in culture has greatly expanded the understanding of the fundamental aspects of skin aging. The three main cell types that have been studied extensively with respect to cellular...... aging in vitro are dermal fibroblasts, epidermal keratinocytes, and melanocytes. Serial subcultivation of normal diploid skin cells can be performed only a limited number of times, and the emerging senescent phenotype can be categorized into structural, physiological, biochemical, and molecular...... phenotypes, which can be used as biomarkers of cellular aging in vitro. The rate and phenotype of aging are different in different cell types. There are both common features and specific features of aging of skin fibroblasts, keratinocytes, melanocytes, and other cell types. A progressive accumulation...

  9. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  10. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-01-01

    Highlights: ► Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). ► Presence of SCs dramatically increased proliferation and migration of UCMSCs. ► Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of “nurse” cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  11. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  12. The similarity and appropriate usage of three honey bee (Hymenoptera: Apidae) datasets for longitudinal studies

    Science.gov (United States)

    Honey bee (Apis mellifera, Hymenoptera: Apidae) colonies have experienced profound fluctuations, especially declines, in the past few decades. Long-term datasets on honey bees are needed to identify the most important environmental and cultural factors associated with these changes. While a few suc...

  13. Flower diversity and bee reproduction in an arid ecosystem

    Directory of Open Access Journals (Sweden)

    Jimena Dorado

    2016-07-01

    Full Text Available Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Materials and Methods: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site, and whether such effects were modulated by bee generalization on floral resources. Results: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Discussion: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the

  14. Radiation response of cultured human cells is unaffected by Johrei.

    Science.gov (United States)

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-06-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest) in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment) for each of 4 doses of X-rays (0, 2, 4 and 8 Gy). Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  15. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    Directory of Open Access Journals (Sweden)

    Zach Hall

    2007-01-01

    Full Text Available Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment for each of 4 doses of X-rays (0, 2, 4 and 8 Gy. Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  16. Effect of low dose laser on the chorioallantoic culture of retinal pigment cells

    International Nuclear Information System (INIS)

    Yew, D.T.; Lam, S.T.L.; Chan, Y.W.

    1982-01-01

    Low dose laser effects were analysed in chorioallantoic cultures of retinal pigment cells. Decrease in cell sizes and increase in number of mitosis were observed in the experimental cultures. On the other hand, pyknosis did not change significantly following irradiation. Most cells in the control and experimental cultures formed groups. However, 2 types of detached cells were evident. The percentage of detached cells was higher in the experimental culture. (Auth.)

  17. Scale-up of cell culture bioreactors using biomechatronic design.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2012-08-01

    Scale-up of cell culture bioreactors is a challenging engineering work that requires wide competence in cell biology, mechanical engineering and bioprocess design. In this article, a new approach for cell culture bioreactor scale-up is suggested that is based on biomechatronic design methodology. The approach differs from traditional biochemical engineering methodology by applying a sequential design procedure where the needs of the users and alternative design solutions are systematically analysed. The procedure is based on the biological and technical functions of the scaled-up bioreactor that are derived in functional maps, concept generation charts and scoring and interaction matrices. Basic reactor engineering properties, such as mass and heat transfer and kinetics are integrated in the procedure. The methodology results in the generation of alternative design solutions that are thoroughly ranked with help of the user needs. Examples from monoclonal antibodies and recombinant protein production illuminate the steps of the procedure. The methodology provides engineering teams with additional tools that can significantly facilitate the design of new production methods for cell culture processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 3D Cell Culture Imaging with Digital Holographic Microscopy

    Science.gov (United States)

    Dimiduk, Thomas; Nyberg, Kendra; Almeda, Dariela; Koshelva, Ekaterina; McGorty, Ryan; Kaz, David; Gardel, Emily; Auguste, Debra; Manoharan, Vinothan

    2011-03-01

    Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging techinque, digital holographic microscopy, which can capture 3D information with axial resolution better than 2 μm in a 100 μm deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing ~ 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast. We acknowledge support from NSF GRFP.

  19. Interaction of a novel antimicrobial peptide isolated from the venom of solitary bee Colletes daviesanus with phospholipid vesicles and Escherichia coli cells.

    Science.gov (United States)

    Čujová, Sabína; Bednárová, Lucie; Slaninová, Jiřina; Straka, Jakub; Čeřovský, Václav

    2014-11-01

    The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α-helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane-mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan-containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N-phenyl-1-naphthylamine and detecting cytoplasmic β-galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  20. Individualized medicine for renal cell carcinoma: establishment of primary cell line culture from surgical specimens.

    Science.gov (United States)

    Kim, Fernando J; Campagna, Adriano; Khandrika, Lakshmipathi; Koul, Sweaty; Byun, Seok-Soo; vanBokhoven, Adrie; Moore, Ernest E; Koul, Hari

    2008-10-01

    The lack of effective "in vivo" and "in vitro" models to predict success of pharmacological therapy for patients with renal cell carcinoma, as well as, the variety of cancer cell types demands the development of better experimental models to understand the pathophysiology of the disease and evaluate drug sensitivity in vitro. To develop primary renal cancer cell culture irrespective of tumor grade and tumor type, harvested from the patient's pathological specimen immediately after the laparoscopic radical nephrectomy to study potential "in vivo" pharmacological sensitivity. A total of 24 patients (17 males and 7 females). Mean age of 63.1+/-3.1 y.o. The mean size of the renal masses was 7.56+/-3.1 cm. Normal and pathological renal tissue was collected immediately after the specimen was extracted and submitted to enzymatic digestion for 16-24 hours. Clear cell carcinoma cells were selected through multiple passages in DMEM medium supplemented with glucose and antibiotics. Establishment of cell line culture from all the patients' specimens irrespective of tumor grade and tumor type was achieved successfully. In addition to the tumor cell line culture, normal parenchyma tissue yielded primary cell lines to allow testing the response of tumor types to various pharmacological therapeutic agents and toxicity of such treatments to healthy tissue. From the initial collection of the specimens obtained after the removal of the kidney to the development of cell lines took occurred in average 32+6 hrs. The cells in culture showed characteristics of epithelial cells; like expression on cytokeratin and were maintained in culture for more than 20 passages. The development of renal cancer cell cultures in vitro is labor intense but may yield a more realistic model to tailor pharmacological therapies and predict therapeutic success prior to "in vivo" application-a step in the direction of individualized medicine for RCC.

  1. Cell division in Escherichia coli cultures monitored at single cell resolution

    Directory of Open Access Journals (Sweden)

    Luidalepp Hannes

    2008-04-01

    Full Text Available Abstract Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular

  2. Late winter feeding stimulates rapid spring development of carniolan honey bee colonies (Apis mellifera carnica

    Directory of Open Access Journals (Sweden)

    Zlatko Puškadija

    2017-01-01

    Full Text Available Unfavourable weather conditions after the queen starts with intensive oviposition during early spring may cause an imbalance in the division of tasks among worker bees in the bee colony. This can lead to slow spring development and poor exploitation of the main spring nectar flows. In order to accelerate the spring development, it is necessary, as a technological measure, to feed supplemental candy to bee colonies. In this research, the necessity of supplemental feeding, as well as the composition of candy (pollen and protein substitute were analysed. Three groups of ten bee colonies each were formed - the control, unfed group, pollen candy fed and protein substitute candy fed. In the period from 22/02/2016 and 04/04/2016 three control measurements were performed during which the number of bees, the number of brood cells and weight of the bee colonies were determined. The research has shown that supplemental feeding of the bee colony in late winter in order to encourage the rapid spring development is justified. Namely, at the final measurements in April, the results showed differences between groups. The treated colonies had higher net hive weight, a greater number of bees and statistically significantly more brood cells. The results of this study confirm that the technological measure of supplemental feeding in late winter should be performed on all commercial apiaries for the production of honey, pollen, royal jelly, queen bees and bee venom.

  3. Calcium exchange, structure, and function in cultured adult myocardial cells

    International Nuclear Information System (INIS)

    Langer, G.A.; Frank, J.S.; Rich, T.L.; Orner, F.B.

    1987-01-01

    Cells digested from adult rat heart and cultured for 14 days demonstrate all the structural elements, in mature form, associated with the process of excitation-contraction (EC) coupling. The transverse tubular (TT) system is well developed with an extensive junctional sarcoplasmic reticulum (JSR). In nonphosphate-containing buffer contraction of the cells is lost as rapidly as zero extracellular Ca concentration ([Ca] 0 ) solution is applied and a negative contraction staircase is produced on increase of stimulation frequency. Structurally and functionally the cells have the characteristics of adult cells in situ. 45 Ca exchange and total 45 Ca measurement in N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid (HEPES)-buffered perfusate define three components of cellular Ca: 1) a rapidly exchangeable component accounting for 36% of total Ca, 2) a slowly exchangeable component (t/sub 1/2/ 53 min) accounting for 7% total Ca, and 3) the remaining 57% cellular Ca is inexchangeable (demonstrates no significant exchange within 60 min). The slowly exchangeable component can be increased 10-fold within 60 min by addition of phosphate to the perfusate. The Ca distribution and exchange characteristics are little different from those of 3-day cultures of neonatal rat heart previously studied. The results suggest that the cells are representative of adult cells in situ and that both sarcolemmal-bound and sarcoplasmic reticular Ca contribute to the component of Ca that is rapidly exchangeable

  4. Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture.

    Science.gov (United States)

    Fontana, Gianluca; Gershlak, Joshua; Adamski, Michal; Lee, Jae-Sung; Matsumoto, Shion; Le, Hau D; Binder, Bernard; Wirth, John; Gaudette, Glenn; Murphy, William L

    2017-04-01

    The commercial success of tissue engineering products requires efficacy, cost effectiveness, and the possibility of scaleup. Advances in tissue engineering require increased sophistication in the design of biomaterials, often challenging the current manufacturing techniques. Interestingly, several of the properties that are desirable for biomaterial design are embodied in the structure and function of plants. This study demonstrates that decellularized plant tissues can be used as adaptable scaffolds for culture of human cells. With simple biofunctionalization technique, it is possible to enable adhesion of human cells on a diverse set of plant tissues. The elevated hydrophilicity and excellent water transport abilities of plant tissues allow cell expansion over prolonged periods of culture. Moreover, cells are able to conform to the microstructure of the plant frameworks, resulting in cell alignment and pattern registration. In conclusion, the current study shows that it is feasible to use plant tissues as an alternative feedstock of scaffolds for mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Diffusion chamber culture of mouse bone marrow cells, (1)

    International Nuclear Information System (INIS)

    Sigeta, Chiharu; Tanaka, Kimio; Kawakami, Masahito; Takahashi, Hiroshi; Ohkita, Takeshi

    1980-01-01

    Mouse bone marrow cells were cultured in diffusion chambers (DC) implanted in the peritoneal cavity of host mice. Host mice were subjected to (1) irradiation ( 60 Co 800 rad) and/or (2) phenylhydrazine induced anemia and then receiving irradiation ( 60 Co 600 rad). After culture periods of 3-7 days, the total number of cells in DC was increased. A marked increase in DC is due to the proliferation of granulocyte series. When host mice were subjected to anemia and irradiation, the start of cell proliferation in DC was delay about two days. On the whole, anemia and irradiation host reduced a little cell growth in DC. The number of immature granulocytes grown in DC in irradiated hosts or anemia and irradiated hosts increased and reached a plateu at day 5. During the plateu period, the proportions between immature and mature granulocytes in DC were kept constantly. The number of macrophages showed a two-phase increasing. Erythroid cells and lymphocytes rapidly disappeared from the chambers during 3 days. The number of erythroid cells was not significantly influenced even in anemia and irradiation hosts. (author)

  7. Therapeutic effect of bee pollens on acute radiation sickness

    International Nuclear Information System (INIS)

    Wang Mingsuo; Huang Chaoqun; Chen Zhen; Huang Meiying; Jiang Ying; Wang Tao

    1997-09-01

    The therapeutic effect of bee pollens on acute radiation sickness were evaluated by observing the changes in the peripheral white blood cell (PWBC) count, the total activity of superoxide dismutase (SOD) and the levels of lipid peroxides (LPO) in sera of the irradiated rats following P.O. administration of bee pollens. It was found that bee pollens could remarkably help irradiated rats recover from radiation-induced injury. The functions of bee pollens might be summarized as follows: (1) Stimulating Proliferation of PWBC. The PWBC count of the bee pollens group showed no significant difference as compared with the normal control group on the 30 th day postirradiation. (2) Enhancing antioxidative effect of clearing free radicals. The total activity of serum SOD in the bee pollens group increased by 6.48% as compared with the normal control group on the 30 th day after irradiation, and the LPO levels i.e. MDA and POV in sera of the irradiated rats decreased by 54.73% and 21.60% respectively. The result suggests that using bee pollens as antiradiation and health-promoting agents in clinical treatment of acute radiation sickness and during radiotherapy of patients with tumors may has certain practical value. (12 refs., 2 figs., 2 tabs.)

  8. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  9. Neutralization sensitivity of cell culture-passaged simian immunodeficiency virus.

    Science.gov (United States)

    Means, R E; Greenough, T; Desrosiers, R C

    1997-10-01

    CEMx174- and C8166-45-based cell lines which contain a secreted alkaline phosphatase (SEAP) reporter gene under the control of a tat-responsive promoter derived from either SIVmac239 or HIV-1(NL4-3) were constructed. Basal levels of SEAP activity from these cell lines were low but were greatly stimulated upon transfection of tat expression plasmids. Infection of these cell lines with simian immunodeficiency virus (SIV) or human immunodeficiency virus type 1 (HIV-1) resulted in a dramatic increase in SEAP production within 48 to 72 h that directly correlated with the amount of infecting virus. When combined with chemiluminescent measurement of SEAP activity in the cell-free supernatant, these cells formed the basis of a rapid, sensitive, and quantitative assay for SIV and HIV infectivity and neutralization. Eight of eight primary isolates of HIV-1 that were tested induced readily measurable SEAP activity in this system. While serum neutralization of cloned SIVmac239 was difficult to detect with other assays, neutralization of SIVmac239 was readily detected at low titers with this new assay system. The neutralization sensitivities of two stocks of SIVmac251 with different cell culture passage histories were tested by using sera from SIV-infected monkeys. The primary stock of SIVmac251 had been passaged only twice through primary cultures of rhesus monkey peripheral blood mononuclear cells, while the laboratory-adapted stock had been extensively passaged through the MT4 immortalized T-cell line. The primary stock of SIVmac251 was much more resistant to neutralization by a battery of polyclonal sera from SIV-infected monkeys than was the laboratory-adapted virus. Thus, SIVmac appears to be similar to HIV-1 in that extensive laboratory passage through T-cell lines resulted in a virus that is much more sensitive to serum neutralization.

  10. Radiation-induced bystander effects in cultured human stem cells.

    Directory of Open Access Journals (Sweden)

    Mykyta V Sokolov

    2010-12-01

    Full Text Available The radiation-induced "bystander effect" (RIBE was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR. RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.Human bone-marrow mesenchymal stem cells (hMSC and embryonic stem cells (hESC were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05. A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05.These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.

  11. Isolation and culture of Celosia cristata L cell suspension protoplasts

    Directory of Open Access Journals (Sweden)

    Retno Mastuti

    2003-06-01

    Full Text Available Developmental competence of Celosia cristata L. cell suspension-derived protoplasts was investigated. The protoplasts were isolatedfrom 3- to 9-d old cultures in enzyme solution containing 2% (w/v Cellulase YC and 0.5% (w/v Macerozyme R-10 which was dissolvedin washing solution (0.4 M mannitol and 10 mM CaCl2 at pH 5.6 for 3 hours. The highest number of viable protoplasts was releasedfrom 5-d old culture of a homogenous cell suspension. Subsequently, three kinds of protoplast culture media were simultaneously examinedwith four kinds of concentration of gelling agent. Culturing the protoplasts on KM8p medium solidified with 1.2% agarose significantlyenhanced plating efficiency as well as microcolony formation. Afterwards, the microcalli actively proliferated into friable watery calluswhen they were subcultured on MS medium supplemented with 0.3 mg/l 2,4-D and 1.0 mg/l kinetin. Although the plant regenerationfrom the protoplasts-derived calli has not yet been obtained, the reproducible developmental step from protoplasts to callus in thisstudy may facilitate the establishment of somatic hybridization using C. cristata as one parent.

  12. An introduction to plant cell culture: the future ahead.

    Science.gov (United States)

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    2012-01-01

    Plant cell, tissue, and organ culture (PTC) techniques were developed and established as an experimental necessity for solving important fundamental questions in plant biology, but they currently represent very useful biotechnological tools for a series of important applications such as commercial micropropagation of different plant species, generation of disease-free plant materials, production of haploid and doublehaploid plants, induction of epigenetic or genetic variation for the isolation of variant plants, obtention of novel hybrid plants through the rescue of hybrid embryos or somatic cell fusion from intra- or intergeneric sources, conservation of valuable plant germplasm, and is the keystone for genetic engineering of plants to produce disease and pest resistant varieties, to engineer metabolic pathways with the aim of producing specific secondary metabolites or as an alternative for biopharming. Some other miscellaneous applications involve the utilization of in vitro cultures to test toxic compounds and the possibilities of removing them (bioremediation), interaction of root cultures with nematodes or mycorrhiza, or the use of shoot cultures to maintain plant viruses. With the increased worldwide demand for biofuels, it seems that PTC will certainly be fundamental for engineering different plants species in order to increase the diversity of biofuel options, lower the price marketing, and enhance the production efficiency. Several aspects and applications of PTC such as those mentioned above are the focus of this edition.

  13. Genotoxic activity of caramel on Salmonella and cultured mammalian cells.

    Science.gov (United States)

    Yu, Y N; Chen, X R; Ding, C; Cai, Z N; Li, Q G

    1984-04-01

    The genetic activity of 2 commercial caramel preparations, manufactured either by heating the malt sugar solution directly (non-ammoniated caramel) or by heating it with ammonia (ammoniated caramel) was studied in the Salmonella mutagenicity test and UDS assay in cultured mammalian cells. The non-ammoniated caramel was found to be mutagenic to S. typhimurium TA100, while the ammoniated one was genetically active in all the tester strains used, namely TA100, TA97 and TA98. It was also demonstrated that non-ammoniated caramel was capable of inducing UDS in cultured human amnion FL cells, but for the ammoniated one, no such activity was observed. Furthermore, based on the results obtained in the DNA synthesis inhibition assay, it was suggested that the DNA synthesis inhibition seen in our experiments with the ammoniated caramel was probably not of DNA damage in origin. These data indicate that the mutagenic fractions formed during ammoniated and non-ammoniated caramelization were quite different.

  14. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... to be simple duplicates for testing the effect of two induced factors-apical or basolateral addition of radioactive precursors and different apical media-on the incorporation of 14C-acetate and 32Pphosphate intotissue lipids. Unfortunately, they did not altogether give the same result. By accepting this fact...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...

  15. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  16. Tumor necrosis factor (cachetin) decreases adipose cell differentiation in primary cell culture

    International Nuclear Information System (INIS)

    Martin, R.J.; Jones, D.D.; Jewell, D.E.; Hausman, G.J.

    1986-01-01

    Cachetin has been shown to effect gene product expression in the established adipose cell line 3T3-L1. Expression of messenger RNA for lipoprotein lipase is suppressed in cultured adipocytes. The purpose of this study was to determine the effect of Cachetin on adipose cell differentiation in primary cell culture. Stromalvascular cells obtained from the inguinal fat pad of 4-5 week old Sprague-Dawley rats were grown in culture for two weeks. During the proliferative growth phase all cells were grown on the same medium and labelled with 3 H-thymidine. Cachetin treatment (10 -6 to 10 -10 M) was initiated on day 5, the initial phase of preadipocyte differentiation. Adipocytes and stromal cells were separated using density gradient, and 3 H-thymidine was determined for both cell types. Thymidine incorporation into adipose cells was decreased maximally (∼ 50%) at 10 -10 M. Stromalvascular cells were not influenced at any of the doses tested. Adipose cell lipid content as indicated by oil red-O staining was decreased by Cachetin. Esterase staining by adipose cells treated with Cachetin was increased indicating an increase in intracellular lipase. These studies show that Cachetin has specific effects on primary adipose cell differentiation

  17. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs......The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement....... The cells have the potential of long-term culture and the ability to differentiate into neural and glial cells....

  18. Mesenchymal stem cells cultured on magnetic nanowire substrates

    Science.gov (United States)

    Perez, Jose E.; Ravasi, Timothy; Kosel, Jürgen

    2017-02-01

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  19. Mesenchymal stem cells cultured on magnetic nanowire substrates

    KAUST Repository

    Perez, Jose E.

    2016-12-28

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  20. Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits.

    Science.gov (United States)

    Braendlein, Marcel; Pappa, Anna-Maria; Ferro, Marc; Lopresti, Alexia; Acquaviva, Claire; Mamessier, Emilie; Malliaras, George G; Owens, Róisín M

    2017-04-01

    A biosensing platform based on an organic transistor circuit for metabolite detection in highly complex biological media is introduced. The sensor circuit provides inherent background subtraction allowing for highly specific, sensitive lactate detection in tumor cell cultures. The proposed sensing platform paves the way toward rapid, label-free, and cost-effective clinically relevant in vitro diagnostic tools. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. UV Inactivation of Cryptosporidium hominis as Measured in Cell Culture

    OpenAIRE

    Johnson, Anne M.; Linden, Karl; Ciociola, Kristina M.; De Leon, Ricardo; Widmer, Giovanni; Rochelle, Paul A.

    2005-01-01

    The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same sensitivity to UV light as C. parvum. Therefore, the water industry can be ...

  2. [Biological characteristics of mesenchymal stem cell and hematopoietic stem cell in the co-culture system].

    Science.gov (United States)

    Wei, Wei; Xu, Chao; Ye, Zhi-Yong; Huang, Xiao-Jun; Yuan, Jia-En; Ma, Tian-Bao; Lin, Han-Biao; Chen, Xiu-Qiong

    2016-10-25

    The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34 + HSC was collected by MACS immunomagnetic beads. The selected CD34 + HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4 th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4 th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34 + percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that

  3. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells.

    Directory of Open Access Journals (Sweden)

    Ramaschandra G Sharathchandra

    Full Text Available BACKGROUND: This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. CONCLUSIONS: The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks

  4. Characterization of conditioned medium of cultured bone marrow stromal cells.

    Science.gov (United States)

    Nakano, Norihiko; Nakai, Yoshiyasu; Seo, Tae-Boem; Yamada, Yoshihiro; Ohno, Takayuki; Yamanaka, Atsuo; Nagai, Yoji; Fukushima, Masanori; Suzuki, Yoshiyuki; Nakatani, Toshio; Ide, Chizuka

    2010-10-08

    It has been recognized that bone marrow stromal cell (BMSC) transplantation has beneficial effects on spinal cord injury in animal models and therapeutic trials. It is hypothesized that BMSCs provide microenvironments suitable for axonal regeneration and secrete some trophic factors to rescue affected cells from degeneration. However, the molecular and cellular mechanisms of the trophic factors involved remain unclear. In the present study, we examined the effects of trophic factors secreted by rat BMSCs using bioassays involving cultured hippocampal neurons. The conditioned medium (CM) as well as non-contact co-culture of BMSCs promoted neurite outgrowth and suppressed TUNEL-positive cells compared to serum-free D-MEM. Protein analyses of the CM by antibody-based protein array analysis and ELISA revealed that the CM contained insulin-like growth factor (IGF)-1, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-beta1. DNA microarray analysis revealed that neurons highly expressed receptors of IGF-1 and TGF-beta1. However, their expression indices remained unchanged even after the CM treatment. The individual trophic factors mentioned above or their combinations were less effective at promoting neuronal survival and neurite outgrowth than the CM. The present study showed that BMSCs secreted various kinds of molecules into the culture medium including trophic factors to promote neuronal survival and neurite outgrowth. The main trophic factors responsible remain to be elucidated. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  5. In Vitro Cell Culture Infectivity Assay for Human Noroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin A.; Orosz Coghlan, Patricia A.; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza; Nickerson, Cheryl A.

    2007-01-30

    Human noroviruses (NoV) cause severe, self-limiting gastroenteritis that typically lasts 24 - 48 hours. The true nature of NoV pathogenesis remains unknown due to the lack of suitable tissue culture or animal models. Here we show, for the first time, that NoV can infect and replicate in an organoid, three-dimensional (3-D) model of human small intestinal epithelium (INT-407). Cellular differentiation for this model was achieved by growing the cells in 3-D on porous collagen I-coated microcarrier beads under conditions of physiological fluid shear in rotating wall vessel bioreactors. Microscopy, PCR, and fluorescent in-situ hybridization were employed to provide evidence of NoV infection. CPE and norovirus RNA was detected at each of the five cell passages for both genogroup I and II viruses. Our results demonstrate that the highly differentiated 3-D cell culture model can support the natural growth of human noroviruses, whereas previous attempts using differentiated monolayer cultures failed.

  6. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    Science.gov (United States)

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or

  7. Neural differentiation of adipose-derived stem cells by indirect co-culture with Schwann cells

    Directory of Open Access Journals (Sweden)

    Li Xiaojie

    2009-01-01

    Full Text Available To investigate whether adipose-derived stem cells (ADSCs could be subject to neural differentiation induced only by Schwann cell (SC factors, we co-cultured ADSCs and SCs in transwell culture dishes. Immunoassaying, Western blot analysis, and RT-PCR were performed (1, 3, 7, 14 d and the co-cultured ADSCs showed gene and protein expression of S-100, Nestin, and GFAP. Further, qRT-PCR disclosed relative quantitative differences in the above three gene expressions. We think ADSCs can undergo induced neural differentiation by being co-cultured with SCs, and such differentia­tions begin 1 day after co-culture, become apparent after 7 days, and thereafter remain stable till the 14th day.

  8. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    Science.gov (United States)

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.

  9. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  10. Sharifah Bee Abd Hamid

    Indian Academy of Sciences (India)

    Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid · Fereshteh Chekin Samira Bagheri Sharifah Bee Abd Hamid · More Details Abstract Fulltext PDF. A simple approach for the preparation of gelatin functionalized reduced graphene oxide ...

  11. Bees have magnetic remanence.

    Science.gov (United States)

    Gould, J L; Kirschvink, J L; Deffeyes, K S

    1978-09-15

    Honey bees orient to the earth's magnetic field. This ability may be associated with a region of transversely oriented magnetic material in the front of the abdomen. The magnetic moment apparently develops in the pupal state and persists in the adults.

  12. Characterization of biomaterial-free cell sheets cultured from human oral mucosal epithelial cells.

    Science.gov (United States)

    Hyun, Dong Won; Kim, Yun Hee; Koh, Ah Young; Lee, Hyun Ju; Wee, Won Ryang; Jeon, Saewha; Kim, Mee Kum

    2017-03-01

    The purpose of this study was to report the characteristics of biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support, in vitro and after transplantation to limbal-deficient models. Human oral mucosal epithelial cells and limbal epithelial cells were cultured for 2 weeks, and the colony-forming efficiency (CFE) rates were compared. Markers of stem cells (p63), cell proliferation (Ki-67) and epithelial differentiation (cytokeratin; K1, K3, K4, K13) were observed in colonies and in biomaterial-free sheets. Biomaterial-free sheets which had been detached with 1% dispase or biomaterial-free sheets generated by fibrin support were transplanted to 12 limbal-deficient rabbit models. In vitro cell viability, in vivo stability and cytokeratin characteristics of biomaterial-free sheets were compared with those of sheets formed by fibrin-coated culture 1 week after transplantation. Mean CFE rate was significantly higher in human oral mucosal epithelial cells (44.8%) than in human limbal epithelial cells(17.7%). K3 and K4 were well expressed in both colonies and sheets. Biomaterial-free sheets had two to six layers of stratified cells and showed an average of 79.8% viable cells in the sheets after detachment. Cytokeratin expressions of biomaterial-free sheets were comparable to those of sheets cultured by fibrin support, in limbal-deficient models. Both p63 and Ki-67 were well expressed in colonies, isolated sheets and sheets transplanted to limbal-deficient models. Our results suggest that biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support can be an alternative option for cell therapy in use for the treatment of limbal-deficient diseases. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Bee Venom (Apis Mellifera an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains Bee Venom an Effective Potential for Bacteria

    Directory of Open Access Journals (Sweden)

    Hossein Zolfagharian

    2016-09-01

    Full Text Available Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera, is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has bee

  14. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  15. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu....... It is concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  16. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  17. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Science.gov (United States)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  18. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    Science.gov (United States)

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  19. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.

    1999-01-01

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  20. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    Directory of Open Access Journals (Sweden)

    Gihyun Lee

    2016-02-01

    Full Text Available Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2 has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  1. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  2. Is cell culture a risky business? Risk analysis based on scientist survey data.

    Science.gov (United States)

    Shannon, Mark; Capes-Davis, Amanda; Eggington, Elaine; Georghiou, Ronnie; Huschtscha, Lily I; Moy, Elsa; Power, Melinda; Reddel, Roger R; Arthur, Jonathan W

    2016-02-01

    Cell culture is a technique that requires vigilance from the researcher. Common cell culture problems, including contamination with microorganisms or cells from other cultures, can place the reliability and reproducibility of cell culture work at risk. Here we use survey data, contributed by research scientists based in Australia and New Zealand, to assess common cell culture risks and how these risks are managed in practice. Respondents show that sharing of cell lines between laboratories continues to be widespread. Arrangements for mycoplasma and authentication testing are increasingly in place, although scientists are often uncertain how to perform authentication testing. Additional risks are identified for preparation of frozen stocks, storage and shipping. © 2015 UICC.

  3. Mutation Analysis in Cultured Cells of Transgenic Rodents

    Directory of Open Access Journals (Sweden)

    Ahmad Besaratinia

    2018-01-01

    Full Text Available To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable.

  4. Cultured stem cells are sensitive to gravity changes

    Science.gov (United States)

    Buravkova, L. B.; Romanov, Yu. A.; Konstantinova, N. A.; Buravkov, S. V.; Gershovich, Yu. G.; Grivennikov, I. A.

    2008-09-01

    Stem and precursor cells play an important role in development and regeneration. The state of these cells is regulated by biochemical substances, mechanical stimuli and cellular interactions. To estimate gravity effects we used two types of cultured stem cells: human mesenchymal stromal cells (hMSCs) from bone marrow and mice embryonic stem (mESC) line R1. Gravity changes were simulated by long-term (4-7 days) slow clinorotation and leaded to decreased hMSC proliferation, changes of cell morphology and modified F-actin cytoskeleton. We did not find the shifts in cell phenotype except for decreased expression of HLA 1 and CD105 but excretion of IL-6 into medium increased significantly. Remodeling of cytoskeleton started after first 4 h and was similar to preapoptotic changes. This data suggested the modification in cell adhesion and possible commitment of hMSC. It was observed that expression of alkaline phosphatase by MSC in osteogenic medium was more intensive in control. On the contrary, clinorotation did not change formation of mESC colonies and increased proliferation activity in LIF+-medium. However, the number of embryonic bodies after clinorotation was less than in static control. It is suggested that ESCs kept the viability and proliferative potential but decreased the differentiation ability after changes in gravity stimulation.

  5. Assay of anticancer drugs in tissue culture: cell cultures of biopsies from human astrocytoma.

    Science.gov (United States)

    Morgan, D; Freshney, R I; Darling, J L; Thomas, D G; Celik, F

    1983-02-01

    A method has been developed for measuring the drug sensitivity of human gliomas in short-term culture, using scintillation counting or autofluorography. Cell cultures prepared from malignant astrocytomas were treated with anticancer drugs whilst in exponential growth in microtitration plates. After drug treatment and a recovery period, residual viability was measured by [3H] leucine incorporation followed by scintillation counting or by [35S] methionine incorporation and autofluorography in situ. In 5 glioma cell lines tested against 6 drugs, the microtitration method correlated well with monolayer cloning. Although replicate samples of the same tumour showed little variation in chemosensitivity, there was marked variation between the chemosensitivities of cultures derived from the tumours of different patients. However, as variability between replicates was apparent during drug exposure or shortly after, it is important to allow the assay to run as long as possible after drug removal. It is hoped that this assay may provide the basis of a method for the prediction of in vivo chemosensitivity or the screening of potential chemotherapeutic drugs.

  6. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Synthetic cell and tissue culture media and... Products § 864.2220 Synthetic cell and tissue culture media and components. (a) Identification. Synthetic cell and tissue culture media and components are substances that are composed entirely of defined...

  7. Comparison of chromosome analysis using cell culture by coverslip technique with flask technique.

    Science.gov (United States)

    Sajapala, Suraphan; Buranawut, Kitti; NiwatArunyakasemsuk, Md

    2014-02-01

    To determine accuracy rate ofchromosome study from amniotic cellculture by coverslip technique compared with flask technique and to compared timing ofamniotic cell culture, amount ofamniotic cell culture media and cost ofamniotic cell culture. Cross sectional study. Department of Obstetrics and Gynecology, Phramongkutklao Hospital. Subjects: 70 pregnant women who underwent amniocentesis at Phramongkutklao Hospital during November 1, 2007 to February 29, 2008. Amniotic cell culture by flask technique and coverslip technique. Accuracy of amniotic cell culture for chromosome study by coverslip technique compared with flask technique. Totally 70 pregnant women who underwent to amniocentesis and dividedamniotic fluid to cell culture by flask technique and coverslip technique. 69 samples had similar resultfrom both techniques. The only one sample had cell culture failure inboth methods due to blood contamination. Accuracy in coverslip technique was 100% compared with flask technique. In timing of amniotic cell culture, amount ofamniotic cell culture media and cost of amniotic cell culture between 2 methods that coverslip technique was lesser than flask technique. There is statistically significant of accuracy in chromosome result between coverslip technique and flask technique. Coverslip technique was lesser than flask technique in timing, amniotic cell culture media and costs ofamniotic cell culture.

  8. Feruloyl Oligosaccharides from Cell Walls of Suspension-Cultured Spinach Cells and Sugar Beet Pulp : STRUCTURE AND FUNCTION OF CELLS

    OpenAIRE

    Tadashi, ISHII; Forestry and Forest Products Research Institute

    1994-01-01

    Cell walls of suspension-cultured spinach cells and sugar beet pulp were separately hydrolyzed with Driselase. A feruloyl arabinobiose was isolated from both spinach cells and sugar beet. Four feruloyl oligosaccharides were obtained from sugar beet. The four oligosaccharides were characterized by NMR spectroscopy, methylation analysis and FAB-MS.

  9. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  10. EFFECT OF MACROLIDE ANTIBIOTICS ON VARIOUS CELL CULTURES IN VITRO: 1. CELL MORPHOLOGY

    Directory of Open Access Journals (Sweden)

    Renáta Kováčová

    2012-08-01

    Full Text Available The aim of our study was to evaluate the cytotoxicity of macrolide antibiotics (tilmicosin, tylosin and spiramycin of various concentrations on different cell cultures in vitro. Cellular lines from animal tissues (VERO cells - kidney cells of Macacus rhesus, FE cells - feline embryonal cells, BHK 21 cellular line from young hamster kidneys were used. Tilmicosin effect: BHK cells are most sensitive, significant decrease in vital cells occurs already at the concentration of 50 μg.ml-1. VERO cells were most resistant, significant decrease of vital cells was observed only at the concentration of 300 μg.ml-1. Tylosin effect: BHK cells can be considered most sensitive, since at concentrations higher than 500 μg.ml-1, no vital cells were observed. At the concentration of 1000 μg.ml-1 were 3.13% of vital and 70.52% of subvital FE cells. In Vero cells, we observed a significant decrease at the concentration of 750 μg.ml-1. Spiramycin effect: Significant decrease of vital BHK cells was observed at the concentration of 150 μg.ml-1, at the concentration of 300 μg.ml-1, no vital cells and only 7.53% of subvital cells were observed. At the concentration of 500 μg.ml-1 reported 10.34% of vital FE cells. At the concentration of 500 μg.ml-1 22.48% of vital and 71.16% of subvital VERO cells were recorded.

  11. Rheological characteristics of cell suspension and cell culture of Perilla frutescens.

    Science.gov (United States)

    Zhong, J J; Seki, T; Kinoshita, S; Yoshida, T

    1992-12-05

    Physical properties such as viscosity, fluid dynamic behavior of cell suspension, and size distribution of cell aggregates of a plant, Perilla frustescens, cultured in a liquid medium were studied. As a result of investigations using cells harvester after 12 days of cultivation in a flask, it was found that the apparent viscosity of the cell suspension did not change with any variation of cell concentration below 5 g dry cell/L but markedly increased when the cell concentration increased over 12.8 g dry cell/L. The cell suspension exhibited the characteristics of a Bingham plastic fluid with a small yield stress. The size of cell aggregates in the range 74 to 500 mum did not influence the rheological characteristics of the cell suspension. The rheological characteristics of cultivation mixtures of P. frutescens cultivated in a flask and in a bioreactor were also investigated. The results showed that the flow characteristics of the cell culture could be described by a Bingham plastic model. At the later stage of cultivation, the apparent viscosity increased steadily, even though the biomass concentration (by dry weight) decreased, due to the increase of individual cell size. (c) 1992 John Wiley & Sons, Inc.

  12. Cell thickness of UV absorption by the cell: relation to UV action spectrum shift in mammalian cells in culture

    International Nuclear Information System (INIS)

    Sakharov, V.H.; Voronkova, L.N.; Blokhin, A.V.

    1985-01-01

    By means of reconstruction of series half - thin transverse sections the three - dimensional morphometry of SPEV cells for a series of their specific states in culture is performed: for exponential growth in a monolayer, in a merged monolayer, in the mitosis phase, for giant cells and suspension cells. In the monolayer the cell thickness in its central part depended mainly on the nucleus thickness and in average changed but slightly despite a wide range of changes in volumes of nuclei and cells and their density in culture. The cell thickness has noticeably increased in mitosis. For the above states of cells UV radiation absorption spectra are determined. It is shown that a certain shift of action spectrus of death of mammalian cells as compared with that for bacterial cell can be a seguence of selfshielding and not differences in the nature of active chromophores

  13. In vitro cell culture lethal dose submitted to gamma radiation

    International Nuclear Information System (INIS)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto; Ikeda, Tamiko I.; Cruz, Aurea S.

    2009-01-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that 60 Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  14. Sulphur XANES Analysis of Cultured Human Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Podgorczyk, M.; Paluszkiewicz, Cz.; Balerna, A.; Kisiel, A.

    2008-01-01

    Prostate cancer is one of the most commonly diagnosed cancers in men throughout the world. It is believed that changes to the structure of protein binding sites, altering its metabolism, may play an important role in carcinogenesis. Sulphur, often present in binding sites, can influence such changes through its chemical speciation. Hence there is a need for precise investigation of coordination environment of sulphur. X-ray absorption near edge structure spectroscopy offers such possibility. Cell culture samples offer histologically well defined areas of good homogeneity, suitable for successful and reliable X-ray absorption near edge structure analysis. This paper presents sulphur speciation data collected from three different human prostate cancer cell lines (PC-3, LNCaP and DU-145). Sulphur X-ray absorption near edge structure analysis was performed on K-edge structure. The spectra of cells were compared with those of cancerous tissue and with organic substances as well as inorganic compounds. (authors)

  15. Propagation and isolation of ranaviruses in cell culture

    DEFF Research Database (Denmark)

    Ariel, Ellen; Nicolajsen, Nicole; Christophersen, Maj-Britt

    2009-01-01

    The optimal in vitro propagation procedure for a panel of ranavirus isolates and the best method for isolation of Epizootic haematopoietic necrosis virus (EHNV) from organ material in cell-culture were investigated. The panel of ranavirus isolates included: Frog virus 3 (FV3), Bohle iridovirus (BIV......), Pike-perch iridovirus (PPIV), European catfish virus (ECV), European sheatfish virus (ESV), EHNV, Doctor fish virus (DFV), Guppy virus 6 (GF6), short-finned eel virus (SERV) and Rana esculenta virus Italy 282/102 (REV 282/102). Each isolate was titrated in five cell lines: bluegill fry (BF-2...... consistently produced lower titers than the other cell lines at all temperatures. The optimal temperature for propagating the isolates collectively to high titers in vivo was 24 °C. Additionally, three established methods for re-isolation of virus from EHNV-infected organ material were compared. Challenged...

  16. Physiological processes related to the bee swarming

    Directory of Open Access Journals (Sweden)

    Jiří Svoboda

    2010-01-01

    Full Text Available One of the essential genetically subjected behaviours of a bee-colony is swarming. However, in the time of queen breeding and technical approach to colony division, swarming constitutes a problem in the effectiveness of controlled beekeeping and subsequently in decreasing of the attainable economic profits. The intensity of swarming is a polyfactorial phenomenon whose characteristic feature is seasonality (the availability of breed, course of weather so the swarming intensity is different in particular years. This study is connected with the research carried out at the Department of Zoo­lo­gy, Fisheries, Hydrobiology and Apiculture at Mendel University in Brno. The experiment focused on the relationship between the swarming and biological state of bee-colony was realized in three seasons of the period 2003–2005. Experimental bee-colonies were stimulated to the swarming fever by zoo-technical practices, at the same time the biological status of given bee-colony was observed. Within the process of marking of newly emerged workers there was observed their number continuously during the particular season. The samples of 3- and 4-week-old workers were instrumental to the analysis of the development of their hypopharyngeal glands. The study has proved that a bee-colonies building higher number of queen cells are likely expected to be in swarming fever, b 3-week-old workers have hypopharyngeal glands in higher stage of development than 4-week-old workers, c higher stage of swarming fever is closely correlated with higher stage of de­ve­lop­ment of hypopharyngeal glands. These facts can contribute to the comprehension of the reason and relationships of the swarming.

  17. Optimization of Storage Temperature for Cultured ARPE-19 Cells

    Directory of Open Access Journals (Sweden)

    Lara Pasovic

    2013-01-01

    Full Text Available Purpose. The establishment of future retinal pigment epithelium (RPE replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE. Methods. ARPE-19 cells were cultured under standard conditions and stored in HEPES-buffered MEM at nine temperatures (4°C, 8°C, 12°C, 16°C, 20°C, 24°C, 28°C, 32°C, and 37°C for seven days. Viability and phenotype were assessed by a microplate fluorometer and epifluorescence microscopy, while morphology was analyzed by scanning electron microscopy. Results. The percentage of viable cells preserved after storage was highest in the 16°C group (48.7%±9.8%; P<0.01 compared to 4°C, 8°C, and 24°C–37°C; P<0.05 compared to 12°C. Ultrastructure was best preserved at 12°C, 16°C, and 20°C. Expression of actin, ZO-1, PCNA, caspase-3, and RPE65 was maintained after storage at 16°C compared to control cells that were not stored. Conclusion. Out of nine temperatures tested between 4°C and 37°C, storage at 12°C, 16°C, and 20°C was optimal for maintenance of RPE cell viability, morphology, and phenotype. The preservation of RPE cells is critically dependent on storage temperature.

  18. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    Science.gov (United States)

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  19. Cell in situ zymography: an in vitro cytotechnology for localization of enzyme activity in cell culture.

    Science.gov (United States)

    Chhabra, Aastha; Jaiswal, Astha; Malhotra, Umang; Kohli, Shrey; Rani, Vibha

    2012-09-01

    In situ zymography is a unique technique for detection and localization of enzyme-substrate interactions majorly in histological sections. Substrate with quenched fluorogenic molecule is incorporated in gel over which tissue sections are mounted and then incubated in buffer. The enzymatic activity is observed in the form of fluorescent signal. With the advancements in the field of biological research, use of in vitro cell culture has become very popular and holds great significance in multiple fields including inflammation, cancer, stem cell biology and the still emerging 3-D cell cultures. The information on analysis of enzymatic activity in cell lines is inadequate presently. We propose a single-step methodology that is simple, sensitive, cost-effective, and functional to perform and study the 'in position' activity of enzyme on substrate for in vitro cell cultures. Quantification of enzymatic activity to carry out comparative studies on cells has also been illustrated. This technique can be applied to a variety of enzyme classes including proteases, amylases, xylanases, and cellulases in cell cultures.

  20. Special Issue: Honey Bee Viruses.

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  1. Special Issue: Honey Bee Viruses

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    2015-10-01

    Full Text Available Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus, or a so far neglected virus species (Apis mellifera filamentous virus, and cutting edge technologies (mass spectrometry, RNAi approach applied in the field.

  2. Special Issue: Honey Bee Viruses

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  3. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Mlsová, V.; Kroupová, H.; Alán, Lukáš; Tůmová, Tereza; Monincová, Lenka; Borovičková, Lenka; Fučík, Vladimír; Čeřovský, Václav

    2012-01-01

    Roč. 33, č. 1 (2012), s. 18-26 ISSN 0196-9781 R&D Projects: GA ČR GA203/08/0536 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50110509 Keywords : antimicrobial peptides * venom * hymenoptera * cancer cells * toxicity * confocal microscopy Subject RIV: CE - Biochemistry Impact factor: 2.522, year: 2012

  4. Co-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Miryounesi

    2013-06-01

    Full Text Available   Objective(s: Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs to germ cells.   Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence protein was produced to select differentiated mESCs. To analyze sertoli cells’ effect in differentiation process, mESCs were separated into two groups: the first group was cultured on gelatin with retinoic acid treatment and the second group was co-cultured with sertoli cell feeder without retinoic acid induction. Expressions of pre-meiotic (Stra8, meiotic (Dazl and Sycp3 and post-meiotic (Prm1 genes were evaluated at different differentiation stages (+7, +12 and +18 days of culture. Results: In the first group, expressions of meiotic and post-meiotic genes started 12 and 18 days after induction with retinoic acid, respectively. In the second group, 7 days after co-culturing with Sertoli cells, expression of meiotic and post-meiotic genes was observed. Conclusion: These results show that differentiation process to germ cells is supported by Sertoli cells. Our findings provide a novel effective approach for generation of germ cell in vitro and studying the interaction of germ cells with their niche.

  5. Interaction of a novel antimicrobial peptide isolated from the venom of solitary bee Colletes daviesanus with phospholipid vesicles and Escherichia coli cells

    Czech Academy of Sciences Publication Activity Database

    Čujová, Sabína; Bednárová, Lucie; Slaninová, Jiřina; Straka, J.; Čeřovský, Václav

    2014-01-01

    Roč. 20, č. 11 (2014), s. 885-895 ISSN 1075-2617 Institutional support: RVO:61388963 Keywords : antimicrobial peptides * wild- bee venom * CD spectroscopy * large unilamellar vesicles * membrane permeabilization * electron microscopy Subject RIV: CE - Biochemistry Impact factor: 1.546, year: 2014

  6. Defining cell culture conditions to improve human norovirus infectivity assays

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartholomew, Rachel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valdez, Catherine O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valentine, Nancy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dohnalkova, Alice [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ozanich, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bruckner-Lea, Cindy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-10

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that leads to more reproducible hNoV infectivity in vitro requires that the cell line be 1) of human gastrointestinal origin, 2) expresses apical microvilli, and 3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log10 increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both reverse transcription quantitative PCR (qRT-PCR) and microscopy. Using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using quantitative reverse transcription PCR (qRT-PCR) that measures all RNA vs. plaque assays that measure infectious virus.

  7. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape

    NARCIS (Netherlands)

    Kamperman, Tom; Henke, Sieger; Visser, Claas Willem; Karperien, Marcel; Leijten, Jeroen

    2017-01-01

    Single-cell-laden microgels support physiological 3D culture conditions while enabling straightforward handling and high-resolution readouts of individual cells. However, their widespread adoption for long-term cultures is limited by cell escape. In this work, it is demonstrated that cell escape is

  8. Quantitation of DNA repair in brain cell cultures: implications for autoradiographic analysis of mixed cell populations

    International Nuclear Information System (INIS)

    Dambergs, R.; Kidson, C.

    1979-01-01

    Quantitation of DNA repair in the mixed cell population of mouse embryo brain cultures has been assessed by autoradiographic analysis of unscheduled DNA synthesis following UV-irradiation. The proportion of labelled neurons and the grain density over neuronal nuclei were both less than the corresponding values for glial cells. The nuclear geometries of these two classes of cell are very different. Partial correction for the different geometries by relating grain density to nuclear area brought estimates of neuronal and glial DNA repair synthesis more closely in line. These findings have general implications for autoradiographic measurement of DNA repair in mixed cell populations and in differentiated versus dividing cells. (author)

  9. Recent Honey Bee Colony Declines

    Science.gov (United States)

    2007-06-20

    the scientists who are researching this phenomenon, include but may not be limited to ! parasites , mites, and disease loads in the bees and brood ...thrips; ants; butterflies; moths; bats; and hummingbirds and other birds . 2 Berenbaum, M.R., University of Illinois, Statement before the...bee population losses due to bee pests, parasites , pathogens, and disease. Most notable are declines due to two parasitic mites, the so-called

  10. EFFECT OF MACROLIDE ANTIBIOTICS ON VARIOUS CELL CULTURES IN VITRO: 2. CELL BIOCHEMISTRY

    Directory of Open Access Journals (Sweden)

    Anton Kováčik

    2012-12-01

    Full Text Available he aim of our study was to evaluate the effect of macrolide antibiotics (tilmicosin, tylosin and spiramycin on the cellular biochemistry using different cell cultures in vitro. Cellular lines from animal tissues (VERO cells - kidney cells of Macacus Rhesus, FE cells - feline embryonal cells and BHK21 - cellular line from young hamster kidneys were used. The effect was assessed after 24 hours of culture. We studied the concentration of calcium (Ca, magnesium (Mg, sodium (Na, potassium (K, chlorides (Cl, total proteins (TP and cholesterol (Chol. Biochemical analysis of BHK21 cells cultivated with tilmicosin showed a significant decrease in the concentration of Ca, Cl and TP in almost all experimental groups. No significant differences were found in the FE cells. The highest concentrations of tilmicosin led to a significant increase of all analyzed elements and TP in medium in the VERO cells. The effect of tylosin on the BHK21 cell metabolism showed a significant decrease in the concentration of Na and Cl in the all experimental groups and a significant decrease in the concentration of TP in the groups to which more than 700 µg.ml-1 was added. No significant differences were found in the FE and VERO cells. Biochemical analysis of BHK21 cells with spyramicin showed a significant decrease in the concentration of Na in the all experimental groups and a significant decrease in the concentration of Cl and TP in the cell cultures with 100 µg.ml-1, 150 µg.ml-1, 200 µg.ml-1, 300 µg.ml-1 concentrations of spyramycin. The highest concentrations of spyramycin caused a significant increase of Na and a significant decrease of Chol in the FE cells. No significant differences were found in the VERO cells except increased total proteins at the highest concentration of spyramycin.

  11. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  12. A biocompatible micro cell culture chamber for culturing and on-line monitoring of Eukaryotic cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2006-01-01

    Visualisering af cellulære processer over længere tidsperioder har været besværliggjort af cellernes krav til varme, fugtighed og et fysiologisk pH balanceret medie. Fremskridt indenfor mikro teknologi har muliggjort fabrikation af miniaturiserede celle kultur anordninger der er i stand til...... at holde celler i live over længere tidsperioder I det foreliggende arbejde præsenteres et nyt perfusions baseret mikro celle dyrknings kultur kammer med integreret termisk overvågning og regulering. Kammeret opretholdt både dyrkning og on-line overvågning af både kræft celler såvel som stam celler over...... at dyrknings betingelserne i kammeret var sammenlignelige med dem i konventionelle celle kultur dyrknings flaske, hvis lys intensiteten på mikroskopet og omgivelserne blev minimeret mest muligt. Overflade modificeringer af den strukturelle fotoresist SU-8, der ofte bliver brugt til fabrikation af mikro kanaler...

  13. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera worker castes.

    Directory of Open Access Journals (Sweden)

    Eva Marit Hystad

    Full Text Available Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells that clear pathogens from hemolymph (blood by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees, and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  14. Social modulation of stress reactivity and learning in young worker honey bees.

    Science.gov (United States)

    Urlacher, Elodie; Tarr, Ingrid S; Mercer, Alison R

    2014-01-01

    Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval.

  15. Social modulation of stress reactivity and learning in young worker honey bees.

    Directory of Open Access Journals (Sweden)

    Elodie Urlacher

    Full Text Available Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition, it did not affect one-hour memory retrieval.

  16. ( Linum usitatissimum L. cv. Modran cell suspension culture

    Directory of Open Access Journals (Sweden)

    Aleksandra Seta-Koselska

    2018-01-01

    Full Text Available Flax ( Linum usitatissimum L. is an ancient crop that is widely cultivated as a source of oil, fiber, and bioactive compounds. Flax fiber is traditionally used in textile industry, linseed oil is processed for industrial oils, paints, varnishes and bio-petroleum. Flaxseeds are also rich in α-linolenic acid and phytochemicals such as lignans. In addition to the commercial aspects, this species has been used widely and readily in biotechnological, developmental, and plant-pathogen interaction studies. Differences in the levels of endogenous hormones in various cultivars of flax significantly affected the intensity of callogenesis and determined the type and concentration of growth regulators necessary for callus production. The aim of our investigation was to optimize the culture conditions for callus formation and cell proliferation in liquid medium of the Polish cultivar of fiber flax – Modran. In the first step, 4 combinations of phytohormones in the medium were tested to obtain established callus tissue suitable for initiation of suspension culture. Next, we investigated the effect of chosen plant growth regulators on cell divisions, fresh and dry weight, and dispersal of callus cells in liquid medium. Fast growing and friable callus was obtained in a modified MS medium supplemented with 0.5 mg/l BAP and 0.1 mg/l NAA. We determined that for the initiation of cell suspension supplementation with 0.5 mg/l BAP and 0.5 mg/l NAA is optimal. The results obtained indicated that high concentration of cytokinin (BAP in liquid medium limited cell proliferation and decreased biomass formation.

  17. Nucleoside transport in primary cultured rabbit tracheal epithelial cells.

    Science.gov (United States)

    Mathias, Neil R; Wu, Sharon K; Kim, Kwang-Jin; Lee, Vincent H L

    2005-01-01

    The present study aimed at elucidating the mechanisms of nucleoside transport in primary cultured rabbit tracheal epithelial cells (RTEC) grown on a permeable filter support. Uptake of (3)H-uridine, the model nucleoside substrate, from the apical fluid of primary cultured RTEC was examined with respect to its dependence on Na(+), substrate concentration, temperature and its sensitivity to inhibitors, other nucleosides and antiviral nucleoside analogs. Apical (3)H-uridine uptake in primary cultured RTEC was strongly dependent on an inward Na(+) gradient and temperature. Ten micromolar nitro-benzyl-mercapto-purine-ribose (NBMPR) (an inhibitor of es-type nucleoside transport in the nanomolar range) did not further inhibit this process. (3)H-uridine uptake from apical fluid was inhibited by basolateral ouabain (10 microM) and apical phloridzin (100 microM), indicating that uptake may involve a secondary active transport process. Uridine uptake was saturable with a K(m) of 3.4 +/- 1.8 microM and the V(max) of 24.3 +/- 5.2 pmoles/mg protein/30 s. Inhibition studies indicated that nucleoside analogs that have a substitution on the nucleobase competed with uridine uptake from apical fluid, but those with modifications on the ribose sugar including acyclic analogs were ineffective. The pattern of inhibition of apical (3)H-uridine, (3)H-inosine and (3)H-thymidine uptake into RTEC cells by physiological nucleosides was consistent with multiple systems: A pyrimidine-selective transport system (CNT1); a broad nucleoside substrate transport system that excludes inosine (CNT4) and an equilibrative NBMPR-insensitive nucleoside transport system (ei type). These results indicate that the presence of apically located nucleoside transporters in the epithelial cells lining the upper respiratory tract can lead to a high accumulation of nucleosides in the trachea. At least one Na(+)-dependent, secondary, active transport process may mediate the apical absorption of nucleosides or

  18. Designing media for animal cell culture: CHO cells, the industrial standard.

    Science.gov (United States)

    Landauer, Karlheinz

    2014-01-01

    The success of culturing CHO cells solely depends on functionality of the used media. Cell culture technology is more than 50 years old, and the knowledge of cell requirements increased steadily. In the beginning, animal-sourced components were the key to growth. Nowadays state-of-the-art media do not contain any animal or naturally sourced components. The compositions are based on scientific awareness of the needs of the cells. The result is high lot-to-lot consistency and high performance.In this book section, a method for the development of a synthetic, animal component-free medium is described. The composition is based on public available formulations and information based on the work of many scientists printed in numerous papers and manuscripts. The method shall help beginners to design their own medium, although some knowledge of biochemistry and animal cells is still required.

  19. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    Science.gov (United States)

    Navajas, M; Migeon, A; Alaux, C; Martin-Magniette, ML; Robinson, GE; Evans, JD; Cros-Arteil, S; Crauser, D; Le Conte, Y

    2008-01-01

    Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. Results We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. Conclusion These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey bees, and give an indication

  20. Cell-transforming activity and genotoxicity of phenolphthalein in cultured Syrian hamster embryo cells.

    Science.gov (United States)

    Tsutsui, T; Tamura, Y; Yagi, E; Hasegawa, K; Tanaka, Y; Uehama, A; Someya, T; Hamaguchi, F; Yamamoto, H; Barrett, J C

    1997-11-27

    Phenolphthalein is a cathartic agent widely used in non-prescription laxatives. For the simultaneous assessment of in vitro carcinogenicity and mutagenicity of phenolphthalein, the ability of this chemical to induce cell transformation and genetic effects was examined using the Syrian hamster embryo (SHE) cell model. Cell growth was reduced by treatment with phenolphthalein at 10-40 microM in a dose-related manner. Treatment with phenolphthalein for 48 hr induced a dose-dependent increase in morphological transformation of SHE cells. Over the dose range that resulted in cell transformation ( 10-40 microM), treatment of SHE cells with phenolphthalein induced gene mutations at the hprt locus but not at the Na+/K+ ATPase locus. A statistically significant level of chromosomal aberrations was elicited in SHE cells treated with phenolphthalein at the highest dose (40 microM). Meanwhile, neither numerical chromosomal changes nor DNA adduct formation, analyzed by the nuclease P1 enhancement version of 32P-post-labeling, were induced by treatment with phenolphthalein at any concentrations examined. We thus report cell-transforming activity and mutagenicity of phenolphthalein assessed with the same mammalian cells in culture. Our results provide evidence that phenolphthalein has cell-transforming and genotoxic activity in cultured mammalian cells. The mutagenic and clastogenic activities of phenolphthalein could be a causal mechanism for carcinogenicity in rodents.

  1. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  2. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells.

    Science.gov (United States)

    Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru

    2016-09-01

    To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.

  3. Studying endosomes in cultured neurons by live-cell imaging.

    Science.gov (United States)

    Lasiecka, Zofia M; Winckler, Bettina

    2016-01-01

    Endosomes play critical roles on regulating surface receptor levels as well as signaling cascades in all cell types, including neurons. Endocytosis and endosomal trafficking is routinely studied after fixation, but live imaging is increasingly being used to capture the dynamic nature of endosomes and is allowing increasingly sophisticated glimpses into trafficking processes in live neurons. In this chapter, we describe the basics of neuronal primary cultures, methods for expressing fluorescent proteins, and live imaging of cargos and endosomal regulators. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Further characterization of the adhesive-tumor-cell culture system for measuring the radiosensitivity of human tumor primary cultures

    International Nuclear Information System (INIS)

    Brock, W.A.; Bock, S.P.; Williams, M.; Baker, F.L.

    1987-01-01

    This study extends the use of the adhesive-tumor-cell culture system to include: over 100 sensitivity measurements at 2.0 Gy; tumorgenicity determinations in nude mice; and flow cytometry of the cells grown in the system. The malignant nature of the growing cells was proved by injecting cells into nude mice. Tumors resulted in 60% of the cases and the histology of each xenograft was similar to that of the human tumor. Flow cytometry was used to obtain DNA histograms of the original cell suspension and of cultures during the two week culture period in order to obtain quantitative information about the growth of aneuploid versus diploid populations. The results thus far demonstrate that 95% of aneuploid populations yield aneuploid growth; of the first 20 cases studied, only one suspension with an aneuploid peak resulted in diploid growth. Of further interest was the observation that it is not unusual for a minor aneuploid population to become the predominate growth fraction after two weeks in culture. These results demonstrate that the adhesive-tumor-cell culture system supports the growth of malignant cells, that multiple cell populations exist in cell suspensions derived from solid tumors, and that differences exist between the radiosensitivity of cells at 2.0 Gy in different histology types

  5. Cell-cycle research with synchronous cultures: an evaluation

    Science.gov (United States)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  6. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  7. Studies on radiation transformation of cultured mammalian cells

    International Nuclear Information System (INIS)

    Terasima, Toyozo; Sakiyama, Hisako; Yasukawa, Mieko

    1978-01-01

    In an attempt to induce in vitro transformation by radiation, several cell lines and primary cultures derived from embryonal tissues of hamster, mouse and man were tested. Under various conditions favorable for transformation, none of these were successfully transformed except for C3H mouse embryo-derived 10Tl/2 cells. Normally the cells contact-inhibited were irradiated with single graded doses and dispersed 3 hours after, followed by inoculation and 8-week cultivation with repeated medium renewals. A few types of focus were identified according to the description of Reznikoff et al. The foci characterized by (i) high cell density, (ii) increased affinity to a basic dye, and (iii) piled-up structure, were taken as an indication of transformation. The frequency of transformation was 6.5 x 10 -4 for 300 R which was 4 times higher than the frequency found in the untreated control. It increased dose-dependently until 500 R and then levelled off. Another type of experiment using TR cells derived from a leukemia-prone trisomy 21 human embryo, revealed that a single 300 R exposure to x-ray induced clones showing higher plating efficiency and plateau density than unirradiated control after 200 days of post-irradiation cultivation. However, the clones isolated did not show any particular transformational properties in vitro and tumorigenic activity on inoculation into nude mice. (author)

  8. Algorithms for pattern recognition in images of cell cultures

    Science.gov (United States)

    Mendes, Joyce M.; Peixoto, Nathalia L.; Ramirez-Fernandez, Francisco J.

    2001-06-01

    Several applications of silicon microstructures in areas such as neurobiology and electrophysiology have been stimulating the development of microsystems with the objective of mechanical support to monitor and control several parameters in cell cultures. In this work a multi-microelectrode arrays was fabricated over a glass plate to obtain the growth of neuronal cell monitoring their behavior during cell development. To identify the neuron core and axon an approach for implementation of edge detectors algorithms associated to images is described. The necessity of efficient and reliable algorithms for image processing and interpretation is justified by its large field of applications in several areas as well as medicine, robotics, cellular biology, computational vision and pattern recognition. In this work, it is investigated the adequacy of some edge detectors algorithms such as Canny, Marr-Hildreth. Some alterations in those methods are propose to improve the identification of both cell core and axonal growth measure. We compare the operator to edge detector proposed by Canny, Marr-Hildreth operator and application of Hough Transform. For evaluation of algorithms adaptations, we developed a method for automatic cell segmentation and measurement. Our goal is to find a set of parameters defining the location of the objects to compare the original and processed images.

  9. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture.

    Science.gov (United States)

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw

    2015-08-01

    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Effect of Apis mellifera bee venom and gamma radiation on bone marrow cells of wistar rats treated in vivo

    International Nuclear Information System (INIS)

    Varanda, E.A.; Takahashi, C.S.; Soares, A.E.E.; Barreto, S.A.J.

    1992-01-01

    To determine whether the venom of Apis mellifera can exert a radioprotective effect, by reducing the frequency of chromosomal aberrations induced by radiation, five different experiments were performed on bone marrow cells of Wistar rats. Animals weighing about 100 g were injected intraperitoneally with different venom concentrations (1.0 or 0.5 μ1) 1 or 24 h before, or 30 min after being submitted to three or four Gy of gamma radiation, and sacrificed 24 h after the last treatment. (author)

  11. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    Mouse fibroblasts cultured on 7-μm-long vertical nanowires are reported on page 4006 by C. N. Prinz and co-workers. Culturing cells on this kind of substrate interferes greatly with cell function, causing the cells to develop into widely different morphologies. The cells' division is impaired...

  12. The phosphatidylinositol species of suspension cultured plant cells

    International Nuclear Information System (INIS)

    Heim, S.; Wagner, K.G.

    1987-01-01

    Suspension cultured Nicotiana tabacum and Catharanthus roseus cells were labeled with [ 3 H]inositol, the phospholipid fraction extracted and separated by thin layer chromatography. Three different solvent systems and reference compounds were used to assign the different 3 H-labeled species by autoradiography. The ratio of [ 3 H]inositol incorporation into PI, PIP and PIP 2 was found to be 95:4:1; with some preparations a lyso-PI band was obtained which incorporated about a tenth of the label of the PIP band. With Catharanthus roseus cells a very faint band between PI and lyso-PI was detected which could not be assigned to a reference compound. (orig.)

  13. Bees brought to their knees: Microbes affecting honey bee health

    Science.gov (United States)

    The biology and health of the honey bee, Apis mellifera, has been of interest to human societies since the advent of beekeeping. Descriptive scientific research on pathogens affecting honey bees have been published for nearly a century, but it wasn’t until the recent outbreak of heavy colony losses...

  14. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  15. Sulforaphane induces DNA single strand breaks in cultured human cells

    International Nuclear Information System (INIS)

    Sestili, Piero; Paolillo, Marco; Lenzi, Monia; Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara; Fimognari, Carmela

    2010-01-01

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 μM SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value of

  16. Freeform micropatterning of living cells into cell culture medium using direct inkjet printing.

    Science.gov (United States)

    Park, Ju An; Yoon, Sejeong; Kwon, Jimin; Now, Hesung; Kim, Young Kwon; Kim, Woo-Jong; Yoo, Joo-Yeon; Jung, Sungjune

    2017-11-06

    Microfabrication methods have widely been used to control the local cellular environment on a micron scale. However, accurately mimicking the complexity of the in vivo tissue architecture while maintaining the freedom of form and design is still a challenge when co-culturing multiple types of cells on the same substrate. For the first time, we present a drop-on-demand inkjet printing method to directly pattern living cells into a cell-friendly liquid environment. High-resolution control of cell location is achieved by precisely optimizing printing parameters with high-speed imaging of cell jetting and impacting behaviors. We demonstrated the capabilities of the direct cell printing method by co-printing different cells into various designs, including complex gradient arrangements. Finally, we applied this technique to investigate the influence of the heterogeneity and geometry of the cell population on the infectivity of seasonal H1N1 influenza virus (PR8) by generating A549 and HeLa cells printed in checkboard patterns of different sizes in a medium-filled culture dish. Direct inkjet cell patterning can be a powerful and versatile tool for both fundamental biology and applied biotechnology.

  17. Degradation of high density lipoprotein in cultured rat luteal cells

    International Nuclear Information System (INIS)

    Rajan, V.P.; Menon, K.M.J.

    1986-01-01

    In rat ovary luteal cells, degradation of high density lipoprotein (HDL) to tricholoracetic acid (TCA)-soluble products accounts for only a fraction of the HDL-derived cholesterol used for steroidogenesis. In this study the authors have investigated the fate of 125 I]HDL bound to cultured luteal cells using pulse-chase technique. Luteal cell cultures were pulse labeled with [ 125 I]HDL 3 and reincubated in the absence of HDL. By 24 h about 50% of the initallay bound radioactivity was released into the medium, of which 60-65% could be precipitated with 10% TCA. Gel filtration of the chase incubation medium on 10% agarose showed that the amount of TCA-soluble radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity eluted over a wide range of molecular weights (15,000-80,000), and there was very little intact HDL present. Electrophoresis of the chase medium showed that component of the TCA-precipitable portion had mobility similar to apo AI. Lysosomal inhibitors of receptor-mediated endocytosis had no effect on the composition or quantity of radioactivity released during chase incubation. The results show that HDL 3 binding to luteal cells is followed by complete degradation of the lipoprotein, although the TCA-soluble part does not reflect the extent of degradation

  18. Hemopoietic cell precursor responses to erythropoietin in plasma clot cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.L.

    1979-01-01

    The time dependence of the response of mouse bone marrow cells to erythropoietin (Ep) in vitro was studied. Experiments include studies on the Ep response of marrow cells from normal, plethoric, or bled mice. Results with normal marrow reveal: (1) Not all erythroid precursors (CFU-E) are alike in their response to Ep. A significant number of the precursors develop to a mature erythroid colony after very short Ep exposures, but they account for only approx. 13% of the total colonies generated when Ep is active for 48 hrs. If Ep is active more than 6 hrs, a second population of erythroid colonies emerges at a nearly constant rate until the end of the culture. Full erythroid colony production requires prolonged exposure to erythropoietin. (2) The longer erythropoietin is actively present, the larger the number of erythroid colonies that reach 17 cells or more. Two distinct populations of immediate erythroid precursors are also present in marrow from plethoric mice. In these mice, total colony numbers are equal to or below those obtained from normal mice. However, the population of fast-responding CFU-E is consistently decreased to 10 to 20% of that found in normal marrow. The remaining colonies are formed from plethoric marrow at a rate equal to normal marrow. With increasing Ep exposures, the number of large colonies produced increases. From the marrow of bled mice, total erythroid colony production is equal to or above that of normal marrow. Two populations of colony-forming cells are again evident, with the fast-responding CFU-E being below normal levels. The lack of colonies from this group was compensated in bled mice by rapid colony production in the second population. A real increase in numbers of precursors present in this pool increased the rate of colony production in culture to twice that of normal marrow. The number of large colonies obtained from bled mice was again increased as the Ep exposure was lengthened. (ERB)

  19. Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae)

    Science.gov (United States)

    James H. Cane; Terry L. Griswold; Frank D. Parker

    2007-01-01

    Nesting substrates and construction materials are compared for 65 of North America's 139 described native species of Osmia bees. Most accounts report Osmia bees nesting in preexisting cavities in dead wood or pithy stems such as elderberry (Sambucus spp.), with cell partitions and plugs made from a pulp of finely masticated leaf tissue. Mud is widely used by...

  20. Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells in irradiated bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Fujitake, Hideki; Okamoto, Yuruko; Okubo, Hiroshi; Miyanomae, Takeshi; Kumagai, Keiko; Mori, K.J.

    1981-01-01

    Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells after irradiation were studied in the long-term culture of mouse bone marrow cells in vitro. No difference was observed in the survival of the stem cells among cultures in which 0 - 10 7 cells were re-inoculated on the adherent cell colonies in the culture flask. Stem cells showed a significant proliferation within 1 week and the number of the stem cells exceeded the control in 3 weeks after irradiation in the cultures with less than 10 6 re-inoculated cells per flask. In contrast, there was a considerable delay in the onset of stem cell proliferation after irradiation in the culture with 10 7 cells per flask. Based on these results, a possibility that a stimulator of stem cell proliferation, released from irradiated stromal cells, is cancelled by an inhibitory factor produced by irradiated or unirradiated haemopoietic cells is postulated. (author)

  1. Isolation, culture and intraportal transplantation of rat marrow stromal cell

    International Nuclear Information System (INIS)

    Wang Ping; Wang Jianhua; Yan Zhiping; Li Wentao; Lin Genlai; Hu Meiyu; Wang Yanhong

    2004-01-01

    Objective: To observe the tracing and evolution of marrow stromal cell (MSC) after intraportal transplantation into the liver of homogenous rats, and to provide experimental data for MSC differentiation to hepatocyte in vivo. Methods: The MSC was isolated from the leg bone marrow of adult SD rats, and purified by culture-expanded in vitro. Before transplantation, MSC was labeled with DAPI. Then 10 5 MSC were intraportally transplanted into the homogenous rat liver. Rats were killed at 2 hours and 1, 2, 3 and 4 weeks after transplantation. The cryosection samples of liver and lung were observed under fluorescence microscopy. Results: MSC in vitro culture had high ability of proliferation. Except 4 rats were dead because of abdominal bleeding or infection, other recipients were healthy until sacrificed. The implantation cells were detected by identifying the DAPI labeled MSC in the host livers, but not in the host lungs. Conclusion: Intraportal transplanted MSC could immigrate and survive in the host livers at least for 4 weeks. They could immigrate from the small branches of portal veins to hepatic parenchyma

  2. Defining process design space for monoclonal antibody cell culture.

    Science.gov (United States)

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  3. Control of galactosylated glycoforms distribution in cell culture system.

    Science.gov (United States)

    McCracken, Neil A; Kowle, Ronald; Ouyang, Anli

    2014-01-01

    Cell culture process conditions including media components and bioreactor operation conditions have a profound impact on recombinant protein quality attributes. Considerable changes in the distribution of galactosylated glycoforms (G0F, G1F, and G2F) were observed across multiple CHO derived recombinant proteins in development at Eli Lilly and Company when switching to a new chemically defined (CD) media platform condition. In the new CD platform, significantly lower G0F percentages and higher G1F and G2F were observed. These changes were of interest as glycosylation heterogeneity can impact the effectiveness of a protein. A systematic investigation was done to understand the root cause of the change and control strategy for galactosylated glycoforms distribution. It was found that changes in asparagine concentration could result in a corresponding change in G0F, G1F, and G2F distribution. A follow-up study examined a wider range of asparagine concentration and it was found that G0F, G1F, and G2F percentage could be titrated by adjusting asparagine concentration. The observed changes in heterogeneity from changing asparagine concentration are due to resulting changes in ammonium metabolism. Further study ascertained that different integrated ammonium level during the cell culture process could control G0F, G1F, and G2F percentage distribution. A mechanism hypothesis is proposed that integrated ammonium level impacts intracellular pH, which further regulates β-1, 4 galactosyltransferase activity. © 2014 American Institute of Chemical Engineers.

  4. CELL SHAPE AND HEXOSE TRANSPORT IN NORMAL AND VIRUS-TRANSFORMED CELLS IN CULTURE

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, M.J.; Farson, D.; Tung, A.S.C.

    1976-07-01

    The rate of hexose transport was compared in normal and virus-transformed cells on a monolayer and in suspension. It was shown that: (1) Both trypsin-removed cells and those suspended for an additional day in methyl cellulose had decreased rates of transport and lower available water space when compared with cells on a monolayer. Thus, cell shape affects the overall rate of hexose transport, especially at higher sugar concentrations. (2) Even in suspension, the initial transport rates remained higher in transformed cells with reference to normal cells. Scanning electron micrographs of normal and transformed chick cells revealed morphological differences only in the flat state. This indicates that the increased rate of hexose transport after transformation is not due to a difference in the shape of these cells on a monolayer. The relation between the geometry of cells, transport rates, and growth regulation is undoubtedly very complex, and our knowledge of these relationships is still very elementary. In a recent review on the influence of geometry on control of cell growth, Folkman and Greenspan (1) pointed out that the permeability of cells in a flat versus a spherical state may indeed be very different. The growth properties of cells on a surface and in suspension have been compared often (1-5). However, with one exception. little is known about the changes in transport properties when cell shape is changed. Foster and Pardee (6) demonstrated that the active transport of a-aminoisobutyric acid was reduced 2.5 times in suspension cultures of Chinese hamster cells with respect to the cells grown on a coverslip. They attributed this to the smaller surface area of suspended cells. While it is not clear why active transport should be dependent on the surface area available, it is possible that once the cells assume a spherical configuration, the carrier proteins are redistributed in such a way as to make them less accessible to the substrate. What happens to

  5. Azo-polysiloxanes as new supports for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hurduc, Nicolae, E-mail: nhurduc@ch.tuiasi.ro [“Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, Prof. Dimitrie, Mangeron Street, 73, 700050-Iasi (Romania); Macovei, Alina [Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, Splaiul Independentei 296, Sector 6, 060041-Bucuresti (Romania); Paius, Cristina; Raicu, Alina [“Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, Prof. Dimitrie, Mangeron Street, 73, 700050-Iasi (Romania); Moleavin, Ioana [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France); Branza-Nichita, Norica, E-mail: nichita@biochim.ro [Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, Splaiul Independentei 296, Sector 6, 060041-Bucuresti (Romania); Hamel, Matthieu [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France); Rocha, Licinio, E-mail: Licinio.ROCHA@cea.fr [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France)

    2013-05-01

    The paper introduces a new class of materials with azo-polysiloxanic structure bearing the property to generate nano-structured surfaces by laser irradiation. The ability to modulate the optical response of the film, through a modification of the polymer chemical structure, has been investigated. The azo-materials were tested for their ability to support cell adhesion and growth, with very promising results. A future use of these materials as growth support in cell cultures is of great interest, due to an easy, one step-method to generate the surface relief grating and to the possibility to introduce a large range of chemical modifications due to the presence of the chlorobenzyl groups in the polymeric side-chain. - Graphical abstract: Cell development on a nano-structured surface obtained from an azo-polysiloxanic film. Highlights: ► New azo-polysiloxanic films for biological applications were reported. ► Nanostructured surfaces with controllable geometry are obtained by laser irradiation. ► Cells are very sensitive to the chemical and physical properties of the polymeric substrate.

  6. Soft Micro-Channels for Cell Culturing and Migration Studies

    Science.gov (United States)

    Abbasirazgaleh, Sara

    Various techniques and methods have been studied and developed to aid nerve regeneration and repairing nerve injuries. Among all, nerve grafting is the gold standard for bridging the gap between the injured nerve stumps. Despite the advantages of this technique, there are also various drawbacks that have encouraged the exploration of alternative, less invasive methods for promoting nerve regeneration. In this thesis, we have fabricated soft micro-channels for cell culturing and migration studies which could act as an interface capable of long-term, reliable, and high-resolution stimulation device for nerve regeneration. Micro-channels fabrication is performed using a combination of photolithography technique and physical vapor deposition (PVD) methods. Initially, the surfaces of the micro-channels are treated with oxygen plasma to convert the surface of PDMS from hydrophobic to hydrophilic and to further provide an optimal environment for cells to adhere and grow. Next, in vitro studies were performed on the fabricated micro-channels to demonstrate feasibility of the platform to promote adherence and growth of PC12 cells (cell line derived from a pheochromocytomas of the rat adrenal medulla).

  7. Metabolism of 4-nitrobiphenyl (NBP) by cultured rat urothelial cells

    International Nuclear Information System (INIS)

    Swaminathan, S.; Lang, D.B.; Reznikoff, C.A.

    1986-01-01

    The potential of rat urothelial cells to metabolize NBP was evaluated by incubating 4.3 x 10 7 viable cells with 20 μM [ 3 H]NBP in a serum free medium for 48 hours. The culture medium was examined for metabolites of NBP by extraction with ethyl acetate and subsequent chromatographic analysis. High pressure liquid chromatography of the solvent extract using a Whatman ODS-3, C-18 column in 70% methanol-water at a flow rate of 1 ml/min revealed two major peaks at retention times of approximately 8 and 13 min. Thin layer chromatography showed two regions of radioactivity at Rf values of 0.35 and 0.83, the latter corresponding with NBP. Based on the chromatographic data the metabolite with the retention time of 8.0 min in HPLC and an Rf of 0.35 in TLC has been tentatively identified as 4-acetylaminobiphenyl. Analysis of binding to proteins and nucleic acids following exposure to [ 3 H]NBP revealed a significant amount (0.03% of initially applied radioactivity) in the protein fractions. Control samples of NBP incubated in medium, without the urothelial cells revealed only the parent compound. These data suggest that rat bladder cells possess the metabolic capability to reduce NBP and to generate reactive metabolites that bind to cellular macromolecules

  8. Studies of baby hamster kidney natural cell aggregation in suspended batch cultures.

    Science.gov (United States)

    Moreira, J L; Alves, P M; Rodrigues, J M; Cruz, P E; Aunins, J G; Carrondo, M J

    1994-11-30

    Microcarrier cultures of animal cells of industrial relevance are known to shed aggregates into the suspension phase. For a BHK cell line, which is known to be prone to aggregate naturally, microcarrier and aggregate forms of culture are compared in spinner culture. In microcarrier cultures, it is shown that increasing initial microcarrier concentration yields decreasing concentration of smaller aggregates in suspension; roughly equivalent concentrations of total cells and single cells in suspension are obtained. In the absence of Cytodex 3, aggregate final size is hydrodynamically controlled in batch and semicontinuous suspension culture. Rate of agitation is the main variable controlling aggregate size in batch cultures. The range of agitation rates studied (20 to 70 rpm in 250 mL spinner flasks) produced aggregates with maximum sizes of 200 microns. Necrotic centers were not observed; this was confirmed by Trypan blue viability measurements after mechanical dissociation of aggregates and also by the constant productivity obtained from different aggregate sizes. Comparing aggregate and microcarrier culture conditions, it is shown that at 100 rpm maximum total cell concentration is larger in the absence of microcarriers; dead cell concentrations, most of which exist in suspension, are slightly larger in microcarrier culture. Total viable cell concentrations in aggregate, hydrodynamically controlled culture, are almost one order of magnitude higher than in microcarrier cultures. These results suggest that there might be advantages in using aggregate cultures under hydrodynamic control of aggregate size in lieu of microcarrier cultures for naturally aggregating cell lines.

  9. [The application progress of three-dimensional cell culture technology in ophthalmology].

    Science.gov (United States)

    Zhao, Yun; Zhang, Lei; Zhao, Hong

    2015-11-01

    Three-dimensional cell culture technology is a kind of technology that cultures the cells in a three-dimensional cultivation by using a kind of scaffold materials in vitro. Its advantage is that the vivo microenvironment simulating degrees of the three-dimensional culture technology is higher than that of the two-dimensional planar cell culture model, and the controllability is also higher than the animal experiment. In recent years, with the development of tissue engineering technology, a varietiy of the stent of biological materials also a fast development, which provided a favorable platform for three-dimensional cell culture technology. In ophthalmology, three-dimensional cell culture has been applied to the cornea, retina and the visual system development and other optic tumor researches. The objective of this paper is to making a review the application status of the three-dimensional cell culture technology in the basic research and clinical treatment in ophthalmology.

  10. Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Waagepetersen, Helle S.

    The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system for cultur...

  11. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Kato, Kazunori; Nohara, Shigeo; Iwanuma, Yoshimi; Kajiyama, Yoshiaki

    2013-01-01

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present in esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression

  12. Mammary epithelial cell transformation: insights from cell culture and mouse models

    OpenAIRE

    Dimri, Goberdhan; Band, Hamid; Band, Vimla

    2005-01-01

    Normal human mammary epithelial cells (HMECs) have a finite life span and do not undergo spontaneous immortalization in culture. Critical to oncogenic transformation is the ability of cells to overcome the senescence checkpoints that define their replicative life span and to multiply indefinitely – a phenomenon referred to as immortalization. HMECs can be immortalized by exposing them to chemicals or radiation, or by causing them to overexpress certain cellular genes or viral oncogenes. Howev...

  13. Honey Bees: Sweetness and Mites

    Science.gov (United States)

    Honey bee colony losses have been in the news lately and the potential reasons for these losses have taken up much space in the news media. In order to clarify what role mites play in the current loss (2006-2007) of bee colonies, called Colony Collapse Disorder, a better understanding of what a mit...

  14. Safety with Wasps and Bees.

    Science.gov (United States)

    Hackett, Erla

    This guide is designed to provide elementary school teachers with safe learning activities concerning bees and wasps. The following topics are included: (1) the importance of a positive teacher attitude towards bees and wasps; (2) special problems posed by paper wasps; (3) what to do when a child is bothered by a wasp; (4) what to do if a wasp…

  15. Native bees and plant pollination

    Science.gov (United States)

    Ginsberg, H.S.

    2004-01-01

    Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.

  16. LLC-PK(1) cells maintained in a new perfusion cell culture system exhibit an improved oxidative metabolism

    NARCIS (Netherlands)

    Felder, Edward; Jennings, Paul; Seppi, Thomas; Pfaller, Walter

    2002-01-01

    Cultured renal proximal tubule cells dedifferentiate from an oxidative metabolism to high rates of glycolysis over time. There are many reasons why cells in culture dedifferentiate, not least being a lack of homogenous nutrient supply and poor oxygenation. To this end we have developed a new cell

  17. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Directory of Open Access Journals (Sweden)

    Camila Bonazza

    Full Text Available Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary