WorldWideScience

Sample records for bedrock refractive-flow cells

  1. Bedrock refractive-flow cells: A passive treatment analog to funnel-and-gate

    Energy Technology Data Exchange (ETDEWEB)

    Dick, V.; Edwards, D. [Haley & Aldrich, Inc., New York, NY (United States)

    1997-12-31

    Funnel-and-gate technology provides a mechanism to passively treat groundwater contaminant plumes, but depends on placement of a sufficient barrier ({open_quotes}funnel{close_quotes}) in the plume flow path to channel the plume to a pass-through treatment zone ({open_quotes}gate{close_quotes}). Conventional barrier technologies limit funnel-and-gate deployment to unconsolidated overburden applications. A method has been developed which allows similar passive treatment to be applied to bedrock plumes. Rather than use barriers as the funnel, the method uses engineered bedrock zones, installed via precision blasting or other means, to refract groundwater flow along a preferred path to treatment (gate). The method requires orienting the refractive cell based on the Tangent Law and extending refractive cell limbs down gradient of the gate to disperse head and control flow. A typical Refractive-Flow cell may be{open_quotes}Y{close_quotes}shaped, with each limb 3-10 ft [1-3 m] wide and several tens to a few hundred feet [10 - 100 m] in length. Treatment takes place at the center of the X. MODFLOW modeling has been used to successfully simulate desired flow. Engineered blasting has been used at full scale application to create bedrock rubble zones for active collection/flow control for several years. The method provides a previously unavailable method to passively treat contaminated groundwater in bedrock at low cost.

  2. GeologicBedrock_BEDROCK9

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset is a five category, nine sub-category classification of the bedrock units appearing on the Centennial Geologic Map of Vermont. The Centennial Map,...

  3. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  4. Iowa Bedrock Surface Elevation

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented...

  5. Ogallala Bedrock Data Enhancement

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set provides an enhanced estimate of the bedrock elevation of the Ogallala Aquifer in Kansas based on lithologic logs from a variety of sources. The data...

  6. Iowa Bedrock Topography

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The Map of the Elevation of the Bedrock Surface in Iowa was compiled using all available data, principally information from GEOSAM, supplemented with well and...

  7. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  8. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  9. A Computationally Efficient Bedrock Model

    Science.gov (United States)

    Fastook, J. L.

    2002-05-01

    Full treatments of the Earth's crust, mantle, and core for ice sheet modeling are often computationally overwhelming, in that the requirements to calculate a full self-gravitating spherical Earth model for the time-varying load history of an ice sheet are considerably greater than the computational requirements for the ice dynamics and thermodynamics combined. For this reason, we adopt a ``reasonable'' approximation for the behavior of the deforming bedrock beneath the ice sheet. This simpler model of the Earth treats the crust as an elastic plate supported from below by a hydrostatic fluid. Conservation of linear and angular momentum for an elastic plate leads to the classical Poisson-Kirchhoff fourth order differential equation in the crustal displacement. By adding a time-dependent term this treatment allows for an exponentially-decaying response of the bed to loading and unloading events. This component of the ice sheet model (along with the ice dynamics and thermodynamics) is solved using the Finite Element Method (FEM). C1 FEMs are difficult to implement in more than one dimension, and as such the engineering community has turned away from classical Poisson-Kirchhoff plate theory to treatments such as Reissner-Mindlin plate theory, which are able to accommodate transverse shear and hence require only C0 continuity of basis functions (only the function, and not the derivative, is required to be continuous at the element boundary) (Hughes 1987). This method reduces the complexity of the C1 formulation by adding additional degrees of freedom (the transverse shear in x and y) at each node. This ``reasonable'' solution is compared with two self-gravitating spherical Earth models (1. Ivins et al. (1997) and James and Ivins (1998) } and 2. Tushingham and Peltier 1991 ICE3G run by Jim Davis and Glenn Milne), as well as with preliminary results of residual rebound rates measured with GPS by the BIFROST project. Modeled responses of a simulated ice sheet experiencing a

  10. SFR site investigation. Bedrock Hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F. [Univ. of Zaragoza, Zaragoza (Spain); Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Pedersen, Karsten [Micans AB, Moelnlycke (Sweden)

    2011-11-15

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the {delta}{sup 18}O values show a wide variation (-15.5 to -7.5 per mille V

  11. Depth to Bedrock: Isopach of Unconsolidated Materials

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This vector dataset gives the approximate depth to bedrock (in feet) from Iowa's current land surface. This 50 foot isopach data was derived from the Digital...

  12. SFR site investigation. Bedrock Hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F. [Univ. of Zaragoza, Zaragoza (Spain); Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Pedersen, Karsten [Micans AB, Moelnlycke (Sweden)

    2011-11-15

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the {delta}{sup 18}O values show a wide variation (-15.5 to -7.5 per mille V

  13. SFR site investigation. Bedrock Hydrogeochemistry

    International Nuclear Information System (INIS)

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the δ18O values show a wide variation (-15.5 to -7.5 per mille V-SMOW) similar

  14. New approaches to subglacial bedrock drilling technology

    Science.gov (United States)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical

  15. Atmospheric Methane Contributions From Fractured Bedrock Aquifers

    Science.gov (United States)

    Marrin, D. L.

    2013-05-01

    Groundwater is not normally considered as an important contributor of atmospheric methane because the organic carbon content of aquifers is too low to sustain significant methanogenesis. Also, groundwater-generated methane partitions into the gas phase of the overlying soil, where it either dissolves in the pore water or is oxidized to carbon dioxide by methanotrophs. There are, however, localized conditions (related to human activities and hydrogeologic conditions) under which atmospheric contributions of groundwater-generated methane occur at the ground surface. Storing and transporting liquid petroleum products in the subsurface has resulted in the local introduction of high concentrations of degradable organic carbon and the creation of redox conditions that favor methanogenesis over more oxidative biodegradation pathways. Groundwater overlain by fractured bedrock, rather than by unconsolidated porous media, creates a situation where CH4 migrates through discrete fractures, thus limiting the soil volume and the surface area available for methanotrophic activity. The spatial distribution of methane in thin surface soils overlying bedrock suggests that CH4 migrates via fracture networks and that CH4 oxidation is a factor of about 50 less than that measured in typical unconsolidated soils. Atmospheric flux rates associated with contaminated bedrock aquifers were on the order of several grams of carbon (as CH4) per square meter, which is less than that reported for well documented sources (e.g., rice paddies) and probably represents a minor worldwide contribution. Nonetheless, these aquifers can represent an important localized source, can shift soils from a sink to a source of methane, and can permit petroleum products to load carbon (as biogenic CH4 and CO2) to the atmosphere without ever being combusted.

  16. Fractal Character of China Bedrock Coastline

    Institute of Scientific and Technical Information of China (English)

    朱晓华

    2004-01-01

    Fractal theory was applied to a preliminary discussion of the fractal character and formation mechanism of the coastline of the bedrock coast of China on the basis of GIS (Geographical Information System). Some significant conclusions were drawn:(1) The fractal dimensions of the coastline and linear structures of Liaodong Peninsula are 1.0093 and 1.0246 respectively, those of Shandong Peninsula are 1.019 and 1.021 respectively, etc.(2) The fractal dimensions of coastlines of Liaodong Peninsula, Shandong Peninsula, Zhejiang and Fujian-Guangdong tend to increase with the spatial change from north to south.(3)The regional linear structures(including faults)control the basic trends and fractal dimensions of coastlines as a whole in the regions of the bedrock coast of China:the more the controlling effect of linear structures, the smaller the fractal dimensions of coastlines.(4)The substantial constituents of coast and biologic function both play an important role in affecting the fractal dimensions of coastlines of Liaodong Peninsula, Shandong Peninsula, Zhejiang, Fujian-Guangdong and Taiwan Island.

  17. Efficacy of bedrock erosion by subglacial water flow

    OpenAIRE

    Beaud, F.; G. E. Flowers; Venditti, J. G.

    2016-01-01

    Bedrock erosion by sediment-bearing subglacial water remains little-studied; however, the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model c...

  18. Localized bedrock aquifer distribution explains discharge from a headwater catchment

    Science.gov (United States)

    Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa

    2011-07-01

    Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.

  19. Bedrock model of the Olkiluoto area

    International Nuclear Information System (INIS)

    Site investigations were carried out at Olkiluoto (in Finland) in 1987-1992 in accordance with an investigation programme drawn up by Teollisuuden Voima Oy (TVO). The site was modelled in terms of rock types, fracturing, fracture structures and geohydrological conditions, the main focus of examination was on fracturing and associated hydraulic conductivity. The various properties of the bedrock structures were classified by means of a three-dimensional model. The descriptions of the models were gathered in a computer system for illustration and storage purposes. The rock types at Olkiluoto are migmatite, which may be divided into mica gneiss and veined gneiss, and also tonalite and coarse-grained migmatite granite (pegmatite). (64 refs., 65 figs.)

  20. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of...

  1. Forsmark site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  2. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  3. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  4. Postglacial deformation of bedrock in Finland

    International Nuclear Information System (INIS)

    Glacial isostatic adjustment controls the three-dimensional deformation in Fennoscandia. Maximum vertical uplift rates based on the GPS measurements are about 11 mm/yr and horizontal motions are up to 2 mm/yr. Tectonic component is about 10% of the land uplift (or 1 mm/yr). Horizontal motions are directed outward from area of the fastest uplift. Horizontal tectonic motions are also less than 1 mm/yr. Seismic activity in Finland is low and heterogeneously distributed and the earthquake density maximums and the areas of postglacial faults have a spatial correlation. Detailed geodetic surveys indicate that crustal deformation occurs unevenly. However, the bedrock in Finland is so fractured that the deformation is distributed over a number of structures and that deformations and displacements along individual structures are very small and difficult to resolve. Fault intersections can form a locked area where stresses large enough to trigger intraplate earthquakes can build up. In the absence of intersections, the pre-existing faults can creep at a lower stress threshold. In Fennoscandia, plate-boundary tectonic stresses drive the regional compressive stress field, but to account for the current level of seismicity the glacial isostatic adjustment has a very important role. Brittle crust is near the point of failure, and, consequently, small changes, like glacial rebound related, (0.1 Mpa) in the state of stress can nucleate earthquakes are sufficient to reactive optimally oriented pre-excising weaknesses. Stress orientations inferred from the strain measurements of the first order triangulation network and seismological stress data shows (a) the dominating ridge-push/mantle drag related compression and, (b) evidence on significant local variations of the surface stress field influenced by the orientation of major fracture zones. Postglacial faults are re-activated old faults and the areas of postglacial faulting are still the most seismically active areas in

  5. Geology, Bedrock - BEDROCK_GEOLOGY_RGM_250K_IN: Bedrock geology of Indiana, from the Regional Geologic Map Series of the Indiana Geological Survey (Indiana Geological Survey, 1:250,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — BEDROCK_GEOL_RGM_IN is a polygon shapefile that shows the bedrock geology of the state of Indiana, produced from the Indiana Geological Survey Regional Geologic Map...

  6. Bedrock composition limits mountain ecosystem productivity and landscape evolution (Invited)

    Science.gov (United States)

    Riebe, C. S.; Hahm, W.; Lukens, C.

    2013-12-01

    We used measurements of bedrock geochemistry, forest productivity and cosmogenic nuclides to explore connections among lithology, ecosystem productivity and landscape evolution across a lithosequence of 21 sites in the Sierra Nevada Batholith, California. Our sites span a narrow range in elevations and thus share similar climatic conditions. Meanwhile, underlying bedrock varies from granite to diorite and spans nearly the entire range of geochemical compositions observed in Cordilleran granitoids. Land cover varies markedly, from groves of Giant Sequoia, the largest trees on Earth, to pluton-spanning swaths of little or no soil and vegetative cover. This is closely reflected in measures of forest productivity, such as remotely sensed tree-canopy cover, which varies by more than an order of magnitude across our sites and often changes abruptly at mapped contacts between rock types. We find that tree-canopy cover is closely correlated with the concentrations in bedrock of major and minor elements, including several plant-essential nutrients. For example, tree-canopy cover is virtually zero where there is less than 0.3 mg/g phosphorus in bedrock. Erosion rates from these nearly vegetation-free, nutrient deserts are more than 2.5 times slower on average than they are from surrounding, relatively nutrient-rich, soil-mantled bedrock. Thus by influencing soil and forest cover, bedrock nutrient concentrations may provoke weathering-limited erosion and thus may strongly regulate landscape evolution. Our analysis suggests that variations in bedrock nutrient concentrations can also provoke an intrinsic limitation on primary productivity. These limitations appear to apply across all our sites. To the extent that they are broadly representative of conditions in granitic landscapes elsewhere around the world, our results are consistent with widespread, but previously undocumented lithologic control of the distribution and diversity of vegetation in mountainous terrain.

  7. Bedrock Channels: Towards a Process-Based Understanding

    Science.gov (United States)

    Parsons, D. R.; Darby, S. E.; Hackney, C. R.; Leyland, J.; Best, J.; Nicholas, A. P.; Aalto, R. E.; Horn, C. A. P. T., III; Thy, M. R.

    2014-12-01

    Most previous studies on the genesis and evolution of bedforms in large rivers have focused on aggradational bedforms within alluvial sediments, with very few investigations that concern either erosive bedform evolution or bedrock channel abrasion processes. Detailed understanding of the processes within bedrock reaches of river channels is vital if an improved understanding of formation and evolution of bedrock scours and bedforms are to be elucidated. The paper presents high-resolution bathymetry and sidescan derived from multibeam sonar (MBES) and detailed flow mapping by acoustic Doppler current profiling (ADCP) to illustrate, in intricate detail, relations between morphology, flow and sediment transport processes through a bedrock reach of the Mekong River (Cambodia) during a large flood event. A 2 by 5 km reach of the Mekong river near Sambor was surveyed with a RESON 7125 MBES system revealing incredible >40 m scour features within the bedrock substrate, with sidescan imagery also revealing the routing of alluvial sediment through the scours. A series of ADCP transects were obtained, both transverse and perpendicular to the primary downstream flow, that map the flows into, around and within these scour features. The paper will conclude by looking at how advances in measurement capability have permitted the detailed processes in such channels to be investigated for the first time at this scale.

  8. Detection of Seismic Bedrock Using Radial Receiver Function

    Science.gov (United States)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2016-06-01

    The receiver function (RF) method has been widely applied to estimate velocity structures of Earth's crust and mantle using teleseismic data. In this study, we perform a RF iterative deconvolution method to detect the depth variations of seismic bedrock in the Taipei basin and Chiayi area. We use strong motion data recorded by five and seven stations in the Taipei basin and Chiayi area, respectively. The Ps-P times appear at about 0.235-0.93 s for the Taipei basin and 1.015-1.685 s for the Chiayi area. The time differences imply gradually increases of the bedrock depth from southeast to northwest in the Taipei basin and from east to west in the Chiayi area. Our results show that the method can efficiently detect depth variations of seismic bedrock which are consistent with those from other geophysical observations as well.

  9. Geophysical imaging reveals topographic stress control of bedrock weathering.

    Science.gov (United States)

    St Clair, J; Moon, S; Holbrook, W S; Perron, J T; Riebe, C S; Martel, S J; Carr, B; Harman, C; Singha, K; Richter, D deB

    2015-10-30

    Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth's surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the "critical zone" in which many biogeochemical processes occur.

  10. 2-D NUMERICAL SIMULATION OF CRUSH BEDROCK RIVER

    Institute of Scientific and Technical Information of China (English)

    YIN Ze-gao; ZHANG Tu-qiao; SUN Dong-po; LI Guo-qing

    2004-01-01

    In this paper, the erosion-resisting coefficient was introduced to compute bed deformation in a crush bedrock river. In the case of crush bedrock, there has been no proper control equation to describe bed stability, which leads to difficulty in calculation of the bed deformation with conventional methods. The data from field survey were used to give the erosion-resisting capability with an appropriate coefficient. After the determination of longitudinal distribution expressed by polynomial regression and transversal distribution expressed by normal distribution function, the plane distribution of erosion-resisting coefficient in a crush bedrock river was obtained. With the computational results from a 2-D horizontal flow mathematical model, the erosion-resisting coefficient and controlling condition of local stability were employed to compute the values of bed deformation when riverbed is stable. The above method was applied in a case study, and the computational results of flow and bed deformations are in good agreement with physical model test data.

  11. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  12. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    International Nuclear Information System (INIS)

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  13. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  14. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  15. Fractured Bedrock Storm Flow: a New Pathway for Runoff Generation

    Science.gov (United States)

    Oshun, J.; Salve, R.; Rempe, D. M.; Dietrich, W. E.; Fung, I.

    2010-12-01

    Groundwater dynamics in the fractured weathered bedrock underlying hillslopes may dominate storm runoff in many hilly and mountainous areas Few studies, however, have explored this runoff generation process. Here we use an intensively monitored site to study the spatial relationships between fractured bedrock and hydraulic properties in the weathered zone below a forested hillslope. The study site, Rivendell, is a 4000 m2 catchment draining directly into Elder Creek in the Angelo Coast Range Reserve (ACRR) in Northern California. The site is underlain by highly fractured and weak mudstones and boudinaged, ridge-forming sandstones that are turbidite sequences of the Coastal Franciscan Belt. The site receives an average of 1800mm of precipitation annually, with the vast majority falling between October and May. Rivendell has a thinly mantled soil layer underlain by a fractured rock zone, which thickens upslope to a depth of up to 30 m. Standard penetration tests show a consistent increase in bedrock resistance at depth before an abrupt lower boundary upon which the water table is perched. We use seven monitoring wells, precipitation data, soil moisture data, a steam gauge in Elder Creek, and well pump tests to characterize water movement through the fractured rock zone.. We analyze the lag time between peak rainfall and peak response at seven wells and Elder Creek from 2007-2010. The water table varies across the slope between 4 and 25 m below the ground surface, and the dynamic range of well water level increases with distance from Elder Creek. The magnitude and timing of well response shows a relationship to depth, magnitude of rainfall and antecedent moisture conditions. Although nearly all runoff is generated through fractured bedrock, we observe that Elder Creek consistently shows the shortest lag times compared to the wells on the hillslope. Wells show different trends in magnitude and timing of response throughout the rainy season. Pump tests reveal a

  16. Experimental evidence for bedrock erosion by suspended sediment

    Science.gov (United States)

    Scheingross, J. S.; Brun, F.; Lo, D. Y.; Omerdin, K.; Lamb, M. P.

    2013-12-01

    Fluvial bedrock incision influences channel evolution and sets the pace of landscape lowering. Bedrock incision often occurs via abrasion, and existing theory is divided on the erosional efficiency of sediment transported in suspension versus bed load, due in part to a lack of data to test model predictions. This represents a major knowledge gap as suspended sediment can account for the majority of the total fluvial sediment load, and untested models make opposite predictions of bedrock erosion in steep channels and during large floods. We performed controlled abrasion mill experiments examining suspended and bed load erosion, making use of an erodible polyurethane foam substrate as a bedrock analog to overcome previous experimental limitations and allow for measureable suspension erosion. Our results show foam erodes similar to natural rock, where erodibility is a function of tensile strength and density. To explore the role of the mode of sediment transport on erosion, we varied sediment size from gravel (42 mm diameter) to medium sand (0.4 mm diameter), while holding fixed hydraulics, sediment load, and substrate strength. Under these conditions, volumetric erosion rates decreased across the bed load (~101 - 103 cm3/hr) to suspended load (~0.01 - 100 cm3/hr) transition due to lower near-bed sediment concentrations (~25 g/l vs. 115 g/l), slower settling velocity (0.09 m/s vs. 0.49 m/s), and viscous damping of impacts (for particle Stokes numbers less than ~75) for suspended particles. Our results provide direct experimental evidence of erosion by suspended load, and upscaling results to field scale shows suspension erosion can outpace bed load erosion by up to a factor ~4 during large floods which suspend coarse sand and gravel, and where suspended sediment dominates the total load. These results imply that suspension erosion may also dominate on very steep slopes where commonly used bedrock incision models (which ignore suspension erosion) predict zero erosion

  17. Bedrock erosion by sliding wear in channelized granular flow

    Science.gov (United States)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of

  18. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  19. Novice to Expert Cognition During Geologic Bedrock Mapping

    Science.gov (United States)

    Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.

    2011-12-01

    Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the

  20. Bedrock fracture by ice segregation in cold regions.

    Science.gov (United States)

    Murton, Julian B; Peterson, Rorik; Ozouf, Jean-Claude

    2006-11-17

    The volumetric expansion of freezing pore water is widely assumed to be a major cause of rock fracture in cold humid regions. Data from experiments simulating natural freezing regimes indicate that bedrock fracture results instead from ice segregation. Fracture depth and timing are also numerically simulated by coupling heat and mass transfer with a fracture model. The depth and geometry of fractures match those in Arctic permafrost and ice-age weathering profiles. This agreement supports a conceptual model in which ice segregation in near-surface permafrost leads progressively to rock fracture and heave, whereas permafrost degradation leads episodically to melt of segregated ice and rock settlement.

  1. Composition of ground water in deep layers of bedrock

    International Nuclear Information System (INIS)

    The effect of different types of dissolved solids in ground water on corrosion and leaching is discussed. A suitable composition of water for leaching tests is indicated. The technique for sampling of water in bedrock at large depths is discussed. Water analyses from different investigations are presented and a probable interval of water composition as well as some maximum values are given. Very low oxygen concentrations, relatively high Fe2+ concentrations and low levels of organic substance can be expected. Leaching of bentonite can increase the concentration of organic substance

  2. Final disposal of spent nuclear fuel in the Finnish bedrock

    International Nuclear Information System (INIS)

    Teollisuuden Voima Oy (TVO) studies Finnish bedrock for the final disposal of the spent nuclear fuel from the Olkiluoto nuclear power plant. The study is in accordance with the decision in principle by Finnish government in 1983. The report is the summary of the preliminary site investigations carried out during the years 1987-1992. On the basis of these investigations a few areas will be selected for detailed site investigation. The characterization comprises five areas selected from the shortlist of potential candidate areas resulted in the earlier study during 1983-1985. Areas are located in different parts of Finland and they represent the main formations of the Finnish bedrock. Romuvaara area in Kuhmo and Veitsivaara area in Hyrynsalmi represent the Archean basement. Kivetty area in Konginkangas consists of mainly younger granitic rocks. Syyry in Sievi is located in transition area of Svecofennidic rocks and granitic rocks. Olkiluoto in Eurajoki represents migmatites in southern Finland. For the field investigations area-specific programs were planned and executed. The field investigations have comprised airborne survey by helicopter, geophysical surveys, geological mappings and samplings, deep and shallow core drillings, geophysical and hydrological borehole measurements and groundwater samplings

  3. Sorption processes of radiocesium in soil and bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-06-01

    Three recent studies on cesium sorption in soil and bedrock are reviewed. {sup 137}Cs, originating from fallouts of nuclear weapons tests and the Chernobyl accident was found to decrease in an exponential manner in forest soil, and the highest fraction in soil profiles was found in the organic layer. Also, the mineral layer below the organic layer contained a large fraction of cesium inventory but at depths below 20 cm only a very small fraction was observed. In the bedrock of Olkiluoto, where the final repository for spent nuclear fuel from the Finnish nuclear power plants will be constructed, mica mineral biotite plays the most important role in cesium sorption. The selectivity of biotite decreases in the order Cs > K > Na > Ca and the overall selectivity coefficient for Cs/Ca exchange was approximately five and seven orders of magnitude higher than those for Cs/Na and Cs/K exchange reactions, respectively. Ion exchange isotherms for Cs/Na and Cs/K exchange were modelled by assuming three different ion exchange sites: frayed edge sites (FES), basal plane sites and intermediate sites. The selectivity coefficients derived for these sites were successfully used to predict cesium sorption in a mica gneiss rock. Sorption of cesium in mineral soil layers from the Olkiluoto overburden were studied using three different approaches: model batch experiments, an in-situ method and calculations. All three approaches gave the same trend but the distribution coefficient values varied in range of one order of magnitude.

  4. Sorption processes of radiocesium in soil and bedrock

    International Nuclear Information System (INIS)

    Three recent studies on cesium sorption in soil and bedrock are reviewed. 137Cs, originating from fallouts of nuclear weapons tests and the Chernobyl accident was found to decrease in an exponential manner in forest soil, and the highest fraction in soil profiles was found in the organic layer. Also, the mineral layer below the organic layer contained a large fraction of cesium inventory but at depths below 20 cm only a very small fraction was observed. In the bedrock of Olkiluoto, where the final repository for spent nuclear fuel from the Finnish nuclear power plants will be constructed, mica mineral biotite plays the most important role in cesium sorption. The selectivity of biotite decreases in the order Cs > K > Na > Ca and the overall selectivity coefficient for Cs/Ca exchange was approximately five and seven orders of magnitude higher than those for Cs/Na and Cs/K exchange reactions, respectively. Ion exchange isotherms for Cs/Na and Cs/K exchange were modelled by assuming three different ion exchange sites: frayed edge sites (FES), basal plane sites and intermediate sites. The selectivity coefficients derived for these sites were successfully used to predict cesium sorption in a mica gneiss rock. Sorption of cesium in mineral soil layers from the Olkiluoto overburden were studied using three different approaches: model batch experiments, an in-situ method and calculations. All three approaches gave the same trend but the distribution coefficient values varied in range of one order of magnitude.

  5. Bedrock Model of the Syyry area. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Saksa, P. [ed.; Ahokas, H. [Fintact Ky, Helsinki (Finland); Kuivamaeki, A.; Kurimo, M.; Paananen, M. [Geological Survey of Finland, Espoo (Finland); Anttila, P. [IVO International Oy, Vantaa (Finland); Front, K.; Pitkaenen, P.; Hassinen, P.; Ylinen, A. [Technical Research Centre of Finland, Espoo (Finland). Road, Traffic and Geotechnical Lab.

    1993-09-01

    Preliminary site investigations implemented in accordance with the research programme drawn up by Teollisuuden Voima Oy (TVO) were carried out at Syyry (in Finland) in 1987-1992. Models of the site were compiled and used for describing the rock types, fracturing, fracture structures and geohydrological conditions, the main emphasis being on the examination of the bedrock fracturing and related hydraulic conductivity. Three-dimensional models were used for the classification of the various properties of the bedrock structures. The descriptive models were gathered into a computer system to facilitate illustration and storage. The main rock type at Syyry is tonalite. A mica gneiss formation SE of the investigation site dips towards the NW and delimits the tonalite as far as the central part of the investigation site. The miga gneiss has a heterogeneous composition and includes intermediate layers consisting of quartz feldspar schist and amphibolite. There are mafic formations in the vicinity of the investigation site. The intrusive rocks have been deformed during three plastic and three mainly brittle deformation stages. (47 refs., 61 figs.).

  6. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  7. A probabilistic framework for the cover effect in bedrock erosion

    Science.gov (United States)

    Turowski, Jens; Hodge, Rebecca

    2016-04-01

    Bedrock erosion rates in mountain rivers are driven by impacting bedload particles and are modulated by two conflicting affects. Rising sediment flux leads to an increasing number of impacts and thus larger erosion rates (the tools effect). However, when sediment supply gets too large, sediment particles sit on the bed protecting it from impacts and thereby decreasing the erosion rate (the cover effect). Previous flume experiments and numerical models have predicted a wide range of formulations for the relationship between sediment flux and sediment cover. Here, we propose a simple probabilistic framework to mathematically describe the cover effect, in which the development of cover is as a function of the probability of sediment deposition on bedrock or sediment-covered areas of the bed. The framework can incorporate empirical or modelling results and provides a neat link to process interpretations. We compare model predictions with results from both a cellular automaton model of grain dynamics, and from flume experiments. The framework is able to reproduce many of the observed behaviours, and thus provides a way of unifying the range of different results that have previously been reported. Further, we present a simple first order model for the dynamic evolution of bed cover over time that could be incorporated into channel morphodynamic models.

  8. Uranium and thorium distribution in soils and weathered bedrock in south Texas

    Science.gov (United States)

    Dickinson, Kendell A.

    1977-01-01

    The distribution of uranium and thorium in soils and weathered bedrock in areas of calich soil development on various kinds of sedimentary bedrock in south Texas indicates that uranium and thorium are leached from the surface layers and deposited deeper in the soil or weathered bedrock. The data provide field evidence that uranium is mobilized during dry-climate weathering, and suggest that caution be used in the interpretation of airborne, radioactive surveys that measure uranium at the surface.

  9. Shallow reflection seismic soundings in bedrock at Lavia

    International Nuclear Information System (INIS)

    The well-studied granitic block at Lavia was one of the test sites of a shallow seismic development project. A portable digital seismograph and high frequency geophones were rented fro the field period. A sledge hamme and a drop weight were tested as wave sources. The sounding was carried out on outcropped area in order to record high frequency reflections from known subhorizontal fracture zones as shallow as 30 m. Large amplitude surface waves hide most of the shallow reflections, recognizable only on few traces in the data. The data processing carried out did not reveal the geometry of these reflectors. Events arriving after the ground roll were analyzed in 2-folded CDP-sections. The continuous reflective horizons in them correspond to lithological changes and fracture zones located deeper than 200 m in the bedrock

  10. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Smellie, John (Conterra AB, Partille (Sweden)); Tullborg, Eva-Lena (Terralogica, Graabo (Sweden)); Gimeno, Maria (Univ. of Zaragoza, Zaragoza (Spain)); Hallbeck, Lotta (Microbial Analytics, Goeteborg (Sweden)); Molinero, Jorge (Amphos XXI Consulting S.L., Barcelona (Spain)); Waber, Nick (Univ. of Bern, Bern (Switzerland))

    2008-12-15

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  11. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  12. Amplified Erosion above Waterfalls and Oversteepened Bedrock Reaches

    Science.gov (United States)

    Haviv, I.; Enzel, Y.; Whipple, K. X.; Zilberman, E.; Stone, J.; Matmon, A.; Fifield, K. L.

    2005-12-01

    Although waterfalls are abundant along steep bedrock channels, none of the conventional erosion laws can predict incision at the lip of a waterfall where flow is non-uniform and bed slope can be vertical. Considering the expected increase in flow velocity and shear stress at the lip of a vertical waterfall we determine erosion amplification at a waterfall lip as: Elip/Enormal= (1+0.4/Fr2)3n, where Fr is the Froude number and n ranges between 0.5-1.7. This amplification expression suggests that erosion at the lip could be as much as 2-5 times higher than normally expected in a setting with identical hydraulic geometry. It also demonstrates that a freefall is expected to amplify upstream incision rates even when the flow approaching the waterfall is highly supercritical. Utilizing this erosion amplification expression in numerical simulations in conjunction with a standard detachment-limited incision model we demonstrate its impact on reach-scale morphology above waterfalls. These simulations indicate that amplified erosion at the lip of a waterfall can trigger the formation of an oversteepened reach whose length is longer than the flow acceleration zone, provided incision velocity (Vi) at the edge of the flow acceleration zone is higher than the retreat velocity of the waterfall face. Such an oversteepened reach is expected to be more pronounced when Vi increases with increasing slope. The simulations also suggest that oversteepening can eventually lead to quasi steady-state gradients upstream from a waterfall provided Vi decreases with increasing slope. Flow acceleration above waterfalls can thus account, at least partially, for oversteepened bedrock reaches that are prevalent above waterfalls. Such reaches have been reported for the escarpments of southeast Australia, western Dead Sea, and at Niagara Falls. Using the cosmogenic isotope 36Cl we demonstrate that Vi upstream of a waterfall at the Dead Sea western escarpment is high enough for freefall

  13. Fluorine geochemistry in bedrock groundwater of South Korea.

    Science.gov (United States)

    Chae, Gi-Tak; Yun, Seong-Taek; Mayer, Bernhard; Kim, Kyoung-Ho; Kim, Seong-Yong; Kwon, Jang-Soon; Kim, Kangjoo; Koh, Yong-Kwon

    2007-10-15

    High fluoride concentrations (median=4.4 mg/L) in deep bedrock groundwater of South Korea prevent the usage of it as a drinking water source. The hydrogeochemistry of deep thermal groundwaters (N=377) in diverse bedrocks has been studied in order to evaluate the geologic and geochemical controls on fluoride concentrations in groundwater. The groundwater samples were clustered geologically, and the average and median concentrations of fluoride were compared by the Mann-Whitney U test. The order of median fluoride concentration with respect to geology is as follows: metamorphic rocks> or =granitoids > or =complex rock>volcanic rocks> or =sedimentary rocks. This result indicates that the geological source of fluoride in groundwater is related to the mineral composition of metamorphic rocks and granitoids. With respect to groundwater chemistry, the fluoride concentration was highest in Na-HCO3 type groundwater and lowest in Ca-HCO3 type groundwater. Ionic relationships also imply that the geochemical behavior of fluoride in groundwater is related to the geochemical process releasing Na and removing Ca ions. The thermodynamic relationship between the activities of Ca and F indicates that fluoride concentration is controlled by the equilibrium of fluorite (CaF2). In other words, the upper limits of fluoride concentration are determined by the Ca ion; i.e., Ca concentrations play a crucial role in fluoride behavior in deep thermal groundwater. The result of this study suggests that the high fluoride in groundwater originates from geological sources and fluoride can be removed by fluorite precipitation when high Ca concentration is maintained. This provides a basis for a proper management plan to develop the deep thermal groundwater and for treatment of high fluoride groundwater frequently found in South Korea. PMID:17655916

  14. Hydrogeology - AQUIFERS_BEDROCK_USGS_IN: Bedrock Aquifer Systems in Indiana (United States Geological Survey, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Four types of bedrock aquifers in 12 water-management basins identified by the Indiana Natural Resources Commission (INRC) in Indiana were identified by the USGS in...

  15. On the reliability of manually produced bedrock lineament maps

    Science.gov (United States)

    Scheiber, Thomas; Viola, Giulio; Fredin, Ola; Jarna, Alexandra; Gasser, Deta; Łapinska-Viola, Renata

    2016-04-01

    Manual extraction of topographic features from digital elevation models (DEMs) is a commonly used technique to produce lineament maps of fractured basement areas. There are, however, several sources of bias which can influence the results. In this study we investigated the influence of the factors (a) scale, (b) illumination azimuth and (c) operator on remote sensing results by using a LiDAR (Light Detection and Ranging) DEM of a fractured bedrock terrain located in SW Norway. Six operators with different backgrounds in Earth sciences and remote sensing techniques mapped the same LiDAR DEM at three different scales and illuminated from three different directions. This resulted in a total of 54 lineament maps which were compared on the basis of number, length and orientation of the drawn lineaments. The maps show considerable output variability depending on the three investigated factors. In detail: (1) at larger scales, the number of lineaments drawn increases, the line lengths generally decrease, and the orientation variability increases; (2) Linear features oriented perpendicular to the source of illumination are preferentially enhanced; (3) The reproducibility among the different operators is generally poor. Each operator has a personal mapping style and his/her own perception of what is a lineament. Consequently, we question the reliability of manually produced bedrock lineament maps drawn by one person only and suggest the following approach: In every lineament mapping study it is important to define clear mapping goals and design the project accordingly. Care should be taken to find the appropriate mapping scale and to establish the ideal illumination azimuths so that important trends are not underrepresented. In a remote sensing project with several persons included, an agreement should be reached on a given common view on the data, which can be achieved by the mapping of a small test area. The operators should be aware of the human perception bias. Finally

  16. Ultramafic-derived arsenic in a fractured bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Peter C., E-mail: pryan@middlebury.edu [Geology Department, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States); Kim, Jonathan [Vermont Geological Survey, Waterbury, VT 05671 (United States); Wall, Andrew J. [Department of Geosciences, Penn State University, University Park, PA 16802 (United States); Moen, Jonathan C.; Corenthal, Lilly G.; Chow, Daniel R.; Sullivan, Colleen M.; Bright, Kevin S. [Geology Department, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2011-04-15

    Highlights: > Arsenic is elevated in groundwater from a fractured bedrock aquifer system in northern Vermont, USA. > The arsenic source is serpentinized ultramafic rock. > Antigorite, magnetite (MgCO{sub 3}) and magnetite (Fe{sub 3}O{sub 4}) appear to be the main mineralogical hosts of arsenic in the ultramafic rock. > Arsenic appears to be introduced to the ultramafic rock when As-bearing fluids are driven out of sediments during subduction. >. > The occurrence of serpentinized ultramafic rocks in many orogenic belts suggests that similar arsenic anomalies may occur in geologically-similar terranes globally. - Abstract: In the fractured bedrock aquifer of northern Vermont, USA, As concentrations in groundwater range from <1 to 327 {mu}g/L (<13-4360 nm/L) and these elevated occurrences have a general spatial association with ultramafic rock bodies. The ultramafic rocks in this region are comprised mainly of serpentinites and talc-magnesite rocks with average As concentration of 93 ppm and a range from 1 to 1105 ppm. By comparison, the other main lithologies in the study area are depleted in As relative to the ultramafics: the average As concentration in metabasaltic rocks is 4.1 ppm with a range of <1-69 ppm, and mean As concentration in meta-sedimentary phyllites and schists is 22 ppm with a range of <1-190 ppm. In the ultramafic rocks, As is correlated with Sb and light rare earth elements, indicating that As was introduced to the ultramafic rocks during metasomatism by fluids derived from the subducting slab. Evidence from sequential chemical extraction, X-ray diffraction (XRD) and stoichiometric analysis indicates that the majority of the As is located in antigorite and magnesite (MgCO{sub 3}) with lesser amounts in magnetite (Fe{sub 3}O{sub 4}). Hydrochemistry of monitoring wells drilled into fractured ultramafic rock in a groundwater recharge area with no anthropogenic As source reveals above background As (2-9 {mu}g/L) and an Mg-HCO{sub 3} hydrochemical

  17. Estimated Depth to Bedrock of Iowa as a 110 meter pixel_32bit Imagine Format Raster Dataset

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This raster dataset represents the depth to bedrock from the land surface. It was derived by subtracting a bedrock surface elevation layer from the NED 30 meter...

  18. Radioelement (U,Th,Rn) concentrations in Norwegian bedrock groundwaters

    International Nuclear Information System (INIS)

    Samples of groundwater from bedrock boreholes in three Norwegian geological provinces have been analysed for content of 222Rn, U and Th. Median values of 290 Bq/l, 7.6 μg/l and 0.02 μg/l were obtained for Rn, U and Th, respectively, while maximum values were 8500 Bq/l, 170 μg/l and 2.2 μg/l. Commonly suggested drinking water limits range from 8 to 1000 Bq/l for radon and 14 to 160 μg/l for uranium. Radioelement content was closely related to lithology, the lowest concentrations being derived from the largely Caledonian rocks of the Troendelag area, and the highest from the Precambrian Iddefjord Granite of South East Norway where median values of 2500 Bq/l, 15 μg/l and 0.38 μg/l, respectively, were obtained. The Iddefjord Granite is not believed to be unique in Norway yielding high dissolved radionuclide contents in groundwaters, and several other granitic aquifers warrant further investigation in this respect. 63 refs., 13 figs., 8 tabs

  19. Vegetation and wildfire controls on sediment yield in bedrock landscapes

    Science.gov (United States)

    Dibiase, Roman A.; Lamb, Michael P.

    2013-03-01

    rocky landscapes commonly exhibit high sediment yields and are especially sensitive to climate, tectonics, and wildfire. Predicting landscape response to these perturbations demands a quantitative understanding of erosion processes. However, existing models for hillslope sediment production and transport do not apply to landscapes with patchy soil and slopes that exceed the angle for sediment stability. Here we present field measurements in southern California, USA, which indicate that sediment storage on steep slopes is enabled by vegetation that traps sediment upslope. We find that the storage capacity of unburned vegetation dams follows a geometric scaling model with a cubic dependence on effective plant width and an inverse dependence on local slope. Measured sediment volumes behind burned vegetation dams indicate a loss of at least 75% relative to unburned dams, and when expanded to the catchment scale, our measurements match records of postfire sediment yield from nearby retention basins. Contrary to existing models, our observations indicate that wildfire-induced sediment yield is driven by transient storage and release of sediment by vegetation dams, rather than increased bedrock-to-soil conversion rates. Without a feedback between soil production and wildfire, fire may play little role in long-term landscape evolution, and increasing fire frequency in response to climate change may not result in heightened sedimentation hazards due to supply limitations.

  20. A bottom-up control on fresh-bedrock topography under landscapes.

    Science.gov (United States)

    Rempe, Daniella M; Dietrich, William E

    2014-05-01

    The depth to unweathered bedrock beneath landscapes influences subsurface runoff paths, erosional processes, moisture availability to biota, and water flux to the atmosphere. Here we propose a quantitative model to predict the vertical extent of weathered rock underlying soil-mantled hillslopes. We hypothesize that once fresh bedrock, saturated with nearly stagnant fluid, is advected into the near surface through uplift and erosion, channel incision produces a lateral head gradient within the fresh bedrock inducing drainage toward the channel. Drainage of the fresh bedrock causes weathering through drying and permits the introduction of atmospheric and biotically controlled acids and oxidants such that the boundary between weathered and unweathered bedrock is set by the uppermost elevation of undrained fresh bedrock, Zb. The slow drainage of fresh bedrock exerts a "bottom up" control on the advance of the weathering front. The thickness of the weathered zone is calculated as the difference between the predicted topographic surface profile (driven by erosion) and the predicted groundwater profile (driven by drainage of fresh bedrock). For the steady-state, soil-mantled case, a coupled analytical solution arises in which both profiles are driven by channel incision. The model predicts a thickening of the weathered zone upslope and, consequently, a progressive upslope increase in the residence time of bedrock in the weathered zone. Two nondimensional numbers corresponding to the mean hillslope gradient and mean groundwater-table gradient emerge and their ratio defines the proportion of the hillslope relief that is unweathered. Field data from three field sites are consistent with model predictions.

  1. Land-Surface Subsidence and Open Bedrock Fractures in the Tully Valley, Onondaga County, New York

    Science.gov (United States)

    Hackett, William R.; Gleason, Gayle C.; Kappel, William M.

    2009-01-01

    Open bedrock fractures were mapped in and near two brine field areas in Tully Valley, New York. More than 400 open fractures and closed joints were mapped for dimension, orientation, and distribution along the east and west valley walls adjacent to two former brine fields. The bedrock fractures are as much as 2 feet wide and over 50 feet deep, while linear depressions in the soil, which are 3 to 10 feet wide and 3 to 6 feet deep, indicate the presence of open bedrock fractures below the soil. The fractures are probably the result of solution mining of halite deposits about 1,200 feet below the land surface.

  2. Bedrock geology of the Mount Carmel and Southington quadrangles, Connecticut

    Science.gov (United States)

    Fritts, Crawford Ellswroth

    1962-01-01

    New data concerning the geologic structure, stratigraphy, petrography, origin, and ages of bedrock formations in an area of approximately 111 square miles in south-central Connecticut were obtained in the course of detailed geologic mapping from 1957 to 1960. Mapping was done at a scale of 1:24,000 on topographic base maps having a 10-foot contour interval. Bedrock formations are classified in two principal categories. The first includes metasedimentary, meta-igneous, and igneous rocks of Precambrian to Devonian age, which crop out in the western parts of both quadrangles. The second includes sedimentary and igneous rocks of the Newark Group of Late Triassic age, which crop out in the eastern parts of the quadrangles. Diabase dikes, which are Late Triassic or younger in age, intruded rocks in both the western and eastern parts of the map area. Rocks in the western part of the area underwent progressive regional metamorphism in Middle to Late Devonian time. The arrangement of the chlorite, garnet, biotite, staurolite, and kyanite zones here is approximately the mirror-image of metamorphic zones in Dutchess County, New York. However, garnet appeared before biotite in politic rocks in the map area, because the ration MgO/FeO is low. Waterbury Gneiss and the intrusive Woodtick Gneiss are parts of a basement complex of Precambrian age, which forms the core of the Waterbury dome. This structure is near the southern end of a line of similar domes that lie along the crest of a geanticline east of the Green Mountain anticlinorium. The Waterbury Gneiss is believed to have been metamorphosed in Precambrian time as well as in Paleozoic time. The Woodtick Gneiss also may have been metamorphosed more than once. In Paleozoic time, sediments were deposited in geosynclines during two main cycles of sedimentation. The Straits, Southington Mountain, and Derby Hill Schists, which range in age from Cambrian to Ordovician, reflect a transition from relatively clean politic sediments to

  3. Physical modeling of glacier contact with bedrock (experiment

    Directory of Open Access Journals (Sweden)

    V. P. Epifanov

    2013-01-01

    Full Text Available Studies of the adhesive strength of glacial ice connection with bedrock has been studied using the analysis of the amplitude-frequency characteristics of acoustic emission (AE in the frequency range from 15 Hz to 20,000 Hz. Identification of signal source on bed is based on physical modeling of adhesive ice fracture at the complex shear and patterns of elastic waves propagation in the ice using data on ice thickness of the ice and its acoustic properties. The experimental dependence of the ice and serpentinite substrate adhesive strength with temperature (from 0 °C to −30 °C has been obtained at constraint axial shear. It is shown that the destruction of adhesive ice contact with substrate begins long before the maximum shear stress achieved, and AE signals in the coordinates amplitude-frequency-time have been obtained for the for static friction and sliding parts of deformation curves. Influence of shear to normal stresses ratio on the adhesive ice/substrate strength has been shown. Influence of the ratio of longitudinal and transverse shear stresses on the adhesive bond strength of ice to the substrate has been shown. The natural glacier spectra revealed periodic reduction of AE signals frequency in the middle range of frequencies. The similar effect of AE signals shifting along the frequency axis to the low frequency domain was obtained by testing of freshwater ice samples and related with expansion of the destruction scale. Practical application of the strain AE results for remote determination of the local glacial stability and for studies of glacier ice mechanics is discussed.

  4. Groundwater chemistry of a nuclear waste reposoitory in granite bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    This report concerns the prediction of the maximum dissolution rate for nuclear waste stored in the ground. That information is essential in judging the safety of a nuclear waste repository. With a limited groundwater flow, the maximum dissolution rate coincides with the maximum solubility. After considering the formation and composition of deep granite bedrock groundwater, the report discusses the maximum solubility in such groundwater of canister materials, matrix materials and waste elements. The parameters considered are pH, Eh and complex formation. The use of potential-pH (Pourbaix) diagrams is stressed; several appendixes are included to help in analyzing such diagrams. It is repeatedly found that desirable basic information on solution chemistry is lacking, and an international cooperative research effort is recommended. The report particularly stresses the lack of reliable data about complex formation and hydrolysis of the actinides. The Swedish Nuclear Fuel Safety (KBS) study has been used as a reference model. Notwithstanding the lack of reliable chemical data, particularly for the actinides and some fission products, a number of essential conclusions can be drawn about the waste handling model chosen by KBS. (1) Copper seems to be highly resistant to groundwater corrosion. (2) Lead and titanium are also resistant to groundwater, but inferior to copper. (3) Iron is not a suitable canister material. (4) Alumina (Al/sub 2/O/sub 3/) is not a suitable canister material if groundwater pH goes up to or above 10. Alumina is superior to copper at pH < 9, if there is a risk of the groundwater becoming oxidizing. (5) The addition of vivianite (ferrous phosphate) to the clay backfill around the waste canisters improves the corrosion resistance of the metal canisters, and reduces the solubility of many important waste elements. This report does not treat the migration of dissolved species through the rock.

  5. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  6. Bedrock geology of the Arabian Peninsula and selected adjacent areas (geo2bg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The data set for this coverage includes arcs, polygons, and polygon labels that outline and describe the general geologic age and type of bedrock of the Arabian...

  7. Lithogeochemical Character of Near-Surface Bedrock in the New England Coastal Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geographic information system (GIS) data layer shows the generalized lithologic and geochemical, termed lithogeochemical, character of near-surface bedrock in...

  8. Bedrock Geology of the turkey Creek Drainage Basin, Jefferson County, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set describes bedrock geology of the Turkey Creek drainage basin in Jefferson County, Colorado. It was digitized from maps of fault locations...

  9. Bedrock Data from Western Cape Cod, Massachusetts (WELLSITE shapefile, Geographic, NAD27)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Cores collected from recent drilling in western Cape Cod, Massachusetts provide insight into the topography and petrology of the underlying bedrock. Cores from 64...

  10. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source...

  11. Subsurface Lateral Flow in Texture-Contrast (Duplex Soils and Catchments with Shallow Bedrock

    Directory of Open Access Journals (Sweden)

    Marcus A. Hardie

    2012-01-01

    Full Text Available Development-perched watertables and subsurface lateral flows in texture-contrast soils (duplex are commonly believed to occur as a consequence of the hydraulic discontinuity between the A and B soil horizons. However, in catchments containing shallow bedrock, subsurface lateral flows result from a combination of preferential flow from the soil surface to the soil—bedrock interface, undulations in the bedrock topography, lateral flow through macropore networks at the soil—bedrock interface, and the influence of antecedent soil moisture on macropore connectivity. Review of literature indicates that some of these processes may also be involved in the development of subsurface lateral flow in texture contrast soils. However, the extent to which these mechanisms can be applied to texture contrast soils requires further field studies. Improved process understanding is required for modelling subsurface lateral flows in order to improve the management of waterlogging, drainage, salinity, and offsite agrochemicals movement.

  12. Lithogeochemical Character of Near-Surface Bedrock in the Connecticut, Housatonic and Thames River Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data layer shows the generalized lithologic and geochemical (lithogeochemical) character of near-surface bedrock in the Connecticut, Housatonic, and Thames...

  13. Measured and Inferred Bedrock Faults in the Boulder-Weld Coal Field (frifaultu)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file is a digital line representation of measured and inferred bedrock faults in the Boulder-Weld coal field, Denver Basin, Colorado. This file was created as...

  14. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-04-01

    Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed

  15. Fractured bedrock investigation by using high-resolution borehole images and the Distributed Temperature Sensing technique

    OpenAIRE

    Radioti, Georgia; Delvoie, Simon; Radu, Jean-Pol; Nguyen, Frédéric; Charlier, Robert

    2015-01-01

    In order to investigate the fracturing of the bedrock and its possible heterogeneous distribution in situ, four boreholes equipped with double-U geothermal pipes of 100 m long were installed on the campus of the University of Liege (Liege, Belgium) over a surface area of 32 m². The bedrock, which starts at a depth approximately of 8 m, is quite fractured and consists mainly of siltstone and shale interbedded with sandstone. Different geophysical methods are applied at two different phas...

  16. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    Science.gov (United States)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  17. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change

    OpenAIRE

    Gruber, S.; Haeberli, W.

    2007-01-01

    Permafrost in steep bedrock is abundant in many cold-mountain areas, and its degradation can cause slope instability that is unexpected and unprecedented in location, magnitude, frequency, and timing. These phenomena bear consequences for the understanding of landscape evolution, natural hazards, and the safe and sustainable operation of high-mountain infrastructure. Permafrost in steep bedrock is an emerging field of research. Knowledge of rock temperatures, ice content, mechanisms of de...

  18. Ground source energy in crystalline bedrock - increased energy extraction by using hydraulic fracturing in boreholes

    OpenAIRE

    Ramstad, Randi Kalskin

    2004-01-01

    The use of improved equipment and methodology can result in considerable reductions in the drilling costs for medium- to large sized ground source heat pump system in crystalline bedrock. The main point has been to use special techniques within hydraulic fracturing to create a larger heat exchange area in the bedrock, and thus a greater energy extraction per borehole. The energy extraction is based on circulating groundwater.Stimulation with hydraulic fracturing is a well known technique in o...

  19. Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain)

    OpenAIRE

    Raposo, J. R.; Molinero, J.; Dafonte, J.

    2012-01-01

    Quantifying groundwater recharge in crystalline rocks presents great difficulties due to the high heterogeneity of the underground medium (mainly, due to heterogeneity in fracture network, which determines hydraulic parameters of the bedrock like hydraulic conductivity or effective porosity). Traditionally these rocks have been considered to have very low permeability, and their groundwater resources have usually been neglected; however, they can be of local importance when the bedrock presen...

  20. Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking

    Science.gov (United States)

    Christensen, Craig William; Pfaffhuber, Andreas Aspmo; Anschütz, Helgard; Smaavik, Tone Fallan

    2015-08-01

    Airborne electromagnetic (AEM) survey data was used to supplement geotechnical investigations for a highway construction project in Norway. Heterogeneous geology throughout the survey and consequent variable bedrock threshold resistivity hindered efforts to directly track depth to bedrock, motivating us to develop an automated algorithm to extract depth to bedrock by combining both boreholes and AEM data. We developed two variations of this algorithm: one using simple Gaussian or inverse distance weighting interpolators, and another using ordinary kriging and combined probability distribution functions of input parameters. Evaluation shows that for preliminary surveys, significant savings in boreholes required can be made without sacrificing bedrock model accuracy. In the case study presented, we estimate data collection savings of 1000 to 10,000 NOK/km (c. 160 to 1600 USD/km) would have been possible for early phases of the investigation. However, issues with anthropogenic noise, low signal, and uncertainties in the inversion model likely reduced the comparative advantage that including AEM provided. AEM cannot supersede direct sampling where the model accuracy required exceed the resolution possible with the geophysical measurements. Nevertheless, with the algorithm we can identify high probability zones for shallow bedrock, identify steep or anomalous bedrock topography, and estimate the spatial variability of depth at earlier phases of investigation. Thus, we assert that our method is still useful where detailed mapping is the goal because it allows for more efficient planning of secondary phases of drilling.

  1. Laboratory measurements of grain-bedrock interactions using inertial sensors.

    Science.gov (United States)

    Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim

    2016-04-01

    Sediment transport in steep mountain streams is characterized by the movement of coarse particles (diameter c.100 mm) over beds that are not fully sediment-covered. Under such conditions, individual grain dynamics become important for the prediction of sediment movement and subsequently for understanding grain-bedrock interaction. Technological advances in micro-mechanical-electrical systems now provide opportunities to measure individual grain dynamics and impact forces from inside the sediments (grain inertial frame of reference) instead of trying to infer them indirectly from water flow dynamics. We previously presented a new prototype sensor specifically developed for monitoring sediment transport [Maniatis et al. EGU 2014], and have shown how the definition of the physics of the grain using the inertial frame and subsequent derived measurements which have the potential to enhance the prediction of sediment entrainment [Maniatis et al. 2015]. Here we present the latest version of this sensor and we focus on beginning of the cessation of grain motion: the initial interaction with the bed after the translation phase. The sensor is housed in a spherical case, diameter 80mm, and is constructed using solid aluminum (density = 2.7 kg.m-3) after detailed 3D-CAD modelling. A complete Inertial Measurement Unit (a combination of micro- accelerometer, gyroscope and compass) was placed at the center of the mass of the assembly, with measurement ranges of 400g for acceleration, and 1200 rads/sec for angular velocity. In a 0.9m wide laboratory flume, bed slope = 0.02, the entrainment threshold of the sensor was measured, and the water flow was then set to this value. The sensor was then rolled freely from a static cylindrical bar positioned exactly on the surface of the flowing water. As the sensor enters the flow we record a very short period of transport (1-1.5 sec) followed by the impact on the channel bed. The measured Total Kinetic Energy (Joules) includes the

  2. Present-day mass changes for the Greenland ice sheet and their interaction with bedrock adjustment

    Directory of Open Access Journals (Sweden)

    M. Olaizola

    2011-12-01

    Full Text Available Since the launch in 2002 of the Gravity Recovery and Climate Experiment (GRACE satellites, several estimates of the mass balance of the Greenland Ice Sheet (GrIS have been produced. To obtain ice mass changes estimates, data need to be corrected for the effect of deformation changes of the Earth's crust. This is usually done by independently modeling the Glaciological Isostatic Adjustment (GIA trend and then by removing it from the data. Recently, Wu et al. (2010 proposed a new method to simultaneously estimate GIA and the present-day ice mass change, reporting an ice mass loss of around half of the previously published estimates and a general bedrock subsidence concentrated in the central parts of Greenland. This subsidence appears to be counterintuitive since the ice sheet is loosing mass at present. It was suggested by the authors that this could be a new evidence for additional net past ice accumulation.

    In this study, a 3-D ice-sheet model with a surface mass balance forcing based on a mass balance gradient approach has been used to: (a analyze the bedrock response to changes in the ice load in order to evaluate whether bedrock subsidence and ice thinning can exist simultaneously; (b study the magnitude and the pattern of the bedrock movement; and (c evaluate if present-day bedrock subsidence could be the result of a net past mass accumulation.

    Under a sine forcing of the annual temperature, that mimics the temperature variations in the Holocene, mass changes yield a delay of the bedrock response of 200 years. Thinning of the ice as well as bedrock subsidence coexist during this period with an order of magnitude equal to the observations by Wu et al. (2010. Although, the resulting pattern of bedrock changes differs considerable: instead of the general bedrock subsidence reported before, we found areas of bedrock uplift as well as areas of bedrock subsidence. A simulation since the last glacial maximum (with the

  3. Hydrology of the Helena area bedrock, west-central Montana, 1993-98; with a section on geologic setting and a generalized bedrock geologic map

    Science.gov (United States)

    Thamke, Joanna N.; Reynolds, Mitchell W.

    2000-01-01

    The Generalized Bedrock Geologic Map of the Helena Area, West-Central Montana (plate 1 in the report) provides an intermediate-scale overview of bedrock in the Helena area. The geologic map has been compiled at a scale of 1:100,000 from the most widely available sources of geologic map information (see index to geologic mapping on pl. 1). That information has been updated by M.W. Reynolds for this report with more recent geologic mapping and field revision of published maps. All well locations and all bedrock units penetrated during drilling have been confirmed on geologic maps at the largest scale available. Source geologic maps are all at scales larger than 1:100,000 scale. Care has been taken to ensure accurate representation of the original geology at the compilation scale. However, positional accuracy of some features might be somewhat diminished at the smaller scale of the base map when compared with the original data source. Also, line thicknesses for contacts and faults necessarily assume a greater width, relative to the real geologic feature, at the scale of the generalized map than on any original map. The map is not intended for large-scale, site-specific detailed planning. Bedrock units throughout the Helena area are generally covered by young surficial deposits such as alluvium, colluvium, glacial debris, or windblown sediment. Thickness of such deposits varies from veneers through which the underlying bedrock is clearly discernible to major thicknesses that conceal all underlying bedrock and structure. Boundaries of major accumulations of surficial deposits are attributed separately from bedrock contacts. These boundaries should not be considered precise at the map scale or at larger scales. Boundaries shown may be less accurate positionally than bedrock contacts and faults because (1) surficial deposits commonly thin to a knife edge; (2) different mappers will interpret the edge differently when drawing a boundary; or (3) the original geologic map

  4. Three dimensional characterization and capture zone analysis of a dipping tabular fractured bedrock aquifer

    International Nuclear Information System (INIS)

    In order to improve the effectiveness of an existing groundwater recovery and treatment system at a manufacturing site in eastern Pennsylvania, an analysis of groundwater flow within fractured bedrock of the Triassic Brunswick Formation was conducted using water quality, lithologic and hydrologic data, compiled at the site over a period of 13 years. Groundwater quality data, collected from on-site monitoring wells and offsite wells, indicate that a plume of dissolved phase volatile organic compounds originates on the site and has migrated off-site. Groundwater pumping test data from different areas of the site and from three discrete bedrock zones, as well as, the performance of the existing groundwater treatment system indicate: the groundwater system in the bedrock at the site can be conceptualized as a series of tabular aquifers (brittle fractured beds) separated by finer grained, more ductile aquitards which control flow between aquifers. The hydrologic units within the site bedrock have the same orientation as the geologic beds at the site. The development of groundwater flow maps, corrected for anisotropy, which utilize the cone of depression from the existing recovery well, coupled with the geohydrologic model of the site, allowed the development of a modified multiple well groundwater recovery system which will provide control of groundwater sufficient to capture the on-site contamination. The findings of the study demonstrate that the understanding of the geology of the bedrock aquifer and the hydrologic properties of the different geologic units at the site was critical to the design of an effective groundwater recovery system which considers both the anisotropy of the bedrock and the presence of aquitards within the bedrock

  5. Do Titan's river channels carve into ice bedrock or loose regolith?

    Science.gov (United States)

    Collins, G. C.; Sklar, L. S.; Litwin, K. L.; Polito, P. J.

    2012-04-01

    Final results from our experiments investigating the abrasion resistance and strength of polycrystalline ice and ice/contaminant mixtures at Titan temperatures allow us to update the calculations of Collins (2005), which examined the ease of fluvial incision into ice bedrock on Titan. If Titan’s stream channels run over exposed bedrock, the rate of channel downcutting is limited by the supply of sediment particles to abrade the bedrock surface, or by the production of pluckable blocks from joints in the bedrock. By adapting the equations of Sklar and Dietrich (2004) to Titan, we estimate the relative rate of bedrock incision caused by abrasion of sediment particles, and find that bedrock on Titan responds like a welded tuff or a quartzite on Earth, rather than the weak sandstone-like response found initially by Collins (2005). Using the range of values for the HLS drainage basins used by Perron et al. (2006) and the sediment sizes observed by Keller et al. (2008), we adjust the unknown sediment supply rate into the channels to find the upper limit of the bedrock incision rate during rainstorm-runoff events. Maximum incision rates are about 1 micron per hour. If typical peak runoff events only last for a few hours, it would take on the order of 105 to 106 rainstorms for a channel to incise one meter into the solid bedrock. However, the mass flux of sediment from farther upstream required to erode this much bedrock implies that transportation of loose sediment would lower the entire catchment area 100 times faster than the bedrock in the channel is lowered. This is logically unsustainable, and leaves us with two options for erosion of the stream channels. One option is that the stream channels are even more supply limited than they are in our maximization calculation, and channel incision on Titan is an even slower process than outlined above. A more likely explanation is that Titan’s streams are instead primarily cutting into bedrock that is pre-fractured into

  6. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H. [WSP Finland Oy, Helsinki (Finland)

    2012-04-15

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  7. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change

    Science.gov (United States)

    Gruber, S.; Haeberli, W.

    2007-06-01

    Permafrost in steep bedrock is abundant in many cold-mountain areas, and its degradation can cause slope instability that is unexpected and unprecedented in location, magnitude, frequency, and timing. These phenomena bear consequences for the understanding of landscape evolution, natural hazards, and the safe and sustainable operation of high-mountain infrastructure. Permafrost in steep bedrock is an emerging field of research. Knowledge of rock temperatures, ice content, mechanisms of degradation, and the processes that link warming and destabilization is often fragmental. In this article we provide a review and discussion of existing literature and pinpoint important questions. Ice-filled joints are common in bedrock permafrost and possibly actively widened by ice segregation. Broad evidence of destabilization by warming permafrost exists despite problems of attributing individual events to this phenomenon with certainty. Convex topography such as ridges, spurs, and peaks is often subject to faster and deeper thaw than other areas. Permafrost degradation in steep bedrock can be strongly affected by percolating water in fractures. This degradation by advection is difficult to predict and can lead to quick and deep development of thaw corridors along fractures in permafrost and potentially destabilize much greater volumes of rock than conduction would. Although most research on steep bedrock permafrost originates from the Alps, it will likely gain importance in other geographic regions with mountain permafrost.

  8. Episodic bedrock erosion by gully-head migration, Colorado High Plains, USA

    Science.gov (United States)

    Rengers, Francis; Tucker, G.E.; Mahan, Shannon

    2016-01-01

    This study explores the frequency of bedrock exposure in a soil-mantled low-relief (i.e. non-mountainous) landscape. In the High Plains of eastern Colorado, gully headcuts are among the few erosional features that will incise through the soil mantle to expose bedrock. We measured the last time of bedrock exposure using optically stimulated luminescence dating of alluvial sediment overlying bedrock in gully headcuts. Our dating suggests that headcuts in adjacent gullies expose bedrock asynchronously, and therefore, the headcuts are unlikely to have been triggered by a base-level drop in the trunk stream. This finding supports the hypothesis that headcuts can develop locally in gullies as a result of focused scour in locations where hydraulic stress during a flash flood is sufficiently high, and/or ground cover is sufficiently weak, to generate a scour hole that undermines vegetation. Alluvium dating also reveals that gullies have been a persistent part of this landscape since the early Holocene. 

  9. Comparison of planform multi-channel network characteristics of alluvial and bedrock constrained large rivers

    Science.gov (United States)

    Carling, P. A.; Meshkova, L.; Robinson, R. A.

    2011-12-01

    The Mekong River in northern Cambodia is an multi-channel mixed bedrock-alluvial river but it was poorly researched until present. Preliminary study of the Mekong geomorphology was conducted by gathering existing knowledge of its geological and tectonic settings, specific riparian vegetation and ancient alluvial terraces in which the river has incised since the Holocene. Altogether this process has allowed a geomorphological portrait of the river to be composed within the Quaternary context. Following this outline, the planform characteristics of the Mekong River network are compared, using analysis of channel network and islands configurations, with the fluvial patterns of the Orange River (South Africa), Upper Columbia River (Canada) and the Ganga River (India, Bangladesh). These rivers are selected as examples of multi-channel mixed bedrock alluvial, anastomosed alluvial and braided alluvial rivers respectively. Network parameters such as channel bifurcation angles asymmetry, sinuosity, braid intensity and island morphometric shape metrics are compared and contrasted between bedrock and alluvial systems. In addition, regional and local topographic trend surfaces produced for each river planform help explain the local changes in river direction and the degree of anastomosis, and distinguish the bedrock-alluvial rivers from the alluvial rivers. Variations between planform characteristics are to be explained by channel forming processes and in the case of mixed bedrock-alluvial rivers mediated by structural control. Channel metrics (derived at the reach-scale) provide some discrimination between different multi-channel patterns but are not always robust when considered singly. In contrast, island shape metrics (obtained at subreach-scale) allow robust discrimination between alluvial and bedrock systems.

  10. An ice flow modeling perspective on bedrock adjustment patterns of the Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    M. Olaizola

    2012-11-01

    Full Text Available Since the launch in 2002 of the Gravity Recovery and Climate Experiment (GRACE satellites, several estimates of the mass balance of the Greenland ice sheet (GrIS have been produced. To obtain ice mass changes, the GRACE data need to be corrected for the effect of deformation changes of the Earth's crust. Recently, a new method has been proposed where ice mass changes and bedrock changes are simultaneously solved. Results show bedrock subsidence over almost the entirety of Greenland in combination with ice mass loss which is only half of the currently standing estimates. This subsidence can be an elastic response, but it may however also be a delayed response to past changes. In this study we test whether these subsidence patterns are consistent with ice dynamical modeling results. We use a 3-D ice sheet–bedrock model with a surface mass balance forcing based on a mass balance gradient approach to study the pattern and magnitude of bedrock changes in Greenland. Different mass balance forcings are used. Simulations since the Last Glacial Maximum yield a bedrock delay with respect to the mass balance forcing of nearly 3000 yr and an average uplift at present of 0.3 mm yr−1. The spatial pattern of bedrock changes shows a small central subsidence as well as more intense uplift in the south. These results are not compatible with the gravity based reconstructions showing a subsidence with a maximum in central Greenland, thereby questioning whether the claim of halving of the ice mass change is justified.

  11. Debris flow boundary stresses and bedrock erosion: large scale laboratory experiments

    Science.gov (United States)

    Hsu, L.; Dietrich, W. E.

    2008-12-01

    Field observations indicate that debris flows can cause erosional wear of bedrock channels. On steep slopes, where debris flows are dominant, this wear may be the primary means of long-term channel incision. However, we presently lack a large-scale, experimentally tested theory to predict bedrock erosion by debris flows. Here, we hypothesize that impact erosion by particles colliding with the bed removes more bedrock than sliding erosion from the bulk weight of the flow. To develop and test a process-based theory for bedrock incision by debris flows, we study the erosional processes of granular flows in a 4-meter diameter, 80-cm wide vertically rotating drum. Debris flow slurries are created with mixtures of natural sediment from clay-sized to 20-cm diameter combined with varying amounts of water. During the experimental runs, the normal force on the bed is directly measured by a 225-cm2 load plate and the corresponding longitudinal profile and plan-view velocity field of the debris slurry is measured with a laser profiler and video camera, respectively. The erosion volume is obtained by repeated topographic measurement of 60 cm by 60 cm synthetic and natural rock samples embedded in the floor of the drum. By varying the grain size distribution, water content, and flow volume, we created both impact-dominated and sliding-dominated erosion conditions. The erosion of the bedrock, instead of scaling with the mean bulk stress of the flow, scaled with the stress deviations from the mean, which are caused by impacts of individual grains on the bed. This result supports the hypothesis that for bedrock erosion, dynamic stresses caused by individual clasts are more important than mean stress at the bed of the flow. Stress deviations from the mean depend on grain size distribution and particle trajectories, and therefore these properties should be measured in natural debris flows and included in modeling efforts of dynamics and erosion.

  12. Neoseismotectonics and glacial isostatic uplift. Deformations and changes of prevailing conditions in the Swedish bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Moerner, N.A. [Stockholm Univ. (Sweden)

    1997-04-01

    The conclusions from this contribution are that no bedrock repository can be considered to be safely placed in the bedrock at the event of new glaciations, which are to be expected over Sweden in 5, 23, and 60 thousand years AP (following the astronomical, natural or long-term variability). Instead, there are all reasons to expect that such a repository would be seriously damaged, and constitute a threat to the biosphere on Earth. These conclusions are based on an extensive observational network of records on the multiple glacial dynamics and the interaction of different variables. 24 refs.

  13. Is the Profile of the Colorado River in the Colorado Plateau in Equilibrium With Bedrock?

    Science.gov (United States)

    Mackley, R. D.; Pederson, J. L.

    2003-12-01

    The Colorado River sets the pace for the erosion of the Colorado Plateau and part of the Rocky Mountains, and the evolution of its long-profile may hold the key to resolving debate over the region's late Cenozoic erosional and tectonic history. Significant reach (10 km) and canyon-scale (100 km) gradient variations occur along the modern profile of this mixed bedrock-alluvial river, and there are multiple hypotheses for the controls on its gradient: 1) knickzones related to active tectonics in western Grand Canyon, 2) coarse bed material from tributary side-canyons, and 3) bedrock resistance as a direct control with respect to channel substrate or an indirect control in terms of hillslope processes in tributary catchments and the production and comminution of bed material. The goal of this study is to test for a spatial relation between hydraulic driving forces and bedrock resisting forces at reach and canyon-scales within and between Glen and Grand canyons. The river encounters diverse rock types that vary in hardness and fracture density. Field and GIS results aimed at testing the bedrock resistance hypothesis for Glen and Grand canyons indicate a spatial relation between rock-mass strength (RMS) and channel gradient. Reach-scale gradients vary as much as a factor of 20 through Grand Canyon, with steep reaches having significantly higher compressive strengths and wide fracture spacings. Glen Canyon, on the other hand, has dramatically lower channel gradient, weaker RMS properties, and reaches with steep gradients that do not correlate to either debris fans or changes in bedrock type but do coincide with geologic structures. The presence of a bedrock or debris-fan frequency correlation to the majority of gradient variations argues against tectonic origins of knickzones and suggests a relation between bedrock resistance and the profile of the Colorado River exists. However, when these results are combined with the distribution of tributary debris fans and their

  14. Influence of bedrock lithology on strath terrace formation in the Willapa River watershed, SW Washington, USA

    Science.gov (United States)

    Schanz, S. A.; Montgomery, D. R.

    2013-12-01

    River terraces in tectonically active regions such as the Cascadia subduction margin have been utilized as late Quaternary markers of rock uplift and climate, yet the important role of bedrock lithology as a control on terrace formation is rarely considered. This study investigates lithologic controls on strath terrace formation in the Willapa River basin, situated halfway between the Olympic and Oregon Coast Ranges along the Cascadia subduction zone. The Willapa River and its tributaries alternate flow through easily erodible marine sedimentary and resistant basalt bedrock. We estimate rates of fluvial incision and infer patterns of rock uplift through a combination of field mapping, surveying terrace tread and strath elevations, and radiocarbon dating of terrace abandonment. A long-term steady state between incision and rock uplift is assumed for the basin, and incision rates are calculated as the strath elevation above present thalweg divided by the age of strath abandonment. Radiocarbon dates reveal two extensive terrace sets approximately 150 and 10,000 years old, resulting in a regional rock uplift rate of 0.4×0.1 mm/yr. Terraces are present only in sedimentary bedrock whereas basalt bedrock reaches run through deep, narrow valleys lacking extensive floodplains or terraces. The marine sedimentary units erode easily both laterally and vertically with active erosion of millimeter thick flakes on subaerially exposed bedrock. In contrast, basalt bedrock erodes preferentially in large blocks along fracture planes, resulting in less laterally erodible banks and higher vertical than lateral incision rates. We estimate rock uplift rates of less than 0.5 mm/yr are high enough to initiate strath terrace formation following large, long cycle impetuses such as climatic changes, provided the bedrock lithology is weak enough to allow lateral erosion as well as vertical incision. Thus, disturbances from large climatic or base level changes initiate terrace formation, but

  15. Seaweed attachment to bedrock: biophysical evidence for a new geophycology paradigm.

    Science.gov (United States)

    Morrison, L; Feely, M; Stengel, D B; Blamey, Nigel; Dockery, P; Sherlock, A; Timmins, E

    2009-09-01

    Seaweeds are amongst the most obvious and ecologically important components of rocky shore communities worldwide but until now little has been known about the processes involved in their attachment. This multidisciplinary study investigated for the first time the interactions between marine macroalgal holdfasts and their underlying substrata, requiring the development of specialized sample preparation techniques to maintain the structural integrity of the holdfast-bedrock interface. Transmitted plane polarized light microscopy, scanning electron microscopy with energy dispersive spectroscopy and structured light illumination microscopy were used in the examination of the interface between Ascophyllum nodosum (Fucales, Heterokontophyta) and crustose red algae Lithothamnion sp. (Corallinales, Rhodophyta) on granite and limestone substrates. The new evidence presented here represents a paradigm shift in the way we view seaweed attachment because results show that the holdfasts exploit the physical characteristics of the rock-forming minerals in order to penetrate the bedrock and thus facilitate the attachment process. Mineral cleavage planes together with intercrystalline and intracrystalline boundaries and fractures provide penetration pathways for the holdfast tissue. This process causes disaggregation of rock-forming minerals to depths <10 mm and therefore assists in the bioerosion of coastal bedrock. It is concluded that seaweeds are able to cause weathering of natural rock and the term 'geophycology' is introduced to describe seaweed-bedrock interactions, including seaweed-induced weathering. PMID:19624752

  16. The keystone species of Precambrian deep bedrock biosphere belong to Burkholderiales and Clostridiales

    Science.gov (United States)

    Purkamo, L.; Bomberg, M.; Kietäväinen, R.; Salavirta, H.; Nyyssönen, M.; Nuppunen-Puputti, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M.

    2015-11-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180-2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.

  17. Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids

    Science.gov (United States)

    Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja

    2016-05-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.

  18. Modeled Top of the Older Bedrock Geomodel Unit (pmtop_f)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The pmtop_f grid represents the modeled elevation of the top of the Older Bedrock geomodel unit at a 500 foot resolution. It is one grid of a geomodel that consists...

  19. Geophysical characterization of fractured bedrock at Site 8, former Pease Air Force Base, Newington, New Hampshire

    Science.gov (United States)

    Mack, Thomas J.; Degnan, James R.

    2003-01-01

    Borehole-geophysical logs collected from eight wells and direct-current resistivity data from three survey lines were analyzed to characterize the fractured bedrock and identify transmissive fractures beneath the former Pease Air Force Base, Newington, N.H. The following logs were used: caliper, fluid temperature and conductivity, natural gamma radiation, electromagnetic conductivity, optical and acoustic televiewer, and heat-pulse flowmeter. The logs indicate several foliation and fracture trends in the bedrock. Two fracture-correlated lineaments trending 28? and 29?, identified with low-altitude aerial photography, are coincident with the dominant structural trend. The eight boreholes logged at Site 8 generally have few fractures and have yields ranging from 0 to 40 gallons per minute. The fractures that probably resulted in high well yields (20?40 gallons per minute) strike northeast-southwest or by the right hand rule, have an orientation of 215?, 47?, and 51?. Two-dimensional direct-current resistivity methods were used to collect detailed subsurface information about the overburden, bedrock-fracture zone depths, and apparent-dip directions. Analysis of data inversions from data collected with dipole-dipole and Schlumberger arrays indicated electrically conductive zones in the bedrock that are probably caused by fractured rock. These zones are coincident with extensions of fracture-correlated lineaments. The fracture-correlated lineaments and geophysical-survey results indicate a possible northeast-southwest anisotropy to the fractured rock.

  20. Vertical and horizontal bedrock displacements near Jakobshavn Isbræ due to glacial ice mass loss

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Wahr, John; Liu, Lin;

    2011-01-01

    We analyze GPS data from four continuous Global Positioning System (GPS) receivers located between 5 and 150 km from the glacier Jakobshavn Isbræ, West Greenland. The GPS stations were established on bedrock to determine the vertical and horizontal crustal motion due to the unloading of ice from ...

  1. Muon Tomography of Ice-filled Cleft Systems in Steep Bedrock Permafrost: A Proposal

    OpenAIRE

    Ihl, Matthias

    2010-01-01

    In this note, we propose a novel application of geoparticle physics, namely using a muon tomograph to study ice-filled cleft systems in steep bedrock permafrost. This research could significantly improve our understanding of high alpine permafrost in general and climate-permafrost induced rockfall in particular.

  2. Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change

    DEFF Research Database (Denmark)

    Bevis, Michael; Wahr, John; Khan, Shfaqat Abbas;

    2012-01-01

    The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Crustal displacement is largely accounted...

  3. The keystone species of Precambrian deep bedrock biosphere belong to Burkholderiales and Clostridiales

    Directory of Open Access Journals (Sweden)

    L. Purkamo

    2015-11-01

    Full Text Available The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180–2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.

  4. INFLUENCE OF SEDIMENT SUPPLY, LITHOLOGY, AND WOOD DEBRIS ON THE DISTRIBUTION OF BEDROCK AND ALLUVIAL CHANNELS

    Science.gov (United States)

    Field surveys in the Willapa River basin, Washington State, indicate that the drainage area?channel slope threshold describing the distribution of bedrock and alluvial channels is influenced by the underlying lithology and that local variations in sediment supply can overwhelm ba...

  5. Distribution of bedrock and alluvial channels in forested mountain drainage basins

    Science.gov (United States)

    Montgomery, David R.; Abbe, Tim B.; Buffington, John M.; Peterson, N. Phil; Schmidt, Kevin M.; Stock, Jonathan D.

    1996-06-01

    MOUNTAIN river networks often consist of both bedrock and alluvial channels1-5, the spatial distribution of which controls several fundamental geomorphological and ecological processes6,7. The nature of river channels can influence the rates of river incision and landscape evolution1,2, as well as the stream habitat characteristics affecting species abundance and aquatic ecosystem structure8-11. Studies of the factors controlling the distribution of bedrock and alluvial channels have hitherto been limited to anthropogenic badlands12. Here we investigate the distribution of channel types in forested mountain drainage basins, and show that the occurrence of bedrock and alluvial channels can be described by a threshold model relating local sediment transport capacity to sediment supply. In addition, we find that valley-spanning log jams create alluvial channels- hospitable to aquatic life-in what would otherwise be bedrock reaches. The formation of such jams depends critically on the stabilizing presence of logs derived from the largest trees in the riverside forests, suggesting that management strategies that allow harvesting of such trees can have a devastating influence on alluvial habitats in mountain drainage basins.

  6. Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding

    Science.gov (United States)

    Montgomery, David R.; Dietrich, William E.; Heffner, John T.

    2002-12-01

    Experimental observations comparing two steep unchanneled valleys in the Oregon Coast Range, one intensively instrumented (CB1) and the other monitored for runoff but which produced a debris flow (CB2), shed light on the mechanisms of shallow flow in bedrock, its interaction with the vadose zone, and its role in generating landslides. Previous work at CB1 led to the proposal that during storms pulses of rainfall transmit pressure waves through the vadose zone and down to the saturated zone to create rapid pore pressure response and runoff [, 1998]. Here, we document the associated rapid pore pressure response in the shallow fractured bedrock that underlies these colluvium-mantled sites and examine its influence on the generation of storm flow, seasonal variations in base flow, and slope stability in the overlying colluvial soil. Our observations document rapid piezometric response in the shallow bedrock and a substantial contribution of shallow fracture flow to both storm flow and seasonal variations in base flow. Saturated hydraulic conductivity in the colluvial soil decreases with depth below the ground surface, but the conductivity of the near-surface bedrock displays no depth dependence and varies over five orders of magnitude. Analysis of runoff intensity and duration in a series of storms that did and did not trigger debris flows in the surrounding area shows that the landslide inducing storms had the greatest intensity over durations similar to those predicted by a simple model of piezometric response. During a monitored storm in February 1992, the channel head at the base of the neighboring CB2 site failed as a debris flow. Automated piezometric measurements document that the CB2 debris flow initiated several hours after peak discharge, coincident with localized development of upward spikes of pressure head from near-surface bedrock into the overlying colluvial soil in CB1. Artesian flow observed exfiltrating from bedrock fractures on the failure surfaces

  7. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    Science.gov (United States)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  8. New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory

    Science.gov (United States)

    Lamb, Michael P.; Finnegan, Noah J.; Scheingross, Joel S.; Sklar, Leonard S.

    2015-09-01

    River incision into bedrock drives the topographic evolution of mountainous terrain and may link climate, tectonics, and topography over geologic time scales. Despite its importance, the mechanics of bedrock erosion are not well understood because channel form, river hydraulics, sediment transport, and erosion mechanics coevolve over relatively long time scales that prevent direct observations, and because erosive events occur intermittently and are difficult and dangerous to measure. Herein we synthesize how flume experiments using erodible bedrock simulants are filling these knowledge gaps by effectively accelerating the pace of landscape evolution under reduced scale in the laboratory. We also build on this work by providing new theory for rock resistance to abrasion, thresholds for plucking by vertical entrainment, sliding and toppling, and by assessing bedrock-analog materials. Bedrock erosion experiments in the last 15 years reveal that the efficiency of rock abrasion scales inversely with the square of rock tensile strength, sediment supply has a dominant control over bed roughness and abrasion rates, suspended sediment is an efficient agent of erosion, and feedbacks with channel form and roughness strongly influence erosion rates. Erodibility comparisons across rock, concrete, ice, and foam indicate that, for a given tensile strength, abrasion rates are insensitive to elasticity. The few experiments that have been conducted on erosion by plucking highlight the importance of block protrusion height above the river bed, and the dominance of block sliding and toppling at knickpoints. These observations are consistent with new theory for the threshold Shields stress to initiate plucking, which also suggests that erosion rates in sliding- and toppling-dominated rivers are likely transport limited. Major knowledge gaps remain in the processes of erosion via plucking of bedrock blocks where joints are not river-bed parallel; waterfall erosion by toppling and

  9. Detections of MTBE in surficial and bedrock aquifers in New England

    International Nuclear Information System (INIS)

    The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station

  10. Steeply dipping heaving bedrock, Colorado: Part 1 - Heave features and physical geological framework

    Science.gov (United States)

    Noe, D.C.; Higgins, J.D.; Olsen, H.W.

    2007-01-01

    Differentially heaving bedrock has caused severe damage near the Denver metropolitan area. This paper describes heave-feature morphologies, the underlying bedrock framework, and their inter-relationship. The heave features are linear to curvilinear and may attain heights of 0.7 m (2.4 ft), widths of 58 m (190 ft), and lengths of 1,067 m (3,500 ft). They are nearly symmetrical to highly asymmetrical in cross section, with width-to-height ratios of 45:1 to 400:1, and most are oriented parallel with the mountain front. The bedrock consists of Mesozoic sedimentary formations having dip angles of 30 degrees to vertical to overturned. Mixed claystone-siltstone bedding sequences up to 36-m (118-ft) thick are common in the heave-prone areas, and interbeds of bentonite, limestone, or sandstone may be present. Highly fractured zones of weathered to variably weathered claystone extend to depths of 19.5 to 22.3 m (64 to 73 ft). Fracture spacings are 0.1 to 0.2 m (0.3 to 0.7 ft) in the weathered and variably weathered bedrock and up to 0.75 m (2.5 ft) in the underlying, unweathered bedrock. Curvilinear shear planes in the weathered claystone show thrust or reverse offsets up to 1.2 m (3.9 ft). Three associations between heave-feature morphologies and the geological framework are recognized: (1) Linear, symmetrical to asymmetrical heaves are associated with primary bedding composition changes. (2) Linear, highly asymmetrical heaves are associated with shear planes along bedding. (3) Curvi-linear, highly asymmetrical heaves are associated with bedding-oblique shear planes.

  11. Mineralogical sources of groundwater fluoride in Archaen bedrock/regolith aquifers: mass balances from the Peninsular Granite Complex, southern India

    Science.gov (United States)

    Hallett, Bethan; Burgess, William; Valsami-Jones, Eugenia

    2014-05-01

    Fluoride in groundwater-sourced drinking water is a widespread concern in India, particularly in the granitic gneiss bedrock/regolith catchments of Andhra Pradesh, one of the most severely affected states. Mobilisation of F- to groundwater is ultimately the consequence of bedrock weathering and regolith development, yet in crystalline bedrock/regolith terrain of the Peninsular Granite Complex, which constitutes a strategically important aquifer environment in India, uncertainties persist in relation to the relative contribution of the different F-bearing minerals and their distribution between the bedrock and the regolith. Even the relative significance of the bedrock and regolith as sources of fluoride to groundwater is disputed, as are explanations of seasonal and/or secular trends in groundwater F-. There are important implications for management of the groundwater resource. Understanding the mechanisms and progress of chemical weathering of the granitic gneiss is key to these questions, ie how effectively is F removed from its primary source(s) as the bedrock weathers? And, to what extent is F- flushed from the weathering profile and/or re-sequestered by secondary mineral phases as the regolith develops? To address these questions we have applied optical petrography, XRD, scanning electron microprobe analysis, whole-rock chemical analysis and leaching experiments to samples of bedrock and regolith from two catchments in Andhra Pradesh. We have quantified the distribution of F between its individual mineralogical sources, and between bedrock and regolith. Experiments show there is no straightforward relationship between whole-rock F content and leached [F-]; in some instances regolith samples leach higher F- concentrations than the fresh granitic gneiss. Results shed light on conflicting conceptual models of F release to groundwater in gneissic bedrock/regolith aquifers. Accounting for groundwater [F-], simple estimates of groundwater flux in the catchments

  12. Alluvial and bedrock aquifers of the Denver Basin; eastern Colorado's dual ground-water resource

    Science.gov (United States)

    Robson, Stanley G.

    1989-01-01

    Large volumes of ground water are contained in alluvial and bedrock aquifers in the semiarid Denver basin of eastern Colorado. The bedrock aquifer, for example, contains 1.2 times as much water as Lake Erie of the Great Lakes, yet it supplies only about 9 percent of the ground water used in the basin. Although this seems to indicate underutilization of this valuable water supply, this is not necessarily the case, for many factors other than the volume of water in the aquifer affect the use of the aquifer. Such factors as climatic conditions, precipitation runoff, geology and water-yielding character of the aquifers, water-level conditions, volume of recharge and discharge, legal and economic constraints, and water-quality conditions can ultimately affect the decision to use ground water. Knowledge of the function and interaction of the various parts of this hydrologic system is important to the proper management and use of the ground-water resources of the region. The semiarid climatic conditions on the Colorado plains produce flash floods of short duration and large peak-flow rates. However, snowmelt runoff from the Rocky Mountains produces the largest volumes of water and is typically of longer duration with smaller peak-flow rates. The alluvial aquifer is recharged easily from both types of runoff and readily stores and transmits the water because it consists of relatively thin deposits of gravel, sand, and clay located in the valleys of principal streams. The bedrock aquifer is recharged less easily because of its greater thickness (as much as 3,000 feet) and prevalent layers of shale which retard the downward movement of water in the formations. Although the bedrock aquifer contains more than 50 times as much water in storage as the alluvial aquifer, it does not store and transmit water as readily as the alluvial aquifer. For example, about 91 percent of the water pumped from wells is obtained from the alluvial aquifer, yet water-level declines generally have

  13. The Salzach Valley overdeeping: A most precise bedrock model of a major alpine glacial basin

    Science.gov (United States)

    Pomper, Johannes; Salcher, Bernhard; Eichkitz, Christoph

    2016-04-01

    Overdeepenings are impressive phenomena related to the erosion in the ablation zone of major glaciers. They are common features in glaciated and deglaciated regions worldwide and their sedimentary fillings may act as important archives for regional environmental change and glaciation history. Sedimentary fillings are also important targets of geotechnical exploration and construction including groundwater resource management, shallow geothermal exploitation, tunneling and the foundation of buildings. This is especially true in densely populated areas such as the European Alps and their foreland areas, regions which have been multiply glaciated during the last million years. However, due depths often exceeding some hundreds of meters, the overall knowledge on their geometry, formation and sedimentary content is still poor and commonly tied to some local spots. Here we present a bedrock model of the overall lower Salzach Valley, one of the largest glacial overdeepings in the European Alps. We utilized seismic sections from hydrocarbon exploration surveys and deep drillings together with topographic and modelling data to construct a 3D bedrock model. Through the existence of seismic inline and crossline valley sections, multiple drillings reaching the bedrock surface, log and abundant outcrop data we were, as far to our knowledge, able to create the most accurate digital bedrock topography of an alpine major overdeepening. We furthermore analyzed the sedimentary content of the valley as recorded by driller's lithologic logs. Our results suggest that the valley is far from being a regular U-shaped trough with constant depth, rather highlighting highs and lows of different magnitude and underground valley widths of variable extent. Data also indicates that the largest overdeepening of bedrock, reaching around 450 m below the alluvial fill, is not situated after a major glacial confluence following a prominent bedrock gorge but shifted several km down the valley. The

  14. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically

  15. Mapping the geophysical bedrock of the Moesian Platform using H/V ratios and borehole data.

    Science.gov (United States)

    Florinela Manea, Elena; Michel, Clotaire; Fäh, Donat; Ortanza Cioflan, Carmen

    2016-04-01

    The strong effects at long periods observed in the extra-Carpathian area of Romania during large Vrancea intermediate-depth earthquakes were explained by the influence of both source mechanism and mechanical properties of the geological structure. Complex basin geometry and the low seismic velocities of the sediments are the primary responsible for the large amplification and long duration of the seismic records from the extra-Carpathian area during intermediate-depth earthquakes. The aim of this study is to map the geophysical bedrock of this area correlating and interpolating the results obtained from local resonance phenomena evaluation with the available surface geological data. The site was investigated through the computation of H/V spectral ratios from three-directional single station measurements of ambient vibration. The first step was to estimate the depth of the geophysical bedrock at all the Romanian seismic stations located in the extra-Carpathian area (velocity sensors) using the fundamental frequency retrieved from the H/V curves. In the second stage of the study all the relevant peaks from the H/V curves were interpreted in consonance with the available information of the geology. The geological data were obtained from the database developed in the national BIGSEES project by National Institute of Earth Physics. In this database are integrated all the geological, geophysical data from all the past projects, contracts, studies (as refraction, reflexion, etc.), geotechnical drillings and other information publicly available. The mapping of the geophysical bedrock was done interpolating the geological database and information gathered/resulted from H/V using a geographical informational system(GIS). The geology of this area displays very complex features as outcrops in small zones/lines/ near the Danube and then is gradually dipping to about 2 km depth in the N-NE. The depth of the bedrock is (nearly) constant around 100 m depth on the right side of

  16. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    International Nuclear Information System (INIS)

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10-7 m2/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10-12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically most evolved

  17. Organic Carbon Stabilization of Soils Formed on Acidic and Calcareous Bedrocks in Neotropical Alpine Grassland, Peru

    Science.gov (United States)

    Yang, Songyu; Cammeraat, Erik; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2016-04-01

    Increasing evidence shows that Neotropical alpine ecosystems are vulnerable to global change. Since soils in the alpine grasslands of the Peruvian Andean region have large soil organic carbon (SOC) stocks, profound understanding of soil organic matter (OM) stabilization mechanisms will improve the prediction of the feedback between SOC stocks and global change. It is well documented that poor-crystalline minerals and organo-metallic complexes significantly contribute to the OM stabilization in volcanic ash soils, including those in the Andean region. However, limited research has focused on non-ash soils that also express significant SOC accumulation. A pilot study of Peruvian Andean grassland soils suggests that lithology is a prominent factor for such carbon accumulation. As a consequence of contrasting mineral composition and pedogenic processes in soils formed on different non-volcanic parent materials, differences in OM stabilization mechanisms may be profound and consequently may respond differently to global change. Therefore, our study aims at a further understanding of carbon stocks and OM stabilization mechanisms in soils formed on contrasting bedrocks in the Peruvian Andes. The main objective is to identify and compare the roles that organo-mineral associations and aggregations play in OM stabilization, by a combination of selective extraction methods and fractionations based on density, particle size and aggregates size. Soil samples were collected from igneous acidic and calcareous sedimentary bedrocks in alpine grassland near Cajamarca, Peru (7.17°S, 78.63°W), at around 3700m altitude. Samples were taken from 3 plots per bedrock type by sampling distinguishable horizons until the C horizons were reached. Outcomes confirmed that both types of soil accumulate large amounts of carbon: 405.3±41.7 t/ha of calcareous bedrock soil and 226.0±5.6 t/ha of acidic bedrock soil respectively. In addition, extremely high carbon contents exceeding 90g carbon per

  18. Quantifying the role of forest soil and bedrock in the acid neutralization of surface water in steep hillslopes

    International Nuclear Information System (INIS)

    The role of soil and bedrock in acid neutralizing processes has been difficult to quantify because of hydrological and biogeochemical uncertainties. To quantify those roles, hydrochemical observations were conducted at two hydrologically well-defined, steep granitic hillslopes in the Tanakami Mountains of Japan. These paired hillslopes are similar except for their soils; Fudoji is leached of base cations (base saturation 30%), because the erosion rate is 100-1000 times greater. The results showed that (1) soil solution pH at the soil-bedrock interface at Fudoji (4.3) was significantly lower than that of Rachidani (5.5), (2) the hillslope discharge pH in both hillslopes was similar (6.7-6.8), and (3) at Fudoji, 60% of the base cations leaching from the hillslope were derived from bedrock, whereas only 20% were derived from bedrock in Rachidani. Further, previously published results showed that the stream pH could not be predicted from the acid deposition rate and soil base saturation status. These results demonstrate that bedrock plays an especially important role when the overlying soil has been leached of base cations. These results indicate that while the status of soil acidification is a first-order control on vulnerability to surface water acidification, in some cases such as at Fudoji, subsurface interaction with the bedrock determines the sensitivity of surface water to acidic deposition. - Bedrock plays a major role in neutralizing acid when overlying soils have been leached of base cations

  19. Preliminary Assessment of Water Levels in Bedrock Wells in New Hampshire, 1984 to 2007

    Science.gov (United States)

    Ayotte, Joseph D.; Kernen, Brandon M.; Wunsch, David R.; Argue, Denise M.; Bennett, Derek S.; Mack, Thomas J.

    2010-01-01

    Analysis of nearly 60,000 reported values of static water level (SWL, as depth below land surface) in bedrock wells in New Hampshire, aggregated on a yearly basis, showed an apparent deepening of SWL of about 13 ft (4 m) over the period 1984–2007. Water-level data were one-time measurements at each well and were analyzed, in part, to determine if they were suitable for analysis of trends in groundwater levels across the state. Other well characteristics, however, also have been changing over time, such as total well depth, casing length, the length of casing in bedrock, and to some extent, well yield. Analyses indicated that many of the well construction variables are significantly correlated; the apparent declines in water levels may have been caused by some of these factors. Information on changes in water use for the period was not available, although water use may be an important factor affecting water levels.

  20. Bedrock geologic map of the Uxbridge quadrangle, Worcester County, Massachusetts, and Providence County, Rhode Island

    Science.gov (United States)

    Walsh, Gregory J.

    2014-01-01

    The bedrock geology of the 7.5-minute Uxbridge quadrangle consists of Neoproterozoic metamorphic and igneous rocks of the Avalon zone. In this area, rocks of the Avalon zone lie within the core of the Milford antiform, south and east of the terrane-bounding Bloody Bluff fault zone. Permian pegmatite dikes and quartz veins occur throughout the quadrangle. The oldest metasedimentary rocks include the Blackstone Group, which represents a Neoproterozoic peri-Gondwanan marginal shelf sequence. The metasedimentary rocks are intruded by Neoproterozoic arc-related plutonic rocks of the Rhode Island batholith. This report presents mapping by G.J. Walsh. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are available only as downloadable files (see frame at right). The GIS database is available for download in ESRI™ shapefile and Google Earth™ formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, geochemical data, and photographs.

  1. Integrated Characterization of DNAPL Source Zone Architecture in Clay Till and Limestone Bedrock

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Janniche, Gry Sander; Fjordbøge, Annika Sidelmann;

    2014-01-01

    . The activities of a distribution facility for perchloroethene (PCE) and trichloroethene (TCE) at the Naverland site near Copenhagen, Denmark, has resulted in PCE and TCE DNAPL impacts to a fractured clay till and an underlying fractured limestone aquifer/bedrock. The scope of the investigations was to evaluate...... innovative investigation methods and characterize the source zone hydrogeology and contamination to obtain an improved conceptual understanding of DNAPL source zone architecture in clay till and bryozoan limestone bedrock. Approach/Activities. A wide range of innovative and current site investigative tools...... the conceptual understanding of transport and distribution of DNAPL in the fill and clayey till and the interface to the limestone. Core loss in the limestone, particulary from soft zones in contact with flint beds, was caused by the water flush applied during drilling and likely also resulted in loss of DNAPL...

  2. Heterogeneous bedrock investigation for a closed-loop geothermal system: A case study

    OpenAIRE

    Radioti, Georgia; Delvoie, Simon; Charlier, Robert; Dumont, Gaël; Nguyen, Frédéric

    2016-01-01

    This paper investigates bedrock heterogeneity by applying three different geophysical approaches, in order to study the long-term behaviour and the interaction between closed-loop geothermal systems. The investigated site consists of four boreholes equipped with geothermal pipes on the campus of University of Liege, Belgium. The first approach includes acoustic borehole imaging, gamma-ray logging and cuttings observation and results to a detailed fracture characterisation, rock identification...

  3. The tensile capacity of steel pipe piles drilled into the bedrock

    OpenAIRE

    Sirén, Rosa

    2015-01-01

    This Master’s thesis focuses on drilled pipe piles and their ability to transfer tensile forces. The tensile forces affecting pile foundations are usually transferred to the bedrock by rock anchors. If drilled pipe piles could transfer some of these tension forces, foundation work would be faster, easier and more cost-effective. This thesis is a continuation of a study published in 2014, which also investigated the tensile capacity of drilled pipe piles. This thesis consists of two main ...

  4. Special bedrock buried hill and the reservoiring process in Qijia-Yitong basin in northeastern China

    Institute of Scientific and Technical Information of China (English)

    Zhenlin CHEN; Hongfu YIN; Hongbo MIAO; Yuchao QIU; Yu ZOU

    2011-01-01

    The bedrock buried hill is a mountainous peak formed by the arching up of the basement rocks in a sedimentary basin.The mountainous peak could be the ancient buried hill,known as buried-hill drape structure,present before the formation of sedimentary cover.In contrast,the late-formed buried hill comes into being after the deposition of the sedimentary cover due to the fold,fracture,volcanic eruption and other tectonic events in later stages.No matter what type of buried-hills,the reservoiring is comparable,with the dissolved pores formed by weathering and leaching of bedrocks as the reservoir,and the overlying sedimentary rocks as the source rocks and cover rocks.These are known as ancient reservoir but newbom sources.We present here,however,a different situation of the buried hill in Yitong basin in northeastern China.The bedrock in Yitong basin is the Yanshanian granite,which occurs as a sill underlain by Paleozoic marine strata of low electric resistivity.A rightlateral strike-slip extrusion of Yitong basin in Himalayan period leads to the diapiric ascent of the Lower Paleozoic argillite,which in turn causes the arching up of the granite bedrock to form the buried hill.It is concluded,on the basis of drill No.Chang 37,that the natural gas is sourced from Carboniferous-Permian argillite,and reservoirs in the cracks developed beneath 300m of the granite sill,with the upper part of granite as the cover.

  5. Numerical modelling of permafrost in bedrock in northern Fennoscandia during the Holocene

    Science.gov (United States)

    Kukkonen, I. T.; Šafanda, J.

    2001-06-01

    The occurrence of permafrost in bedrock in northern Fennoscandia and its dependence on past and presently ongoing climatic variations was investigated with one- (1D) and two-dimensional (2D) numerical models by solving the transient heat conduction equation with latent heat effects included. The study area is characterized by discontinuous permafrost occurrences such as palsa mires and local mountain permafrost. The ground temperature changes during the Holocene were constructed using climatic proxy data. This variation was used as a forcing function at the ground surface in the calculations. Several versions of the present ground temperature were applied, resulting in different subsurface freezing-thawing conditions in the past depending on the assumed porosity and geothermal conditions. Our results suggest that in high altitude areas with a cold climate (present mean annual ground temperature between 0°C and -3°C), there may have been considerable variations in permafrost thickness (ranging from 0 to 150 m), as well as periods of no permafrost at all. The higher is the porosity of bedrock filled with ice, the stronger is the retarding effect of permafrost against climatic variations. Two-dimensional models including topographic effects with altitude-dependent ground temperatures and slope orientation and inclination dependent solar radiation were applied to a case of mountain permafrost in Ylläs, western Finnish Lapland, where bedrock permafrost is known to occur in boreholes to a depth of about 60 m. Modelling suggests complicated changes in permafrost thickness with time as well as contrasting situations on southern and northern slopes of the mountain. Extrapolating the climatic warming of the last 200 years to the end of the next century when the anticipated increase in the annual average air temperature is expected to be about 2 K indicates that the permafrost occurrences in bedrock in northern Fennoscandia would be thawing rapidly in low

  6. Baseline geochemistry of soil and bedrock Tshirege Member of the Bandelier Tuff at MDA-P

    Energy Technology Data Exchange (ETDEWEB)

    Warren, R.G.; McDonald, E.V.; Ryti, R.T.

    1997-08-01

    This report provides baseline geochemistry for soils (including fill), and for bedrock within three specific areas that are planned for use in the remediation of Material Disposal Area P (MDA-P) at Technical Area 16 (TA-16). The baseline chemistry includes leachable element concentrations for both soils and bedrock and total element concentrations for all soil samples and for two selected bedrock samples. MDA-P operated from the early 1950s to 1984 as a landfill for rubble and debris generated by the burning of high explosives (HE) at the TA-16 Burning Ground, HE-contaminated equipment and material, barium nitrate sand, building materials, and trash. The aim of this report is to establish causes for recognizable chemical differences between the background and baseline data sets. In many cases, the authors conclude that recognizable differences represent natural enrichments. In other cases, differences are best attributed to analytical problems. But most importantly, the comparison of background and baseline geochemistry demonstrates significant contamination for several elements not only at the two remedial sites near the TA-16 Burning Ground, but also within the entire region of the background study. This contamination is highly localized very near to the surface in soil and fill, and probably also in bedrock; consequently, upper tolerance limits (UTLs) calculated as upper 95% confidence limits of the 95th percentile are of little value and thus are not provided. This report instead provides basic statistical summaries and graphical comparisons for background and baseline samples to guide strategies for remediation of the three sites to be used in the restoration of MDA-P.

  7. Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain)

    OpenAIRE

    Raposo, J. R.; Molinero, J.; Dafonte, J.

    2012-01-01

    Quantification of groundwater recharge in crystalline rocks presents great difficulties due to high heterogeneity. Traditionally these rocks have been considered with very low permeability, and their groundwater resources have been usually neglected, although they can have local importance when the bedrock presents a net of fractures well developed. Current European Water Framework Directive requires an efficient management of all groundwater resources, which begins with a proper knowledge of...

  8. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding

    Science.gov (United States)

    Emberson, Robert; Hovius, Niels; Galy, Albert; Marc, Odin

    2016-01-01

    A link between chemical weathering and physical erosion exists at the catchment scale over a wide range of erosion rates. However, in mountain environments, where erosion rates are highest, weathering may be kinetically limited and therefore decoupled from erosion. In active mountain belts, erosion is driven by bedrock landsliding at rates that depend strongly on the occurrence of extreme rainfall or seismicity. Although landslides affect only a small proportion of the landscape, bedrock landsliding can promote the collection and slow percolation of surface runoff in highly fragmented rock debris and create favourable conditions for weathering. Here we show from analysis of surface water chemistry in the Southern Alps of New Zealand that weathering in bedrock landslides controls the variability in solute load of these mountain rivers. We find that systematic patterns in surface water chemistry are strongly associated with landslide occurrence at scales from a single hillslope to an entire mountain belt, and that landslides boost weathering rates and river solute loads over decades. We conclude that landslides couple erosion and weathering in fast-eroding uplands and, thus, mountain weathering is a stochastic process that is sensitive to climatic and tectonic controls on mass wasting processes.

  9. Beneath it all: bedrock geology of the Catskill Mountains and implications of its weathering.

    Science.gov (United States)

    Ver Straeten, Charles A

    2013-09-01

    The Devonian-age bedrock of the Catskill Mountains has been the focus of many studies. This paper reviews the character and composition of the rocks of the Catskills, and examines weathering (rock decay) processes and their implications in the Catskills. Rocks of the Catskills and closest foothills consist of siliciclastic rocks (sandstones, mudrocks, conglomerates) with minimal, locally dispersed carbonate rocks. The former are dominated by quartz, metamorphic and sedimentary rock fragments, and clay minerals. Other minor sediment components include cements, authigenic and heavy minerals, and fossil organic matter. Physical, chemical, and biological weathering of the Catskill bedrock since uplift of the Appalachian region, combined with glaciation, have dissected a plateau of nearly horizontally layered rocks into a series of ridges, valleys, and peaks. The varied weathering processes, in conjunction with many factors (natural and anthropogenic), fragment the rocks, forming sediment and releasing various elements and compounds. These may have positive, neutral, or negative implications for the region's soils, waters, ecology, and human usage. A new generation of studies and analyses of the Catskill bedrock is needed to help answer a broad set of questions and problems across various fields of interest.

  10. Beneath it all: bedrock geology of the Catskill Mountains and implications of its weathering.

    Science.gov (United States)

    Ver Straeten, Charles A

    2013-09-01

    The Devonian-age bedrock of the Catskill Mountains has been the focus of many studies. This paper reviews the character and composition of the rocks of the Catskills, and examines weathering (rock decay) processes and their implications in the Catskills. Rocks of the Catskills and closest foothills consist of siliciclastic rocks (sandstones, mudrocks, conglomerates) with minimal, locally dispersed carbonate rocks. The former are dominated by quartz, metamorphic and sedimentary rock fragments, and clay minerals. Other minor sediment components include cements, authigenic and heavy minerals, and fossil organic matter. Physical, chemical, and biological weathering of the Catskill bedrock since uplift of the Appalachian region, combined with glaciation, have dissected a plateau of nearly horizontally layered rocks into a series of ridges, valleys, and peaks. The varied weathering processes, in conjunction with many factors (natural and anthropogenic), fragment the rocks, forming sediment and releasing various elements and compounds. These may have positive, neutral, or negative implications for the region's soils, waters, ecology, and human usage. A new generation of studies and analyses of the Catskill bedrock is needed to help answer a broad set of questions and problems across various fields of interest. PMID:23895551

  11. Chemical weathering as a mechanism for the climatic control of bedrock river incision.

    Science.gov (United States)

    Murphy, Brendan P; Johnson, Joel P L; Gasparini, Nicole M; Sklar, Leonard S

    2016-04-14

    Feedbacks between climate, erosion and tectonics influence the rates of chemical weathering reactions, which can consume atmospheric CO2 and modulate global climate. However, quantitative predictions for the coupling of these feedbacks are limited because the specific mechanisms by which climate controls erosion are poorly understood. Here we show that climate-dependent chemical weathering controls the erodibility of bedrock-floored rivers across a rainfall gradient on the Big Island of Hawai'i. Field data demonstrate that the physical strength of bedrock in streambeds varies with the degree of chemical weathering, which increases systematically with local rainfall rate. We find that incorporating the quantified relationships between local rainfall and erodibility into a commonly used river incision model is necessary to predict the rates and patterns of downcutting of these rivers. In contrast to using only precipitation-dependent river discharge to explain the climatic control of bedrock river incision, the mechanism of chemical weathering can explain strong coupling between local climate and river incision.

  12. Surface undulations of Antarctic ice streams tightly controlled by bedrock topography

    Directory of Open Access Journals (Sweden)

    J. De Rydt

    2012-10-01

    Full Text Available Full Stokes models predict that fast-flowing ice streams transmit information about their bedrock topography most efficiently to the surface for basal undulations with length scales between 1 and 20 times the mean ice thickness. This typical behaviour is independent on the precise values of the flow law and sliding law exponents, and should be universally observable. However, no experimental evidence for this important theoretical prediction has been obtained so far, hence ignoring an important test for the physical validity of current-day ice flow models. In our work we use recently acquired airborne radar data for the Rutford Ice Stream and Evans Ice Stream, and we show that the surface response of fast-flowing ice is highly sensitive to bedrock irregularities with wavelengths of several ice thicknesses. The sensitivity depends on the slip ratio, i.e. the ratio between mean basal sliding velocity and mean deformational velocity. We find that higher values of the slip ratio generally lead to a more efficient transfer, whereas the transfer is significantly dampened for ice that attains most of its surface velocity by creep. Our findings underline the importance of bedrock topography for ice stream dynamics on spatial scales up to 20 times the mean ice thickness. Our results also suggest that local variations in the flow regime and surface topography at this spatial scale cannot be explained by variations in basal slipperiness.

  13. Stochastic Seismic Response of an Algiers Site with Random Depth to Bedrock

    International Nuclear Information System (INIS)

    Among the important effects of the Boumerdes earthquake (Algeria, May 21st 2003) was that, within the same zone, the destructions in certain parts were more important than in others. This phenomenon is due to site effects which alter the characteristics of seismic motions and cause concentration of damage during earthquakes. Local site effects such as thickness and mechanical properties of soil layers have important effects on the surface ground motions.This paper deals with the effect of the randomness aspect of the depth to bedrock (soil layers heights) which is assumed to be a random variable with lognormal distribution. This distribution is suitable for strictly non-negative random variables with large values of the coefficient of variation. In this case, Monte Carlo simulations are combined with the stiffness matrix method, used herein as a deterministic method, for evaluating the effect of the depth to bedrock uncertainty on the seismic response of a multilayered soil. This study considers a P and SV wave propagation pattern using input accelerations collected at Keddara station, located at 20 km from the epicenter, as it is located directly on the bedrock.A parametric study is conducted do derive the stochastic behavior of the peak ground acceleration and its response spectrum, the transfer function and the amplification factors. It is found that the soil height heterogeneity causes a widening of the frequency content and an increase in the fundamental frequency of the soil profile, indicating that the resonance phenomenon concerns a larger number of structures.

  14. Stochastic Seismic Response of an Algiers Site with Random Depth to Bedrock

    Science.gov (United States)

    Badaoui, M.; Berrah, M. K.; Mébarki, A.

    2010-05-01

    Among the important effects of the Boumerdes earthquake (Algeria, May 21st 2003) was that, within the same zone, the destructions in certain parts were more important than in others. This phenomenon is due to site effects which alter the characteristics of seismic motions and cause concentration of damage during earthquakes. Local site effects such as thickness and mechanical properties of soil layers have important effects on the surface ground motions. This paper deals with the effect of the randomness aspect of the depth to bedrock (soil layers heights) which is assumed to be a random variable with lognormal distribution. This distribution is suitable for strictly non-negative random variables with large values of the coefficient of variation. In this case, Monte Carlo simulations are combined with the stiffness matrix method, used herein as a deterministic method, for evaluating the effect of the depth to bedrock uncertainty on the seismic response of a multilayered soil. This study considers a P and SV wave propagation pattern using input accelerations collected at Keddara station, located at 20 km from the epicenter, as it is located directly on the bedrock. A parametric study is conducted do derive the stochastic behavior of the peak ground acceleration and its response spectrum, the transfer function and the amplification factors. It is found that the soil height heterogeneity causes a widening of the frequency content and an increase in the fundamental frequency of the soil profile, indicating that the resonance phenomenon concerns a larger number of structures.

  15. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    Science.gov (United States)

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater and other geophysical properties in 10 bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. The wells selected for the study were deep (five ranging from 375 to 900 feet and five deeper than 900 feet) and 6 had low water yields, which correspond to low groundwater flow from fractures. This combination of depth and low water yield reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study are privately owned, and permission to use the wells was obtained from landowners before geophysical logs were acquired for this study. National Institute of Standards and Technology thermistor readings were used to adjust the factory calibrated geophysical log data. A geometric correction to the gradient measurements was also necessary due to borehole deviation from vertical.

  16. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. PMID:27432726

  17. Geology, Bedrock, Bedrock geologic map compilation of the west half of the Asheville 1:100,000 scale map., Published in 2006, 1:100000 (1in=8333ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Field Survey/GPS information as of 2006. It is described...

  18. Geology, Bedrock, Bedrock Geology of the Rolesville 7.5-minute Quadrangle, Published in 2001, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2001. It is described as...

  19. Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition: Implications for land building using engineered diversions

    Science.gov (United States)

    Viparelli, Enrica; Nittrouer, Jeffrey A.; Parker, Gary

    2015-03-01

    The lowermost Mississippi River, defined herein as the river segment downstream of the Old River Control Structure and hydrodynamically influenced by the Gulf of Mexico, extends for approximately 500 km. This segment includes a bedrock (or more precisely, mixed bedrock-alluvial) reach that is bounded by an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition. Here we present a one-dimensional mathematical formulation for the long-term evolution of lowland rivers that is able to reproduce the morphodynamics of both the alluvial-bedrock and the bedrock-alluvial transitions. Model results show that the magnitude of the alluvial equilibrium bed slope relative to the bedrock surface slope and the depth of bedrock surface relative to the water surface base level strongly influence the mobile bed equilibrium of low-sloping river channels. Using data from the lowermost Mississippi River, the model is zeroed and validated at field scale by comparing the numerical results with field measurements. The model is then applied to predict the influence on the stability of channel bed elevation in response to delta restoration projects. In particular, the response of the river bed to the implementation of two examples of land-building diversions to extract water and sediment from the main channel is studied. In this regard, our model results show that engineered land-building diversions along the lowermost Mississippi River are capable of producing equilibrated bed profiles with only modest shoaling or erosion, and therefore, such diversions are a sustainable strategy for mitigating land loss within the Mississippi River Delta.

  20. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    International Nuclear Information System (INIS)

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10-6 m2/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10-11 m2/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Kivetty is classified as fresh water and the

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Bedrock Geology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the area of bedrock geology types in square meters compiled for every catchment of MRB_E2RF1 catchments for Major River Basins...

  2. Cable-suspended Ice and Bedrock Electromechanical Drill: Design and Tests

    Science.gov (United States)

    Wang, Rusheng; Talalay, Pavel; Sun, Youhong; Zheng, Zhichuan; Cao, Pinlu; Zhang, Nan; Chen, Chen; Xu, Huiwen; Xue, Hong; Xue, Jun; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Gong, Da; Liu, Chunpeng; Han, Junjie; Yu, Chengfeng; Hong, Jialing; Wang, Lili

    2014-05-01

    Directly obtaining the subglacial bedrock samples is one of the most important tasks of Antarctic exploration in the future, which has great significance to research the formation and evolution of the Antarctic ice sheet, research the environment at the junction of the ice and bedrock, and research the geologic structure in Polar Regions. To drill through ice and bedrock, a new modified version of the cable-suspended Ice and Bedrock Electromechanical Drill 'IBED' is designed. IBED drill has modulus construction. The upper part includes four sections: cable termination, slip rings section, antitorque system, electronic pressure chamber. The motor-gear system is differed by rotation speed of the output shaft of the gear-reducer. All modulus contain 3 kW AC3 × 380 V submersible motor. Gear-reducer for drilling in ice lowers the drill bit rotation speed to 100 rpm; gear reducer for subglacial drilling lowers the drill bit rotation speed to 500 rpm. In addition, module for dry core drilling contains vacuum pump for near bottom air reverse circulation instead of liquid-driven pump that is installed into other two variants. The rotation speed of air-driven pump is increased by the gear to 6000 rpm. In modules for drilling with liquid the gear pump is used with capacity of 38-41 L/min and maximal pressure of 0.2 MPa. IBED lower part for drilling in ice consists from two parts: chip chamber for filtration of drilling fluid and collecting chips, and core barrel with the drill bit. The outer/inner diameter of the ice core drill bit is 134/110 mm. Length of the core barrel is 2.5 m. Lower part of the bedrock drill is adapted for coring bedrock and contains standard 2-m length core barrel borrowed from conventional diamond drill string, chip chamber for gravity separation of rock cuttings and dead weights (appr. 200 kg) for increasing of the load on the diamond drill bit. The outer/inner diameters of the diamond bit are 59/41 mm. The IBED drill was tested in order to solve

  3. Bedrock temperature as a potential method for monitoring change in crustal stress: Theory, in situ measurement, and a case history

    Science.gov (United States)

    Chen, Shunyun; Liu, Peixun; Liu, Liqiang; Ma, Jin

    2016-06-01

    Experimental studies have confirmed that temperature is notably affected by rock deformation; therefore, change in crustal stress should be indicated by measurable changes in bedrock temperature. In this work, we investigated the possibility that the bedrock temperature might be used to explore the state of crustal stress. In situ measurement of bedrock temperature at three stations from 2011 to 2013 was used as the basis for the theoretical analysis of this approach. We began with theoretical analyses of temperature response to change in crustal stress, and of the effect of heat conduction. This allowed distinction between temperature changes produced by crustal stress (stress temperature) from temperature changes caused by conduction from the land surface (conduction temperature). Stress temperature has two properties (synchronous response and a high-frequency feature) that allow it to be distinguished from conduction temperature. The in situ measurements confirmed that apparently synchronous changes in the stress temperature of the bedrock occur and that there exist obvious short-term components of the in situ bedrock temperature, which agrees with theory. On 20 April 2013, an earthquake occurred 95 km away from the stations, fortuitously providing a case study by which to verify our method for obtaining the state of crustal stress using temperature. The results indicated that the level of local or regional seismic activity, representing the level of stress adjustment, largely accords with the stress temperature. This means that the bedrock temperature is a tool that might be applied to understand the state of stress during seismogenic tectonics. Therefore, it is possible to record changes in the state of crustal stress in a typical tectonic position by long-term observation of bedrock temperature. Hereby, the measurement of bedrock temperature has become a new tool for gaining insight into changes in the status of shallow crustal stress.

  4. Quantitative extraction of bedrock exposed rate based on unmanned aerial vehicle data and TM image in Karst Environment

    Science.gov (United States)

    wang, hongyan; li, qiangzi; du, xin; zhao, longcai

    2016-04-01

    In the karst regions of Southwest China, rocky desertification is one of the most serious problems of land degradation. The bedrock exposed rate is one of the important indexes to assess the degree of rocky desertification in the karst regions. Because of the inherent merits of macro scale, frequency, efficiency and synthesis, remote sensing is the promising method to monitor and assess karst rocky desertification on large scale. However, the actual measurement of bedrock exposed rate is difficult and existing remote sensing methods cannot directly be exploited to extract the bedrock exposed rate owing to the high complexity and heterogeneity of karst environments. Therefore, based on the UAV and TM data, the paper selected Xingren County as the research area, and the quantitative extraction of the bedrock exposed rate based on the multi scale remote sensing data was developed. Firstly, we used the object oriented method to carry out the accurate classification of UAV image and based on the results of rock extraction, the bedrock exposed rate was calculated in the 30m grid scale. Parts of the calculated samples were as training data and another samples were as the model validation data. Secondly, in each grid the band reflectivity of TM data was extracted and we also calculated a variety of rock index and vegetation index (NDVI, SAVI etc.). Finally, the network model was established to extract the bedrock exposed rate, the correlation coefficient (R) of the network model was 0.855 and the correlation coefficient (R) of the validation model was 0.677, the root mean square error (RMSE) was 0.073. Based on the quantitative inversion model, the distribution map of the bedrock exposed rate in Xingren County was obtained. Keywords: Bedrock exposed rate, quantitative extraction, UAV and TM data, Karst rocky desertification.

  5. Initial yield to depth relation for water wells drilled into crystalline bedrock - Pinardville quadrangle, New Hampshire

    Science.gov (United States)

    Drew, L.J.; Schuenemeyer, J.H.; Amstrong, T.R.; Sutphin, D.M.

    2001-01-01

    A model is proposed to explain the statistical relations between the mean initial water well yields from eight time increments from 1984 to 1998 for wells drilled into the crystalline bedrock aquifer system in the Pinardville area of southern New Hampshire and the type of bedrock, mean well depth, and mean well elevation. Statistical analyses show that the mean total yield of drilling increments is positively correlated with mean total well depth and mean well elevation. In addition, the mean total well yield varies with rock type from a minimum of 46.9 L/min (12.4 gpm) in the Damon Pond granite to a maximum of 74.5 L/min (19.7 gpm) in the Permian pegmatite and granite unit. Across the eight drilling increments that comprise 211 wells each, the percentages of very low-yield wells (1.9 L/min [0.5 gpm] or less) and high-yield wells (151.4 L/min [40 gpm] or more) increased, and those of intermediate-yield wells decreased. As housing development progressed during the 1984 to 1998 interval, the mean depth of the wells and their elevations increased, and the mix of percentages of the bedrock types drilled changed markedly. The proposed model uses a feed-forward mechanism to explain the interaction between the increasing mean elevation, mean well depth, and percentages of very low-yielding wells and the mean well yield. The increasing percentages of very low-yielding wells through time and the economics of the housing market may control the system that forces the mean well depths, percentages of high-yield wells, and mean well yields to increase. The reason for the increasing percentages of very low-yield wells is uncertain, but the explanation is believed to involve the complex structural geology and tectonic history of the Pinardville quadrangle.

  6. Plucking in Mixed Alluvial-Bedrock Rivers: The Incipient Motion Problem

    Science.gov (United States)

    Hurst, A. A.; Furbish, D. J.

    2015-12-01

    Bedrock river channel erosion is an important factor in the evolution of landscapes, driving the relief of mountainous drainage basins and setting the lowest erosional positions of terrestrial landscapes. The mechanics behind erosional processes (predominantly plucking and abrasion) in these rivers are only recently being explored in depth. Plucking, the fracture and extraction of jointed blocks, is observationally an order of magnitude more efficient than abrasion, but if a river cannot provide the force necessary to move the plucked block, erosion by plucking cannot proceed. Therefore, incipient motion of blocks starting at rest on a solid surface is an important factor in erosion by plucking. Calculations of forces necessary for incipient motion require values of drag coefficients, which do not exist for bedrock contact geometry. We discovered from experiments on a flume that drag coefficients (CD) are inversely proportional to aspect ratios (RA), defined as the frontal block height to width. We used the relationship with field data from plucked blocks at a stream at Montgomery Bell State Park in Burns, TN, a mixed-alluvial bedrock channel with an actively incising knick zone, to support our theory and experimental data. Sizes of plucked blocks were compared to the velocities needed to move them, and then calculations done for bankfull velocities at the stream at Montgomery Bell to determine if it could attain these velocities. It was discovered that this stream has a bankfull depth-averaged velocity of 1.26 m s-1 and is capable of moving a large range of plucked block sizes. Therefore, erosion of this particular stream is plucking-limited, not transport-limited.

  7. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river

    Science.gov (United States)

    Konsoer, Kory M.; Rhoads, Bruce L.; Langendoen, Eddy J.; Best, James L.; Ursic, Mick E.; Abad, Jorge D.; Garcia, Marcelo H.

    2016-01-01

    Spatial heterogeneity in the erosion-resistance properties of the channel banks and floodplains associated with sediment characteristics, vegetation, or bedrock can have a substantial influence on the morphodynamics of meandering rivers, resulting in highly variable rates of bank erosion and complex patterns of planform evolution. Although past studies have examined the spatial variability in bank erodibility within small rivers, this aspect of the erosion-resistance properties for large rivers remains poorly understood. Furthermore, with the exception of recent numerical modeling that incorporates stochastic variability of floodplain erosional resistance, most models of meandering river dynamics have assumed uniform erodibility of the bank and floodplain materials. The present paper investigates the lateral and vertical heterogeneity in bank material properties and riparian vegetation within two elongate meander loops on a large mixed bedrock-alluvial river using several geotechnical field and laboratory methods. Additionally, the bank stability and toe-erosion numerical model (BSTEM) and repeat terrestrial LiDAR surveys are used to evaluate the capacity of the bank material properties to modify the rates and mechanisms of bank retreat. Results show that the textural properties of the bank materials, soil cohesion, and critical shear stress necessary for sediment entrainment differ substantially between the two bends and are also highly variable within each bend - laterally and vertically. Trees growing along the banks increase the resistance to erosion by contributing to the shear strength of the bank materials and are capable of increasing bank stability along a large river. Locally outcropping bedrock also influences bank erodibility in both bends. The results of this study demonstrate that spatial variability in the erosion-resistance properties of the channel banks is an important factor contributing to spatial variability in the rates and mechanisms of bank

  8. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland

    Directory of Open Access Journals (Sweden)

    Elina eSohlberg

    2015-06-01

    Full Text Available The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 m to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.

  9. Bedrock gorges in the central mainland Kachchh: Implications for landscape evolution

    Indian Academy of Sciences (India)

    M G Thakkar; B Goyal; A K Patidar; D M Maurya; L S Chamyal

    2006-04-01

    Kachchh possesses a fault-controlled first-order topography and several geomorphic features indicative of active tectonics.Though coseismic neotectonic activity is believed to be the major factor in the evolution of the landscape,detailed documentation and analysis of vital landscape features like drainage characteristics,bedrock gorges and terraces are lacking.The present study is a site-speci fic documentation of gorges developed in the central part of the mainland Kachchh.We analyzed and interpreted four gorges occurring on either side of Katrol Hill Fault (KHF).The Khari river gorge is endowed with six levels of bedrock terraces,some of which are studded with large potholes and flutings.Since no active development of potholes is observed along the rivers in the present day hyper-arid conditions,we infer an obvious linkage of gorges to the humid phases,which provided high energy runoff for the formation of gorges and distinct bedrock terraces and associated erosional features.Development of gorges within the miliolites and incision in the fluvial deposits to the south of the KHF indicates that the gorges were formed during Early Holocene.However,ubi-quitous occurrence of gorges along the streams to the south of KHF,the uniformly N40°E trend of the gorges,their close association with transverse faults and the short length of the exceptionally well developed Khari river gorge in the low-relief rocky plain to the north of KHF suggests an important role of neotectonic movements.

  10. Bedrock geologic map of the Worcester South quadrangle, Worcester County, Massachusetts

    Science.gov (United States)

    Walsh, Gregory J.; Merschat, Arthur J.

    2015-09-29

    The bedrock geology of the 7.5-minute Worcester South quadrangle, Massachusetts, consists of deformed Neoproterozoic to Paleozoic crystalline metamorphic and intrusive igneous rocks in three fault-bounded terranes (zones), including the Avalon, Nashoba, and Merrimack zones (Zen and others, 1983). This quadrangle spans the easternmost occurrence of Ganderian margin arc-related rocks (Nashoba zone) in the southern New England part of the northern Appalachians, and coincides with the trailing edge of Ganderia (Merrimack and Nashoba zones) where it structurally overlies Avalonia (Hibbard and others, 2006; Pollock and others, 2012; van Staal and others, 2009, 2012).

  11. Applicability of reflection seismic measurements in detailed characterization of crystalline bedrock

    International Nuclear Information System (INIS)

    Posiva carried out a seismic survey in the access tunnel of the underground research facility ONKALO in 2009. The survey contributes the detailed characterization of the bedrock in the final disposal of spent nuclear fuel. The aim of this work was to examine the geophysical and geological properties of the chosen tunnel intersections to clarify the important characteristics for reflection generation, and evaluate applicability of this survey for characterization of crystalline bedrock. The seismic result consists of 24 projected amplitude images in 12 different angles. The size of an image is 260*300 m. The amount of digitized reflectors is over 100 and all of them could not be included in this work. The study was limited to 14 intersections that were considered important: brittle fault intersections, tunnel-crosscutting fractures, or lithological contacts. Presence of a brittle fault zone or a tunnel-crosscutting fracture limits the suitable bedrock volume for depositing the nuclear fuel canisters, and wide lithological contacts are a common source of reflection. The seismic data was compared to the existing geological, hydrogeological and geophysical data got from the pilot holes and the tunnel. The most important characteristics were fractures: orientation, fillings, and thickness of the fillings, alteration and water leakage. Geophysically interesting was density, seismic velocities and their products: acoustic impedance and synthetic seismograms. Calculated acoustic impedances showed some differences between cases, but they did not indicate the presence of a reflector. The most common cause of reflector was undulating slickensided, highly altered, tunnel-crosscutting fracture that had thick fracture-fillings and water present. Water was included five times in interpreted reflectors. Also few reflectors were connected to varying mineralogy. Few problematic cases occurred, where a geological feature and a reflection did not correlate, and three of the cases with

  12. Quality of water from bedrock aquifers in the South Carolina Piedmont

    Science.gov (United States)

    Patterson, G.G.; Padgett, G.C.

    1984-01-01

    The geographic distributions of 12 common water-quality parameters of ground water from bedrock aquifers in the Piedmont physiographic province of South Carolina are presented in a series of maps. The maps are based on analyses by the South Carolina Department of Health and Environmental Control of water samples taken during the period 1972 to 1982 from 442 public and private wells developed in the Piedmont. In general, alkalinity, hardness, and concentrations of sodium, magnesium, and chloride were higher in the Carolina Slate Belt than they were in the other geologic belts of the Piedmont. (USGS)

  13. Microbes in crystalline bedrock. Assimilation of CO2 and introduced organic compounds by bacterial populations in groundwater from deep crystalline bedrock at Laxemar and Stripa

    International Nuclear Information System (INIS)

    The assimilation of CO2 and of introduced organic compounds by bacterial populations in deep groundwater from fractured crystalline bedrock has been studied. Three depth horizons of the subvertical boreholes KLZ01 at Laxemar in southeastern Sweden, 830-841 m, 910-921 m and 999-1078 m, and V2 in the Stripa mine, 799-807m 812-820 m and 970-1240 m were sampled. The salinity profile of the KLX01 borehole is homogeneous and the groundwater had the following physico-chemical characteristics: pH values of 8.2, 8.4 and 8.5; Eh values of 270, no data and -220 mV; sulphide: 2.3, 11.0 and 5.6 μM; CO32-: 104, 98 and 190 μM; CH4: 26, 27 and 31 μl/l and N2: 47, 25 and 18 ml/l, respectively. The groundwater in V2 in Stripa were obtained from fracture systems without close hydraulic connections and had the following physico-chemical characteristics: pH values of 9.5, 9.4 and 10.2; Eh values of +205, +199 and -3 mV; sulphide: 0, 106 and 233 μM; CO32-: 50, 57 and 158 μM; CH4: 245, 170 and 290 μl/l and N2: 25, 31 and 25 ml/l, respectively. Biofilm reactors with hydrophilic glass surfaces were connected to the flowing groundwaters from each of the 3 depths with flow rates of approximately 3x10-3 m sec-1 over 19 days in Laxemar and 27 to 161 days in Stripa. There were between 0.15 to 0.68 x 105 unattached bacteria ml-1 groundwater and 0.94 to 1.2 x 105 attached bacteria cm-2 on the surface in Laxemar and from 1.6 x 103 up to 3.2 x 105 bacteria ml-1 groundwater and from 2.4 x 105 up to 1.1 x 107 bacteria cm-2 of colonized test surfaces in Stripa. Assuming a mean channel width of 0.1 mm, our results imply that there would be from 103 up to 106 more attached than unattached bacteria in a water conducting channel in crystalline bedrock. (54 refs., 23 figs., 10 tabs.) (au)

  14. TORSIONAL VIBRATIONS OF A RIGID CIRCULAR PLATE ON SATURATED STRATUM OVERLAYING BEDROCK

    Institute of Scientific and Technical Information of China (English)

    CaiYuanqiang; WuDazhi; XuChangjie

    2005-01-01

    The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved by employing the technology of Hankel transform. By taking into account the boundary conditions, the dual integral equations of torsional vibration of a rigid circular plate are established, which are further converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficients of the foundation on saturated stratum, the contact shear stress under the foundation and the angular amplitude of the foundation are evaluated. Numerical results indicate that, when the dimensionless height is bigger than 5, saturated stratum overlaying bedrock can be treated as saturated half space approximately. When the dimensionless frequency is low, the permeability of the soil must be taken into account. Furthermore, when the vibration frequency is a constant, the height of the saturated stratum has a slight effect on the dimensionless contact shear stress under the foundation.

  15. Sediment transport through self-adjusting, bedrock-walled waterfall plunge pools

    Science.gov (United States)

    Scheingross, Joel S.; Lamb, Michael P.

    2016-05-01

    Many waterfalls have deep plunge pools that are often partially or fully filled with sediment. Sediment fill may control plunge-pool bedrock erosion rates, partially determine habitat availability for aquatic organisms, and affect sediment routing and debris flow initiation. Currently, there exists no mechanistic model to describe sediment transport through waterfall plunge pools. Here we develop an analytical model to predict steady-state plunge-pool depth and sediment-transport capacity by combining existing jet theory with sediment transport mechanics. Our model predicts plunge-pool sediment-transport capacity increases with increasing river discharge, flow velocity, and waterfall drop height and decreases with increasing plunge-pool depth, radius, and grain size. We tested the model using flume experiments under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. The model and experiments show that through morphodynamic feedbacks, plunge pools aggrade to reach shallower equilibrium pool depths in response to increases in imposed sediment supply. Our theory for steady-state pool depth matches the experiments with an R2 value of 0.8, with discrepancies likely due to model simplifications of the hydraulics and sediment transport. Analysis of 75 waterfalls suggests that the water depths in natural plunge pools are strongly influenced by upstream sediment supply, and our model provides a mass-conserving framework to predict sediment and water storage in waterfall plunge pools for sediment routing, habitat assessment, and bedrock erosion modeling.

  16. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2015-01-01

    Full Text Available Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp. dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp. below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems.

  17. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    Science.gov (United States)

    Bomberg, Malin; Nyyssönen, Mari; Pitkänen, Petteri; Lehtinen, Anne; Itävaara, Merja

    2015-01-01

    Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems. PMID:26425566

  18. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock.

    Science.gov (United States)

    Garrido Schneider, Eduardo A; García-Gil, Alejandro; Vázquez-Suñè, Enric; Sánchez-Navarro, José Á

    2016-02-15

    In the last decade, there has been an extensive use of shallow geothermal exploitations in urban environments. Although the thermal interference between exploitations has been recently studied, there is a lack of knowledge regarding the geochemical impacts of those systems on the aquifers where they are installed. Groundwater flow line scale and well-doublet scale research work has been conducted at city scale to quantify the geochemical interaction of shallow geothermal exploitations with the environment. A comprehensive analysis was conducted on data obtained from a monitoring network specifically designed to control and develop aquifer policies related to thermal management of the aquifer. The geochemical impacts were evaluated from a thermodynamic point of view by means of saturation index (SI) calculations with respect to the different mineral species considered in the system. The results obtained indicate limited geochemical interaction with the urban environment in most of the situations. However, there are some cases where the interaction of the groundwater heat pump installations with the evaporitic bedrock resulted in the total disablement of the exploitation system operation wells. The application of the tool proposed proved to be pragmatic in the evaluation of geochemical impacts. Injection of water into the aquifer can trigger an important bedrock gypsum and halite dissolution process that is partly responsible for scaling in well casing pipes and collapse of the terrain in the vicinity of injection wells.

  19. Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain

    Directory of Open Access Journals (Sweden)

    J. R. Raposo

    2012-06-01

    Full Text Available Quantifying groundwater recharge in crystalline rocks presents great difficulties due to the high heterogeneity of the underground medium (mainly, due to heterogeneity in fracture network, which determines hydraulic parameters of the bedrock like hydraulic conductivity or effective porosity. Traditionally these rocks have been considered to have very low permeability, and their groundwater resources have usually been neglected; however, they can be of local importance when the bedrock presents a net of well-developed fractures. The current European Water Framework Directive requires an efficient management of all groundwater resources; this begins with a proper knowledge of the aquifer and accurate recharge estimation. In this study, an assessment of groundwater resources in the Spanish hydrologic district of Galicia-Costa, dominated by granitic and metasedimentary rocks, was carried out. A water-balance modeling approach was used for estimating recharge rates in nine pilot catchments representatives of both geologic materials. These results were cross-validated with an independent technique, i.e. the chloride mass balance (CMB. A relation among groundwater recharge and annual precipitation according to two different logistic curves was found for both granites and metasedimentary rocks, thus allowing the parameterization of recharge by means of only a few hydrogeological parameters. Total groundwater resources in Galicia-Costa were estimated to be 4427 hm3 yr−1. An analysis of spatial and temporal variability of recharge was also carried out.

  20. Modeling of airborne electromagnetic anomalies related to fractured bedrock and overburden

    International Nuclear Information System (INIS)

    Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modeled using numerical techniques. Special emphasis was given to poor, three-dimensional electrical conductors embedded both in the bedrock and in the overburden. The results cover vertical coaxial and horizontal coplanar configurations and three frequencies: 888 Hz, 7837 Hz and 51250 Hz. The models studied are signal conductors in free space, and single or multiple conductors embedded in a host rock of high but finite resistivity (5000 Wm) and overlain by a layer of overburden with finite resistivity and thickness. Two different types of computer software were used in the modelling: the free-space PLATE code, and the EM3D set of codes. Modeling results are given both as profiles and as charasteristic diagrams for the various coil configuration - conductor-model combinations. On the basis of the modeling results, limits of detectability for poor conductors have been determined. The study is a part of the preliminary site investigations for the radioactive waste disposal in Finnish bedrock

  1. Cosmogenic 21Ne concentrations and exposure ages of summit bedrocks in the Grove Mountains,Antarctica

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Various sources of 21Ne and 22Ne exist in surface rocks:cosmogenic,in situ nucleogenic from internal U and Th,trapped crustal nucleogenic and trapped atmospheric.This paper reports the first measurement,in China,of cosmogenic 21Ne and 22Ne in surface bedrocks.We developed a unique sample pre-treatment procedure that effectively removed inclusions inside quartz grains,and thus maximally reduced nucleogenic contributions of 21Ne and 22Ne.Step-heating experiments show that concen-trations of cosmogenic 21Ne and 22Ne in summit bedrock samples R9202 and R9203 from Grove Mountains,Antarctica,are(3.83±0.87)×108 and(5.22±0.51)×108 atoms/g,respectively.The corresponding minimum exposure ages are 2.2±0.5 and 3.0±0.3 Ma.This indicates that the ice sheet in East Antarctica was uncovered the crest of Mount Harding,a typical nunatak in Grove Mountains,since at least mid-Pliocene.

  2. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock.

    Science.gov (United States)

    Garrido Schneider, Eduardo A; García-Gil, Alejandro; Vázquez-Suñè, Enric; Sánchez-Navarro, José Á

    2016-02-15

    In the last decade, there has been an extensive use of shallow geothermal exploitations in urban environments. Although the thermal interference between exploitations has been recently studied, there is a lack of knowledge regarding the geochemical impacts of those systems on the aquifers where they are installed. Groundwater flow line scale and well-doublet scale research work has been conducted at city scale to quantify the geochemical interaction of shallow geothermal exploitations with the environment. A comprehensive analysis was conducted on data obtained from a monitoring network specifically designed to control and develop aquifer policies related to thermal management of the aquifer. The geochemical impacts were evaluated from a thermodynamic point of view by means of saturation index (SI) calculations with respect to the different mineral species considered in the system. The results obtained indicate limited geochemical interaction with the urban environment in most of the situations. However, there are some cases where the interaction of the groundwater heat pump installations with the evaporitic bedrock resulted in the total disablement of the exploitation system operation wells. The application of the tool proposed proved to be pragmatic in the evaluation of geochemical impacts. Injection of water into the aquifer can trigger an important bedrock gypsum and halite dissolution process that is partly responsible for scaling in well casing pipes and collapse of the terrain in the vicinity of injection wells. PMID:26657381

  3. Geochemistry of the ground waters of the bedrock on Haestholmen, Loviisa

    International Nuclear Information System (INIS)

    Haestholmen is an island in the Gulf of Finland about 80 km east of Helsinki and 10 km southeast of the c entre of the town of Loviisa. Because of its geological location at the western margin of the Viipuri rapakivi massif its bedrock is composed of various types of rapakivi. The geochemistry of the ground waters in the Haestholmen area was studied by taking samples from seven 200-m-deep holes. Electric conductivity, contents of fluoride, lead, zinc, cadmium copper and chromium were determined in samples from different layers of ground water. The present ground-water conditions in the bedrock of Haestholmen are due to the rise of the islands at a rate of close to 30 cm in 100 years, in other words, the highest places on the island were at about sea level around 5000 years ago. The layer of fresh ground water will continue to expand laterally and vertically over the next years, when the land will rise by about 1.5 m if the climate remains more or less the same as it is at present

  4. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  5. Measurements of hydraulic conductivity in deep bedrock at Palmottu, Outokumpu, Pori and Ylivieska

    International Nuclear Information System (INIS)

    Hydraulic conductivity of the bedrock was studied using a double packer equipment fitting the small-diameter drillholes (46 mm). Test method was a slug test, in which the pressure of the test section is reduced by removing water from a tube connected to the test section and, subsequently, monitoring the recovery of the original pressure. In the work, methods of interpretation suitable for the test method are examined, and compared by means of graphical simulations. Their relevance in the case of measurements in fractured crystalline bedrock are discussed. In the method of Hvorslev, the recovery rate is assumed to be directly proportional to residual drawdown and to the hydraulic conductivity of the test section and, consequently, the effect of specific storage is neglected. In other methods of interpretations (e.g. 'Cooper'- method), assuming radial flow from porous aquifer, specific storage is taken into consideration. Different methods of interpretation lead to dissimilar theoretical responses on recovery vs. time graphics. Skin-effect and outer boundary effects also have an influence on the shape of recovery curve. There is no major differences in K-values obtained by different methods of interpretation. The study sites represent different lithological environments, comprising migmatitic gneisses with granitic interlayers (Palmottu); a complex association of serpentine, black schist, quartzite, dolomite and scram (Outokumpu); arkosic sandstone (Pori); and mafic/ultramafic intrusion (Ylivieska)

  6. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10{sup -6} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10{sup -11} m{sup 2}/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of

  7. Long-term geoelectrical monitoring of laboratory freeze-thaw experiments on bedrock samples

    Science.gov (United States)

    Kuras, Oliver; Uhlemann, Sebastian; Murton, Julian; Krautblatter, Michael

    2014-05-01

    Much attention has recently focussed on the continuous and near-real-time geophysical monitoring of permafrost-affected bedrock with permanently installed sensor arrays. It is hoped that such efforts will enhance process understanding in such environments (permafrost degradation, weathering mechanisms) and augment our capability to predict future instabilities of rock walls and slopes. With regard to electrical methods for example, recent work has demonstrated that temperature-calibrated electrical resistivity tomography (ERT) is capable of imaging recession and re-advance of rock permafrost in response to the ambient temperature regime. However, field experience also shows that several fundamental improvements to ERT methodology are still required to achieve the desired sensitivity, spatial-temporal resolution and long-term robustness that must underpin continuous geophysical measurements. We have applied 4D geoelectrical tomography to monitoring laboratory experiments simulating permafrost growth, persistence and thaw in bedrock over a period of 26 months. Six water-saturated samples of limestone and chalk of varying porosity represented lithologies commonly affected by permafrost-related instability. Time-lapse imaging of the samples was undertaken during multiple successive freeze-thaw cycles, emulating annual seasonal change over several decades. Further experimental control was provided by simultaneous measurements of vertical profiles of temperature and moisture content within the bedrock samples. These experiments have helped develop an alternative methodology for the volumetric imaging of permafrost bedrock and tracking active layer dynamics. Capacitive resistivity imaging (CRI), a technique based upon low-frequency, capacitively-coupled measurements emulates ERT methodology, but without the need for galvanic contact on frozen rock. The latter is perceived as a key potential weakness, which could lead to significant limitations as a result of the variable

  8. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10{sup -13} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the

  9. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10{sup -6} m{sup 2}/s or 1.3 x 10{sup -6} m{sup 2}/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose

  10. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    International Nuclear Information System (INIS)

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10-7 m2/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10-13 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the postglacial history of

  11. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    International Nuclear Information System (INIS)

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10-6 m2/s or 1.3 x 10-6 m2/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10-12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose from the Baltic Sea some 4000

  12. Processes of bedrock groundwater seepage and their effects on soil water fluxes in a foot slope area

    Science.gov (United States)

    Masaoka, Naoya; Kosugi, Ken'ichirou; Yamakawa, Yosuke; Tsutsumi, Daizo

    2016-04-01

    The impact of bedrock groundwater seepage on surface hydrological processes in a foot slope area is an important issue in hillslope hydrology. However, properties of water flux vectors around a seepage area are poorly understood because previous studies have lacked sufficient spatial resolution to capture detailed water movements. Here, we conducted hydrometric observations using unprecedented high-resolution and three-dimensional tensiometer nests in the mountainous foot slope area of the Hirudani experimental basin (Japan). Our findings are summarized as follows: (1) a considerable quantity of groundwater seeped from the bedrock surface in the study site. A groundwater exfiltration flux occurred constantly from a seepage area regardless of rainfall conditions. Saturated lateral flow over the bedrock surface occurred constantly in the region downslope of the seepage area. Groundwater was likely to mixed with soil water infiltration and flowed toward the lower end of the slope. (2) During the wet season, the seepage area expanded ∼3 m in the upslope direction along the bedrock valley in a single season. (3) The pressure head waveform observed in the seepage area showed gradual and significant increases after large rainfall events. However, the seepage pressure propagated within a relatively narrow area: a slope distance of ∼4 m from the seepage point in the downslope direction due to the damping of seepage pressure. (4) Within the whole study area, groundwater seeped from a narrow area located at the bottom of the valley line of the bedrock surface. The shape of the seepage area changed along the valley line in the wet season. Overall, we reveal spatial and temporal variations in bedrock groundwater seepage under the soil mantle and the effects on soil water fluxes. These findings should improve the accuracy of models for predicting surface hydrogeomorphological processes in mountainous hillslopes.

  13. Stratigraphic architecture of bedrock reference section, Victoria Crater, Meridiani Planum, Mars

    Science.gov (United States)

    Edgar, Lauren A.; Grotzinger, John P.; Hayes, Alex G.; Rubin, David M.; Squyres, Steve W.; Bell, James F.; Herkenhoff, Ken E.

    2012-01-01

    The Mars Exploration Rover Opportunity has investigated bedrock outcrops exposed in several craters at Meridiani Planum, Mars, in an effort to better understand the role of surface processes in its geologic history. Opportunity has recently completed its observations of Victoria crater, which is 750 m in diameter and exposes cliffs up to ~15 m high. The plains surrounding Victoria crater are ~10 m higher in elevation than those surrounding the previously explored Endurance crater, indicating that the Victoria crater exposes a stratigraphically higher section than does the Endurance crater; however, Victoria strata overlap in elevation with the rocks exposed at the Erebus crater. Victoria crater has a well-developed geomorphic pattern of promontories and embayments that define the crater wall and that reveal thick bedsets (3–7m) of large-scale cross-bedding, interpreted as fossil eolian dunes. Opportunity was able to drive into the crater at Duck Bay, located on the western margin of Victoria crater. Data from the Microscopic Imager and Panoramic Camera reveal details about the structures, textures, and depositional and diagenetic events that influenced the Victoria bedrock. A lithostratigraphic subdivision of bedrock units was enabled by the presence of a light-toned band that lines much of the upper rim of the crater. In ascending order, three stratigraphic units are named Lyell, Smith, and Steno; Smith is the light-toned band. In the Reference Section exposed along the ingress path at Duck Bay, Smith is interpreted to represent a zone of diagenetic recrystallization; however, its upper contact also coincides with a primary erosional surface. Elsewhere in the crater the diagenetic band crosscuts the physical stratigraphy. Correlation with strata present at nearby promontory Cape Verde indicates that there is an erosional surface at the base of the cliff face that corresponds to the erosional contact below Steno. The erosional contact at the base of Cape Verde

  14. Experimental Study of Bedrock Incision Processes by Both Suspended Load and Bedload Abrasions

    Science.gov (United States)

    Chatanantavet, P.; Whipple, K. X.; Adams, M. A.

    2010-12-01

    Channel incision into bedrock by both suspended load and bedload abrasions plays an important role in mountain landscape evolution. The study of erosion processes in both sediment transport regimes and their competition is therefore critical. Here we explored the dependence of experimental bedrock erosion rate on channel bed slope, water discharge, sediment flux, grain size, alluvial bed cover, and evolving channel morphology by slowly abrading weak concrete “bedrock.” In our flume, we are able to independently control bedload, suspended load, and water fluxes as well as channel slope. In the case of bedload, we also used a high-speed camera to track the saltation trajectories of coarse gravels on a smooth bed in another set of experiments and proposed new scaling relationships by including bed roughness and channel slope (separately from shear stress) for grain saltation velocity, height and length. In the case of bedload abrasion, we found that (1) all else held constant, erosion rate can (but not always) increase with channel slope in both smooth and rough bed conditions, (2) erosion rate increases with increasing grain size, and (3) erosion rate is insensitive to increasing water discharge. Thus shear stress is an inadequate metric for saltation dynamics and abrasion. In the case of suspended load abrasion, we found that (1) all else held constant, erosion occurred more in the planar bed condition than in the rough bed condition (deep grooves/slot canyons) because the erosion rate is strongly dependent on the near-bed flow (particle) velocity, (2) erosion rate increases with increasing sediment flux, and (3) perturbations (e.g., boulders) to the flow (thus creating turbulence/eddy) can greatly enhance the erosional efficiency. All else held constant (including bed morphology), the erosion rates by suspended load can account for 1.0 - 20 % (excluding the effect of flow perturbations) of those found in bedload erosion for the same sediment flux. Furthermore

  15. Landscape evolution and bedrock incision in the northern Alpine Foreland since the last 2 Ma

    Science.gov (United States)

    Claude, Anne; Akçar, Naki; Schlunegger, Fritz; Ivy-Ochs, Susan; Kubik, Peter; Christl, Marcus; Vockenhuber, Christof; Dehnert, Andreas; Kuhlemann, Joachim; Rahn, Meinert; Schlüchter, Christian

    2016-04-01

    The landscape evolution of the Swiss Alpine Foreland since the early Pleistocene is of utmost importance for modelling the long-term safety of deep geological repositories for nuclear waste disposal in the northern Alpine Foreland. The oldest Quaternary sediments in the northern foreland are proximal glaciofluvial sediments lying unconformably on Tertiary Molasse or Mesozoic carbonate bedrock. These deposits form topographically distinct and discontinuous isolated plateaus. Terrace morphostratigraphy has a reversed stratigraphic relationship, i.e. today older sediments are located at higher altitudes and vice versa. In this study, we focus on the landscape evolution and long-term bedrock incision in the Swiss Alpine Foreland. We reconstruct the terrace chronology in the foreland at six key locations at different altitudes ranging from 433 m a.s.l. to 675 m a.s.l. by applying cosmogenic depth-profile and isochron-burial dating techniques. First results from these sites indicate that the gravels at studied sites were accumulated in the foreland between 1 and 2 Ma. Based on this reconstructed chronology, long-term bedrock incision rates between 0.1 and 0.2 mm/a were calculated. Thus, we inferred a landscape at that time that was most likely characterized by smoother hillslopes than at present. During the Mid-Pleistocene Revolution (ca. 0.95 Ma), a re-organization of the drainage systems occurred in the Alpine Foreland with a significant lowering of the base level of stream channels. Existing data suggest slightly increased incision rates after this drainage network re-organisation compared to our results. The reconstruction of the chronology at the remaining sites may allow quantifying a pronounced incision as well as the exact timing of the acceleration in the incision rates. REFERENCES Heuberger, S. & Naef, H. (2014). NAB 12-35: Regionale GIS-Kompilation und -Analyse der Deckenschotter-Vorkommen im nördlichen Alpenvorland. Nagra Arbeitsbericht. Kuhlemann, J. & Rahn

  16. Stratified basal diamicts and their implications for subglacial conditions in deeply incised bedrock troughs

    Science.gov (United States)

    Buechi, Marius W.; Menzies, John; Anselmetti, Flavio S.

    2016-04-01

    Deep bedrock troughs ("tunnel valleys"), formed below Pleistocene piedmont glaciers, serve as valuable archives of the Quaternary landscape evolution of the Northern Alpine foreland basin. The sedimentary infill of these troughs is often dominated by glacier retreat deposits (e.g. glacio-lacustrine silts), while the context of diamicts and gravels at the base, i.e. directly overlying bedrock, remain controversial with regard to their deposition in a subglacial or proglacial environment. We present results from a set of drill cores that recovered such coarse-grained basal units in a major buried bedrock-trough system in the Lower Glatt Valley, Northern Switzerland. The excellent core recovery has allowed a detailed lithological study combining macroscopic, microscopic and geochemical methods. The macroscopic analysis revealed that the basal infill comprises diamicts segmented into ~1-3 m thick layers by sorted interbeds. These interbeds consist either of i) clast-supported gravels interpreted as bedload or lag deposits, or ii) laminated sands and silts representing deposition dominated by low-energy settling. The thinly spaced stacking of sorted and stratified sediments results in a high vertical facies variability. The distinct changes in the energy levels at which the sorted interbeds were transported and deposited are interpreted to indicate alternating phases of a decoupled and coupled ice-bed-interface at the base of the overdeepening. This interpretation is supported by the microstructural analysis performed on thin-sections from diamictons of the basal unit, which reveal a polyphase (brittle and ductile) deformation of the diamicts. A primary indication for a subglacial origin of the deformation comes from an abundance of crushed grains, interpreted as resulting from in-situ fracturing of grains under high tensile stresses, typically attained at grain-to-grain contacts during subglacial deformation. Such a signature is unlikely to occur in a proglacial

  17. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M. [Gascoyne GeoProjects Inc., Pinawa (Canada)

    2000-04-01

    seawater, enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids,under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters,loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost,lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO{sub 4}-rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock.

  18. Application of rock-cad modelling system in characterization of crystalline bedrock

    Science.gov (United States)

    Saksa, Pauli

    The Finnish power company Teollisuuden Voima Oy studies crystalline bedrock in Finland for final disposal of high-level nuclear fuel waste. In evaluation of the varying lithological and structural conditions CAD-based ROCK-CAD system has been developed. ROCK-CAD is based on true solid modelling approach. One modelled volume consists of several mutually independent submodels. Mainly lithological, structural (fracturing) and hydraulical properties are modelled. ROCK-CAD is in operational use and experiences have been got from four sites modelled this far. The main uses of the software, have been in general visualization, in planning of sopplementary investigations and in qualitative interpretation and model development done by the experts. Computerized models form also the basis for ground water flow simulations and rock mechanical calculations. Two example drawings are presented and discussed.

  19. Bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data

    Science.gov (United States)

    Till, Alison B.; Dumoulin, Julie A.; Werdon, Melanie B.; Bleick, Heather A.

    2011-01-01

    This 1:500,000-scale geologic map depicts the bedrock geology of Seward Peninsula, western Alaska, on the North American side of the Bering Strait. The map encompasses all of the Teller, Nome, Solomon, and Bendeleben 1:250,000-scale quadrangles, and parts of the Shishmaref, Kotzebue, Candle, and Norton Bay 1:250,000-scale quadrangles (sh. 1; sh. 2). The geologic map is presented on Sheet 1. The pamphlet includes an introductory text, detailed unit descriptions, tables of geochronologic data, and an appendix containing conodont (microfossil) data and a text explaining those data. Sheet 2 shows metamorphic and tectonic units, conodont color alteration indices, key metamorphic minerals, and locations of geochronology samples listed in the pamphlet. The map area covers 74,000 km2, an area slightly larger than West Virginia or Ireland.

  20. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    International Nuclear Information System (INIS)

    of seawater, enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids, under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters, loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost, lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO4-rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock. (orig.)

  1. Monitoring the bedrock stability in Olkiluoto. Summary of campaign based GPS measurements in 1996-2011

    International Nuclear Information System (INIS)

    The Finnish Geodetic Institute has monitored crustal deformations in Olkiluoto since mid-1990s. This is a final report of campaign based GPS measurements carried out in 1996-2011. The aim of the research has been monitoring the bedrock stability in the Olkiluoto area. The research were started in 1995, when a local GPS network of ten pillars, called inner network, was established on Olkiluoto Island. The research area was expanded in 2003- 2005 with four new pillars (outer network) established at 5-10 km distances from the inner network. One of the pillar points is the Olkiluoto permanent GPS station. Regular biannual measurement campaigns have been carried out on other pillar points

  2. Monitoring the bedrock stability in Olkiluoto. Summary of campaign based GPS measurements in 1996-2011

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, S.; Kallio, U.; Haekli, P.; Jokela, J.; Koivula, H.; Saaranen, V.; Rouhiainen, P. [Finnish Geodetic Institute, Masala (Finland)

    2013-12-15

    The Finnish Geodetic Institute has monitored crustal deformations in Olkiluoto since mid-1990s. This is a final report of campaign based GPS measurements carried out in 1996-2011. The aim of the research has been monitoring the bedrock stability in the Olkiluoto area. The research were started in 1995, when a local GPS network of ten pillars, called inner network, was established on Olkiluoto Island. The research area was expanded in 2003- 2005 with four new pillars (outer network) established at 5-10 km distances from the inner network. One of the pillar points is the Olkiluoto permanent GPS station. Regular biannual measurement campaigns have been carried out on other pillar points.

  3. Development of an overpack for the storage of high-level waste in Swiss granitic bedrock

    International Nuclear Information System (INIS)

    Current programs aimed at demonstrating the feasibility of safe final disposal of high-level nuclear waste in Switzerland envisage a repository in the crystalline bedrock of the north of the country. The groundwater is reducing, with a mineralization of typically 10 g·L-1. The corrosion studies carried out in Switzerland have shown that unalloyed steel is a suitable overpack material under the conditions expected in the repository. The necessary corrosion allowance for a lifetime of 1000 years is 50 mm. Design work, based on the use of a typical cast steel with a tensile strength of 400 MN·m-2, has led to a reference overpack concept for a disposal of vitrified HLW. This reference overpack is designed as a self-shielding, self-supporting, cylindrical shell with hemispherical ends. 16 refs

  4. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Cascoyne, M. [Gascoyne GeoProjects Inc. (Canada)

    2000-06-01

    formed on freezing of seawater, enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids, under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters, loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost, lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO{sub 4}-rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock. (orig.)

  5. Mineral deformation and subglacial processes on ice-bedrock interface of Hailuogou Glacier

    Institute of Scientific and Technical Information of China (English)

    LIU GengNian; CHEN YiXin; ZHANG Yue; FU HaiRong

    2009-01-01

    Hailuogou Glacier is located in a warm and humid maritime environment. It is large and moves very fast.The bottom of the glacier slides intensively and the temperature at the bottom approaches the pressure melting point. Therefore,there are abundant melting water and debris which act as effective "grinding tools"for glacial abrasion. Polarizing microscope is used to observe the mineral deformation characteristics on the ice-bedrock interface. It is found that feldspar,quartz,hornblende and biotite are exposed to deformation,fracture and chemical alteration to various extents. Bending deformation is common for biotite,due to their lattice characteristics,and the bending orientations are mostly the same as the glacier flow. Bending deformation also occurs in a few hornblendes. High-angle tension fracture and low-angle shear fracture are common for quartz and feldspar,some of them are totally crushed (mylonizations) due to their rigidity. Thus,all the abrasion,quarrying,subglacial water action and subglacial dissolution processes at the bottom of the glacier are verified at the micro-scale level.Mineral deformation and fracture are the basic subglacial erosion mechanisms. The abrasion thickness is 30-90 μm for each time and the average is 50 μm. Most of the debris are silt produced by glacial abrasion. The extent of mineral deformation and fracture decreases drastically downwards beneath the bedrock surface. The estimated erosion rate is about 2.2-11.4 mm/a,which is similar to that of other maritime alpine glaciers,smaller than that of large-scale piedmont glaciers In Alaska (10-30 mm/a),and larger than that of continental glaciers (0.1-1.0 mm/a). The type and size of a glacier are the main factors that influence its erosion rate.

  6. Bedrock stability in southeastern Sweden. Evidence from fracturing in the ordovician limestones of northern Oeland

    International Nuclear Information System (INIS)

    The stability of the bedrock in SE Sweden with regard to radioactive waste disposal has recently been the subject of some controversy. In order to better assess the age and significance of fracturing in the Precambrian basement at the site of the Aespoe Hard Rock Laboratory (HRL), near Oskarshamn, a detailed analysis of fracturing in the lower Ordovician limestones exposed along the west coast of the neighbouring island of Oeland has been carried out. The limestones form continuously exposed shore platforms, in segments up to 30 m broad and several kilometres long. These, and numerous quarries, provide ideal objects for quantitative analysis (ground and air photo mapping, scanline logging), and unique opportunities for investigating the amount of movement on the fractures, because of well-developed bedding and abundant rod-shaped fossils on the bedding surfaces. The fracture patterns are dominated by two sets of subvertical fractures, a NW trending closely spaced and strongly orientated set and a NNE-ENE trending widely spaced and variably orientated set. Only about 10% of the fractures in both sets show lateral fossil displacement, with maximum movement of 5 cm, and only 3% of the fractures show vertical displacement of bedding (maximum 8 cm). All in all, the lower Ordovician limestones along the exposed shoreline have suffered remarkably little deformation since deposition, i.e. over the last 500 million years. Appreciable bedrock instability, if it occurred, must have been concentrated offshore, or in the unexposed segments of the coastline, where some weak indications of slight movement (changes of a few metres in stratigraphic level) have been observed. Among other recommendations for further work, geophysical investigations to test these indications are suggested. (54 refs.)

  7. Hydrogeochemistry and Origin of Thermal Groundwater in Bedrock Aquifers in Tianjin, China

    Institute of Scientific and Technical Information of China (English)

    Zhou Xun; Fang Bin; Shen Ye; Zhang Hua; Lin Li; Lin Jianwang

    2004-01-01

    Thermal groundwater resources were found to have occurred in deep-seated bedrock aquifers in the northeastern North China plain near Tianjin, China. Meso- to Neo-Proterozoic and Paleozoic carbonate rocks on the Cangxian uplift are capable of yielding 960-4 200 m3/d of 60 to 96 ℃ water from the wells ranging in depth between 1 000 and 4 000 m. Conductive heat flow of 0.063 to 0.144 2 W/m2 from the deep crust is responsible for this anomalous geothermal field. The water in the Ordovician aquifer is characterized by relatively high TDS, high concentrations of SO4 and SO4*Cl-Na*Ca type, but the waters from the Meso- to Neo-Proterozoic and Cambrian aquifers, by relatively low TDS, low concentrations of SO4 and predominantly Cl*SO4-Na type. It is noted that when the temperature of the waters increases at a rate of 10 ℃ in the range of 30-100 ℃, the content of SiO2 increases at a rate of 12 to 15 mg/L, and fluoride concentration increases at a rate of 2.3 to 2.5 mg/L. Hydrochemical and isotopic data suggest that the thermal water in the bedrock aquifers is of meteoric origin and recharged in the northern mountain area to the north of the Baodi-Ninghe fault, and then flows laterally for a long distance from the north to the south to the city of Tianjin. Temperature of the waters increases because of heat exchange with the rocks and recharge by conductive heat flow from beneath.

  8. Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland

    Science.gov (United States)

    Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo T.; Niedermann, Samuel; Wiersberg, Thomas

    2014-11-01

    Noble gas residence times of saline groundwaters from the 2516 m deep Outokumpu Deep Drill Hole, located within the Precambrian crystalline bedrock of the Fennoscandian Shield in Finland, are presented. The accumulation of radiogenic (4He, 40Ar) and nucleogenic (21Ne) noble gas isotopes in situ together with the effects of diffusion are considered. Fluid samples were collected from depths between 180 and 2480 m below surface, allowing us to compare the modelled values with the measured concentrations along a vertical depth profile. The results show that while the concentrations in the upper part are likely affected by diffusion, there is no indication of diffusive loss at or below 500 m depth. Furthermore, no mantle derived gases were found unequivocally. Previous studies have shown that distinct vertical variation occurs both in geochemistry and microbial community structuring along the drill hole, indicating stagnant waters with no significant exchange of fluids between different fracture systems or with surface waters. Therefore in situ accumulation is the most plausible model for the determination of noble gas residence times. The results show that the saline groundwaters in Outokumpu are remarkably old, with most of the samples indicating residence times between ∼20 and 50 Ma. Although being first order approximations, the ages of the fluids clearly indicate that their formation must predate more recent events, such as Quaternary glaciations. Isolation within the crust since the Eocene-Miocene epochs has also direct implications to the deep biosphere found at Outokumpu. These ecosystems must have been isolated for a long time and thus very likely rely on energy and carbon sources such as H2 and CO2 from groundwater and adjacent bedrock rather than from the ground surface.

  9. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    Science.gov (United States)

    Nauer, P. A.; Dam, B.; Liesack, W.; Zeyer, J.; Schroth, M. H.

    2012-06-01

    The global methane (CH4) cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB), but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize the MOB community by sequencing and terminal restriction fragment length polymorphism (T-RFLP) analysis of pmoA. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ~1-2 μL L-1 with soil-atmosphere CH4 fluxes of -0.14 to -1.1 mg m-2 d-1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ~2-10 μL L-1 , most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μL L-1. Remarkably, most soils oxidized ~90 % of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m-2 d-1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 operational taxonomic units (OTUs) at the species level and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ). The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. Members of Upland Soil Cluster α (USCα) were not detected. Apparently, USCγ adapted best to the oligotrophic cold climate conditions at the investigated pioneer sites.

  10. Surficial and bedrock geology beneath the Strait of Belle Isle in the vicinity of a proposed power-cable crossing

    Energy Technology Data Exchange (ETDEWEB)

    Woodworth-Lynas, C.M.T.; Guigne, J.Y.; King, E.L.

    1992-01-01

    A review is presented of geological, geophysical, and engineering studies carried out on the feasibility of installing high-voltage dc submarine cables beneath the Strait of Belle Isle for the purpose of transmitting hydroelectric power from Labrador to Newfoundland. New interpretations are included with respect to nomenclature of bedrock units and their distribution, adding to the knowledge of glacial history of the Strait based on the surficial geology and the existence of exposed suites of ribbed moraines. Information on subsurface bedrock geology has been derived almost entirely from borehole information; appraisal of deep seismic-reflection data from 1973-75 shows the data are poor in quality, preventing reliable interpretation. Four acoustically defined surficial geology units have been recognized. Only 15 iceberg scours have been positively identified from sidescan sonograms, but this seems anomalously low. It is noted that icebergs can scour in water depths to 105 m, and may also scour both upslope and downslope. This means that bathymetric sheltering may not prevent scouring icebergs from reaching potential cable routes. Three cable design concepts are considered: installation in an 18.28 km tunnel in bedrock 580 m below sea level; laying cables on the sea floor between two bedrock tunnels extending from shore to the 85 m isobath; and installing cables in trenches on the sea floor. 145 refs., 21 figs., 5 tabs.

  11. DETECTION OF GROUNDWATER AGES WITH 85 KR IN ARSENIC-BEARING, FRACTURED CRYSTALLINE BEDROCK OF THE GOOSE RIVER BASIN, MAINE

    Science.gov (United States)

    Young groundwater from various depths in crystalline bedrock of the Goose River basin, mid-coastal Maine, is documented from 85Kr isotope age analyses (1963 ? 1987) but not from 3H isotope age analyses. Elevated geogenic arsenic in drinking water from groundwater wells and sprin...

  12. Hydraulic relationships between buried valley sediments of the glacial drift and adjacent bedrock formations in northeastern Ohio, USA

    Science.gov (United States)

    Seyoum, Wondwosen Mekonnen; Eckstein, Yoram

    2014-08-01

    Buried valleys are ancient river or stream valleys that predate the recent glaciation and since have been filled with glacial till and/or outwash. Outwash deposits are known to store and transmit large amounts of groundwater. In addition to their intrinsic hydraulic properties, their productivity depends on their hydraulic relationships with the adjacent bedrock formations. These relationships are examined using a steady-state three-dimensional groundwater flow model through a section of a buried valley in northeastern Ohio, USA. The flow domain was divided into five hydrostratigraphic units: low-conductivity (K) till, high-K outwash, and three bedrock units (Pottsville Formation, Cuyahoga Group and Berea Sandstone). The model input was prepared using the data from well logs and drilling reports of residential water wells. The model was calibrated using observed heads with mean residual head error of 0.3 m. The calibrated model was used to quantify flux between the buried valley and bedrock formations. Mass balance was calculated to within an error of 2-3 %. Mass balance of the buried valley layer indicates that it receives 1.6 Mm3/year (≈40 % of the total inflow) from the adjacent bedrock aquifers: Pottsville Formation contributes 0.96 Mm3/year (60 %) while the Berea Sandstone 0.64 Mm3/year (40 %).

  13. Study on safe thickness of overlying thin bedrock in fully-mechanized top-coal caving face with thick coal seam

    Institute of Scientific and Technical Information of China (English)

    FANG Xin-qiu; HUANG Han-fu; HE Jie

    2007-01-01

    To prevent support crush, the overlying strata safe thickness and its influential elements were studied by the adoption of theoretical analysis, numerical simulation and in-situ measurement. According to the production and geological condition of first face in Sima coal mine, the results indicate that the clay contains large permissible bearing ability and has better arching force. After mining destruction, stable structure is formed in bedrock to ensure face safety. The clay thickness & bedrock thickness are the key influential elements to stable structure. The minimal bedrock thickness is about 40 m to ensure safe mining under loose surface soil condition. When surface soil contains mainly thick clay, it forms steady structure with the composition of thin bedrock, so that it can reduce minimal thickness of bedrock and to ensure safe mining. When clay thickness is 40 m, minimal bedrock thickness is 20 m. When clay thickness is 30 m, minimal bedrock thickness is 30 m. Bearing pressure peak ranges from 5 to 15 m in the front face under thin bedrock condition. The bearing pressure distribution range is 15 m. Main roof break distance is small, and initial weighting of main roof is not distinctive, while first periodic weighting of main roof is quite distinctive.

  14. Yield of bedrock wells in the Nashoba terrane, central and eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Barbaro, Jeffrey R.

    2012-01-01

    The yield of bedrock wells in the fractured-bedrock aquifers of the Nashoba terrane and surrounding area, central and eastern Massachusetts, was investigated with analyses of existing data. Reported well yield was compiled for 7,287 wells from Massachusetts Department of Environmental Protection and U.S. Geological Survey databases. Yield of these wells ranged from 0.04 to 625 gallons per minute. In a comparison with data from 103 supply wells, yield and specific capacity from aquifer tests were well correlated, indicating that reported well yield was a reasonable measure of aquifer characteristics in the study area. Statistically significant relations were determined between well yield and a number of cultural and hydrogeologic factors. Cultural variables included intended water use, well depth, year of construction, and method of yield measurement. Bedrock geology, topography, surficial geology, and proximity to surface waters were statistically significant hydrogeologic factors. Yield of wells was higher in areas of granites, mafic intrusive rocks, and amphibolites than in areas of schists and gneisses or pelitic rocks; higher in valleys and low-slope areas than on hills, ridges, or high slopes; higher in areas overlain by stratified glacial deposits than in areas overlain by till; and higher in close proximity to streams, ponds, and wetlands than at greater distances from these surface-water features. Proximity to mapped faults and to lineaments from aerial photographs also were related to well yield by some measures in three quadrangles in the study area. Although the statistical significance of these relations was high, their predictive power was low, and these relations explained little of the variability in the well-yield data. Similar results were determined from a multivariate regression analysis. Multivariate regression models for the Nashoba terrane and for a three-quadrangle subarea included, as significant variables, many of the cultural and

  15. Indications of postglacial and recent bedrock movements in Finland and Russian Karelia

    Energy Technology Data Exchange (ETDEWEB)

    Kuivamaeki, A.; Vuorela, P.; Paananen, M

    1998-12-31

    This report is mainly a summary report of the studies done 1986 - 1997 by the Geological Survey of Finland/Nuclear Waste Disposal Research on postglacial faulting (PG-faults) and recent bedrock movements. Most of the results have already been published in other YST-reports in Finnish. The first part of the report deals with the postglacial faults in Finland and in the second part the problems connected with the origin and age of paleoseismic dislocations found in Russian Karelia are described. The final part deals with the present vertical and horizontal movements of Finnish bedrock. The Pasmajaervi PG-fault is the most thoroughly studied PG-fault in Finland. Around the fault lineament interpretations and geophysical ground measurements have been done and the fault zone has been penetrated with two drill holes. Three levelling networks and one GPS-network have been established for revealing any recent movements of the PG-fault area. Other PG-faults studied, but not in the same detail, are Venejaervi, Ruostejaervi, Suasselkae and Vaalajaervi PG-faults. The PG-faults in Finland strike in the SW-NE direction and dip to the SE with the exception of the Vaalajaervi PG-fault. It strikes in the NW-SE direction. The dip direction is unknown. The length of the PG-faults is 4-36 km and the scarp height 0-12 m. PG-faults are reverse faults and they are located in old, reactivated fracture zones. The results of drillings and resistivity soundings in the Pasmajaervi PG-fault indicate, that the dip angle of 45 deg in the surface becomes more gentle with the increasing depth. This result may be important from a technical point of view when designing nuclear waste repositories. The strike directions of the PG-faults are perpendicular with the direction of prevailing horizontal maximum stress. The structure and location of the PG-faults is in accordance with the model presented by Muir Wood for the origin of PG-faults. The exceptional direction of the Vaalajaervi PG-fault is

  16. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0

  17. Indications of postglacial and recent bedrock movements in Finland and Russian Karelia

    International Nuclear Information System (INIS)

    This report is mainly a summary report of the studies done 1986 - 1997 by the Geological Survey of Finland/Nuclear Waste Disposal Research on postglacial faulting (PG-faults) and recent bedrock movements. Most of the results have already been published in other YST-reports in Finnish. The first part of the report deals with the postglacial faults in Finland and in the second part the problems connected with the origin and age of paleoseismic dislocations found in Russian Karelia are described. The final part deals with the present vertical and horizontal movements of Finnish bedrock. The Pasmajaervi PG-fault is the most thoroughly studied PG-fault in Finland. Around the fault lineament interpretations and geophysical ground measurements have been done and the fault zone has been penetrated with two drill holes. Three levelling networks and one GPS-network have been established for revealing any recent movements of the PG-fault area. Other PG-faults studied, but not in the same detail, are Venejaervi, Ruostejaervi, Suasselkae and Vaalajaervi PG-faults. The PG-faults in Finland strike in the SW-NE direction and dip to the SE with the exception of the Vaalajaervi PG-fault. It strikes in the NW-SE direction. The dip direction is unknown. The length of the PG-faults is 4-36 km and the scarp height 0-12 m. PG-faults are reverse faults and they are located in old, reactivated fracture zones. The results of drillings and resistivity soundings in the Pasmajaervi PG-fault indicate, that the dip angle of 45 deg in the surface becomes more gentle with the increasing depth. This result may be important from a technical point of view when designing nuclear waste repositories. The strike directions of the PG-faults are perpendicular with the direction of prevailing horizontal maximum stress. The structure and location of the PG-faults is in accordance with the model presented by Muir Wood for the origin of PG-faults. The exceptional direction of the Vaalajaervi PG-fault is

  18. Geochemistry of highly acidic mine water following disposal into a natural lake with carbonate bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Wisskirchen, Christian, E-mail: ChristianWisskirchen@web.de [Institute of Mineralogy and Geochemistry, University of Lausanne, CH-1015 Lausanne (Switzerland); Dold, Bernhard [Institute of Mineralogy and Geochemistry, University of Lausanne, CH-1015 Lausanne (Switzerland)] [Instituto de Geologia Economica Aplicada, Universidad de Concepcion, Concepcion (Chile); Friese, Kurt [UFZ - Helmholtz Centre for Environmental Research, Department of Lake Research, D-39114 Magdeburg (Germany); Spangenberg, Jorge E. [Institute of Mineralogy and Geochemistry, University of Lausanne, CH-1015 Lausanne (Switzerland); Morgenstern, Peter [UFZ - Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, D-04318 Leipzig (Germany); Glaesser, Walter [Institute of Geophysics and Geology, University of Leipzig, D-04211 Leipzig (Germany)

    2010-08-15

    Research highlights: {yields} Mean lake water element composition did not differ greatly from discharged AMD. {yields} Most elements showed increasing concentrations from the surface to lake bottom. {yields} Jarosite formed in the upper part, settled, and dissolved in the deeper part of the lake. {yields} Elements migrated into the underlying carbonates in the sequence As< Pb {approx} Cu < Cd < Zn = Mn. {yields} Gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks. - Abstract: Acid mine drainage (AMD) from the Zn-Pb(-Ag-Bi-Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of {approx}1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO{sub 3}, 4330 mg/L Fe and 29,250 mg/L SO{sub 4}. Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO{sub 4}). The variations in the H and O isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI {approx} 0.25) and anglesite (SI {approx} 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI {approx} 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI {approx} -0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material ({approx}90 wt.% water) of pH {approx}1 with a

  19. Preconditioning of the Eibsee rock avalanche by deglaciation and development of critical bedrock stresses

    Science.gov (United States)

    Leith, Kerry; Hofmayer, Felix; Kessler, Barbara; Krautblatter, Michael

    2016-04-01

    The impact of glacier retreat on rock slope instability since the Last Glacial Maximum is the subject of ongoing debate. Rock slope activity since ice retreat is typically attributed to increased kinematic freedom as a result of erosion during glaciation, debuttressing of valley walls which may have been supported by glacier ice, specific patterns of Holocene seismicity, or an exposure of rock slopes to increased chemical and biological weathering during the present interglacial. Here, rather than looking for a particular driver or trigger for rock slope instability, we evaluate the potential for rock mass degradation in response to an increase in tensile stress or micro-cracking in critically stressed near-surface bedrock (0 - 2 km depth). Instead of focusing on a specific driver, this allows us to identify regions in which fracture development is likely to be ongoing, and slope stability is therefore decreasing with time. Combining two orthogonal cross-sections, we evaluate stress changes and fracture development in the Zugspitze region of the Wetterstein Mountains (southern Germany) using an elasto-plastic 2-D FEM model (Phase2 from Rocscience). Based on geological evidence, we reconstruct the 3-D topography of the former Zugspitze peak, prior to what we estimate to be a 165 Mm3 collapse (previously dated at 3700 B.P.). We then impose initial stress conditions consistent with the tectonic and exhumation history of the region, as well as rock mechanical attributes derived from a fracture survey of the Zugspitzplatt and results of standard laboratory testing of Wettersteinkalk, the dominant lithology in the region. By imposing ice loading through a series of glacial-interglacial cycles, we are able to generate, and maintain critical stresses and low levels of fracture propagation beneath the Zugspitzplatt and at the location of the rock avalanche release throughout deglaciation, supporting our field observations. We then simulate weathering near the model surface

  20. Lithological and structural bedrock model of the Haestholmen study site, Loviisa, SE Finland

    Energy Technology Data Exchange (ETDEWEB)

    Front, K.; Paulamaeki, S.; Ahokas, H.; Anttila, P

    1999-10-01

    The Haestholmen study site is located within the anorogenic Wiborg rapakivi granite batholith, 1640 1630 Ma in age. The bedrock consists of various rapakivi granites, which can be divided into three groups or lithological units: (1) wiborgite and pyterlite, (2) porphyritic rapakivi granite, and (3) even-grained or weakly porphyritic rapakivi granite, pyterlite being the dominant rock type. The evengrained and weakly porphyritic rapakivi granite has been interpreted to form a younger intrusive unit with a thickness of ca. 500 m, dipping approx. 20 deg to the NNW-NNE. Surface fractures form a distinct orthogonal system, with three perpendicular fracture directions: fractures dipping steeply (dip >75 deg) to the NE-SW and NW-SE plus subhorizontal (dip <30 deg) fractures. The fracturing in the outcrops is sparse,the average fracture frequency being 0.6 fractures/m. The majority of the fractures in the drill cores are horizontal or very gently dipping and there is no difference in fracture orientations in regard to rock type or depth. Core samples are usually slightly fractured (1 - 3 fractures/m), even-grained rapakivi granites being in places abundantly fractured (3 10 fractures/m. The broken sections in Haestholmen core samples represent about 4.6 % of the total length of the samples. Calcite, dolomite, Fe- hydroxides and clay minerals (illite, montmorillonite and kaolinite) form the most typical fracture mineral phases throughout the drill cores. Core discing is locally seen as repeated fracture-like subparallel cracks in core with spacing of about some millimetres to tens of millimetres. The structural model contains 27 structures (denoted by the term R+number), more than half of which have been verified by direct observations from boreholes or from the VLJ repository. The remaining structures are mainly based on the geophysical interpretation, and have been classified as probable or possible fracture zones. In addition, local structures with uncertain orientation

  1. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    Directory of Open Access Journals (Sweden)

    P. A. Nauer

    2012-06-01

    Full Text Available The global methane (CH4 cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB, but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize the MOB community by sequencing and terminal restriction fragment length polymorphism (T-RFLP analysis of pmoA. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ~1–2 μL L−1 with soil-atmosphere CH4 fluxes of –0.14 to –1.1 mg m−2 d−1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ~2–10 μL L−1 , most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μL L−1. Remarkably, most soils oxidized ~90 % of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m−2 d−1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 operational taxonomic units (OTUs at the species level and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ. The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. Members of Upland Soil

  2. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    Directory of Open Access Journals (Sweden)

    P. A. Nauer

    2012-01-01

    Full Text Available The global methane (CH4 cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB, but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize MOB communities using pmoA sequencing and T-RFLP. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ∼1–2 μl l−1 with soil-atmosphere CH4 fluxes of −0.14 to −1.1 mg m−2 d−1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ∼2–10 μl l−1, most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μl l−1. Remarkably, most soils oxidized ∼90% of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m−2 d−1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 OTUs and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ. The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. As Type I MOB are widespread in cold climate habitats with elevated CH4 concentrations, USCγ might be the corresponding

  3. Bedrock geologic and joint trend map of the Pinardville quadrangle, Hillsborough County, New Hampshire

    Science.gov (United States)

    Burton, William C.; Armstrong, Thomas R.

    2013-01-01

    The bedrock geology of the Pinardville quadrangle includes the Massabesic Gneiss Complex, exposed in the core of a regional northeast-trending anticlinorium, and highly deformed metasedimentary rocks of the Rangeley Formation, exposed along the northwest limb of the anticlinorium. Both formations were subjected to high-grade metamorphism and partial melting: the Rangeley during the middle Paleozoic Acadian orogeny, and the Massabesic Gneiss Complex during both the Acadian and the late Paleozoic Alleghanian orogeny. Granitoids produced during these orogenies range in age from Devonian (Spaulding Tonalite) to Permian (granite at Damon Pond), each with associated pegmatite. In the latest Paleozoic the Massabesic Gneiss Complex was uplifted with respect to the Rangeley Formation along the ductile Powder Hill fault, which also had a left-lateral component. Uplift continued into the early Mesozoic, producing the 2-kilometer-wide Campbell Hill fault zone, which is marked by northwest-dipping normal faults and dilational map-scale quartz bodies. Rare, undeformed Jurassic diabase dikes cut all older lithologies and structures. A second map is a compilation of joint orientations measured at all outcrops in the quadrangle. There is a great diversity of strike trends, with northeast perhaps being the most predominant.

  4. Feasibility study and technical proposal for long-term observations of bedrock stability with gps

    International Nuclear Information System (INIS)

    In order to study the regional crustal deformation pattern in the territory of Finland, the Finnish Geodetic Institute is establishing the Finnish Permanent GPS Network, which is part of the Fennoscandian Permanent GPS Network. The Finnish GPS Network consists of a 12 stations located in different geological structures. The operation procedure of the network is described in the report. Feasibility study for monitoring the bedrock stability at local scale was performed. The study was carried out on the basis of an experiment on a baseline of 1041 metres. Twelve artificial movements ranging from 1 mm to 22 mm were generated with a precision-manufactured screw drive (with an accuracy of better than +-0.05 mm). The artificial movements were then detected with the GPS measurements. A preliminary analysis of the GPS data shows that the maximum difference between the GPS detected movements and the artificial movements is 0.9 mm with a standard deviation of +-0.46 mm. The observation time for reaching such accuracy is about 55 minutes. Three GPS networks were preliminarily designed for the radioactive waste disposal investigation sites of Olkiluoto, Kivetty and Romuvaara. Detailed research plan for achieving the best possible result from GPS measurements was proposed. (58 refs., 25 figs., 1 tab.)

  5. Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel

    International Nuclear Information System (INIS)

    Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel are studied computationally. The studied fractures are both natural and excavation damage fractures. The emphasis is on the detailed modelling of geometry in 3D in contrast to the traditional radionuclide transport studies that often concentrate on chain decays, sorption, and precipitation at the expense of the geometry. The built computer model is used to assess the significance of components near a deposition hole for radionuclide transport and to estimate the quality of previously used modelling techniques. The results show nearly exponential decrease of radionuclide mass in the bentonite buffer when the release route is a thin natural fracture. The results also imply that size is the most important property of the tunnel section for radionuclide transport. In addition, the results demonstrate that the boundary layer theory can be used to approximate the release of radionuclides with certain accuracy and that a thin fracture in rock can be modelled, at least to a certain limit, by using a fracture with wider aperture but with same flow rate as the thin fracture. (orig.)

  6. Technical assessment of the bedrock waste storage at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.F.; Corey, J.C.

    1976-11-01

    An assessment of the safety and feasibility of ultimate storage of radioactive wastes produced at the Savannah River Plant (SRP) in horizontal tunnels excavated in the bedrock beneath the plant site is presented. Results indicate that a cavern with an excavated volume of 130 million gallons could contain 80 million gallons of concentrated radioactive SRP wastes with minimal risks if the cavern is located in the impermeable Triassic Basin underlying the Savannah River site. The cavern could be placed so that it would lie wholly within the boundaries of the plantsite. The document summarizes the general geological, hydrological, and chemical knowledge of the geological structures beneath the plantsite; develops evaluation guidelines; and utilizes mathematical models to conduct risk analyses. The risk models are developed from known soil and salt solution mechanics; from past, present, and future geological behavior of the onsite rock formations; and from known waste handling technology. The greatest risk is assessed to exist during transfer of the radioactive wastes to the cavern. When the cavern is filled and sealed, further population risks are asessed to be very low.

  7. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2008-03-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost seasons of 2000 to 2005, and (ii the warming periods of the thaw seasons of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima.

  8. Geology and hydrology of the deep bedrock aquifers in eastern Colorado

    Science.gov (United States)

    Robson, S.G.; Banta, E.R.

    1987-01-01

    Deep bedrock aquifers are present in rocks of Cretaceous through Pennsylvanian age in eastern Colorado. These aquifers are the Laramie-Fox Hills (the uppermost aquifer studied), Fort Hays-Codell, Dakota-Cheyenne, Entrada-Dockum, Lyons, and Fountain. Structural mapping indicates the aquifers are 2,000 to 9,000 ft below land surface in most of eastern Colorado but outcrop in local areas in a narrow band along the Front Range of the Rocky Mountains. Recharge primarily occurs in outcrops and produces a northerly or easterly groundwater flow to discharge areas along the South Platte or Arkansas Rivers. Deep aquifers also discharge by underflow to Kansas and Nebraska. Some water-yielding strata in the Dakota-Cheyenne aquifer are not in hydraulic connection with the aquifer, and abnormal fluid pressures, trapped hydrocarbons, and high dissolved-solids concentrations are found in these strata. Temperature and dissolved-solids mapping indicate water temperatures of 100 to 210 in northeastern Colorado and a zone of relatively fresh water extending through a 7,000 sq mi area of the Dakota-Cheyenne aquifer in southeastern Colorado. Water levels in the Laramie-Fox Hills aquifer continue to decline as much as 12 ft/yr in local areas near Denver. (USGS)

  9. Geophysical borehole methods in fracture analysis of crystalline bedrock of the Loviisa site

    International Nuclear Information System (INIS)

    The aim of this study is to develope interpretation methods to determine fracture porosity and directional properties of water filled fracture space in crystalline bedrock. Geophysical methods with high spatial resolution along the borehole are chosen for the study. This enables the analysis of individual fractures. The analyzed methods are the dipmeter, sonic log, and bed resolution density log. The spatial resolution of the sonic log is improved with a convolution filter. The proposed method for fracture aperture analysis utilizes peak values of anomalies. Equal area projection is used for visual presentation of the fracture porosity and directional properties of fracture space. A tensor presentation with probability correction is applied for matemathical presentation of fracture properties. The material for the study is from the investigations of the Loviisa nuclear power plant site in Finland. The results from the site reveal that fracture aperture is unevenly distributed. The fracture porosity tensor is strongly oriented to horizontal direction. Comparison with hydraulic tests indicated that the total fracture porosity is one or two orders of magnitude larger than the hydraulically determined effective flow porosity or kinematic porosity

  10. Technical assessment of the bedrock waste storage at the Savannah River Plant

    International Nuclear Information System (INIS)

    An assessment of the safety and feasibility of ultimate storage of radioactive wastes produced at the Savannah River Plant (SRP) in horizontal tunnels excavated in the bedrock beneath the plant site is presented. Results indicate that a cavern with an excavated volume of 130 million gallons could contain 80 million gallons of concentrated radioactive SRP wastes with minimal risks if the cavern is located in the impermeable Triassic Basin underlying the Savannah River site. The cavern could be placed so that it would lie wholly within the boundaries of the plantsite. The document summarizes the general geological, hydrological, and chemical knowledge of the geological structures beneath the plantsite; develops evaluation guidelines; and utilizes mathematical models to conduct risk analyses. The risk models are developed from known soil and salt solution mechanics; from past, present, and future geological behavior of the onsite rock formations; and from known waste handling technology. The greatest risk is assessed to exist during transfer of the radioactive wastes to the cavern. When the cavern is filled and sealed, further population risks are asessed to be very low

  11. Hydraulic model calibration for extreme floods in bedrock-confined channels: case study from northern Thailand

    Science.gov (United States)

    Kidson, R. L.; Richards, K. S.; Carling, P. A.

    2006-02-01

    Palaeoflood reconstructions based on stage evidence are typically conducted in data-poor field settings. Few opportunities exist to calibrate the hydraulic models used to estimate discharge from this evidence. Consequently, an important hydraulic model parameter, the roughness coefficient (e.g. Manning's n), is typically estimated by a range of approximate techniques, such as visual estimation and semi-empirical equations. These techniques contribute uncertainty to resulting discharge estimates, especially where the study reach exhibits sensitivity in the discharge-Manning's n relation. We study this uncertainty within a hydraulic model for a large flood of known discharge on the Mae Chaem River, northern Thailand. Comparison of the calibrated Manning's n with that obtained from semi-empirical equations indicates that these underestimate roughness. Substantial roughness elements in the extra-channel zone, inundated during large events, contribute significant additional sources of flow resistance that are captured neither by the semi-empirical equations, nor by existing models predicting stage-roughness variations. This bedrock channel exhibits a complex discharge-Manning's n relation, and reliable estimates of the former are dependent upon realistic assignment of the latter. Our study demonstrates that a large recent flood can provide a valuable opportunity to constrain this parameter, and this is illustrated when we model a palaeoflood event in the same reach, and subsequently examine the magnitude-return period consequences of discharge uncertainty within a flood frequency analysis, which contributes its own source of uncertainty.

  12. Detecting a Defective Casing Seal at the Top of a Bedrock Aquifer.

    Science.gov (United States)

    Richard, Sandra K; Chesnaux, Romain; Rouleau, Alain

    2016-03-01

    An improperly sealed casing can produce a direct hydraulic connection between two or more originally isolated aquifers with important consequences regarding groundwater quantity and quality. A recent study by Richard et al. (2014) investigated a monitoring well installed in a fractured rock aquifer with a defective casing seal at the soil-bedrock interface. A hydraulic short circuit was detected that produced some leakage between the rock and the overlying deposits. A falling-head permeability test performed in this well showed that the usual method of data interpretation is not valid in this particular case due to the presence of a piezometric error. This error is the direct result of the preferential flow originating from the hydraulic short circuit and the subsequent re-equilibration of the piezometric levels of both aquifers in the vicinity of the inlet and the outlet of the defective seal. Numerical simulations of groundwater circulation around the well support the observed impact of the hydraulic short circuit on the results of the falling-head permeability test. These observations demonstrate that a properly designed falling-head permeability test may be useful in the detection of defective casing seals. PMID:26212855

  13. Radon in Soil Gas Above Bedrock Fracture Sets at the Shepley’s Hill Superfund Site

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Giles; T.L. McLing; M.V. Carpenter; C.J. Smith; W. Brandon

    2012-12-01

    The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepley’s Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrock outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or “detection” time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepley’s Hill site.

  14. Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain

    Directory of Open Access Journals (Sweden)

    J. R. Raposo

    2012-02-01

    Full Text Available Quantification of groundwater recharge in crystalline rocks presents great difficulties due to high heterogeneity. Traditionally these rocks have been considered with very low permeability, and their groundwater resources have been usually neglected, although they can have local importance when the bedrock presents a net of fractures well developed. Current European Water Framework Directive requires an efficient management of all groundwater resources, which begins with a proper knowledge of the aquifer and accurate recharge estimation. In this study, an assessment of groundwater resources in the Spanish hydrologic district of Galicia-Costa, with a geology mainly dominated by granitic and metasedimentaty rocks, was carried out. A water-balance modeling approach was used for estimating recharge rates in nine pilot catchments representatives of both geologic materials, and results were cross-validated with an independent technique as Chloride mass balance (CMB. A relation among groundwater recharge and total precipitation according to two different logistic curves was found for granites and metasedimentary rocks, which allows the parameterization of recharge by means of few hydrogeological parameters. Total groundwater resources in Galicia-Costa were estimated in 4427 Hm3 yr−1. An analysis of spatial and temporal variability of recharge was also carried out.

  15. Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2009-01-01

    The bedrock geology of the Old Lyme quadrangle consists of Neoproterozoic and Permian gneisses and granites of the Gander and Avalon terranes, Silurian metasedimentary rocks of the Merrimack terrane, and Silurian to Devonian metasedimentary rocks of uncertain origin. The Avalon terrane rocks crop out within the Selden Neck block, and the Gander terrane rocks crop out within the Lyme dome. The Silurian to Devonian rocks crop out between these two massifs. Previous mapping in the Old Lyme quadrangle includes the work by Lawrence Lundgren, Jr. Lundgren's work provides an excellent resource for rock descriptions and detailed modal analyses of rock units that will not be duplicated in this current report. New research that was not covered in detail by Lundgren is the focus of this report and includes (1) evaluation of the rocks in the core of the Lyme dome in an effort to subdivide units in this area; (2) structural analysis of foliations and folds in and around the Lyme dome; (3) geochronology of selected units within the Lyme dome; and (4) analysis of joints and the fracture properties of the rocks.

  16. Quaternary deposits and weathered bedrock material as a source of dangerous radon emissions in Estonia

    Directory of Open Access Journals (Sweden)

    Petersell Valter

    2015-06-01

    Full Text Available The risk of dangerous radon emissions in Estonia is high, being among the highest in Europe. In almost 33 per cent of Estonian land area, the content of radon in soil-contained air exceeds the safe limit for unrestricted construction (50 kBq/m3. In such high radon-risk areas the concentration of radon in soil-contained air ranges from 50 to 400 kBq/m3, in a few cases reaching up to 2,100 kBq/m3 exceeding the permitted level for residential areas. The situation is particularly serious in the northernmost part of the country, where uranium-rich graptolite argillite (Dictyonema shale and the Obolus phosphorite are close to ground surface and their particles are constituent parts of Quaternary deposits. Radon emissions from bedrock have been investigated in detail, but to date Quaternary strata as a source of radon emissions are poorly studied. According to our measurements the highest concentrations of radon are related to tills containing clasts and fines of graptolite argillite and phosphorite. Glacial deposits include also granitoidal material, containing U, Th and K, which have been transported by glaciers from the outcrop areas of crystalline basement rocks in Finland and the Gulf of Finland. Due to weathering, outwash and repeated redeposition other genetic types are poorer in radioactive elements and they are weaker sources of radon.

  17. Toward improved prediction of the bedrock depth underneath hillslopes: Bayesian inference of the bottom-up control hypothesis using high-resolution topographic data

    Science.gov (United States)

    Gomes, Guilherme J. C.; Vrugt, Jasper A.; Vargas, Eurípedes A.

    2016-04-01

    The depth to bedrock controls a myriad of processes by influencing subsurface flow paths, erosion rates, soil moisture, and water uptake by plant roots. As hillslope interiors are very difficult and costly to illuminate and access, the topography of the bedrock surface is largely unknown. This essay is concerned with the prediction of spatial patterns in the depth to bedrock (DTB) using high-resolution topographic data, numerical modeling, and Bayesian analysis. Our DTB model builds on the bottom-up control on fresh-bedrock topography hypothesis of Rempe and Dietrich (2014) and includes a mass movement and bedrock-valley morphology term to extent the usefulness and general applicability of the model. We reconcile the DTB model with field observations using Bayesian analysis with the DREAM algorithm. We investigate explicitly the benefits of using spatially distributed parameter values to account implicitly, and in a relatively simple way, for rock mass heterogeneities that are very difficult, if not impossible, to characterize adequately in the field. We illustrate our method using an artificial data set of bedrock depth observations and then evaluate our DTB model with real-world data collected at the Papagaio river basin in Rio de Janeiro, Brazil. Our results demonstrate that the DTB model predicts accurately the observed bedrock depth data. The posterior mean DTB simulation is shown to be in good agreement with the measured data. The posterior prediction uncertainty of the DTB model can be propagated forward through hydromechanical models to derive probabilistic estimates of factors of safety.

  18. Classification of conditions for short-wall continuous mechanical mining in shallowly buried coal seam with thin bedrock

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-de; ZHANG Dong-sheng; MA Li-qiang; ZHAO Yong-feng; WANG Hong-sheng

    2008-01-01

    The room and pillar method is usually used to extract coal from shallowly buried seams with thin bedrock. This results in a very low production efficiency and in a low degree of extraction. In recent years short-wall continuous mechanical mining has been extensively used in many situations except shallowly buried coal seams with thin bedrock. The principles governing movement of the overlying strata above the 2.35 m, which was done using fuzzy clustering results. A series of reasonable,relative parameters in each category have been calculated and analyzed. One proposed way to perform short-wall continuous mechanical mining in shallowly buried coal seams is given. This is significant for coal mines with similar geological conditions.

  19. Decadal changes in fault-scarp knickpoints by bedrock erosion following 1999 Chi-Chi Earthquake in Taiwan

    Science.gov (United States)

    Hayakawa, Yuichi S.; Matsuta, Nobuhisa; Maekado, Akira; Matsukura, Yukinori

    2010-05-01

    Surface ruptures along the Chelungpu thrust fault in west-central Taiwan caused formation of knickpoints (waterfalls) according with bedrock exposure in riverbeds when the 921 Chi-Chi Earthquake occurred on September 21, 1999. Since then the fault-scarp knickpoints have receded upstream at extremely rapid rates, causing bedrock incision for tens to hundreds of meters in length within a decade. The rapid erosion of the knickpoints provides us an opportunity to investigate actual changes of bedrock morphology of the rivers, and here we examine the changes in the knickpoint recession rates during the last decade from 1999 to 2009. Field measurements of the topography revealed that the mean rate of a knickpoint recession in the largest river (Ta-chia) was 3.3 m/y in the earlier 6 years (1999-2005) and 220 m/y in the last 4 years (2005-2009). This acceleration of the recession can be due to the increase in flood frequency and intensity, narrowing of the channel width, and/or anisotropy of rock strength (sandstones and mudstones) along the stream. The other knickpoints showed relatively similar recession rates throughout the decade on the order of 20-60 m/y. These rates are then compared to an empirical model of knickpoint recession, in which relevant physical parameters of erosive force of stream and bedrock resistance are involved as a dimensionless index. The actual recession rates of the knickpoints are considerably higher than those expected by the model, suggesting that abundant sediment particles supplied from upstream catchment enhance the knickpoint erosion. In fact, all the abundant gravels on the riverbed around the knickpoints that are supplied from further upstream areas with different lithology (mostly older sandstones) are quite harder than the bedrock therein. The model analysis for the two time periods for each knickpoint suggests that the changes in their recession rates can be commonly affected by severe flood occurrence in the study area. Also, some

  20. Study of the engineering geologic feature of weathering zone of bedrock in 810 producing area of Luling Mine

    Institute of Scientific and Technical Information of China (English)

    桂和荣; 孙家斌; 李明好; 李伟; 尹正柱; 陈富勇; 宋晓梅

    2002-01-01

    For a safe extracting of the mine resource of the razor-thin capping rock, a study of waterproof, sand prevention, roof-fall prevention must be made. As a result, its necessary to master the engineering feature of weathering zone of bedrock. According to the lithology appraisal and X diffract analyses, the mineral feature of weathering zone of bedrock in 810 producing area has been studied in this article. By testing the physical mechanics index of weathering zone, we have found out some features of physical mechanic quality. Utilizing the determined result of viscosity index and slaking test, we reach a conclusion of the water stability of weathering zone, that is the weathering zone rock belongs to the type that is easily slaked when encountered water and the water stability is weak.

  1. Bedrock morphology and structure, upper Santa Cruz Basin, south-central Arizona, with transient electromagnetic survey data

    Science.gov (United States)

    Bultman, Mark W.; Page, William R.

    2016-10-31

    The upper Santa Cruz Basin is an important groundwater basin containing the regional aquifer for the city of Nogales, Arizona. This report provides data and interpretations of data aimed at better understanding the bedrock morphology and structure of the upper Santa Cruz Basin study area which encompasses the Rio Rico and Nogales 1:24,000-scale U.S. Geological Survey quadrangles. Data used in this report include the Arizona Aeromagnetic and Gravity Maps and Data referred to here as the 1996 Patagonia Aeromagnetic survey, Bouguer gravity anomaly data, and conductivity-depth transforms (CDTs) from the 1998 Santa Cruz transient electromagnetic survey (whose data are included in appendixes 1 and 2 of this report).Analyses based on magnetic gradients worked well to identify the range-front faults along the Mt. Benedict horst block, the location of possibly fault-controlled canyons to the west of Mt. Benedict, the edges of buried lava flows, and numerous other concealed faults and contacts. Applying the 1996 Patagonia aeromagnetic survey data using the horizontal gradient method produced results that were most closely correlated with the observed geology.The 1996 Patagonia aeromagnetic survey was used to estimate depth to bedrock in the upper Santa Cruz Basin study area. Three different depth estimation methods were applied to the data: Euler deconvolution, horizontal gradient magnitude, and analytic signal. The final depth to bedrock map was produced by choosing the maximum depth from each of the three methods at a given location and combining all maximum depths. In locations of rocks with a known reversed natural remanent magnetic field, gravity based depth estimates from Gettings and Houser (1997) were used.The depth to bedrock map was supported by modeling aeromagnetic anomaly data along six profiles. These cross sectional models demonstrated that by using the depth to bedrock map generated in this study, known and concealed faults, measured and estimated magnetic

  2. Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate

    Science.gov (United States)

    Johnson, Joel P. L.; Whipple, Kelin X.

    2010-06-01

    We explored the dependence of experimental bedrock erosion rate on shear stress, bed load sediment flux, alluvial bed cover, and evolving channel morphology. We isolated these variables experimentally by systematically varying gravel sediment flux Qs and water discharge Qw in a laboratory flume, gradually abrading weak concrete "bedrock." All else held constant, we found that (1) erosion rate was insensitive to flume-averaged shear stress, (2) erosion rate increased linearly with sediment flux, (3) erosion rate decreased linearly with the extent of alluvial bed cover, and (4) the spatial distribution of bed cover was sensitive to local bed topography, but the extent of cover increased with Qs/Qt (where Qt is flume-averaged transport capacity) once critical values of bed roughness and sediment flux were exceeded. Starting from a planar geometry, erosion increased bed roughness due to feedbacks between preferential sediment transport through interconnected topographic lows, focused erosion along these zones of preferential bed load transport, and local shear stresses that depended on the evolving bed morphology. Finally, continued growth of bed roughness was inhibited by imposed variability in discharge and sediment flux, due to changes in spatial patterns of alluvial deposition and impact wear. Erosion was preferentially focused at lower bed elevations when the bed was cover-free, but was focused at higher bed elevations when static alluvial cover filled topographic lows. Natural variations in discharge and sediment flux may thus stabilize and limit the growth of roughness in bedrock channels due to the effects of partial bed cover.

  3. Uranium and radon in private bedrock well water in Maine: geospatial analysis at two scales.

    Science.gov (United States)

    Yang, Qiang; Smitherman, Paul; Hess, C T; Culbertson, Charles W; Marvinney, Robert G; Smith, Andrew E; Zheng, Yan

    2014-04-15

    In greater Augusta of central Maine, 53 out of 1093 (4.8%) private bedrock well water samples from 1534 km(2) contained [U] >30 μg/L, the U.S. Environmental Protection Agency's (EPA) Maximum Contaminant Level (MCL) for drinking water; and 226 out of 786 (29%) samples from 1135 km(2) showed [Rn] >4,000 pCi/L (148 Bq/L), the U.S. EPA's Alternative MCL. Groundwater pH, calcite dissolution and redox condition are factors controlling the distribution of groundwater U but not Rn due to their divergent chemical and hydrological properties. Groundwater U is associated with incompatible elements (S, As, Mo, F, and Cs) in water samples within granitic intrusions. Elevated [U] and [Rn] are located within 5-10 km distance of granitic intrusions but do not show correlations with metamorphism at intermediate scales (10(0)-10(1) km). This spatial association is confirmed by a high-density sampling (n = 331, 5-40 samples per km(2)) at local scales (≤10(-1) km) and the statewide sampling (n = 5857, 1 sample per 16 km(2)) at regional scales (10(2)-10(3) km). Wells located within 5 km of granitic intrusions are at risk of containing high levels of [U] and [Rn]. Approximately 48 800-63 900 and 324 000 people in Maine are estimated at risk of exposure to U (>30 μg/L) and Rn (>4000 pCi/L) in well water, respectively.

  4. Isotopic Evidence for Microbial Activity in Crystalline Bedrock Fractures - a Case Study from Olkiluoto, SW Finland

    Science.gov (United States)

    Sahlstedt, E. K.; Karhu, J.; Pitkänen, P.

    2015-12-01

    Changes in the geochemical environment in crystalline bedrock fractures were investigated using the stable isotopes of C, O and S in fracture filling minerals as tracers. Of special interest were the possible changes which may occur in the subsurface at low temperatures. Especially, the influence of microbial activity was recognized as a catalyst for inducing changes in the geochemical environment. The study site is the Olkiluoto island located on the western coast of Finland, planned to host a geological repository for nuclear waste. Fracture surfaces were investigated to recognize the latest mineralizations at the site. These fillings were comprised of thin plates or small euhedral crystals of calcite and pyrite. The carbon and sulfur isotope compositions of calcite and pyrite were measured from bulk material by conventional IRMS, and in situ by secondary ion mass spectrometry. A notable feature of the late-stage fillings was high variabilities in the δ13C values of calcite and the δ34S values of pyrite, which ranged from -53.8 ‰ to +31.6 ‰ and from -50.4 ‰ to +77.7 ‰, respectively. Based on the isotopic compositions of the fillings, several features in the past hydrogeochemical environment could be recognized. The isotopic composition of the fracture fillings indicate an environment which was stratified with respect to depth. Characteristic features include bacterial sulfate reduction (BSR) occurring at depths 50 m. It appears that methanic conditions were replaced by sulfate reduction at depths >50 m likely due to infiltration of SO42--rich brackish waters. Sulfate reducing bacteria used mainly surface derived organic carbon as electron donors. Some indication of minor methanotrophic activity was recognized in anomalously low δ13C values of calcite, down to -53.8 ‰, at the depth range of 34-54 m. This methanotrophic activity may have been related to bacteria using CH4 as an electron donor in BSR.

  5. Pseudo 3-D P wave refraction seismic monitoring of permafrost in steep unstable bedrock

    Science.gov (United States)

    Krautblatter, Michael; Draebing, Daniel

    2014-02-01

    permafrost in steep rock walls can cause hazardous rock creep and rock slope failure. Spatial and temporal patterns of permafrost degradation that operate at the scale of instability are complex and poorly understood. For the first time, we used P wave seismic refraction tomography (SRT) to monitor the degradation of permafrost in steep rock walls. A 2.5-D survey with five 80 m long parallel transects was installed across an unstable steep NE-SW facing crestline in the Matter Valley, Switzerland. P wave velocity was calibrated in the laboratory for water-saturated low-porosity paragneiss samples between 20°C and -5°C and increases significantly along and perpendicular to the cleavage by 0.55-0.66 km/s (10-13%) and 2.4-2.7 km/s (>100%), respectively, when freezing. Seismic refraction is, thus, technically feasible to detect permafrost in low-porosity rocks that constitute steep rock walls. Ray densities up to 100 and more delimit the boundary between unfrozen and frozen bedrock and facilitate accurate active layer positioning. SRT shows monthly (August and September 2006) and annual active layer dynamics (August 2006 and 2007) and reveals a contiguous permafrost body below the NE face with annual changes of active layer depth from 2 to 10 m. Large ice-filled fractures, lateral onfreezing of glacierets, and a persistent snow cornice cause previously unreported permafrost patterns close to the surface and along the crestline which correspond to active seasonal rock displacements up to several mm/a. SRT provides a geometrically highly resolved subsurface monitoring of active layer dynamics in steep permafrost rocks at the scale of instability.

  6. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet

    Science.gov (United States)

    ten Brink, U.S.; Hackney, R.I.; Bannister, S.; Stern, T.A.; Makovsky, Y.

    1997-01-01

    In recent years the Transantarctic Mountains (TAM), the largest noncontractional mountain belt in the world, have become the focus of modelers who explained their uplift by a variety of isostatic and thermal mechanisms. A problem with these models is a lack of available data to compare with model predictions. We report here the results of a 312-km-long geophysical traverse conducted in 1993/1994 in the hinterland of the TAM. Using detailed subglacial topography and gravity measurements, we confirm the origin of the TAM as a flexural uplift of the edge of East Antarctica. Using an elastic model with a free edge, we can jointly fit the topography and the gravity with a plate having an elastic thickness of 85 ?? 15 km and a preuplift elevation of 700 ?? 50 m for East Antarctica. Using a variety of evidence, we argue that the uplift is coincident with a relatively minor tectonic event of transtensional motion between East and West Antarctica during the Eocene rather than the Late Cretaceous rifting event that created the Ross Embayment. We suggest that this transtensional motion caused the continuous plate to break, which created an escarpment that significantly increased the rates of erosion and exhumation. Results from the geophysical traverse also extend our knowledge of the bedrock geology from the exposures within the TAM to the ice covered interior. Our interpretation suggests that the Ferrar flood basalts extend at least 100 km westward under the ice. The Beacon Supergroup of Paleozoic and Mesozoic sediments thins gradually under the ice and its reconstructed thickness is reminiscent of profiles of foreland basins. Finally, there is no indication in the gravity field for an incomplete rebound due to significant melting of the East Antarctic ice sheet since the last glacial period.

  7. Sample collection, treatment and measurements of soil, bedrock and building materials

    International Nuclear Information System (INIS)

    The environmental radionuclides can be divided into three groups according to origin (a) Primordial origin, (b) Continuously produced by natural processes other than the decay of primordial radionuclides and (c) Those generated by man's activities. The natural radionuclides of the first group are of interest for indoor exposure and related to ''U-238'', ''Th-232'' series plus K-40 respectively, present in soil, bedrock and building materials. An extensive literature exists on the U and Th concentrations in rocks. Most of the data refer to the radon decay products with NaI detectors assuming a perfect equilibrium all along the U and Th. However, an equilibrium down to the Ra-226 or Ra-228 may exist in igneous rocks and old sediments. But in recent sediments and soils an equilibrium is hardly found. There is also the problem of the radon escape from the sample due to the inert nature of the radon and the large concentration gradient. Even a small crack or gap in the sample container may lead to an important radon loss. The concentrations of natural radionuclides may be measured by using a co-axial germanium detector for the determination of the high energy gamma-rays emitted by Ra-226, Ra-228, and K-40. For lower energy gamma-rays i.e. in the range from tens to hundreds of Kev (of interest for the measurement of 185.7 Kev from U-235 and 63.3 plus 92.6 Kev from Th-234) an x-gamma co-axial detector is needed. For a better resolution in the lowest energy range a Ge(HP) planar detector would be more appropriate. 10 refs, 4 figs

  8. The analysis of the bedrock deformation in Olkiluoto using precise levelling measurements

    Energy Technology Data Exchange (ETDEWEB)

    Saaranen, V.; Rouhiainen, P.; Suurmaeki, H. [Finnish Geodetic Institute, Masala (Finland)

    2014-01-15

    In order to research vertical bedrock deformations in the Olkiluoto area, Posiva Oy and the Finnish Geodetic Institute began monitoring with precise levelling in 2003. At the moment, the measuring plan includes a loop between the monitoring GPS stations around the island, a levelling line from the island to the mainland, levelling loops to ONKALO, the final disposal site, and VLJ, the low and intermediate level waste repository there. The levelling to the mainland has been performed every fourth year and the levelling of the GPS stations every second year. The micro loops (ONKALO and VLJ) have been measured annually. In this report, we use three-step method to research a vertical deformation of the Olkiluoto area. Firstly, the linear deformation rate in the area has been determined by the least squares adjustment of the levelling data. It varies from -0.2 mm/yr to +0.2 mm/yr. Secondly, local deformations have been analysed by comparing the height differences for different years. In this comparison a starting value for the yearly adjustment has been corrected for land uplift. Using this method the elevation changes are relative to the whole network. For a fixed benchmark, we correct its yearly deformation. Thirdly, the fault lines have been analysed by comparing the elevation changes between the successive benchmarks from one observation epoch to another. The results show that ONKALO and Lapijoki are in the subsidence area of the network, and VLJ has small uplift rate. On the island some deformations exist, but elevation difference from 2003 to 2011 is less than one millimetre at every benchmarks. The measurements in the Lapijoki-Olkiluoto line in 2003, 2007 and 2011 show that linear elevation change between the mainland and Olkiluoto island is a little since 2003. The elevation differences, from Olkiluoto to Lapijoki, measured in 2003 and 2011 differ less than one millimetre each other, but the 2007 observation differs three millimetres from the other measurements

  9. The bedrock geology and fracture characterization of the Maynard quadrangle of eastern Massachusetts

    Science.gov (United States)

    Arvin, Tracey A.

    The bedrock geology of the Maynard quadrangle of east-central Massachusetts was examined through field and petrographic studies and mapped at a scale of 1:24,000. The quadrangle spans much of the Nashoba terrane and a small area of the Avalon terrane. Two stratigraphic units were defined in the Nashoba terrane: the Cambrian to Ordovician Marlboro Formation and the Ordovician Nashoba Formation. In addition, four igneous units were defined in the Nashoba terrane: the Silurian to Ordovician phases of the Andover Granite, the Silurian to Devonian Assabet Quartz Diorite, the Silurian to Devonian White Pond Diorites (new name), and the Mississippian Indian Head Hill Igneous Complex. In the Avalon terrane, one stratigraphic unit was defined as the Proterozoic Z Westboro Formation Mylonites, and one igneous unit was defined as the Proterozoic Z to Devonian Sudbury Valley Igneous Complex. Two major faults were identified: the intra-terrane Assabet River fault zone in the central part of the quadrangle, and the south-east Nashoba terrane bounding Bloody Bluff fault zone. Petrofabric studies on fault rocks in two areas indicated final motion in those areas: the sheared Marlboro Formation amphibolites indicated dextral transpressive NW over SE motion, and the Westboro Formation Mylonites indicated sinistral strike-slip motion. Fracture characterization of entire quadrangle where attributes (orientation, trace length, spacing, and termination) of fractures and joints were used to identify dominant sets of fractures that affect the transmissivity and storage of groundwater. Orientations of SW -- NE are dominant throughout the quadrangle and consistent with regional trend.

  10. Deep Impact: Effects of Mountaintop Mining on Surface Topography, Bedrock Structure, and Downstream Waters.

    Science.gov (United States)

    Ross, Matthew R V; McGlynn, Brian L; Bernhardt, Emily S

    2016-02-16

    Land use impacts are commonly quantified and compared using 2D maps, limiting the scale of their reported impacts to surface area estimates. Yet, nearly all land use involves disturbances below the land surface. Incorporating this third dimension into our estimates of land use impact is especially important when examining the impacts of mining. Mountaintop mining is the most common form of coal mining in the Central Appalachian ecoregion. Previous estimates suggest that active, reclaimed, or abandoned mountaintop mines cover ∼7% of Central Appalachia. While this is double the areal extent of development in the ecoregion (estimated to occupy impacts are far more extensive than areal estimates alone can convey as the impacts of mines extend 10s to 100s of meters below the current land surface. Here, we provide the first estimates for the total volumetric and topographic disturbance associated with mining in an 11 500 km(2) region of southern West Virginia. We find that the cutting of ridges and filling of valleys has lowered the median slope of mined landscapes in the region by nearly 10 degrees while increasing their average elevation by 3 m as a result of expansive valley filling. We estimate that in southern West Virginia, more than 6.4km(3) of bedrock has been broken apart and deposited into 1544 headwater valley fills. We used NPDES monitoring datatsets available for 91 of these valley fills to explore whether fill characteristics could explain variation in the pH or selenium concentrations reported for streams draining these fills. We found that the volume of overburden in individual valley fills correlates with stream pH and selenium concentration, and suggest that a three-dimensional assessment of mountaintop mining impacts is necessary to predict both the severity and the longevity of the resulting environmental impacts. PMID:26800154

  11. Uranium and radon in private bedrock well water in Maine: geospatial analysis at two scales

    Science.gov (United States)

    Yang, Qiang; Smitherman, Paul; Hess, C.T.; Culbertson, Charles W.; Marvinney, Robert G.; Zheng, Yan

    2014-01-01

    In greater Augusta of central Maine, 53 out of 1093 (4.8%) private bedrock well water samples from 1534 km2 contained [U] >30 μg/L, the U.S. Environmental Protection Agency’s (EPA) Maximum Contaminant Level (MCL) for drinking water; and 226 out of 786 (29%) samples from 1135 km2 showed [Rn] >4,000 pCi/L (148 Bq/L), the U.S. EPA’s Alternative MCL. Groundwater pH, calcite dissolution and redox condition are factors controlling the distribution of groundwater U but not Rn due to their divergent chemical and hydrological properties. Groundwater U is associated with incompatible elements (S, As, Mo, F, and Cs) in water samples within granitic intrusions. Elevated [U] and [Rn] are located within 5–10 km distance of granitic intrusions but do not show correlations with metamorphism at intermediate scales (100−101 km). This spatial association is confirmed by a high-density sampling (n = 331, 5–40 samples per km2) at local scales (≤10–1 km) and the statewide sampling (n = 5857, 1 sample per 16 km2) at regional scales (102–103 km). Wells located within 5 km of granitic intrusions are at risk of containing high levels of [U] and [Rn]. Approximately 48 800–63 900 and 324 000 people in Maine are estimated at risk of exposure to U (>30 μg/L) and Rn (>4000 pCi/L) in well water, respectively.

  12. Digital bedrock mapping at the Geological Survey of Norway: BGS SIGMA tool and in-house database structure

    Science.gov (United States)

    Gasser, Deta; Viola, Giulio; Bingen, Bernard

    2016-04-01

    Since 2010, the Geological Survey of Norway has been implementing and continuously developing a digital workflow for geological bedrock mapping in Norway, from fieldwork to final product. Our workflow is based on the ESRI ArcGIS platform, and we use rugged Windows computers in the field. Three different hardware solutions have been tested over the past 5 years (2010-2015). (1) Panasonic Toughbook CE-19 (2.3 kg), (2) Panasonic Toughbook CF H2 Field (1.6 kg) and (3) Motion MC F5t tablet (1.5 kg). For collection of point observations in the field we mainly use the SIGMA Mobile application in ESRI ArcGIS developed by the British Geological Survey, which allows the mappers to store georeferenced comments, structural measurements, sample information, photographs, sketches, log information etc. in a Microsoft Access database. The application is freely downloadable from the BGS websites. For line- and polygon work we use our in-house database, which is currently under revision. Our line database consists of three feature classes: (1) bedrock boundaries, (2) bedrock lineaments, and (3) bedrock lines, with each feature class having up to 24 different attribute fields. Our polygon database consists of one feature class with 38 attribute fields enabling to store various information concerning lithology, stratigraphic order, age, metamorphic grade and tectonic subdivision. The polygon and line databases are coupled via topology in ESRI ArcGIS, which allows us to edit them simultaneously. This approach has been applied in two large-scale 1:50 000 bedrock mapping projects, one in the Kongsberg domain of the Sveconorwegian orogen, and the other in the greater Trondheim area (Orkanger) in the Caledonian belt. The mapping projects combined collection of high-resolution geophysical data, digital acquisition of field data, and collection of geochronological, geochemical and petrological data. During the Kongsberg project, some 25000 field observation points were collected by eight

  13. Geology, Bedrock, Wisconsin Geologic and Natural History Survey has these maps, Published in 2006, 1:24000 (1in=2000ft) scale, Lafayette County Land Records.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2006. It is described as...

  14. Digital Polygon Model Grid of the Hydrogeologic Framework of Bedrock Units for a Simulation of Groundwater Flow for the Lake Michigan Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The hydrogeologic framework for the Lake Michigan Basin model was developed by grouping the bedrock geology of the study area into hydrogeologic units on the basis...

  15. Geology, Bedrock, Zionville Quad line work. Incomplete lines., Published in 2006, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2006. It is described as...

  16. Geology, Bedrock, Farner Quad line work. Incomplete lines., Published in 2006, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2006. It is described as...

  17. Geology, Bedrock, Topton Quad line work. Incomplete lines., Published in 2006, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2006. It is described as...

  18. Geology, Bedrock, Barnardsville Quad line work. Incomplete lines., Published in 2006, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2006. It is described as...

  19. Review of the sorption of radionuclides on the bedrock of Haestholmen and on construction and backfill materials of a final repository for reactor wastes

    International Nuclear Information System (INIS)

    Imatran Voima Oy (IVO) has plans to build a final repository for reactor wastes in the bedrock of the nuclear power plant site at Haestholmen, Loviisa. This report summarizes the sorption studies of radionuclides in Finnish bedrock performed at the Department of Radiochemistry, University of Helsinki. The values of mass distribution ratios, Kd, and surface distribution ratios, Ka; of carbon, calsium, Zirconium, niobium, cobalt, nickel, strontium, cesium, uranium, plutonium, americium, thorium, chlorine, iodine and technetium are surveyed. Special attention is paid to the sorption data for construction and backfill materials of rector waste repository and the bedrock of Haestholmen. Safety assessment of a repository includes calculations of migration of the waste element in construction materials and backfill in the nearfield and in bedrock. Retardation by sorption of waste nuclides compared to groundwater flow is described by using distribution ratios between solid materials and water. (orig.)

  20. Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA

    Science.gov (United States)

    Tromp-van, Meerveld, H. J.; Peters, N.E.; McDonnell, Jeffery J.

    2007-01-01

    The effect of bedrock permeability on subsurface stormflow initiation and the hillslope water balance is poorly understood. Previous hillslope hydrological studies at the Panola Mountain Research Watershed (PMRW), Georgia, USA, have assumed that the bedrock underlying the trenched hillslope is effectively impermeable. This paper presents a series of sprinkling experiments where we test the bedrock impermeability hypothesis at the PMRW. Specifically, we quantify the bedrock permeability effects on hillslope subsurface stormflow generation and the hillslope water balance at the PMRW. Five sprinkling experiments were performed by applying 882-1676 mm of rainfall over a ???5.5 m ?? 12 m area on the lower hillslope during ???8 days. In addition to water input and output captured at the trench, we measured transpiration in 14 trees on the slope to close the water balance. Of the 193 mm day-1 applied during the later part of the sprinkling experiments when soil moisture changes were small, 175 mm day-1 (91%). Bedrock moisture was measured at three locations downslope of the water collection system in the trench. Bedrock moisture responded quickly to precipitation in early spring. Peak tracer breakthrough in response to natural precipitation in the bedrock downslope from the trench was delayed only 2 days relative to peak tracer arrival in subsurface stormflow at the trench. Leakage to bedrock influences subsurface stormflow at the storm time-scale and also the water balance of the hillslope. This has important implications for the age and geochemistry of the water and thus how one models this hillslope and watershed. Copyright ?? 2006 John Wiley & Sons, Ltd.

  1. The effect of vegetation on infiltration in shallow soils underlain by fissured bedrock

    Science.gov (United States)

    Stothoff, S. A.; Or, D.; Groeneveld, D. P.; Jones, S. B.

    1999-05-01

    Mean annual infiltration above the high-level waste repository proposed to be sited at Yucca Mountain, Nevada, has a large impact on assessments of repository performance. Ongoing investigations of infiltration processes have identified the relatively horizontal caprock environment above portions of the repository as a potentially large source of infiltrating waters, due to shallow, permeable soils above a moderately welded tuff with large soil-filled fissures. The combination of shallow soils and fissured bedrock allows rapid penetration of wetting pulses to below the rooting zone. Plant uptake can strongly reduce net infiltration in arid environments with high water storage capacity, and, despite the low water storage capacity, there is a relatively high vegetation density in this environment. The apparent discrepancy between high vegetation density and low water storage motivates the study of plant-hydrologic interactions in this semiarid environment. Field observations were coupled with plant- and landscape-scale models to provide insight into plant-hydrologic interactions. Several lines of evidence, including: (i) linear plant growth features observed on aerial photographs; (ii) comparisons of plant cover within the fissured environment and comparable environments lacking fissures; and (iii) direct excavations, all suggest that the widely spaced soil-filled fissures are conducive to plant growth even when fissures are buried at soil depths exceeding 30 cm. Results from a mechanistic simulation model for root growth into fissures suggest that the additional (sheltered) plant-available soil water within fissures provides a competitive advantage for plant establishment. Therefore, plants that germinate above a fissure are more likely to survive, in turn developing linear features above fissures. Having established that plants preferentially root within soil-filled fissures in the caprock environment, a set of simulations were performed to examine the hydrologic

  2. Late Cenozoic exhumation of New Zealand: inversion from bedrock thermochronological ages

    Science.gov (United States)

    Jiao, Ruohong; Herman, Frédéric; Seward, Diane

    2016-04-01

    In the SW Pacific, the present subaerial land area of New Zealand straddles the boundary between the Australian and Pacific Plates. This margin has been converging since the mid-Eocene-late Oligocene, leading to a period of widespread crustal deformation and exhumation. During the past decades, the exhumation of the New Zealand basement has been the basis of many thermochronological studies, resulting in a large number of data from the Palaeozoic and Mesozoic bedrocks. We compiled the cooling ages from multiple thermochronological systems (i.e. apatite and zircon (U-Th)/He, apatite and zircon fission-track, K-feldspar, muscovite, biotite and hornblende 40Ar/39Ar or K-Ar) that yielded cooling events younger than 25 Ma, and formally inverted this data set to estimate the large-scale temporal and spatial variations in the exhumation rates of New Zealand during the late Cenozoic. The exhumation results show good agreement with the predicted off-shore sedimentation rates, while the thermal model used in the inversion is in part constrained by the present-day observed surface heat flow. The modelling results indicate crustal exhumation from the earliest Miocene (just prior to 20 Ma). But from ~10 Ma, a moderate acceleration of exhumation is observed at most sites, coincident with an important change in the orientation of the Pacific motion relative to the Australian Plate. Since the Quaternary, rapid exhumation has occurred in the Southern Alps along the west coast of South Island, with the highest rates in the central part of range. In this region, our estimates of the million-year-scale exhumation rates are in general coincidence with those previously estimated over shorter (i.e. 0.1 Ma and 10 ka) time scales, as well as with the contemporary rock uplift rates derived from GPS data, confirming exhumational steady-state in the orogeny. In contrast in eastern North Island, the predicted Quaternary exhumation rates are much lower than the recent rock uplift rates measured

  3. What about the regolith, the saprolite and the bedrock? Proposals for classifying the subsolum in WRB

    Science.gov (United States)

    Juilleret, Jérôme; Dondeyne, Stefaan; Hissler, Christophe

    2014-05-01

    Since soil surveys in the past were mainly conducted in support of agriculture, soil classification tended to focus on the solum representing mainly the upper part of the soil cover that is exploited by crops; the subsolum was largely neglected. When dealing with environmental issues - such as vegetation ecology, groundwater recharge, water quality or waste disposal - an integrated knowledge of the solum to subsolum continuum is required. In the World Reference Base for soil resources (WRB), the lower boundary for soil classification is set at 2 m, including both loose parent material as well as weathered and continuous rock. With the raised concern for environmental issues and global warming, classification concepts in WRB have been widened over the last decades. Cryosols were included as a separate Reference Soil Group to account for soils affected by perennial frost; Technosols were included to account for soils dominated by technical human activity. Terms for describing and classifying the subsolum are however still lacking. Nevertheless, during soil surveys a wealth of information on the subsolum is also collected. In Luxembourg, detailed soil surveys are conducted according to a national legend which is correlated to WRB. Quantitative data on characteristics of the subsolum, such as bedding, cleavage, fractures density and dipping of the layer, are recorded for their importance in relation to subsurface hydrology. Drawing from this experience, we propose defining four "subsolum materials" and which could be integrated into WRB as qualifiers. Regolitic materials are composed of soil and rock fragments deposited by water, solifluction, ice or wind; Paralithic materials consist of partly weathered rock with geogenic structural features; Saprolitic materials are formed from in situ weathering of the underlying geological deposits; Lithic materials correspond to unaltered bedrock. We discuss how these characteristics could be integrated into WRB and how additional

  4. Bedrock control on the Assu Incised Valley morphology and sedimentation in the Brazilian Equatorial Shelf

    Institute of Scientific and Technical Information of China (English)

    Moab Praxedes Gomes; Helenice Vital; Karl Stattegger; Klaus Schwarzer

    2016-01-01

    control of the bedrock on valley incision and infill response to the last fall and rise in sea level on narrow, shallow and low-gradient shelves.

  5. Proceedings of a seminar on sea level displacement and bedrock uplift, 10-11 June 2010, Pori, Finland

    International Nuclear Information System (INIS)

    This working report is the proceedings of a seminar on Sea level displacement and bedrock uplift held on 10-11 June 2010 in Pori, Finland. The seminar included invited oral presentations, as well as poster presentations, addressing the causes and mechanisms, observations, modelling and implications of the sea level change and crustal uplift still continuing after the last glaciation in the Baltic Sea region. In the proceedings, a total of 14 papers are included, in addition to foreword and a summary of seminar discussions. (orig.)

  6. Bedrock structures controlling the spatial occurrence and geometry of 1.8 Ga younger glacifluvial deposits - Example from First Salpausselkä, southern Finland

    Science.gov (United States)

    Skyttä, Pietari; Kinnunen, Jussi; Palmu, Jukka-Pekka; Korkka-Niemi, Kirsti

    2015-12-01

    The glacifluvial deposits within formerly glaciated areas of southern Finland comprise the predominance of well-sorted subglacial and ice marginal sediments. The deposits are less than 100 m thick and form significant aquifers utilized by the respective areas. The spatial correlation of subglacial deposits with bedrock structures, particularly the deformation zones, has been long recognized, but most often not systematically investigated. The purpose of this study was to understand how specific bedrock structures control the position and processes of formation of glacifluvial deposits, using the First Salpausselkä area of southern Finland as a model area. We apply a means of structural analysis to compile structural interpretations (form lines and 3D-surfaces) of the bedrock and correlate the results with the patterns of the glacifluvial deposits and the topography of the underlying bedrock surface. Two major E-W striking shear zones defining abrupt breaks at the bedrock surface along with secondary SW-NE striking splays, originating from the horsetail-like termination of the Somero shear zone, control the deposition of eskers and ice marginal deposits. Based on correlations between the bedrock topography, glacial erosion and sedimentation, we infer that laterally extensive shear zones may have indirectly affected the glacial dynamics within the areas of areal scour more than previously considered. Recognized deformation zones are important for modelling the internal stratigraphy of glacifluvial deposits, their hydrogeological properties and for mapping fresh water supplies within the Nordic countries and other glaciated areas which have undergone substantial tectonic deformation. The development of 3D geologic models is essential for understanding regional-scale correlations between Quaternary sediments and bedrock structures.

  7. Burial and exhumation of temperate bedrock reefs as elucidated by repetitive high-resolution sea floor sonar surveys: Spatial patterns and impacts to species' richness and diversity

    Science.gov (United States)

    Storlazzi, Curt D.; Fregoso, Theresa A.; Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Finlayson, David P.

    2013-03-01

    To understand how chronic sediment burial and scour contribute to variation in the structure of algal and invertebrate communities on temperate bedrock reefs, the dynamics of the substrate and communities were monitored at locations that experience sand inundation and adjacent areas that do not. Co-located benthic scuba-transect surveys and high-resolution swath-sonar surveys were completed on bedrock reefs on the inner shelf of northern Monterey Bay, CA, in early winter 2009, spring 2010, and summer 2010. Analysis of the sonar surveys demonstrates that during the 8 months over which the surveys were conducted, 19.6% of the study area was buried by sand while erosion resulted in the exposure of bedrock over 13.8% of the study area; the remainder underwent no change between the surveys. Substrate classifications from the benthic transect surveys correlated with classifications generated from the sonar surveys, demonstrating the capacity of high-resolution sonar surveys to detect burial of bedrock reefs by sediment. On bedrock habitat that underwent burial and exhumation, species' diversity and richness of rock-associated sessile and mobile organisms were 50-66% lower as compared to adjacent stable bedrock habitat. While intermediate levels of disturbance can increase the diversity and richness of communities, these findings demonstrate that burial and exhumation of bedrock habitat are sources of severe disturbance. We suggest that substrate dynamics must be considered when developing predictions of benthic community distributions based on sea floor imagery. These results highlight the need for predictive models of substrate dynamics and for a better understanding of how burial and exhumation shape benthic communities.

  8. New constraining datasets for Eurasian ice sheet modelling: chronology, fjords and bedrock

    Science.gov (United States)

    Gyllencreutz, R.; Tarasov, L.; Mangerud, J.; Svendsen, J. I.; Lohne, Ø. S.

    2009-04-01

    The increasing resolution of ice sheet models demands more detailed data for constraining and for comparison of results. Important data for this include ice sheet chronology, bed conditions and topography. We address this by compiling published data into three new constraining data sets. The Eurasian ice sheet chronology is reconstructed in our database-GIS solution (called DATED; Gyllencreutz et al., 2007). In DATED, we are building a database with all available dates, and a GIS with all geomorphologic features, that are relevant for the ice configuration through the Last Glacial Maximum and the following deglaciation, based on results from the literature. Reconstructions of the ice sheet configuration are presented as thousand-year time slices of the advance and decay of the Eurasian ice sheet between 25 and 10 thousand calendar years ago, based on chronologic, geomorphologic and stratigraphic data from the literature. To facilitate handling of error estimates in ice sheet modeling using our reconstructions, we made three reconstructions for every time slice: a maximum, a minimum and a "probable" ice sheet configuration, based on the limitations of the data at hand. The estimated uncertainty for the reconstructions was calculated in the GIS, and amounts to about 1 million km2 (about 1/5 of the maximum area) for most of the record before the Younger Dryas, indicating significant gaps in the knowledge of the Eurasian ice sheet configuration. In order to facilitate modeling of fast ice flow and ice streams, we compiled information about exposed bedrock from digital Quaternary maps in scale 1:1 million by the geological surveys in Norway, Sweden, Finland, UK and Ireland, together with published drift thickness estimates. The bed conditions data set was generalized to a grid resolution of 0.25 x 0.25 degrees. The Norwegian fjords are important for topographic steering; especially for fast glacier flow and draw-down from more central parts of the ice sheet. However

  9. Feasibility study and technical proposal for the use of microseismic methods in the long-term observation of bedrock stability

    International Nuclear Information System (INIS)

    Recent geodetic and seismological studies have paid attention to the slow deformation occurring in the Fennoscandian Shield. On the basis of these studies, together with in-situ stress measurements, the idea has been put forth that horizontal movement can be even greater than vertical movement. Local seismotectonics has importance in relation to the predictions of the long-term stability of the bedrock at the final disposal site. Potential direct and - what in Finland is more likely - indirect effects on the vault are due to local earthquakes of creep. The direct effects on the repository include rock vibration and displacement on an increasing fault. The indirect effects are changes in the surrounding structure, in the stress field, in the groundwater table, pressure, flux and chemistry. The block movements are controlled mainly by the network of fracture zones. The report deals with the possibilities to monitor by seismic methods slow movements occurring in the bedrock at the local level. The report includes descriptions of instrumentation for recording microearthquakes, the seismic network and an interpretation of the observations. The potential sites for disposal (Kuhmo, Aeaenekoski, Eurajoki) are compared in relation to seismic monitoring. Also the experiences of other investigations and a proposal for microearthquake investigations as well as of prospective developments within monitoring are presented. (28 refs., 17 figs.)

  10. Final disposal of spent nuclear fuel in the Finnish bedrock. Preliminary site investigations; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen; Alustavat sijoituspaikkatutkimukset

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Teollisuuden Voima Oy (TVO) studies Finnish bedrock for the final disposal of the spent nuclear fuel from the Olkiluoto nuclear power plant. The study is in accordance with the decision in principle by Finnish government in 1983. The report is the summary of the preliminary site investigations carried out during the years 1987-1992. On the basis of these investigations a few areas will be selected for detailed site investigation. The characterization comprises five areas selected from the shortlist of potential candidate areas resulted in the earlier study during 1983-1985. Areas are located in different parts of Finland and they represent the main formations of the Finnish bedrock. Romuvaara area in Kuhmo and Veitsivaara area in Hyrynsalmi represent the Archean basement. Kivetty area in Konginkangas consists of mainly younger granitic rocks. Syyry in Sievi is located in transition area of Svecofennidic rocks and granitic rocks. Olkiluoto in Eurajoki represents migmatites in southern Finland. For the field investigations area-specific programs were planned and executed. The field investigations have comprised airborne survey by helicopter, geophysical surveys, geological mappings and samplings, deep and shallow core drillings, geophysical and hydrological borehole measurements and groundwater samplings.

  11. Geology, Bedrock, Drill hole locations, most with samples, for oil and gas exploratory wells, municipal water wells, stratigraphic test holes, and mineral exploration holes. Note that bedrock samples may not be available for all drill holes., Published in 1998, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 1998. It is described as...

  12. Geology, Bedrock, Bedrock geologic map of the NPS Blue Ridge Parkway corridor. Majority of central and southern segments completed with entire project completed by October 2008., Published in 2004, 1:12000 (1in=1000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from Field Survey/GPS information as of 2004. It is described as...

  13. Geology, Bedrock, Data contains 10 foot elevation contours (1 foot in some areas) showing the approximate bedrock surface elevation within McLain State Park, Houghton, County, Michigan. Contours were generated with the Surfer 12 software package using soil test borings and, Published in 2014, Not Applicable scale, Michigan Coastal Zone Management Program.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at Not Applicable scale, was produced all or in part from Field Survey/GPS information as of 2014. The source is Michigan...

  14. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    International Nuclear Information System (INIS)

    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  15. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaeki, S.; Paananen, M.; Elo, S. [Geological Survey of Finland (Finland)

    2002-02-01

    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  16. Determination of Bedrock Variations and S-wave Velocity Structure in the NW part of Turkey for Earthquake Hazard Mitigation

    Science.gov (United States)

    Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.

    2015-12-01

    Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on

  17. High resolution mapping of offshore and onshore glaciogenic features in metamorphic bedrock terrain, Melville Bay, northwestern Greenland

    Science.gov (United States)

    Freire, Francis; Gyllencreutz, Richard; Greenwood, Sarah L.; Mayer, Larry; Egilsson, Arnar; Thorsteinsson, Tómas; Jakobsson, Martin

    2015-12-01

    Geomorphological studies of previously glaciated landscapes are important to understand how ice sheets and glaciers respond to rapidly changing climate. Melville Bay, in northwestern Greenland, contains some of the most sensitive but least studied ice sheet sectors in the northern hemisphere, where the bathymetric knowledge previously was restricted to a few sparsely distributed single beam echo soundings. We present here the results of high-resolution, geomorphological mapping of the offshore and onshore landscapes in Melville Bay using multibeam sonar and satellite data, at 5- and 10-m resolutions respectively. The results show a similar areally-scoured bedrock-dominated landscape with a glacially modified cnoc-and-lochan morphology on the inner shelf (150-500 m depth) and on the nearby exposed coast. This is manifested by the presence of U-shaped troughs, moutonée-type elongated landforms, stoss-and-lee forms, and streamlined features. The submarine landscape shows features that are characteristic of bedrock in folded, faulted, and weathered metamorphic terrain, and, to a lesser extent, glacially molded bedforms; while coastal landforms exhibit higher relief, irregular-shaped basins, and more subdued fracture valleys. Although generally similar, the onshore and offshore landscapes contain examples of distinctly different landform patterns, which are interpreted to reflect a longer exposure to long-term deep weathering as well as to more recent periglacial weathering processes on land. The spatial variability in the distribution of landforms across the landscape in both study areas is mostly attributed to differences in lithological properties of the bedrock. The lack of sediment cover on the inner shelf is likely a result of a capacity for sediment erosion and removal by the West Greenland Current flowing northward over the area in combination with limited sediment supply from long sea ice-cover seasons. The distribution and orientation of the landforms in the

  18. Establishing time-dependent model of deformation modulus caused by bedrock excavation rebound by inverse analysis method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rock rebound relaxation deformation,or even rock burst,caused by the excavation of dam base and abutment or high rock slope affects their stability and results in the fall of mechanical properties of the rock.So an inverse analysis method was proposed in this paper to establish the time-dependent model of deformation modulus caused by excavation rebound.The basic principle is based on the combination of observed data of the excavation rebound deformation of dam abutment or rock slope,and the calculated rebound deformation by FEM under ground stress at the corresponding time in the excavation process.The norm of the residuals of observed data and calculated data are taken as the objective function.Accordingly,the time-dependent model of bedrock deformation modulus can be established.The method displays its significance in the design of excavation,construction and operation management of dam base and high slope.

  19. Differentiation of fen bedrock in the Ełk Lakeland (NE Poland in relation to late Pleistocene terrain morphogenesis

    Directory of Open Access Journals (Sweden)

    Lemkowska Bożena

    2015-12-01

    Full Text Available The Ełk Lakeland (NE Poland with the area of 263 100 ha was formed during Vistulian glaciation. More than 66% of this region was shaped during the Leszno phase, 15% during the Poznań phase, and 19% during the Pomeranian phase. There are 1854 fens which cover the area of 7.3 % of the Ełk Lakeland mesoregion. Fens have an area of 10.3 ha on average. About 82.5% of the studied fens is located on gyttja deposits, which suggests post-lacustrine origin of the wetlands. Primary the lakes had covered 11% of the Ełk Lakeland, and 6.3% was transformed into fens. Most of them (60% was formed on organic gyttja, 16% on calcareous gyttja, and 6% on clay gyttja. About 17.5% of fens was formed as a result of paludification. The types of bedrock underlying peats differ depending on the phases of glaciation.

  20. Map showing depth to bedrock of the Tacoma and part of the Centralia 30' x 60' quadrangles, Washington

    Science.gov (United States)

    Buchanan-Banks, Jane M.; Collins, Donley S.

    1994-01-01

    The heavily populated Puget Sound region in the State of Washington has experienced moderate to large earthquakes in the recent past (Nuttli, 1952; Mullineaux and others, 1967). Maps showing thickness of unconsolidated sedimentary deposits are useful aids in delineating areas where damage to engineered structures can result from increased shaking resulting from these earthquakes. Basins containing thick deposits of unconsolidated materials can amplify earthquakes waves and cause far more damage to structures than the same waves passing through bedrock (Singh and others, 1988; Algermissen and others, 1985). Configurations of deep sedimentary basins can also cause reflection and magnification of earthquake waves in ways still not fully understood and presently under investigation (Frankel and Vidale, 1992).

  1. Estimation of microbial metabolism and co-occurrence patterns in fracture groundwaters of deep crystalline bedrock at Olkiluoto, Finland

    Science.gov (United States)

    Bomberg, M.; Lamminmäki, T.; Itävaara, M.

    2015-08-01

    The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock fracture groundwaters is great but the core community has not been identified. Here we characterized the bacterial and archaeal communities in 12 water conductive fractures situated at depths between 296 and 798 m by high throughput amplicon sequencing using the Illumina HiSeq platform. The great sequencing depth revealed that up to 95 and 99 % of the bacterial and archaeal communities, respectively, were composed of only a few common species, i.e. the core microbiome. However, the remaining rare microbiome contained over 3 and 6 fold more bacterial and archaeal taxa. Several clusters of co-occurring rare taxa were identified, which correlated significantly with physicochemical parameters, such as salinity, concentration of inorganic or organic carbon, sulphur, pH and depth. The metabolic properties of the microbial communities were predicted using PICRUSt. The rough prediction showed that the metabolic pathways included commonly fermentation, fatty acid oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation and methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, reductive TCA cycle and the Wood-Ljungdahl pathway was also predicted. The rare microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist of remnants of microbial communities prevailing in earlier conditions on Earth, but could also be induced again if changes in their living conditions occur. In this study only the rare taxa correlated with any physicochemical parameters. Thus these microorganisms can respond to environmental change caused by physical or biological factors that may lead to alterations in the diversity and function of the microbial communities in crystalline bedrock environments.

  2. Estimation of microbial metabolism and co-occurrence patterns in fracture groundwaters of deep crystalline bedrock at Olkiluoto, Finland

    Directory of Open Access Journals (Sweden)

    M. Bomberg

    2015-08-01

    Full Text Available The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock fracture groundwaters is great but the core community has not been identified. Here we characterized the bacterial and archaeal communities in 12 water conductive fractures situated at depths between 296 and 798 m by high throughput amplicon sequencing using the Illumina HiSeq platform. The great sequencing depth revealed that up to 95 and 99 % of the bacterial and archaeal communities, respectively, were composed of only a few common species, i.e. the core microbiome. However, the remaining rare microbiome contained over 3 and 6 fold more bacterial and archaeal taxa. Several clusters of co-occurring rare taxa were identified, which correlated significantly with physicochemical parameters, such as salinity, concentration of inorganic or organic carbon, sulphur, pH and depth. The metabolic properties of the microbial communities were predicted using PICRUSt. The rough prediction showed that the metabolic pathways included commonly fermentation, fatty acid oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation and methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, reductive TCA cycle and the Wood-Ljungdahl pathway was also predicted. The rare microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist of remnants of microbial communities prevailing in earlier conditions on Earth, but could also be induced again if changes in their living conditions occur. In this study only the rare taxa correlated with any physicochemical parameters. Thus these microorganisms can respond to environmental change caused by physical or biological factors that may lead to alterations in the diversity and function of the microbial communities in crystalline bedrock environments.

  3. Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records

    Science.gov (United States)

    Fosdick, Julie C.; Carrapa, Barbara; Ortíz, Gustavo

    2015-12-01

    The Argentine Precordillera is an archetypal retroarc fold-and-thrust belt that records tectonics associated with changing subduction regimes. The interactions between exhumation and faulting in the Precordillera were investigated using apatite and zircon (U-Th-Sm)/He and apatite fission track thermochronometry from the Precordillera and adjacent geologic domains. Inverse modeling of thermal histories constrains eastward in-sequence rock cooling associated with deformation and erosion from 18 to 2 Ma across the Central Precordillera tracking thrusting during this time. The youngest AHe ages (5-2 Ma) and highest erosion rates are located in the eastern and western extremities of the Precordillera and indicate that recent denudation is concentrated at its structural boundaries. Moreover, synchronous rapid Pliocene cooling of the Frontal Cordillera, Eastern Precordillera, and Sierra del Valle Fértil was coeval with initiation of basement-involved faulting in the foreland. Detrital zircon U-Pb geochronology from the ca. 16-8.1 Ma Bermejo foreland basin strata suggests fluvial connectivity westward beyond the Frontal Cordillera to the Main Cordillera and Coast Range followed by an important shift in sediment provenance at ca. 10 Ma. At this time, we suggest that a substantial decrease in Permo-Triassic igneous sources in the Frontal Cordillera and concurrent increase in recycled zircons signatures of Paleozoic strata are best explained by uplift and erosion of the Precordillera during widening of the thrust-belt. Bedrock thermochronology and modeling indicate a 2-6 Myr lag time between faulting-related cooling in the hinterland and the detrital record of deformation in the foreland basin, suggesting that for tectonically active semi-arid settings, bedrock cooling may be more sensitive to onset of faulting. We suggest that high erosion rates in the Frontal Cordillera and Eastern Precordillera are associated with increased interplate coupling during shallowing of the

  4. Geomorphology of the Alluvial Sediments and Bedrock in an Intermontane Basin: Application of Variogram Modeling to Electrical Resistivity Soundings

    Science.gov (United States)

    Khan, Adnan Ahmad; Farid, Asam; Akhter, Gulraiz; Munir, Khyzer; Small, James; Ahmad, Zulfiqar

    2016-05-01

    The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel-sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel-sand and clay-silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.

  5. Characteristics of the thermal regime in steep bedrock permafrost in the European Alps described by borehole temperatures and heat conduction modeling

    Science.gov (United States)

    Noetzli, J.; Deline, P.; Phillips, M.; von Poschinger, A.

    2012-04-01

    Permafrost in the Alps occurs within three main landforms - rock glaciers, debris slopes and steep bedrock. In contrast to rock glaciers and debris slopes, permafrost in steep bedrock reacts directly, fast and sensitively to changes in atmospheric conditions and these areas are therefore important for monitoring purposes. In addition, the observation of the state and changes of permafrost in steep bedrock is relevant for the stability and maintenance of infrastructure as well as the assessment and possible change of slope stability in high mountain areas. Mainly due to the difficulties of access, however, mountain permafrost monitoring activities in the Alps have concentrated on rock glaciers and debris slopes in their beginning more than 20 years ago and only started to focus on bedrock permafrost in the past decade. During the past about 5 years a number of new boreholes with depths ranging from 10 to 60 m have been installed in the scope of different research and monitoring projects at high Alpine sites in Switzerland (e.g., Schilthorn, Matterhorn, Gemsstock), Germany (e.g., Zugspitze), and France (e.g., Aiguille du Midi). Several of the boreholes have been drilled across a crest or perpendicular to the surface. In this contribution, we compare the data and discuss the main results gained from the different borehole sites in steep bedrock. Because of the limited observation period, the extreme spatial variability in these areas, and the invisibility of the phenomenon, we combine the point measurements with numerical heat conduction modeling for extrapolation in time and space to allow a more comprehensive interpretation. In addition to the basic characteristics that the temperature regime in bedrock is mainly controlled by conduction and no thick surface cover (such as snow, debris, blocks) or latent heat effects (low ice contents) mask the changes in atmospheric conditions, a number of specifics of permafrost temperatures in steep bedrock can be observed: a

  6. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (flood magnitude and noncohesive sandy sediments that collectively minimize development of alluvial bankfull indicators. Collectively, these findings indicate that mixed alluvial–bedrock channels exhibit first-order lithologic controls (lithologic resistance and valley confinement) of channel geometry, second

  7. Impacts of forest harvesting on mobilization of Hg and MeHg in drained peatland forests on black schist or felsic bedrock.

    Science.gov (United States)

    Ukonmaanaho, Liisa; Starr, Mike; Kantola, Marjatta; Laurén, Ari; Piispanen, Juha; Pietilä, Heidi; Perämäki, Paavo; Merilä, Päivi; Fritze, Hannu; Tuomivirta, Tero; Heikkinen, Juha; Mäkinen, Jari; Nieminen, Tiina M

    2016-04-01

    Forest harvesting, especially when intensified harvesting method as whole-tree harvesting with stump lifting (WTHs) are used, may increase mercury (Hg) and methylmercury (MeHg) leaching to recipient water courses. The effect can be enhanced if the underlying bedrock and overburden soil contain Hg. The impact of stem-only harvesting (SOH) and WTHs on the concentrations of Hg and MeHg as well as several other variables in the ditch water was studied using a paired catchment approach in eight drained peatland-dominated catchments in Finland (2008-2012). Four of the catchments were on felsic bedrock and four on black schist bedrock containing heavy metals. Although both Hg and MeHg concentrations increased after harvesting in all treated sites according to the randomized intervention analyses (RIAs), there was only a weak indication of a harvest-induced mobilization of Hg and MeHg into the ditches. Furthermore, no clear differences between WTHs and SOH were found, although MeHg showed a nearly significant difference (p = 0.06) between the harvesting regimes. However, there was a clear bedrock effect, since the MeHg concentrations in the ditch water were higher at catchments on black schist than at those on felsic bedrock. The pH, suspended solid matter (SSM), dissolved organic carbon (DOC), and iron (Fe) concentrations increased after harvest while the sulfate (SO4-S) concentration decreased. The highest abundances of sulfate-reducing bacteria (SRB) were found on the sites with high MeHg concentrations. The biggest changes in ditch water concentrations occurred first 2 years after harvesting. PMID:26979172

  8. A field test of the relative influence of sediment flux and grain size in determining bedrock river channel slope

    Science.gov (United States)

    Klier, R. E.; Finnegan, N. J.

    2013-12-01

    , upstream of the knickpoint , Boulder Creek is characterized by potholes and sculpted bedrock, consistent with sediment-starved conditions. The observation that bedrock channel slope changes are not well correlated with patterns in rock uplift supports Sklar and Dietrich's (2006) theoretical result that modest rates of rock uplift do not significantly influence river profile slopes. Based on this result and the clear correlation of channel slope and sediment supply along Boulder Creek, we chose to ignore rock uplift rate and instead explore the relative roles of grain size and sediment flux in influencing profile slopes along Boulder Creek. Using field surveys of grain size and high flow depth, we calculate that across the knickpoint there is a 2-fold increase in the shear stress needed to transport sediment and a 10-fold increase in the shear stress needed to initiate motion. This result implies that changes in sediment supply but most importantly grain size act as a first order control in setting channel slope in mixed bedrock-alluvial systems.

  9. Zn isotopes as a traccer of bedrock weathering in hydrothermal system of la Soufrière volcano, Guadeloupe (FWI)

    Science.gov (United States)

    Chen, J.; Gaillardet, J.; Dessert, C.; Louvat, P.; Villemant, B.; Birck, J.; Crispi, O.

    2012-12-01

    The active hydro-volcanic systems are characterized by intense hydrothermal activities associated with acidic fumaroles and hot springs and play an important role in global silicate weathering. As the ultimate weathering loads are mostly transported into ocean through water, studies of hydrothermal waters can give interesting clues about the complex interactions among magmatic fluids, bed-rock, and aquifers fed by meteoritic water or seawater. Zn is a volatile element during magma degassing. However, the behavior of Zn in hydrothermal water systems is still unclear. Recent studies have demonstrated the interest of Zn isotopes for investigating water-rock interactions. Speciation-related fractionation as well as source-related fractionation between its isotopes (about 3‰ in δ66Zn unit) make Zn isotopes a promising tracer for studying the mobility of metals during weathering, hydrothermalism, magma degassing and ore formation. Although previous studies have focused on the processes fractionating Zn isotopes in hydrothermal solid deposits, seafloor vents and fumarolic gas, Zn isotope composition of hydrothermal waters in continental arc setting has not been investigated so far. We developed a new one-step purification method for the separation of Zn from Fe- and SO4-enriched hydrothermal solutions using anion-exchange column. The protocol was validated by multiple tests on varying eluants and Zn concentrations, and by investigating the recovery and the reproducibility of measured isotopic ratios. Using this method, water samples from 8 hydrothermal springs and 6 gas samples from two fumaroles of la Soufrière active volcano on the Guadeloupe island (French West Indies, FWI) were analyzed for Zn isotope composition. Compared to the small δ66Zn range for the fumarolic gases (from 0.21‰ to 0.35‰) and local bedrocks (from -0.14‰ to 0.42‰), all water samples displayed a relative large δ66Zn variation of 1.44‰ (from -0.43‰ to 1.01‰). This is about 70% of

  10. MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots; Donald M. McEligot; Richard Skifton; Hugh McIlroy

    2014-11-01

    Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early laminarization of the flow (Refs. 2 and 3) (laminarization is caused when the coolant velocity is theoretically in the turbulent regime, but the heat transfer properties are indicative of the coolant velocity being in the laminar regime). Such studies are complicated enough that computational fluid dynamics (CFD) models may not converge to the same conclusion. Thus, experimentally scaled thermal hydraulic data with uncertainties should be developed to support modeling and simulation for verification and validation activities. The fluid/solid index of refraction matching technique allows optical access in and around geometries that would otherwise be impossible while the large test section of the INL system provides better spatial and temporal resolution than comparable facilities. Benchmark data for assessing computational fluid dynamics can be acquired for external flows, internal flows, and coupled internal/external flows for better understanding of physical phenomena of interest. The core objective of this study is to describe MIR and its capabilities, and mention current development areas for uncertainty quantification, mainly the uncertainty surface method and cross-correlation method. Using these methods, it is anticipated to establish a suitable approach to quantify PIV uncertainty for experiments performed in the MIR.

  11. Gravitational signature and apparent mass changes in Amundsen Embayment caused by low viscosity GIA model constrained by rapid bedrock displacement

    Science.gov (United States)

    Barletta, V. R.; Bevis, M.; Smith, B. E.; Wilson, T. J.; Willis, M. J.; Brown, A.; Bordoni, A.; Khan, S. A.; Smalley, R., Jr.; Kendrick, E. C.; Konfal, S. A.; Caccamise, D.; Aster, R.; Chaput, J. A.; Heeszel, D.; Wiens, D.; Lloyd, A. J.

    2015-12-01

    The Amundsen Embayment sector of West Antarctica is experiencing some of the fastest sustained bedrock uplift rates in the world. These motions, recorded by the Antarctic GPS Network (ANET), cannot be explained in terms of the earth's elastic response to contemporary ice loss, and the residues are far too rapid to be explained using traditional GIA models. We use 13 years of very high resolution DEM-derived ice mass change fields over the Amundsen sector to compute the elastic signal and remove it from the observed geodetic time series. We obtain a very large residual - up to 5 times larger than the computed elastic response. Low or very low mantle viscosities are expected in this area based on existing heat flow estimates, seismic velocity anomalies, thin crust, and active volcanism, all of which are associated with geologically recent rifting. We hypothesize that the rapid crustal displacement manifests a low viscosity short-time-scale response to post- Little Ice Age ice mass changes, including ice losses developed in the last decade or so. A plausible ice history for the last hundred years is made by using the actual measurements from 2002 to 2014, and 25% of the present day melting rate before 2002. We then simulate and fit the bedrock displacement - both vertical and horizontal - with a spherical compressible viscoelastic Earth model having a low viscosity shallow upper mantle. We show that we can constrain the shallow upper mantle viscosity very well and also explain most of the signal (amplitude and direction) by using 2 x10^18 Pa s. However we are not able to precisely constrain the thickness of the lithosphere (the preferred thickness is more than 50 km, quite thick for that region) or ice history. By using our preferred set up (earth model + ice history) we compute the GIA gravitational signature and convert it in equivalent superficial water density (see figure) that can be directly used to correct the mass changes observed by GRACE.For the Amundsen

  12. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiang [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964 (United States); School of Earth and Environmental Sciences, Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367 (United States); Culbertson, Charles W.; Nielsen, Martha G.; Schalk, Charles W. [U.S. Geological Survey, Maine Water Science Center, 196 Whitten Road, Augusta, ME 04330 (United States); Johnson, Carole D. [U.S. Geological Survey, Branch of Geophysics, 11 Sherman Place, Unit 5015, University of Connecticut, Storrs, CT 06269 (United States); Marvinney, Robert G. [Maine Geological Survey, 93 State House Station, Augusta, ME 04333 (United States); Stute, Martin [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964 (United States); Zheng, Yan, E-mail: yan.zheng@qc.cuny.edu [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964 (United States); School of Earth and Environmental Sciences, Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367 (United States)

    2015-02-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70–100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93–99%) in particulates (> 0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560–13,000 mg/kg of As and 14–35% weight/weight of Fe. As/Fe ratios (2.5–20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000–100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ{sup 18}O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater. - Highlights: • Most Fe and some As exist as particulates in the tested borehole and fracture water.

  13. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    Science.gov (United States)

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired. PMID:18258282

  14. Vegetation and landscape on crystalline limestone bedrock in the vicinity of Lánov (Giant Mountains, Czech Republic

    Directory of Open Access Journals (Sweden)

    Jitka Málková

    2013-12-01

    Full Text Available This paper evaluates the structure of the landscape and vegetation in an area of 106.4 ha near the quarry by the village Horni Lanov (4 km east of Vrchlabi situated in a low part of the Giant Mountains. The bedrock (crystalline limestone, rugged terrain, soil moisture and management affect the biodiversity at this locality. It is botanically well known and a very valuable region because of the high number of nature conservation-important species and habitats that occur there. A total 517 species of vascular plants were recorded there between 2002 and 2010. The whole area was divided into 36 segments each with a relatively homogeneous vegetation cover consisting of particular species of plants. Classification of the segments was done using a numerical classification (Sorensen’s similarity index and Ellenberg’s indicator values were used to describe the basic environmental features of the individual segments. The species presence/ absence data together with indicator values (light conditions, temperature, water availability, soil reaction and nitrogen activity were evaluated. The PCA ordination of this data set distinguished three basic types of vegetation cover (“forest”, “dry” and “wet” and that the species composition of the vegetation in the area is mostly determined by land-use (deforestation, limestone mining, pasturing and management of forests and soil moisture.

  15. Bedrock geologic map of the Hartland and North Hartland quadrangles, Windsor County, Vermont, and Sullivan and Grafton Counties, New Hampshire

    Science.gov (United States)

    Walsh, Gregory J.

    2016-08-16

    The bedrock geology of the 7.5-minute Hartland and North Hartland quadrangles, Vermont-New Hampshire, consists of highly deformed and metamorphosed lower Paleozoic metasedimentary, metavolcanic, and metaplutonic rocks of the Bronson Hill anticlinorium (BHA) and the Connecticut Valley trough (CVT). Rocks of the Orfordville anticlinorium on this map occupy the western part of the broader BHA. In the BHA, the Ordovician Ammonoosuc Volcanics and graphitic, sulfidic metapelite of the Partridge Formation are intruded by Ordovician plutonic rocks of the Oliverian Plutonic Suite. The Ordovician rocks are collectively referred to as the Bronson Hill arc. The Ordovician rocks are overlain by the Silurian to Devonian Clough, Fitch, and Littleton Formations. On this map, rocks of the CVT occupy the eastern part of the broader CVT. In the CVT in Vermont, the Silurian to Devonian Shaw Mountain, Waits River, and Gile Mountain Formations form an unconformable autochthonous to parautochthonous cover sequence on the pre-Silurian rocks of the Rowe-Hawley zone above Precambrian basement rocks of the Mount Holly Complex. On this map, however, only the Waits River and Gile Mountain Formations are exposed. Syn- to postmetamorphic rocks include quartz veins and Cretaceous dikes of the White Mountain Igneous Suite.

  16. Underground pressure characteristics analysis in back-gully mining of shallow coal seam under a bedrock gully slope

    Institute of Scientific and Technical Information of China (English)

    Wang Xufeng; Zhang Dongsheng; Fan Gangwei; Zhang Chengguo

    2011-01-01

    We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope, by means of physical simulation, numerical modeling and field monitoring.The results show that the intensity of underground pressure is related to its relative position at the coalface. The underground pressure is intensive and the support resistance reaches a maximum when the coalface is at the bottom of the gully, whereas the underground pressure is moderate and decreases gradually when the coalface passes the gully. The mechanism of these changes is analyzed when the slope rotated in a reversed direction to the slope dip during back-gully mining and form an unstable, multilateral block hinged structure, due to slipping. The subsidence of multilateral blocks is considerable when the block fragmentation is small, resulting in enormous changes in the underground pressure. With an increase in the mass of the block body, the block displacement will be reduced in conjunction with an increased clamp effect by both the unbroken rocks and broken rocks in the goaf, resulting in a decrease of the underground pressure.

  17. A maximum likelihood estimator for bedrock fracture transmissivities and its application to the analysis and design of borehole hydraulic tests

    Science.gov (United States)

    West, Anthony C. F.; Novakowski, Kent S.; Gazor, Saeed

    2006-06-01

    We propose a new method to estimate the transmissivities of bedrock fractures from transmissivities measured in intervals of fixed length along a borehole. We define the scale of a fracture set by the inverse of the density of the Poisson point process assumed to represent their locations along the borehole wall, and we assume a lognormal distribution for their transmissivities. The parameters of the latter distribution are estimated by maximizing the likelihood of a left-censored subset of the data where the degree of censorship depends on the scale of the considered fracture set. We applied the method to sets of interval transmissivities simulated by summing random fracture transmissivities drawn from a specified population. We found the estimated distributions compared well to the transmissivity distributions of similarly scaled subsets of the most transmissive fractures from among the specified population. Estimation accuracy was most sensitive to the variance in the transmissivities of the fracture population. Using the proposed method, we estimated the transmissivities of fractures at increasing scale from hydraulic test data collected at a fixed scale in Smithville, Ontario, Canada. This is an important advancement since the resultant curves of transmissivity parameters versus fracture set scale would only previously have been obtainable from hydraulic tests conducted with increasing test interval length and with degrading equipment precision. Finally, on the basis of the properties of the proposed method, we propose guidelines for the design of fixed interval length hydraulic testing programs that require minimal prior knowledge of the rock.

  18. Spatially continuous characterization of the bedrock - regolith interface at the Rio Icacos Watershed (Luquillo Critical Zone Observatory) Puerto Rico

    Science.gov (United States)

    Ntarlagiannis, D.; Comas, X.; Wright, W. J.; Recinos, E.; Hynek, S. A.; Brantley, S. L.

    2015-12-01

    Joint processing of geophysical data can enhance data interpretation. This study focuses on spatially continuous multifrequency electro-magnetic (EM) data for near subsurface characterization. Recent advances in EM data processing allow for efficient inversion of multi-frequency data, utilization of calibration routines and additional constrains for better subsurface imaging. For this work the newly developed FEMIC (Frequency-Domain Electromagnetic Inversion Code) code was used to invert the EM data. High resolution electrical resistivity (ER) data were used to calibrate the EM process; additionally, available data from ground penetrating radar (GPR) and field observations were used to better constrain the inversions. The multistep EM processing allowed for improving characterization of the subsurface over long (i.e. Km scale) 2D transects. The aim of this work was to better understand the lateral extent of the bedrock-regolith interface in the Rio Icacos watershed of the Luquillo Critical Zone Observatory (LCZO), while providing evidence for changes in regolith thickness as related to proximity to the nickpoint. This research highlights the advantages of geophysical methods for critical zone studies and their potential for improving spatial characterization of the subsurface at multiples scales. Furthermore it shows the potential of EM methods for translating high resolution spatially limited point measurements (e.g. boreholes) to large (km) scales.

  19. Hydrochemistry of surface water and groundwater in the shale bedrock, Cross River Basin and Niger Delta Region, Nigeria

    Science.gov (United States)

    Nganje, T. N.; Hursthouse, A. S.; Edet, Aniekan; Stirling, D.; Adamu, C. I.

    2015-07-01

    Water chemistry in the shale bedrock of the Cretaceous-Tertiary of the Cross River and Niger Delta hydrological basins has been investigated using major ions. To carry out a characterization of the water bearing units, 30 and 16 representatives surface and groundwater samples were collected. The evolution of the water is characterized by enhanced content of sodium, calcium and sulphate as a result of leaching of shale rock. The spatial changes in groundwater quality of the area shows an anomalous concentrations of ions in the central parts, while lower values characterize the eastern part of the basin covering Ogoja, Ikom and Odukpani areas. The values of total dissolved solids (TDS) and ions increases down gradient in the direction of groundwater flow. The dissolution of halite and gypsum explains part of the contained Na+, Ca2+, Cl- and SO4 2-, but other processes such as ion exchange, silicate weathering and pyrite oxidation also contribute to water composition. The assessment with contamination indicators such as TDS, hardness, chloride, nitrate and sulphate indicates that the water in area is suitable for human consumption in some locations. Modelling using MINTEQA2 program shows that the water from all the shale water bearing units are under saturated with respect to gypsum.

  20. Lateral erosion in an experimental bedrock channel: The influence of bed roughness on erosion by bed load impacts

    Science.gov (United States)

    Fuller, Theodore K.; Gran, Karen B.; Sklar, Leonard S.; Paola, Chris

    2016-05-01

    Physical experiments were conducted to evaluate the efficacy of bed load particle impacts as a mechanism of lateral bedrock erosion. In addition, we explored how changes in channel bed roughness, as would occur during development of an alluvial cover, influence rates of lateral erosion. Experimental channels were constructed to have erodible walls and a nonerodible bed using different mixtures of sand and cement. Bed roughness was varied along the length of the channel by embedding sediment particles of different size in the channel bed mixture. Lateral wall erosion from clear-water flow was negligible. Lateral erosion during periods in which bed load was supplied to the channel removed as much as 3% of the initial wetted cross-sectional area. The vertical distribution of erosion was limited to the base of the channel wall, producing channels with undercut banks. The addition of roughness elements to an otherwise smooth bed caused rates of lateral erosion to increase by as much as a factor of 7 during periods of bed load supply. However, a minimum roughness element diameter of approximately half the median bed load particle diameter was required before a substantial increase in erosion was observed. Beyond this minimum threshold size, further increases in the relative size of roughness elements did not substantially change the rate of wall erosion despite changes in total boundary shear stress. The deflection of saltating bed load particles into the channel wall by fixed roughness elements is hypothesized to be the driver of the observed increase in lateral erosion rates.

  1. Sea-bed pockmarks related to fluid migration from Mesozoic bedrock strata in the Skagerrak offshore Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rise, Leif; Thorsnes, Terje; Ottesen, Dag; Boee, Reidulv [Geological Survey of Norway, Trondheim (Norway); Saettem, Joar; Fanavoll, Stein [Sintef Petroleum Research, Trondheim (Norway)

    1999-11-01

    In the deepest part of the Skagerrak, the sea-floor morphology and the subsurface geology have been mapped from multibeam echo sounder data, seismic data and bedrock cores. An area of high pockmark density occurs along the shallowest part of a gentle ridge in the central Norwegian Trench, where a Middle Jurassic sandstone unit subcrops below 30-40 m of Late Weichselian sediments. In contrast, few pockmarks occur at the seabed where Lower and Upper Jurassic shales and clayey siltstones subcrop. The concentration of pockmarks above the Middle Jurassic sandstone unit is thus attributed to seepage of gas or liquids migrating up-dip from deeper parts of the sedimentary basin. In the Skagerrak, more than 90% of the observed pockmarks occur above Mesozoic sedimentary rocks, while less than 10% occur in areas of Palaeozoic metasediments or crystalline rocks. A linear concentration of pockmarks is observed above a fault that terminates at the base of the Quaternary succession, and this is therefore attributed to seepage of gas or liquids along the fault plane. The density of pockmarks is low in areas with thick successions of Quaternary sediments, indicating that the pockmarks are not related to seepage of biogenic gas from these deposits. Pockmarks in the Skagerrak are thus caused by seepage of thermogenic gas and/or other pore fluids from deeper sources, and their distribution may help to improve our understanding of the fluid system and migration regime of this part of the North Sea. (Author)

  2. Sediment dynamics and the burial and exhumation of bedrock reefs along an emergent coastline as elucidated by repetitive sonar surveys: Northern Monterey Bay, CA

    Science.gov (United States)

    Storlazzi, C.D.; Fregoso, T.A.; Golden, N.E.; Finlayson, D.P.

    2011-01-01

    Two high-resolution bathymetric and acoustic backscatter sonar surveys were conducted along the energetic emergent inner shelf of northern Monterey Bay, CA, USA, in the fall of 2005 and the spring of 2006 to determine the impact of winter storm waves, beach erosion, and river floods on biologically-important siliclastic bedrock reef habitats. The surveys extended from water depths of 4 m to 22 m and covered an area of 3.14 km2, 45.8% of which was bedrock, gravel, and coarse-grained sand and 54.2% was fine-grained sand. Our analyses of the bathymetric and acoustic backscatter data demonstrates that during the 6 months between surveys, 11.4% of the study area was buried by fine-grained sand while erosion resulted in the exposure of bedrock or coarse-grained sand over 26.5% of the study area. The probability of burial decreased with increasing water depth and rugosity; the probability of exhumation increased with increasing wave-induced near-bed shear stress, seabed slope and rugosity. Much of the detected change was at the boundary between bedrock and unconsolidated sediment due to sedimentation and erosion burying or exhuming bedrock, respectively. In a number of cases, however, the change in seabed character was apparently due to changes in sediment grain size when scour exposed what appeared to be an underlying coarser-grained lag or the burial of coarser-grained sand and gravel by fine-grained sand. These findings suggest that, in some places, (a) burial and exhumation of nearshore bedrock reefs along rocky, energetic inner shelves occurs over seasonal timescales and appears related to intrinsic factors such as seabed morphology and extrinsic factors such as wave forces, and (b) single acoustic surveys typically employed for geologic characterization and/or habitat mapping may not adequately characterize the geomorphologic and sedimentologic nature of these types of environments that typify most of the Pacific Ocean and up to 50% of the world's coastlines.

  3. Reach-scale evidence for feedbacks among chemical weathering, rock strength and erosion in bedrock rivers across Kohala Peninsula, Hawai'i

    Science.gov (United States)

    Murphy, B. P.; Johnson, J. P.; Gasparini, N. M.; Hancock, G. S.; Small, E. E.

    2015-12-01

    Bedrock river downcutting is usually conceptualized in terms of shear-stress dependent erosion processes, such as abrasion and plucking. Many studies of climatic control on erosion have focused on the effect of rainfall rate on discharge. However, the erodibility of bedrock can also be influenced by climate-dependent chemical weathering. We show that this mechanism can not only influence erosion patterns and rates, but also reach-scale bedrock topography. First, we present a new numerical model that describes and explores the feedbacks among chemical weathering, rock strength and erosion rate. Second, we present reach-scale field data demonstrating interactions among chemical weathering, rock strength, abrasion, and channel morphology. Across an extreme rainfall gradient on Kohala Peninsula, Hawai'i, we demonstrate that bedrock chemical weathering leads to the development of significant asymmetries in rock strength across features that are exposed to abrasion. Using a type-N Schmidt hammer, we measured the in-situ rock strength across 23 morphologic features of bedrock exposed in the stream beds of rivers, and found that upstream faces are consistently stronger, by an average of 38%, than downstream faces. Measured rock strengths suggest that the erodibilty of downstream (lee) faces may be as much as 20 times higher than corresponding upstream faces where weaker weathered material is efficiently abraded away. The asymmetrical pattern of rock strength does not necessarily lead to strongly asymmetrical morphologies, because although sediment impacts may result in more erosion on the weaker downstream face, the frequency of abrasion wear is substantially less frequent. Although the physical evidence for the chemical weathering is more frequently removed from the upstream face, these results demonstrate that, particularly in regions with higher local rainfall and weathering rates, chemical weathering induced strength reduction is a specific mechanism by which climate

  4. Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica.

    Science.gov (United States)

    Tytgat, Bjorn; Verleyen, Elie; Sweetlove, Maxime; D'hondt, Sofie; Clercx, Pia; Van Ranst, Eric; Peeters, Karolien; Roberts, Stephen; Namsaraev, Zorigto; Wilmotte, Annick; Vyverman, Wim; Willems, Anne

    2016-09-01

    Antarctic soils are known to be oligotrophic and of having low buffering capacities. It is expected that this is particularly the case for inland high-altitude regions. We hypothesized that the bedrock type and the presence of macrobiota in these soils enforce a high selective pressure on their bacterial communities. To test this, we analyzed the bacterial community structure in 52 soil samples from the western Sør Rondane Mountains (Dronning Maud Land, East Antarctica), using the Illumina MiSeq platform in combination with ARISA fingerprinting. The samples were taken along broad environmental gradients in an area covering nearly 1000 km(2) Ordination and variation partitioning analyses revealed that the total organic carbon content was the most significant variable in structuring the bacterial communities, followed by pH, electric conductivity, bedrock type and the moisture content, while spatial distance was of relatively minor importance. Acidobacteria (Chloracidobacteria) and Actinobacteria (Actinomycetales) dominated gneiss derived mineral soil samples, while Proteobacteria (Sphingomonadaceae), Cyanobacteria, Armatimonadetes and candidate division FBP-dominated soil samples with a high total organic carbon content that were mainly situated on granite derived bedrock. PMID:27402710

  5. Occurrence of Uranium and 222Radon in Glacial and Bedrock Aquifers in the Northern United States, 1993-2003

    Science.gov (United States)

    Ayotte, Joseph D.; Flanagan, Sarah M.; Morrow, William S.

    2007-01-01

    Water-quality data collected from 1,426 wells during 1993-2003 as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program were evaluated to characterize the water quality in glacial and bedrock aquifers of the northern United States. One of the goals of the NAWQA program is to synthesize data from individual studies across the United States to gain regional- and national-scale information about the behavior of contaminants. This study focused on the regional occurrence and distribution of uranium and 222radon in ground water in the glacial aquifer system of the United States as well as in the Cambrian-Ordovician and the New York and New England crystalline aquifer systems that underlie the glacial aquifer system. The occurrence of uranium and 222radon in ground water has long been a concern throughout the United States. In the glacial aquifers, as well as the Cambrian-Ordovician and the New York and New England crystalline aquifer systems of the United States, concentrations of uranium and 222radon were highly variable. High concentrations of uranium and 222radon affect ground water used for drinking water and for agriculture. A combination of information or data on (1) national-scale ground-water regions, (2) regional-scale glacial depositional models, (3) regional-scale geology, and (4) national-scale terrestrial gamma-ray emissions were used to confirm and(or) refine the regions used in the analysis of the water-chemistry data. Significant differences in the occurrence of uranium and 222radon, based primarily on geologic information were observed and used in this report. In general, uranium was highest in the Columbia Plateau glacial, West-Central glacial, and the New York and New England crystalline aquifer groups (75th percentile concentrations of 22.3, 7.7, and 2.9 micrograms per liter (ug/L), respectively). In the Columbia Plateau glacial and the West-Central glacial aquifer groups, more than 10 percent of wells sampled had

  6. Bedrock geology and mineral resources of the Knoxville 1° x 2° quadrangle, Tennessee, North Carolina, and South Carolina

    Science.gov (United States)

    Robinson,, Gilpin R.; Lesure, Frank G.; Marlowe, J. I.; Foley, Nora K.; Clark, S.H.

    2004-01-01

    The Knoxville 1°x 2° quadrangle spans the Southern Blue Ridge physiographic province at its widest point from eastern Tennessee across western North Carolina to the northwest corner of South Carolina. The quadrangle also contains small parts of the Valley and Ridge province in Tennessee and the Piedmont province in North and South Carolina. Bedrock in the Valley and Ridge consists of unmetamorphosed, folded and thrust-faulted Paleozoic miogeoclinal sedimentary rocks ranging in age from Cambrian to Mississippian. The Blue Ridge is a complex of stacked thrust sheets divided into three parts: (1) a west flank underlain by rocks of the Late Proterozoic and Early Cambrian Chilhowee Group and slightly metamorphosed Late Proterozoic Ocoee Supergroup west of the Greenbrier fault; (2) a central part containing crystalline basement of Middle Proterozoic age (Grenville), Ocoee Supergroup rocks east of the Greenbrier fault, and rocks of the Murphy belt; and (3) an east flank containing the Helen, Tallulah Falls, and Richard Russell thrust sheets and the amphibolitic basement complex. All of the east flank thrust sheets contain polydeformed and metamorphosed sedimentary and igneous rocks of mostly Proterozoic age. The Blue Ridge is separated by the Brevard fault zone from a large area of rocks of the Inner Piedmont to the east, which contains the Six Mile thrust sheet and the ChaugaWalhalla thrust complex. All of these rocks are also polydeformed and metamorphosed sedimentary and igneous rocks. The Inner Piedmont rocks in this area occupy both the Piedmont and part of the Blue Ridge physiographic provinces.

  7. Geometry of structures within crystalline bedrock constrained in 3D and their relevance for present day water infiltration.

    Science.gov (United States)

    Schneeberger, Raphael; de la Varga, Miguel; Florian Wellmann, J.; Kober, Florian; Berger, Alfons; Herwegh, Marco

    2016-04-01

    Fluid circulation in crystalline rocks is of key importance when exploring crystalline basement in light of, for example, deep-seated geothermal energy projects or selection of sites for nuclear waste repositories. Due to their enhanced permeability, fluid circulation within crystalline bedrock is mainly controlled by fault zones, which may originate from ductile mylonites but show a strong brittle overprint. In order to better constrain 3D flow paths, a well-founded knowledge on the 3D nature of the fault zone pattern is indispensable. We attempt to constrain the geometry of a complex 3D fault zone pattern in a case study of the Grimsel Test Site (GTS, central Switzerland). The constraints are based on mapping of both the surface as well as the GTS underground tunnel system, offering a unique opportunity to test the 3D model and associated uncertainties. We investigate the effect of increasing geoinformation on the quality and accuracy of the 3D model by using: (i) remote sensing surface data only, (ii) field surface mapping in combination with (i), and (iii) underground data combined with (i) and (ii). This approach allows for defining different steps in 3D geological modelling of a specific area, including a measure of the remaining uncertainty after each step. We obtain a best-estimate model by fitting results between surface and underground data by using a combination of field data and orientation obtained by Delaunay triangulation. We incorporate novel approaches to uncertainty analysis of fault orientations and investigate different fault planes showing the possible variation range of the structures investigated.

  8. Identification of Bedrock Lithology using Fractal Dimensions of Drainage Networks extracted from Medium Resolution LiDAR Digital Terrain Models

    Science.gov (United States)

    Cámara, Joaquín; Gómez-Miguel, Vicente; Martín, Miguel Ángel

    2016-03-01

    Geologists know that drainage networks can exhibit different drainage patterns depending on the hydrogeological properties of the underlying materials. Geographic Information System (GIS) technologies and the increasing availability and resolution of digital elevation data have greatly facilitated the delineation, quantification, and study of drainage networks. This study investigates the possibility of inferring geological information of the underlying material from fractal and linear parameters describing drainage networks automatically extracted from 5-m-resolution LiDAR digital terrain model (DTM) data. According to the lithological information (scale 1:25,000), the study area is comprised of 30 homogeneous bedrock lithologies, the lithological map units (LMUs). These are mostly igneous and metamorphic rocks, but also include some sedimentary rocks. A statistical classification model of the LMUs by rock type has been proposed based on both the fractal dimension and drainage density of the overlying drainage networks. The classification model has been built using 16 LMUs, and it has correctly classified 13 of the 14 LMUs used for its validation. Results for the study area show that LMUs, with areas ranging from 177.83 ± 0.01 to 3.16 ± 0.01 km2, can be successfully classified by rock type using the fractal dimension and the drainage density of the drainage networks derived from medium resolution LiDAR DTM data with different flow support areas. These results imply that the information included in a 5-m-resolution LiDAR DTM and the appropriate techniques employed to manage it are the only inputs required to identify the underlying geological materials.

  9. Highly Resolved Long-term 3D Hydrological Simulation of a Forested Catchment with Litter Layer and Fractured Bedrock

    Science.gov (United States)

    Fang, Z.; Bogena, H. R.; Kollet, S. J.; Vereecken, H.

    2014-12-01

    Soil water content plays a key role in the water and energy balance in soil, vegetation and atmosphere systems. According to Wood et al. (2011) there is a grand need to increase global-scale hyper-resolution water-energy-biogeochemistry land surface modelling capabilities. However, such a model scheme should also recognize the epistemic uncertainties, as well as the nonlinearity and hysteresis in its dynamics. Unfortunately, it is not clear how to parameterize hydrological processes as a function of scale and how to test deterministic models with regard to epistemic uncertainties. In this study, high resolution long-term simulations were conducted in the highly instrumented TERENO hydrological observatory, the Wüstebach catchment. Soil hydraulic parameters were derived using inverse modeling with the Hydrus-1D model using the global optimization scheme SCE-UA and soil moisture data from a wireless soil moisture sensor network. The estimated parameters were then used for 3D simulations using the integrated parallel simulation platform ParFlow-CLM. The simulated soil water content, as well as evapotranspiration and runoff, were compared with long-term field observations to illustrate how well the model was able to reproduce the water budget dynamics. With variable model setup scenarios in boundary conditions and anisotropy of hydraulic conductivity, we investigated how lateral flow processes above the underlying fractured bedrock affects the simulation results. Furthermore, we explored the importance of the litter layer and the heterogeneity of the forest soil in the simulation of flow processes and model performance. For the analysis of spatial patterns of simulated and observed soil water content we applied the method of empirical orthogonal function (EOF). The results suggest that strong anisotropy in the hydraulic conductivity may be the reason for the fast lateral flow observed in Wüstebach. Introduction of heterogeneity in the hydraulic properties in the

  10. Investigation of the relationship between ground and engineering bedrock at northern part of the Gulf of İzmir by borehole data supported geophysical works

    Indian Academy of Sciences (India)

    Mustafa Akgün; Tolga Gönenc; Oya Pamukçu; Şenol Özyalin

    2014-04-01

    Loss of life and property that may occur as a result of a possible earthquake can be reduced by earthquake resistant building designs. In order to investigate possible ground motion amplification in earthquake resistant building design, relationship between the ground and engineering bedrock must be ensured. In order to provide this relation, structure, basic characteristics, and thickness of the ground are investigated. In this context, calculating ground transfer function, obtaining horizontal earthquake acceleration changes, calculating values and defining the engineering bedrock are necessary. In this study, Menemen plain, the nothern part of Izmir metropolitan located in active earthquake zone and its immediate vicinity have been examined to define the structure, ground, engineering and bedrock relation. In this context, Menemen plain has been investigated by geophysical methods, which are supported with borehole data (microtremor, MASW – multichannel analysis of surface waves, microgravity measurements, and vertical electrical sounding – VES). Microtremor method was conducted at 377 points in average in the investigation area to define fundamental period and empirical transfer function; after that in order to create basin model and to define the shallow subsurface geometry, microgravity measurements were carried out by using Scintrex CG-5. Also, MASW measurements were carried out in approximately 277 profiles and Schlumberger VES measurements were conducted at approximately 7 points in the investigation area. The existence of a linear relation between H/V peak period values obtained by microtremor measurements and ground thickness in the investigation area is also supported by geothermal drilling logs (depth of 600 m) with microgravity survey. Also, in some parts of the investigation area, it was observed that high velocity () values affected H/V peak period values in sections of the ground close to the surface and there was an inversely correlated

  11. Building deals on bedrock.

    Science.gov (United States)

    Harding, David; Rovit, Sam

    2004-09-01

    The headlines are filled with the sorry tales of companies like Vivendi and AOL Time Warner that tried to use mergers and acquisitions to grow big fast or transform fundamentally weak business models. But, drawing on extensive data and experience, the authors conclude that major deals make sense in only two circumstances: when they reinforce a company's existing basis of competition or when they help a company make the shift, as the industry's competitive base changes. In most stable industries, the authors contend, only one basis--superior cost position, brand power, consumer loyalty, real-asset advantage, or government protection--leads to industry leadership, and companies should do only those deals that bolster a strategy to capitalize on that competitive base. That's what Kellogg did when it acquired Keebler. Rather than bow to price pressures from lesser players, Kellogg sought to strengthen its existing basis of competition--its brand--through Keebler's innovative distribution system. A company coping with a changing industry should embark on a series of acquisitions (most likely coupled with divestitures) aimed at moving the firm to the new competitive basis. That's what Comcast did when changes in government regulations fundamentally altered the broadcast industry. In such cases, speed is essential, the investments required are huge, and half-measures can be worse than nothing at all. Still, the research shows, successful acquirers are not those that try to swallow a single, large, supposedly transformative deal but those that go to the M&A table often and take small bites. Deals can fuel growth--as long as they're anchored in the fundamental way money is made in your industry. Fail to understand that and no amount of integration planning will keep you and your shareholders from bearing the high cost of your mistakes. PMID:15449861

  12. Geology, Bedrock, Hot Springs Quad unit polygons. Compiled Polygons., Published in 2006, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2006. It is described as...

  13. Geology, Bedrock, Geologic Map of the North Carolina Portion of the Gasburg Quadrangle (Mapping by USGS), Published in 2004, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2004. It is described as...

  14. Geology, Bedrock, Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site Characterization., Published in 1998, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, was produced all or in part from Field Survey/GPS information as of 1998. It is described as 'Tabular data involving the location of...

  15. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 1. Depth to Bedrock Determinations Using Shallow Seismic Data Acquired in the Straight Creek Drainage Near Red River, New Mexico

    Science.gov (United States)

    Powers, Michael H.; Burton, Bethany L.

    2004-01-01

    In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.

  16. Geology, Bedrock, Mars Hill Quad unit polygons. Compiled Polygons., Published in 2006, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2006. It is described as...

  17. Geology, Bedrock, Persimmon Creek Quad line work. Incomplete lines., Published in 2006, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2006. It is described as...

  18. Unpublished Digital Bedrock Geologic Map of Cuyahoga National Park and Vicinity, Ohio (NPS, GRD, GRI, CUVA, CUVA digital map) adapted from Ohio Division of Geological Survey maps by Larsen and/or Slucher, and/or others (1996)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Unpublished Digital Bedrock Geologic Map of Cuyahoga National Park and Vicinity, Ohio is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR)...

  19. Geology, Bedrock, Geologic Map of the Chapel Hill Quadrangle, Published in 2004, 1:24000 (1in=2000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Observation information as of 2004. It is described...

  20. Acceptance-criteria for the bedrock for deep geologic disposal of spent nuclear fuel. Proceedings from a seminar at Gothenburg University; Acceptanskriterier foer berggrunden vid djup geologisk slutfoervaring av anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The seminar was directed to Nordic participants, and discussed disposal in the Nordic crystalline bedrock. Criteria for the bedrock should include: It should give durable mechanical protection for the engineered barriers; give a stable and favorable chemical environment for these barriers; have a low turnover of ground water in the near field; be easy to characterize; give favorable recipient-conditions; not have valuable minerals in workable quantities. These general criteria raise several questions coupled to the safety analysis: e.g. the need for geological, hydrological and geochemical parameters. Which data are missing, which are most difficult to find? What should the site characterization program look like to focus on factors that are of the highest importance according to the safety analysis. The demands on the conditions at a site need to be translated into quantitative criteria, which should be expressed as values that can be measured at the site or deduced from such measurements. These questions were discussed at the seminar, and 21 contributions from Finnish, Norwegian and Swedish participants are reported in these proceedings under the chapters: Coupling to the safety analysis; Methodology and criteria for site selection in a regional geoscientific perspective; Rock as a building material - prognosis and result; Geoscientific criteria for the bedrock at the repository - Mechanical protection; Geoscientific criteria for the bedrock at the repository - Low ground water turnover, chemically favorable and stable environment in the near field; Geoscientific criteria for the bedrock at the repository - Demands on the bedrock concerning the migration of radionuclides.

  1. Recharge to Shale Bedrock at Averill Park, an Upland Hamlet in Eastern New York - An Estimate Based on Pumpage within a Defined Cone of Depression

    Science.gov (United States)

    Randall, Allan D.; Finch, Anne

    2008-01-01

    Water levels beneath parts of Averill Park, a residential hamlet in an upland area of till-mantled shale bedrock in east-central New York, have declined in response to increased withdrawals from new wells. Similar experiences in many upland localities in the northeastern United States have resulted in awareness that the rate of recharge to bedrock can be an important constraint on the density of new development in uplands. Recharge at Averill Park was calculated on the basis of careful estimation of pumpage within a defined cone of depression. The data-collection and recharge-estimation procedures documented herein could be applied in a variety of upland localities in support of community-planning studies. Static water levels measured in 145 wells at Averill Park during the late summer of 2002 defined a 0.54-square-mile cone of depression within which ground-water discharge took place entirely as withdrawals from wells. Rates of withdrawal were estimated largely from surveys in similar neighborhoods a few miles away served by public water supply. Comparison of the water-level measurements in 2002 with measurements on other dates revealed localized declines that could be attributed to new housing developments or commercial demands, but also demonstrated that water levels in 2002 within the cone of depression had stabilized and were not declining persistently over time. Therefore, the current withdrawals were equated to recharge from infiltrating precipitation. Recharge within this area was estimated to average 104 gallons per day per acre, equivalent to 1.4 inches annually, and was sufficient to sustain a residential population of 1.9 persons per acre. This recharge rate is much lower than rates estimated from streamflow records for upland watersheds elsewhere in the northeastern United States. This rate is an average of an unknown larger rate in the 30 percent of the study area where bedrock is discontinuously overlain by less than 30 feet of till and an unknown

  2. Modeling the mobility of uranium from NORM-rich bedrock using multivariate statistical techniques - The mobility of uranium from U-containing bedrock materials as a function of pH: Implications for tunnel construction

    Energy Technology Data Exchange (ETDEWEB)

    Helmers, Tari; Fjermestad, Halldis; Salbu, Brit; Skipperud, Lindis [Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas (Norway); Meland, Sondre; Hagelia, Per [Norwegian Public Roads Administration, P.O. Box 8142, 0033 Oslo (Norway)

    2014-07-01

    According to amendments made to the Norwegian Pollution Control Act in 2011, naturally occurring radioactive material is now to be considered as an environmental contaminant, in addition to organic pollutants and trace metals. Environmental contamination is strongly correlated with the mobility and bioavailability of metals and radionuclides in natural systems. In order to determine the risk of environmental contamination from e.g. uranium (U) in alum shale areas, it is of particular importance to determine the mobility of U and trace metals found in the rock materials and their binding mechanisms. By determining the speciation and mobility of uranium and trace metals, better predictions can be made on the transport of contaminants in the environment from intervention like road and tunnel construction. The substrate media analyzed in this work was collected from a future tunnel construction site that is being built in the Gran municipality on National road Rv4 in Norway. The bedrock in the Gran municipality is rich in U-bearing minerals. Therefore, there is high potential for environmental contamination from the rock material removed for tunnel construction purposes. The present work focuses upon the effects of pH and the contact time (substrate media: solution) on the mobility of uranium. In order to identify the effects of pH and contact time on mobility, sample cores collected from an area rich in alum shale were subjected to an extended leaching experiment. In this experiment, the substrate materials were treated with five different pH solutions and were analyzed for different contact times. In addition, the results were compared to data from a sequential extraction experiment. In the leaching experiment, the mobilization of uranium in all of the substrate material was affected by the pH of solution. All of the samples were capable of quickly buffering pH solutions with a pH as low as 4 to neutral-alkaline conditions, attributed to the carbonate minerals

  3. Technology of high density resistivity method for bedrock investigation%高密度电阻率法在基岩勘察中的应用

    Institute of Scientific and Technical Information of China (English)

    邓帅奇; 岳建华; 刘志新; 于业斌

    2012-01-01

    Based on the fundamental theory of tripotential sonde, the paper explained the principle, working method, the process of data processing of high density measurement method of electrical resistivity, and applied it to actual engineering. Through examples of analysis, Wenner array has obvious effect for detecting the up and down situation of bedrock surface due to its high vertical resolution. In addition, Wenner array has advantage of strong signal acquisition and high signal-to-noise ratio. Instead, dipole array has high sensitivity for detecting the internal structure of the bedrock due to its high transverse resolution. While dipole devise also has weak capability on signal acquisition and low ability of anti-jamming. To sum up, the paper concluded that it should get an ideal detecting results by combination. The actual application indicated that this method can get good result of detecting bedrock. It is proved by practice that the application of high density resistivity method in bedrock investigation can get great result. Furthermore: it would do great help to improve the exploration results and accuracy by combining different arrays for comprehensive measurement.%从三电位电极系基本理论出发,对高密度电阻率法常用温纳、偶极及微分装置的分辨率、信号强度等进行了比较研究.实例分析表明,温纳装置测量获得的数据纵向分辨率较高,采集信号的强度大,信噪比高,采用该装置探测基岩面的起伏状况效果明显;偶极装置采集的数据横向分辨率较高,在探测基岩内部构造方面有较好的灵敏度,但该装置采集的信号强度小,抗干扰能力差.在实际应用时,建议运用多种装置形式进行综合测量和对比解释,以进一步提高勘探效果和精度.

  4. Planning of in-situ experiment for understanding of gas migration behaviour in sedimentary rock. (2) Affects of dissolved methane to the gas migration in bedrock

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency has been planning in-situ gas migration test in Horonobe URL, Hokkaido. It is expected that dissolved methane in Horonobe groundwater might have an effect on gas migration behaviour in bedrock. A series of two-phase multi-component analyses by use of GETFLOWS were conducted to understand the influence of dissolved methane. The increase of total gas pressure has been shown due to the existence of dissolved methane. The results also indicated that the injected nitrogen gas volume was influenced by dissolved methane. (author)

  5. Investigation of the effect of high frequency excited tools by the treatment of bedrock; Untersuchungen zur Wirkung hochfrequent erregter Werkzeuge bei der Zerstoerung von Festgestein

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, Guenter; Ebenhan, Karsten [Technische Univ. Dresden (Germany). Lehrstuhl fuer Baumaschinen- und Foerdertechnik; Lieberwirth, Holger [TAKRAF GmbH, Lauchhammer (Germany)

    2011-01-15

    Only in Germany mobile work machines consume about 1.6 Mio. t of diesel fuel per year. This kind of machinery is responsible for 47.8% of the CO{sub 2} emission and 60% of the NO{sub x} emission of all power driven vehicles in Germany. Economic competition as well as the aims of energy policy demand more economical machines and procedures. This can be realised only by new technologies. A starting point to lower the fuel consumption is to optimise the primary energy demand in the digging process of bedrock by a new approach. (orig.)

  6. Arsenic, iron, lead, manganese, and uranium concentrations in private bedrock wells in southeastern New Hampshire, 2012-2013

    Science.gov (United States)

    Flanagan, Sarah M.; Belaval, Marcel; Ayotte, Joseph D.

    2014-01-01

    nonhealth guidelines—based on aesthetic considerations, such as taste or the staining of laundry and plumbing fixtures—because these contaminants, at the SMCLs, are not considered to present risks to human health. Because lead (Pb) contamination of drinking water typically results from corrosion of plumbing materials belonging to water-system customers but still poses a risk to human health, the EPA established an action level (AL) of 15 μg/L for Pb instead of an MCL or SMCL (U.S. Environmental Protection Agency, 2012). The 15-μg/L AL for Pb has been adopted by the New Hampshire Department of Environmental Services for public water systems, and if exceeded, the public water system must inform their customers and undertake additional actions to control corrosion in the pipes of the distribution system (New Hampshire Department of Environmental Services, 2013). Unlike the quality of drinking water provided by public water suppliers, the quality of drinking water obtained from private wells in New Hampshire is not regulated; consequently, private wells are sampled only when individual well owners voluntarily choose to sample them. The U.S. Geological Survey (USGS), in cooperation with the EPA New England, conducted an assessment in 2012–13 to provide private well owners and State and Federal health officials with information on the distribution of trace-metal (As, Fe, Pb, Mn, and U) concentrations in groundwater from bedrock aquifers in the three counties of southeastern New Hampshire. This fact sheet analyzes data from water samples collected by a randomly selected group of private well owners from the three-county study area and describes the major findings for trace-metal concentrations.

  7. Use of Bedrock and Geomorphic Mapping Compilations in Assessing Geologic Hazards at Recreation Sites on National Forests in NW California

    Science.gov (United States)

    de La Fuente, J. A.; Bell, A.; Elder, D.; Mowery, R.; Mikulovsky, R.; Klingel, H.; Stevens, M.

    2010-12-01

    Geologic hazards on US Forest Service lands have a long history of producing catastrophic events. In 1890 (prior to the establishment of the Forest Service), the China Mine landslide buried a miner’s camp along the Trinity River in NW California, killing a number of miners. An earthquake in southwestern Montana triggered a massive landslide which killed 28 people in a US Forest Service campground in 1959. In 1980, Mount St. Helens erupted in Oregon, killing 57 people. Debris flows from a winter storm in 2003 on the burned hillslopes of the San Bernardino National Forest in California killed 14 people at the St. Sophia youth Camp. A rockfall in the summer of 2009 in Lassen National Park killed a 9 year old boy. The most recent catastrophe occurred on June 11, 2010 when 20 people died in a flash flood at the Albert Pike Campground on the Ouachita National Forest. These and other disasters point out the need for geologic hazard mapping and assessments on the National Forests. The US Forest Service (USFS) is currently assessing geologic hazards in the Northern Province of USFS Region 5 (Pacific Southwest Region), which includes the Klamath, Mendocino, Shasta-Trinity, and Six Rivers National Forests. The most common geologic hazards (relatively short return intervals) in this area include landslides, rock falls, debris flows, flooding, temporary dam failures (landslide or woody debris), naturally occurring hazardous materials, (asbestos radon, etc), and rarely, karst subsidence. Seismic and volcanic hazards are also important at longer return intervals. This assessment will be conducted in three phases, and is patterned after a process developed by Region 8 of the US Forest Service. The first phase is a reconnaissance level assessment based on existing information such as spatial databases, aerial photos, Digital Elevation Models, State of California Alquist-Priolo Earthquake Fault Zone maps, previous investigations and anecdotal accounts of past events. The bedrock

  8. Disposal of spent fuel in Olkiluoto bedrock. Programme for research, development and technical design for the pre-construction phase

    International Nuclear Information System (INIS)

    The spent fuel from the nuclear power plants at Olkiluoto and Loviisa will be disposed of in Finnish bedrock. Posiva aims at starting the construction of the disposal facility in the 2010's and the actual disposal operations in 2020. In May 1999 Posiva submitted an application for the so-called Decision-in-Principle (DiP) on the facility to the Finnish Government. According to the application the repository would be based on a KBS-3 type concept and sited at Olkiluoto. The application was approved by the Government in December 2000 and will go next to the Parliament for final approval. However, Posiva has already started the planning for the next programme phase on the assumption that a positive decision will be made. The purpose of the present document is to describe the objectives and major items of research, development, technical planning and design work for the period preceding the construction license. According to the current official guidelines Posiva should prepare for submitting the application for the license in 2010. For the technical development and design work the main target for the starting programme phase is to reach the maturity of design and technical plans that allows the specification of work packages for bid calls and gives sufficient confidence in the technical feasibility of planned operations at the encapsulation facility and in the repository. The main objectives for the complementary characterisation work at Olkiluoto consist of the verification of the present conclusions on site suitability, the definition and identification of suitable rock volumes for repository space and the characterisation of the target host rock for repository design, safety assessment and planning of construction work. The technical design and demonstration work together with the results of complementary site characterisation will provide the basis of the safety case prepared as the support for the construction license application. An integrated safety assessment

  9. Disposal of spent fuel in Olkiluoto bedrock. Programme for research, development and technical design for the pre-construction phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The spent fuel from the nuclear power plants at Olkiluoto and Loviisa will be disposed of in Finnish bedrock. Posiva aims at starting the construction of the disposal facility in the 2010's and the actual disposal operations in 2020. In May 1999 Posiva submitted an application for the so-called Decision-in-Principle (DiP) on the facility to the Finnish Government. According to the application the repository would be based on a KBS-3 type concept and sited at Olkiluoto. The application was approved by the Government in December 2000 and will go next to the Parliament for final approval. However, Posiva has already started the planning for the next programme phase on the assumption that a positive decision will be made. The purpose of the present document is to describe the objectives and major items of research, development, technical planning and design work for the period preceding the construction license. According to the current official guidelines Posiva should prepare for submitting the application for the license in 2010. For the technical development and design work the main target for the starting programme phase is to reach the maturity of design and technical plans that allows the specification of work packages for bid calls and gives sufficient confidence in the technical feasibility of planned operations at the encapsulation facility and in the repository. The main objectives for the complementary characterisation work at Olkiluoto consist of the verification of the present conclusions on site suitability, the definition and identification of suitable rock volumes for repository space and the characterisation of the target host rock for repository design, safety assessment and planning of construction work. The technical design and demonstration work together with the results of complementary site characterisation will provide the basis of the safety case prepared as the support for the construction license application. An integrated safety

  10. Estimation of hydraulic constant of discrete bedrock by the geostatistic method; Chishitsu tokeigakuteki shuho wo mochiita furenzokusei ganban no suiri teisu suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, T. [Kansai Electric Power Co. Inc., Osaka (Japan); Horie, M. [Japan Atomic Power Co., Tokyo (Japan); Nakaya, S. [CRC Research Institute Inc., Tokyo (Japan)

    1998-03-05

    Water permeability of a bedrock is determined by multiple-point observation in a relatively narrow area, such as water permeation test using bored holes, conducted to estimate hydraulic structures in a wider area. This approach, however, involves various disadvantages, such as those resulting from limited number of bored holes and difficulty in grasping water passages accompanying a crush zone. Therefore, an attempt was made to estimate hydraulic structures in a whole three-dimensional region, where a geostatistic method called Kriging was used to anlayze results of the Lugeon test, which has been frequently used to investigate water-permeability of bedrocks. The Lugeon data sampled follow a logarithmic normal distribution. Their three-dimensionally spatial continuity was assessed using the variogram, which gives a correlation distance of 70m for the area tested. A spatial distribution of water passages can be quantitatively estimated from the Lugeon data. A water lineament compatible with the crush zone found by the geological survey appears, from which it is considered that an adequate model can be estimated by the Kringing method. 4 refs., 9 figs., 1 tab.

  11. Final disposal of spent fuel in the Finnish bedrock. Detailed site investigations 1993-1996; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen. Yksityiskohtaiset sijoituspaikkatutkimukset 1993-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Posiva Oy, jointly owned company of Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (TVO), studies the Finnish bedrock for the final disposal of the spent nuclear fuel. The study is in accordance with the decision in principle by Finnish government in 1983 and aims at site selection. The report is the summary of the first stage of the detailed site investigations carried out during the years 1993-1996. The three sites in question, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki were selected for the detailed characterization on the basis of the preliminary site investigations at five areas. The interim reporting in 1996 is comprehensive and comprises a series of reports covering different disciplines and sites. The programme for 1993-1996 was divided into three sub-programs: (1) the baseline investigations describing the present conditions in the bedrock, (2) the additional characterization for the acquisition of complementary data, and (3) the investigations for testing the earlier results and hypotheses to build confidence in existing understanding. (refs.).

  12. Accuracy of CFC groundwater dating in a crystalline bedrock aquifer: Data from a site in southern Sweden

    Science.gov (United States)

    Bockgård, Niclas; Rodhe, Allan; Olsson, K. A.

    The concentrations of chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) and tritium were determined in groundwater in fractured crystalline bedrock at Finnsjön, Sweden. The specific goal was to investigate the accuracy of CFC dating in such an environment, taking potential degradation and mixing of water into consideration. The water was sampled to a depth of 42 m in three boreholes along an 800-m transect, from a recharge area to a local discharge area. The CFC-113 concentration was at the detection limit in most samples. The apparent recharge date obtained from CFC-11 was earlier than from CFC-12 for all samples, with a difference of over 20 years for some samples. The difference was probably caused by degradation of CFC-11. The CFC-12 dating of the samples ranged from before 1945 to 1975, with the exception of a sample from the water table, which had a present-day concentration. Conclusions about flow paths or groundwater velocity could not be drawn from the CFCs. The comparison between CFC-12 and tritium concentrations showed that most samples could be unmixed or mixtures of waters with different ages, and the binary mixtures that matched the measured concentrations were determined. The mixing model approach can be extended with additional tracers. Précision de la datation au CFC dans un aquifère rocheux-fracturé: données d'un site du sud de la Suède. Les concentrations en chlorofluorocarbones (CFC-11, CFC-12, CFC-113) et entritium ont été déterminées dans l'eau souterraine d'un massif fracturé à Finnsjön en Suède. Le but de cette étude est de mieux cerner la précision de la méthode de datation au CFC dans ce type d'environnement hydrogéologique, tout en considérant d'éventuels phénomènes de dégradation et de mélange d'eaux. L'eau a été échantillonnée à une profondeur de 42 mètres dans trois forages alignés sur 800 mètres entre une zone de recharge et une zone de déversement. Les concentrations en CFC-113 sont dans la plupart

  13. Difference of brightness temperatures between 19.35 GHz and 37.0 GHz in CHANG'E-1 MRM: implications for the burial of shallow bedrock at lunar low latitude

    Science.gov (United States)

    Yu, Wen; Li, Xiongyao; Wei, Guangfei; Wang, Shijie

    2016-03-01

    Indications of buried lunar bedrock may help us to understand the tectonic evolution of the Moon and provide some clues for formation of lunar regolith. So far, the information on distribution and burial depth of lunar bedrock is far from sufficient. Due to good penetration ability, microwave radiation can be a potential tool to ameliorate this problem. Here, a novel method to estimate the burial depth of lunar bedrock is presented using microwave data from Chang'E-1 (CE-1) lunar satellite. The method is based on the spatial variation of differences in brightness temperatures between 19.35 GHz and 37.0 GHz (ΔTB). Large differences are found in some regions, such as the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, and the highland east of Mare Smythii. Interestingly, a large change of elevation is found in the corresponding region, which might imply a shallow burial depth of lunar bedrock. To verify this deduction, a theoretical model is derived to calculate the ΔTB. Results show that ΔTB varies from 12.7 K to 15 K when the burial depth of bedrock changes from 1 m to 0.5 m in the equatorial region. Based on the available data at low lunar latitude (30°N-30°S), it is thus inferred that the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, the highland located east of Mare Smythii, the edge of Pasteur and Chaplygin are the areas with shallow bedrock, the burial depth is estimated between 0.5 m and 1 m.

  14. Difference of brightness temperatures between 19.35 GHz and 37.0 GHz in CHANG'E-1 MRM: implications for the burial of shallow bedrock at lunar low latitude

    Institute of Scientific and Technical Information of China (English)

    Wen YU; Xiongyao LI; Guangfei WEI; Shijie WANG

    2016-01-01

    Indications of buried lunar bedrock may help us to understand the tectonic evolution of the Moon and provide some clues for formation of lunar regolith.So far,the information on distribution and burial depth of lunar bedrock is far from sufficient.Due to good penetration ability,microwave radiation can be a potential tool to ameliorate this problem.Here,a novel method to estimate the burial depth of lunar bedrock is presented using microwave data from Chang'E-1 (CE-1) lunar satellite.The method is based on the spatial variation of differences in brightness temperatures between 19.35 GHz and 37.0 GHz (△TB).Large differences are found in some regions,such as the southwest edge of Oceanus Procellarum,the area between Mare Tranquillitatis and Mare Nectaris,and the highland east of Mare Smythii.Interestingly,a large change of elevation is found in the corresponding region,which might imply a shallow burial depth of lunar bedrock.To verify this deduction,a theoretical model is derived to calculate the △TB.Results show that △TB varies from 12.7 K to 15 K when the burial depth of bedrock changes from 1 m to 0.5 m in the equatorial region.Based on the available data at low lunar latitude (30°N-30°S),it is thus inferred that the southwest edge of Oceanus Procellarum,the area between Mare Tranquillitatis and Mare Nectaris,the highland located east of Mare Smythii,the edge of Pasteur and Chaplygin are the areas with shallow bedrock,the burial depth is estimated between 0.5 m and 1 m.

  15. Accuracy of CFC groundwater dating in a crystalline bedrock aquifer: Data from a site in southern Sweden

    Science.gov (United States)

    Bockgård, Niclas; Rodhe, Allan; Olsson, K. A.

    The concentrations of chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) and tritium were determined in groundwater in fractured crystalline bedrock at Finnsjön, Sweden. The specific goal was to investigate the accuracy of CFC dating in such an environment, taking potential degradation and mixing of water into consideration. The water was sampled to a depth of 42 m in three boreholes along an 800-m transect, from a recharge area to a local discharge area. The CFC-113 concentration was at the detection limit in most samples. The apparent recharge date obtained from CFC-11 was earlier than from CFC-12 for all samples, with a difference of over 20 years for some samples. The difference was probably caused by degradation of CFC-11. The CFC-12 dating of the samples ranged from before 1945 to 1975, with the exception of a sample from the water table, which had a present-day concentration. Conclusions about flow paths or groundwater velocity could not be drawn from the CFCs. The comparison between CFC-12 and tritium concentrations showed that most samples could be unmixed or mixtures of waters with different ages, and the binary mixtures that matched the measured concentrations were determined. The mixing model approach can be extended with additional tracers. Précision de la datation au CFC dans un aquifère rocheux-fracturé: données d'un site du sud de la Suède. Les concentrations en chlorofluorocarbones (CFC-11, CFC-12, CFC-113) et entritium ont été déterminées dans l'eau souterraine d'un massif fracturé à Finnsjön en Suède. Le but de cette étude est de mieux cerner la précision de la méthode de datation au CFC dans ce type d'environnement hydrogéologique, tout en considérant d'éventuels phénomènes de dégradation et de mélange d'eaux. L'eau a été échantillonnée à une profondeur de 42 mètres dans trois forages alignés sur 800 mètres entre une zone de recharge et une zone de déversement. Les concentrations en CFC-113 sont dans la plupart

  16. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    A borehole testing apparatus has been designed to isolate discrete intervals of a bedrock borehole and conduct hydraulic tests or collect water samples for geochemical analyses. This borehole testing apparatus, referred to as the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3), includes two borehole packers, which when inflated can form a pressure-tight seal against smooth borehole walls; a pump apparatus to withdraw water from between the two packers; a fluid-injection apparatus to inject water between the two packers; pressure transducers to monitor fluid pressure between the two packers, as well as above and below the packers; flowmeters to monitor rates of fluid withdrawal or fluid injection; and data-acquisition equipment to record and store digital records from the pressure transducers and flowmeters. The generic design of this apparatus was originally discussed in United States Patent Number 6,761,062 (Shapiro, 2004). The prototype of the apparatus discussed in this report is designed for boreholes that are approximately 6 inches in diameter and can be used to depths of approximately 300 feet below land surface. The apparatus is designed to fit in five hard plastic boxes that can be shipped by overnight freight car-riers. The equipment can be assembled rapidly once it is removed from the shipping boxes, and the length of the test interval (the distance between the two packers) can be adjusted to account for different borehole conditions without reconfiguring the downhole components. The downhole components of the Multifunction BAT3 can be lowered in a borehole using steel pipe or a cable; a truck mounted winch or a winch and tripod can be used for this purpose. The equipment used to raise and lower the downhole components of the Multifunction BAT3 must be supplied on site, along with electrical power, a compressor or cylinders of compressed gas to inflate the packers and operate downhole valves, and the proper length of tubing to connect the

  17. Characterization of DNAPL Source Zone Arcgitecture in Clay Till and Limestone Bedrock by Integrated Site Investigations with Innovative and Current Techniques

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Janniche, Gry Sander; Fjordbøge, Annika Sidelmann;

    in limestone. The coring may also have impacted DNAPL in high permeability zones near the borehole, thereby, potentially affecting the use of the NAPL FLUTe. Water-FLUTe multilevel groundwater monitoring and sampling (under two flow conditions) and FACT-FLUTe sampling and analysis provided important...... of DNAPL source zone architecture in clay till and bryozoan limestone bedrock. Surface investigations included Ground Penetrating Radar (GPR ) and seismic reflection and refraction. Investigations in the clay till included membrane interface probing (MIP) with FID, ECD and GC-MS analysis; coring...... in the limestone aquifer included coring with discrete subsampling for quantitative analysis, SudanIV hydrophobic colour test, PID and geologic descriptions; NAPL and FACT FLUTe exposure and discrete FACT subsampling and analysis; FLUTe liner hydraulic conductivity profiling; Water-FLUTe installation...

  18. Preliminary bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle, Navajo and Apache Counties, northern Arizona

    Science.gov (United States)

    Amoroso, Lee; Priest, Susan S.; Hiza-Redsteer, Margaret

    2014-01-01

    The bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle was completed in a cooperative effort of the U.S. Geological Survey (USGS) and the Navajo Nation to provide regional geologic information for management and planning officials. This report provides baseline geologic information that will be useful in future studies of groundwater and surface water resources, geologic hazards, and the distribution of soils and plants. The west half of the Sanders quadrangle encompasses approximately 2,509 km2 (980 mi2) within Navajo and Apache Counties of northern Arizona and is bounded by lat 35°30' to 35° N., long 109°30' to 110° W. The majority of the land within the map area lies within the Navajo Nation. South of the Navajo Nation, private and State lands form a checkerboard pattern east and west of Petrified Forest National Park. In the west half of the Sanders quadrangle, Mesozoic bedrock is nearly flat lying except near folds. A shallow Cenozoic erosional basin that developed about 20 Ma in the western part of the map area cut across late Paleozoic and Mesozoic rocks that were subsequently filled with flat-lying Miocene and Pliocene mudstone and argillaceous sandstone and fluvial sediments of the Bidahochi Formation and associated volcanic rocks of the Hopi Buttes volcanic field. The Bidahochi rocks are capped by Pliocene(?) and Pleistocene fluvial sediments and Quaternary eolian and alluvial deposits. Erosion along northeast-southwest-oriented drainages have exposed elongated ridges of Bidahochi Formation and basin-fill deposits that are exposed through shallow eolian cover of similarly oriented longitudinal dunes. Stokes (1964) concluded that the accumulation of longitudinal sand bodies and the development of confined parallel drainages are simultaneous processes resulting in parallel sets of drainages and ridges oriented along the prevailing southwest wind direction on the southern Colorado Plateau.

  19. Environmental impacts of oil production on soil, bedrock, and vegetation at the U.S. Geological Survey Osage-Skiatook Petroleum Environmental Research site A, Osage County, Oklahoma

    Science.gov (United States)

    Otton, J.K.; Zielinski, R.A.; Smith, B.D.; Abbott, M.M.; Keeland, B.D.

    2005-01-01

    The U.S. Geological Survey is investigating the impacts of oil and gas production on soils, groundwater, surface water, and ecosystems in the United States. Two sites in northeastern Oklahoma (sites A and B) are presently being investigated under the Osage-Skiatook Petroleum Environmental Research project. Oil wells on the lease surrounding site A in Osage County, Oklahoma, produced about 100,000 bbl of oil between 1913 ard 1981. Prominent production features on the 1.5-ha (3.7-ac) site A include a tank battery, an oil-filled trench, pipelines, storage pits for both produced water and oil, and an old power unit. Site activities and historic releases have left open areas in the local oak forest adjacent to these features and a deeply eroded salt scar downslope from the pits that extends to nearby Skiatook Lake. The site is underlain by surficial sediments comprised of very fine-grained eolian sand and colluvium as much as 1.4 m (4.6 ft) thick, which, in turn, overlie flat-lying, fractured bedrock comprised of sandstone, clayey sandstone, mudstone, and shale. A geophysical survey of ground conductance and concentration measurements of aqueous extracts (1:1 by weight) of core samples taken in the salt scar and adjacent areas indicate that unusual concentrations of NaCl-rich salt are present at depths to at least 8 m (26 ft) in the bedrock; however, little salt occurs in the eolian sand. Historic aerial photographs, anecdotal reports from oil-lease operators, and tree-ring records indicate that the surrounding oak forest was largely established after 1935 and thus postdates the majority of surface damage at the site. Blackjack oaks adjacent to the salt scar have anomalously elevated chloride (>400 ppm) in their leaves and record the presence of NaCl-rich salt or salty water in the shallow subsurface. The geophysical measurements also indicate moderately elevated conductance beneath the oak forest adjoining the salt scar. Copyright ?? 2005. The American Association of

  20. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Jordi, E-mail: jordi.palau@unine.ch [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Marchesi, Massimo [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Chambon, Julie C.C. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Canals, Àngels [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Binning, Philip J.; Bjerg, Poul L. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Otero, Neus; Soler, Albert [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain)

    2014-03-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ{sup 13}C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ{sup 37}Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ{sup 37}Cl and δ{sup 13}C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ({sup 13}C,{sup 35}Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer.

  1. Hydrological processes modeling under influence of bedrock fissure%考虑基岩裂隙作用的流域水文过程模拟

    Institute of Scientific and Technical Information of China (English)

    石清; 陈喜; 魏玲娜; 张志才

    2013-01-01

    Based on the distributed hydrology soil vegetation model ( DHSVM) , two-period recession curves of the hydrographs were adopted according to the characteristics of flood recessions and geological conditions. Considering the hydraulic contacts of bedrock fissure water in the water cycle, we modified DHSVM in this study. A case study was conducted in the Xingfeng Basin in the Dongjiang red-soil hilly region. Vegetation, soil, and bedrock fissure parameters were determined based on remote sensing ( RS ) data as well as field and laboratory experiments. Hydrological and meteorological observation data from 2003 to 2008 were used for parameter calibration and model verification. The perturbation analysis method was used for sensitivity analysis, in order to study how the changes of the model parameters influence runoff and evapotranspiration. The results show that, when the modified DHSVM is used, the fissure aquifer can be used to regulate runoff, and the model can simulate low flow better and increase the accuracy of hydrological processes simulation.%利用分布式水文-土壤-植被模型( DHSVM),根据枯期径流2段退水规律,建立基岩裂隙水运动的计算方法,实现了DHSVM的改进。根据东江星丰流域地形、土壤、植被及水文地质特征,采用现场观测、遥感资料分析及室内试验等手段,确定星丰流域植被、土壤、基岩裂隙特征参数。利用2003-2008年实测气象、水文资料进行参数率定和模型验证。采用扰动分析法分析改进的DHSVM参数对径流、蒸散发影响的灵敏度。结果表明:改进的DHSVM实现了裂隙含水层对径流的调节,能更好地模拟枯期基流,提高了流域水文过程的模拟精度。

  2. A reconnaissance spatial and temporal assessment of methane and inorganic constituents in groundwater in bedrock aquifers, Pike County, Pennsylvania, 2012-13

    Science.gov (United States)

    Senior, Lisa A.

    2014-01-01

    Pike County in northeastern Pennsylvania is underlain by the Devonian-age Marcellus Shale and other shales, formations that have potential for natural gas development. During 2012–13, the U.S. Geological Survey in cooperation with the Pike County Conservation District conducted a reconnaissance study to assess baseline shallow groundwater quality in bedrock aquifers prior to possible shale-gas development in the county. For the spatial component of the assessment, 20 wells were sampled in summer 2012 to provide data on the occurrence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines. For the temporal component of the assessment, 4 of the 20 wells sampled in summer 2012 were sampled monthly from July 2012 through June 2013 to provide data on seasonal variability in groundwater quality. All water samples were analyzed for major ions, nutrients, selected inorganic trace constituents (including metals and other elements), stable isotopes of water, radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and ethene), and, if possible, isotopic composition of methane. Additional analyses for boron and strontium isotopes, age-dating of water, and radium-226 were done on water samples collected from six wells in June 2013.

  3. Assessing topsoil and bedrock hydrodynamic properties from natural and artificial rainfalls over a 10m2 steep plot in Cevennes area (France)

    Science.gov (United States)

    Adamovic, Marko; Bouvier, Christophe; Brunet, Pascal; Ayral, Pierre-Alain

    2016-04-01

    Flash floods are feature of Mediterranean climate characterized by heavy rainfalls in a few hours. Hydrological processes depend on both the topsoil and bedrock properties, which are still poorly known in the mountainous areas. Thus, special attention was paid to characterize the water fluxes in the shallow near-surface area. This study focuses on a 10-m2plot within a granitic hillslope in Cevennes area. Water content was monitored at several depths (up to 70cm) during both intense artificial and natural rainfall events, in order to study both infiltration and saturation processes in both extreme and normal conditions. Inverse modeling was performed in order to estimate parameters, such as θs, θr, α, n, Ks associated to the Mualem-Van Genuchten formulation, using the HYDRUS-1D software. The deep boundary condition was also calibrated to assess the properties of the deep layers. Although the topsoil depth is rather small (˜40 cm), the water storage during the rainfalls was estimated to be some hundreds millimeters, which largely exceeds the topsoil capacity. It suggests that the weathered area (and maybe the fractured rock area) below the soil, can have an active role in the water storage and sub-surface flow dynamics. Similar parameters were used to perform correct simulations under both artificial and natural rainfalls: thus artificial rainfalls enhance extreme conditions corresponding to flash floods occurrence, and the identified flux patterns are robust in natural conditions.

  4. Heavy minerals and garnet geochemistry of stream sediments and bedrocks from the Almklovdalen area, Western Gneiss Region, SW Norway: Implications for provenance analysis

    Science.gov (United States)

    Krippner, Anne; Meinhold, Guido; Morton, Andrew C.; Schönig, Jan; von Eynatten, Hilmar

    2016-05-01

    Detrital heavy minerals commonly document the geological setting in the source area, hence they are widely used in sedimentary provenance analysis. In heavy mineral studies, the 63-125 and 63-250 μm grain size fractions are most commonly used. Heavy mineral data and garnet geochemistry of stream sediments and bedrocks from the catchment area draining the Almklovdalen peridotite massif in SW Norway reveal that a wider grain size spectrum needs to be considered to avoid misleading interpretations. The Almklovdalen peridotite massif consists mainly of dunite and harzburgite, as testified by the heavy mineral suite. At the outlet of the main river, the heavy mineral spectrum is very monotonous due to dilution by a strong influx of olivine. Heavy minerals like apatite and epidote characterising the host gneisses have almost disappeared. MgO-rich almandine garnets are more frequent in the coarser grain size fractions, whereas MnO-rich almandine garnets are more frequent in the finer grain size fractions. Garnets with pyrope content exceeding 50% are only found in the 500-1000 μm grain size fraction. Therefore, the sample location and the selected grain size fraction are of paramount importance when dealing with heavy minerals and mineral geochemical data; otherwise, provenance-sensitive information may be missed.

  5. Quantitative bedrock geology of east and Southeast Asia (Brunei, Cambodia, eastern and southeastern China, East Timor, Indonesia, Japan, Laos, Malaysia, Myanmar, North Korea, Papua New Guinea, Philippines, far-eastern Russia, Singapore, South Korea, Taiwan, Thailand, Vietnam)

    Science.gov (United States)

    Peucker-Ehrenbrink, Bernhard; Miller, Mark W.

    2004-01-01

    We quantitatively analyze the area-age distribution of sedimentary, igneous and metamorphic bedrock based on data from the most recent digital geologic maps of East and Southeast Asia (Coordinating Committee for Coastal and Offshore Geosciences Programmes in East and Southeast Asia (CCOP) and the Geologic Survey of Japan, 1997; 1:2,000,000), published as Digital Geoscience Map G-2 by the Geological Survey of Japan. Sedimentary rocks, volcanic rocks, plutonic rocks, ultramafic rocks and metamorphic rocks cover 73.3%, 8.5%, 8.8%, 0.9%, and 8.6% of the surface area, respectively. The average ages of major lithologic units, weighted according to bedrock area, are as follows: sedimentary rocks (average stratigraphic age of 123 Myr/median age of 26 Myr), volcanic rocks (84 Myr/20 Myr), intrusive rocks (278 Myr/195 Myr), ultramafic rocks (unknown) and metamorphic rocks (1465 Myr/1118 Myr). The variability in lithologic composition and age structure of individual countries reflects the complex tectonic makeup of this region that ranges from Precambrian cratons (e.g., northeast China and North Korea) to Mesozoic-Cenozoic active margins (e.g., Japan, the Philippines, Indonesia and New Guinea). The spatial resolution of the data varies from 44 km2 per polygon (Japan) to 1659 km2 per polygon (Taiwan) and is, on average (490 km2/polygon), similar to our previous analyses of the United States of America and Canada. The temporal and spatial resolution is sufficiently high to perform age-area analyses of individual river basins larger than ˜10,000 km2 and to quantitatively evaluate the relationship between bedrock geology and river chemistry. As many rivers draining tropical, mountainous islands of East and Southeast Asia have a disproportionate effect on the dissolved and particulate load delivered to the world oceans, bedrock geology in such river drainage basins disproportionately affect ocean chemistry.

  6. New constraints on paleo-denudation history of the Ladakh Batholith - applying bedrock and detrital apatite (U-Th-Sm)/He thermochronology

    Science.gov (United States)

    Sahragard Sohi, Mohammad; Rosenkranz, Ruben; Spiegel, Cornelia

    2015-04-01

    The Ladakh Batholith is part of the Transhimalayan Plutonic Belt and records the early exhumation history of the Himalayan orogen. The evolution of the Ladakh Batholith is complex and was controversially discussed in the literature (see Kirstein, 2011 for details). Recent data by Kirstein et al. (2006 & 2009) suggest a trend of exhumation rates across the batholith, with earlier exhumation along its southern margin and later exhumation in the north. Apart from methodological purpose aimed at refining the apatite (U-Th-Sm)/He technique, the goal of our study is to investigate the earliest denudation history of the Ladakh Pluton and thereby that of the Himalayan orogen, using apatite (U-Th-Sm)/He thermochronology (i) applied to bedrocks from the southern margin of the batholith, and (ii) to sediments from the adjacent Upper Indian Group sediments such as Nurla, Choksti, and Nimu Formations with Early Eocene to Late Miocene in age (Henderson et al., 2010). These sediments are thought to be sourced from the Ladakh Batholith (Henderson et al., 2011). Apatite (U-Th-Sm)/He dating is sensitive to temperatures between ~85 and 40°C and thus to geodynamic movements of the upper ~1.5 to 3 km of the earth's crust. While thermochronology data from present-day bedrock exposures provides denudation rates integrated over the time between cooling age and the present, the earlier denudation history is eroded away from the present exposures and stored in the syn-tectonic sediments. Thus, dating sediments of the Indian Group will yield the paleo-denudation history of the (southern) Ladakh area, including changes of denudation rates back through time. This will reveal new insights into the relation between tectonics, climate, and erosion. References Henderson, A. L., Y. Najman, R. Parrish, M. BouDagher - Fadel, D. Barford, E. Garzanti, and S. Andò (2010), Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of sedimentation from the western Himalaya

  7. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Shane [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom); McCarthy, Valerie; Rafferty, Patrick [Department of Applied Sciences, Dundalk Institute of Technology, Dublin Road, Dundalk (Ireland); Orr, Alison; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom)

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  8. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer.

    Science.gov (United States)

    Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  9. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks.

    Science.gov (United States)

    Berger, Tobias; Mathurin, Frédéric A; Drake, Henrik; Åström, Mats E

    2016-11-01

    This study focuses on fluoride (F(-)) concentrations in groundwater in an area in northern Europe (Laxemar, southeast Sweden) where high F(-) concentrations have previously been found in surface waters such as streams and quarries. Fluoride concentrations were determined over time in groundwater in the Quaternary deposits ("regolith groundwater"), and with different sampling techniques from just beneath the ground surface to nearly -700m in the bedrock (fracture) groundwater. A number of potential controls of dissolved F(-) were studied, including geological variables, mineralogy, mineral chemistry and hydrology. In the regolith groundwater the F(-) concentrations (0.3-4.2mg/L) were relatively stable over time at each sampling site but varied widely among the sampling sites. In these groundwaters, the F(-) concentrations were uncorrelated with sample (filter) depth and the water table in meters above sea level (masl), with the thicknesses of the groundwater column and the regolith, and with the distribution of soil types at the sampling sites. Fluoride concentrations were, however, correlated with the anticipated spatial distribution of erosional material (till) derived from a F-rich circular granite intrusion. Abundant release of F(-) from such material is thus suggested, primarily via dissolution of fluorite and weathering of biotite. In the fresh fracture groundwater, the F(-) concentrations (1.2-7.4mg/L) were generally higher than in the regolith groundwater, and were uncorrelated with depth and with location relative to the granite intrusion. Two mechanisms explaining the overall high F(-) levels in the fracture groundwater were addressed. First, weathering/dissolution of fluorite, bastnäsite and apophyllite, which are secondary minerals formed in the fractures during past hydrothermal events, and biotite which is a primary mineral exposed on fracture walls. Second, long water-residence times, favoring water-rock interaction and build-up of high dissolved F

  10. Experiment on crack strain of rubber aggregate concrete restrained by bedrock%岩基约束橡胶集料混凝土开裂应变试验

    Institute of Scientific and Technical Information of China (English)

    王可良; 隋同波; 许尚杰; 刘玲

    2013-01-01

    Prevention of bedrock concrete cracking can improve the durability and operation safety of hydraulic structures.In this work,the cracking mechanism and restrained strain of rubber aggregate motar were studied through an experiment of restrained loop with resistance strain gauges,scanning electron microscrope and mercury porosimeter.The strain gauges were buried into bedrock concrete for measurement of restrained strain of rubber aggregate concrete.The results reveal that the rubber aggregate material under stressing causes a change in the shape of pores in the cement paste matrix and part of its stress is released.In the condition of ordinary motar cracking,this material develops curing strain and larger restrained strain,so the concrete does not crack.At the ages of 45d and 90d,the restrained strain in ordinary bedrock concrete is reduced quickly and its cracks start developing.Thus,rubber aggregate can improve the performances of bedrock concrete against cracking.This study provides an effective technical measure for prevention of bedrock concrete cracking.%解决岩基混凝土开裂有利于提高水工建筑物的耐久性和安全运行.采用约束圆环试验、电阻应变仪、电子扫描电镜和压汞试验,分析了橡胶集料砂浆约束开裂应变及其作用机理.在岩基混凝土内埋设应变计,观测橡胶集料混凝土的约束应变.结果表明:橡胶集料在应力作用下,改变了水泥石中孔的形态,缓冲部分应力,普通砂浆开裂时,橡胶集料开始表现硬化应变.在45d和90d龄期时,岩基普通混凝土应变急剧降低,混凝土出现开裂.岩基橡胶集料混凝土约束应变大,混凝土无开裂.橡胶集料有利于改善岩基混凝土的抗裂性能,为解决岩基混凝土裂缝提供一种新的技术措施.

  11. Taste: The Bedrock of Flavor

    Directory of Open Access Journals (Sweden)

    Gary K Beauchamp

    2014-07-01

    There are two general approaches to reducing dietary sodium. First, there is considerable interest in developing salt substitutes and salt enhancers. Potassium chloride is widely used (usually in combination with NaCl as a substitute but it is not ideal since many find it has an unpleasant off-taste. There is considerable academic and industry research to identify new substitutes but to date there are none for salty as there are for sweet taste. A second approach to lowering sodium intake on a population-wide level in the United States, where more than 80% of the average person’s salt intake comes from food purchased and not from being added during cooking or at the table, is for food manufacturers and restaurants to gradually reduce the amount of salt in prepared foods. Experimental studies have demonstrated that if one reduces salt intake preferences for salt are similarly reduced. Based on this, the Institute of Medicine (IOM recommended that the Food and Drug Administration require gradual reduction by food manufacturers and large restaurant chains (IOM. The FDA has not acted on this recommendation. Conclusion. As illustrated by the difficulties in reducing salt in spite of the health benefits (a similar set of arguments for reducing excess consumption of carbohydrate sugars could be made, the sense of taste is a powerful driver of food intake. A deeper understanding of this important but neglected sensory system is required if we are to adequately address critical health problems in modern society that are often driven by excess consumption of tasty nutrients.

  12. Site investigation SFR. Bedrock geology

    International Nuclear Information System (INIS)

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of the geological tunnel mapping and eleven drill cores remapped according to the Boremap system, input to model version 1.0 has included the results from eight new cored boreholes as well as a fuller integration of Forsmark site investigation data, a further more extensive review of the drill core from an additional 32 boreholes associated with the construction of the existing SFR facility and an updated mapping of the lower construction tunnel. The current modelling work has also reviewed the older SFR data and models. While details concerning the earlier zones lying in immediate contact with the existing SFR facility have been changed, the earlier overall position, orientation and number of these deformation zones is maintained. A significant difference concerns their thickness due to the contrasting methodologies used during the different campaigns. In SFR model version 0.1, a single deformation zone model was produced, with a volume corresponding to the regional model volume. The model contained all the deformation zones modelled irrespective of size. Separate local and regional deformation zone models have been produced in SFR model version 1.0, following resolution criteria for the different model volumes. The local model contains zones with a minimum size of 300 m, while the regional model has structures that have a minimum size constraint of 1,000 m trace length at the ground surface. The selection of these size limits is related to the model volume maximum depth (local model -300 masl and regional model -1,000 masl) and the applied methodology that requires the same model resolution throughout the defined model volume (see Section 5.3.1). To assist hydrogeological modelling work, an updated combined model, including all structures from both the regional and local models, has also been delivered. The existing SFR facility and the rock volume directly to the south-east, which is proposed for the new facility extension, lies within a tectonic block that is bounded to the north-east and south-west by two broad belts of concentrated ductile and brittle deformation

  13. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of the geological tunnel mapping and eleven drill cores remapped according to the Boremap system, input to model version 1.0 has included the results from eight new cored boreholes as well as a fuller integration of Forsmark site investigation data, a further more extensive review of the drill core from an additional 32 boreholes associated with the construction of the existing SFR facility and an updated mapping of the lower construction tunnel. The current modelling work has also reviewed the older SFR data and models. While details concerning the earlier zones lying in immediate contact with the existing SFR facility have been changed, the earlier overall position, orientation and number of these deformation zones is maintained. A significant difference concerns their thickness due to the contrasting methodologies used during the different campaigns. In SFR model version 0.1, a single deformation zone model was produced, with a volume corresponding to the regional model volume. The model contained all the deformation zones modelled irrespective of size. Separate local and regional deformation zone models have been produced in SFR model version 1.0, following resolution criteria for the different model volumes. The local model contains zones with a minimum size of 300 m, while the regional model has structures that have a minimum size constraint of 1,000 m trace length at the ground surface. The selection of these size limits is related to the model volume maximum depth (local model -300 masl and regional model -1,000 masl) and the applied methodology that requires the same model resolution throughout the defined model volume (see Section 5.3.1). To assist hydrogeological modelling work, an updated combined model, including all structures from both the regional and local models, has also been delivered. The existing SFR facility and the rock volume directly to the south-east, which is proposed for the new facility extension, lies within a tectonic block that is bounded to the north-east and south-west by two broad belts of concentrated ductile and brittle deforma

  14. Kinematics of steep bedrock permafrost

    OpenAIRE

    Hasler, Andreas; Gruber, Stephan; Beutel, Jan

    2012-01-01

    The mechanisms that control climate-dependent rockfall from permafrost mountain slopes are currently poorly understood. In this study, we present the results of an extensive rock slope monitoring campaign at the Matterhorn (Switzerland) with a wireless sensor network. A negative dependency of cleft expansion relative to temperature was observed at all clefts for the dominant part of the year. At many clefts this process is interrupted by a period with increased opening and shearing activity i...

  15. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of the geological tunnel mapping and eleven drill cores remapped according to the Boremap system, input to model version 1.0 has included the results from eight new cored boreholes as well as a fuller integration of Forsmark site investigation data, a further more extensive review of the drill core from an additional 32 boreholes associated with the construction of the existing SFR facility and an updated mapping of the lower construction tunnel. The current modelling work has also reviewed the older SFR data and models. While details concerning the earlier zones lying in immediate contact with the existing SFR facility have been changed, the earlier overall position, orientation and number of these deformation zones is maintained. A significant difference concerns their thickness due to the contrasting methodologies used during the different campaigns. In SFR model version 0.1, a single deformation zone model was produced, with a volume corresponding to the regional model volume. The model contained all the deformation zones modelled irrespective of size. Separate local and regional deformation zone models have been produced in SFR model version 1.0, following resolution criteria for the different model volumes. The local model contains zones with a minimum size of 300 m, while the regional model has structures that have a minimum size constraint of 1,000 m trace length at the ground surface. The selection of these size limits is related to the model volume maximum depth (local model -300 masl and regional model -1,000 masl) and the applied methodology that requires the same model resolution throughout the defined model volume (see Section 5.3.1). To assist hydrogeological modelling work, an updated combined model, including all structures from both the regional and local models, has also been delivered. The existing SFR facility and the rock volume directly to the south-east, which is proposed for the new facility extension, lies within a tectonic block that is bounded to the north-east and south-west by two broad belts of concentrated ductile and brittle deformation (Figures S-1 and S-2). The central block is less affected by deformation than the bounding belts. Within the central block, in the rock volume for the planned extension, a series of WNW-NW trending deformation zones are included in the local model (Figure S-2). These are much smaller than the bounding belts and were initiated at a later stage in a brittle regime. Even smaller zones with the same general strike and character, below the current model resolution, are inferred to permeate the entire rock volume. A NE to ENE striking set of brittle deformation zones is also present (Figure S-2). Compared with the WNW-NW set they are generally thinner and shorter, due to termination against the broad WNW-NW trending deformation belts

  16. Taste: The Bedrock of Flavor

    OpenAIRE

    Beauchamp, Gary K.

    2014-01-01

    The significance of taste for human health:Throughout most of human evolution, the daily decisions of what to put into ones mouth and swallow and what to reject presented challenges fraught with danger. Energy-rich foods were often difficult to find; protein was in short supply; sodium was scarce. Moreover, many plants that did contain nutrients were also equipped with defensive compounds that were poisonous. Now many humans over consume exactly the foods that they evolved to find particu...

  17. Geology, Bedrock, Surficial and geologic hazard map of the NPS Blue Ridge Parkway corridor. Majority of central and southern segments completed with entire project completed by October 2008., Published in 2004, 1:12000 (1in=1000ft) scale, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from Field Survey/GPS information as of 2004. It is described as...

  18. Unpublished Digital Bedrock Geology Map of Herbert Hoover National Historic Site and Vicinity, Iowa (NPS, GRD, GRI, HEHO, HHBR digital map) adapted from Iowa Geological Survey Open-File Report Maps by Witzke et. al. (2010) and Witzke and Anderson (2008)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Unpublished Digital Bedrock Geology Map of Herbert Hoover National Historic Site and Vicinity, Iowa is composed of GIS data layers complete with ArcMap 9.3...

  19. Transport of Bacteria and Virus-Sized Particles and Bacteriophage from Ground Surface to Depth in a Bedrock Aquifer - A Field Experiment

    Science.gov (United States)

    Novakowski, K. S.; Trimper, S.; Praamsma, T.; Springthorpe, S.

    2010-12-01

    Shallow, unprotected bedrock aquifers are common sources of drinking water supply in eastern North America. The vulnerability of these aquifers to contamination from pathogens is widely recognised, although little is actually known about the transport processes involved, particularly where the source is located near to or on ground surface (i.e. a septic system). In this experiment we explore the transport of fluorescent microspheres having diameters of 1.75 and 0.3 µm and the bacteriophage Φ-X174 in a sparsely-fractured gneissic terrain having minimal overburden cover. The experiment was conducted by ponding water in a 7 m2 area on the edge of an outcrop having observable vertical fractures and measuring the arrival of particles in two nearby monitoring wells. A conservative solute tracer (Lissamine FF) was also used to follow the solute front. In order to encourage transport to the wells and to provide a discharge stream to sample, pumping was conducted at a rate of 7.7 L/min from the lower half of the 15-m deep well farthest from the pond (approximately 7 m away). Sampling was conducted from the pumping stream, the upper 5 m of that well and the upper 5 m of an additional well located about 5 m from the surface pond. The experiment was conducted over a 48 hr period and samples were obtained every 15 min initially declining to once every 2 hrs towards the end of the experiment. Analysis of the bacteriophage was conducted using the Double Agar Layer method and the concentration of microspheres was determined using epi-fluorescent microscopy. As the latter is very time consuming, only preliminary results are available for the microsphere transport. The results show widespread migration of both the microspheres and the bacteriophage, as arrival in all sampling locations was detected. Mass recovery was low but similar for both the bacteriophage and the solute tracer, although the majority of the bacteriophage arrived much earlier than the majority of the solute

  20. The Regional Geochemistry of Soils and Willow in a Metamorphic Bedrock Terrain, Seward Peninsula, Alaska, 2005, and Its Possible Relation to Moose

    Science.gov (United States)

    Gough, L.P.; Lamothe, P.J.; Sanzolone, R.F.; Drew, L.J.; Maier, J.A.K.

    2009-01-01

    ' and the 'among sites at a location' GLM levels. Most of the variation in concentrations of Cd in soils occurred among sites (separated by 0.5 km) at both locations across all soil horizons and not between the two locations. Cd distribution across the landscape may be due to variation in soil mineralogy, especially the amount of graphite in soil, which has been associated with Cd. Although samples were collected on the same geologic unit, the geochemistry of soils was demonstrated to be uniform with depth but highly variable between locations separated by 80 km. This exploratory study establishes the presence of elevated levels of Cd in willow growing over Paleozoic bedrock in the Seward Peninsula. Further work is needed to definitively link these high Cd levels in willow browse to the health of moose.

  1. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden)); Simeonov, Assen (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  2. Mercury Geochemistry of Gold Placer Tailings, Sediments, Bedrock, and Waters in the Lower Clear Creek Area, Shasta County, California - Report of Investigations, 2001-2003

    Science.gov (United States)

    Ashley, Roger P.; Rytuba, James J.

    2008-01-01

    Clear Creek, one of the major tributaries of the upper Sacramento River, drains the eastern Trinity Mountains. Alluvial plain and terrace gravels of lower Clear Creek, at the northwest edge of the Sacramento Valley, contain placer gold that has been mined since the Gold Rush by various methods including hydraulic mining and dredging. In addition, from the 1950s to the 1980s aggregate-mining operations removed gravel from the lower Clear Creek flood plain. Since Clear Creek is an important stream for salmon production, a habitat restoration program is underway to repair damage from mining and improve conditions for spawning. This program includes moving dredge tailings to increase the area of spawning gravel and to fill gravel pits in the flood plain, raising the concern that mercury lost to these tailings in the gold recovery process may be released and become available to biota. The purposes of our study are to identify sources, transport, and dispersal of mercury in the lower Clear Creek area and identify environments in which bioavailable methylmercury is produced. Analytical data acquired include total mercury and methylmercury concentrations in sediments, tailings, and water. Mercury concentrations in bedrock and unmined gravels in and around the mined area are low and are taken to represent background concentrations. Bulk mercury values in placer mining tailings range from near-background in coarse dry materials to more than 40 times background in sands and silts exposed to mercury in sluices. Tailings are entrained in flood-plain sediments and active stream sediments; consequently, mercury concentrations in these materials range from background to about two to three times background. Mercury in sediments and tailings is associated with fine size fractions. The source of most of this mercury is historical gold mining in the Clear Creek watershed. Although methylmercury levels are low in most of these tailings and sediments, flood-plain sediment in shallow

  3. 咸化湖盆高效基岩气藏储层中基质孔隙的发现及意义%Discovery of Matrix Pore of High Efficiency Bedrock Gas Reservoir in Saline Basin and Its Significance

    Institute of Scientific and Technical Information of China (English)

    吴丽荣; 黄成刚; 袁剑英; 阎存凤; 马峰; 孙秀建

    2015-01-01

    近年来,柴达木盆地东坪地区天然气勘探获得了重大突破,已累计产气超过2×108 m3.通过钻井岩芯观察、偏光显微镜鉴定、物性分析以及场发射扫描电镜研究发现,东坪地区基岩由变质岩和花岗岩组成,平均孔隙度为4.72%,平均渗透率为1.71×10-3μm2.除裂缝和少量溶蚀孔外,岩石中基质微孔广泛发育,主要包括花岗岩中发育于铁镁质矿物的微孔以及片麻岩中的云母片晶间孔两类,其孔径极小且连通性差,多为数百纳米至数微米,为东坪地区基岩重要的天然气储集空间类型.大量石膏充填于上部基岩的孔缝中,为上覆地层路乐河组和干柴沟组沉积时咸水流体下渗沉淀、胶结所致,盐类矿物的封堵作用为大气田的形成起到了重要作用.这种发育于基岩中的“二元结构”的首次发现对指导咸化湖盆基岩油气勘探具有重要意义.%There is a maj or breakthrough on gas exploration in Dongping area of Qaidam Basin in recently years.The cumulative gas production is more than 2×108 m3 .According to the drilling core observation, polarizing microscope identification, physical property analysis and field emission scanning electron microscopy,the bedrock in Dongping area is made up of metamorphic rock and granite with the average porosity of 4.72% and the average permeability of 1.71×10-3μm2 .In addition to crack and a small amount of dissolved pore,matrix micropores widely develop in rocks, including micropore developed in femic mineral from granite and mica sheet intercrystalline pore in gneiss.These pores have tiny radius and poor connectivity,and the sizes are from hundreds of nanometers to several micrometers.They are the important types of gas reservoir space of bedrock in Dongping area.A lot of gypsum fill in the aperture of the upper bedrock,because there are saline fluid infiltration, precipitation and cementation when the overlying Lulehe

  4. 基岩脱空条件下仰拱结构疲劳寿命的计算方法%Fatigue life calculation method of tunnel base structure under the conditions of bedrock void

    Institute of Scientific and Technical Information of China (English)

    刘宁; 彭立敏; 施成华

    2016-01-01

    Due to tunneling construction disturbance and long-term cyclic heavy haul train loading,the void of surrounding rock may appear at the bottom of tunnel.The conditions of bedrock void affect the fatigue life of tun-nel base structure.In the paper,the softening of surrounding rock at the bottom of heavy-haul tunnel was intro-duced into the fatigue life analysis and dynamic response of the base structure.The analyses were carried out by using the finite element method.Based on the vertical load induced by train vibration and the linear cumulative damage theory,the fatigue life prediction of tunnel base structure was established to study the influence of the bed situation on the force status of railway tunnel base structure.The results show that the maximum value of ten-sile stress emerges at the center of the invert,so does the compressive stress at the junction of the sidewall and invert.The distribution of dynamic response of the base structure is similar under different conditions of bedrock void.As the void extent increases,the tensile stress and pressure stress amplitude of the base structure increase, and the fatigue life of the base structure is also reduced greatly.%由于隧道施工扰动及重载列车长期循环荷载作用下,隧道底部围岩出现局部基岩脱空现象。基岩脱空引起拱底围压的差异性分布,进而关系到隧道仰拱结构的疲劳寿命。通过引入重载列车隧道结构振动理论和Miner线性累积损伤理论,建立考虑基岩脱空条件下仰拱结构疲劳寿命的预测方法,研究基岩脱空条件下列车荷载对铁路隧道底部结构疲劳寿命的影响。计算结果表明:在隧道底部基岩脱空条件下,隧底结构仰拱中心处出现拉应力最大值,仰拱与边墙连接处出现压应力最大值,仰拱结构动应力响应分布规律相似。随着脱空变量的增大,隧底结构各部位动拉应力和动压应力增幅较大,仰拱结构疲劳寿命明显减小。

  5. Experimental research on seismic failure mode and supporting for slope of bedrock and overburden layer%地震力作用下基覆边坡模型试验研究

    Institute of Scientific and Technical Information of China (English)

    赵安平; 冯春; 李世海; 艾畅; 刘洋

    2012-01-01

    以汶川灾区实地考察资料为背景,选择宇宫庙滑坡为参照,制作了模型试验台,在量纲分析的基础上,对主要参数做了相似理论研究,并采用水下爆炸的方式来模拟地震波(近场)进行了大量模型试验.结果表明:基覆边坡在地震力作用下的破坏模式是浅表层张拉而导致表层松散体流坍,且地震加速度随着药量(地震烈度)的增加而呈递增趋势,重力墙、桩板墙等支挡结构对于基覆边坡的作用明显.其结论将为铁路、公路沿线的高陡边坡分析和研究提供一定的依据.%According to the site investigation of Wenchuan disaster area's statistics data as the background, the experiment model is made selecting Yugongmiao slope as the reference. The similarities of main parameters are analyzed based on dimensional analysis. The underwater blasting is used to simulate seismic wave (near-field), and a large number of model tests are conducted. The results show that the failure model of bedrock and overburden layer slope under seismic loading is surface loose media flowing caused by the tension of superficial layer, and with the increase of explosives (seismic intensity), seismic accelerations increase. It is very useful to design of gravity retaining wall and pile-wall structures. These conclusions can provide some bases for analysis and research of high-steep slopes along railways and highways.

  6. NEEM计划2537.36m透底深冰芯的钻取与成果概述%An Ice Core to Bedrock, 2 537.36 m in Depth,of the NEEM International Project

    Institute of Scientific and Technical Information of China (English)

    王士猛; 效存德; 谢爱红; 李传金; 任贾文《中文作者七》=秦大河《中文作者八》=张通

    2011-01-01

    NEEM(格陵兰北部Eemian冰芯钻取)计划是目前最重要的国际冰芯研究计划,来自14个国家超过300名的科学家参与,目标是获得130~115 ka BP甚至更古老的Eemian间冰期的透底冰芯和气候信息;此冰芯长达2 537.36 m,最后2m冰芯含有数十万年的基岩和其他物质.介绍了NEEM计划深冰芯的钻取背景和NEEM计划概况,以及NEEM计划获取的成果,并详述我国科学家在2010年度深冰芯钻取过程中取得的认识.%More than 300 scientists from 14 nations have participated in NEEM Project(the North Greenland Eemian Ice Core Drilling Project),the most international ice core effort to date.And the NEEM project has recovered the ica from the warm Eemian Interglacial Period, 130 000 to 115 000 a BP and even more.The core has 2 537.36 m in length,and the last 2 m above the bedrock contains rocks and other material that have not exposed for hundreds of thousands of years.In this paper,the background and outline of the project are briefly introduced,together with some experiences during the drilling and the 2011 NEEM field plan.

  7. Three-dimensional numerical simulation of curtain grouting in the dam bedrock based on binghamian grouts%大坝基岩帷幕宾汉姆浆液灌浆的三维数值模拟

    Institute of Scientific and Technical Information of China (English)

    邓韶辉; 王晓玲; 敖雪菲; 任炳昱; 李瑞金

    2016-01-01

    Because of the grouting engineering of masking and the complexity of geological conditions, how to accurately determine the diffusion regularity of grout under complicated geological conditions is the key and difficult point of grouting numerical simulation analysis. Binghamian grouts two-phase flow characteris⁃tics in the process of grout diffusion and complex geological conditions of dam bedrock is not considered in the present numerical simulation research of grouting in the hydraulic engineering. These research objects mainly focus on a single fracture or a single grout hole, while the simulation of grout front has not in⁃volved. Aim at the above-mentioned problems,a three-dimensional refined geological information model,in⁃cluded different formations,unfavorable geological body, curtains, grouting holes, was firstly established in this paper. Then, coupled with the volume of fluid (VOF) method in the CFD commercial software STAR-CCM+, a three-dimensional grouting mathematical model of Binghamian grouts air-grout two-phase flow was developed to achieve the numerical simulation of the multiple holes and sequencing grouting in the dam bedrock,also analyzing the grout diffusion rule and curtain lap after grouting. Finally,a hydropow⁃er station of bedrock curtain grouting process was taken as a case. The results show that the grout diffu⁃sion radius increases with time in a certain time range,but its rate of change shows a decline trend. After grouting completion of each sequence hole,grout front laps well. Furthermore,comparing the simulation val⁃ue with the actual measuring value of the grouting quantity and time, the average errors were 9.08% and 6.32% respectively,which verified the reliability of the method.%由于灌浆工程的掩蔽性和地质条件的复杂性,如何准确地确定复杂地质条件下浆液的扩散规律是灌浆数值模拟分析的关键及难点。目前,在水利工程中灌浆数值模拟的

  8. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  9. Final disposal of high-level nuclear waste in very deep boreholes. An evaluation based on recent research of bedrock conditions at great depths; Slutfoervaring av hoegaktivt kaernavfall i djupa borrhaal. En utvaerdering baserad paa senare aars forskning om berggrunden paa stora djup

    Energy Technology Data Exchange (ETDEWEB)

    Aahaell, Karl-Inge [Karlstad Univ. (Sweden)

    2007-01-15

    This report evaluates the feasibility of very deep borehole disposal of high-level nuclear waste, e.g., spent nuclear fuel, in the light of recent technological developments and research on the characteristics of bedrock at extreme depths. The evaluation finds that new knowledge in the field of hydrogeology and technical advances in drilling technology have advanced the possibility of using very deep boreholes (3-5 km) for disposal of the Swedish nuclear waste. Decisive factors are (1) that the repository can be located in stable bedrock at a level where the groundwater is isolated from the biosphere, and (2) that the waste can be deposited and the boreholes permanently sealed without causing long-term disturbances in the density-stratification of the groundwater that surrounds the repository. Very deep borehole disposal might offer important advantage compared to the relatively more shallow KBS approach that is presently planned to be used by the Swedish nuclear industry in Sweden, in that it has the potential of being more robust. The reason for this is that very deep borehole disposal appears to permit emplacement of the waste at depths where the entire repository zone would be surrounded by stable, density-stratified groundwater having no contact with the surface, whereas a KBS-3 repository would be surrounded by upwardly mobile groundwater. This hydro-geological difference is a major safety factor, which is particularly apparent in all scenarios that envisage leakage of radioactive substances. Another advantage of a repository at a depth of 3 to 5 km is that it is less vulnerable to impacts from expected events (e.g., changes in groundwater conditions during future ice ages) as well as undesired events (e.g. such as terrorist actions, technical malfunction and major local earthquakes). Decisive for the feasibility of a repository based on the very deep borehole concept is, however, the ability to emplace the waste without failures. In order to achieve this

  10. Levels of potassium, uranium, thorium and rate of radiogenic heat production in the bedrock adjacent to Camamu and Almada sedimentary basins, Bahia, Brazil; Teores de potassio, uranio, torio e taxa de producao de calor radiogenico no embasamento adjacente as bacias sedimentares de Camamu e Almada, Bahia, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Sapucaia, Najara Santos; Barbosa, Johildo Salomao Figueiredo [Instituto de Geociencias, Universidade Federal da Bahia, Salvador, BA (Brazil); Argollo, Roberto Max de, E-mail: nss@cpgg.ufba.br, E-mail: johildo@cpgg.ufba.br, E-mail: robmax@ufba.br [Laboratorio de Fisica Nuclear Aplicada, Instituto de Fisica, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2005-10-15

    The bedrock adjacent to Camamu and Almada sedimentary basins is characterized mainly by rocks of granulite and amphibolite facies, with archaean and paleoproterozoic ages, which belong to orogen Itabuna-Salvador-Curaca. The units in major proportion in this context are the metatonalites associated with basic and metamonzonites belonging to Itabuna belt. In smaller area occur the Teolandia granite and the Moenda granodiorite associated with the Ipiau band amphibolites, the charnockites and charnoenderbites of Jequie bloc, the neoproterozoic sienites and the mafic dikes. The K, U and Th contents of the rocks vary from 0,02 to 6,33% for K, from < 0,2 to 9,10 ppm for U and from < 0,4 to 64,38 ppm for Th. These contents are higher in the charnockites, Moenda granodiorite, Teolandia granite and sienites, intermediate in the metatonalites and metamonzonites and lower in the basic granulites. The heat production rates are higher in the lithologies where K, U and Th are also higher, varying from 0,58 to 5,57 {mu}W m{sup -3}. The coverage areas of such lithologies are, however, small compared with that of the metatonalitic granulites, metamonzonitic granulites and sienites where the rates vary from 0,10 to 1,44 {mu}W m{sup -3}, 0,23 to 5,55 {mu}W m{sup -3} and 0,60 to 2,24 {mu}W m{sup -3}, respectively. In this case, the heat production rates vary from 0,10 to 1,44 {mu}W m{sup -3}. The basic granulites have the smaller rates, from 0,06 to 0,36 {mu}W m-3. The observation of the lithologies in the margins of the two basins suggest that, in the bedrock under the younger sediments, may predominate the metatonalites, followed by the metamonzonites, with some significant participation of sienites in the Almada basin. In those lithologies, the volumetric heat production rates, with one standard deviation range, are 0,41 +- 0,30 {mu}W m{sup -3} for metatonalites, 0,71 +- 0,57 {mu}W m{sup -3} for metamonzonites and 1,20 +- 0,51 {mu}W m{sup -3} for sienites. (author)

  11. Delineation of areas having elevated electrical conductivity, orientation and characterization of bedrock fractures, and occurrence of groundwater discharge to surface water at the U.S. Environmental Protection Agency Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina

    Science.gov (United States)

    Chapman, Melinda J.; Huffman, Brad A.; McSwain, Kristen Bukowski

    2015-07-16

    During October 2012 through March 2013, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (EPA) Region 4, Superfund Section, conducted borehole geophysical logging, surface geophysical surveys, and water-quality profiling in selected wells and areas to characterize or delineate the extent of elevated subsurface electrical conductivity at the EPA Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina. Elevated electrical conductivity measured at the site may be related to native rock materials, waste rock disposal areas used in past operations, and (or) groundwater having elevated dissolved solids (primarily metals and major ions) related to waste migration. Five shallow screened wells and four open-borehole bedrock wells were logged by using a suite of borehole tools, and downhole water-quality profiles were recorded in two additional wells. Well depths ranged from about 26 to 300 feet below land surface. Surface geophysical surveys based on frequency-domain electromagnetic and distributed temperature sensing (DTS) techniques were used to identify areas of elevated electrical conductivity (Earth materials and groundwater) and potential high dissolved solids in groundwater and surface water on land and in areas along the northern unnamed tributary at the site.

  12. Delineation of areas having elevated electrical conductivity, orientation and characterization of bedrock fractures, and occurrence of groundwater discharge to surface water at the U.S. Environmental Protection Agency Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina

    Science.gov (United States)

    Chapman, Melinda J.; Huffman, Brad A.; McSwain, Kristen Bukowski

    2015-01-01

    During October 2012 through March 2013, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (EPA) Region 4, Superfund Section, conducted borehole geophysical logging, surface geophysical surveys, and water-quality profiling in selected wells and areas to characterize or delineate the extent of elevated subsurface electrical conductivity at the EPA Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina. Elevated electrical conductivity measured at the site may be related to native rock materials, waste rock disposal areas used in past operations, and (or) groundwater having elevated dissolved solids (primarily metals and major ions) related to waste migration. Five shallow screened wells and four open-borehole bedrock wells were logged by using a suite of borehole tools, and downhole water-quality profiles were recorded in two additional wells. Well depths ranged from about 26 to 300 feet below land surface. Surface geophysical surveys based on frequency-domain electromagnetic and distributed temperature sensing (DTS) techniques were used to identify areas of elevated electrical conductivity (Earth materials and groundwater) and potential high dissolved solids in groundwater and surface water on land and in areas along the northern unnamed tributary at the site.

  13. T Cells

    Science.gov (United States)

    T Cells - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign ... Is MS? Definition of MS T Cells T Cells Share Smaller Text Larger Text Print In this ...

  14. Cell counting.

    Science.gov (United States)

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  15. Galvanic Cells

    Science.gov (United States)

    Young, I. G.

    1973-01-01

    Many standard physical chemistry textbooks contain ambiguities which lead to confusion about standard electrode potentials, calculating cell voltages, and writing reactions for galvanic cells. This article shows how standard electrode potentials can be used to calculate cell voltages and deduce cell reactions. (Author/RH)

  16. Cell Biochips

    Science.gov (United States)

    Pioufle, B. Le; Picollet-D'Hahan, N.

    A cell biochip is a microsystem, equipped with electronic and microfluidic functions, designed to manipulate or analyse living cells. The first publications in this emerging area of research appeared toward the end of the 1980s. In 1989 Washizu described a biochip designed to fuse two cells by electropermeabilisation of the cytoplasmic membrane [1]. Research centers have devised a whole range of cell chip structures, for simultaneous or sequential analysis of single cells, cell groups, or cell tissues reconstituted on the chip. The cells are arranged in a square array on a parallel cell chip for parallel analysis, while they are examined and processed one by one in a microchannel in the case of a series cell chip. In contrast to these biochips for high-throughput analysis of a large number of cells, single-cell chips focus on the analysis of a single isolated cell. As in DNA microarrays, where a large number of oligonucleotides are ordered in a matrix array, parallel cell chips order living cells in a similar way. At each point of the array, the cells can be isolated, provided that the cell type allows this, e.g., blood cells, or cultivated in groups (most adhesion cells can only survive in groups). The aim is to allow massively parallel analysis or processing. Le Pioufle et al. describe a microdevice for the culture of single cells or small groups of cells in a micropit array [2]. Each pit is equipped to stimulate the cell or group of cells either electrically or fluidically. Among the applications envisaged are gene transfer, cell sorting, and screening in pharmacology. A complementary approach, combining the DNA microarray and cell biochip ideas, has been put forward by Bailey et al. [3]. Genes previously arrayed on the chip transfect the cultured cells on the substrate depending on their position in the array (see Fig. 19.1). This way of achieving differential lipofection on a chip was then taken up again by Yoshikawa et al. [4] with primary cells, more

  17. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  18. Stem Cells

    OpenAIRE

    Madhukar Thakur

    2009-01-01

    Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in ...

  19. Significant differences in late Quaternary bedrock erosion and transport

    DEFF Research Database (Denmark)

    Andrews, John; Bjørk, Anders Anker; Eberl, Dennis;

    2015-01-01

    We use quantitative X-ray diffraction to determine the mineralogy of late Quaternary marine sediments from the West and East Greenland shelves offshore from early Tertiary basalt outcrops. Despite the similar basalt outcrop area (60 000–70 000 km2), there are significant differences between East...... and West Greenland sediments in the fraction of minerals (e.g. pyroxene) sourced from the basalt outcrops. We demonstrate the differences in the mineralogy between East and West Greenland marine sediments on three scales: (1) modern day, (2) late Quaternary inputs and (3) detailed down-core variations...

  20. Bedrock geology of the northern Columbia Plateau and adjacent areas

    Science.gov (United States)

    Swanson, D. A.; Wright, T. L.

    1978-01-01

    The Columbia Plateau is surrounded by a complex assemblage of highly deformed Precambrian to lower Tertiary continental and oceanic rocks that reflects numerous episodes of continental accretion. The plateau itself is comprised of the Columbia River basalt group formed between about 16.5 x 1 million years B.P. and 6 x 1 million years B.P. Eruptions were infrequent between about 14 and 6 x 1 million years B.P., allowing time for erosion and deformation between successive outpourings. The present-day courses of much of the Snake River, and parts of the Columbia River, across the plateau date from this time. Basalt produced during this waning activity is more heterogeneous chemically and isotopically than older flows, reflecting its prolonged period of volcanism.

  1. Reinjection Tests in bedrock Geothermal Reservoir of Tianjin

    Institute of Scientific and Technical Information of China (English)

    朱家玲; 王坤

    2004-01-01

    By the end of 2002, there are about 219 production wells (including 12 reinjection wells) in Tianjin. The annual production rate is 1.5×107 m3 and the reinjection rate is 1.66×106 m3. The main side effect anticipated from reinjection is the cooling of the reservoir. It is necessary to estimate the thermal breakthrough time in different distances between injection-production wells. This paper describes the 2-D mass and heat transfer in the heterogeneous fractured rocks. The equations that arise for each grid block must be linearized. The main reinjection model is simulated by a program of the TOUGH2 to analyze the change of the temperature field and predict the pressure and heat break-through. The tracer test is very important for understanding the transportation pathway and transport channel/space in the doublet system, and estimating the possible cooling resulted from the injection processes.

  2. Evaluation of percolation rate of bedrock aquifer in coastal area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hwan; Jung, Hae Ryong; Park, Joo Wan; Yoon, Jeong Hyoun; Cheong, Jae Yeol [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Park, Sun Ju [NEXGEO Co. Ltd, Seoul (Korea, Republic of); Jun, Seong Chun [GeoGreen21 Co. Ltd, Seoul (Korea, Republic of)

    2016-03-15

    Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff.

  3. Seasonal sediment dynamics shape temperate bedrock reef communities

    Science.gov (United States)

    Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Storlazzi, Curt

    2016-01-01

    Mobilized seafloor sediment can impact benthic reef communities through burial, scour, and turbidity. These processes are ubiquitous in coastal oceans and, through their influence on the survival, fitness, and interactions of species, can alter the structure and function of benthic communities. In northern Monterey Bay, California, USA, as much as 30% of the seafloor is buried or exposed seasonally, making this an ideal location to test how subtidal temperate rocky reef communities vary in the presence and absence of chronic sediment-based disturbances. Designated dynamic plots were naturally inundated by sediment in summer (50 to 100% cover) and swept clean in winter, whereas designated stable plots remained free of sediment during our study. Multivariate analyses indicated significant differences in the structure of sessile and mobile communities between dynamic and stable reef habitats. For sessile species, community structure in disturbed plots was less variable in space and time than in stable plots due to the maintenance of an early successional state. In contrast, community structure of mobile species varied more in disturbed plots than in stable plots, reflecting how mobile species distribute in response to sediment dynamics. Some species were found only in these disturbed areas, suggesting that the spatial mosaic of disturbance could increase regional diversity. We discuss how the relative ability of species to tolerate disturbance at different life history stages and their ability to colonize habitat translate into community-level differences among habitats, and how this response varies between mobile and sessile communities.

  4. OSL-thermochronometry using bedrock quartz: a note of caution

    DEFF Research Database (Denmark)

    Guralnik, B.; Ankjærgaard, Christina; Jain, Mayank;

    2015-01-01

    Optically stimulated luminescence (OSL) thermochronometry is an emerging application, whose capability to record sub-Million-year thermal histories is of increasing interest to a growing number of subdisciplines of Quaternary research. However, several recent studies have encountered difficulties...

  5. Glacial flutings in bedrock, an observation in East Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby

    1978-01-01

    Large scale glacial flutings cover an area of 4 x 1.5 km on the northern shore of Harefjord in the interior Scoresby Sund fjord complex. The flutings are modelled in coarse sandstone and conglomerates, a few small features are probably composed of till. The ridges measure up to' 2000 m in length...... and 5 m in height and occur between 50 and 250 m above sea level inthe gently sloping lowland area adjacent to the fjord. They were probably formed beneath the lateral part of the former Harefjord-Glacier which receded rapidly in the fjord and exposed the area at c. 7500 years BP. Large scale glacial...

  6. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Kuva, J. (ed.); Myllys, M.; Timonen, J. [Jyvaeskylae Univ. (Finland); Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M. [Helsinki Univ. (Finland); Lindberg, A. [GTK Geological Survey of Finland, Espoo (Finland); Aaltonen, I.

    2012-01-15

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  7. Engineering cell-cell signaling.

    Science.gov (United States)

    Blagovic, Katarina; Gong, Emily S; Milano, Daniel F; Natividad, Robert J; Asthagiri, Anand R

    2013-10-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling on the basis of quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilize synthetic cells, advanced 'chassis' and predictive modeling to engineer the form and function of living tissues.

  8. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  9. Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2012-04-01

    Full Text Available The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  10. Analysis on Numerical Simulation of Mine Strata Behavior Law in Shallow Depth Seam with Bulk Overbarden Soil and Thin Bedrock Overburden%松散表土薄基岩浅埋煤层矿压显现规律数值分析

    Institute of Scientific and Technical Information of China (English)

    田建胜; 王建利; 王水利; 方新秋; 高海亮

    2011-01-01

    为了分析松散表土薄基岩浅埋煤层首采工作面上覆岩层的运动规律,尤其是顶板初次来压和周期来压步距,运用UDEC软件对神木汇森凉水井煤矿首采面上覆岩层矿压显现规律进行了数值模拟,在此基础上进行了现场实测。结果表明,首采面初次来压步距的计算值为40.0 m,实测值32.8 m;周期来压步距的计算值为20 m,实测周期来压步距为16.5~22.0 m,平均为19.5 m;强制放顶距为20 m时能减小初次来压强度;强制放顶能有效地削弱和减小顶板初次来压的强度和规模,保证强制放顶效果的关键是提高强制放顶爆破作业的质量。%In order to analyze the movement law of the strata above the first coal mining face in the seam with a shallow depth of bulk overburden soil and thin base bedrock,especially to analyze the roof initial pressurized and periodical pressurized distance to the UDEC software was applied to numerically simulate the pressure behavior law of the roof strata above the first coal mining face in Shenmu Huisen Liangshuijing Mine.Based on the circumstance,a site measurement was conducted.The results showed that the calculated value of the roof initial pressurized distance in the first coal mining face was about 40.0 m and the site measured distance was 32.8 m.The calculated value of the roof periodical pressurized distance was about 20 m,the site measured roof periodical pressurized distance was about 16.5~22.0 m and the average distance was 19.5 m.The forced roof caving distance of 20 m could eliminate the roof initial pressured.The forced roof caving could be effectively to relax and reduce the roof initial pressurized strength and scale.The key to ensure the forced roof caving results is to improve the blasting operation quality of the roof forced caving.

  11. 厚黄土薄基岩型采煤沉陷区农田土壤化学性状空间变异%Study on Spatial Variability of Farmland Soil's Chemical Properties in the Thick Loess and Thin Bedrock Mining Subsidence Area

    Institute of Scientific and Technical Information of China (English)

    白成云; 白文斌; 焦晓燕; 韩雄

    2011-01-01

    以山西潞安集团司马煤矿为例,针对厚黄土薄基岩型煤层地质,对沉陷破坏农田的不同沉陷深度下土壤化学性状空间变异进行研究.结果表明:(1)开采沉陷显著影响沉陷区农田表层土壤的化学特性,受其影响最大的是0~ 20cm土层,其次是20~ 40 cm土层.(2)沉陷农田不同下沉深度土壤养分受沉陷影响的增减程度不一样,但整体有向沉陷区农田底部运移的趋势.在沉陷2a的农田中,位于沉陷中部(即沉陷4m处)有养分积聚和盐渍化趋势.(3)在土壤化学特性中,受开采沉陷影响最大的是土壤速效磷,其次是土壤速效钾,再次是土壤全氮和土壤有机质,而土壤酸碱性受其影响较小.%In this paper, Sima Coal Mine in Shanxi Luan Group as the case, on the type of geology of thick loess and thin bedrock coal, their destruction of farmland on the settlement, subsidence depth in different spatial variability of soil chemical properties were studied. The result showed: (1 )Subsidence cropland significantly affected the chemical properties of the soil and the most affected depth was 0 ~ 20 cm soil layer, then followed by 20 - 40 cm soil layer. (2 )Not the same change degree in soil nutrients at the different sinking depths of the settlement, but overall soil nutrients demonstrated a migration trends moving towards the bottom of subsidence cropland. Subsidence cropland, located in the central settlement, i.e. settlement 4 meters, in the settlement two years, showed trends of nutrients accumulation and salinity. (3)In soil chemical characteristics, the most affected by mining subsidence was the soil available P, followed by soil available K, and then the soil total nitrogen and soil organic matter, while the less affected was soil pH.

  12. Solar cells

    Science.gov (United States)

    Cuquel, A.; Roussel, M.

    The physical and electronic characteristics of solar cells are discussed in terms of space applications. The principles underlying the photovoltaic effect are reviewed, including an analytic model for predicting the performance of individual cells and arrays of cells. Attention is given to the effects of electromagnetic and ionizing radiation, micrometeors, thermal and mechanical stresses, pollution and degassing encountered in space. The responses of different types of solar cells to the various performance-degrading agents are examined, with emphasis on techniques for quality assurance in the manufacture and mounting of Si cells.

  13. Engineering Cell-Cell Signaling

    OpenAIRE

    Blagovic, Katarina; Gong, Emily S.; Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R

    2013-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cel...

  14. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  15. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  16. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  17. Cell suicide

    International Nuclear Information System (INIS)

    In the fight of the cell against the damages caused to its DNA by genotoxic agents and specially by ionizing radiations, the p53 protein plays a central part. It intervenes in the proliferation control and the differentiation but also in the keeping of genome integrity. It can direct the damages cells toward suicide, or apoptosis, to avoid the risk of tumor appearance that would be fatal to the whole organism. That is by the disordered state of cells suicide programs that the tumor cells are going to develop. The knowledge of apoptosis mechanisms, to eventually start them on demand, rises up broad hopes in the cancer therapy. (N.C.)

  18. Reprogrammed Pluripotent Stem Cells from Somatic Cells

    OpenAIRE

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-01-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-li...

  19. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  20. [Cell cultures].

    Science.gov (United States)

    Cipro, Simon; Groh, Tomáš

    2014-01-01

    Cell or tissue cultures (both terms are interchangeable) represent a complex process by which eukaryotic cells are maintained in vitro outside their natural environment. They have a broad usage covering not only scientific field but also diagnostic one since they represent the most important way of monoclonal antibodies production which are used for both diagnostic and therapeutic purposes. Cell cultures are also used as a "cultivation medium" in virology and for establishing proliferating cells in cytodiagnostics. They are well-established and easy-to-handle models in the area of research, e.g. as a precious source of nucleic acids or proteins. This paper briefly summarizes their importance and methods as well as the pitfalls of the cultivation and new trends in this field. PMID:24624984

  1. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  2. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  3. Cell sorting by deterministic cell rolling

    OpenAIRE

    Choi, Sungyoung; Karp, Jeffrey M.; Karnik, Rohit

    2011-01-01

    This communication presents the concept of “deterministic cell rolling”, which leverages transient cell-surface molecular interactions that mediate cell rolling to sort cells with high purity and efficiency in a single step.

  4. Electrochemical cell

    Science.gov (United States)

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  5. Solar cells

    Science.gov (United States)

    Treble, F. C.

    1980-11-01

    The history, state of the art, and future prospects of solar cells are reviewed. Solar cells are already competitive in a wide range of low-power applications, and during the 1980's they are expected to become cheaper to run than diesel or gasoline generators, the present mainstay of isolated communities. At this stage they will become attractive for water pumping, irrigation, and rural electrification, particularly in developing countries. With further cost reduction, they may be used to augment grid supplies in domestic, commercial, institutional, and industrial premises. Cost reduction to the stage where photovoltaics becomes economic for large-scale power generation in central stations depends on a technological breakthrough in the development of thin-film cells. DOE aims to reach this goal by 1990, so that by the end of the century about 20% of the estimated annual additions to their electrical generating capacity will be photovoltaic.

  6. Suitable Density Management and Biomass Characters of Pinus tabulaeformis Plantations in the Ecotone between Bedrock Region and Loess Hill Area of West Shanxi Province%晋西黄土丘陵边缘区油松人工林密度调控与生物量特征

    Institute of Scientific and Technical Information of China (English)

    宋爱云; 董林水; 周金星; 张旭东

    2016-01-01

    晋西吕梁山基岩山地与黄土丘陵区生态过渡带的植被和土壤具有明显的过渡性和特殊性.以过渡带内黄土丘陵边缘区的油松人工林为对象,分别研究了油松人工林的合理经营密度、生物量和碳密度特征,并在此基础上分析了油松人工林生态系统的管理对策.应用标准样地调查资料,研究油松树冠面积与胸径的相关关系,并构建出拟合精度高(相关系数R=0.875 6)的模型:Y=0.762 4exp(0.166 4* X),其中,Y为树冠面积,X为径阶.应用上述模型,根据径阶计算理论树冠面积和理论密度,在此基础上考虑树冠重叠度的影响,作为理论密度修正,进而编制了不同郁闭度条件下的油松林分合理密度经营表.研究区域内油松人工林年龄范围在16~37 a,乔木层生物量维持在39.97~110.93 t· hm-2,年均生产力范围在1.04~3.09 t·hm-2·a-1,乔木层碳密度范围为19.99~55.47 t·hm-2,均低于全国其他气候相对湿润的油松产区.该地区油松人工林多存在初植密度过大的问题,经过几十年的生长,很多林分已经开始出现明显的退化特征,建议该地区应适时进行抚育间伐,间伐标准可参照林分生长现状及林分密度管理表来确定.%The vegetations and soils of the ecotone between bedrock region and loess hill area of west Shanxi Province had obvious transitional and unique characteristics.Plantations of Pinus tabulaeformis occurring in the ecotone were studied from the aspects of rational management density,biomass,and carbon density.Then the management strategies of the plantations were proposed.Based on the data from the sampling plots of the plantations,the relationship between the crown area and the diameter at breast height (DBH) was analyzed,and the regression model with high fitting accuracy was set up as Y=0.762 4exp(0.166 4 * X) (R=0.875 6).The table of theoretical density and suitable management density were established suiting for different

  7. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  8. Cell Libraries

    Science.gov (United States)

    1994-01-01

    A NASA contract led to the development of faster and more energy efficient semiconductor materials for digital integrated circuits. Gallium arsenide (GaAs) conducts electrons 4-6 times faster than silicon and uses less power at frequencies above 100-150 megahertz. However, the material is expensive, brittle, fragile and has lacked computer automated engineering tools to solve this problem. Systems & Processes Engineering Corporation (SPEC) developed a series of GaAs cell libraries for cell layout, design rule checking, logic synthesis, placement and routing, simulation and chip assembly. The system is marketed by Compare Design Automation.

  9. Solar cells

    International Nuclear Information System (INIS)

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  10. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  11. Stem Cell Basics

    Science.gov (United States)

    ... Information Stem Cell Basics Stem Cell Basics: Introduction Stem Cell Information General Information Clinical Trials Funding Information Current Research Policy Glossary Site Map Stem Cell Basics Introduction: What are stem cells, and why ...

  12. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Neurons Oligodendrocyte Parthenogenesis Passage Pluripotent Polar body Preimplantation Proliferation Regenerative medicine Reproductive cloning Signals Somatic cell Somatic cell nuclear transfer (SCNT) Somatic (adult) stem cell Stem cells Stromal cells Subculturing Surface markers ...

  13. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  14. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  15. Potent Cells

    Science.gov (United States)

    Liu, Dennis

    2007-01-01

    It seems hard to believe that Dolly the cloned sheep was born 10 years ago, kindling furious arguments over the prospects and ethics of cloning a human. Today, the controversy over cloning is entwined, often confused, with concerns over the use of human embryonic stem cells. Most people are unclear what cloning is, and they know even less when it…

  16. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0

  17. Cell Docking, Movement and Cell-Cell Interactions of Heterogeneous Cell Suspensions in a Cell Manipulation Microdevice

    OpenAIRE

    Long-Sun Huang; Yu-Hung Wang; Yu-Wei Chung; Fei-Lung Lai; Shiaw-Min Hwang

    2011-01-01

    This study demonstrates a novel cell manipulation microdevice for cell docking, culturing, cell-cell contact and interaction by microfluidic manipulation of heterogeneous cell suspensions. Heterogeneous cell suspensions include disparate blood cells of natural killer cells and leukemia cancer cells for immune cell transplantation therapy. However, NK cell alloreactivity from different healthy donors present various recovery response levels. Little is still known about the interactions and cyt...

  18. Reprogrammed pluripotent stem cells from somatic cells.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  19. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  20. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    International Nuclear Information System (INIS)

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture

  1. Sickle Cell Information Center

    Science.gov (United States)

    ... Around the Web Google Custom Search – sickle cell Sickle Cell Anemia - In-Depth Report - NY Times Health January 18, 1970 Sickle cell disease (also called sickle cell anemia) is an inherited blood disorder that affects red ...

  2. Electrorefining cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.; Thomas, R.L. (ed.)

    1989-04-14

    Operational characteristics of the LANL electrorefining cell, a modified LANL electrorefining cell, and an advanced electrorefining cell (known as the CRAC cell) were determined. Average process yields achieved were: 75% for the LANL cell, 82% for the modified LANL cell, and 86% for the CRAC cell. All product metal from the LANL and modified LANL cells was within foundry specifications. Metal from one run in the CRAC cell exceeded foundry specifications for tantalum. The LANL and modified LANL cells were simple in design and operation, but product separation was more labor intensive than with the CRAC cell. The CRAC cell was more complicated in design but remained relatively simple in operation. A decision analysis concluded that the modified LANL cell was the preferred cell. It was recommended that the modified LANL cell be implemented by the Plutonium Recovery Project at Rocky Flats and that development of the CRAC cell continue. 8 refs., 22 figs., 12 tabs.

  3. What are Stem Cells?

    OpenAIRE

    Ahmadshah Farhat; Ashraf Mohammadzadeh; M. Rezaie

    2014-01-01

      Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem ...

  4. Pluripotent stem cell lines

    OpenAIRE

    Yu, Junying; Thomson, James A.

    2008-01-01

    The derivation of human embryonic stem cells 10 years ago ignited an explosion of public interest in stem cells, yet this achievement depended on prior decades of research on mouse embryonic carcinoma cells and embryonic stem cells. In turn, the recent derivation of mouse and human induced pluripotent stem cells depended on the prior studies on mouse and human embryonic stem cells. Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in vitro while ma...

  5. DNA-cell conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  6. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  7. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  8. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; S. Wang; Wang, Y.; Wang, X-N.

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  9. Monitoring cell growth.

    Science.gov (United States)

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  10. Automated Cell-Cutting for Cell Cloning

    Science.gov (United States)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  11. Sickle Cell Anemia

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells are shaped like a crescent or sickle. They ... last as long as normal, round red blood cells. This leads to anemia. The sickle cells also ...

  12. CELL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    REVIEWSInducible resistance to Fas-mediated apoptosis in B cells…………………………………ROTHSTEIN Thomas L (245)Executionary pathway for apoptosis: lessons from mutant mice………………………………………WOO Minna, Razqallah Hakem, Tak W Mak (267)The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions…………………………………QU Cheng Kui (279)REGULAR ARTICLESTemperature dependent expression of cdc2 and cyclin B1 in spermatogenic cells during spermatogenesis…………………………KONG Wei Hua, Zheng GU, Jining LU, Jiake TSO (289)Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity…………………………………MA Ying Hua, Jia Hua HU, Xiao Gang ZHOU, Ruo Wang ZENG, Zhen Tong MEI, Jian FEI, Li He GUO (303)Genetic aberration in primary hepatocellular carcinoma: correlation between p53 gene mutation and loss-of-heterozygosity on chromosome 16q21-q23 and 9p21-p23………………………………………WANG Gang, Chang Hui HUANG, Yan ZHAO, Ling CAI, Ying WANG, Shi Jin XIU, Zheng Wen JIANG, Shuang YANG, Xin Tai ZHAO, Wei HUANG, Jian Ren GU (311)Identification and genetic mapping of four novel genes that regulate leaf deve- lopment in Arabidopsis………………………………………………SUN Yue, Wei ZHANG, Feng Ling LI, Ying Li GUO, Tian Lei LIU, Hai HUANG (325)NOTICE FOR CONTRIBUTORS…………………………………(337)CONTENTS of Vol. 10, 2000…………………………………………………(338)

  13. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  14. Sickle cell anemia - resources

    Science.gov (United States)

    Resources - sickle cell anemia ... The following organizations are good resources for information on sickle cell anemia : American Sickle Cell Anemia Association -- www.ascaa.org National Heart, Blood, and Lung Institute -- www. ...

  15. Sickle Cell Disease

    Science.gov (United States)

    ... in Sickle Cell Disease New supplement from the American Journal of Preventive Medicine describes the state of sickle cell disease related care in the United States. Read Supplement » ... are affected by sickle cell disease. More WEBINAR ...

  16. Sickle Cell Disease

    Science.gov (United States)

    ... from the NHLBI on Twitter. What Is Sickle Cell Disease? Español The term sickle cell disease (SCD) ... common forms of SCD. Some Forms of Sickle Cell Disease Hemoglobin SS Hemoglobin SC Hemoglobin Sβ 0 thalassemia ...

  17. Squamous cell skin cancer

    Science.gov (United States)

    ... earliest form of squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type ... cancer; Squamous cell carcinoma of the skin Images Bowen's disease on the hand Keratoacanthoma Keratoacanthoma Skin cancer, squamous ...

  18. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  19. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  20. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  1. Basal Cell Carcinoma (BCC)

    Science.gov (United States)

    ... epithelioma, is the most common form of skin cancer. Basal cell carcinoma usually occurs on sun-damaged skin, especially ... other health issues. Infiltrating or morpheaform basal cell carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive ...

  2. Immobilization of cells via activated cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Markt, M.; Kas, J.; Valentova, O.; Demnerova, K.; Vodrazka, Z.

    1986-10-01

    Cell walls of Saccharomyces cerevisiae and S. uvarum were activated by periodate oxidation of vicinal diol groups in cell wall polysaccharides. The aldehyde groups thus generated allow the yeast cells to be covalently bound to modified bead cellulose or macroporous glycidyl methacrylate supports, or to enzymes such as glucose oxidase and catalase. 6 references.

  3. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  4. Cell aggregation and sedimentation.

    Science.gov (United States)

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  5. Artificial Stem Cell Niches

    OpenAIRE

    Lutolf, Matthias P.; Blau, Helen M.

    2009-01-01

    Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-...

  6. Fish Stem Cell Cultures

    OpenAIRE

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is th...

  7. Stem Cell Separation Technologies

    OpenAIRE

    Zhu, Beili; Murthy, Shashi K

    2013-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell so...

  8. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  9. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells

    OpenAIRE

    Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-Wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A.; Lo, Chung Mau; Man, Kwan; Sun, Dong

    2016-01-01

    Background Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. Methods We employed laser-induced single-cell fusion technique to fuse the hepatocellular carci...

  10. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  11. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  12. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  13. SMOOTH MUSCLE STEM CELLS

    Science.gov (United States)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  14. Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease? Sickle cell disease, also called sickle cell anemia, is a hereditary condition (which means it runs ... or blocks blood and oxygen reaching nearby tissues. Sickle cell disease ... the whites of the eyes) Anemia (the decreased ability of the blood to carry ...

  15. When Blood Cells Bend: Understanding Sickle Cell Disease

    Science.gov (United States)

    ... please review our exit disclaimer . Subscribe When Blood Cells Bend Understanding Sickle Cell Disease For people who don’t suspect they ... Cells Bend Wise Choices Links Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...

  16. Ganglion cell like cells, diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Anand Shankar Ammanagi

    2013-01-01

    Full Text Available We report a case of cutaneous swelling found on the left anterior axillary fold of a 41-year-old man. Gross examination of specimen excised from the dermis showed a well-circumscribed nodule histologically composed of spindle cells with interspersed ganglion cell like cells. On hematoxylin and eosine (H and E staining it was diagnosed as ganglioneuroma. Ganglioneuromas are rare, benign, fully differentiated tumors that contain mature schwann cells, ganglion cells, fibrous tissue, and nerve fibers. They are commonly found along the paravertebral sympathetic ganglia and sometimes in the adrenal medulla. However primary cutaneous ganglioneuroma is an extremely rare tumor. Immunohistochemical workup revealed a fibroblastic origin and hence the case was diagnosed as fibromatosis with ganglion cell like fibroblasts. This case report suggests that the features considered diagnostic of ganglioneuromas can occur in other cutaneous lesions and, therefore, this diagnosis cannot be offered only on the basis of H and E.

  17. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  18. Hepatic stem cell niches

    OpenAIRE

    Kordes, Claus; Häussinger, Dieter

    2013-01-01

    Stem cell niches are special microenvironments that maintain stem cells and control their behavior to ensure tissue homeostasis and regeneration throughout life. The liver has a high regenerative capacity that involves stem/progenitor cells when the proliferation of hepatocytes is impaired. In recent years progress has been made in the identification of potential hepatic stem cell niches. There is evidence that hepatic progenitor cells can originate from niches in the canals...

  19. Stem Cell Networks

    OpenAIRE

    Werner, Eric

    2016-01-01

    We present a general computational theory of stem cell networks and their developmental dynamics. Stem cell networks are special cases of developmental control networks. Our theory generates a natural classification of all possible stem cell networks based on their network architecture. Each stem cell network has a unique topology and semantics and developmental dynamics that result in distinct phenotypes. We show that the ideal growth dynamics of multicellular systems generated by stem cell ...

  20. Stem cell mechanobiology

    OpenAIRE

    David A. Lee; Knight, Martin M.; Jonathan J Campbell; Bader, Dan L.

    2010-01-01

    Stem cells are undifferentiated cells that are capable of proliferation, self-maintenance and differentiation towards specific cell phenotypes. These processes are controlled by a variety of cues including physicochemical factors associated with the specific mechanical environment in which the cells reside. The control of stem cell biology through mechanical factors remains poorly understood and is the focus of the developing field of mechanobiology. This review provides an insight into the c...

  1. Embryonic Stem Cell Markers

    OpenAIRE

    Lan Ma; Liang Li; Wenxiu Zhao; Xiang Ji; Fangfang Zhang

    2012-01-01

    Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other type...

  2. Limbal stem cell transplantation

    OpenAIRE

    Fernandes Merle; Sangwan Virender; Rao Srinivas; Basti Surendra; Sridhar Mittanamalli; Bansal Aashish; Dua Harminder

    2004-01-01

    The past two decades have witnessed remarkable progress in limbal stem cell transplantation. In addition to harvesting stem cells from a cadaver or a live related donor, it is now possible to cultivate limbal stem cells in vitro and then transplant them onto the recipient bed. A clear understanding of the basic disease pathology and a correct assessment of the extent of stem cell deficiency are essential. A holistic approach towards management of limbal stem cell deficiency is needed. This ...

  3. Intraoperative Stem Cell Therapy

    OpenAIRE

    Coelho, Mónica Beato; Cabral, Joaquim M. S.; Karp, Jeffrey M.

    2012-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the poten...

  4. The leukemic stem cell

    OpenAIRE

    Jordan, Craig T.

    2007-01-01

    Malignant stem cells have recently been described as the source of several types of human cancer. These unique cell types are typically rare and possess properties that are distinct from most other tumor cells. The properties of leukemic stem cells indicate that current chemotherapy drugs will not be effective. The use of current cytotoxic agents is not effective in leukemia because the agents target both the leukemic and normal stem cell populations. Consequently, new strategies are required...

  5. Cancer Stem Cells

    OpenAIRE

    Katarzyna Wieczorek; Jolanta Niewiarowska

    2008-01-01

    Cancer stem cell theory gains increasingly greater significance in the world of medicine. Numerous findings of scientific research in vivo and in vitro indicate that it is the population of undifferentiated, self-renewing cells which is responsible for recurrence of cancer and metastasis. Similarly to normal stem cells, cancer stem cells (CSC) function in the environment of the other cells of the organism, called the niche, where they receive signals for differentiation and proliferation proc...

  6. The cell cycle as a brake for β-cell regeneration from embryonic stem cells

    OpenAIRE

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-01

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle ...

  7. Mechanically facilitated cell-cell electrofusion.

    OpenAIRE

    Jaroszeski, M. J.; Gilbert, R.; Fallon, P.G.; Heller, R

    1994-01-01

    Apparatus and methods were developed to enable mechanically facilitated cell-cell electrofusion to be performed. The apparatus and methods mechanically place cells in contact before fusion. The key component of this fusion system was a newly developed fusion chamber. The chamber was composed of two functionally identical electrodes that were housed in a multi-layer structure. The layers functioned as support for the electrodes. They also allowed adjustment of the distance between opposing ele...

  8. Optimizing stem cell culture.

    Science.gov (United States)

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  9. Living with Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  10. What Causes Sickle Cell Disease?

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  11. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  12. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  13. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  14. Stem cells in urology.

    Science.gov (United States)

    Aboushwareb, Tamer; Atala, Anthony

    2008-11-01

    The shortage of donors for organ transplantation has stimulated research on stem cells as a potential resource for cell-based therapy in all human tissues. Stem cells have been used for regenerative medicine applications in many organ systems, including the genitourinary system. The potential applications for stem cell therapy have, however, been restricted by the ethical issues associated with embryonic stem cell research. Instead, scientists have explored other cell sources, including progenitor and stem cells derived from adult tissues and stem cells derived from the amniotic fluid and placenta. In addition, novel techniques for generating stem cells in the laboratory are being developed. These techniques include somatic cell nuclear transfer, in which the nucleus of an adult somatic cell is placed into an oocyte, and reprogramming of adult cells to induce stem-cell-like behavior. Such techniques are now being used in tissue engineering applications, and some of the most successful experiments have been in the field of urology. Techniques to regenerate bladder tissue have reached the clinic, and exciting progress is being made in other areas, such as regeneration of the kidney and urethra. Cell therapy as a treatment for incontinence and infertility might soon become a reality. Physicians should be optimistic that regenerative medicine and tissue engineering will one day provide mainstream treatment options for urologic disorders.

  15. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  16. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-01-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitu

  17. Assessment of pancreas cells

    Science.gov (United States)

    Vanoss, C. J.

    1978-01-01

    Pancreatic islets were obtained from guinea pig pancreas by the collagenase method and kept alive in tissue culture prior to further studies. Pancreas cell morphology was studied by standard histochemical techniques using light microscopy. Preparative vertical electrophoresis-levitation of dispersed fetal guinea pig pancreas cells was conducted in phosphate buffer containing a heavy water (D20) gradient which does not cause clumping of cells or alter the osmolarity of the buffers. The faster migrating fractions tended to be enriched in beta-cell content. Alpha and delta cells were found to some degree in most fractions. A histogram showing the cell count distribution is included.

  18. Resident Peritoneal NK cells

    OpenAIRE

    Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa

    2011-01-01

    Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that ...

  19. Multipotent adult progenitor cell and stem cell plasticity

    OpenAIRE

    Jahagirdar, Balkrishna N; Verfaillie, Catherine

    2005-01-01

    Stem cells are defined by their biological function. A stem cell is an undifferentiated cell that self-renews to maintain the stem cell pool and at the single-cell level differentiates into more than one mature, functional cell. In addition, when transplanted, a stem cell should be capable of replacing a damaged organ or tissue for the lifetime of the recipient. Some would argue that stem cells should also be capable of functionally integrating into nondamaged tissues. Stem cells are critical...

  20. Epidermal Stem Cells

    Directory of Open Access Journals (Sweden)

    Osman Köse

    2015-03-01

    Full Text Available The epidermis is the outermost layer of the human skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. There are many origins of stem cells in the skin and skin appendages. These stem cells are localized in different part of the pilosebaseous units and also express many different genes. Epidermal stem cells in the pilosebaseous units not only ensure the maintenance of epidermal homeostasis and hair regeneration, but also contribute to repair of the epidermis after injury. In recent years, human induced pluripotent skin stem cells are produced from the epidermal cells such as keratinocytes, fibroblasts and melanocytes. These cells can be transdifferentiated to embriyonic stem cells. Human induced pluripotent stem cells have potential applications in cell replacement therapy and regenerative medicine. These cells provide a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. In this review, we aimed an overview of epidermal stem cells for better understanding their functions in the skin. Skin will be main organ for using the epidermal cells for regenerative medicine in near future.

  1. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  2. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  3. Toward 'SMART' stem cells.

    Science.gov (United States)

    Cheng, T

    2008-01-01

    Stem cell research is at the heart of regenerative medicine, which holds great promise for the treatment of many devastating disorders. However, in addition to hurdles posed by well-publicized ethical issues, this emerging field presents many biological challenges. What is a stem cell? How are embryonic stem cells different from adult stem cells? What are the physiological bases for therapeutically acceptable stem cells? In this editorial review, I will briefly discuss these superficially simple but actually rather complex issues that surround this fascinating cell type. The goal of this special issue on stem cells in Gene Therapy is to review some fundamental and critical aspects of current stem cell research that have translational potential. PMID:18046429

  4. Cell signaling review series

    Institute of Scientific and Technical Information of China (English)

    Aiming Lin; Zhenggang Liu

    2008-01-01

    @@ Signal transduction is pivotal for many, if not all, fundamental cellular functions including proliferation, differentiation, transformation and programmed cell death. Deregulation of cell signaling may result in certain types of cancers and other human diseases.

  5. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  6. Sickle cell anemia.

    OpenAIRE

    ŘÍHOVÁ, Tereza

    2013-01-01

    This thesis is about the disease called sickle cell anemia, or drepanocytosis. In this thesis is described the history of the disease, pathophysiology, laboratory features, various clinical features, diferencial diagnosis, quality of life in sickle cell anemia and therapy.

  7. Sickle Cell Trait

    Science.gov (United States)

    ... About Us Information For... Media Policy Makers Sickle Cell Trait Language: English Español (Spanish) Recommend on Facebook ... the trait on to their children. How Sickle Cell Trait is Inherited If both parents have SCT, ...

  8. Sickle Cell Disease Quiz

    Science.gov (United States)

    ... About Us Information For... Media Policy Makers Sickle Cell Disease Quiz Language: English Español (Spanish) Recommend on ... True or False: Only African Americans get sickle cell disease. A True B False 2. True or ...

  9. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  10. Anaplastic Large Cell Lymphoma

    Science.gov (United States)

    Anaplastic Large Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are ... organs, and can accumulate to form tumors. Anaplastic large cell lymphoma (ALCL) is arare type of NHL, ...

  11. What Are Islet Cells?

    Science.gov (United States)

    ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ...

  12. NIA Aging Cell Repository

    Data.gov (United States)

    Federal Laboratory Consortium — To facilitate aging research on cells in culture, the NIA provides support for the NIA Aging Cell Repository, located at the Coriell Institute for Medical Research...

  13. Sickle cell anemia

    Science.gov (United States)

    ... for avascular necrosis of the hip Surgery for eye problems Treatment for overuse or abuse of narcotic pain medicines Wound care for leg ulcers Bone marrow or stem cell transplants can cure sickle cell anemia, but this treatment ...

  14. Field evaluation of subsurface manipulation by multi-point injection/dispersal, fracturing, and directional drilling using unconfined test cells

    International Nuclear Information System (INIS)

    To advance the understanding of methods for in situ treatment in low permeability deposits, a test site was established at the DOE Portsmouth Gaseous Diffusion Plant to enable field-scale experimentation of subsurface manipulation methods that could facilitate in situ treatment of both non-aqueous phase organic liquids (e.g., TCE DNAPLs) as well as radioactive metals (e.g., technetium). The test site was established in an uncontaminated area adjacent to several hazardous and low-level radioactive contaminated sites and during 1994 and 1995, a series of field tests were completed involving permeation dispersal, fracturing, and horizontal wells. The injection and permeation dispersal of treatment fluids into clay soils was evaluated in a set of seven test cells. Different fluids were injected into different test cells under low pressure through a multi-point injection system. Another test included the installation, development and operation of two parallel horizontal wells installed using directional drilling in a ∼ 1 m thick sand aquifer located at ∼ 10 m depth. The well installation was designed so that ground water could be extracted from one well and re-injected into the other to achieve a horizontal sweep and recirculation across an underlying shale bedrock surface. Multi-component tracer studies were also completed to evaluate the uniformity and rate of ground water flow from an extraction well to an injection well. Additional field tests were also completed involving soil fracturing technologies using both pneumatic and hydraulic methods. This presentation will highlight the development of the test site and its characterization, the overall experimental design and testing to be completed, as well as the methods and preliminary results of some of the field experiments completed to date

  15. Diagram of Cell to Cell Communication

    Science.gov (United States)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  16. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  17. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  18. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid;

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  19. Nanoelectrochemistry of mammalian cells

    OpenAIRE

    Sun, Peng; Laforge, François O.; Abeyweera, Thushara P.; Rotenberg, Susan A.; Carpino, James; Mirkin, Michael V.

    2008-01-01

    There is a significant current interest in development of new techniques for direct characterization of the intracellular redox state and high-resolution imaging of living cells. We used nanometer-sized amperometric probes in combination with the scanning electrochemical microscope (SECM) to carry out spatially resolved electrochemical experiments in cultured human breast cells. With the tip radius ≈1,000 times smaller than that of a cell, an electrochemical probe can penetrate a cell and tra...

  20. Optimizing stem cell culture.

    OpenAIRE

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-01-01

    International audience Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such a...

  1. Fish stem cell cultures.

    Science.gov (United States)

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  2. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR− status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  3. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  4. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  5. Aneuploidy in stem cells

    OpenAIRE

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to reality. However, as somatic cells might have accumulated various chromosomal abnormalities, including aneuploidies throughout their lives, the resulting IPSCs might no longer carry the perfect bluepri...

  6. Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    OpenAIRE

    Shuhji Seki; Hiroyuki Nakashima; Masahiro Nakashima; Manabu Kinoshita

    2011-01-01

    Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR) ligands and an NKT cell ligand ( α -galactocylceramide), activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN- γ , which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a p...

  7. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  8. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  9. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to real

  10. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  11. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  12. Adventures with Cell Phones

    Science.gov (United States)

    Kolb, Liz

    2011-01-01

    Teachers are finding creative ways to turn the basic cell phone from a digital distraction into a versatile learning tool. In this article, the author explains why cell phones are important in learning and suggests rather than banning them that they be integrated into learning. She presents activities that can be done on a basic cell phone with a…

  13. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human embryo

  14. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  15. astrocyte and astrocytoma cells

    DEFF Research Database (Denmark)

    Tfelt-Hansen, J.

    2008-01-01

    -transforming gene (PTTG), was found to be upregulated by the CaR in the H-500 cells, whereas calcium had no effect on PTTG expression in the U-87 astrocytoma cell line, but other proproliferative agents did upregulate PTTG in the U-87 cells. This makes PTTG a potential marker of malignancy and a therapeutic target...

  16. Advanced Cell Technology, Inc.

    Science.gov (United States)

    Caldwell, William M

    2007-03-01

    Advanced Cell Technology, Inc. (OTCBB: ACTC) is a biotechnology company applying novel human embryonic stem cell technologies in the emerging field of regenerative medicine. We believe that regenerative medicine has the potential to revolutionize the field by enabling scientists to produce human cells of any kind for use in a wide array of therapies.

  17. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  18. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  19. STEM CELLS: Differentiated cells in a back-up role

    OpenAIRE

    Desai, Tushar J.; Krasnow, Mark A.

    2013-01-01

    Two independent studies show that, if push comes to shove, differentiated cells of the stomach and lung can act as adult stem cells generating various cell types of the tissue, including a pool of stem cells.

  20. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells

    OpenAIRE

    Margadant, Coert; Cremers, Lobke; Sonnenberg, Arnoud; Boonstra, Johannes

    2012-01-01

    Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell sprea...