WorldWideScience

Sample records for bedrock geology forsmark

  1. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  2. Forsmark site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Stephens, Michael B.

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  3. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  4. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  5. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus; Smellie, John; Tullborg, Eva-Lena; Gimeno, Maria; Hallbeck, Lotta; Molinero, Jorge; Waber, Nick

    2008-12-01

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  6. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Smellie, John (Conterra AB, Partille (Sweden)); Tullborg, Eva-Lena (Terralogica, Graabo (Sweden)); Gimeno, Maria (Univ. of Zaragoza, Zaragoza (Spain)); Hallbeck, Lotta (Microbial Analytics, Goeteborg (Sweden)); Molinero, Jorge (Amphos XXI Consulting S.L., Barcelona (Spain)); Waber, Nick (Univ. of Bern, Bern (Switzerland))

    2008-12-15

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  7. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden)); Simeonov, Assen (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  8. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Simeonov, Assen; Isaksson, Hans

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  9. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Follin, Sven

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  10. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  11. Results from Marine geological investigations outside Forsmark

    International Nuclear Information System (INIS)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer

    2011-08-01

    A detailed marine geological survey was conducted in a 10 km 2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  12. Results from Marine geological investigations outside Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer (Geological Survey of Sweden (Sweden))

    2011-08-15

    A detailed marine geological survey was conducted in a 10 km2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  13. Geology - Background complementary studies. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Skagius, Kristina [Kemakta Konsult AB, Stockholm (Sweden)] (eds.)

    2007-09-15

    borehole (VSP) reflection seismic data along profiles 2 and 5, Forsmark, Sweden. Christopher Juhlin. 3. Correlation of 2D surface seismic, vertical seismic profile (VSP), and geological and sonic data in boreholes KFM01A and KFM02A, Forsmark: Background analysis. Nicoleta Enescu and Calin Cosma. 4. Refraction seismic data and bedrock velocity distribution at Forsmark. Johan Nissen. 5. Correlation between refraction seismic data, low magnetic lineaments and deformation zones (model stage 2.2). Hans Isaksson. 6. Interpretation of tomography inversion models for seismic refraction data along profile LFM001017 in Forsmark. Haakan Mattsson. 7. Correlation of oriented radar reflectors with geological features in boreholes at Forsmark. Seje Carlsten.

  14. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  15. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Wahlgren, Carl-Henric

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  16. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  17. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Isaksson, Hans [GeoVista AB, Luleaa (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-10-15

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  18. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Isaksson, Hans; Hermanson, Jan; Oehman, Johan

    2007-10-01

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  19. Bedrock geologic map of Vermont

    Science.gov (United States)

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  20. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of

  1. Bedrock Geologic Map of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG06-4 Thompson, P. J., 2006, Bedrock Geologic Map of Woodstock, Vermont: VGS Open-File Report VG06-4, scale 1:24,000. The bedrock geologic map...

  2. Global Bedrock Geology and River Chemistry

    Science.gov (United States)

    Peucker-Ehrenbrink, B.; Miller, M. W.

    2002-12-01

    The lack of modern quantitative estimates of the Earth`s surface geology, one of the key parameters influencing river (and ocean) chemistry, is striking. Most published estimates of area-age relationships of sedimentary bedrock, for instance, were published before the 1980s, were based on less detailed geologic maps often decades older, and used techniques such as cutting and weighting age correlative map units or point counting at fairly coarse resolution (Higgs, 1949; Gilluly, 1969; Blatt and Jones, 1975; Ronov, 1980). Even more recent estimates (e.g., Berry and Wilkinson, 1994) are based on data predating the 1980s (Cook and Bally, 1975; Ronov, 1980). In an attempt to gain quantitative understanding of the link between surface geology (bedrock chemistry and weatherability) and river (and ocean) chemistry we have initiated a global assessment of the Earth`s surface geology that is based on the latest digital geologic maps using modern geographic information system technology (Environmental Systems Research Institute`s ArcInfo software). To date we have completed analysis of three digital data sets: 1) the geologic map of the conterminous United States of America by King and Beikman (1974; 1:2,500,000; spatial resolution ~600 km2 per polygon), made available in digital format by the USGS, 2) the geologic map of Alaska by Beikman (1980; 1:2,5000,000; ~300 km2 per polygon), also available in digital form through the USGS, and 3) the geologic map of Canada that is based on a revised and updated version of the geologic map by Douglas (1969; 1:5,000,000; ~780 km2 per polygon), made available in digital form by the Geologic Survey of Canada. The data reveal, among others, the area-age relationship of sedimentary, volcanic, intrusive and metamorphic rocks at unprecedented temporal and spatial resolution. The data also provide quantitative estimates of the abundance of major rock types: sedimentary rocks make up 83% (US; 69.7% stratified, mostly marine and 13

  3. Bedrock Geologic Map of Vermont - Dikes

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  4. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  5. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  6. Forsmark site investigation. Interpretation of topographic lineaments 2002

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, Hans [GeoVista AB, Luleaa (Sweden)

    2003-04-01

    SKB performs site investigations for localization of a deep repository for high level radioactive waste. The site investigations are performed in two municipalities; Oesthammar and Oskarshamn. The Forsmark investigation area is situated in Oesthammar, close to the Forsmark nuclear power plant. The purpose of interpretation of lineaments from topographic data is to identify linear features (lineaments), which may correspond to deformation zones in the bedrock. The data will be combined with interpretations of lineaments from airborne geophysical data in order to produce an integrated lineament interpretation for the Forsmark area. This integrated interpretation will be combined with geological data in order to establish a bedrock geological map of the Forsmark area. The area for the lineament interpretation is the same as that selected for the bedrock mapping activities during 2002, i.e. the land area around Forsmark.

  7. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  8. Bedrock Geologic Map of Charlotte,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-5 Gale, M., Kim, J., Earle, H., Clark, A., Smith, T., and Petersen, K., 2009, Bedrock Geologic Map of Charlotte, Vermont: VGS Open-File Report...

  9. Digital compilation bedrock geologic map of the Warren quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-4A Walsh, GJ, Haydock, S, Prewitt, J, Kraus, J, Lapp, E, O'Loughlin, S, and Stanley, RS, 1995, Digital compilation bedrock geologic map of the...

  10. Digital bedrock geologic map of the Cavendish quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-203A Ratcliffe, NM, 1995,�Digital bedrock geologic map of the Cavendish quadrangle, Vermont: USGS Open-File Report 95-203, 2 plates, scale...

  11. Bedrock Geologic Map of the Jay Peak, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG99-1 Compilation bedrock geologic map of the Jay Peak quadrangle, Compiled by B. Doolan, 1999: VGS Open-File Report VG99-1, 1 plate, scale...

  12. Digital compilation bedrock geologic map of the Lincoln quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-5A Stanley, R, DelloRusso, V, Haydock, S, Lapp, E, O'Loughlin, S, Prewitt, J,and Tauvers, PR, 1995, Digital compilation bedrock geologic map...

  13. Digital compilation bedrock geologic map of the Milton quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-8A Dorsey, R, Doolan, B, Agnew, PC, Carter, CM, Rosencrantz, EJ, and Stanley, RS, 1995, Digital compilation bedrock geologic map of the Milton...

  14. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  15. Bedrock Geologic Map of Vermont - Faults and Contacts

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  16. Bedrock Geologic Map of Vermont - Geochronology Sample Locations

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  17. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    International Nuclear Information System (INIS)

    Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Hermanson, Jan; Oehman, Johan

    2007-11-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  18. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-11-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  19. Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-9A Thompson, PJ�and Thompson, TB, 1995, Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles,...

  20. Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-4 (Digitized draft of VG97-5): Kim, J., 2009, Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, VGS...

  1. Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas. Site descriptive modelling SDM-Site

    International Nuclear Information System (INIS)

    Soederbaeck, Bjoern

    2008-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The site investigations started in 2002 and were completed in 2007. The analysis and modelling of data from the site investigations, which have taken place during and after these investigations, provide a foundation for the development of an integrated, multidisciplinary site descriptive model (SDM) for each of the two sites. A site descriptive model constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere, as well as those natural processes that affect or have affected their long-term development. Hitherto, a number of reports presenting preliminary site descriptive models for Forsmark and Laxemar-Simpevarp have been published. In these reports, the evolutionary and historical aspects of the site were included in a separate chapter. The present report comprises a further elaboration of the evolutionary and historical information included in the preliminary SDM reports, but presented here in a separate, supplementary report to the final site description, SDM-Site. The report is common to the two investigated areas, and the overall objective is to describe the long-term geological evolution, the palaeoclimate, and the post-glacial development of ecosystems and of the human population at the two sites. The report largely consists of a synthesis of information derived from the scientific literature and other sources not related to the site investigations. However, considerable information from the site investigations that has contributed to our understanding of the past development at each site is also included. This unique synthesis of both published information in a regional perspective and new site-specific information breaks new ground in our understanding

  2. Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas. Site descriptive modelling SDM-Site

    Energy Technology Data Exchange (ETDEWEB)

    Soederbaeck, Bjoern (ed.)

    2008-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The site investigations started in 2002 and were completed in 2007. The analysis and modelling of data from the site investigations, which have taken place during and after these investigations, provide a foundation for the development of an integrated, multidisciplinary site descriptive model (SDM) for each of the two sites. A site descriptive model constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere, as well as those natural processes that affect or have affected their long-term development. Hitherto, a number of reports presenting preliminary site descriptive models for Forsmark and Laxemar-Simpevarp have been published. In these reports, the evolutionary and historical aspects of the site were included in a separate chapter. The present report comprises a further elaboration of the evolutionary and historical information included in the preliminary SDM reports, but presented here in a separate, supplementary report to the final site description, SDM-Site. The report is common to the two investigated areas, and the overall objective is to describe the long-term geological evolution, the palaeoclimate, and the post-glacial development of ecosystems and of the human population at the two sites. The report largely consists of a synthesis of information derived from the scientific literature and other sources not related to the site investigations. However, considerable information from the site investigations that has contributed to our understanding of the past development at each site is also included. This unique synthesis of both published information in a regional perspective and new site-specific information breaks new ground in our understanding

  3. Digital compilation bedrock geologic map of the Mt. Ellen quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-6A Stanley, RS, Walsh, G, Tauvers, PR, DiPietro, JA, and DelloRusso, V, 1995,�Digital compilation bedrock geologic map of the Mt. Ellen...

  4. Bedrock geologic map of the Jay and North Troy area, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG97-04C Stanley, RS, and Roy, D, 1997,�Bedrock geologic map of the Jay and North Troy area, Vermont: VGS Open-File Report VG97-04c, scale 1:24000....

  5. Digital compilation bedrock geologic map of the South Mountain quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-3A Stanley, R.S., DelloRusso, V., Tauvers, P.R., DiPietro, J.A., Taylor, S., and Prahl, C., 1995, Digital compilation bedrock geologic map of...

  6. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  7. A Test of the Circumvention-of-Limits Hypothesis in Scientific Problem Solving: The Case of Geological Bedrock Mapping

    Science.gov (United States)

    Hambrick, David Z.; Libarkin, Julie C.; Petcovic, Heather L.; Baker, Kathleen M.; Elkins, Joe; Callahan, Caitlin N.; Turner, Sheldon P.; Rench, Tara A.; LaDue, Nicole D.

    2012-01-01

    Sources of individual differences in scientific problem solving were investigated. Participants representing a wide range of experience in geology completed tests of visuospatial ability and geological knowledge, and performed a geological bedrock mapping task, in which they attempted to infer the geological structure of an area in the Tobacco…

  8. Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology.

    Science.gov (United States)

    Crabbe, Helen; Fletcher, Tony; Close, Rebecca; Watts, Michael J; Ander, E Louise; Smedley, Pauline L; Verlander, Neville Q; Gregory, Martin; Middleton, Daniel R S; Polya, David A; Studden, Mike; Leonardi, Giovanni S

    2017-12-01

    Approximately one million people in the UK are served by private water supplies (PWS) where main municipal water supply system connection is not practical or where PWS is the preferred option. Chronic exposure to contaminants in PWS may have adverse effects on health. South West England is an area with elevated arsenic concentrations in groundwater and over 9000 domestic dwellings here are supplied by PWS. There remains uncertainty as to the extent of the population exposed to arsenic (As), and the factors predicting such exposure. We describe a hazard assessment model based on simplified geology with the potential to predict exposure to As in PWS. Households with a recorded PWS in Cornwall were recruited to take part in a water sampling programme from 2011 to 2013. Bedrock geologies were aggregated and classified into nine Simplified Bedrock Geological Categories (SBGC), plus a cross-cutting "mineralized" area. PWS were sampled by random selection within SBGCs and some 508 households volunteered for the study. Transformations of the data were explored to estimate the distribution of As concentrations for PWS by SBGC. Using the distribution per SBGC, we predict the proportion of dwellings that would be affected by high concentrations and rank the geologies according to hazard. Within most SBGCs, As concentrations were found to have log-normal distributions. Across these areas, the proportion of dwellings predicted to have drinking water over the prescribed concentration value (PCV) for As ranged from 0% to 20%. From these results, a pilot predictive model was developed calculating the proportion of PWS above the PCV for As and hazard ranking supports local decision making and prioritization. With further development and testing, this can help local authorities predict the number of dwellings that might fail the PCV for As, based on bedrock geology. The model presented here for Cornwall could be applied in areas with similar geologies. Application of the method

  9. Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Armstrong, T.R., and Ratcliffe, N.M., 1998, Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle,...

  10. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2008-12-01

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  11. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  12. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  13. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.)

    2008-12-15

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  14. Hydrological and hydro-geological effects on wetlands and forest areas from the repository at Forsmark. Results from modelling with MIKE SHE; Hydrologiska och hydrogeologiska effekter paa vaatmarker och skogsomraaden av slutfoervarsanlaeggningen i Forsmark. Resultat fraan modellering med MIKE SHE

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran; Gustafsson, Ann-Marie; Aneljung, Maria; Sabel, Ulrika (DHI Sverige AB, Goeteborg (Sweden))

    2010-06-15

    This report provides background material for investigations and associated impact assessments concerning water operations in terms of withdrawal of groundwater from the final repository for spent nuclear fuel at Forsmark. The report presents detailed modelling results in the form of supplementary sensitivity analyses and detailed hydrological and hydrogeological analyses of specific nature objects in Forsmark. The sensitivity analyses aim to investigate the sensitivity of the modelling results to i) the meteorological conditions, ii) impervious surfaces and iii) the model description of the present SFR (final repository for short-lived radioactive waste). A number of simulation cases aim to study cumulative effects of groundwater withdrawal from an extended SFR. The simulations are evaluated with respect to the groundwater table drawdown and head changes in the bedrock. The report analyses the hydrogeological and hydrological conditions for a number of selected wetland objects and forest objects. The selection of objects aims to cover different types of valuable nature objects at different geographical locations in relation to the influence area of the groundwater table drawdown. The analysis comprises groundwater levels at all nature objects, whereas wetlands with particularly high nature values have been studied in detail with respect to surface water levels, the need for water supply and object-specific water balances. These studies have been performed for different meteorological conditions in the form of a type (2006) and a statistically normal, dry and wet year, respectively, with a return period of 100 years for the dry- and wet years. All simulations for disturbed conditions with a fully open repository are done with a hydraulic conductivity of K{sub inj} = 10-7 or 10-8 m/s in the grouted zone. The results show that time-dependent precipitation and snow melt have large influence on the temporal variations of the depth to the groundwater table for

  15. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus

  16. Bedrock geologic and joint trend map of the Pinardville quadrangle, Hillsborough County, New Hampshire

    Science.gov (United States)

    Burton, William C.; Armstrong, Thomas R.

    2013-01-01

    The bedrock geology of the Pinardville quadrangle includes the Massabesic Gneiss Complex, exposed in the core of a regional northeast-trending anticlinorium, and highly deformed metasedimentary rocks of the Rangeley Formation, exposed along the northwest limb of the anticlinorium. Both formations were subjected to high-grade metamorphism and partial melting: the Rangeley during the middle Paleozoic Acadian orogeny, and the Massabesic Gneiss Complex during both the Acadian and the late Paleozoic Alleghanian orogeny. Granitoids produced during these orogenies range in age from Devonian (Spaulding Tonalite) to Permian (granite at Damon Pond), each with associated pegmatite. In the latest Paleozoic the Massabesic Gneiss Complex was uplifted with respect to the Rangeley Formation along the ductile Powder Hill fault, which also had a left-lateral component. Uplift continued into the early Mesozoic, producing the 2-kilometer-wide Campbell Hill fault zone, which is marked by northwest-dipping normal faults and dilational map-scale quartz bodies. Rare, undeformed Jurassic diabase dikes cut all older lithologies and structures. A second map is a compilation of joint orientations measured at all outcrops in the quadrangle. There is a great diversity of strike trends, with northeast perhaps being the most predominant.

  17. Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2009-01-01

    The bedrock geology of the Old Lyme quadrangle consists of Neoproterozoic and Permian gneisses and granites of the Gander and Avalon terranes, Silurian metasedimentary rocks of the Merrimack terrane, and Silurian to Devonian metasedimentary rocks of uncertain origin. The Avalon terrane rocks crop out within the Selden Neck block, and the Gander terrane rocks crop out within the Lyme dome. The Silurian to Devonian rocks crop out between these two massifs. Previous mapping in the Old Lyme quadrangle includes the work by Lawrence Lundgren, Jr. Lundgren's work provides an excellent resource for rock descriptions and detailed modal analyses of rock units that will not be duplicated in this current report. New research that was not covered in detail by Lundgren is the focus of this report and includes (1) evaluation of the rocks in the core of the Lyme dome in an effort to subdivide units in this area; (2) structural analysis of foliations and folds in and around the Lyme dome; (3) geochronology of selected units within the Lyme dome; and (4) analysis of joints and the fracture properties of the rocks.

  18. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    International Nuclear Information System (INIS)

    Bosson, Emma; Gustafsson, Lars-Goeran; Sassner, Mona

    2008-09-01

    SKB is currently performing site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow and solute transport modelling of the Forsmark site. The modelling reported in this document focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The most recent site data used in the modelling were delivered in the Forsmark 2.3 dataset, which had its 'data freeze' on March 31, 2007. The present modelling is performed in support of the final version of the Forsmark site description that is produced during the site investigation phase. In this work, the hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow and the contact between groundwater and surface water at the Forsmark site. The surface water system at Forsmark is described with the one-dimensional 'channel flow' modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. The MIKE SHE model was updated with data from the F2.3 data freeze. The main updates concerned the geological description of the saturated zone and the time series data on water levels and surface water discharges. The time series data used as input data and for calibration and validation was extended until the Forsmark 2.3 data freeze (March 31, 2007). The present work can be subdivided into the following four parts: 1. Update of the numerical flow model. 2. Sensitivity analysis and calibration of the model parameters. 3. Validation of the calibrated model, followed by evaluation and identification of discrepancies between measurements and model results. 4. Additional sensitivity analysis and calibration in order to resolve the problems identified in point three above. The main actions taken during the calibration can be summarised as follows: 1. The potential evapotranspiration was reduced in order to reach

  19. Geologic evolution of the lower Connecticut River valley: Influence of bedrock geology, glacial deposits, and sea level

    Science.gov (United States)

    Stone, Janet R.; Lewis, Ralph S.

    2016-01-01

    This fieldtrip illustrates the character of the lower Connecticut River bedrock valley, in particular its depth, and the lithology and structure of bedrock units it crosses. It examines the character and distribution of the glaciodeltaic terraces that partially fill the valley and discusses the depth of postglacial incision into them.

  20. Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography

    DEFF Research Database (Denmark)

    Rossi, Matteo; Olsson, Per-Ivar; Johansson, Sara

    2017-01-01

    An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has b...... been performed in Dalby, Lund Municipality, southern Sweden, with the aim of mapping lithological variations in bedrock. The geology at the site is characterised by Precambrian granitic gneisses and amphibolites, which are intensely deformed, fractured, and partly weathered. In addition......-polarization profiles. The direct-current resistivity and time-domain induced-polarization methodology proved to be a suitable technique for extensively mapping weathered zones with poor geotechnical characteristics and tectonic structures, which can lead to severe problems for infrastructure construction and....../or constitute risk zones for aquifer contamination....

  1. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    International Nuclear Information System (INIS)

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  2. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  3. Digital bedrock mapping at the Geological Survey of Norway: BGS SIGMA tool and in-house database structure

    Science.gov (United States)

    Gasser, Deta; Viola, Giulio; Bingen, Bernard

    2016-04-01

    Since 2010, the Geological Survey of Norway has been implementing and continuously developing a digital workflow for geological bedrock mapping in Norway, from fieldwork to final product. Our workflow is based on the ESRI ArcGIS platform, and we use rugged Windows computers in the field. Three different hardware solutions have been tested over the past 5 years (2010-2015). (1) Panasonic Toughbook CE-19 (2.3 kg), (2) Panasonic Toughbook CF H2 Field (1.6 kg) and (3) Motion MC F5t tablet (1.5 kg). For collection of point observations in the field we mainly use the SIGMA Mobile application in ESRI ArcGIS developed by the British Geological Survey, which allows the mappers to store georeferenced comments, structural measurements, sample information, photographs, sketches, log information etc. in a Microsoft Access database. The application is freely downloadable from the BGS websites. For line- and polygon work we use our in-house database, which is currently under revision. Our line database consists of three feature classes: (1) bedrock boundaries, (2) bedrock lineaments, and (3) bedrock lines, with each feature class having up to 24 different attribute fields. Our polygon database consists of one feature class with 38 attribute fields enabling to store various information concerning lithology, stratigraphic order, age, metamorphic grade and tectonic subdivision. The polygon and line databases are coupled via topology in ESRI ArcGIS, which allows us to edit them simultaneously. This approach has been applied in two large-scale 1:50 000 bedrock mapping projects, one in the Kongsberg domain of the Sveconorwegian orogen, and the other in the greater Trondheim area (Orkanger) in the Caledonian belt. The mapping projects combined collection of high-resolution geophysical data, digital acquisition of field data, and collection of geochronological, geochemical and petrological data. During the Kongsberg project, some 25000 field observation points were collected by eight

  4. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    International Nuclear Information System (INIS)

    Paulamaeki, S.; Paananen, M.; Elo, S.

    2002-02-01

    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  5. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaeki, S.; Paananen, M.; Elo, S. [Geological Survey of Finland (Finland)

    2002-02-01

    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  6. Site description of the SFR area at Forsmark at completion of the site investigation phase. SDM-PSU Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The site descriptive model (SDM) presented in this report is an integrated model for bedrock geology, rock mechanics, bedrock hydrogeology and bedrock hydrogeochemistry of the site investigated in the SFR extension project (PSU). A description of the surface system is also included in the report. However, the surface system is not integrated with the other disciplines as new data regarding the surface system will not be available until after the completion of SDM-PSU. It is noted that SDM-PSU does not include all disciplines handled in SDM-Site Forsmark (SKB 2008b), the focus is to produce a site description that meets the needs of the SFR extension project. The overall objective of the SFR extension project is to have the application for the extension ready by 2013. This report presents an integrated site model incorporating the historic data acquired from the investigations for and construction of the existing SFR facility (1980-1986), as well as from the recent investigations for the planned extension of SFR (2008-2009). It also provides a summary of the abundant underlying data and the discipline-specific models that support the integrated site model. The description relies heavily on background reports concerning detailed data analyses and modelling in the different disciplines. It is noteworthy that the investigations conducted during the SFR extension project were guided by the choice of site prior to the investigations, which was based on the experience gained during the construction of the existing SFR facility.

  7. Site description of the SFR area at Forsmark at completion of the site investigation phase. SDM-PSU Forsmark

    International Nuclear Information System (INIS)

    2013-05-01

    The site descriptive model (SDM) presented in this report is an integrated model for bedrock geology, rock mechanics, bedrock hydrogeology and bedrock hydrogeochemistry of the site investigated in the SFR extension project (PSU). A description of the surface system is also included in the report. However, the surface system is not integrated with the other disciplines as new data regarding the surface system will not be available until after the completion of SDM-PSU. It is noted that SDM-PSU does not include all disciplines handled in SDM-Site Forsmark (SKB 2008b), the focus is to produce a site description that meets the needs of the SFR extension project. The overall objective of the SFR extension project is to have the application for the extension ready by 2013. This report presents an integrated site model incorporating the historic data acquired from the investigations for and construction of the existing SFR facility (1980-1986), as well as from the recent investigations for the planned extension of SFR (2008-2009). It also provides a summary of the abundant underlying data and the discipline-specific models that support the integrated site model. The description relies heavily on background reports concerning detailed data analyses and modelling in the different disciplines. It is noteworthy that the investigations conducted during the SFR extension project were guided by the choice of site prior to the investigations, which was based on the experience gained during the construction of the existing SFR facility

  8. Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    NARCIS (Netherlands)

    Toy, Virginia Gail; Sutherland, Rupert; Townend, John; Allen, Michael John; Becroft, Leeza; Boles, Austin; Boulton, Carolyn; Carpenter, Brett M.; Cooper, Alan; Cox, Simon C.; Daube, Christopher; Faulkner, Daniel R.; Halfpenny, Angela; Kato, Naoki; Keys, Stephen; Kirilova, Martina; Kometani, Yusuke; Little, Timothy; Mariani, Elisabetta; Melosh, Benjamin; Menzies, Catriona D.; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, André|info:eu-repo/dai/nl/370832132; Norris, Richard; Prior, David J.; Sauer, Katrina; Schleicher, Anja M.; Shigematsu, Norio; Teagle, Damon A H; Tobin, Harold; Valdez, Robert; Williams, Jack; Yeo, Samantha; Baratin, Laura May; Barth, Nicolas; Benson, Adrian; Boese, Carolin; Célérier, Bernard; Chamberlain, Calum J.; Conze, Ronald; Coussens, Jamie; Craw, Lisa; Doan, Mai Linh; Eccles, Jennifer; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Howarth, Jamie; Jacobs, Katrina; Janku-Capova, Lucie; Jeppson, Tamara; Langridge, Robert; Mallyon, Deirdre; Marx, Ray; Massiot, Cécile; Mathewson, Loren; Moore, Josephine; Nishikawa, Osamu; Pooley, Brent; Pyne, Alex; Savage, Martha K.; Schmitt, Doug; Taylor-Offord, Sam; Upton, Phaedra; Weaver, Konrad C.; Wiersberg, Thomas; Zimmer, Martin

    2017-01-01

    During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock

  9. Beneath it all: bedrock geology of the Catskill Mountains and implications of its weathering.

    Science.gov (United States)

    Ver Straeten, Charles A

    2013-09-01

    The Devonian-age bedrock of the Catskill Mountains has been the focus of many studies. This paper reviews the character and composition of the rocks of the Catskills, and examines weathering (rock decay) processes and their implications in the Catskills. Rocks of the Catskills and closest foothills consist of siliciclastic rocks (sandstones, mudrocks, conglomerates) with minimal, locally dispersed carbonate rocks. The former are dominated by quartz, metamorphic and sedimentary rock fragments, and clay minerals. Other minor sediment components include cements, authigenic and heavy minerals, and fossil organic matter. Physical, chemical, and biological weathering of the Catskill bedrock since uplift of the Appalachian region, combined with glaciation, have dissected a plateau of nearly horizontally layered rocks into a series of ridges, valleys, and peaks. The varied weathering processes, in conjunction with many factors (natural and anthropogenic), fragment the rocks, forming sediment and releasing various elements and compounds. These may have positive, neutral, or negative implications for the region's soils, waters, ecology, and human usage. A new generation of studies and analyses of the Catskill bedrock is needed to help answer a broad set of questions and problems across various fields of interest. © 2013 New York Academy of Sciences.

  10. Bedrock Outcrop Points Compilation

    Data.gov (United States)

    Vermont Center for Geographic Information — A compilation of bedrock outcrops as points and/or polygons from 1:62,500 and 1:24,000 geologic mapping by the Vermont Geological Survey, the United States...

  11. Bedrock geologic map of the Miles Pond and Concord quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Miles Pond and Concord quadrangles covers an area of approximately 107 square miles (276 square kilometers) in east-central Vermont and adjacent New Hampshire, north of and along the Connecticut River. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. The majority of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Silurian sedimentary, volcanic, and plutonic rocks. A major feature on the map is the Monroe fault, interpreted to be a west-directed, steeply dipping Late Devonian (Acadian) thrust fault. To the west of the Monroe fault, rocks of the Connecticut Valley-Gaspé trough dominate and consist primarily of metamorphosed Silurian and Devonian sedimentary rocks. To the north, the Victory pluton intrudes the Bronson Hill anticlinorium. The Bronson Hill anticlinorium consists of the metamorphosed Albee Formation, the Ammonoosuc Volcanics, the Comerford Intrusive Complex, the Highlandcroft Granodiorite, and the Joselin Turn tonalite. The Albee Formation is an interlayered, feldspathic metasandstone and pelite that is locally sulfidic. Much of the deformed metasandstone is tectonically pinstriped. In places, one can see compositional layering that was transposed by a steeply southeast-dipping foliation. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of siltstone, phyllite, graywacke, and grit. The Comerford Intrusive Complex crops out east of the Monroe fault and consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes from the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics east of the Monroe fault. The

  12. Bedrock Geologic Map of the Miles Pond and Concord Quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Miles Pond and Concord quadrangles covers an area of approximately 107 square miles (276 square kilometers) in east-central Vermont and adjacent New Hampshire, north of and along the Connecticut River. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. The majority of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Silurian sedimentary, volcanic, and plutonic rocks. A major feature on the map is the Monroe fault, interpreted to be a west-directed, steeply dipping Late Devonian (Acadian) thrust fault. To the west of the Monroe fault, rocks of the Connecticut Valley-Gaspé trough dominate and consist primarily of metamorphosed Silurian and Devonian sedimentary rocks. To the north, the Victory pluton intrudes the Bronson Hill anticlinorium. The Bronson Hill anticlinorium consists of the metamorphosed Albee Formation, the Ammonoosuc Volcanics, the Comerford Intrusive Complex, the Highlandcroft Granodiorite, and the Joselin Turn tonalite. The Albee Formation is an interlayered, feldspathic metasandstone and pelite that is locally sulfidic. Much of the deformed metasandstone is tectonically pinstriped. In places, one can see compositional layering that was transposed by a steeply southeast-dipping foliation. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of siltstone, phyllite, graywacke, and grit. The Comerford Intrusive Complex crops out east of the Monroe fault and consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes from the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics east of the Monroe fault. The

  13. Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography

    DEFF Research Database (Denmark)

    Rossi, Matteo; Olsson, Per-Ivar; Johansson, Sara

    2017-01-01

    An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has......, there are northwest-trending Permian dolerite dykes that are less deformed. Four 2D direct-current resistivity and time-domain induced-polarization profiles of about 1-km length have been carefully pre-processed to retrieve time-domain induced polarization responses and inverted to obtain the direct......-current resistivity distribution of the subsoil and the phase of the complex conductivity using a constant-phase angle model. The joint interpretation of electrical resistivity and induced-polarization models leads to a better understanding of complex three-dimensional subsoil geometries. The results have been...

  14. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  15. Geology and hydrology of the deep bedrock aquifers in eastern Colorado

    Science.gov (United States)

    Robson, S.G.; Banta, E.R.

    1987-01-01

    Deep bedrock aquifers are present in rocks of Cretaceous through Pennsylvanian age in eastern Colorado. These aquifers are the Laramie-Fox Hills (the uppermost aquifer studied), Fort Hays-Codell, Dakota-Cheyenne, Entrada-Dockum, Lyons, and Fountain. Structural mapping indicates the aquifers are 2,000 to 9,000 ft below land surface in most of eastern Colorado but outcrop in local areas in a narrow band along the Front Range of the Rocky Mountains. Recharge primarily occurs in outcrops and produces a northerly or easterly groundwater flow to discharge areas along the South Platte or Arkansas Rivers. Deep aquifers also discharge by underflow to Kansas and Nebraska. Some water-yielding strata in the Dakota-Cheyenne aquifer are not in hydraulic connection with the aquifer, and abnormal fluid pressures, trapped hydrocarbons, and high dissolved-solids concentrations are found in these strata. Temperature and dissolved-solids mapping indicate water temperatures of 100 to 210 in northeastern Colorado and a zone of relatively fresh water extending through a 7,000 sq mi area of the Dakota-Cheyenne aquifer in southeastern Colorado. Water levels in the Laramie-Fox Hills aquifer continue to decline as much as 12 ft/yr in local areas near Denver. (USGS)

  16. Bedrock Geology of the DFDP-2B Drill-Site, Central Alpine Fault, New Zealand

    Science.gov (United States)

    Toy, Virginia; Sutherland, Rupert; Townend, John

    2017-04-01

    Bedrock was encountered at drilled depths (MD) of 238.5-893.2 m (vertical depths of 238.4-818.0 m) in DFDP-2B, Whataroa River, Westland, New Zealand. Continuous sampling and onsite description of whole cuttings samples and thin sections allowed identification that the borehole terminated within amphibolite facies, Torlesse Composite Terrane-derived mylonites >200-400 m above the Alpine Fault principal slip zone (PSZ). The most diagnostic macro-and micro-structural features were the occurrence of shear bands and reduction in mean quartz grain sizes toward the Alpine Fault. Onsite optical microscopy and subsequent offsite electron microscopy both demonstrate: (i) reduction in grain size and (ii) change in composition to greater mica:quartz+feldspar, most markedly at 720 m MD (vertical depth of 695 m), inferred to result from either heterogeneous sampling due to variations in drilling parameters, or a change in rock type across a minor fault. Major oxide variations suggest the Alpine Fault alteration zone, as defined during DFDP-1, was not sampled.

  17. Bedrock geologic and structural map through the western Candor Colles region of Mars

    Science.gov (United States)

    Okubo, Chris H.

    2014-01-01

    The Candor Colles are a population of low, conical hills along the southeast flank of Ceti Mensa, in west Candor Chasma, within the Valles Marineris system of Mars (fig. 1). Ceti Mensa and the adjacent Candor Mensa are mounds of layered sedimentary deposits and are the most prominent landforms within west Candor Chasma. Prior to the arrival of the Mars Reconnaissance Orbiter (MRO) in orbit around Mars in 2006 (Zurek and Smrekar, 2007), geologic maps of the area utilized the relatively low resolution Viking Orbiter photomosaics (20–150 m/pixel). Geologic maps covering west Candor Chasma were created at scales of 1:15,000,000 for the western equatorial region of Mars (Scott and Tanaka, 1986), 1:2,000,000 for the Valles Marineris region (Witbeck and others, 1991), and 1:500,000 for the far eastern part of west Candor Chasma (Mars Transverse Mercator quadrangle–05072; Lucchitta, 1999). 

  18. The geologic investigation of the bedrock and the tectonic and geophysical surveys at Kynnefjaell

    International Nuclear Information System (INIS)

    Ahlbom, K.; Ahlin, S.; Eriksson, L.; Samuelsson, L.

    1980-05-01

    The geologic survey took place at a selected area of Kynnefjaell. The result is given on geologic and tectonic maps. Two kinds of rock dominate, namely (a) sedimentary veined gneiss and (b) gneissic granite. The strike is in the N-S direction. A symmetric folds dip to the last. The fissure zones are oriented in the N-S and NE-SW directions. The latter zones are considered to be Precambrian shear zones with a dip to the NW. The dip of the fissure zones with the direction N-S is difficult to ascertain. The frequency of fissures is the same for granite and gneiss. The length of fissures is longer in the gneissic granite than in the sedimentary veined gneiss. The measurement of stress shows its main direction to be WNW-NW to ESE-SE. The fissure zones are at right or blunt-ended angles to the main stress direction. (G.B.)

  19. Geologic constraints on bedrock river incision using the stream power law

    Science.gov (United States)

    Stock, Jonathan D.; Montgomery, David R.

    1999-03-01

    Denudation rate in unextended terranes is limited by the rate of bedrock channel incision, often modeled as work rate on the channel bed by water and sediment, or stream power. The latter can be generalized as KAmSn, where K represents the channel bed's resistance to lowering (whose variation with lithology is unknown), A is drainage area (a surrogate for discharge), S is local slope, and m and n are exponents whose values are debated. We address these uncertainties by simulating the lowering of ancient river profiles using the finite difference method. We vary m, n, and K to match the evolved profile as closely as possible to the corresponding modern river profile over a time period constrained by the age of the mapped paleoprofiles. We find at least two end-member incision laws, KA0.3-0.5S1 for Australian rivers with stable base levels and KfA0.1-0.2Sn for rivers in Kauai subject to abrupt base level change. The long-term lowering rate on the latter expression is a function of the frequency and magnitude of knickpoint erosion, characterized by Kf. Incision patterns from Japan and California could follow either expression. If they follow the first expression with m = 0.4, K varies from 10-7-10-6 m0.2/yr for granite and metamorphic rocks to 10-5-10-4 m0.2/yr for volcaniclastic rocks and 10-4-10-2 m0.2/yr for mudstones. This potentially large variation in K with lithology could drive strong variability in the rate of long-term landscape change, including denudation rate and sediment yield.

  20. Acceptance-criteria for the bedrock for deep geologic disposal of spent nuclear fuel. Proceedings from a seminar at Gothenburg University

    International Nuclear Information System (INIS)

    1995-11-01

    The seminar was directed to Nordic participants, and discussed disposal in the Nordic crystalline bedrock. Criteria for the bedrock should include: It should give durable mechanical protection for the engineered barriers; give a stable and favorable chemical environment for these barriers; have a low turnover of ground water in the near field; be easy to characterize; give favorable recipient-conditions; not have valuable minerals in workable quantities. These general criteria raise several questions coupled to the safety analysis: e.g. the need for geological, hydrological and geochemical parameters. Which data are missing, which are most difficult to find? What should the site characterization program look like to focus on factors that are of the highest importance according to the safety analysis. The demands on the conditions at a site need to be translated into quantitative criteria, which should be expressed as values that can be measured at the site or deduced from such measurements. These questions were discussed at the seminar, and 21 contributions from Finnish, Norwegian and Swedish participants are reported in these proceedings under the chapters: Coupling to the safety analysis; Methodology and criteria for site selection in a regional geoscientific perspective; Rock as a building material - prognosis and result; Geoscientific criteria for the bedrock at the repository - Mechanical protection; Geoscientific criteria for the bedrock at the repository - Low ground water turnover, chemically favorable and stable environment in the near field; Geoscientific criteria for the bedrock at the repository - Demands on the bedrock concerning the migration of radionuclides

  1. Soils and site types in the Forsmark area

    International Nuclear Information System (INIS)

    Lundin, Lars; Lode, Elve; Stendahl, Johan; Melkerud, Per-Arne; Bjoerkvald, Louise; Thorstensson, Anna

    2004-01-01

    Investigations to give prerequisites for long-term storage of nuclear waste are made by the Swedish Nuclear Fuel and Waste Management Company (SKB AB). Ecosystem functions are crucial in this management. The range of the scope is wide including bedrock, regolith, hydrosphere and biosphere. The interface between deep geological formations and surface systems is then considered very important. This would be the top of the regolith, where soils are developed. Special attention has been paid to these layers with fairly comprehensive investigations. Field investigations were made for one of the candidate areas, the Forsmark area, in 2002 by the Department of Forest Soils, Swedish University of Agricultural Sciences. In these ecosystem functions, the upper part of the regolith is one crucial component and the focus in the investigations was on the upper metre of the soil. Variables determined include vegetation, hydrology, soil parent material, textural composition, soil type and physical and chemical properties of relevant soil layers. Methods used in the investigation coincide with those of the Swedish Forest Soil Inventory, which provide possibilities to compare properties in the Forsmark area with those of total Sweden and regions of the country. Soil properties were determined thoroughly on eight site types in two replicates to provide statistical significance. However, this meant that the investigation did not have a total spatial coverage. Instead, the spatial distribution of soils in the area was determined from a GIS based on the inventory made and information on vegetation types, distribution of Quaternary deposits and a hydrological index. From this GIS, distributions were compared with other parts of the country. The geographical location of the Forsmark area (N 60 deg 22 min; E 18 deg 13 min) is on the northeast coast of central Sweden bordering to the Bothnian Sea. The area is low-lying, reaching only up to 15 m above the sea, which means that the soils are

  2. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  3. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  4. Influence of bedrock geology on water chemistry of slope wetlands and headwater streams in the southern Rocky Mountains

    Science.gov (United States)

    Monique LaPerriere Nelson; Charles C. Rhoades; Kathleen A. Dwire

    2011-01-01

    We characterized the water chemistry of nine slope wetlands and adjacent headwater streams in Colorado subalpine forests and compared sites in basins formed on crystalline bedrock with those formed in basins with a mixture of crystalline and sedimentary bedrock. The pH, Ca2+, Mg2+, NH4 +, acid neutralizing capacity, and electrical conductivity of wetland porewater and...

  5. Soils and site types in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Lars; Lode, Elve; Stendahl, Johan; Melkerud, Per-Arne; Bjoerkvald, Louise; Thorstensson, Anna [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    2004-01-01

    Investigations to give prerequisites for long-term storage of nuclear waste are made by the Swedish Nuclear Fuel and Waste Management Company (SKB AB). Ecosystem functions are crucial in this management. The range of the scope is wide including bedrock, regolith, hydrosphere and biosphere. The interface between deep geological formations and surface systems is then considered very important. This would be the top of the regolith, where soils are developed. Special attention has been paid to these layers with fairly comprehensive investigations. Field investigations were made for one of the candidate areas, the Forsmark area, in 2002 by the Department of Forest Soils, Swedish University of Agricultural Sciences. In these ecosystem functions, the upper part of the regolith is one crucial component and the focus in the investigations was on the upper metre of the soil. Variables determined include vegetation, hydrology, soil parent material, textural composition, soil type and physical and chemical properties of relevant soil layers. Methods used in the investigation coincide with those of the Swedish Forest Soil Inventory, which provide possibilities to compare properties in the Forsmark area with those of total Sweden and regions of the country. Soil properties were determined thoroughly on eight site types in two replicates to provide statistical significance. However, this meant that the investigation did not have a total spatial coverage. Instead, the spatial distribution of soils in the area was determined from a GIS based on the inventory made and information on vegetation types, distribution of Quaternary deposits and a hydrological index. From this GIS, distributions were compared with other parts of the country. The geographical location of the Forsmark area (N 60 deg 22 min; E 18 deg 13 min) is on the northeast coast of central Sweden bordering to the Bothnian Sea. The area is low-lying, reaching only up to 15 m above the sea, which means that the soils are

  6. Geology, Bedrock, Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site Characterization., Published in 1998, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Bedrock dataset current as of 1998. Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site...

  7. Monitoring Forsmark - Bird monitoring in Forsmark 2012

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin [Dept of Biology, Lund Univ., Lund (Sweden)

    2013-03-15

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds directive) breeding birds in Forsmark 2002 - 2012. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2012 in the same way as in earlier years. The results from 2012 generally follow patterns recorded in earlier years. 2012 was in general a better bird year compared to 2010 and 2011 and most species (82%) showed increasing or stable numbers from 2011 to 2012. Only two species (18%) decreased in numbers between the last two years. All in all, six species (55 %, black-throated diver, honey buzzard, black grouse, ural owl, wryneck and red-backed shrike) show no significant trends since the start of the bird monitoring (2002/2003/2004 depending on species). During this period three species (27 %, white-tailed eagle, osprey and lesser spotted woodpecker) have increased in numbers while just two (18 %, capercaillie and hazelhen) have decreased. A new pair of black-throated divers was discovered in 2012 and seven resident pairs were registered. Breeding success was very good, the second best during the study period. Population development follows the national pattern, but breeding success seems to be better in Forsmark than in the country as a whole. Honey buzzards and ospreys occurred in good numbers, and breeding success for ospreys was good. No signs of successful breedings of honey buzzards were recorded, but this may mean little as no detailed monitoring of breeding success is made for this species. The white-tailed eagles had their best breeding year since the start of the SKB bird monitoring, meaning that during the last two years local breeding success has been back at the level recorded before the site investigations started. The three grouse species (black grouse, capercaillie and hazelhen) again showed somewhat varying patterns between the last two years as well as in the long run. The black grouse increased

  8. Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone

  9. Bedrock Geologic Map of the Lisbon Quadrangle, and Parts of the Sugar Hill and East Haverhill Quadrangles, Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone

  10. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  11. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  12. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stocholm (Sweden)); Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-10-15

    Radioactive waste from nuclear power plants in Sweden is managed by the Swedish Nuclear Fuel and Waste Management Co, SKB. SKB has performed site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for high-level radioactive waste. In 2009 a decision was made to focus on the Forsmark site. This decision was based on a large amount of empirical evidence suggesting Forsmark to be more suitable for a geological repository /SKB 2010b/. This report presents model results of numerical flow and transport modelling of surface water and near-surface groundwater at the Forsmark site for present and future conditions. Both temperate and periglacial climates have been simulated. Also different locations of the shoreline have been applied to the model, as well as different models of vegetation and Quaternary deposits. The modelling was performed using the modelling tool MIKE SHE and was based on the SDM-Site Forsmark MIKE SHE model (presented by Bosson et al. in SKB report R-08-09). The present work is a part of the biosphere modelling performed for the SR-Site safety assessment. The Forsmark area has a flat, small-scale topography. The study area is almost entirely below 20 m.a.s.l. (metres above sea level). There is a strong correlation between the topography of the ground surface and the ground water level in the Quaternary deposits (QD); thus, the surface water divides and the groundwater divides for the QD can be assumed to coincide. No major water courses flow through the catchment. Small brooks, which often dry out in the summer, connect the different sub-catchments with each other. The main lakes in the area, Lake Bolundsfjaerden, Lake Fiskarfjaerden, Lake Gaellsbotraesket and Lake Eckarfjaerden, all have sizes of less than one km2. The lakes are in general shallow. Approximately 70% of the catchment areas are covered by forest. Agricultural land is only present in

  13. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  14. Monitoring Forsmark. Bird monitoring in Forsmark 2010

    International Nuclear Information System (INIS)

    Green, Martin

    2010-12-01

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds Directive) breeding birds in Forsmark 2002-2010. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2010 in the same way as in earlier years. The results from the monitoring in 2010 differed somewhat from results gathered in earlier years. Most monitored species have increased in local numbers during the study years, and from most years continued increases have been reported. Between 2009 and 2010 most species (seven, 64% of the monitored ones) instead decreased in numbers. Only one species (honey buzzard) increased in numbers between the years and in this case this was probably more a result of small moves by certain pairs so that they this year had parts reaching into the regional model area, while in 2009 their territories were outside of this. No dramatic changes in bird numbers were however recorded and all the studied species show stable or increasing local populations over the study period. Number of Black-throated diver pairs was normal and breeding success was good this year. The breeding success of divers has improved considerably over the studied period and the patterns recorded in Forsmark closely follow recorded patterns at the national level. Honey buzzards and ospreys occurred in good numbers, above the average for the whole period, and breeding success was better than in 2009. Even if breeding success of honey buzzards is not monitored in any detail, there were still signs of at least a few successful breedings in the area this year. Breeding success of ospreys was below average, but still within the normal variation for most years. The local white-tailed eagles had a poor breeding season and no young at all were produced within the study area. All three grouse species (black grouse, capercaillie and hazelhen) decreased in numbers between 2009 and 2010. Note however that the large amounts of snow

  15. Monitoring Forsmark. Bird monitoring in Forsmark 2010

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin (Dept. of Animal Ecology, Lund Univ. (Sweden))

    2010-12-15

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds Directive) breeding birds in Forsmark 2002-2010. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2010 in the same way as in earlier years. The results from the monitoring in 2010 differed somewhat from results gathered in earlier years. Most monitored species have increased in local numbers during the study years, and from most years continued increases have been reported. Between 2009 and 2010 most species (seven, 64% of the monitored ones) instead decreased in numbers. Only one species (honey buzzard) increased in numbers between the years and in this case this was probably more a result of small moves by certain pairs so that they this year had parts reaching into the regional model area, while in 2009 their territories were outside of this. No dramatic changes in bird numbers were however recorded and all the studied species show stable or increasing local populations over the study period. Number of Black-throated diver pairs was normal and breeding success was good this year. The breeding success of divers has improved considerably over the studied period and the patterns recorded in Forsmark closely follow recorded patterns at the national level. Honey buzzards and ospreys occurred in good numbers, above the average for the whole period, and breeding success was better than in 2009. Even if breeding success of honey buzzards is not monitored in any detail, there were still signs of at least a few successful breedings in the area this year. Breeding success of ospreys was below average, but still within the normal variation for most years. The local white-tailed eagles had a poor breeding season and no young at all were produced within the study area. All three grouse species (black grouse, capercaillie and hazelhen) decreased in numbers between 2009 and 2010. Note however that the large amounts of snow

  16. Forsmark - site descriptive model version 0

    International Nuclear Information System (INIS)

    2002-10-01

    biosphere, is sufficiently advanced for some initial modelling exercises. The available information on the geosphere in the Forsmark regional model area is quite extensive, at least locally (especially SFR). In order to develop and test the modelling procedures, this information has been collected and transformed into appropriate formats under four separate headings: Geology, Rock mechanics, Hydrogeology, and Hydrogeochemistry. In the areas of rock engineering, hydrogeology and hydrogeochemistry, modelling activities were mainly confined to parametrisation exercises, using presently available data from the Forsmark regional model area to put limits on, for instance, the in situ stress field, the mechanical properties of the rock mass, the hydraulic properties of the fracture zones and rock mass between them, and the hydrogeochemical evolution. The site descriptive model, version 0, is intended as the basic platform and natural starting point for all groups involved in the site investigations at Forsmark, especially for the regional model area. The main results of the present project were to focus attention on the strengths and weaknesses in the available data coverage and data storage and processing systems, and to provide a basis for developing and testing ways of transforming diverse types of geoscientific information into a form appropriate for modelling. At the same time, the project provided concrete guidelines for the planning of the initial site investigations at Forsmark

  17. Hydrogeochemical evaluation. Preliminary site description Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus

    2005-03-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Laxemar-Simpevarp, on the eastern coast of Sweden to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in Model version 1.2 which represents the second evaluation of the available Forsmark groundwater analytical data collected up to June, 2004. The Hydrochemical Analytical Group (HAG) had access to data where a total of 1,131 water samples had been collected from the surface and sub-surface environment; 252 samples were collected from drilled boreholes. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 1 km. Most of the waters sampled (66%) lacked crucial analytical information that restricted the evaluation. Model version 1.2 focuses on geochemical and mixing processes affecting the groundwater composition in the uppermost part of the bedrock, down to repository levels, and eventually extending to 1,000 m depth. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the present-day topography and proximity to the Baltic Sea, b) past changes in hydrogeology related to glaciation/deglaciation, land uplift and repeated marine/lake water regressions/ transgressions, and c) organic or inorganic alteration of the groundwater composition caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees processes relating to modern or ancient water/rock interactions and mixing. The groundwater flow regimes at Forsmark are considered local and extend down to depths of around 600 m depending on hydraulic conditions. Close to the Baltic Sea coastline where topographical variation is even less, groundwater flow penetration to depth will subsequently be less marked and such areas will tend to be characterised by groundwater

  18. Hydrogeochemical evaluation. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [Geopoint AB, Stockholm (Sweden)

    2005-03-15

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Laxemar-Simpevarp, on the eastern coast of Sweden to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in Model version 1.2 which represents the second evaluation of the available Forsmark groundwater analytical data collected up to June, 2004. The Hydrochemical Analytical Group (HAG) had access to data where a total of 1,131 water samples had been collected from the surface and sub-surface environment; 252 samples were collected from drilled boreholes. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 1 km. Most of the waters sampled (66%) lacked crucial analytical information that restricted the evaluation. Model version 1.2 focuses on geochemical and mixing processes affecting the groundwater composition in the uppermost part of the bedrock, down to repository levels, and eventually extending to 1,000 m depth. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the present-day topography and proximity to the Baltic Sea, b) past changes in hydrogeology related to glaciation/deglaciation, land uplift and repeated marine/lake water regressions/ transgressions, and c) organic or inorganic alteration of the groundwater composition caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees processes relating to modern or ancient water/rock interactions and mixing. The groundwater flow regimes at Forsmark are considered local and extend down to depths of around 600 m depending on hydraulic conditions. Close to the Baltic Sea coastline where topographical variation is even less, groundwater flow penetration to depth will subsequently be less marked and such areas will tend to be characterised by

  19. Comparison of site descriptive models for Olkiluoto, Finland and Forsmark, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J.; Bath, A.; Stephansson, O.; Luukkonen, A.

    2012-08-15

    The proposed high-level radioactive waste repository sites at Olkiluoto and Forsmark share broadly similar geologic histories and regional settings. Despite differences in lithology, rock strength and patterns of brittle deformation, the sites show similarities in terms of hydrogeochemistry and hydrogeology. These similarities reflect a dominating influence of saline and brackish water intrusion during inundation by the postglacial Littorina Sea and Baltic Sea, followed by exposure to meteoric waters following postglacial uplift and transition to a Baltic coastal setting. Both sites also contain deep bedrock saline groundwater, though this is more evident at Olkiluoto than at Forsmark. A comparative study of site descriptive models for the two sites identifies the following key differences that could potentially impact safety of a repository: (1) Redox controls, buffering and biogeochemistry at proposed repository depths; (2) Salinity gradients at and below proposed repository depths; (3) Methane concentrations at and below proposed repository depths; (4) Depths to which glacial water and Littorina water penetrated; (5) Cation hydrogeochemistry and water-rock reaction; (6) Pore water compositions in rock matrix; (7) Rock fabric, secondary minerals and alteration with respect to radionuclide retention; (8) Brittle deformation fabric differences on multiple scales that affect vertical hydraulic conductivity; (9) Differences in apparent frequency of encountering water-conducting networks at proposed repository depths; (10) Shallow bedrock hydraulic properties; (11) Unique intrusive or dissolution features; (12) Connectivity of site-scale models to regional-scale features; (13) Mesoproterozoic rocks in vicinity and possibilities for human-intrusion scenarios; (14) Rock stresses and bedrock strength and deformability at proposed repository depths; (15) Thermal anisotropy. These differences are all potentially significant to safety functions, but none are so severe that

  20. VT Biodiversity Project - Bedrock Classification

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset is a five category, nine sub-category classification of the bedrock units appearing on the Centennial Geologic Map of Vermont. The...

  1. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    Science.gov (United States)

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired.

  2. Geologic and physiographic controls on bed-material yield, transport, and channel morphology for alluvial and bedrock rivers, western Oregon

    Science.gov (United States)

    O'Connor, James E.; Mangano, Joseph F.; Anderson, Scott A.; Wallick, J. Rose; Jones, Krista L.; Keith, Mackenzie K.

    2014-01-01

    The rivers of western Oregon have diverse forms and characteristics, with channel substrates ranging from continuous alluvial gravel to bare bedrock. Analysis of several measurable morphologic attributes of 24 valley reaches on 17 rivers provides a basis for comparing nonalluvial and alluvial channels. Key differences are that alluvial reaches have greater bar area, greater migration rates, and show systematic correlation among variables relating grain size to bed-material transport capacity. We relate these differences between channel types to bed-material transport rates as derived from a coupled regional analysis of empirical sediment yield measurements and physical experiments of clast attrition during transport. This sediment supply analysis shows that overall bed-material transport rates for western Oregon are chiefly controlled by (1) lithology and basin slope, which are the key factors for bed-material supply into the stream network, and (2) lithologic control of bed-material attrition from in-transport abrasion and disintegration. This bed-material comminution strongly affects bed-material transport in the study area, reducing transport rates by 50%–90% along the length of the larger rivers in the study area. A comparison of the bed-material transport estimates with the morphologic analyses shows that alluvial gravel-bed channels have systematic and bounding relations between bed-material transport rate and attributes such as bar area and local transport capacity. By contrast, few such relations are evident for nonalluvial rivers with bedrock or mixed-bed substrates, which are apparently more influenced by local controls on channel geometry and sediment supply. At the scale of western Oregon, the physiographic and lithologic controls on the balance between bed-material supply and transport capacity exert far-reaching influence on the distribution of alluvial and nonalluvial channels and their consequently distinctive morphologies and behaviors

  3. Complementary modelling of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Grandia, Fidel; Arcos, David; Molinero, Jorge; Duro, Lara (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-10-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting a comprehensive geoscientific characterization of two alternative sites to allocate a deep geological repository of high level nuclear waste. The Site Characterization Program also includes the near-surface systems, which are expected to constitute the last geological barrier between the repository system and the earth's surface. The evaluation of the retention capacity of the near surface systems is, therefore, very relevant for the site characterization program. From the geological point of view, near-surface systems in the Forsmark area consist of Quaternary deposits that overlay a granitic bedrock. Glacial till is the most abundant outcropping Quaternary deposit (approx75% of surface extension) and the remainder is made up of clayey materials (glacial and post-glacial clays). These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time scale considered in this work, is calcium carbonate (calcite). This mineral is found along with clay minerals (e.g. illite) and Fe(III) hydroxides. In contrast, glacial and post-glacial clays are basically composed of illite with minor amounts of calcium carbonate, and containing organic matter-rich levels (gyttja) which can promote reducing conditions in the system. The assessment of the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark was developed in an earlier work, that focused on the evaluation of the capacity of the Quaternary deposits for radionuclide retention. The work reported here is an improvement of the geochemical conceptual and numerical model already presented, based on data available in the Site Descriptive Model v 1.2 (Forsmark). Regarding the geochemical variability of the Quaternary deposits present at Forsmark and its implications on radionuclide mobility through the near-surface systems, a

  4. Site descriptive modelling Forsmark, stage 2.2. A fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Isabelle; Simeonov, Assen [Swedish Nuclear Fuel and Waste Manageme nt Co., Stockholm (Sweden); Stephens, Michael [Geological Survey of Sweden (SGU), U ppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Nilsson, Ann-Chatrin [G eosigma AB, Uppsala (Sweden); Roeshoff, Kennert; Lindberg, Ulrika; Lanaro, Flavio [Bergbygg konsult AB, Haesselby (Sweden); Fredriksson, Anders; Persson, Lars [Golder Associat es AB (Sweden)

    2007-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, Forsmark and Simpevarp/Laxemar, with the objective of siting a final waste repository at depth for spent nuclear fuel. The programme is built upon the development of site descriptive models after each data freeze. This report describes the first attempt to define fracture domains for the Forsmark site modelling in stage 2.2. Already during model version 1.2 at Forsmark, significant spatial variability in the fracture pattern was observed. The variability appeared to be so significant that it provoked the need for a subdivision of the model volume for the treatment of geological and hydrogeological data into sub-volumes. Subsequent analyses of data collected up to data freeze 2.1 led to a better understanding of the site and a concept for the definition of fracture domains based on geological characteristics matured. The main objectives of this report are to identify and describe fracture domains at the site on the basis of geological data and to compile hydrogeological, hydrogeochemical and rock mechanics data within each fracture domain and address the implications of this integration activity. On the basis of borehole data, six fracture domains (FFM01-FFM06) have been recognized inside and immediately around the candidate volume. Three of these domains (FFM01, FFM02 and FFM06) lie inside the target volume for a potential repository in the northwestern part of the candidate area, and need to be addressed in the geological DFN modelling work. The hydrogeological data support the subdivision of the bedrock into fracture domains FFM01, FFM02 and FFM03. Few or no data are available for the other three domains. The hydrogeochemical data also support the subdivision into fracture domains FFM01 and FFM02. Since few data are available from the bedrock between deformation zones inside FFM03, there is little information on the hydrogeochemical

  5. SFR site investigation. Bedrock Hydrogeochemistry

    International Nuclear Information System (INIS)

    Nilsson, Ann-Chatrin; Tullborg, Eva-Lena; Smellie, John; Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F.; Sandstroem, Bjoern; Pedersen, Karsten

    2011-11-01

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the δ 18 O values show a wide variation (-15.5 to -7.5 per mille V

  6. SFR site investigation. Bedrock Hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F. [Univ. of Zaragoza, Zaragoza (Spain); Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Pedersen, Karsten [Micans AB, Moelnlycke (Sweden)

    2011-11-15

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the {delta}{sup 18}O values show a wide variation (-15.5 to -7.5 per mille V

  7. Forsmark - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    biosphere, is sufficiently advanced for some initial modelling exercises. The available information on the geosphere in the Forsmark regional model area is quite extensive, at least locally (especially SFR). In order to develop and test the modelling procedures, this information has been collected and transformed into appropriate formats under four separate headings: Geology, Rock mechanics, Hydrogeology, and Hydrogeochemistry. In the areas of rock engineering, hydrogeology and hydrogeochemistry, modelling activities were mainly confined to parametrisation exercises, using presently available data from the Forsmark regional model area to put limits on, for instance, the in situ stress field, the mechanical properties of the rock mass, the hydraulic properties of the fracture zones and rock mass between them, and the hydrogeochemical evolution. (abstract truncated)

  8. Forsmark site investigation. Searching for evidence of late- or postglacial faulting in the Forsmark region. Results from 2002-2004

    International Nuclear Information System (INIS)

    Lagerbaeck, Robert; Sundh, Martin; Svedlund, Jan-Olov; Johansson, Helena

    2005-10-01

    currents were responsible for significant erosion of the bed of the ancient sea. Together with sliding, this erosion resulted in extensive redistribution of sediments and in a substantial levelling of the terrain. The discovery of apparently freshly fractured bedrock within the candidate area at Forsmark raised the question of the origin and significance of the features. The spatial and temporal relationships between this fracturing, still more intensely disrupted bedrock exposures and an extreme abundance of glacially transported boulders in the vicinities suggest that a phase of greatly intensified fracturing and quarrying occurred during a late stage of deglaciation. Field evidence clearly indicates that in parts of the investigation area the surficial bedrock, previously protruding bedrock knobs included, were disrupted and transformed into sheets of boulders

  9. Forsmark site investigation. Searching for evidence of late- or postglacial faulting in the Forsmark region. Results from 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Lagerbaeck, Robert; Sundh, Martin; Svedlund, Jan-Olov; Johansson, Helena [Geological Survey of Sweden, Uppsala (Sweden)

    2005-10-15

    that strong currents were responsible for significant erosion of the bed of the ancient sea. Together with sliding, this erosion resulted in extensive redistribution of sediments and in a substantial levelling of the terrain. The discovery of apparently freshly fractured bedrock within the candidate area at Forsmark raised the question of the origin and significance of the features. The spatial and temporal relationships between this fracturing, still more intensely disrupted bedrock exposures and an extreme abundance of glacially transported boulders in the vicinities suggest that a phase of greatly intensified fracturing and quarrying occurred during a late stage of deglaciation. Field evidence clearly indicates that in parts of the investigation area the surficial bedrock, previously protruding bedrock knobs included, were disrupted and transformed into sheets of boulders.

  10. Bedrock geology and mineral resources of the Knoxville 1° x 2° quadrangle, Tennessee, North Carolina, and South Carolina

    Science.gov (United States)

    Robinson,, Gilpin R.; Lesure, Frank G.; Marlowe, J. I.; Foley, Nora K.; Clark, S.H.

    2004-01-01

    The Knoxville 1°x 2° quadrangle spans the Southern Blue Ridge physiographic province at its widest point from eastern Tennessee across western North Carolina to the northwest corner of South Carolina. The quadrangle also contains small parts of the Valley and Ridge province in Tennessee and the Piedmont province in North and South Carolina. Bedrock in the Valley and Ridge consists of unmetamorphosed, folded and thrust-faulted Paleozoic miogeoclinal sedimentary rocks ranging in age from Cambrian to Mississippian. The Blue Ridge is a complex of stacked thrust sheets divided into three parts: (1) a west flank underlain by rocks of the Late Proterozoic and Early Cambrian Chilhowee Group and slightly metamorphosed Late Proterozoic Ocoee Supergroup west of the Greenbrier fault; (2) a central part containing crystalline basement of Middle Proterozoic age (Grenville), Ocoee Supergroup rocks east of the Greenbrier fault, and rocks of the Murphy belt; and (3) an east flank containing the Helen, Tallulah Falls, and Richard Russell thrust sheets and the amphibolitic basement complex. All of the east flank thrust sheets contain polydeformed and metamorphosed sedimentary and igneous rocks of mostly Proterozoic age. The Blue Ridge is separated by the Brevard fault zone from a large area of rocks of the Inner Piedmont to the east, which contains the Six Mile thrust sheet and the ChaugaWalhalla thrust complex. All of these rocks are also polydeformed and metamorphosed sedimentary and igneous rocks. The Inner Piedmont rocks in this area occupy both the Piedmont and part of the Blue Ridge physiographic provinces.

  11. Acceptance-criteria for the bedrock for deep geologic disposal of spent nuclear fuel. Proceedings from a seminar at Gothenburg University; Acceptanskriterier foer berggrunden vid djup geologisk slutfoervaring av anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The seminar was directed to Nordic participants, and discussed disposal in the Nordic crystalline bedrock. Criteria for the bedrock should include: It should give durable mechanical protection for the engineered barriers; give a stable and favorable chemical environment for these barriers; have a low turnover of ground water in the near field; be easy to characterize; give favorable recipient-conditions; not have valuable minerals in workable quantities. These general criteria raise several questions coupled to the safety analysis: e.g. the need for geological, hydrological and geochemical parameters. Which data are missing, which are most difficult to find? What should the site characterization program look like to focus on factors that are of the highest importance according to the safety analysis. The demands on the conditions at a site need to be translated into quantitative criteria, which should be expressed as values that can be measured at the site or deduced from such measurements. These questions were discussed at the seminar, and 21 contributions from Finnish, Norwegian and Swedish participants are reported in these proceedings under the chapters: Coupling to the safety analysis; Methodology and criteria for site selection in a regional geoscientific perspective; Rock as a building material - prognosis and result; Geoscientific criteria for the bedrock at the repository - Mechanical protection; Geoscientific criteria for the bedrock at the repository - Low ground water turnover, chemically favorable and stable environment in the near field; Geoscientific criteria for the bedrock at the repository - Demands on the bedrock concerning the migration of radionuclides.

  12. Predicting multi-scale relationships between geomorphology and bedrock geology of the rocky intertidal in Central and Northern California

    Science.gov (United States)

    Wheeler, A.; Aiello, I. W.

    2014-12-01

    Substratum geology is fundamental in shaping rocky shore morphology. Specific lithologies have various responses to wave action, tectonic features (e.g. fractures, faults) and sedimentary structures (e.g. bedding), creating distinctive weathering profiles. Along with local oceanography and climate forcing, different rock substrata create coastal morphologies that can vary distinctly between scales, ranging from mm to km. Despite the complexity of the system, qualitative observations show coastal areas with similar rock types share similar geomorphologies. Thus, a statistic relationship between geomorphology (expressed for instance by surface parameter rugosity) and geology can be envisaged. There are multiple benefits of finding such a relationship, as rocky intertidal geomorphology can be an important determinant in which organisms can settle, grow, and survive in near shore communities: allowing the prediction of geomorphologic parameters determining coastal ecology solely based on substratum geology, a crucial aspect in guiding the selection of marine protected areas. This study presents preliminary results of multi-scale geospatial surveys (cm to tens of meters) of rocky intertidal outcrops from Central to Northern California using a Terrestrial Laser Scanner. The outcrops investigated are representative of the most common igneous and sedimentary rocks in California (granitoids, conglomerates, sandstones, mudstones) and metamorphic units. The statistical analysis of the survey data support the hypothesis that surface properties can change significantly with changing scale, each rock type having distinct surface characteristics which are similar to comparable lithologies exposed at different locations. These scale dependent variations are controlled by different lithologic and structural characteristics of the outcrop in question. Our data also suggests lithologic variability within a rock unit could be a very significant factor in controlling changes in

  13. A coupled regolith-lake development model applied to the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars; Stroemgren, Maarten (Umeaa Univ., Umeaa (Sweden))

    2010-11-15

    The Quaternary geology at the Forsmark site has been characterized using both a map of Quaternary deposits and a regolith depth model (RDM) that show the stratigraphy and thickness of different deposits. Regolith refers to all the unconsolidated deposits overlying the bedrock. The surface geology and regolith depth are important parameters for hydrogeological and geochemical modelling and for the overall understanding of the area. The safety assessment analysis should focus on processes involved during a period of 120,000 years, which includes a full glacial cycle; however, the investigations within the site description model do not cover the temporal change of the regolith, a limitation that does not fulfil the requirements for the safety assessment. To this end, this study constructs a model that can predict the surface geology, stratigraphy, and thickness of different strata at any time during a glacial cycle and applies this model to the Forsmark site. The Weichselian ice sheet covered the study area until around 9500 BC. The deglaciation revealed a marine landscape with bedrock, till and glacial clay. For the safety assessment, the most important unconsolidated strata are clay or silt: these small grains can bind nuclear elements more easily than coarser sediment particles. Thick layers of clay can be found where post-glacial clay settled on top of glacial clay, especially where the middle-aged erosion of postglacial clay is missing and where there is an uninterrupted sequence of accumulation of finegrained particles. Such areas could be found in deep marine basins that later become lakes when raised into a supra-marine position. The coupled regolith-lake development model (RLDM) predicts the course of events described above during an interglacial, especially the dynamics of the clay and silt particles. The RLDM is divided into two modules: a marine module that predicts the sediment dynamics caused by wind waves and a lake module that predicts the lake infill

  14. Hydrogeochemical evaluation of the Forsmark site, model version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [GeoPoint AB, Sollentuna (Sweden); Gimeno, Maria; Auque, Luis; Gomez, Javier [Univ. of Zaragoza (Spain). Dept. of Earth Sciences; Smellie, John [Conterra AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Gurban, Ioana [3D-Terra, Montreal (Canada)

    2004-01-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Simpevarp, on the eastern coast of Sweden to determine their geological, geochemical and hydrogeological characteristics. Present work completed has resulted in model version 1.1 which represents the first evaluation of the available Forsmark groundwater analytical data collected up to May 1, 2003 (i.e. the first 'data freeze'). The HAG group had access to a total of 456 water samples collected mostly from the surface and sub-surface environment (e.g. soil pipes in the overburden, streams and lakes); only a few samples were collected from drilled boreholes. The deepest samples reflected depths down to 200 m. Furthermore, most of the waters sampled (74%) lacked crucial analytical information that restricted the evaluation. Consequently, model version 1.1 focussed on the processes taking place in the uppermost part of the bedrock rather than at repository levels. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the flat topography and closeness to the Baltic Sea resulting in relative small hydrogeological driving forces which can preserve old water types from being flushed out, b) the changes in hydrogeology related to glaciation/deglaciation and land uplift, c) repeated marine/lake water regressions/transgressions, and d) organic or inorganic alteration of the groundwater caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees modern or ancient water/rock interactions and mixing processes. Based on the general geochemical character and the apparent age two major water types occur in Forsmark: fresh-meteoric waters with a bicarbonate imprint and low residence times (tritium values above detection limit), and brackish-marine waters with Cl contents up to 6,000 mg/L and longer residence times (tritium

  15. Bedrock assemblages of the Bering Strait region: Implications for offshore metal sources in the marine environment: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    Science.gov (United States)

    Hudson, Travis L.; Saltus, Richard W.

    2000-01-01

    The Bering Strait region is important habitat for Pacific walrus (Odobenus rosmarus divergens). Elevated metal levels in tissues of some walrus have raised concerns about the sources of these metals. This study synthesizes and integrates onshore geology, regional gravity and magnetic data, and information about mineral deposits and the natural processes that weather, erode, and disperse metals in the Bering Strait region. In this region (Seward Peninsula, St. Lawrence Island, Chukotsk Peninsula, and intervening areas of the Bering Sea shelf), six bedrock assemblages can be defined and extended from onshore to offshore areas. These assemblages include (1) Paleozoic sedimentary and low-grade metasedimentary rocks, (2) upper Paleozoic to Triassic sedimentary and related mafic igneous rocks, (3) Mesozoic high-pressure, low-temperature metamorphic rocks, (4) Cretaceous amphibolite-facies metamorphic rocks, (5) Cretaceous volcanic and related intrusive rocks, and (6) Tertiary sedimentary and volcanic rocks. Cretaceous plutonic rocks are widely scattered and locally intrude all of the pre-Tertiary bedrock assemblages. The distribution and thickness of Tertiary sedimentary rocks can be approximated in offshore areas using satellite gravity data. The resulting new map shows that about 40 percent of the offshore Bering Strait region may have bedrock at or near the sea floor. Some mineral deposits and rock units with high background metal contents are associated with specific bedrock assemblages whereas other mineral deposits are more regionally distributed. The mineral deposits of the region are mostly types that contain Cu, Pb, Zn, Ag, Mo, Sn, or Au (or certain combinations of these metals) and elevated concentrations of associated elements, such as As, Bi, Be, B, Sb, and F. The mineral deposits have been physically and chemically weathered and eroded by both subaerial and marine processes. Marine processes have been particularly important as the region has experienced

  16. Environmental impacts of oil production on soil, bedrock, and vegetation at the U.S. Geological Survey Osage-Skiatook Petroleum Environmental Research site A, Osage County, Oklahoma

    Science.gov (United States)

    Otton, J.K.; Zielinski, R.A.; Smith, B.D.; Abbott, M.M.; Keeland, B.D.

    2005-01-01

    The U.S. Geological Survey is investigating the impacts of oil and gas production on soils, groundwater, surface water, and ecosystems in the United States. Two sites in northeastern Oklahoma (sites A and B) are presently being investigated under the Osage-Skiatook Petroleum Environmental Research project. Oil wells on the lease surrounding site A in Osage County, Oklahoma, produced about 100,000 bbl of oil between 1913 ard 1981. Prominent production features on the 1.5-ha (3.7-ac) site A include a tank battery, an oil-filled trench, pipelines, storage pits for both produced water and oil, and an old power unit. Site activities and historic releases have left open areas in the local oak forest adjacent to these features and a deeply eroded salt scar downslope from the pits that extends to nearby Skiatook Lake. The site is underlain by surficial sediments comprised of very fine-grained eolian sand and colluvium as much as 1.4 m (4.6 ft) thick, which, in turn, overlie flat-lying, fractured bedrock comprised of sandstone, clayey sandstone, mudstone, and shale. A geophysical survey of ground conductance and concentration measurements of aqueous extracts (1:1 by weight) of core samples taken in the salt scar and adjacent areas indicate that unusual concentrations of NaCl-rich salt are present at depths to at least 8 m (26 ft) in the bedrock; however, little salt occurs in the eolian sand. Historic aerial photographs, anecdotal reports from oil-lease operators, and tree-ring records indicate that the surrounding oak forest was largely established after 1935 and thus postdates the majority of surface damage at the site. Blackjack oaks adjacent to the salt scar have anomalously elevated chloride (>400 ppm) in their leaves and record the presence of NaCl-rich salt or salty water in the shallow subsurface. The geophysical measurements also indicate moderately elevated conductance beneath the oak forest adjoining the salt scar. Copyright ?? 2005. The American Association of

  17. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    International Nuclear Information System (INIS)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2007-12-01

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  18. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))

    2007-09-15

    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  19. Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))

    2008-05-15

    Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction

  20. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    International Nuclear Information System (INIS)

    Johansson, Per-Olof

    2008-12-01

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to the bedrock

  1. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  2. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  3. Quantifying in situ stress magnitudes and orientations for Forsmark. Forsmark stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C. Derek (Univ. of Alberta (Canada))

    2007-11-15

    Stephansson et al. concluded that in the Fennoscandia shield: (1) there is a large horizontal stress component in the uppermost 1,000 m of bedrock, and (2) the maximum and minimum horizontal stresses exceed the vertical stress assuming the vertical stress is estimated from the weight of the overburden. Several stress campaigns involving both overcoring and hydraulic fracturing, including the hydraulic testing of pre-existing fractures (HTPF), have been carried out at Forsmark to establish the in situ stress state. The results from the initial campaigns were summarised by Sjoeberg et al. which formed the bases for the stresses provided in the Site Descriptive Model version 1.2. Since then additional stress measurement campaigns have been completed. The results from these stress measurement campaigns support the conclusions from Stephansson et al. In addition to these in situ stress measurements the following additional studies were undertaken to aid in assessing the stress state at Forsmark. 1. A detailed televiewer survey of approximately 6,900 m of borehole walls to depths of 1,000 m was carried out to assess borehole wall damage, i.e. borehole breakouts. 2. Evaluation of nonlinear strains in laboratory samples to depths of approximately 800 m to assess if stress magnitudes were sufficient to create stress-induced microcracking. 3. Assessment of the magnitudes required to cause core disking and survey of core disking observed at Forsmark. The magnitudes and orientations from the stress measurement campaigns were analysed to establish the most likely stress magnitudes and orientations for Design Step D2 within the Target Area of the Complete Site Investigations. The maximum and minimum horizontal stress components are essentially the same as the maximum and intermediate principal stresses, sigma1 and sigma2, respectively. The minimum principal stress (sigma3) is synonymous with the vertical stress. The most likely range in values to be used in the design is also

  4. Rock Mechanics Forsmark. Site descriptive modelling Forsmark stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune; Fredriksson, Anders (Golder Associates AB (SE)); Roeshoff, Kennert; Karlsson, Johan (Berg Bygg Konsult AB (SE)); Hakami, Hossein (Itasca Geomekanik AB (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, Forsmark and Laxemar/Simpevarp, with the objective of siting a geological repository for spent nuclear fuel. The characterisation of a site is an integrated work carried out by several disciplines including geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry and surface systems. This report presents the rock mechanics model of the Forsmark site up to stage 2.2. The scope of work has included compilation and analysis of primary data of intact rock and fractures, estimation of the rock mass mechanical properties and estimation of the in situ state of stress at the Forsmark site. The laboratory results on intact rock and fractures in the target volume demonstrate a good quality rock mass that is strong, stiff and relatively homogeneous. The homogeneity is also supported by the lithological and the hydrogeological models. The properties of the rock mass have been initially estimated by two separate modelling approaches, one empirical and one theoretical. An overall final estimate of the rock mass properties were achieved by integrating the results from the two models via a process termed 'Harmonization'. Both the tensile tests, carried out perpendicular and parallel to the foliation, and the theoretical analyses of the rock mass properties in directions parallel and perpendicular to the major principal stress, result in parameter values almost independent of direction. This indicates that the rock mass in the target volume is isotropic. The rock mass quality in the target volume appears to be of high and uniform quality. Those portions with reduced rock mass quality that do exist are mainly related to sections with increased fracture frequency. Such sections are associated with deformation zones according to the geological description. The results of adjacent rock domains and fracture domains of the target

  5. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    International Nuclear Information System (INIS)

    Brunberg, A.K.; Blomqvist, P.

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  6. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Brunberg, A.K.; Blomqvist, P. [Uppsala Univ. (Sweden). Dept. of Limnology

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  7. Groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Palmqvist, K.

    1990-06-01

    The aim of this project was to make detailed descriptions of the geological conditions and the different kinds of leakage in some tunnels in Sweden, to be able to describe the presence of ground water in crystalline bedrock. The studies were carried out in TBM tunnels as well as in conventionally drilled and blasted tunnels. Thanks to this, it has been possible to compare the pattern and appearance of ground water leakage in TBM tunnels and in blasted tunnels. On the basis of some experiments in a TBM tunnel, it has been confirmed that a detailed mapping of leakage gives a good picture of the flow paths and their aquiferous qualities in the bedrock. The same picture is found to apply even in cautious blasted tunnels. It is shown that the ground water flow paths in crystalline bedrock are usually restricted to small channels along only small parts of the fractures. This is also true for fracture zones. It has also been found that the number of flow paths generally increases with the degree of tectonisation, up to a given point. With further tectonisation the bedrock is more or less crushed which, along with mineral alteration, leaves only a little space left for the formation of water channels. The largest individual flow paths are usually found in fracture zones. The total amount of ground water leakage per m tunnel is also greater in fracture zones than in the bedrock between the fracture zones. In mapping visible leakage, five classes have been distinguished according to size. Where possible, the individual leak inflow has been measured during the mapping process. The quantification of the leakage classes made in different tunnels are compared, and some quantification standards suggested. A comparison of leakage in different rock types, tectonic zones, fractures etc is also presented. (author)

  8. Bedrock geology and hydrostratigraphy of the Edwards and Trinity aquifers within the Driftwood and Wimberley 7.5-minute quadrangles, Hays and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2017-11-16

    The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area’s water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units of the aquifers are needed. This report presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.Hydrostratigraphically, the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. In the study area, the Edwards aquifer is composed of the Georgetown Formation and the rocks forming the Edwards Group. The Trinity aquifer is composed of the rocks forming the Trinity Group. The Edwards and Trinity aquifers are karstic with high secondary porosity along bedding and fractures. The Del Rio Clay is a confining unit above the Edwards aquifer and does not supply appreciable amounts of water to wells in the study area.The hydrologic connection between the Edwards and Trinity aquifers and the various hydrostratigraphic units is complex because the aquifer system is a combination of the original Cretaceous depositional environment, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from Miocene faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas which allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that

  9. Forsmark site investigation. Programme for further investigations of geosphere and biosphere

    International Nuclear Information System (INIS)

    2005-01-01

    geological and ecological conditions in the area has largely been completed. In order to investigate the bedrock at depth, five deep (1,000 m) and two shallower cored boreholes have been drilled and documented. Drilling of a sixth deep cored borehole is under way. 19 percussion boreholes have been drilled, partly to supply core drilling with flushing water and partly to investigate the bedrock. A comprehensive, preliminary site description (version 1.1) has been published. The work of compiling all information from the initial site investigation is under way and will result in version 1.2 of the site description. The consultation process for a possible deep repository in Forsmark has been established in accordance with the provisions of the Environmental Code. An active information and communication programme has been established for ongoing dialogue with nearby residents, the public, Oesthammar Municipality, neighbouring municipalities and other local stakeholders

  10. Forsmark site investigation. Programme for further investigations of geosphere and biosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-01

    of the geological and ecological conditions in the area has largely been completed. In order to investigate the bedrock at depth, five deep (1,000 m) and two shallower cored boreholes have been drilled and documented. Drilling of a sixth deep cored borehole is under way. 19 percussion boreholes have been drilled, partly to supply core drilling with flushing water and partly to investigate the bedrock. A comprehensive, preliminary site description (version 1.1) has been published. The work of compiling all information from the initial site investigation is under way and will result in version 1.2 of the site description. The consultation process for a possible deep repository in Forsmark has been established in accordance with the provisions of the Environmental Code. An active information and communication programme has been established for ongoing dialogue with nearby residents, the public, Oesthammar Municipality, neighbouring municipalities and other local stakeholders.

  11. Monitoring Forsmark. Moose age composition, reproduction and antler development in Forsmark; Monitoring Forsmark. Aelgstammens aalderssammansaettning reproduktion och hornutveckling i Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Cederlund, Goeran; Broman, Emil (Svensk Naturfoervaltning AB (Sweden))

    2011-05-15

    The moose (Alces alces) is an important game species in Forsmark, as well as in Sweden in general. Hunting on moose is subject to strict local regulations and restrictions within a management program. Such restrictions will have considerable effects on demography. This has led to a moose population in Forsmark with biased sex ratio with fewer adult males than females and a generally low average age. High hunting pressure on males has caused a low survival rate and the chance to survive more than five years is just a few percent. Restrictions in hunting pressure on females have caused a generally higher survival rate and a higher average age compared to males. Sex differences in body mass are normal compared to other populations in southern Sweden. Mean body mass of culled calves is an important measure of quality of the population, since it reflects the available food resources in the management area. Body mass among calves in Forsmark is generally low, indicating a deteriorated food resource due to either ambient population density and/or hampered food production in the forest. The average reproduction rate is normal compared to other populations in this part of Sweden. However, one year old females (yearlings) have a fairly low production of eggs per female (ovulation rate). As the yearlings constitute a considerable part of the population in Forsmark, their lowered ovulation rate will affect the rate of recruitment of calves to the local population. The moose population seems to have been subject to considerable variation in density during the last decade, which is probably a joint effect of changes in demography (hunting), changes in food resources due to forestry management and by food competition from other browsers in the area. Local managers believe that the population has reached such a low level (although not verified by surveys) that the number of moose has to be increased. It is vital to stress the importance of keeping up collection of data from the

  12. Forsmark site investigation. Detailed ground magnetic survey and lineament interpretation in the Forsmark area, 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, Hans; Thunehed, Hans; Pitkaenen, Timo; Keisu, Mikael (GeoVista AB, Luleaa (SE))

    2007-12-15

    The report presents detailed ground magnetic measurements carried out on an 11.1 km2 area in the Forsmark site investigation area. The main objective of this activity is to determine a detailed ground magnetic representation of the bedrock. The results from previous surveys were encouraging and have led to a broad geophysical programme for investigation of lineaments at Forsmark. This report comprises the results from the second and final phase of the extended survey programme and a compilation and summary of all phases in the programme. On ground and on lake ice, a grid with parallel lines was staked. Measurements of the magnetic total field were carried out along profiles, perpendicular to the staked lines, with a profile spacing of 10 m and a station spacing of 5 m. Measurements on the ice-covered sea bays were carried out by a two man crew. One crew member walked along the survey lines, carrying a RTK-GPS guiding the other crew member who measured the magnetic total field. No seaborne survey was carried out in the final phase. Previously, using a high accuracy RTK-GPS unit for boat navigation gave a seaborne survey grid of on average 10 m line spacing and 2-3 m station spacing. In total 427,238 magnetic survey stations have been measured and an area of 4.7 km2 has been surveyed from boat. The magnetic pattern in the survey area can be divided into six main areas with different magnetic character. Along the southwest margin of the survey area the magnetic pattern is intensely banded with rapidly changing low and highly magnetic bands striking southeast-northwest, which to the northeast changes to a gentler, banded pattern of low to moderate magnetic intensity. To the northeast, at the SFR office and along the coastline to the southeast, the pattern is again intensely banded with, southeast-northwest trending, rapidly changing low and highly magnetic bands. These two banded structures probably forms fold limbs of a common fold with a northwest oriented fold axis

  13. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2007-12-15

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  14. Monitoring Forsmark. Meteorological monitoring at Forsmark, January-December 2010

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cari; Jones, Joergen (Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden))

    2011-01-15

    In the Forsmark area, SKB's meteorological monitoring started in 2003 at the sites Storskaeret and Hoegmasten. However, since July 1, 2007 measurements are only performed at Hoegmasten. Measured and calculated parameters at Hoegmasten are precipitation and corrected precipitation, air temperature, barometric pressure, wind speed and direction, air humidity, global radiation and potential evapotranspiration. The Swedish Meteorological and Hydrological Institute, SMHI, has been responsible for planning and design, as well as for the operation of the stations used for meteorological monitoring. In general, the quality of the meteorological measurements during the period concerned, starting January 1, 2010, and ending December 31, 2010, has shown to be good

  15. Monitoring Forsmark-Bird monitoring in Forsmark 2012

    International Nuclear Information System (INIS)

    Green, Martin

    2013-03-01

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds directive) breeding birds in Forsmark 2002 - 2012. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2012 in the same way as in earlier years. The results from 2012 generally follow patterns recorded in earlier years. 2012 was in general a better bird year compared to 2010 and 2011 and most species (82%) showed increasing or stable numbers from 2011 to 2012. Only two species (18%) decreased in numbers between the last two years. All in all, six species (55 %, black-throated diver, honey buzzard, black grouse, ural owl, wryneck and red-backed shrike) show no significant trends since the start of the bird monitoring (2002/2003/2004 depending on species). During this period three species (27 %, white-tailed eagle, osprey and lesser spotted woodpecker) have increased in numbers while just two (18 %, capercaillie and hazelhen) have decreased. A new pair of black-throated divers was discovered in 2012 and seven resident pairs were registered. Breeding success was very good, the second best during the study period. Population development follows the national pattern, but breeding success seems to be better in Forsmark than in the country as a whole. Honey buzzards and ospreys occurred in good numbers, and breeding success for ospreys was good. No signs of successful breedings of honey buzzards were recorded, but this may mean little as no detailed monitoring of breeding success is made for this species. The white-tailed eagles had their best breeding year since the start of the SKB bird monitoring, meaning that during the last two years local breeding success has been back at the level recorded before the site investigations started. The three grouse species (black grouse, capercaillie and hazelhen) again showed somewhat varying patterns between the last two years as well as in the long run. The black grouse increased

  16. Uncertainty aspects of the digital elevation model for the Forsmark area

    International Nuclear Information System (INIS)

    Stroemgren, Maarten; Brydsten, Lars

    2009-10-01

    for the 50-metre DEM. However, the statistical analysis has revealed errors larger than 10 m within the areas of these data sources. In the sea area, the highest quality is found within the extensions of the measurements from shallow bays, the base map, and the detailed area of the measurements from the Geological Survey of Sweden (SGU). In the regional area of the measurements from the Geological Survey of Sweden, the uncertainty is much larger and errors of almost 10 m have been calculated. In the extension of the digital nautical chart/nautical chart, the uncertainty is very high with a mean error of almost 5 m, a standard deviation of a little more than 3 m, and a maximum error of more than 35 m. No error calculation was done in the lakes in the Forsmark area. However, comparing the maximum distance between points in the lakes with measurements from the sea area would suggest a quality at least as good as in the shallow bays. No error calculation was done for the inlet channel to the nuclear power plant and nor for the small areas where false depth values are placed

  17. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  18. Decommissioning study of Forsmark NPP

    International Nuclear Information System (INIS)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  19. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  20. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  1. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  2. Bedrock cores from 89° North: Implications for the geologic framework and Neogene paleoceanography of Lomonosov Ridge and a tie to the Barents shelf

    Science.gov (United States)

    Grantz, Arthur; Pease, Victoria L.; Willard, Debra A.; Phillips, R.L.; Clark, David L.

    2001-01-01

    Two piston cores from the Eurasian flank of Lomonosov Ridge near lat 88.9°N, long 140°E provide the first samples of bedrock from this high-standing trans-Arctic ridge. Core 94-PC27 sampled nonmarine siltstone similar in facies and age to uppermost Triassic to lower Lower Jurassic and mid– Lower Cretaceous beds in the 4 to > 5 km Mesozoic section on Franz Josef Land, on the outer Barents shelf. A ca. 250 Ma peak in the cumulative frequency curve of detrital zircons from the siltstone, dated by U- Th-Pb analysis, suggests a source in the post-tectonic syenites of northern Taymyr and nearby islands in the Kara Sea. Textural trends reported in the literature indicate that the Lower Jurassic nonmarine strata of Franz Josef Land coarsen to the southeast; this suggests the existence of a sedimentary system in which detrital zircons could be transported from the northern Taymyr Peninsula to the outer Barents shelf near the position of core 94-PC27 prior to opening of the Eurasia Basin. Correlation of the coaly siltstone in core 94-PC27 with part of the Mesozoic section on Franz Josef Land is compatible with the strong evidence from seafloor magnetic anomalies and bathymetry that Lomonosov Ridge is a continental fragment rifted from the Barents shelf during the Cenozoic. It also suggests that Lomonosov Ridge near the North Pole is underlain by a substantial section of unmetamorphosed Mesozoic marine and nonmarine sedimentary strata. Core 94-PC29 sampled cyclical deposits containing ice-rafted debris (IRD) overlying weakly consolidated laminated olive-black anoxic Neogene siltstone and mudstone with an average total organic carbon (TOC) of 4.1 wt%. The high TOC content of the mudstone indicates that during the Neogene, prior to the introduction of IRD into the Arctic seas about 3.3 Ma (early late Pliocene), the shallow waters of the central Arctic Ocean supported significant primary photosynthetic organic production near the North Pole. These deposits also contain fine

  3. SR-Site - sulphide content in the groundwater at Forsmark

    International Nuclear Information System (INIS)

    Tullborg, E-L; Smellie, J; Nilsson, A-Ch; Gimeno, M J; Auque, LF; Bruchert, V; Molinero, J

    2010-12-01

    the monitoring phase. When both CCC and monitoring values are available from one borehole section two values are used, one representing each of the sampling methods. When time series are measured in the monitoring sections, in most cases the sulphide values are higher in the downhole tubing and in the borehole section compared with groundwater from the surrounding fractures. The routinely carried out removal of five borehole section water volumes prior to monitoring are in most cases inadequate to obtain representative samples from the bedrock fractures, i.e. without elevated sulphide due to contamination from the initial stagnant water from the borehole section. It is, however, assumed that the two groundwater samples from the same water conducting structures, i.e. the sample from the monitoring and the sample from the CCC sampling, the latter usually showing lower sulphide, spans the interval of representative sulphide values in the formation water. For most of the CCC and monitoring sections the last sample in the time series is suggested as representing the 'best possible' value. It is worth noting that the plug flow calculations have proven to be very useful in order to judge the water volumes needed to be pumped at each monitored section before obtaining a sample sufficiently representative of the fracture groundwater. Practically all sulphide concentrations at Forsmark are ≤ 0.013 mmol/L (∼0.4 mg/L). There is, however, a probability that for some deposition location in the repository the surrounding groundwaters may have sulphide concentrations as high as 0.12 mmol/L (∼4 mg/L). In order to estimate canister corrosion rates in the SR-Site during a full glacial cycle, it is recommended that the observed distribution of sulphide in groundwaters at Forsmark during the present temperate conditions should be used. Furthermore, it should be noted that the present sulphide concentrations have been sampled after a recent period of possible intrusion of marine

  4. SR-Site - sulphide content in the groundwater at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Tullborg, E-L (Terralogica (Sweden)); Smellie, J (Conterra (Sweden)); Nilsson, A-Ch (Geosigma (Sweden)); Gimeno, M J; Auque, LF (Univ. of Zaragoza (Spain)); Bruchert, V (Stockholms Universitet (Sweden)); Molinero, J (Amphos21 (Spain))

    2010-12-15

    during the monitoring phase. When both CCC and monitoring values are available from one borehole section two values are used, one representing each of the sampling methods. When time series are measured in the monitoring sections, in most cases the sulphide values are higher in the downhole tubing and in the borehole section compared with groundwater from the surrounding fractures. The routinely carried out removal of five borehole section water volumes prior to monitoring are in most cases inadequate to obtain representative samples from the bedrock fractures, i.e. without elevated sulphide due to contamination from the initial stagnant water from the borehole section. It is, however, assumed that the two groundwater samples from the same water conducting structures, i.e. the sample from the monitoring and the sample from the CCC sampling, the latter usually showing lower sulphide, spans the interval of representative sulphide values in the formation water. For most of the CCC and monitoring sections the last sample in the time series is suggested as representing the 'best possible' value. It is worth noting that the plug flow calculations have proven to be very useful in order to judge the water volumes needed to be pumped at each monitored section before obtaining a sample sufficiently representative of the fracture groundwater. Practically all sulphide concentrations at Forsmark are <= 0.013 mmol/L (approx0.4 mg/L). There is, however, a probability that for some deposition location in the repository the surrounding groundwaters may have sulphide concentrations as high as 0.12 mmol/L (approx4 mg/L). In order to estimate canister corrosion rates in the SR-Site during a full glacial cycle, it is recommended that the observed distribution of sulphide in groundwaters at Forsmark during the present temperate conditions should be used. Furthermore, it should be noted that the present sulphide concentrations have been sampled after a recent period of possible

  5. Bedrock and structural geologic maps of eastern Candor Sulci, western Ceti Mensa, and southeastern Ceti Mensa, Candor Chasma, Valles Marineris region of Mars

    Science.gov (United States)

    Okubo, Chris H.; Gaither, Tenielle A.

    2017-05-12

    This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS projects and databases associated with each map are included online as supplemental data.

  6. Man-machine communication at Forsmark 3

    International Nuclear Information System (INIS)

    Hultquist, Goeran; Norberg, Soeren

    1984-01-01

    The design of Forsmark 3 began in 1976 and the control room layout and equipment were discussed right from the start. Susequent evolution and events in other nuclear power plants have, however, radically changed the direction of the development of the man-machine functions. (author)

  7. Mapping Bedrock Topography using Electromagnetic Profiling ...

    African Journals Online (AJOL)

    Electromagnetic profiling method was used in Echara Unuhu, within the Abakaliki Urban, to map the bedrock topography which also aids us to determine the position of the deepest fractured shale where a productive borehole will be constructed The area under study is within the Abakaliki Shales Geologic Formation.

  8. Discrete-Feature Model Implementation of SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Geier, Joel

    2010-03-01

    A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as

  9. Groundwater flow and hydraulic gradients in fractures and fracture zones at Forsmark and Oskarshamn

    International Nuclear Information System (INIS)

    Nordqvist, Rune; Gustafsson, Erik; Andersson, Peter; Thur, Pernilla

    2008-10-01

    Groundwater flow measurements with the point dilution method have been carried out within various SKB field investigations in Swedish bedrock since the beginning of the 1980's. Knowledge of groundwater flow under natural conditions is an important part of the overall understanding of hydrogeological and hydrochemical conditions at investigated sites and for the function of engineered barriers. Flow measurements have also been made during pumping tests to provide indications of hydraulic connections between various bedrock features. Another frequent use of groundwater flow data from dilution measurements is for identifying suitable injection sections for cross-hole tracer experiments. This report presents an overview of groundwater flow measurements made in boreholes during various SKB investigation programmes. The main purpose is to provide a summary of dilution measurements intended to characterise natural flow conditions within the SKB site investigations at Forsmark and Oskarshamn, and to analyse data on a site basis. In addition, general overviews of earlier investigations at Finnsjoen, Aevroe and Aespoe are presented as well as more recent measurements in connection with cross-hole experiments in Forsmark and Oskarshamn. The measured groundwater flow rates in Forsmark and Oskarshamn are approximately log-normally distributed with a median of about 10 -8 m 3 /s. Flow rates show no systematic depth-dependence, high or low flow rates may occur at any depth. The only exception to this is that there appears to be a tendency for high flow rates in shallow borehole sections at Forsmark. Another main variable that is analysed is the hydraulic gradient, derived from borehole flow rates, a transmissivity estimate and assumptions about the flow convergence due to the borehole. This data shows very large variation from extremely low gradients to in several cases seemingly unrealistically high gradients. Most of the calculated gradients are within the interval of 0

  10. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  11. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.)

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  12. Market led: Forsmark looks to 2000

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The Forsmark nuclear power plant in Sweden includes three BWR reactors totalling 3200 MWe. From a design level of 70% the average capability factor has been increased to 90%. This has been achieved by a market-orientated approach with efficient outages and a total production cost identified with each unit in order to show how each stands in relation to the market price level and to outside competition. Forsmark's performance, as indicated by capacity factors, refuelling outage length and electricity production costs is better than most. Strategic planning is important and a refurbishment programme up to 2000 is planned to renew the electricity generators, replace the process computers and upgrade the preheater systems. (UK)

  13. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  14. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2005-12-01

    fractures. It comprises, among other things, a fracture network generator, algorithms for the computation of finite-volume (block-size) properties and a multi-rate diffusion model. It is noted that some of the components of DarcyTools are not used in the work reported here as they are still under development or subjected to testing and verification. The main observations of the hydrogeological DFN and block-scale analyses with DarcyTools are as follows: There were several difficulties in applying the global geological DFN to the hydraulic tests. The main difficulty stemmed from significant variations in fracture intensities and the proportions of sets between boreholes making it difficult to use an averaged, global, geological DFN model when matching hydraulic tests in a specific borehole. Due to the spatial variability of the fracture properties and the few flow anomalies a number of bedrock volumes lateral flow jointly with the ConnectFlow Team. For the work presented in this report the following volumes were defined: Volume A above the gently dipping deformation zone ZFMNE00A2 (A2) below c 100 m depth. Volume B below A2 between 220-360 m depth. Volume C below A2 between 100-220 m depth. Volume D below A2 below c 360-400 m depth (target volume). A major observation from the hydrogeological DFN analysis of Volumes A-D is that it is possible to come to different results concerning the connected fracture area per unit volume when calibrating against the measured borehole fracture intensity depending on the value used for the minimum fracture size of the power-law size distribution. In conclusion, the reference fracture size is a key parameter of considerable importance for the outcome of the approach used. A direct correlation between transmissivity and length appears to be a workable hypothesis but the simulations conducted suggest a considerable variability between different volumes as well as between realisations within a fixed volume due to the spatial variations in

  15. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    fractures. It comprises, among other things, a fracture network generator, algorithms for the computation of finite-volume (block-size) properties and a multi-rate diffusion model. It is noted that some of the components of DarcyTools are not used in the work reported here as they are still under development or subjected to testing and verification. The main observations of the hydrogeological DFN and block-scale analyses with DarcyTools are as follows: There were several difficulties in applying the global geological DFN to the hydraulic tests. The main difficulty stemmed from significant variations in fracture intensities and the proportions of sets between boreholes making it difficult to use an averaged, global, geological DFN model when matching hydraulic tests in a specific borehole. Due to the spatial variability of the fracture properties and the few flow anomalies a number of bedrock volumes lateral flow jointly with the ConnectFlow Team. For the work presented in this report the following volumes were defined: Volume A above the gently dipping deformation zone ZFMNE00A2 (A2) below c 100 m depth. Volume B below A2 between 220-360 m depth. Volume C below A2 between 100-220 m depth. Volume D below A2 below c 360-400 m depth (target volume). A major observation from the hydrogeological DFN analysis of Volumes A-D is that it is possible to come to different results concerning the connected fracture area per unit volume when calibrating against the measured borehole fracture intensity depending on the value used for the minimum fracture size of the power-law size distribution. In conclusion, the reference fracture size is a key parameter of considerable importance for the outcome of the approach used. A direct correlation between transmissivity and length appears to be a workable hypothesis but the simulations conducted suggest a considerable variability between different volumes as well as between realisations within a fixed volume due to the spatial variations in

  16. Ogallala Bedrock Data Enhancement

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set provides an enhanced estimate of the bedrock elevation of the Ogallala Aquifer in Kansas based on lithologic logs from a variety of sources. The data...

  17. Iowa Bedrock Topography

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The Map of the Elevation of the Bedrock Surface in Iowa was compiled using all available data, principally information from GEOSAM, supplemented with well and boring...

  18. Iowa Bedrock Surface Elevation

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented...

  19. The potential for ore and industrial minerals in the Forsmark area

    International Nuclear Information System (INIS)

    Lindroos, Hardy; Isaksson, Hans; Thunehed, Hans

    2004-03-01

    A survey has been made of existing information concerning the potential for ore and industrial minerals in and near the candidate area for a deep repository in Forsmark. A deep repository for spent nuclear fuel should not be located in a rock type or an area where mineral extraction might be considered in the future, since this would make it impossible to exploit this natural resource. Avoiding such areas reduces the risk that people in the future will come into contact with the deep repository through mineral prospecting or mining activities. The survey has made use of all the geoscientific information that was compiled in the more regional investigations in Oesthammar Municipality in 1996-97. In cooperation with the Geological Survey of Sweden (SGU), a new, more detailed mineral resources map has been prepared. The map shows areas with an ore potential that may be unsuitable or unfavourable for siting of a deep repository. The results of the recently completed geophysical helicopter surveys of the Forsmark area are presented in a special chapter. The judgement of the area's ore potential is in part based on the geophysical evaluation of these measurements. Furthermore, the survey obtained information from ongoing deep drillings from the site investigation in Forsmark. In order to better be able to judge the ore potential, the survey has initiated a geochemical investigation of activated soil samples, plus an ore geology sampling of a section in the deep borehole KFM02A, where a hydrothermally altered zone was detected in 2003.The first results from these samplings are presented in the report, which also discusses prospecting efforts in the area as well as relevant Swedish mining legislation. Some suggestions are made for further ore geology investigations. The mineral resources map shows that there is an elongate northwest-southeast zone south and southwest of the candidate area which has a potential for skarn iron ore, and possibly for copper and zinc, although

  20. The potential for ore and industrial minerals in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, Hardy [MIRAB Mineral Resurser AB, Uppsala (Sweden); Isaksson, Hans; Thunehed, Hans [GeoVista AB, Luleaa (Sweden)

    2004-03-01

    A survey has been made of existing information concerning the potential for ore and industrial minerals in and near the candidate area for a deep repository in Forsmark. A deep repository for spent nuclear fuel should not be located in a rock type or an area where mineral extraction might be considered in the future, since this would make it impossible to exploit this natural resource. Avoiding such areas reduces the risk that people in the future will come into contact with the deep repository through mineral prospecting or mining activities. The survey has made use of all the geoscientific information that was compiled in the more regional investigations in Oesthammar Municipality in 1996-97. In cooperation with the Geological Survey of Sweden (SGU), a new, more detailed mineral resources map has been prepared. The map shows areas with an ore potential that may be unsuitable or unfavourable for siting of a deep repository. The results of the recently completed geophysical helicopter surveys of the Forsmark area are presented in a special chapter. The judgement of the area's ore potential is in part based on the geophysical evaluation of these measurements. Furthermore, the survey obtained information from ongoing deep drillings from the site investigation in Forsmark. In order to better be able to judge the ore potential, the survey has initiated a geochemical investigation of activated soil samples, plus an ore geology sampling of a section in the deep borehole KFM02A, where a hydrothermally altered zone was detected in 2003.The first results from these samplings are presented in the report, which also discusses prospecting efforts in the area as well as relevant Swedish mining legislation. Some suggestions are made for further ore geology investigations. The mineral resources map shows that there is an elongate northwest-southeast zone south and southwest of the candidate area which has a potential for skarn iron ore, and possibly for copper and zinc

  1. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (SE)); Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (SE))

    2007-10-15

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  2. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern; Johansson, Per-Olof

    2007-10-01

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  3. The Forsmark incident 25th July 2006

    International Nuclear Information System (INIS)

    Wikdahl, Carl Erik

    2007-01-01

    An incident occurred at 13.20 on Tuesday 25th July 2006 at Forsmark 1, which was then in operation at full power, 990 MW. The origin of the incident lay in a short circuit in the 400 kV switchyard outside the plant. It resulted in severe voltage fluctuations which, in a complicated manner, spread into several of the electrical systems in the plant. At the time, Forsmark 2 was shut down for refuelling and maintenance. Forsmark 3 was operating at full output, but was not affected by the fault, as it is connected to another switchyard. The voltage fluctuation resulted in Forsmark 1 (F1) being disconnected from the external grid, and the reactor being scrammed. Parts of the battery backed AC internal distribution network were knocked out, and only two of the four diesel driven generators started automatically. After 22 minutes, power was restored manually from the control room, after which the two other diesel units started. Some of the control room equipment had also been partially knocked out, with the result that, initially, the control room operators were unable to obtain a full overview of the situation. The reactor core, however, was adequately cooled throughout the incident, and the reactor pressure vessel was not subjected to any abnormal pressure or temperature loads. What makes the Forsmark incident serious in terms of safety is instead that the defence-in-depth reactor safety systems did not operate satisfactorily. Several safety systems that are intended to operate independently of each other failed to do so as the result of a common external fault. An important principle for reactor safety - that safety systems are designed and intended to minimise the risk of such common cause failures - was not maintained. Nevertheless, the diversity of automatically operating safety systems was sufficient to ensure that the reactor was shut down automatically and independently of the operators, and that sufficient cooling was maintained throughout the duration of the

  4. Flow in bedrock canyons.

    Science.gov (United States)

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  5. Subsidence analysis Forsmark nuclear power plant - unit 1; Saettningsanalys Forsmarks kaernkraftverk - aggregat 1

    Energy Technology Data Exchange (ETDEWEB)

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars (Golder Associates AB (Sweden))

    2010-12-15

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied.

  6. Preliminary site description Forsmark area - version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This report presents the interim version (model version 1.1) of the preliminary Site Descriptive Model for Forsmark. The basis for this interim version is quality-assured, geoscientific and ecological field data from Forsmark that were available in the SKB databases SICADA and GIS at April 30, 2003 as well as version 0 of the Site Descriptive Model. The new data acquired during the initial site investigation phase to the date of data freeze 1.1 constitute the basis for the updating of version 0 to version 1.1. These data originate from surface investigations on the candidate area with its regional environment and from drilling and investigations in boreholes. The surface-based data sets were rather extensive whereas the data sets from boreholes were limited to information from one 1,000 m deep cored borehole (KFM01A) and eight 150 to 200 m deep percussion-drilled boreholes in the Forsmark candidate area. Discipline specific models are developed for a selected regional and local model volume and these are then integrated into a site description. The current methodologies for developing the discipline specific models and the integration of these are documented in methodology reports or strategy reports. In the present work, the guidelines given in those reports were followed to the extent possible with the data and information available at the time for data freeze for model version 1.1. Compared with version 0 there are considerable additional features in the version 1.1, especially in the geological description and in the description of the near surface. The geological models of lithology and deformation zones are based on borehole information and much higher resolution surface data. The existence of highly fractured sub-horizontal zones has been verified and these are now part of the model of the deformation zones. A discrete fracture network (DFN) model has also been developed. The rock mechanics model is based on strength information from SFR and an empirical

  7. Preliminary site description Forsmark area - version 1.1

    International Nuclear Information System (INIS)

    2004-03-01

    This report presents the interim version (model version 1.1) of the preliminary Site Descriptive Model for Forsmark. The basis for this interim version is quality-assured, geoscientific and ecological field data from Forsmark that were available in the SKB databases SICADA and GIS at April 30, 2003 as well as version 0 of the Site Descriptive Model. The new data acquired during the initial site investigation phase to the date of data freeze 1.1 constitute the basis for the updating of version 0 to version 1.1. These data originate from surface investigations on the candidate area with its regional environment and from drilling and investigations in boreholes. The surface-based data sets were rather extensive whereas the data sets from boreholes were limited to information from one 1,000 m deep cored borehole (KFM01A) and eight 150 to 200 m deep percussion-drilled boreholes in the Forsmark candidate area. Discipline specific models are developed for a selected regional and local model volume and these are then integrated into a site description. The current methodologies for developing the discipline specific models and the integration of these are documented in methodology reports or strategy reports. In the present work, the guidelines given in those reports were followed to the extent possible with the data and information available at the time for data freeze for model version 1.1. Compared with version 0 there are considerable additional features in the version 1.1, especially in the geological description and in the description of the near surface. The geological models of lithology and deformation zones are based on borehole information and much higher resolution surface data. The existence of highly fractured sub-horizontal zones has been verified and these are now part of the model of the deformation zones. A discrete fracture network (DFN) model has also been developed. The rock mechanics model is based on strength information from SFR and an empirical

  8. Preliminary site description Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Skagius, Kristina

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. An integrated component in the characterisation work is the development of a site descriptive model that constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere as well as those ongoing natural processes that affect their long-term evolution. The present report documents the site descriptive modelling activities (version 1.2) for the Forsmark area. The overall objectives of the version 1.2 site descriptive modelling are to produce and document an integrated description of the site and its regional environments based on the site-specific data available from the initial site investigations and to give recommendations on continued investigations. The modelling work is based on primary data, i.e. quality-assured, geoscientific and ecological field data available in the SKB databases SICADA and GIS, available July 31, 2004. The work has been conducted by a project group and associated discipline-specific working groups. The members of the project group represent the disciplines of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and surface ecosystems (including overburden, surface hydrogeochemistry and hydrology). In addition, some group members have specific qualifications of importance in this type of project e.g. expertise in RVS (Rock Visualisation System) modelling, GIS-modelling and in statistical data analysis. The overall strategy to achieve a site description is to develop discipline-specific models by interpretation and analyses of the primary data. The different discipline-specific models are then integrated into a site description. Methodologies for developing the discipline-specific models are documented in

  9. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, Kristina (ed.)

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. An integrated component in the characterisation work is the development of a site descriptive model that constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere as well as those ongoing natural processes that affect their long-term evolution. The present report documents the site descriptive modelling activities (version 1.2) for the Forsmark area. The overall objectives of the version 1.2 site descriptive modelling are to produce and document an integrated description of the site and its regional environments based on the site-specific data available from the initial site investigations and to give recommendations on continued investigations. The modelling work is based on primary data, i.e. quality-assured, geoscientific and ecological field data available in the SKB databases SICADA and GIS, available July 31, 2004. The work has been conducted by a project group and associated discipline-specific working groups. The members of the project group represent the disciplines of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and surface ecosystems (including overburden, surface hydrogeochemistry and hydrology). In addition, some group members have specific qualifications of importance in this type of project e.g. expertise in RVS (Rock Visualisation System) modelling, GIS-modelling and in statistical data analysis. The overall strategy to achieve a site description is to develop discipline-specific models by interpretation and analyses of the primary data. The different discipline-specific models are then integrated into a site description. Methodologies for developing the discipline-specific models are documented in

  10. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2008-12-01

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  11. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders (EcoAnalytica, Haegersten (Sweden)) (ed.)

    2008-12-15

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  12. Human population and activities in Forsmark. Site description

    International Nuclear Information System (INIS)

    Miliander, Sofia; Punakivi, Mari; Kylaekorpi, Lasse; Rydgren, Bernt

    2004-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced.The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations.The data in this description is essential for future evaluations of the impact on the environment and its human population (Environmental Impact Assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments.The actual area for the study is in this report called 'the Forsmark area', an area of 19.5 km 2 near Forsmark nuclear power plant. The land use in the Forsmark area differs notably from the land use in Uppsala laen (laen = county). Only 0.04% of the total area is developed (built-up) compared to 4.9% in Uppsala laen and only 4% is agricultural land compared to 25% in the county. Furthermore, there are far more forest, wetlands and water areas in the Forsmark area. The forest area represents as much as 72.5% of the total area.The Forsmark area is uninhabited, and its surroundings are very sparsely populated. In 2002, the population density in Forsmark was 1.8 inhabitants per square kilometre, which was 24 times lower than in Uppsala laen. The population density in the parish has been

  13. Human population and activities in Forsmark. Site description

    Energy Technology Data Exchange (ETDEWEB)

    Miliander, Sofia; Punakivi, Mari; Kylaekorpi, Lasse; Rydgren, Bernt [SwedPower AB, Stockholm (Sweden)

    2004-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced.The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations.The data in this description is essential for future evaluations of the impact on the environment and its human population (Environmental Impact Assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments.The actual area for the study is in this report called 'the Forsmark area', an area of 19.5 km{sup 2} near Forsmark nuclear power plant. The land use in the Forsmark area differs notably from the land use in Uppsala laen (laen = county). Only 0.04% of the total area is developed (built-up) compared to 4.9% in Uppsala laen and only 4% is agricultural land compared to 25% in the county. Furthermore, there are far more forest, wetlands and water areas in the Forsmark area. The forest area represents as much as 72.5% of the total area.The Forsmark area is uninhabited, and its surroundings are very sparsely populated. In 2002, the population density in Forsmark was 1.8 inhabitants per square kilometre, which was 24 times lower than in Uppsala laen. The population density in the

  14. Displacement along extensive deformation zones at the two SKB sites: Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Beckholmen, Monica; Tiren, Sven A.

    2010-12-01

    The Fennoscandian shield, a part of the East European Craton, is distinguished by the exposed bedrock which is mainly composed of Precambrian metamorphic and igneous rocks. Large parts of the ground surface closely coincides with a late Precambrian denudation surface; the sub-Cambrian peneplain. Palaeozoic and younger sediments were deposited on the peneplain but these sediments have been removed from most areas that now form the mainland of Sweden and Finland and there are just a few remnants left. In the Baltic Sea, located in large-scale depressions on the boundary of in the Fennoscandian Shield/ in the East European Craton/, the Precambrian bedrock is still in large parts covered by Palaeozoic sediments. The Palaeozoic sedimentary rocks, as they are well bedded, may form a memory of the late Palaeozoic and younger tectonic events in the underlying basement rocks. Such data are used here to complement the structural observations made at sites located on the mainland, giving information on displacement along faults. Significant for the Baltic Sea are faults oriented in N-S that appear as segments, displaced relative to each other. Other structures are oriented in E-W, NE-SW and NW-SE. The SKB Forsmark site is located in a relatively flat coastal area within the sub-Cambrian peneplain. The sea area at the Forsmark site has a more accentuated relief than what is found on the mainland, for example, a furrow along the western side of the N-S oriented island Graesoe northeast of Forsmark (below 30m b.s.l. and locally more than 50m lower than Graesoe) and the deep between Aaland and Sweden (301m b.s.l.) about 100km east-southeast of Forsmark. In the Forsmark-site area two sets of structures interfere: a WNWESE trending set with relatively straight faults along the north coast of Uppland and a NNW-SSE to N-S trending set, slightly curved, along the (north)east coast of Uppland. The Forsmark site is located in an elevated WNW trending lath-shaped rock block outlined by

  15. Repository for spent nuclear fuel. Plant description layout D - Forsmark; Slutfoervarsanlaeggning foer anvaent kaernbraensle. Anlaeggningsbeskrivning layout D - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-15

    This document describes the final repository for spent nuclear fuel, SFK, which is located at Forsmark, in Oesthammar. The bedrock at the site is part of a so-called tectonic lens, in which the rock composition is relatively homogeneous and less deformed than outside the lens. The bedrock consists mainly of granite with high quartz content and good thermal conductivity. The central parts above ground are grouped in an operations area, located at the Soederviken on the south side of the intake duct for cooling water for nuclear power plant. Operating area is divided into an internal, secured portion, where the canisters of fuel are handled and there are links to the underground part, and a outer part, where the buffer, backfill and sealing used in the repository's barriers are produced. The above-ground part of the plant and also include storage of excavated rock, ventilation stations, and supplies of bentonite. The underground portion consists of a central area and a storage area. Caverns of the central area contain features for the underground operation. It communicates with the internal operating range above ground via a spiral ramp and several shafts. The ramp used to transport capsules of spent fuel and other heavy or bulky transport. The shafts are used to transport rock, buffer, backfill and staff, as well as for ventilation. The largest part of the space below ground is the repository where the canisters with the spent fuel are disposed. The capsules are deposited in vertical holes in the tunnels. When the deposit in a tunnel is complete, the tunnel is re-filled. The two main activities underground is rock work and disposal work, which are conducted separately from each other. Rock works covers all steps required to excavate tunnels and drill deposition holes, as well as to make temporary installations in the tunnels. To the landfill works count, besides the deposit of the capsule, the placement of the bentonite buffer in the deposition hole and

  16. Groundwater movements around a repository. Geological and geotechnical conditions

    International Nuclear Information System (INIS)

    Stille, H.; Burgess, A.; Lindblom, U.E.

    1977-09-01

    The report was prepared as one of a series of technical reports within a study of the groundwater movements around a repository for radioactive waste in the Precambrian bedrock of Sweden. This assessment is intended to provide basic geotechnical data for the analysis. These data include properties and conditions that are representative of the intact rock, the rock mass in general, and the groundwater regime. As there exist a considerable range in the mineralogy of potentially suitable plutonic rocks and since a specific site has not yet been selected, all of the parameters presented in this report must be based on presumptive geological and hydrogeological conditions. Where possible, data for two potential site areas, namely Oskarshamn and Forsmark, are presented. This report is divided into four parts. First, a brief description of the procedure for modelling groundwater movements is presented, along with a tabulation of the important parameters. Secondly, a description of the geological and hydrogeological conditions of the Fennoscandian shield, as well as of the two general site areas, is given. The final two sections of the report provide thermomechanical and geohydrological characteristics and properties of the host rock

  17. Background complementary hydrogeochemical studies. SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Kalinowski, Birgitta E.

    2008-08-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, uranium, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise in

  18. Background complementary hydrogeochemical studies. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Birgitta E. (ed.)

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, uranium, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise

  19. Validation of the marine vegetation model in Forsmark. SFR-Site Forsmark

    International Nuclear Information System (INIS)

    Aquilonius, Karin; Qvarfordt, Susanne; Borgiel, Micke

    2011-04-01

    A regression model implemented in GIS of the marine vegetation in Forsmark were developed by SKB /Aquilonius 2010/ based on field investigations and video surveys /Fredriksson 2005/ and from correlations of field data and physical properties /Carlen et al. 2007/. The marine vegetation model describes distribution and biomasses of the marine vegetation and is used as input data in the dose modeling within the safety assessments performed by the SKB. In this study the predictive performance of the vegetation model in the less examined parts of the marine area in Forsmark is evaluated. In general, the vegetation model works very well in predicting absence of biomass, except for Red algae. In total and for Fucus sp., the model also predicts the observed biomass fairly well. However, for phanerogams, Chara sp., filamentous algae and red algae the vegetation model works less well in predicting biomass

  20. Validation of the marine vegetation model in Forsmark. SFR-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin (Studsvik Nuclear AB (Sweden)); Qvarfordt, Susanne; Borgiel, Micke (Sveriges Vattenekologer AB (Sweden))

    2011-04-15

    A regression model implemented in GIS of the marine vegetation in Forsmark were developed by SKB /Aquilonius 2010/ based on field investigations and video surveys /Fredriksson 2005/ and from correlations of field data and physical properties /Carlen et al. 2007/. The marine vegetation model describes distribution and biomasses of the marine vegetation and is used as input data in the dose modeling within the safety assessments performed by the SKB. In this study the predictive performance of the vegetation model in the less examined parts of the marine area in Forsmark is evaluated. In general, the vegetation model works very well in predicting absence of biomass, except for Red algae. In total and for Fucus sp., the model also predicts the observed biomass fairly well. However, for phanerogams, Chara sp., filamentous algae and red algae the vegetation model works less well in predicting biomass

  1. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Science.gov (United States)

    Gabrielli, C. P.; McDonnell, J. J.; Jarvis, W. T.

    2012-07-01

    SummaryBedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at quantifying bedrock groundwater contributions to hillslope flow and catchment runoff. We present results from the Maimai M8 research catchment in New Zealand and Watershed 10 (WS10) at the H.J. Andrews Experimental Forest in Oregon, USA. Analysis of bedrock groundwater at Maimai, through a range of flow conditions, revealed that the bedrock water table remained below the soil-bedrock interface, indicating that the bedrock aquifer has minimal direct contributions to event-based hillslope runoff. However, the bedrock water table did respond significantly to storm events indicating that there is a direct connection between hillslope processes and the underlying bedrock aquifer. WS10 groundwater dynamics were dominated by fracture flow. A highly fractured and transmissive zone within the upper one meter of bedrock conducted rapid lateral subsurface stormflow and lateral discharge. The interaction of subsurface stormflow with bedrock storage directly influenced the measured hillslope response, solute transport and computed mean residence time. This research reveals bedrock groundwater to be an extremely dynamic component of the hillslope hydrological system and our comparative analysis illustrates the potential range of hydrological and geological controls on runoff generation in headwater catchments.

  2. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  3. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    International Nuclear Information System (INIS)

    Nilsson, Eva

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  4. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    International Nuclear Information System (INIS)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen

    2007-12-01

    diffuse and occurring through SGD, small transient streams and/or coastal wetlands. Regarding transport quantifications, hydrogeochemical characteristics and pollution source loads may generally differ between larger, monitored catchments and smaller unmonitored coastal catchments. Since national hydrological monitoring data systematically exclude smaller, coastal catchments, they may not be representative for conditions in Forsmark (or Laxemar-Simpevarp). This emphasises the importance of extending in time the recently started hydrological and hydrogeochemical data series in the Forsmark and Laxemar-Simpevarp coastal catchment areas, since they are in effect unmonitored from a hydrological viewpoint, due to the lack of extended discharge time series. In the performed initial demonstration analysis of solute transport pathways from deep groundwater to recipients at the surface, we considered the main scenarios: (I) transport in the Quaternary deposits-bedrock interface zone only, and (II) transport in the coupled groundwater-surface water system. Considering mean travel times from each model cell to the coast, and disregarding travel times in the deep bedrock domain itself (which may be added to the here presented values), results show that travel times in scenario (II) were less than 4 years in 90% of the considered model area. Travel times were longer in scenario (I) with values higher than 10 years in 40% of the catchment area. These results are based on the assumption that the pathways do not go through zones of near-stagnant groundwater. If they would do so (and the above assumption is violated), results show that travel times can be considerably longer, for instance exceeding 400 years in half of the model area in scenario (I). Considering possible solute attenuation (caused by e.g. biogeochemical reactions or decay) along the hydrological transport pathways to inland surface waters and to the coast, we estimate solute mass delivery factors, representing the

  5. Electrical Dynamic Simulation Activities in Forsmark NPP

    International Nuclear Information System (INIS)

    Lamell, Per

    2015-01-01

    The original power system analysis was done in the seventies in former ASEA AB software. For approximate twenty years no major new studies was done because of limited numbers of renewal projects. In the end of the nineties the plant started to update the selectivity planning and study of the loading of the safety bus-bars. The simulation and start of the development of simulation models was done in a tool named Simpow. Simpow was also an ASEA/ABB AB software developed from the program used in the seventies. To continue to work with Simpow was a decision made after doing an extensive review of on the marked available commercially software. Also at that time we start to do our first attempt building electrical simulation models of unit 1 and 2 according to the original documentation. The development of models for the unit 1, 2 and 3 became more intensive some years after the millennium. Partly because of event July 25, 2006 and also because of the renewal of unit 1 and 2 and had subsequently been initiated for unit 3 also. Today we have initiated a conversion of our models to a new program called PowerFactory. That due to the withdrawal of support and development on SIMPOW a couple of years ago. To development relevance, accuracy and detail, models are an important issue for FKA (Forsmark Kraftgrupp AB). The model is initially created according to the plant documentation and also including requested information from the original supplier. Continued development and updates of the model is done according to the data received from the contractors via the demands according to requirements in our technical documents on different electrical components in renewal projects. The development of the model is driven by known weaknesses, depending of the type of studies and necessary data related to events. An important part that will be described is to have a verified simulation tool and validated models. An example is that the models have been validated by making start and

  6. Construction experiences from underground works at Forsmark. Compilation Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Anders [Vattenfall Power Consultant AB, Stockholm (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-02-15

    The main objective with this report, the Construction Experience Compilation Report (CECR), is to compile experiences from the underground works carried out at Forsmark, primarily construction experiences from the tunnelling of the two cooling water tunnels of the Forsmark nuclear power units 1, 2 and 3, and from the underground excavations of the undersea repository for low and intermediate reactor waste, SFR. In addition, a brief account is given of the operational experience of the SFR on primarily rock support solutions. The authors of this report have separately participated throughout the entire construction periods of the Forsmark units and the SFR in the capacity of engineering geologists performing geotechnical mapping of the underground excavations and acted as advisors on tunnel support; Anders Carlsson participated in the construction works of the cooling water tunnels and the open cut excavations for Forsmark 1, 2 and 3 (geotechnical mapping) and the Forsmark 3 tunnel (advise on tunnel support). Rolf Christiansson participated in the underground works for the SFR (geotechnical mapping, principal investigator for various measurements and advise on tunnel support and grouting). The report is to a great extent based on earlier published material as presented in the list of references. But it stands to reason that, during the course of the work with this report, unpublished notes, diaries, drawings, photos and personal recollections of the two authors have been utilised in order to obtain such a complete compilation of the construction experiences as possible.

  7. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  8. BWR-stability investigation at Forsmark 1

    International Nuclear Information System (INIS)

    Bergdahl, B.G.; Reisch, F.; Oguma, R.; Lorenzen, J.; Aakerhielm, F.

    1988-01-01

    A series of noise measurements have been conducted at Forsmark 1 during start-up operation after the revision summer '87. The main purpose was to investigate BWR-stability problems, i.e. resonant power oscillations of 0.5 Hz around 65% power and 4100 kg/s core flow, which tend to arise at high power and low core flow conditions. The analysis was performed to estimate the noise source which gives rise to the oscillation, to evaluate the measure of stability, i.e. the Decay Ratio (Dr) as well as to investigate other safety related problems. The result indicates that the oscillation is due to the dynamic coupling between the neutron kinetics and thermal hydraulics via void reactivity feedback. The Dr ranged between values of 0.7 and > 0.9, instead of expected 0.6 (Dr=1 is defined as instability). These high values imply that the core cannot suppress oscillations fast enough and a small perturbation can cause scram. Further it was found that the entire core is oscillating in phase (LPRM's) with varying strength where any connection to the consequences of different fuel (8x8, 9x9) being present simultaneously cannot be excluded. This report elucidates the importance of an on-line BWR-stability surveillance system with functions like stability condition monitoring and control system diagnosis. (orig.)

  9. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    diffuse and occurring through SGD, small transient streams and/or coastal wetlands. Regarding transport quantifications, hydrogeochemical characteristics and pollution source loads may generally differ between larger, monitored catchments and smaller unmonitored coastal catchments. Since national hydrological monitoring data systematically exclude smaller, coastal catchments, they may not be representative for conditions in Forsmark (or Laxemar-Simpevarp). This emphasises the importance of extending in time the recently started hydrological and hydrogeochemical data series in the Forsmark and Laxemar-Simpevarp coastal catchment areas, since they are in effect unmonitored from a hydrological viewpoint, due to the lack of extended discharge time series. In the performed initial demonstration analysis of solute transport pathways from deep groundwater to recipients at the surface, we considered the main scenarios: (I) transport in the Quaternary deposits-bedrock interface zone only, and (II) transport in the coupled groundwater-surface water system. Considering mean travel times from each model cell to the coast, and disregarding travel times in the deep bedrock domain itself (which may be added to the here presented values), results show that travel times in scenario (II) were less than 4 years in 90% of the considered model area. Travel times were longer in scenario (I) with values higher than 10 years in 40% of the catchment area. These results are based on the assumption that the pathways do not go through zones of near-stagnant groundwater. If they would do so (and the above assumption is violated), results show that travel times can be considerably longer, for instance exceeding 400 years in half of the model area in scenario (I). Considering possible solute attenuation (caused by e.g. biogeochemical reactions or decay) along the hydrological transport pathways to inland surface waters and to the coast, we estimate solute mass delivery factors, representing the

  10. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise

  11. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia

    2008-08-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise in

  12. Inventory of mammals at Forsmark and Haallnaes; Inventering av daeggdjur i Forsmark och Haallnaes

    Energy Technology Data Exchange (ETDEWEB)

    Truve, Johan [Svensk Naturfoervaltning AB, Goeteborg (Sweden)

    2012-08-15

    A selection of terrestrial mammals was surveyed in the SKB site investigation areas near Forsmark and Haallnaes between January and April 2012. The methods that were used include snow tracking along line transects, snow tracking along water, aerial survey and fecal pellet counts. The same species were found in 2012 as in previous surveys performed in 2002, 2003 and 2007. Some species show a large variation in density between years and it is difficult to draw any conclusions about their long term development. Several carnivores, i.e. lynx, fox and otter show a positive growth rate in both areas. The wild boar population is also growing whilst moose density remains fairly stable and roe deer are becoming less numerous.

  13. Subsidence analysis Forsmark nuclear power plant - unit 1

    International Nuclear Information System (INIS)

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars

    2010-12-01

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied

  14. New approaches to subglacial bedrock drilling technology

    Science.gov (United States)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical

  15. Bioturbation in different ecosystems at Forsmark and Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tryggve; Lenoir, Lisette; Taylor, Astrid [Dept. of Ecology and Environmental Research, Swedish University or Agricultural Sciences, Uppsala (Sweden)

    2007-01-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) carries out extensive investigations on factors that can affect long-term storage of nuclear waste. Earthworms consume organic soil materials and when doing so they transport and mix mineral soil particles as well as litter and humus materials. Ants do not consume soil materials, but they collect and mix mineral soil particles and litter materials to construct their nests. This process of material displacement by earthworms and ants is called bioturbation and can be a mechanism for the redistribution (vertical and horizontal) of radionuclides within the soil profile. The aim of the present study was to determine the quantitative impact of earthworms and ants on bioturbation of soil in different ecosystems at Forsmark and Oskarshamn. Earthworms were sampled at four 20x20 cm{sup 2} sub-plots at each site and were determined, dried and weighed in the laboratory. Gut passage time and faeces production were determined in a laboratory experiment at constant temperature. Temperature dependence of earthworm growth was studied at 3, 6, 10 and 20 deg C, and it was assumed that defecation mirrored growth as regards temperature dependence. Ant species composition, ant nest density and nest volume were investigated in the field by using pitfall traps and a transect method to enumerate ant nests. Dry weights of ant nests were determined after weighing in the laboratory. Earthworm abundances and biomasses were high in moist/wet alder forests and deciduous woodlands and low in pine and pine/spruce forests at both Forsmark and Oskarshamn. In mesic spruce forests, high estimates of abundance/biomass of earthworms were found at Forsmark but low at Oskarshamn, whereas grazed pastures had high estimates at Oskarshamn and ungrazed abandoned fields had relatively low estimates at Forsmark. High pH at Forsmark and low pH at Oskarshamn as well as high groundwater tables at some of the Forsmark sites can explain the difference between

  16. Bioturbation in different ecosystems at Forsmark and Oskarshamn

    International Nuclear Information System (INIS)

    Persson, Tryggve; Lenoir, Lisette; Taylor, Astrid

    2007-01-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) carries out extensive investigations on factors that can affect long-term storage of nuclear waste. Earthworms consume organic soil materials and when doing so they transport and mix mineral soil particles as well as litter and humus materials. Ants do not consume soil materials, but they collect and mix mineral soil particles and litter materials to construct their nests. This process of material displacement by earthworms and ants is called bioturbation and can be a mechanism for the redistribution (vertical and horizontal) of radionuclides within the soil profile. The aim of the present study was to determine the quantitative impact of earthworms and ants on bioturbation of soil in different ecosystems at Forsmark and Oskarshamn. Earthworms were sampled at four 20x20 cm 2 sub-plots at each site and were determined, dried and weighed in the laboratory. Gut passage time and faeces production were determined in a laboratory experiment at constant temperature. Temperature dependence of earthworm growth was studied at 3, 6, 10 and 20 deg C, and it was assumed that defecation mirrored growth as regards temperature dependence. Ant species composition, ant nest density and nest volume were investigated in the field by using pitfall traps and a transect method to enumerate ant nests. Dry weights of ant nests were determined after weighing in the laboratory. Earthworm abundances and biomasses were high in moist/wet alder forests and deciduous woodlands and low in pine and pine/spruce forests at both Forsmark and Oskarshamn. In mesic spruce forests, high estimates of abundance/biomass of earthworms were found at Forsmark but low at Oskarshamn, whereas grazed pastures had high estimates at Oskarshamn and ungrazed abandoned fields had relatively low estimates at Forsmark. High pH at Forsmark and low pH at Oskarshamn as well as high groundwater tables at some of the Forsmark sites can explain the difference between

  17. Safety-related site characteristics - a relative comparison of the Forsmark reference areas; Saekerhetsrelaterade platsegenskaper - en relativ jaemfoerelse av Forsmark med referensomraaden

    Energy Technology Data Exchange (ETDEWEB)

    Winberg, Anders (Conterra AB, Uppsala (Sweden))

    2010-12-15

    SKB has over the years from 2002 to 2008 conducted site investigations in Forsmark and Laxemar, with associated site modeling, design and safety analysis. In mid-2009 Forsmark was selected on the basis of analysis made as site for a future repository for spent nuclear fuel. Based on defined safety-related geoscientific location factors data from Forsmark are compared in relative terms with data from a number of locations in Sweden, previously studied by SKB. The factors compared include: the rock's composition and structures, future climate evolution, rock mechanical conditions, earthquakes, groundwater flow, groundwater composition, delay of solutes, and the ability to characterize and describe the location. Past comparisons of these properties for the selected sites show that none of these sites collectively show any significant benefit over Forsmark site for a repository. This does not preclude that there may be places on the basis of an overall assessment of geoscientific location factors could be equivalent to Forsmark

  18. Geogas in crystaline bedrock

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Sjoeblom, R.; Aakerblom, G.

    1991-10-01

    The scientific literature provides conclusive evidence of gas migration through crystalline bedrock and up to the surface. In this paper, a compilation is made of various significant observations of geogas. Based on these observations, and on well-known physical and chemical principles, possible models for the behaviour of the gas are analysed and discussed. Thus, at a depth of some tens or hundreds of meters, the partial gas pressure might exceed the hydrostatic pressure, enabling the development of a gas phase. Such gas may form in fissures in the rock of perhaps 0.1 mm width. The gas deposited will attempt to minimize its surface energy. The shape assumed will thus depend on the geometrical constraints as well as on the specific surface energies between gas and water, gas and rock, and water and rock. For a small bubble, or a bubble of moderate size, these effects can be expected to make the bubble stay in place. The accumulation of gas into the gas pocket will lead to the exertion of pressure onto the uppermost part of the pocket. At some stage of gas accumulation, this pressure will become sufficient for the gas to penetrate upwards through the fissure. As the gas propagates, the hydrostatic pressure will decrease and the volume of the gas will also increase. Eventually, when the surface is reached, a burst of gas may be observed. Four mechanisms have been identified that may describe how heavy elements can be transported from considerable depths to the surface by means of gas: transport through volatile compounds that dissolve in the gas, transport by elements bonded to complexing agents that are surface active and enrich themselves onto the interface between the water and the gas, flotation (bubbles attaching themselves onto particles and lifting them) and transport by aerosols that may form when gas moves rapidly through a fracture in the rock. Finally, the paper makes some recommendations to geoscientists regarding phenomena that it may be fruitful to

  19. Permanent scatterer InSAR processing: Forsmark

    International Nuclear Information System (INIS)

    Dehls, John F.

    2006-04-01

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km 2 . Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of errors

  20. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F. [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  1. Long-term development of the super-regional area of Olkiluoto/Forsmark/Laxemar. Minutes from the Posiva and SKB workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias; Rubio Lind, Lotta (eds.)

    2006-12-15

    minutes were delimited in the description of the surface system part of the geosphere-biosphere system and its development in time, primarily in terms of geometry and sea water salinity. However, no effort was made to discuss the geological evolution of the area or any parameter in the bedrock separately. Instead, the focus was to list, describe and suggest the parameters and variables of the surface system that can be described in a common way for the three sites Olkiluoto (Finland), Forsmark and Laxemar (both in Sweden)

  2. Explorative analysis of major components and isotopes. SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Smellie, John; Tullborg, Eva-Lena; Nilsson, Ann-Chatrin; Sandstroem, Bjoern; Waber, Niklaus; Gimeno, Maria; Gascoyne, Mel

    2008-09-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate events are the major driving force for hydrogeochemical changes and therefore are of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise in

  3. Explorative analysis of major components and isotopes. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John (Conterra AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Nilsson, Ann-Chatrin (Geosigma AB (Sweden)); Sandstroem, Bjoern (Goeteborg Univ. (Sweden)); Waber, Niklaus (Univ. of Bern (Switzerland)); Gimeno, Maria (Univ. of Zaragoza (Spain)); Gascoyne, Mel (GGP Inc. (United Kingdom))

    2008-09-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate events are the major driving force for hydrogeochemical changes and therefore are of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise in

  4. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  5. Reactor safety study applied to the Forsmark 3 Power Plant

    International Nuclear Information System (INIS)

    Ericsson, G.; Tiren, L.I.

    1978-01-01

    A reactor safety study of the Forsmark 3 BWR power plant has been carried out for the purpose of calculating core melt probabilities using WASH-1400 methods. A sensitivity analysis shows that the calculated core melt probability is changed by approximately a factor of 10 depending on assumptions made with respect to the probability of human error. The importance of the availability of off-site power and the influence of common cause failure is also discussed. (author)

  6. Lessons from the Forsmark 1 event in Sweden

    International Nuclear Information System (INIS)

    Jorle, A.

    2007-01-01

    A short circuit at a switchyard broke some of the safety chains in the reactor safety system and created a difficult situation in the control room at the Forsmark 1 power plant in Sweden. After a scram two of four diesel generators failed to deliver power but the reactor could safely be controlled through remaining two systems and power could be distributed from external grid after 22 minutes. Surveillance systems in the control room also failed and the situation at the reactor was unclear. Analysis shows that there was never a risk to the public and no damage on the core. The incident exposed unknown weakness in the power supply systems of the reactor. Also it was found that maintenance had failed and some components were not properly installed. The regulator identified the problem as a serious failure but did not at once realize the public impact. The licensee was late in its decision making and did only publish local press releases that did not fully expose the nature of the incident. After some days an independent expert claimed that a core melt was a close possibility. He was widely quoted and created a media impact many European countries. In the light of the incident problems with safety culture was identified at the plant and additional findings showed problems in the management system of Forsmark. Growing media interest culminated in January when a critical internal report from staff members in Forsmark was made public. Some lessons learnt: - Media activity followed well-known patterns. - The regulator was an important source for media. - Regulator not fired upon until January, after a long autumn filled with negative reporting on Forsmark. - The plant was not proactive in its communication which created a problem for the regulator. (author)

  7. Groundwater flow modelling of the excavation and operational phases - Forsmark

    International Nuclear Information System (INIS)

    Svensson, Urban; Follin, Sven

    2010-07-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  8. Environmental monitoring at the Forsmark nuclear power plant

    International Nuclear Information System (INIS)

    Sandstroem, O.

    1991-01-01

    The use of cooling water at such large power plants as Forsmark creates a considerable hazard for fish in the intake area, as they may be transported into the plant and killed. Several millions of Baltic herring and three-spined stickleback are lost each year at the intake screens. A release of cooling water to an open sea area is generally considered as a minor environmental problem, a presumption so far not contradicated by the results from the monitoring studies at Forsmark. In the Biotest basin, however, where the exposure to heat is maximal, a long series of effects ultimately changing populations of plants, benthic animals and fish have been documented. One important conclusion after ten years of studies in a heated Biotest basin, is that ecosystem stability seems to need very long time to be established, if it ever will. The monitoring of radioactivity controls the quality of the fish as food but is also directed to select special species accumulating these elements, bladder wrack etc. At Forsmark only small amounts of radionuclides from the plant so far have been detected in the marine environment. (KAE)

  9. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-07-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  10. Rapid Assessment of Remedial Effectiveness and Rebound in Fractured Bedrock

    Science.gov (United States)

    2017-10-01

    Geologic Cross Section of the CPP Demonstration Area................. 27 Figure 5.4. Increases in Bromide Concentration in the Deep Interval of MW07-46R...NPV Net Present Value O&M Operation and Maintenance OU Operable Unit PCE Tetrachloroethene PFM passive flux meter PPE Personal protective...miles wide, and up to 12,000 ft deep . The bedrock unit underlying the site is the Pennsylvanian age Rhode Island Formation, which consists of

  11. Formative flow in bedrock canyons

    Science.gov (United States)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted

  12. The Contraption and Engineering Implementation of Linked Fracture of Shoal Suture in the Bedrock

    OpenAIRE

    Korošec, Ludvik; Kralj, Lojze

    2015-01-01

    The characteristics of overburden strata structural features of typical shallow seam with thin bedrock in Shandong mining area is: there is only one key stratum which controls the overburden strata movement (main roof), when the thickness of bedrock is smaller (generally less than 50-60 m) and the key stratum located under the fissure zone or inside the caving zone through the analysis combined geological data Shandong mining area with the experience in mining practice for a long time. Strata...

  13. Groundwater chemical changes at SFR in Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [GeoPoint AB, Sollentuna (Sweden); Gurban, Ioana [3DTerra (Sweden)

    2003-01-01

    and under the land. The marine portion consisting of Litorina (>6000 B.P.), Baltic Sea water (0-3000 B.P) and Biogenic (modern modified Sea water) is located in bedrock under the Sea bed. Under this water a mixture of glacial water (>10.000 B.P.) and older Saline water exist from a depth of 100 m to 200 m.

  14. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  15. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  16. Final disposal Forsmark, Simpevarp and Laxemar. Inflow of ground water and influence on hydrogeologic and hydrologic conditions; Slutfoervar Forsmark, Simpevarp och Laxemar. Inlaeckage av grundvatten samt paaverkan paa hydrogeologiska och hydrologiska foerhaallanden

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Stockholm (Sweden)

    2006-10-15

    Laxemar, the results show that also the deep parts of the repository yield an inflow and cause a lowering of the groundwater table. Hence, it is more difficult to decouple the deep and the near surface parts of the repository at these locations. A repository at Simpevarp causes a larger inflow but a smaller area of influence, compared to a repository at Laxemar. This difference is most likely due to that Simpevarp is located by the sea, whereas Laxemar is located further inland. However, there are differences in terms of how grouting is simulated in the DarcyTools modelling of the locations, which makes the comparison difficult. A simple estimate, based on the net recharge (annual mean) at each site shows that the model calculated inflow to a repository at Forsmark corresponds to an area of influence from c 1 km{sup 2} (hydraulic conductivity in the grouted zone K{sub inj} 10{sup -7} m/s) to c 0.3 km{sup 2} (K{sub inj} = 10{sup -9} m/s). For a repository at Simpevarp, the inflow corresponds an area of influence from c 36 km{sup 2} (skin factor = 0.1) to c 1.5 km{sup 2} (skin factor = 0.001); in the Simpevarp modelling, a 'skin factor' was utilized to simulate the grouting. For a repository at Laxemar, a similar comparison provides an area of influence from c 11 km{sup 2} (K{sub inj} = 10{sup -7} m/s) to c 6.5 km{sup 2} (K{sub inj} = 10{sup -9} m/s). Since the modelling results are preliminary, they principally express differences between the locations in terms of their hydrogeological and hydrological characteristics. The results are yet too preliminary to demonstrate the effects of a repository on its surroundings in absolute terms. Examples of uncertainties in the modelling include the representation of the bedrock in the 'bedrock models', providing the basis for the modelling; this particularly applies to the upper parts of the bedrock. Moreover, the interaction between Quaternary deposits and bedrock is identified as an important factor for the

  17. Soil carbon effluxes in ecosystems of Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ. (Sweden))

    2007-12-15

    Soil carbon effluxes were estimated in a number of ecosystems in Laxemar and Forsmark investigations areas. It was done in a young Scots pine (Pinus sylvestris) stand, a wet deciduous stand, a poor fen and an agricultural field in the Laxemar investigation area in south-eastern Sweden (57 deg 5 min N, 16 deg 7 min E) and in a pasture, two Norway spruce (Picea abies) stands, a deciduous forest, a mire, a wet deciduous forest and a clear-cut in the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). It was measured with the closed chamber technique in 2005 and 2006. Soil temperature at 10 cm depth, air temperature and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate annual soil respiration. A hyperbolic curve with Gross Primary Production (GPP) against PAR was used for modelling GPP for the growing season in the poor fen and the agricultural area of Laxemar. The exponential regressions with soil respiration against air and soil temperature explained on average 33.6% and 44.0% of the variation, respectively. GPP of the ground vegetation were reducing soil carbon effluxes, in all stands but one of the spruce stands, the deciduous forest, the mire and the wet deciduous forest of Forsmark. The significant (all but spruce 2 in Forsmark) curves with GPP against PAR explained on average 22.7% of the variation in GPP. The cubic regressions with GPP against air temperature were only significant for the poor fen and the agricultural field in Laxemar and it explained on average 34.8% of the variation in GPP for these ecosystems. The exponential regressions with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The hyperbolic curve with GPP against PAR could also be used for temporal extrapolation of GPP for the ecosystems without a tree layer, i.e. the poor fen and the agricultural

  18. Soil carbon effluxes in ecosystems of Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2007-12-01

    Soil carbon effluxes were estimated in a number of ecosystems in Laxemar and Forsmark investigations areas. It was done in a young Scots pine (Pinus sylvestris) stand, a wet deciduous stand, a poor fen and an agricultural field in the Laxemar investigation area in south-eastern Sweden (57 deg 5 min N, 16 deg 7 min E) and in a pasture, two Norway spruce (Picea abies) stands, a deciduous forest, a mire, a wet deciduous forest and a clear-cut in the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). It was measured with the closed chamber technique in 2005 and 2006. Soil temperature at 10 cm depth, air temperature and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate annual soil respiration. A hyperbolic curve with Gross Primary Production (GPP) against PAR was used for modelling GPP for the growing season in the poor fen and the agricultural area of Laxemar. The exponential regressions with soil respiration against air and soil temperature explained on average 33.6% and 44.0% of the variation, respectively. GPP of the ground vegetation were reducing soil carbon effluxes, in all stands but one of the spruce stands, the deciduous forest, the mire and the wet deciduous forest of Forsmark. The significant (all but spruce 2 in Forsmark) curves with GPP against PAR explained on average 22.7% of the variation in GPP. The cubic regressions with GPP against air temperature were only significant for the poor fen and the agricultural field in Laxemar and it explained on average 34.8% of the variation in GPP for these ecosystems. The exponential regressions with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The hyperbolic curve with GPP against PAR could also be used for temporal extrapolation of GPP for the ecosystems without a tree layer, i.e. the poor fen and the agricultural

  19. Site investigation SFR. Vegetation in streams in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Eva (Svensk Nuclear Fuel and Waste Management Co. (Sweden)); Aquilonius, Karin; Sivars Becker, Lena (Studsvik Nuclear AB (Sweden)); Borgiel, Mikael (Sveriges Vattenekologer AB (Sweden))

    2011-09-15

    The streams in the model area of Forsmark have previously been thoroughly investigated regarding water chemistry, hydrology, bottom substrate, flooding, percentage coverage of macrophytes and fish migration. Retention of radionuclides in a stream ecosystem is assumed to occur by sorption to sediments or by uptake of radionuclides by macrophytes and it is therefore of interest to know the biomass and production of macrophytes in the streams included in a safety assessment. The general aim of this study was to examine the relation between biomass and the percentage cover of vegetation in streams in the Forsmark area. In this study streams within and nearby the candidate area in Forsmark was investigated. The somewhat larger streams Forsmarksaan and Olandsaan nearby the candidate area, are assumed to be more similar to future streams developing in Forsmark due to landrise, than the smaller streams present in the candidate area today. In total 22 vegetation samples were gathered in order to estimate the biomass at the sites. Percentage coverage of macrophytes, and dominating species were noted and the above ground macrophytes were sampled for biomass analysis. In the smaller streams, the biomass varied between 6 and almost 358 g dry weight per square metre. In the larger streams, the dry biomass varied between 0 and 247 g dry weight per square meter. There were no significant difference between macrophyte biomass in smaller and the larger stream. In total 13 macrophyte species were found. The biomass dry weight at 100% covering degree varied depending on macrophyte species. Although this was a rather small study, it is evident that the biomasses do vary a wide range between sampling squares in the area. However, although it may be difficult to use this data set to estimate the biomass in a specific square meter in the stream section, the relation between biomass weight and covering degree is sufficient to be used when fitting biomass to macrophyte coverage for entire

  20. ZZ BWRSB-FORSMARKS, Stability Benchmark Data from BWR FORSMARKS 1 and 2

    International Nuclear Information System (INIS)

    Verdu, G.; Palomo, M.J.; Escriva, A.; Ginestar, D.; Lansaker, Per

    2002-01-01

    1 - Description of program or function: The purpose of this benchmark is the intercomparison of the different time series analysis methods that can be applied to the study of BWR stability. This is a follow-up benchmark to the Ringhals 1 Stability Benchmark. While the Ringhals 1 Stability Benchmark included both time domain and frequency domain calculation models to predict stability parameters, the new benchmark is focused in the analysis of time series data by means of noise analysis techniques in the time domain. The first goal is to elucidate if it is possible to determine the main stability parameters from the neutronic signals time series with enough reliability and accuracy. Typically, the main stability parameters are assumed to be the decay ratio (DR) and the frequency of the oscillation. However, there are other parameters that provide valuable information, such as the Lyapunov exponents associated to the time series, or the Haussdorff dimension. In fact, the Lyapunov exponents are also a measure of the stability of the neutronic time series. The data given in this benchmark were obtained during several stability tests performed at the Swedish BWR reactors Forsmarks 1 and 2, in the period 1989 to 1997. The database is divided into six cases, the sampling rate of all the time series being 25 Hz, decimated to 12.5 Hz. The data are stored column wise in ASCII format. No filter to the signals and the DC-component has not been subtracted. Case 1: This case contains the neutron flux signals measured during several tests. The objective of the case is to study several signals ranging from stable to quasi-unstable conditions. The signals are standard measurements with no distortions. Data contains measured APRM (Average Power Range Monitor) signals from stability tests. The signals are measured at conditions with low Decay-Ratios up to high Decay-Ratios. Case 2: This case addresses the importance of the time duration of measured data. The objective of this case is

  1. Updated strategy and test of new concepts for groundwater flow modelling in Forsmark in preparation of site descriptive modelling stage 2.2

    International Nuclear Information System (INIS)

    Follin, Sven; Johansson, Per-Olof; Leven, Jakob; Hartley, Lee; Holton, David; McCarthy, Rachel; Roberts, David

    2007-01-01

    As part of the preliminary Site Descriptive Modelling (SDM version 1.2) for the Initial Site Investigation (ISI) stage at Forsmark, Simpevarp and Laxemar, a methodology was developed for constructing hydrogeological models of the crystalline bedrock. The methodology achieved reasonable success given the restricted amounts and types of data available at the time. Notwithstanding, several issues of concern have surfaced following the reviews of the preliminary site descriptions of the three sites. Possible solutions to parts of the problems have been discussed internally for a longer time and an integrated view and strategy forward has been formulated. The 'new strategy' is not a complete shift in methodology, however, but a refocusing on and clarification of the key aspects that the hydrogeological SDM needs to accomplish. In broad terms the basic principle of the 'new strategy' suggested is to develop an overall conceptual model that first establishes the major flowing deformation zones, and then gradually approaches determination of the hydraulic properties of the bedrock outside these zones in the potential repository volume. On each scale, the focus of the description should be on features/structures of significance on that scale. Clearly, a detailed (although statistical) description of the repository and canister deposition hole scale is the end goal, but this approach (which also is more the traditional approach in hydrogeology) is judged to provide a much better motivated overall geometrical description. Furthermore, the 'new strategy' puts more emphasis on field testing (e.g. interference tests) and data analyses and less on numerical simulation and calibration. That is, before extensive (and costly) simulations and model calibrations are made it needs to be clearly understood what could be the potential gains of carrying them out. This report presents the conceptual model development for Forsmark in preparation of the site descriptive modelling in stage 2

  2. Updated strategy and test of new concepts for groundwater flow modelling in Forsmark in preparation of site descriptive modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB (Sweden); Leven, Jakob [Geosigma AB (Sweden); Hartley, Lee; Holton, David; McCarthy, Rachel; Roberts, David [Serco Assurance (United Kingdom)

    2007-01-15

    As part of the preliminary Site Descriptive Modelling (SDM version 1.2) for the Initial Site Investigation (ISI) stage at Forsmark, Simpevarp and Laxemar, a methodology was developed for constructing hydrogeological models of the crystalline bedrock. The methodology achieved reasonable success given the restricted amounts and types of data available at the time. Notwithstanding, several issues of concern have surfaced following the reviews of the preliminary site descriptions of the three sites. Possible solutions to parts of the problems have been discussed internally for a longer time and an integrated view and strategy forward has been formulated. The 'new strategy' is not a complete shift in methodology, however, but a refocusing on and clarification of the key aspects that the hydrogeological SDM needs to accomplish. In broad terms the basic principle of the 'new strategy' suggested is to develop an overall conceptual model that first establishes the major flowing deformation zones, and then gradually approaches determination of the hydraulic properties of the bedrock outside these zones in the potential repository volume. On each scale, the focus of the description should be on features/structures of significance on that scale. Clearly, a detailed (although statistical) description of the repository and canister deposition hole scale is the end goal, but this approach (which also is more the traditional approach in hydrogeology) is judged to provide a much better motivated overall geometrical description. Furthermore, the 'new strategy' puts more emphasis on field testing (e.g. interference tests) and data analyses and less on numerical simulation and calibration. That is, before extensive (and costly) simulations and model calibrations are made it needs to be clearly understood what could be the potential gains of carrying them out. This report presents the conceptual model development for Forsmark in preparation of the site

  3. Reconstruction of surface waves using super virtual interferometry: an example from the Forsmark site, Sweden

    Science.gov (United States)

    Xu, Zhuo; Juhlin, Christopher; Han, Liguo; Zhang, Fengjiao

    2017-10-01

    Seismic interferometry is a technique that enables the extraction of the seismic impulse response (Green's function) between two receivers. The retrieved response is generally dominated by surface waves when sources are located at or near the surface of the Earth. In onshore seismic exploration, dealing with complex near-surface conditions is one of the main challenges for seismic data processing. In some cases, seismic interferometry can be used for suppressing surface waves without the use of a priori near-surface velocity model. Aside from being an effective tool for surface wave attenuation, the reconstructed surface waves generated by seismic interferometry contain useful information about near-surface heterogeneities and can be used to characterize the near-surface velocity field. In this study, we apply super virtual interferometry (SVI) to a real onshore data set from the Forsmark site, central Sweden, with the primary aim of characterizing shallow-subsurface structure. This is accomplished by improving the dispersion characteristics of the surface waves. We also show that SVI performs better than conventional correlation-type and convolution-type interferometry when reconstructing surface waves, both in synthetic and real data. We use the dispersive behaviour of the reconstructed surface waves to infer the geological structure of the shallow subsurface.

  4. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  5. Verification of accident management strategies at the Forsmark plant

    International Nuclear Information System (INIS)

    Loewenhielm, G.; Engqvist, A.; Ingemarsson, K.F.; Andersson, T.

    1992-01-01

    Due to government requirements severe accident mitigating measures were implemented at the Swedish State Power Board nuclear power plants in 1988. These measures included protection against early containment impairment, highly redundant containment spray and filtered venting of the containment. We also developed accident management strategies and corresponding documents to counteract a severe accident situation. This paper describes the accident management strategies and documents at the Forsmark nuclear power plant, the verification process of the basic approach, and our ongoing program for further development and verification of the accident management program. In summary: From the beginning it was emphasized that it was not only mitigating measures implemented, it was an accident mitigation program, including new EOP's and education and training. This program was implemented, as required by the Swedish government in the end of 1988. Since that time the accident management strategy has been validated, verified and further developed. As a general conclusion, the implemented accident management program has reached a fair degree of completeness at the Forsmark plant. It is expected that in the case a hypothetical accident would occur the envisaged strategy would handle the accident in such a way that the radiological consequences would be insignificant and radiation exposure to the personnel would be within ICRP recommendations. To reach and keep this goal it is imperative that a mental preparedness is always present. This is achieved with a continuous education, training and analyses

  6. The limnic ecosystems at Forsmark and Laxemar-Simpevarp

    International Nuclear Information System (INIS)

    Andersson, Eva

    2010-12-01

    The overall objective of this report is to describe the limnic ecosystems at Forsmark and Laxemar- Simpevarp, identify important processes in a radionuclide perspective and provide a description of the radionuclide model for the biosphere used in SR-Site. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar- Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components (biomass as well as production), water chemistry, and comparison with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. A separate chapter is included to specifically describe how and where these processes are included in the radionuclide model. The radionuclide model is described and parameterisation and guidance to parameter calculation is provided. The last chapter of the report provides a summary of the knowledge of the limnic systems at the two areas. The Forsmark regional model area contains more than 25 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in the lakes

  7. The limnic ecosystems at Forsmark and Laxemar-Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Eva

    2010-12-15

    The overall objective of this report is to describe the limnic ecosystems at Forsmark and Laxemar- Simpevarp, identify important processes in a radionuclide perspective and provide a description of the radionuclide model for the biosphere used in SR-Site. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar- Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components (biomass as well as production), water chemistry, and comparison with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. A separate chapter is included to specifically describe how and where these processes are included in the radionuclide model. The radionuclide model is described and parameterisation and guidance to parameter calculation is provided. The last chapter of the report provides a summary of the knowledge of the limnic systems at the two areas. The Forsmark regional model area contains more than 25 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in the lakes

  8. Landscape Forsmark - data, methodology and results for SR-Site

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2010-12-01

    This report presents an integrated description of the landscape at the Forsmark site during the succession from present conditions to the far future. It was produced as a part of the biosphere modelling within the SR-Site safety assessment. The report gives a description of input data, methodology and resulting models used to support the current understanding of the landscape used in SR-Site. It is intended to describe the properties and conditions at the site and to give information essential for demonstrating understanding. The report relies heavily on a number of discipline-specific background reports concerning details of the data analyses and modelling. Long-term landscape development in the Forsmark area is dependent on two main and partly interdependent factors, i.e. climate variations and shoreline displacement. These two factors in combination strongly affect a number of processes, which in turn determine the development of ecosystems. Some examples of such processes are erosion and sedimentation, groundwater recharge and discharge, soil formation, primary production and decomposition of organic matter. The biosphere at the site during the next 1,000 years is assumed to be quite similar to the present situation. The most important changes are the natural infilling of lakes and a slight withdrawal of the sea with its effects on the near-shore areas and the shallow coastal basins. The climate during the rest of the temperate period may vary considerably, with both warmer and colder periods. The main effect of temperature changes will be on the vegetation period. Changed temperatures may give rise to drier or wetter climate and to changed snow cover and frost characteristics, and this can in turn affect the dominant vegetation and mire build-up. The description of the Forsmark ecosystem succession during a glacial cycle is one of the main features of the SR-Site biosphere modelling. The future areas potentially affected by deep groundwater discharge are

  9. Landscape Forsmark - data, methodology and results for SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.) (Svensk Kaernbraenslehantering AB (Sweden))

    2010-12-15

    This report presents an integrated description of the landscape at the Forsmark site during the succession from present conditions to the far future. It was produced as a part of the biosphere modelling within the SR-Site safety assessment. The report gives a description of input data, methodology and resulting models used to support the current understanding of the landscape used in SR-Site. It is intended to describe the properties and conditions at the site and to give information essential for demonstrating understanding. The report relies heavily on a number of discipline-specific background reports concerning details of the data analyses and modelling. Long-term landscape development in the Forsmark area is dependent on two main and partly interdependent factors, i.e. climate variations and shoreline displacement. These two factors in combination strongly affect a number of processes, which in turn determine the development of ecosystems. Some examples of such processes are erosion and sedimentation, groundwater recharge and discharge, soil formation, primary production and decomposition of organic matter. The biosphere at the site during the next 1,000 years is assumed to be quite similar to the present situation. The most important changes are the natural infilling of lakes and a slight withdrawal of the sea with its effects on the near-shore areas and the shallow coastal basins. The climate during the rest of the temperate period may vary considerably, with both warmer and colder periods. The main effect of temperature changes will be on the vegetation period. Changed temperatures may give rise to drier or wetter climate and to changed snow cover and frost characteristics, and this can in turn affect the dominant vegetation and mire build-up. The description of the Forsmark ecosystem succession during a glacial cycle is one of the main features of the SR-Site biosphere modelling. The future areas potentially affected by deep groundwater discharge are

  10. Geophysical investigations of well fields to characterize fractured-bedrock aquifers in southern New Hampshire

    Science.gov (United States)

    Degnan, James R.; Moore, Richard Bridge; Mack, Thomas J.

    2001-01-01

    Bedrock-fracture zones near high-yield bedrock wells in southern New Hampshire well fields were located and characterized using seven surface and six borehole geophysical survey methods. Detailed surveys of six sites with various methods provide an opportunity to integrate and compare survey results. Borehole geophysical surveys were conducted at three of the sites to confirm subsurface features. Hydrogeologic settings, including a variety of bedrock and surface geologic materials, were sought to gain an insight into the usefulness of the methods in varied terrains. Results from 15 survey lines, 8 arrays, and 3 boreholes were processed and interpreted from the 6 sites. The surface geophysical methods used provided physical properties of fractured bedrock. Seismic refraction and ground-penetrating radar (GPR) primarily were used to characterize the overburden materials, but in a few cases indicated bedrock-fracture zones. Magnetometer surveys were used to obtain background information about the bedrock to compare with other results, and to search for magnetic lows, which may result from weathered fractured rock. Electromagnetic terrain conductivity surveys (EM) and very-low-frequency electromagnetic surveys (VLF) were used as rapid reconnaissance techniques with the primary purpose of identifying electrical anomalies, indicating potential fracture zones in bedrock. Direct-current (dc) resistivity methods were used to gather detailed subsurface information about fracture depth and orientation. Two-dimensional (2-D) dc-resistivity surveys using dipole-dipole and Schlumberger arrays located and characterized the overburden, bedrock, and bedrock-fracture zones through analysis of data inversions. Azimuthal square array dc-resistivity survey results indicated orientations of conductive steep-dipping bedrock-fracture zones that were located and characterized by previously applied geophysical methods. Various available data sets were used for site selection

  11. Discrete fracture network for the Forsmark site

    International Nuclear Information System (INIS)

    Darcel, C.; Davy, P.; Bour, O.; Dreuzy, J.R. de

    2006-08-01

    05A, HFM04 and HFM05) and outcrop DFN models. The main conclusions drawn from the consistency analysis are the following: There exists an important sub horizontal fracturing that occurs close to surface, which makes outcrop fracturing different, in term of density, from the fracturing observed in deep geological units from boreholes. The difference between surface and deep units does not exist for fractures dipping more than 30-40 deg. The rock units are remarkably consistent with outcrops for dips larger than 30-40 deg, and for Model A (a 3d =3.5). Model B tends to predict larger fracture densities in outcrops than in rock units defined in boreholes (in the dip range of 30-40 deg). There is no equivalence, in the outcrops, of the Deformation Zones, identified at depth. The best-fitting model is defined for l min (the smallest fracture diameter consistent with the power law model; l min =2r 0 with r 0 the location parameter) smaller than the borehole diameter. With this method, it is not possible to say more about l min . Models that consider larger values of l min do not ensure the consistency between outcrops and boreholes. The shear zones, as well as the lineaments, may belong to a different global scaling model than rock units. Further investigations and more data are necessary to characterize this additional GSM. Along the project, the issue of DFN model and of the fracture definition consistency across scales is often raised. It should be further investigated, together with a more complete description of the model variability

  12. The bedrock and the soil types in the Finnsjoearea, Sweden

    International Nuclear Information System (INIS)

    Almen, K.-E.; Ekman, L.; Olkiewicz, A.

    1978-11-01

    This report is a part of a long-term project, started at the request of the Nuclear Fuel Safety Project, Sweden. The aim of the project is to claryfy the geohydrological situation of a drainage area close to Finnsjoen in northern Uppland, Sweden. The work comprised bedrock- and soil mapping as well as an investigation of existing literature about the geology of northern Uppland. The area is about 25 km 2 and is limited by its water-shed. The area is relatively flat, rich in outcrops - expecially in the western parts - and often swampy. Big areas of forests and agriculture have been drained by ditches. (author)

  13. Bedrock Kd data and uncertainty assessment for application in SR-Site geosphere transport calculations

    International Nuclear Information System (INIS)

    Crawford, James

    2010-12-01

    The safety assessment SR-Site is undertaken to assess the safety of a potential geologic repository for spent nuclear fuel at the Forsmark and Laxemar sites. The present report is one of several reports that form the data input to SR-Site and contains a compilation of recommended K d data (i.e. linear partitioning coefficients) for safety assessment modelling of geosphere radionuclide transport. The data are derived for rock types and groundwater compositions distinctive of the site investigation areas at Forsmark and Laxemar. Data have been derived for all elements and redox states considered of importance for far-field dose estimates as described in /SKB 2010d/. The K d data are given in the form of lognormal distributions characterised by a mean (μ) and standard deviation (σ). Upper and lower limits for the uncertainty range of the recommended data are defined by the 2.5% and 97.5% percentiles of the empirical data sets. The best estimate K d value for use in deterministic calculations is given as the median of the K d distribution

  14. Sediment dynamics in the coastal areas of Forsmark and Laxemar during an interglacial

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars (Umeaa Univ., Umeaa (Sweden))

    2009-06-15

    wind speed is chosen so that it occurs at least once a month this with a wind direction parallel with the longest fetch. The validation of the wave module has been performed with data from the wave buoy situated at Finngrundet in the Bothnian Sea and the validation turned out well with less than 5% errors. The combined model (wave module and resuspension module) have been calibrated against marine geological data from Forsmark and validated against marine geological data from Laxemar. The validation turned out with satisfactory results: about 92% of the model domain area was classified correctly. The simulation result shows a large variation over time in the extensions of the three bottom types. Generally, accumulation exists partly on bottoms with large water depths and partly on shallow bottoms inside the belt of the skerries which are sheltered from wave power.

  15. Sediment dynamics in the coastal areas of Forsmark and Laxemar during an interglacial

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2009-06-01

    wind speed is chosen so that it occurs at least once a month this with a wind direction parallel with the longest fetch. The validation of the wave module has been performed with data from the wave buoy situated at Finngrundet in the Bothnian Sea and the validation turned out well with less than 5% errors. The combined model (wave module and resuspension module) have been calibrated against marine geological data from Forsmark and validated against marine geological data from Laxemar. The validation turned out with satisfactory results: about 92% of the model domain area was classified correctly. The simulation result shows a large variation over time in the extensions of the three bottom types. Generally, accumulation exists partly on bottoms with large water depths and partly on shallow bottoms inside the belt of the skerries which are sheltered from wave power. Erosion exists on shallow bottoms exposed to waves and transport is evident at all places between these two extremes, i.e. bottoms at intermediate depths with moderate wave exposure. Any single cell within the model domain has a characteristic evolution over time, beginning with accumulation due to a large water depth early after the ice melted off, then a period with transport, after that erosion when the water depth decreased even more, and finally back to transport and accumulation during a short period before the sea bottom becomes land. The last two phases are due to a decrease in wave power caused both by a denser archipelago and a shorter fetch. In this general pattern, many variations can occur, anything from sites with accumulation throughout the whole period to sites that lack the two final phases and therefore erode before it becomes land. To predict how radionuclides emanating from a possible repository leakage migrate, it is of course important to know what type of sea bottom these nuclides enter and the evolution over time of these bottoms

  16. Epilithic algal assemblages in the Forsmark Biotest basin

    Energy Technology Data Exchange (ETDEWEB)

    Snoeijs, P.

    1987-04-01

    The Forsmark Biotest Basin is an artificial offshore brackish lake, through which the cooling water is led from the Forsmark Nuclear Power Station on the Swedish east coast. The Biotest Basin differs from the Bothnian Sea surrounding it by a temperature elevation of up to 10 degrees C, no ice cover in winter, and an artificial, fast current. At 11 sites in- and outside the basin, benthic algal assemblages on stones in the hydrolittoral belt were sampled every third week during one year. Cover abundances were estimated for all algae occurring on the stones, but for diatoms only when they formed blooms. The results of the vegetation analyses are given. Diversity indices and dominance-diversity curves were computed for each site on the basis of pooled data for the cold season and for the rest of the year. The algae included both unicellular and multicellular forms. In total 88 taxa were distinguished in the species lists: 29 Cyanophyta, 7 Rhodophyta, 1 Chrysophyceae, 9 Fucophyceae, 17 Diatomophyceae and 25 Chlorophyta. In terms of percentage cover-abundance, blue-green and green algae increased with temperature, while red and brown algae and diatoms decreased with temperature in the interval between the minimum (0 degrees C) and the maximum (25.7 degrees C) water temperatures that were measured during the investigation period. Melosira spp. and Nitzschia filiformis proved to be the diatoms most favoured by the cooling water discharge. Lower diversity and greater dominance of one or a few species over the other was caused by thermal discharge at sites with fast-flowing water, but the opposite occurred at sites with quiescent water, mainly due to a greater number and higher abundances of blue-green algal species and thread-like green algae at the latter sites. This report also gives some notes on taxonomy of the encountered species.

  17. Application of Microtremor Array Analysis to Estimate the Bedrock Depth in the Beijing Plain area

    Science.gov (United States)

    Xu, P.; Ling, S.; Liu, J.; Su, W.

    2013-12-01

    With the rapid expansion of large cities around the world, urban geological survey provides key information regarding resource development and urban construction. Among the major cities of the world, China's capital city Beijing is among the largest cities possessing complex geological structures. The urban geological survey and study in Beijing involves the following aspects: (1) estimating the thickness of the Cenozoic deposit; (2) mapping the three-dimensional structure of the underlying bedrock, as well as its relations to faults and tectonic settings; and (3) assessing the capacity of the city's geological resources in order to support its urban development and operation safety. The geological study of Beijing in general was also intended to provide basic data regarding the urban development and appraisal of engineering and environment geological conditions, as well as underground space resources. In this work, we utilized the microtremor exploration method to estimate the thickness of the bedrock depth, in order to delineate the geological interfaces and improve the accuracy of the bedrock depth map. The microtremor observation sites were located in the Beijing Plain area. Traditional geophysical or geological survey methods were not effective in these areas due to the heavy traffic and dense buildings in the highly-populated urban area. The microtremor exploration method is a Rayleigh-wave inversion technique which extracts its phase velocity dispersion curve from the vertical component of the microtremor array records using the spatial autocorrelation (SPAC) method, then inverts the shear-wave velocity structure. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in ranging from 40 to 300 m, properly adjusted depending on the geological conditions (depth of the bedrock). The collected microtremor data are used to: (1) estimation of phase velocities of Rayleigh-wave from the vertical components of the microtremor

  18. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de [Amphos 21 Consulting S.L., Barcelona (Spain)

    2013-02-15

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of {sup 135}Cs, {sup 59}Ni, {sup 230}Th and {sup 226}Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a

  19. Depth to Bedrock: Isopach of Unconsolidated Materials

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This vector dataset gives the approximate depth to bedrock (in feet) from Iowa's current land surface. This 50 foot isopach data was derived from the Digital...

  20. Radionuclide particle transport, sedimentation and resuspension in the Forsmark and Laxemar coastal regions

    Energy Technology Data Exchange (ETDEWEB)

    Kling, Hanna; Doeoes, Kristofer (Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    In the safety assessment of a potential repository for spent nuclear fuel, it is important to assess the consequences of a hypothetical leak of radionuclides through the seabed and into a waterborne transport phase. Radionuclides adsorbed to sediment particles may be transported great distances through the processes of sedimentation and resuspension. This study investigates the transport patterns of sediment particles of two different sizes, released in the Forsmark and Laxemar area. The results show that the closed waters around Forsmark to a higher degree makes the particles stay in the area close to the release points

  1. A study on landscape and the historical geography of two areas - Oskarshamn and Forsmark

    International Nuclear Information System (INIS)

    Jansson, Ulf; Berg, Johan; Bjoerklund, Annika

    2004-06-01

    The aim of this project is to investigate the land-use; the settlement and the way people have used and affected the landscape in two areas, Forsmark and Simpevarp. This preliminary report aim mainly at describing the sources and methods used in the project. Some analyses are undertaken, but a more complete interpretation will take place in the final report of Phase two. This is a project that forms a part of the environmental impact assessment work that is done for examining potential locations for a plant for a deep repository for spent nuclear fuel. Both areas are located on the East Coast of Sweden. A number of scientific studies are carried out in this project. Fields that are included studies for the EIA and the safety assessment include geology, quaternary geology, limnology, biology and other natural sciences that focus on vegetation and the terrestrial as well as the aquatic environment.The study that is carried out at the Department of Human geography at Stockholm university is basically a study of the historical land-use, the changes in settlement and how people have been working and using the landscape over the last centuries.The methods used include historical maps, cadastral material and in a later phase interviews and fieldwork. In the first phase that ends the summer 2004 the bulk of the historical material is probed and analysed. A big effort is put into the creation of GIS-data sets that can be used for further analyses. The work during spring 2004 resulted in this preliminary report that deal with historical land-use, population, settlement from medieval times to the present and both detailed and general descriptions and investigations of the historical geography of the areas.Both the investigated areas are located by the Baltic, but are very different both physically, especially with the land upheaval in the north, and historically with a different land-use system, ownership structure and distribution of settlement. The results of this study

  2. A study on landscape and the historical geography of two areas - Oskarshamn and Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Ulf; Berg, Johan; Bjoerklund, Annika [Stockholm Univ. (Sweden). Dept. of Human Geography

    2004-06-01

    The aim of this project is to investigate the land-use; the settlement and the way people have used and affected the landscape in two areas, Forsmark and Simpevarp. This preliminary report aim mainly at describing the sources and methods used in the project. Some analyses are undertaken, but a more complete interpretation will take place in the final report of Phase two. This is a project that forms a part of the environmental impact assessment work that is done for examining potential locations for a plant for a deep repository for spent nuclear fuel. Both areas are located on the East Coast of Sweden. A number of scientific studies are carried out in this project. Fields that are included studies for the EIA and the safety assessment include geology, quaternary geology, limnology, biology and other natural sciences that focus on vegetation and the terrestrial as well as the aquatic environment.The study that is carried out at the Department of Human geography at Stockholm university is basically a study of the historical land-use, the changes in settlement and how people have been working and using the landscape over the last centuries.The methods used include historical maps, cadastral material and in a later phase interviews and fieldwork. In the first phase that ends the summer 2004 the bulk of the historical material is probed and analysed. A big effort is put into the creation of GIS-data sets that can be used for further analyses. The work during spring 2004 resulted in this preliminary report that deal with historical land-use, population, settlement from medieval times to the present and both detailed and general descriptions and investigations of the historical geography of the areas.Both the investigated areas are located by the Baltic, but are very different both physically, especially with the land upheaval in the north, and historically with a different land-use system, ownership structure and distribution of settlement. The results of this study

  3. The role of bedrock in creating habitat in temperate watercourses

    Science.gov (United States)

    Entwistle, N. S.; Heritage, G. L.; Milan, D. J.

    2016-12-01

    Bedrock influenced rivers are a relatively common yet little studied river type across temperate regions, occurring predominantly in upland areas and in areas where isostatic rebound has promoted rapid watercourse downcutting through resistant bedrock. The presence of bedrock in the bed and banks exerts a major influence on channel development, controlling local flow hydraulics and subsequently influencing in-channel and valley bottom sedimentary feature development. This paper summarises extensive field audit evidence of bedrock influenced features on watercourses in the UK to characterise the diverse morphology of bedrock influenced channels and reviews the bedrock induced hydraulic influences on their development and maintenance. Such features include bedrock waterfalls, steps, rapids and cascades and associated alluvial deposits forming lee bars, bedrock obstruction bars, plunge pool bars and fine sediment drapes and veneers. Bedrock influence on valley bottom features is also reviewed and a functional typology is developed for this river type based on the feature assemblage and degree of bedrock/alluvial influence.

  4. Lithology and Bedrock Geotechnical Properties in Controlling Rock and Ice Mass Movements in Mountain Cryosphere

    Science.gov (United States)

    Karki, A.; Kargel, J. S.

    2017-12-01

    Landslides and ice avalanches kill >5000 people annually (D. Petley, 2012, Geology http://dx.doi.org/10.1130/G33217.1); destroy or damage homes and infrastructure; and create secondary hazards, such as flooding due to blocked rivers. Critical roles of surface slope, earthquake shaking, soil characteristics and saturation, river erosional undercutting, rainfall intensity, snow loading, permafrost thaw, freeze-thaw and frost shattering, debuttressing of unstable masses due to glacier thinning, and vegetation burn or removal are well-known factors affecting landslides and avalanches. Lithology-dependent bedrock physicochemical-mechanical properties—especially brittle elastic and shear strength, and chemical weathering properties that affect rock strength, are also recognized controls on landsliding and avalanching, but are not commonly considered in detail in landslide susceptibility assessment. Lithology controls the formation of weakened, weathered bedrock; the formation and accumulation of soils; soil saturation-related properties of grain size distribution, porosity, and permeability; and soil creep related to soil wetting-drying and freeze-thaw. Lithology controls bedrock abrasion and glacial erosion and debris production rates, the formation of rough or smoothed bedrock surface by glaciation, fluvial, and freeze-thaw processes. Lithologic variability (e.g., bedding; fault and joint structure) affects contrasts in chemical weathering rates, porosity, and susceptibility to frost shattering and chemical weathering, hence formation of overhanging outcrops and weakened slip planes. The sudden failure of bedrock or sudden slip of ice on bedrock, and many other processes depend on rock lithology, microstructure (porosity and permeability), and macrostructure (bedding; faults). These properties are sometimes considered in gross terms for landslide susceptibility assessment, but in detailed applications to specific development projects, and in detailed mapping over

  5. Cyclic steps incised on experimental bedrock

    Science.gov (United States)

    Yokokawa, M.; Kyogoku, A.; Kotera, A.; Izumi, N.

    2013-12-01

    In rivers flowing in mountain areas, a series of steps are often observed on bedrock. They are thought to be cyclic steps formed due to erosion of bedrock, which should be driven by abrasion due to bedload sediment transport. We demonstrated a series of flume experiments of the formation of cyclic steps on bedrock by abrasion due to bedload transportation using weak mortar as the model bedrock. We also compared the shapes of the steps reproduced in the experiments with those obtained in the analysis. The experiments were conducted using a 1.5 m long, 2 cm wide, and 20 cm deep flume made of glass in Osaka Institute of Technology. The flume has 10-cm-high weirs at both ends, so that there is a 10-cm-deep reservoir. We put mortar into the reservoir and hardened it. In order to make a highly erodible mortar, we casted the mortar with extremely low amount of cement. The ratio of cement, sand (0.2 mm in diameter), and water is x:150:50 (x ranges 1-3). The flume is tilted by 10 degrees. The water and colored sand is supplied from a head tank to the upstream end of the flume, flows on 'model bedrock' in the flume, and was dropped from the downstream end. We observed morphological changes of the surface of the bedrock by photos. We also used a laser displacement sensor to measure the surface topography of the 'model bedrock' before and after each run. The configuration of steps largely depends on the hardness of model bedrocks. In the case of the softest model bedrock (cement-sand-water ratio is 1:150:50) with small amount of sand, long-drawn potholes tend to be formed. Clear cyclic steps are formed on harder model bedrocks with large cement-sand-water ratios such as 2:150:50 and 3:150:50. When a series of steps are formed on the bed, typical wavelength and wave height are approximately 20 cm, and 2 - 3 cm, respectively. The general shape of a step is characterized by a relatively long downward-inclined slope just upstream of a short upward-inclined slope. The feature of

  6. Final disposal of spent nuclear fuel in the Finnish bedrock

    International Nuclear Information System (INIS)

    1992-12-01

    Teollisuuden Voima Oy (TVO) studies Finnish bedrock for the final disposal of the spent nuclear fuel from the Olkiluoto nuclear power plant. The study is in accordance with the decision in principle by Finnish government in 1983. The report is the summary of the preliminary site investigations carried out during the years 1987-1992. On the basis of these investigations a few areas will be selected for detailed site investigation. The characterization comprises five areas selected from the shortlist of potential candidate areas resulted in the earlier study during 1983-1985. Areas are located in different parts of Finland and they represent the main formations of the Finnish bedrock. Romuvaara area in Kuhmo and Veitsivaara area in Hyrynsalmi represent the Archean basement. Kivetty area in Konginkangas consists of mainly younger granitic rocks. Syyry in Sievi is located in transition area of Svecofennidic rocks and granitic rocks. Olkiluoto in Eurajoki represents migmatites in southern Finland. For the field investigations area-specific programs were planned and executed. The field investigations have comprised airborne survey by helicopter, geophysical surveys, geological mappings and samplings, deep and shallow core drillings, geophysical and hydrological borehole measurements and groundwater samplings

  7. Vegetation in the Forsmark biotest basin, 1974-1986

    International Nuclear Information System (INIS)

    Renstroem, S.; Svensson, Roger; Wigren-Svensson, M.

    1990-05-01

    Since 1980, Forsmark Power Plants has discharged large amount of cooling water into the Biotest basin. In 1974, before the dam was constructed, and 1980 to 1986, the macrophytic algae and higher vegetation inside and around the basin has been investigated. The observed changes are mainly caused by the increased water temperature causing lack of ice cover during the winter, the embankment reducing the exposition, the heavy water stream through the basin and the reduced light transmission in the water. The macroscopic vegetation in the Biotest basin was originally distributed all over the lake, but is now mainly found in more shallow water. The deepest part, a passage from the input of the cooling water to the output, totally lack vegetation. The reason for this is a combination of the heavy stream, raised temperature and reduced light transmission. The total biomass of macroscopic vegetation in the basin has been reduced from c. 70 metric ton in 1980 to c. 27 ton in 1982 and 1986. Among the most important species, the production of Chara spp. and Potamogeton pectinatus have been strongly reduced, while Cladophora glomerata and Vaucheria sp. have increased. Especially for Vaucheria, the raised temperature has been of vital importance. Among other species, Tolypella nidifica first increased, but has now totally disappeared. Zannichellia palustris was the only phanerogam which increased all the time. It is Z. palustris var. major which stands for the increase, while Z. palustris var. repens has disappeared from the basin. The shore vegetation, mainly reeds, has expanded conspicuously. From 1974 to 1980, the shore vegetation was favoured by the reduced exposition caused by the embankment. Since then, the raised temperature and absence of ice cover have resulted in an accelerating expansion of mainly Phragmites communis. Scirpus tabernaemontani and S. maritimus were first increasing, but do not seem to be able to compete with Phragmites in the long run. (au)

  8. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sidborn, Magnus (Kemakta Konsult AB (Sweden)); Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge (Amphos21 (Spain)); Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2010-11-15

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  9. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    International Nuclear Information System (INIS)

    Sidborn, Magnus; Sandstroem, Bjoern; Tullborg, Eva-Lena; Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge; Hallbeck, Lotta; Pedersen, Karsten

    2010-11-01

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  10. SR-Site - hydrogeochemical evolution of the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Joaquin; Molinero, Jorge; Juarez, Iker (Amphos 21 (Spain)); Gimeno, Maria Jose; Auque, Luis; Gomez, Javier (Univ. of Zaragoza (Spain))

    2010-12-15

    The present work has involved the development of a methodology in order to simulate the evolution of the groundwater composition within the candidate repository site of the Forsmark area. A series of climate periods is expected to be probable after the repository closure (temperate, periglacial and glacial) and, eventually, the area could be submerged under seawaters or under a lake of glacial melt waters. These environmental conditions will affect groundwater flow and composition around of the candidate repository volume. The present report summarizes the results obtained by the calculations which reproduce the hydrogeochemical evolution in the Forsmark area, and within the candidate repository volume. The hydrogeochemical evolution of groundwaters is one of the key factors affecting the chemical stability of the buffer and the canister. In this way, the main objective of the hydrogeochemical simulations is to assay the evolution of a series of safety assessment factors, such as salinity, redox potential, pH, and concentrations of iron, sulphide and potassium, among others. Using ConnectFlow, previous hydrological calculations have provided the transport of (1) the fractions of selected reference waters (Deep Saline, Old Meteoric, Glacial, Littorina and Altered Meteoric groundwaters), or (2) salinities, depending on the working team (Serco or Terrasolve). The results of the regional-scale groundwater flow modelling for each specific climate period are used as input of the geochemical models. Groundwater compositions have been modelled using PHREEQC, through mixing and chemical reactions between the waters obtained from the hydrogeological models and the reactive fracture-filling minerals. Both models (hydrological and geochemical) are not fully coupled, and it allows a description of the geochemical heterogeneity, which otherwise would be hard to attain. The stage of the open repository has been non-numerically analysed. Aspects as salinity, redox conditions

  11. Numerical studies on spatial variation of the in situ stress field at Forsmark - a further step. Site descriptive modelling Forsmark - stage 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Hossein [Itasca Geomekanik AB, Solna (Sweden)

    2006-12-15

    The present work is an investigation into the depiction of a spatial distribution of the in situ stresses at the Forsmark candidate site. The methodology is based on numerical simulations of the pre-occurrences of perturbation of the stress field, produced by the deformations/displacements that rock mass/major fracture zones undergo. The distinct element program DEC, was used for the purpose. Forsmark area is dominated mainly by the Forsmark and the Singoe faults but also by a number of major fracture zones. Almost all these structures, not only that they are reported to dip vertically, but they more or less run sub-parallel with the inferred overall orientation of the major principal stress, s1. These zones, as a result, cause a fairly limited perturbation in the state of in situ stress at the site. At a diminished scale, however, fracture zones of a lesser extent - which dip obliquely and run at an angle in relation to the s1 orientation - produce a significant perturbation of the state of stress. This work also included two preliminary investigations on: - Assessing the remote orientation of the major principal stress. This was done by looking at the crustal shortening, which characterizes in part the past tectonic activities of the Fennoscandian shield. - Looking for the mechanically viable explanations for the formation of joints sub-parallel with ground surface within the uppermost section of the rock mass.

  12. Bedrock K{sub d} data and uncertainty assessment for application in SR-Site geosphere transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, James (Kemakta Konsult AB, Stockholm (Sweden))

    2010-12-15

    The safety assessment SR-Site is undertaken to assess the safety of a potential geologic repository for spent nuclear fuel at the Forsmark and Laxemar sites. The present report is one of several reports that form the data input to SR-Site and contains a compilation of recommended K{sub d} data (i.e. linear partitioning coefficients) for safety assessment modelling of geosphere radionuclide transport. The data are derived for rock types and groundwater compositions distinctive of the site investigation areas at Forsmark and Laxemar. Data have been derived for all elements and redox states considered of importance for far-field dose estimates as described in /SKB 2010d/. The K{sub d} data are given in the form of lognormal distributions characterised by a mean (mu) and standard deviation (sigma). Upper and lower limits for the uncertainty range of the recommended data are defined by the 2.5% and 97.5% percentiles of the empirical data sets. The best estimate K{sub d} value for use in deterministic calculations is given as the median of the K{sub d} distribution

  13. Rural Community Development: Bedrock for National Development ...

    African Journals Online (AJOL)

    This paper advocates that community development is the bedrock for national development. For any meaningful development to take place, whether national or global development must have its building blocks or firm-root in rural development. However, the rural communities are characterized by isolation from ideas and ...

  14. Impact assessment of the impact on nature values of the construction and operation of the repository for spent nuclear fuel at Forsmark; Konsekvensbedoemning av paaverkan paa naturvaerden av anlaeggande och drift av slutfoervar foer anvaent kaernbraensle i Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Allmer, Johan (Ekologigruppen AB, Stockholm (Sweden))

    2011-03-15

    Construction and operation of a repository at Soederviken in Forsmark, Oesthammar municipality means impact, effects and consequences for the environment. This report describes the natural conditions and natural values in Forsmark with particular focus on Soederviken. Furthermore, an assessment of consequences for the natural environment in the development and operation of a repository at Soederviken. Assessment of impacts from water activities are treated in a special report.

  15. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Aquilonius, Karin

    2010-12-01

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  16. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin (ed.) (Studsvik Nuclear AB (Sweden))

    2010-12-15

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  17. Hydrological and hydrogeological effects of an open repository in Forsmark. Final MIKE SHE flow modelling results for the Environmental Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-07-15

    This report presents methodology and modelling results concerning a deep-rock repository for spent nuclear fuel in Forsmark. Specifically, the modelling tools MIKE SHE, MIKE 11 and MOUSE are used to quantify the groundwater inflow to the repository and associated hydrological and hydrogeological effects during the construction and operation phases. The modelling results presented in the report provide input to the Environmental Impact Assessment (EIA) that will be part of a permit application according to the Environmental Code. Based on an existing MIKE SHE model for Forsmark, the first step of the modelling process was to implement an updated hydrogeological model of the bedrock and to increase the vertical and horizontal extents of the model domain. Other model updates involve the vegetation classification, and implementation of SFR (final repository for short-lived radioactive waste) and the subsurface drainage system at the nearby nuclear power plant. The updated model was calibrated using measured data on groundwater levels in the Quaternary deposits and the bedrock, water levels in lakes, and stream discharges. The calibrated model was then used for simulation of undisturbed conditions (i.e. without the repository) as a reference for modelling results obtained for disturbed conditions (with the repository). The modelling results for undisturbed conditions that are presented in the report closely resemble those of the final MIKE SHE site descriptive modelling (SDM-Site Forsmark). The repository layout was implemented as pipe links (segments) in the modelling tool MOUSE, and the implemented layout was used for the modelling of disturbed conditions. The study uses an updated and verified MIKE SHE-MOUSE coupling routine that is specifically adapted for calculation of groundwater inflow to grouted rock tunnels. The vertical shafts of the repository are implemented in the form of MIKE SHE grid cells with atmospheric pressure. Modelling results for disturbed

  18. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  19. Can Springs Cut Valleys Into Bedrock?

    Science.gov (United States)

    Lamb, M. P.; Dietrich, W. E.

    2004-12-01

    Valleys formed from groundwater sapping are thought to have a characteristic form including steep walls, flat floors, and amphitheatre-like heads. Observations of these features on Earth and Mars have led to the morphologic-based interpretation that groundwater sapping is an important valley forming process. This interpretation has significant implications for Mars in particular because it has been used to constrain Martian hydrology and the associated prospects for life. However, a mechanistic understanding of sapping erosion has only been demonstrated for granular mediums (i.e. sand). Many of the "sapping" valleys on Earth and (likely) Mars have been carved into bedrock, and the extension of previous work to bedrock erosion is unclear. To our knowledge, a process-based understanding of seepage erosion in bedrock does not exist, even though it is thought to be a first order geomorphic process on Earth and Mars. In order to address this knowledge gap, we are currently investigating Box Canyon, Idaho. Box Canyon, developed in the Snake River Plain, has many of the morphologic features often associated with sapping valleys. In addition, it was carved into basaltic bedrock and has a large spring emanating from its amphitheatre-like head, making it an ideal candidate for a sapping origin. There is currently no overland flow contribution to the canyon; however, based on mapping bedrock scours, a paleo-flood from an unknown upslope source did enter the canyon (and perhaps carved it). We present some first order hydraulic measurements, sediment transport calculations, and field observations to try and constrain the types of flows needed to carve Box Canyon. These flows could conceivably be derived from expansion of the current spring. Direct observation at the head of the canyon has not yet indicated how sapping could be responsible for the erosion of the headwall. We are using various dating techniques to constrain the timing and rate of headwall migration to constrain

  20. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  1. Bedrock Hydrogeology-Groundwater flow modelling. Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven; Oden, Magnus

    2013-05-01

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain

  2. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  3. Cokriging surface elevation and seismic refraction data for bedrock topography

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Doll, W.E.; Davis, R.K.; Hopkins, R.A.

    1992-01-01

    Analysis of seismic refraction data collected at a proposed site of the Advanced Neutron Source (ANS) Facility showed a strong correlation between surface and bedrock topography. By combining seismically determined bedrock elevation data with surface elevation data using cokriging, we were able to significantly improve our map of bedrock topography without collecting additional seismic data

  4. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  5. Durable Terrestrial Bedrock Predicts Submarine Canyon Formation

    Science.gov (United States)

    Smith, M. Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-10-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  6. Burial and Exhumation of Inner Shelf Bedrock Reefs due to Winter Storms

    Science.gov (United States)

    Storlazzi, C. D.; Fregoso, T.; Golden, N.; Finlayson, D. P.

    2009-12-01

    Repeated bathymetric and acoustic backscatter sonar surveys were conducted along the energetic emergent inner shelf of northern Monterey Bay, CA, USA, in the fall of 2005 and the spring of 2006 to determine the impact of winter storm waves, beach erosion, and river floods on biologically important bedrock reef habitats. The surveys were conducted using a 234 kHz interferometric swath side-scan sonar system that provided a horizontal resolution on the order of 10 cm and a vertical resolution of approximately 50 cm. The surveys extended from water depths of 2 m to 25 m and covered an area of 3.2 km^2, 37% of which was bedrock and the remainder of which was unconsolidated sediment. Our analyses of the bathymetric and acoustic backscatter data from the sonar surveys demonstrated that 28% of the bedrock reefs in the study area were either buried or exhumed during the 6 month study interval along this stretch of energetic coastline. While much of the detected change was at the boundary between bedrock and unconsolidated sediment due to sedimentation or erosion, in a number of cases the change in seabed character was due to changes in sediment grain size apparently due to scour or burial. These findings suggest that, in some cases, single mapping cruises typically employed for habitat and geologic characterization may not adequately characterize the geomorphology and sedimentologic nature of energetic inner shelves.

  7. Macrofauna on rocky substrates in the Forsmark biotest basin. March 1984 - March 1985

    International Nuclear Information System (INIS)

    Snoeijs, P.; Mo, K.

    1987-09-01

    The Forsmark biotest basin, situated on the Swedish east coast, is an artificial offshore brackish lake, through which the cooling water is channelled from the Forsmark nuclear power plant to the Bothnian Sea. The biotest basin is up to 10 0 C warmer than the sea surrounding it, and has no ice cover in winter. There is an artificial, fast current in a large part of the basin. Macrofauna on stones in the hydrolittoral belt was sampled at 11 sites in- and outside the basin every third week during one year. The numbers of individuals per m 2 for each taxon were counted. Diversity indices and dominance-diversity curves were computed for each site on the basis of pooled data for the cold season, and for the rest of the year. In total 66 taxa were distinguished in the species lists, of which 3 are sessile, the rest free-living. (orig./DG)

  8. Report of comment to the Nuclear Power Inspectorate concerning the final waste repository at Forsmark (SFR)

    International Nuclear Information System (INIS)

    1983-04-01

    The institute gives its support to the construction of the final depository of low and medium level radioactive waste at Forsmark. The main outline has been presented by the Swedish Nuclear Fuel Supply Company in their application. Prior to putting into operation necessary instructions have to be issued and prior to closing the depository its impact on the environment is to be examined. (G.B.)

  9. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    International Nuclear Information System (INIS)

    Gustafsson, David; Jansson, Per-Erik; Gaerdenaes, Annemieke; Eckersten, Henrik

    2006-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem

  10. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, David; Jansson, Per-Erik [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Land and Water Resources Engineering; Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Eckersten, Henrik [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Crop Production Ecology

    2006-12-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem.

  11. The Laxemar and Forsmark repositories. An analysis of the water inflow distribution

    International Nuclear Information System (INIS)

    Svensson, Urban

    2006-12-01

    A numerical simulation model is used to estimate the water inflow distribution to the Laxemar and Forsmark repositories. In particular statistics for the inflow to individual deposition holes, i.e. inflow distribution expressed as litre/min, deposition hole, is requested. Different grouting efficiencies are evaluated, including no grouting. The simulations are based on the code DarcyTools version 3.0, which was also used in simulations of the impact of the Repositories in Forsmark and Laxemar. Both the code and the simulations include many novel features and all simulations should hence be regarded as tentative. For the Laxemar repository it is found that less than 2% of all deposition holes will have an inflow larger than 1.0 l/min. This number will increase to about 20% if the inflow limit is put to 0.1 l/min. For the Forsmark repository it is found that 99.9% of all deposition holes will have an inflow smaller than 0.01 l/min

  12. Rock-block characterization on regional to local scales for two SKB sites in Forsmark - Uppland and Laxemar - eastern Smaaland, south-eastern Sweden

    International Nuclear Information System (INIS)

    Beckholmen, Monica; Tiren, Sven A.

    2010-11-01

    Digital elevation data in 500m, 50m and 10m grids were used for rock-block interpretations at regional, semi-regional and local scales of areas around the two SKB sites, Forsmark and Laxemar, objects for the site-investigation programme. Both areas are interpreted to be close to the surface of the sub- Cambrian peneplain and varying altitude and attitude may testify to blockfaulting in the distorted peneplain. Topographic breaks and changes in the gradient also reveal possible zones of weakness that may conduct water. Rock blocks were constructed for Uppland at 1:750 000, northern Uppland at 1:450 000 and the local Forsmark area at 1:150 000, three sets were constructed for eastern Smaaland at 1:500 000, and one for the semi-regional area at 1:250 000 and one for the local Laxemar area at 1:75 000. The orientation of rock-block boundaries and the size of the rock blocks were treated statistically. The rock blocks/polygons were analysed for their mean, minimum and maximum elevation and the range. The values were displayed by maps. The topography in especially eastern Smaaland is dominated by a clear gradient, the land rising from the sea in the east. Efforts were therefore made to remove an estimated gradient to assess the residual features and the same analyses were then made for mean, maximum, minimum and range values. In many cases the results were enhanced and the two types of presentations are complementary to each other. The rock-block interpretations were compared to bedrock and general correlation between major structures where identified. However, the distribution of rocks on a regional map often demonstrates the plastic deformation in a wider zone. Earthquake epicentres were combined with the rock-block maps and assuming that interpreted rock-block boundaries are fairly steep, there is good agreement between the location of epicentres and rock-block boundaries. In some cases it can be seen how seismic disturbance migrated along a structure. Many

  13. Water activities in Forsmark. Ecological field inventory and classification of biodiversity values and description of forest production land; Vattenverksamhet i Forsmark. Ekologisk faeltinventering och naturvaerdesklassificering samt beskrivning av skogsproduktionsmark

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    In 2009, the Swedish Nuclear Fuel and Waste Management Co (SKB) chose Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes nature values and forestry areas in Forsmark, and provides part of the background material for description of consequences due to groundwater diversion during construction and operation of the repository. The report describes results of map studies and comprehensive field investigations, in terms of geographical delineations, descriptions of characteristics and classifications of nature values for groundwater dependent or groundwater favoured nature objects in Forsmark. The nature objects are located in an investigation area, which contains the area that according to numerical flow modelling could be affected by groundwater-table drawdown due to groundwater diversion

  14. Uptake of elements by fungi in the Forsmark area

    International Nuclear Information System (INIS)

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S.; Vinichuk, Mykhaylo M.

    2004-10-01

    Samples were collected in a forest ecosystem close to the Nuclear Power Plant at Forsmark, Sweden. The soil was fractioned in bulk soil, rhizosphere, soil-root interface and fungal mycelium. At the same sampling sites, fruit bodies of fungi were also collected. The concentration (mg/kg dw of soil) of K, Rb, Cs, P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U, were analysed in the various fractions using microspectrometry. The concentration of the stable potassium, rubidium and cesium in forest soil as well as in fungal compartment is discussed first and than the other 17 elements is discussed. Compared to bulk soil, rhizosphere was enriched with K, Rb and Cs by a factor 1.3, 1.7 and 1.5, and soil-root interface by factor 5.4, 2.6 and 1.0. Concentration of K, Rb and Cs was much higher in mycelium compared to bulk soil, indicating accumulation of these elements within fungi. The concentration ratios (CR) defined as mg/kg dw in mycelium divided by mg/kg dw in soil were found to be 4.5, 5.1 and 2.4 for K, Rb and Cs respectively. For fruit bodies of fungi, these ratios were about one order of magnitude higher than that for mycelium: 65, 3. 75.8 and 18.6 for K, Rb and Cs, respectively. In mycelium, only weak correlations were found between K and Rb uptake (r=0.33) and between K and Cs uptake (r=0.48). The concentrations of the elements in fruit bodies of fungi were species-dependent. Generally, fungi seemed to take up Rb more efficiently than K. Highest Cs concentrations were found in fruit bodies of Sarcodon imbricatus (25.1 mg/kg). Sarcodon imbricatus was found to accumulate K, Cs and especially Rb to greatest extent, followed by Cortinarius sp., and Suillus variegatus. Litter decomposing fungi Hypholoma capnoides and Collybia peronata showed relatively weak ability to accumulate K, Rb as well as Cs, compared to the mycorrhizal species. No correlation was found between concentration of K, Rb and Cs in fruit bodies of fungi and soil pH as well as

  15. Uptake of elements by fungi in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Vinichuk, Mykhaylo M. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2004-10-01

    Samples were collected in a forest ecosystem close to the Nuclear Power Plant at Forsmark, Sweden. The soil was fractioned in bulk soil, rhizosphere, soil-root interface and fungal mycelium. At the same sampling sites, fruit bodies of fungi were also collected. The concentration (mg/kg dw of soil) of K, Rb, Cs, P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U, were analysed in the various fractions using microspectrometry. The concentration of the stable potassium, rubidium and cesium in forest soil as well as in fungal compartment is discussed first and than the other 17 elements is discussed. Compared to bulk soil, rhizosphere was enriched with K, Rb and Cs by a factor 1.3, 1.7 and 1.5, and soil-root interface by factor 5.4, 2.6 and 1.0. Concentration of K, Rb and Cs was much higher in mycelium compared to bulk soil, indicating accumulation of these elements within fungi. The concentration ratios (CR) defined as mg/kg dw in mycelium divided by mg/kg dw in soil were found to be 4.5, 5.1 and 2.4 for K, Rb and Cs respectively. For fruit bodies of fungi, these ratios were about one order of magnitude higher than that for mycelium: 65, 3. 75.8 and 18.6 for K, Rb and Cs, respectively. In mycelium, only weak correlations were found between K and Rb uptake (r=0.33) and between K and Cs uptake (r=0.48). The concentrations of the elements in fruit bodies of fungi were species-dependent. Generally, fungi seemed to take up Rb more efficiently than K. Highest Cs concentrations were found in fruit bodies of Sarcodon imbricatus (25.1 mg/kg). Sarcodon imbricatus was found to accumulate K, Cs and especially Rb to greatest extent, followed by Cortinarius sp., and Suillus variegatus. Litter decomposing fungi Hypholoma capnoides and Collybia peronata showed relatively weak ability to accumulate K, Rb as well as Cs, compared to the mycorrhizal species. No correlation was found between concentration of K, Rb and Cs in fruit bodies of fungi and soil pH as well as

  16. Water activities in Forsmark. Ecological field inventory and classification of biodiversity values and description of forest production land

    International Nuclear Information System (INIS)

    Hamren, Ulrika; Collinder, Per

    2010-12-01

    In 2009, the Swedish Nuclear Fuel and Waste Management Co (SKB) chose Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes nature values and forestry areas in Forsmark, and provides part of the background material for description of consequences due to groundwater diversion during construction and operation of the repository. The report describes results of map studies and comprehensive field investigations, in terms of geographical delineations, descriptions of characteristics and classifications of nature values for groundwater dependent or groundwater favoured nature objects in Forsmark. The nature objects are located in an investigation area, which contains the area that according to numerical flow modelling could be affected by groundwater-table drawdown due to groundwater diversion

  17. Localized bedrock aquifer distribution explains discharge from a headwater catchment

    Science.gov (United States)

    Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa

    2011-07-01

    Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.

  18. Geology and sinkhole development of the Hagerstown valley : phase II : [research summary].

    Science.gov (United States)

    2014-06-01

    The objective of this study was to map the western half of the Hagerstown Valley to : determine the distribution of karst features relative to bedrock geologic units using a : global positioning system (GPS).

  19. Submerged macrophyte communities in the Forsmark area. Building of a GIS application as a tool for biomass estimations

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Ronny [Univ. of Kalmar (Sweden)

    2005-12-15

    The aim of this study was to compile the information from previous studies to produce a GIS application that both illustrates the distribution of different vegetation communities and also makes it possible to estimate the total biomass of the different vegetation communities and its associated fauna. The GIS application was created by means of the software Arc View 3.3 by Environmental Systems Research Institute, Inc. Distribution readings and quantitative data of submerged macrophyte communities and its associated fauna was obtained from studies by Kautsky et al. and by Borgiel. Information about the macrophyte distribution in Laangoersviken, located in the northern parts of Kallrigafjaerden, was obtained from a report by Upplandsstiftelsen. Information about water depth and bottom substrate was available as USGS DEM file, produced by Geological Survey of Sweden. Complementary data of the covering degree of submerged vegetation was obtained from a study using an under water video camera by Tobiasson. Quantitative data on macrophyte and faunal biomass were either obtained from the primary SKB data base SICADA or directly from reports. Samples were compiled and analysed according to dominating vegetation. The work was carried out as follows: Where information about the bottom substrate was available polygons were created by means of the substrate shape file and depth grid from Geological Survey of Sweden. The vegetation community and the covering degree on a certain depth and substrate combination were determined by compiled information from studies by Kautsky and by Borgiel. All observations from a certain bottom substrate were analysed to find the dominating vegetation within different depth ranges. After determining the dominating vegetation, the covering degrees of different macrophyte classes within each depth range were calculated as a mean of all readings. Areas without information about the bottom substrate, but still adjacent to areas included in the

  20. Submerged macrophyte communities in the Forsmark area. Building of a GIS application as a tool for biomass estimations

    International Nuclear Information System (INIS)

    Fredriksson, Ronny

    2005-12-01

    The aim of this study was to compile the information from previous studies to produce a GIS application that both illustrates the distribution of different vegetation communities and also makes it possible to estimate the total biomass of the different vegetation communities and its associated fauna. The GIS application was created by means of the software Arc View 3.3 by Environmental Systems Research Institute, Inc. Distribution readings and quantitative data of submerged macrophyte communities and its associated fauna was obtained from studies by Kautsky et al. and by Borgiel. Information about the macrophyte distribution in Laangoersviken, located in the northern parts of Kallrigafjaerden, was obtained from a report by Upplandsstiftelsen. Information about water depth and bottom substrate was available as USGS DEM file, produced by Geological Survey of Sweden. Complementary data of the covering degree of submerged vegetation was obtained from a study using an under water video camera by Tobiasson. Quantitative data on macrophyte and faunal biomass were either obtained from the primary SKB data base SICADA or directly from reports. Samples were compiled and analysed according to dominating vegetation. The work was carried out as follows: Where information about the bottom substrate was available polygons were created by means of the substrate shape file and depth grid from Geological Survey of Sweden. The vegetation community and the covering degree on a certain depth and substrate combination were determined by compiled information from studies by Kautsky and by Borgiel. All observations from a certain bottom substrate were analysed to find the dominating vegetation within different depth ranges. After determining the dominating vegetation, the covering degrees of different macrophyte classes within each depth range were calculated as a mean of all readings. Areas without information about the bottom substrate, but still adjacent to areas included in the

  1. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    International Nuclear Information System (INIS)

    Werner, Kent; Johansson, Per-Olof; Brydsten, Lars; Bosson, Emma; Berglund, Sten

    2007-03-01

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge wells. The usefulness of hydrochemistry-based RD

  2. Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders

    2009-05-01

    This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m 2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with air

  3. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  4. Review of SKB's preliminary safety evaluations for Forsmark and Laxemar; Myndigheternas granskning av SKB:s preliminaera saekerhetsbedoemningar foer Forsmark och Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Norden, Maria; Wallberg, Petra; Wiebert, Anders; Dverstorp, Bjoern; Shulan Xu (Swedish Radiation Protection Authority, Stockholm (Sweden)); Toverud, Oeivind; Stroemberg, Bo; Kautsky, Fritz; Simic, Eva (Swedish Nuclear Power Inspectorate, Stockholm (Sweden))

    2008-01-15

    This report presents SKI's and SSI's review of SKB's preliminary safety evaluations for Forsmark and Laxemar. The purpose of the review is to assess if the extent of SKB's initial site investigations are sufficient and if they are performed with adequate quality and also if they comprise the data that is needed for future safety analysis. To meet the request from the municipalities where site investigations are performed the authorities have also attempted to elucidate if a site has such obvious weakness that it probably will not comply with authority regulations. The target groups for the review are the municipalities in Oskarshamn and Oesthammar, and SKB

  5. Water Activities in Forsmark (Part I). Removal of groundwater from final repository for spent fuel; Vattenverksamhet i Forsmark (del I). Bortledande av grundvatten fraan slutfoervarsanlaeggningen foer anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    The construction, operation and decommissioning of the repository for spent nuclear fuel in Forsmark are associated with a number of measures that constitute water operations according to Chapter 11 in the Environmental Code. This report is an appendix to the Environmental Impact Assessment (EIA) and describes water operations in the form of groundwater diversion from the repository (the report is also included in the permit application according to the Nuclear Activities Act). The main objective of the report is to describe hydrogeological and hydrological effects and the consequences that may arise in the surroundings of the repository due to the groundwater diversion. Moreover, the report presents prevention measures to reduce the effects of the groundwater diversion and mitigation measures that aim at its consequences

  6. Bedrock model of the Olkiluoto area

    International Nuclear Information System (INIS)

    Saksa, P.; Paananen, M.; Paulamaeki, S.; Anttila, P.; Front, K.; Pitkaenen, P.; Hassinen, P.; Ylinen, A.

    1993-07-01

    Site investigations were carried out at Olkiluoto (in Finland) in 1987-1992 in accordance with an investigation programme drawn up by Teollisuuden Voima Oy (TVO). The site was modelled in terms of rock types, fracturing, fracture structures and geohydrological conditions, the main focus of examination was on fracturing and associated hydraulic conductivity. The various properties of the bedrock structures were classified by means of a three-dimensional model. The descriptions of the models were gathered in a computer system for illustration and storage purposes. The rock types at Olkiluoto are migmatite, which may be divided into mica gneiss and veined gneiss, and also tonalite and coarse-grained migmatite granite (pegmatite). (64 refs., 65 figs.)

  7. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    International Nuclear Information System (INIS)

    Brydsten, Lars; Engqvist, Anders; Naeslund, Jens-Ove; Lindborg, Tobias

    2009-01-01

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about ± 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  8. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars (Umeaa Univ., Umeaa (Sweden)); Engqvist, Anders (Royal Institute of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove; Lindborg, Tobias (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-01-15

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about +- 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  9. Modeling early in situ wetting of a compacted bentonite buffer installed in low permeable crystalline bedrock

    Science.gov (United States)

    Dessirier, B.; Frampton, A.; Fransson, À.; Jarsjö, J.

    2016-08-01

    The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.

  10. A basis for modelling of radionuclide flow in the Forsmark biotest basin

    International Nuclear Information System (INIS)

    Notter, M.; Snoeijs, P.; Argaerde, L.; Elert, M.

    1987-01-01

    Certain radionuclides are discharged together with the cooling water of Forsmark power station. Of these, Mn-54, Co-60, Zn-65 and Ag-110 m are easily detectable in the environment. This report gives a conceptual five-compartment model for the flows of radionuclides within the basin ecosystem. The available data from biological and radio-ecological investigations in the biotest basin were used to quantify the amounts of radionuclides in each of the reservoirs. The subsystem water-sediment-primary producers was pointed out to be the most interesting part of the ecosystem for studying radionuclides with mathematical modelling in the future. (orig./DG)

  11. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2010-12-01

    The ecosystem is in most cases the link between radionuclides released from a repository and the exposure of humans and other biota to them. This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing and performing cross-disciplinary analyses of data from a large number of reports produced during the site investigations, Figure 1-2. The report describes the terrestrial landscape, divided here into the three main categories: forests, wetlands and agriculture land, by identifying properties that are important for element accumulation and transport

  12. The limnic ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM-Site

    International Nuclear Information System (INIS)

    Norden, Sara; Soederbaeck, Bjoern; Andersson, Eva

    2008-11-01

    The overall objective of this report is to provide a thorough description of the limnic ecosystems at both Forsmark and Laxemar-Simpevarp. This information may be used in the Safety Assessment and as a basis for the Environmental Impact Assessment. Three aims were set up for the report: 1) to characterize and describe the limnic ecosystems today and in the past in the Forsmark and Laxemar-Simpevarp areas and compare these ecosystems with limnic ecosystems in other areas; 2) to evaluate and visualize major pools, fluxes and sinks of elements within the limnic ecosystems; and finally 3) to describe human impact on the limnic ecosystems. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar-Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components, water chemistry, comparisons with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. The Forsmark regional model area contains more than 20 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in

  13. The limnic ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM-Site

    Energy Technology Data Exchange (ETDEWEB)

    Norden, Sara; Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Andersson, Eva (SWECO, Stockholm (Sweden))

    2008-11-15

    The overall objective of this report is to provide a thorough description of the limnic ecosystems at both Forsmark and Laxemar-Simpevarp. This information may be used in the Safety Assessment and as a basis for the Environmental Impact Assessment. Three aims were set up for the report: 1) to characterize and describe the limnic ecosystems today and in the past in the Forsmark and Laxemar-Simpevarp areas and compare these ecosystems with limnic ecosystems in other areas; 2) to evaluate and visualize major pools, fluxes and sinks of elements within the limnic ecosystems; and finally 3) to describe human impact on the limnic ecosystems. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar-Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components, water chemistry, comparisons with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. The Forsmark regional model area contains more than 20 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in

  14. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders (ed.) (EcoAnalytica, Haegersten (Sweden))

    2010-12-15

    The ecosystem is in most cases the link between radionuclides released from a repository and the exposure of humans and other biota to them. This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing and performing cross-disciplinary analyses of data from a large number of reports produced during the site investigations, Figure 1-2. The report describes the terrestrial landscape, divided here into the three main categories: forests, wetlands and agriculture land, by identifying properties that are important for element accumulation and transport

  15. 3-DIMENSIONAL GEOLOGICAL MAPPING AND MODELING ACTIVITIES AT THE GEOLOGICAL SURVEY OF NORWAY

    Directory of Open Access Journals (Sweden)

    A. Jarna

    2015-10-01

    Full Text Available Geology and all geological structures are three-dimensional in space. Geology can be easily shown as four-dimensional when time is considered. Therefore GIS, databases, and 3D visualization software are common tools used by geoscientists to view, analyse, create models, interpret and communicate geological data. The NGU (Geological Survey of Norway is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. The interest in 3D mapping and modelling has been reflected by the increase of number of groups and researches dealing with 3D in geology within NGU. This paper highlights 3D geological modelling techniques and the usage of these tools in bedrock, geophysics, urban and groundwater studies at NGU, same as visualisation of 3D online. The examples show use of a wide range of data, methods, software and an increased focus on interpretation and communication of geology in 3D. The goal is to gradually expand the geospatial data infrastructure to include 3D data at the same level as 2D.

  16. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically

  17. Using PHREEQC to simulate solute transport in fractured bedrock.

    Science.gov (United States)

    Lipson, David S; McCray, John E; Thyne, Geoffrey D

    2007-01-01

    The geochemical computer model PHREEQC can simulate solute transport in fractured bedrock aquifers that can be conceptualized as dual-porosity flow systems subject to one-dimensional advective-dispersive transport in the bedrock fractures and diffusive transport in the bedrock matrix. This article demonstrates how the physical characteristics of such flow systems can be parameterized for use in PHREEQC, it provides a method for minimizing numerical dispersion in PHREEQC simulations, and it compares PHREEQC simulations with results of an analytical solution. The simulations assumed a dual-porosity conceptual model involving advective-reactive-dispersive transport in the mobile zone (bedrock fracture) and diffusive-reactive transport in the immobile zone (bedrock matrix). The results from the PHREEQC dual-porosity transport model that uses a finite-difference approach showed excellent agreement compared with an analytical solution.

  18. A self-regulating model of bedrock river channel geometry

    Science.gov (United States)

    Stark, C. P.

    2006-02-01

    The evolution of many mountain landscapes is controlled by the incision of bedrock river channels. While the rate of incision is set by channel shape through its mediation of flow, the channel shape is itself set by the history of bedrock erosion. This feedback between channel geometry and incision determines the speed of landscape response to tectonic or climatic forcing. Here, a model for the dynamics of bedrock channel shape is derived from geometric arguments, a normal flow approximation for channel flow, and a threshold bed shear stress assumption for bedrock abrasion. The model dynamics describe the competing effects of channel widening, tilting, bending, and variable flow depth. Transient solutions suggest that channels may take ~1-10 ky to adapt to changes in discharge, implying that channel disequilibrium is commonplace. If so, landscape evolution models will need to include bedrock channel dynamics if they are to probe the effects of climate change.

  19. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground; Vattenverksamhet i Forsmark (del II). Slutfoervarsanlaeggningen foer anvaent kaernbraensle: Vattenverksamheter ovan mark

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden)); Ridderstolpe, Peter (WRS Uppsala AB (Sweden))

    2010-09-15

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  20. Airborne radiometric data - A tool for reconnaissance geological mapping using a GIS

    International Nuclear Information System (INIS)

    Graham, D.F.; Bonham-Carter, G.F.

    1993-01-01

    A clustering technique is applied to radioelement data, and the resulting cluster map is compared with a digitized geological map within a GIS software package. The cross tabulation clearly identifies those geological units that have a distinctive radioelement response. By reclassifying the map overlay and imposing a color coding scheme that enhances bedrock geology classes, the relationship between the bedrock geology and radioelement response is enhanced. The degree of correlation between the two cartographic images is site dependent, rather than global. Areas where the two maps differ indicate zones of possible interest for field verification of published field maps for the purposes of mineral exploration. 13 refs

  1. Assessing the Dominant Processes Controlling Mineralized Groundwater Chemistry of Bedrock Aquifers on the Niagara Peninsula, Ontario, Canada

    Science.gov (United States)

    Smal, C. A.; Slater, G.; Hamilton, S. M.

    2016-12-01

    The Ontario Geological Survey identified an area of highly mineralized groundwater chemistry exceeding average values for host bedrock formations following geochemical mapping on the Niagara Peninsula. Extensive sampling from domestic and monitoring wells at a density of 1 sample per 5x5 km2 was conducted in the summer of 2015 on the Niagara Peninsula to determine the geological and biogeochemical processes controlling groundwater chemistry. Following statistical analysis, groundwater samples were subdivided into 7 clusters and then grouped into three larger geochemical zones based on chemical associations. The Salina Formation Zone in the central Peninsula is characterized by older, low tritium waters with isotopically depleted δ18OH2O values suggesting the presence of glacially-impacted groundwater of Pleistocene age. The Salina Formation Zone shows evidence for being highly influenced by water-rock interaction with elevated concentrations of S2-, Ca2+, Mg2+, K+, Na+, SO42-, Cl-, Br- and Sr2+. Adjacent to the Salina Formation Zone is the low conductivity, bedrock influenced, Guelph Formation Zone, characterized by high F-, variable geochemical facies and low tritium values. In the north and south, high bacterial counts and tritium values suggests evidence of rapid recharge through thin drift and karst-influenced, exposed bedrock surfaces. Within the geochemical zones, regions of varying biogeochemical cycling were observed using sulfur and carbon isotopic tracers, relating to local variations in groundwater chemistry. Some of these local variations may be related to the presence of abandoned, corroding gas wells on the Peninsula. Predominate controls on groundwater chemistry include groundwater recharge along the Niagara and Onondaga Escarpments, thick impermeable glacial sediment cover overlying bedrock troughs and buried bedrock channels, and water-rock interaction in the central and east-central Niagara Peninsula.

  2. A comparison of methods used in mapping of Pleistocene-bedrock unconformity: Conventional manual versus surface modeling

    Energy Technology Data Exchange (ETDEWEB)

    Weibel, C.P.; Abert, C.C.; Kempton, J.P. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01

    Surface modeling software packages allow geologists to model and map topographic and stratigraphic horizons. These map products, however, often differ from maps prepared without computerized mapping. The authors mapping of the Pleistocene-bedrock unconformity in east-central Illinois (1:100,000-scale), which includes the Mahomet paleovalley, illustrates this situation and demonstrates how both mapping methods, manual and computer, contribute to a better understanding of the paleovalley. A conventional hand-drawn map was constructed over a number of years by manually plotting and contouring bedrock elevations, primarily from water well logs, onto various county and local topographic bases. A computer-generated map of the same area was completed as part of a recent project to map the bedrock geology. It was prepared by carefully selecting data, which included geographic coordinates, unique well identification numbers, and bedrock elevations. Primary data sources were hydrocarbon exploration and storage wells. Digitizing the hand-drawn map allowed the two maps to be overlaid and compared. Several significant geomorphic features appeared on one map and not the other because of the use of different databases and inconsistent selection of data used for the hand-drawn map. The hand-drawn map appears more realistic, i.e., like a modern surface, because the mappers used their knowledge of geomorphic concepts in drawing the contours. Most of the data selection for the computer-generated map was completed prior to plotting of the map and therefore is less susceptible to bias interpretations. The computer-generated map, however, is less topographically realistic in areas where data are sparse because the extrapolation methods used to define the surface do not recognize geologic processes or bedrock lithology.

  3. Present status and an appreciation of the consequences for recreation and outdoor leisure activities from siting a nuclear waste repository at Forsmark; Nulaegesanalys samt bedoemning av konsekvenser foer rekreation och friluftsliv av ett slutfoervar i Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Pia [Atrax Energi AB, Stockholm (Sweden)

    2007-07-15

    This report describes how the area around Forsmark is used with respect to recreation and outdoor life. It also describes the impact of the final repository on recreation and outdoor life if it is located in Forsmark. The studied area is situated in the parish of Forsmark in the municipality of Oesthammar. Forsmark nuclear power plant and the final repository for radioactive operational waste, SFR, are situated within the area and there are both houses and holiday houses. The area is used for leisure pursuit by inhabitants and employees at FKA and SKB, but also by a number of different associations and by tourists. Statistical data shows that the parish of Forsmark is sparsely populated. The area was previously dominated by one big landowner and the land surrounding the nuclear power plant was inaccessible to the general public during that period. The outdoor life is therefore less widespread here than along other parts of the east coast. The value of the area does not lie in paths and trails, bike tracks and bathing places, but in the unspoiled countryside, the wildlife and the bird life. Recreation such as hunting and fishing is very popular in the area. The construction of a final repository will increase traffic and hence increase noise and motion in the area. This will mainly impact the enjoyment value for the people spending time in the area. No other significant consequences are expected as the final repository will be mainly situated within the existing industrial complex and hence the character of the area should remain unchanged.

  4. Review of possible correlations between in situ stress and PFL fracture transmissivity data at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek (University of Alberta (United States)); Follin, Sven (SF GeoLogic AB (Sweden))

    2011-11-15

    In laboratory samples, the fracture transmissivity decreases significantly as the confining stress increases. While these experimental relationships are widely accepted and validated on laboratory samples, it is unknown if such relationships exist in situ or if these relationships can be scaled from the centimetre-scale laboratory tests to the metre-scale of in situ fractures. The purpose of this work is to assess the relationship between the structural-hydraulic data gathered in deep, cored boreholes at Forsmark and the in situ stress state acting on the these fractures. In conclusion, there does not appear to be sufficient evidence from these analyses to support the notion that the magnitude of the flow along the fractures at Forsmark is solely controlled by the in situ stress acting on the fracture. This should not be surprising because the majority of the fractures formed more than 1 billion years ago and the current in situ stress state has only been active for the past 12 million years. It is more likely that the transmissivity values are controlled by fracture roughness, open channels within the fracture, fracture stiffness and fracture infilling material

  5. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    International Nuclear Information System (INIS)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan; Rosen, L ars

    2007-09-01

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  6. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan [Geo Innova AB (Sweden); Rosen, L ars [Sweco Viak AB (Sweden)

    2007-09-15

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  7. Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-15

    The central conclusion of the safety assessment SR-Site is that a KBS-3 repository that fulfils long-term safety requirements can be built at the Forsmark site. This conclusion is reached because the favourable properties of the Forsmark site ensure the required long-term durability of the barriers of the KBS-3 repository. In particular, the copper canisters with their cast iron inserts have been demonstrated to provide a sufficient resistance to the mechanical and chemical loads to which they may be subjected in the repository environment. The conclusion is underpinned by: - The reliance of the KBS-3 repository on i) a geological environment that exhibits long-term stability with respect to properties of importance for long-term safety, i.e. mechanical stability, low groundwater flow rates at repository depth and the absence of high concentrations of detrimental components in the groundwater, and ii) the choice of naturally occurring materials (copper and bentonite clay) for the engineered barriers that are sufficiently durable in the repository environment to provide the barrier longevity required for safety. - The understanding, through decades of research at SKB and in international collaboration, of the phenomena that affect long-term safety, resulting in a mature knowledge base for the safety assessment. - The understanding of the characteristics of the site through several years of surface-based investigations of the conditions at depth and of scientific interpretation of the data emerging from the investigations, resulting in a mature model of the site, adequate for use in the safety assessment. - The detailed specifications of the engineered parts of the repository and the demonstration of how components fulfilling the specifications are to be produced in a quality assured manner, thereby providing a quality assured initial state for the safety assessment. The detailed analyses demonstrate that canister failures in a one million year perspective are rare

  8. Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project

    International Nuclear Information System (INIS)

    2011-03-01

    The central conclusion of the safety assessment SR-Site is that a KBS-3 repository that fulfils long-term safety requirements can be built at the Forsmark site. This conclusion is reached because the favourable properties of the Forsmark site ensure the required long-term durability of the barriers of the KBS-3 repository. In particular, the copper canisters with their cast iron inserts have been demonstrated to provide a sufficient resistance to the mechanical and chemical loads to which they may be subjected in the repository environment. The conclusion is underpinned by: - The reliance of the KBS-3 repository on i) a geological environment that exhibits long-term stability with respect to properties of importance for long-term safety, i.e. mechanical stability, low groundwater flow rates at repository depth and the absence of high concentrations of detrimental components in the groundwater, and ii) the choice of naturally occurring materials (copper and bentonite clay) for the engineered barriers that are sufficiently durable in the repository environment to provide the barrier longevity required for safety. - The understanding, through decades of research at SKB and in international collaboration, of the phenomena that affect long-term safety, resulting in a mature knowledge base for the safety assessment. - The understanding of the characteristics of the site through several years of surface-based investigations of the conditions at depth and of scientific interpretation of the data emerging from the investigations, resulting in a mature model of the site, adequate for use in the safety assessment. - The detailed specifications of the engineered parts of the repository and the demonstration of how components fulfilling the specifications are to be produced in a quality assured manner, thereby providing a quality assured initial state for the safety assessment. The detailed analyses demonstrate that canister failures in a one million year perspective are rare

  9. A probabilistic framework for the cover effect in bedrock erosion

    Science.gov (United States)

    Turowski, Jens M.; Hodge, Rebecca

    2017-06-01

    The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and long-term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover effect that can be applied to field, laboratory, and modelling data and thus allows the comparison of results from different sources. The framework describes the formation of sediment cover as a function of the probability of sediment being deposited on already alluviated areas of the bed. We define benchmark cases and suggest physical interpretations of deviations from these benchmarks. Furthermore, we develop a reach-scale model for sediment transfer in a bedrock channel and use it to clarify the relations between the sediment mass residing on the bed, the exposed bedrock fraction, and the transport stage. We derive system timescales and investigate cover response to cyclic perturbations. The model predicts that bedrock channels can achieve grade in steady state by adjusting bed cover. Thus, bedrock channels have at least two characteristic timescales of response. Over short timescales, the degree of bed cover is adjusted such that the supplied sediment load can just be transported, while over long timescales, channel morphology evolves such that the bedrock incision rate matches the tectonic uplift or base-level lowering rate.

  10. Inventory of vegetation and benthos in newly laid and natural ponds in Forsmark 2012; Inventering av vegetation och bottenfauna i nyanlagda och naturliga goelar i Forsmark 2012

    Energy Technology Data Exchange (ETDEWEB)

    Qvarfordt, Susanne; Wallin, Anders; Borgiel, Micke [Sveriges Vattenekologer AB, Vingaaker (Sweden)

    2013-01-15

    SKB plans to build a repository for the spent nuclear fuel. The repository is planned to be built in Forsmark and constitutes installations above and below ground. The building and operation of the construction will involve activities that might affect the nature in the area. The impact means, among other things, that a small water body, which today is a reproduction site for the red listed pool frog (Rana lessonae), will disappear. The lost locality for the pool frog has been compensated by creating four new ponds in the Forsmark area. This study is part of the follow-up of these new habitats. The aim is to describe the plant and animal communities in the ponds, and follow the succession, i.e. the development of the habitats. The study also includes two natural ponds that will serve as reference objects. The survey of vegetation and invertebrate fauna in the ponds was conducted in October 2012. The results show that the new ponds had low coverage of submersed vegetation and the species composition in the plant communities differed between the ponds. The reference ponds also had different plant communities, both in terms of species composition and coverage. This indicates that the species composition of the plant communities in the new ponds will likely depend on physical factors specific to the respective pond, but that higher vegetation coverage can be expected over time in all new ponds. The reference ponds had similar animal communities that differed from the animal communities in the new ponds. The similar species composition in the reference ponds, despite the variety of plant communities, suggests that similar animal communities are likely to develop in the new ponds, even if the plant communities continues to be different. Water chemical sampling has also been conducted in the ponds during 2012. A comparison of the inorganic environment (with regard to analysed ions) showed that the reference ponds had relatively similar ion compositions with little

  11. Roosevelt Island Bedrock and Surface Elevations, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of bedrock and surface elevation readings taken by ground penetrating radar and Global Positioning System (GPS) on Roosevelt Island, an ice...

  12. Greenland 5 km DEM, Ice Thickness, and Bedrock Elevation Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — A Digital Elevation Model (DEM), ice thickness grid, and bedrock elevation grid of Greenland acquired as part of the PARCA program are available in ASCII text format...

  13. Statistical model of fractures and deformations zones for Forsmark. Preliminary site description Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    La Pointe, Paul R.; Olofsson, Isabelle; Hermanson, Jan

    2005-04-01

    Compared to version 1.1, a much larger amount of data especially from boreholes is available. Both one-hole interpretation and Boremap indicate the presence of high and low fracture intensity intervals in the rock mass. The depth and width of these intervals varies from borehole to borehole but these constant fracture intensity intervals are contiguous and present quite sharp transitions. There is not a consistent pattern of intervals of high fracture intensity at or near to the surface. In many cases, the intervals of highest fracture intensity are considerably below the surface. While some fractures may have occurred or been reactivated in response to surficial stress relief, surficial stress relief does not appear to be a significant explanatory variable for the observed variations in fracture intensity. Data from the high fracture intensity intervals were extracted and statistical analyses were conducted in order to identify common geological factors. Stereoplots of fracture orientation versus depth for the different fracture intensity intervals were also produced for each borehole. Moreover percussion borehole data were analysed in order to identify the persistence of these intervals throughout the model volume. The main conclusions of these analyses are the following: The fracture intensity is conditioned by the rock domain, but inside a rock domain intervals of high and low fracture intensity are identified. The intervals of high fracture intensity almost always correspond to intervals with distinct fracture orientations (whether a set, most often the NW sub-vertical set, is highly dominant, or some orientation sets are missing). These high fracture intensity intervals are positively correlated to the presence of first and second generation minerals (epidote, calcite). No clear correlation for these fracture intensity intervals has been identified between holes. Based on these results the fracture frequency has been calculated in each rock domain for the

  14. Statistical model of fractures and deformations zones for Forsmark. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R. [Golder Associate Inc., Redmond, WA (United States); Olofsson, Isabelle; Hermanson, Jan [Golder Associates AB, Uppsala (Sweden)

    2005-04-01

    Compared to version 1.1, a much larger amount of data especially from boreholes is available. Both one-hole interpretation and Boremap indicate the presence of high and low fracture intensity intervals in the rock mass. The depth and width of these intervals varies from borehole to borehole but these constant fracture intensity intervals are contiguous and present quite sharp transitions. There is not a consistent pattern of intervals of high fracture intensity at or near to the surface. In many cases, the intervals of highest fracture intensity are considerably below the surface. While some fractures may have occurred or been reactivated in response to surficial stress relief, surficial stress relief does not appear to be a significant explanatory variable for the observed variations in fracture intensity. Data from the high fracture intensity intervals were extracted and statistical analyses were conducted in order to identify common geological factors. Stereoplots of fracture orientation versus depth for the different fracture intensity intervals were also produced for each borehole. Moreover percussion borehole data were analysed in order to identify the persistence of these intervals throughout the model volume. The main conclusions of these analyses are the following: The fracture intensity is conditioned by the rock domain, but inside a rock domain intervals of high and low fracture intensity are identified. The intervals of high fracture intensity almost always correspond to intervals with distinct fracture orientations (whether a set, most often the NW sub-vertical set, is highly dominant, or some orientation sets are missing). These high fracture intensity intervals are positively correlated to the presence of first and second generation minerals (epidote, calcite). No clear correlation for these fracture intensity intervals has been identified between holes. Based on these results the fracture frequency has been calculated in each rock domain for the

  15. Forsmark site characterisation - Borehole KFM22 and KFM23: Derivation of porewater data by diffusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Waber, H. N. [Rock Water Interaction, University of Bern, Bern (Switzerland); Smellie, J. A. T. [Conterra AB, Partille (Sweden)

    2012-04-15

    Within the Detum Project (Detailed Investigations in Forsmark) a 'Methodology comparison for porewater extraction and characterisation techniques' was initiated. This has centred on two shallow boreholes drilled at Soederviken within the northern part of the Forsmark characterisation site. The comparison includes different methodologies to characterise the chemical and isotopic composition of porewater residing in the connected pore space of the rock matrix. The present report describes the chemical and isotopic information of the porewater obtained by out-diffusion experiments and the diffusive isotope equilibration technique applied to originally water saturated drillcore samples. In addition, petrophysical data and solute transport properties of the rock matrix, all necessary for porewater characterisation, have also been elaborated. Specially conditioned drillcore samples were obtained from depths of less than 100 m from boreholes KFM22 and KFM23. Porewater has been extracted successfully from seven samples by laboratory out-diffusion and diffusive isotope exchange methods. The methodology to extract and analyse the porewater is outlined and the analytical data are tabulated. The data are critically reviewed for potential experimental artefacts and their significance with respect to in situ conditions. The connected pore space in the core material representing borehole KFM22 and KFM23 was measured on different types of originally saturated drillcore samples using gravimetric and isotope mass balance methods. Out-diffusion experiments were performed on kg-sized drillcore samples to derive the in situ concentration of the chemically conservative compounds chloride and bromide. The attainment of equilibrium conditions in the out-diffusion experiments was monitored by the concentration change of chloride and bromide as a function of time. The water isotope composition of porewater was determined by the diffusive isotope equilibration technique and by

  16. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-08-01

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  17. Thermal modelling. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2005-08-01

    This report presents the thermal site descriptive model for the Forsmark area, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for two different lithological domains (RFM029 and RFM012, both dominated by granite to granodiorite (101057)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Two alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Forsmark area, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. Results indicate that the mean of thermal conductivity is expected to exhibit a small variation between the different domains, 3.46 W/(mxK) for RFM012 to 3.55 W/(mxK) for RFM029. The spatial distribution of the thermal conductivity does not follow a simple model. Lower and upper 95% confidence limits are based on the modelling results, but have been rounded of to only two significant figures. Consequently, the lower limit is 2.9 W/(mxK), while the upper is 3.8 W/(mxK). This is applicable to both the investigated domains. The temperature dependence is rather small with a decrease in thermal conductivity of 10.0% per 100 deg C increase in temperature for the dominating rock type. There are a number of important uncertainties associated with these results. One of the uncertainties considers the representative scale for the canister. Another important uncertainty is the methodological uncertainties associated with the upscaling of thermal conductivity from cm-scale to canister scale. In addition, the representativeness of rock samples is

  18. The biotest basin of the Forsmark nuclear power plant, Sweden. An experiment on the ecosystem level

    International Nuclear Information System (INIS)

    Grimaas, U.

    1979-01-01

    Biotope models of various sizes and enclosed waters in connection with radionuclide release constitute important tools for radioecological experiments, representing an intermediate step between field and laboratory conditions. The biotest basin at Forsmark is especially constructed for investigations on the effects of radioactivity and heat on a brackish water ecosystem. The basin encloses a water area of 1km 2 in the outer archipelago of the region and is fed with cooling water and released radionuclides by a discharge tunnel. The quantities of the discharges into the basin are adjustable. The biotest experiment permits a quantification of the retention and transport of radionuclides at the various trophic levels. Of special value is the possibility to work with known populations of fish. The approach has the advantage of experimental ecology - the control of important parameters - under the impact of all environmental factors in a complete ecosystem. (author)

  19. Forsmark site investigation. Assessment of the validity of the rock domain model, version 1.2, based on the modelling of gravity and petrophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, Hans (GeoVista AB, Uppsala (SE)); Stephens, Michael B. (Geological Survey of Sweden, Uppsala (SE))

    2007-11-15

    This document reports the results gained by the geophysical modelling of rock domains based on gravity and petrophysical data, which is one of the activities performed within the site investigation work at Forsmark. The main objective with this activity is to assess the validity of the geological rock domain model version 1.2, and to identify discrepancies in the model that may indicate a need for revision of the model or a need for additional investigations. The verification is carried out by comparing the calculated gravity model response, which takes account of the geological model, with a local gravity anomaly that represents the measured data. The model response is obtained from the three-dimensional geometry and the petrophysical data provided for each rock domain in the geological model. Due to model boundary conditions, the study is carried out in a smaller area within the regional model area. Gravity model responses are calculated in three stages; an initial model, a base model and a refined base model. The refined base model is preferred and is used for comparison purposes. In general, there is a good agreement between the refined base model that makes use of the rock domain model, version 1.2 and the measured gravity data, not least where it concerns the depth extension of the critical rock domain RFM029. The most significant discrepancy occurs in the area extending from the SFR office to the SFR underground facility and further to the northwest. It is speculated that this discrepancy is caused by a combination of an overestimation of the volume of gabbro (RFM016) that plunges towards the southeast in the rock domain model, and an underestimation of the volume of occurrence of pegmatite and pegmatitic granite that are known to be present and occur as larger bodies around SFR. Other discrepancies are noted in rock domain RFM022, which is considered to be overestimated in the rock domain model, version 1.2, and in rock domain RFM017, where the gravity

  20. Bedrock morphology and structure, upper Santa Cruz Basin, south-central Arizona, with transient electromagnetic survey data

    Science.gov (United States)

    Bultman, Mark W.; Page, William R.

    2016-10-31

    The upper Santa Cruz Basin is an important groundwater basin containing the regional aquifer for the city of Nogales, Arizona. This report provides data and interpretations of data aimed at better understanding the bedrock morphology and structure of the upper Santa Cruz Basin study area which encompasses the Rio Rico and Nogales 1:24,000-scale U.S. Geological Survey quadrangles. Data used in this report include the Arizona Aeromagnetic and Gravity Maps and Data referred to here as the 1996 Patagonia Aeromagnetic survey, Bouguer gravity anomaly data, and conductivity-depth transforms (CDTs) from the 1998 Santa Cruz transient electromagnetic survey (whose data are included in appendixes 1 and 2 of this report).Analyses based on magnetic gradients worked well to identify the range-front faults along the Mt. Benedict horst block, the location of possibly fault-controlled canyons to the west of Mt. Benedict, the edges of buried lava flows, and numerous other concealed faults and contacts. Applying the 1996 Patagonia aeromagnetic survey data using the horizontal gradient method produced results that were most closely correlated with the observed geology.The 1996 Patagonia aeromagnetic survey was used to estimate depth to bedrock in the upper Santa Cruz Basin study area. Three different depth estimation methods were applied to the data: Euler deconvolution, horizontal gradient magnitude, and analytic signal. The final depth to bedrock map was produced by choosing the maximum depth from each of the three methods at a given location and combining all maximum depths. In locations of rocks with a known reversed natural remanent magnetic field, gravity based depth estimates from Gettings and Houser (1997) were used.The depth to bedrock map was supported by modeling aeromagnetic anomaly data along six profiles. These cross sectional models demonstrated that by using the depth to bedrock map generated in this study, known and concealed faults, measured and estimated magnetic

  1. Removal of groundwater from final repository in Forsmark. Description of consequences for nature values and forest production; Bortledande av grundvatten fraan slutfoervarsanlaeggningen i Forsmark. Beskrivning av konsekvenser foer naturvaerden och skogsproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Ulrika; Collinder, Per; Allmer, Johan (Ekologigruppen AB (Sweden))

    2010-11-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) has chosen Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes consequences for nature values and forestry due to groundwater diversion during construction and operation of the repository. The report concerns nature values that depend on, or are favoured by, a groundwater table close to or above the ground surface

  2. Cable-suspended Ice and Bedrock Electromechanical Drill: Design and Tests

    Science.gov (United States)

    Wang, Rusheng; Talalay, Pavel; Sun, Youhong; Zheng, Zhichuan; Cao, Pinlu; Zhang, Nan; Chen, Chen; Xu, Huiwen; Xue, Hong; Xue, Jun; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Gong, Da; Liu, Chunpeng; Han, Junjie; Yu, Chengfeng; Hong, Jialing; Wang, Lili

    2014-05-01

    Directly obtaining the subglacial bedrock samples is one of the most important tasks of Antarctic exploration in the future, which has great significance to research the formation and evolution of the Antarctic ice sheet, research the environment at the junction of the ice and bedrock, and research the geologic structure in Polar Regions. To drill through ice and bedrock, a new modified version of the cable-suspended Ice and Bedrock Electromechanical Drill 'IBED' is designed. IBED drill has modulus construction. The upper part includes four sections: cable termination, slip rings section, antitorque system, electronic pressure chamber. The motor-gear system is differed by rotation speed of the output shaft of the gear-reducer. All modulus contain 3 kW AC3 × 380 V submersible motor. Gear-reducer for drilling in ice lowers the drill bit rotation speed to 100 rpm; gear reducer for subglacial drilling lowers the drill bit rotation speed to 500 rpm. In addition, module for dry core drilling contains vacuum pump for near bottom air reverse circulation instead of liquid-driven pump that is installed into other two variants. The rotation speed of air-driven pump is increased by the gear to 6000 rpm. In modules for drilling with liquid the gear pump is used with capacity of 38-41 L/min and maximal pressure of 0.2 MPa. IBED lower part for drilling in ice consists from two parts: chip chamber for filtration of drilling fluid and collecting chips, and core barrel with the drill bit. The outer/inner diameter of the ice core drill bit is 134/110 mm. Length of the core barrel is 2.5 m. Lower part of the bedrock drill is adapted for coring bedrock and contains standard 2-m length core barrel borrowed from conventional diamond drill string, chip chamber for gravity separation of rock cuttings and dead weights (appr. 200 kg) for increasing of the load on the diamond drill bit. The outer/inner diameters of the diamond bit are 59/41 mm. The IBED drill was tested in order to solve

  3. Initial yield to depth relation for water wells drilled into crystalline bedrock - Pinardville quadrangle, New Hampshire

    Science.gov (United States)

    Drew, L.J.; Schuenemeyer, J.H.; Amstrong, T.R.; Sutphin, D.M.

    2001-01-01

    A model is proposed to explain the statistical relations between the mean initial water well yields from eight time increments from 1984 to 1998 for wells drilled into the crystalline bedrock aquifer system in the Pinardville area of southern New Hampshire and the type of bedrock, mean well depth, and mean well elevation. Statistical analyses show that the mean total yield of drilling increments is positively correlated with mean total well depth and mean well elevation. In addition, the mean total well yield varies with rock type from a minimum of 46.9 L/min (12.4 gpm) in the Damon Pond granite to a maximum of 74.5 L/min (19.7 gpm) in the Permian pegmatite and granite unit. Across the eight drilling increments that comprise 211 wells each, the percentages of very low-yield wells (1.9 L/min [0.5 gpm] or less) and high-yield wells (151.4 L/min [40 gpm] or more) increased, and those of intermediate-yield wells decreased. As housing development progressed during the 1984 to 1998 interval, the mean depth of the wells and their elevations increased, and the mix of percentages of the bedrock types drilled changed markedly. The proposed model uses a feed-forward mechanism to explain the interaction between the increasing mean elevation, mean well depth, and percentages of very low-yielding wells and the mean well yield. The increasing percentages of very low-yielding wells through time and the economics of the housing market may control the system that forces the mean well depths, percentages of high-yield wells, and mean well yields to increase. The reason for the increasing percentages of very low-yield wells is uncertain, but the explanation is believed to involve the complex structural geology and tectonic history of the Pinardville quadrangle.

  4. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  5. Quaternary sediment thickness and bedrock topography of the glaciated United States east of the Rocky Mountains

    Science.gov (United States)

    Soller, David R.; Garrity, Christopher P.

    2018-01-26

    is called the Holocene and, together with the Pleistocene, constitutes the Quaternary Period of geologic time; this publication characterizes the three-dimensional geometry of the Quaternary sediments and the bedrock surface that lies beneath.The pre-glacial landscape was underlain mostly by weathered bedrock generally similar in nature to that found in many areas of the non-glaciated United States. Glacial erosion and redeposition of earth materials produced a young, mineral-rich soil that formed the basis for the highly productive agricultural economy in the U.S. midcontinent. Extensive buried sands and gravels within the glacial deposits also provided a stimulus to other economic sectors by serving as high-quality aquifers supplying groundwater to the region’s industry and cities. An understanding of the three-dimensional distribution of these glacial sediments has direct utility for addressing various societal issues including groundwater quality and supply, and landscape and soil response to earthquake-induced shaking.The Quaternary sediment thickness map and bedrock topographic map shown here provide a regional overview and are intended to supplement the more detailed work on which they are based. Detailed mapping is particularly useful in populated areas for site-specific planning. In contrast, regional maps such as these serve to place local, detailed mapping in context; to permit the extrapolation of data into unmapped areas; and to depict large-scale regional geologic features and patterns that are beyond the scope of local, detailed mapping. They also can enhance the reader’s general understanding of the region’s landscape and geologic history and provide a source of information for regional decision making that could benefit by improved predictability of bedrock depth beneath the unconsolidated Quaternary sediments. To enable these maps to be analyzed in conjunction with other types of information, this publication also includes the map data in GIS

  6. Digital representation of exposures of Precambrian bedrock in parts of Dickinson and Iron Counties, Michigan, and Florence and Marinette Counties, Wisconsin

    Science.gov (United States)

    Cannon, William F.; Schulte, Ruth; Bickerstaff, Damon

    2018-04-04

    The U.S. Geological Survey (USGS) conducted a program of bedrock geologic mapping in much of the central and western Upper Peninsula of Michigan from the 1940s until the late 1990s. Geologic studies in this region are hampered by a scarcity of bedrock exposures because of a nearly continuous blanket of unconsolidated sediments resulting from glaciation of the region during the Pleistocene ice ages. The USGS mapping, done largely at a scale of 1:24,000, routinely recorded the location and extent of exposed bedrock to provide both an indication of where direct observations were made and a guide for future investigations to expedite location of observable rock exposures. The locations of outcrops were generally shown as colored or patterned overlays on printed geologic maps. Although those maps have been scanned and are available as Portable Document Format (PDF) files, no further digital portrayal of the outcrops had been done. We have conducted a prototype study of digitizing and improving locational accuracy of the outcrop locations in parts of Dickinson County, Michigan, to form a data layer that can be used with other data layers in geographic information system applications.

  7. Chemical conditions in present and future ecosystems in Forsmark - implications for selected radionuclides in the safety assessment SR-Site

    International Nuclear Information System (INIS)

    Troejbom, Mats; Grolander, Sara

    2010-12-01

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to describe the future development of the chemical conditions at Forsmark, based on the present chemical conditions at landscape level taking landscape development and climate cases into consideration. The results presented contribute to the overall understanding of the present and future chemistry in the Forsmark area, and specifically, to the understanding of the behaviour of some selected radionuclides in the surface system. The future development of the chemistry at the site is qualitatively discussed with focus on the interglacial within the next 10,000 years. The effects on the chemical environment of future climate cases as Global Warming and cold permafrost climates are also briefly discussed. The work is presented in two independent parts describing background radionuclide activities in the Forsmark area and the distribution and behaviour of a large number of stable elements in the landscape. In a concluding section, implications of the future chemical environment of a selection of radionuclides important in the Safety Assessment are discussed based on the knowledge of stable elements. The broad range of elements studied show that there are general and expected patterns for the distribution and behaviour in the landscape of different groups of elements. Mass balances reveal major sources and sinks, pool estimations show where elements are accumulated in the landscape and estimations of time-scales give indications of the potential future development. This general knowledge is transferred to radionuclides not measured in order to estimate their behaviour and distribution in the landscape. It could be concluded that the future development of the chemical environment in the Forsmark area might affect element specific parameters used in de radionuclide model in different directions depending on element. The alternative climate cases, Global Warming

  8. Chemical conditions in present and future ecosystems in Forsmark - implications for selected radionuclides in the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mats Troejbom Konsult AB (Sweden)); Grolander, Sara (Facilia AB (Sweden))

    2010-12-15

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to describe the future development of the chemical conditions at Forsmark, based on the present chemical conditions at landscape level taking landscape development and climate cases into consideration. The results presented contribute to the overall understanding of the present and future chemistry in the Forsmark area, and specifically, to the understanding of the behaviour of some selected radionuclides in the surface system. The future development of the chemistry at the site is qualitatively discussed with focus on the interglacial within the next 10,000 years. The effects on the chemical environment of future climate cases as Global Warming and cold permafrost climates are also briefly discussed. The work is presented in two independent parts describing background radionuclide activities in the Forsmark area and the distribution and behaviour of a large number of stable elements in the landscape. In a concluding section, implications of the future chemical environment of a selection of radionuclides important in the Safety Assessment are discussed based on the knowledge of stable elements. The broad range of elements studied show that there are general and expected patterns for the distribution and behaviour in the landscape of different groups of elements. Mass balances reveal major sources and sinks, pool estimations show where elements are accumulated in the landscape and estimations of time-scales give indications of the potential future development. This general knowledge is transferred to radionuclides not measured in order to estimate their behaviour and distribution in the landscape. It could be concluded that the future development of the chemical environment in the Forsmark area might affect element specific parameters used in de radionuclide model in different directions depending on element. The alternative climate cases, Global Warming

  9. Hydrochemical patterns of a small lake and a stream in an uplifting area proposed as a repository site for spent nuclear fuel, Forsmark, Sweden

    Science.gov (United States)

    Rönnback, Pernilla; Åström, Mats

    2007-10-01

    SummaryThe overall aim of this study was to increase the understanding of the chemical dynamics of small catchments. The focus was on a small oligotropic lake and its major inflow stream in an uplifting area in eastern Sweden (Forsmark) proposed as a repository site for spent nuclear fuel. The hydrochemical sampling campaign lasted for nearly 4 years with sample collection monthly to semi-monthly, and continuous flow measurements carried out over the last 20 months. All this was done as part of the Swedish Nuclear Fuel and Waste Management Company's (SKBs) Site Investigation Programme. The major findings were: (1) as a result of the calcareous overburden caused by redistributed Paleozoic deposits, pH and the Ca and HCO3- concentrations were relatively high in both the stream and lake throughout the period, (2) limnic primary production resulted in decreased concentrations of Ca, HCO3-, NH4+, NO3- and Si, and increased pH and concentrations of chlorophyll a, O 2, DON, POC, PON and POP in the lake in summer, while in other seasons (in winter in particular) when the production was minimal or non-existent the concentrations in the lake and the inflow stream were similar, (3) intrusion of brackish-water resulted in moderately to strongly increased concentrations of Cl -, Na, Mg, Br -, SO42-, K and Sr in the lake: the ratio versus Cl - were for Na and Br - always similar to those in sea water, for Mg and SO42- similar to those in sea water at elevated Cl - concentrations (>3 mM), while K and Sr always occurred in relative excess as compared to sea water, (4) high U concentrations in both the stream and the lake was derived most likely from reduced U-minerals in the overburden and was predicted to be carried to >90% in the form of calcium uranyl carbonate, in a model in which colloidal Fe and Al oxyhydroxides were not considered, (5) the rare earth elements (REEs) had similar concentrations and fractionation patterns in the stream and lake, unlike those found in the

  10. Spatial bedrock erosion distribution in a natural gorge

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half

  11. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  12. Geochemistry of the ground waters of the bedrock on Haestholmen, Loviisa

    International Nuclear Information System (INIS)

    Hyyppae, J.

    1984-03-01

    Haestholmen is an island in the Gulf of Finland about 80 km east of Helsinki and 10 km southeast of the c entre of the town of Loviisa. Because of its geological location at the western margin of the Viipuri rapakivi massif its bedrock is composed of various types of rapakivi. The geochemistry of the ground waters in the Haestholmen area was studied by taking samples from seven 200-m-deep holes. Electric conductivity, contents of fluoride, lead, zinc, cadmium copper and chromium were determined in samples from different layers of ground water. The present ground-water conditions in the bedrock of Haestholmen are due to the rise of the islands at a rate of close to 30 cm in 100 years, in other words, the highest places on the island were at about sea level around 5000 years ago. The layer of fresh ground water will continue to expand laterally and vertically over the next years, when the land will rise by about 1.5 m if the climate remains more or less the same as it is at present

  13. Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain

    Directory of Open Access Journals (Sweden)

    J. R. Raposo

    2012-06-01

    Full Text Available Quantifying groundwater recharge in crystalline rocks presents great difficulties due to the high heterogeneity of the underground medium (mainly, due to heterogeneity in fracture network, which determines hydraulic parameters of the bedrock like hydraulic conductivity or effective porosity. Traditionally these rocks have been considered to have very low permeability, and their groundwater resources have usually been neglected; however, they can be of local importance when the bedrock presents a net of well-developed fractures. The current European Water Framework Directive requires an efficient management of all groundwater resources; this begins with a proper knowledge of the aquifer and accurate recharge estimation. In this study, an assessment of groundwater resources in the Spanish hydrologic district of Galicia-Costa, dominated by granitic and metasedimentary rocks, was carried out. A water-balance modeling approach was used for estimating recharge rates in nine pilot catchments representatives of both geologic materials. These results were cross-validated with an independent technique, i.e. the chloride mass balance (CMB. A relation among groundwater recharge and annual precipitation according to two different logistic curves was found for both granites and metasedimentary rocks, thus allowing the parameterization of recharge by means of only a few hydrogeological parameters. Total groundwater resources in Galicia-Costa were estimated to be 4427 hm3 yr−1. An analysis of spatial and temporal variability of recharge was also carried out.

  14. The use of surface geophysical techniques to detect fractures in bedrock; an annotated bibliography

    Science.gov (United States)

    Lewis, Mark R.; Haeni, F.P.

    1987-01-01

    This annotated bibliography compiles references about the theory and application of surface geophysical techniques to locate fractures or fracture zones within bedrock units. Forty-three publications are referenced, including journal articles, theses, conference proceedings, abstracts, translations, and reports prepared by private contractors and U.S. Government agencies. Thirty-one of the publications are annotated. The remainder are untranslated foreign language articles, which are listed only as bibliographic references. Most annotations summarize the location, geologic setting, surface geophysical technique used, and results of a study. A few highly relevant theoretical studies are annotated also. Publications that discuss only the use of borehole geophysical techniques to locate fractures are excluded from this bibliography. Also excluded are highly theoretical works that may have little or no known practical application.

  15. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    International Nuclear Information System (INIS)

    Brandefelt, Jenny; Naeslund, Jens-Ove; Zhang, Qiong; Hartikainen, Juha

    2013-05-01

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next ∼60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO 2 concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO 2 concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO 2 concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO 2 concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on simulations with an Earth system model

  16. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    Brantberger, Martin; Zetterqvist, Anders [Ramboell Sweden AB, Stockholm (Sweden); Arnbjerg-Nielsen, Torben [Ramboell Denmark A/S, Virum (Denmark); Olsson, Tommy [IandT Olsson AB, Uppsala (Sweden); Outters, Nils [Golder Associates AB, Uppsala (Sweden); Syrjaenen, Pauli [Gridpoint Oy, Helsinki (Sweden)

    2006-04-15

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due

  17. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    Energy Technology Data Exchange (ETDEWEB)

    Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake [Dept. of Forest Soi ls, Swedish Univ. of Agricultural Sciences (Sweden); Hyvoenen, Riitta [Dept. of Eco logy, Swedish Univ. of Agricultural Sciences (Sweden)

    2007-04-15

    The site investigations reported here were conducted to provide data for the comprehensive descriptive ecosystem model that is being constructed. This report provides estimates of annual inputs of aboveground litter from trees (dry mass and amounts of C and N), litter decomposition rates and changes in organic and inorganic components in litter during decomposition. The study in the Forsmark area comprised two Norway spruce (Picea abies (L.) Karst) stands (sites F1 and F3), and a mixed stand of Norway spruce and alder (Alnus glutinosa (L.) Gaertn.) (site F2). The study in the Oskarshamn area comprised one common oak stand (Quercus robur L.) (site O1), one Scots pine stand (Pinus silvestris L.) (site O2) and one Norway spruce stand (site O3). In the Forsmark area, the aboveground litterfall from trees was of similar magnitude at sites F1 and F2, but considerably lower at site F3. At the former sites the average annual litterfall amounted to 195 and 231 gdw/m{sup 2} respectively, whereas the latter site received only 136 gdw/m{sup 2}. There was also a large variation in annual litterfall between stands in the Oskarshamn area. The spruce stand at site O3 exhibited the highest litterfall (almost 400 gdw/m{sup 2}), followed by the oak stand at site O1 (with almost 300 gdw/m{sup 2}), whereas the pine stand at site O2 had the lowest (less than 150 gdw/m{sup 2}). The proportion of needles/leaves in the total litterfall varied between 65% and 75% for the stands. The amount of carbon (C) returned in aboveground litterfall amounted to between 60 and 110 gdw/m{sup 2}/yr at the forest sites within the Forsmark area. The corresponding range for the sites in the Oskarshamn area was 70 to 190 gdw/m{sup 2}/yr. At sites O1 and O2 in Oskarshamn, about 3.6 gdw/m{sup 2}/yr of nitrogen (N) were returned annually to the forest floor by the aboveground litterfall. This was over four times the N amount deposited in the Scots pine stand in the same area (about 0.8 gdw/m{sup 2}/yr). At the

  18. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    Energy Technology Data Exchange (ETDEWEB)

    Brandefelt, Jenny; Naeslund, Jens-Ove [Svensk Kaernbraenslehantering, Stockholm (Sweden); Zhang, Qiong [Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden); Hartikainen, Juha [School of Engineering, Aalto Univ., Aalto (Finland)

    2013-05-15

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next {approx}60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO{sub 2} concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO{sub 2} concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO{sub 2} concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO{sub 2} concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on

  19. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    International Nuclear Information System (INIS)

    Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake; Hyvoenen, Riitta

    2007-04-01

    The site investigations reported here were conducted to provide data for the comprehensive descriptive ecosystem model that is being constructed. This report provides estimates of annual inputs of aboveground litter from trees (dry mass and amounts of C and N), litter decomposition rates and changes in organic and inorganic components in litter during decomposition. The study in the Forsmark area comprised two Norway spruce (Picea abies (L.) Karst) stands (sites F1 and F3), and a mixed stand of Norway spruce and alder (Alnus glutinosa (L.) Gaertn.) (site F2). The study in the Oskarshamn area comprised one common oak stand (Quercus robur L.) (site O1), one Scots pine stand (Pinus silvestris L.) (site O2) and one Norway spruce stand (site O3). In the Forsmark area, the aboveground litterfall from trees was of similar magnitude at sites F1 and F2, but considerably lower at site F3. At the former sites the average annual litterfall amounted to 195 and 231 gdw/m 2 respectively, whereas the latter site received only 136 gdw/m 2 . There was also a large variation in annual litterfall between stands in the Oskarshamn area. The spruce stand at site O3 exhibited the highest litterfall (almost 400 gdw/m 2 ), followed by the oak stand at site O1 (with almost 300 gdw/m 2 ), whereas the pine stand at site O2 had the lowest (less than 150 gdw/m 2 ). The proportion of needles/leaves in the total litterfall varied between 65% and 75% for the stands. The amount of carbon (C) returned in aboveground litterfall amounted to between 60 and 110 gdw/m 2 /yr at the forest sites within the Forsmark area. The corresponding range for the sites in the Oskarshamn area was 70 to 190 gdw/m 2 /yr. At sites O1 and O2 in Oskarshamn, about 3.6 gdw/m 2 /yr of nitrogen (N) were returned annually to the forest floor by the aboveground litterfall. This was over four times the N amount deposited in the Scots pine stand in the same area (about 0.8 gdw/m 2 /yr). At the Forsmark sites, the N return in

  20. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-12-01

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  1. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (Sweden)

    2006-12-15

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  2. Assessing the velocity of the groundwater flow in bedrock fractures

    International Nuclear Information System (INIS)

    Taivassalo, V.; Poteri, A.

    1994-10-01

    Teollisuuden Voima Oy (TVO) is studying the crystalline bedrock in Finland for the final disposal of the spent nuclear fuel from its two reactors in Olkiluoto. Preliminary site investigations for five areas were carried out during 1987-1992. One part of the investigation programme was three-dimensional groundwater flow modelling. The numerical site-specific flow simulations were based on the concept of an equivalent porous continuum. The results include hydraulic head distributions, average groundwater flow rate routes. In this study, a novel approach was developed to evaluate the velocities of the water particles flowing in the fractured bedrock. (17 refs., 15 figs., 5 tabs.)

  3. Study of the possibility of localising a channel instability in Forsmark-1

    International Nuclear Information System (INIS)

    Karlsson, J.K-H.; Pazsit, I.

    1998-01-01

    A special type of instability occurred in the Swedish BWR Forsmark 1 in 1996. In contrast to the better known global or regional instabilities, the decay ratio appeared to be very high in one half of the core and quite low in the other half. A more detailed analysis showed that the most likely reason for the observed behaviour is a local perturbation of thermohydraulic character induced by the incorrect positioning of a fuel assembly. In such a case it is of importance to determine the position of the unseated assembly already during operation so that it can be easily found during reloading. The subject of this paper is to report on development and application of a method by which the position of such a local perturbation can be determined. The method can be separated into two parts that support and complement each other. First a visualisation technique was elaborated which displays the space-time behaviour of the neutron flux oscillations in the core. This visualisation expedites a very good qualitative comprehension of the situation and can be useful for the operators. It also gives a basis for the application of the localisation algorithm. Second, a quantitative localisation method, based on reactor physical models of the perturbation and of the transfer function between the perturbation and the flux oscillations, was elaborated. This latter takes noise spectra from selected detectors as input and yields the perturbation position as output. The strength of the method lies in its potentially high spatial resolution, which is smaller than the typical distance between two adjacent LPRM detectors. The method was tested on simulated data, and then applied to the Forsmark measurements. The location of the disturbance, found by the algorithm, is in accordance with independent judgements for the case, and close to a position where an unseated assembly was found during refuelling. The purpose of this study was to develop and test the localisation method. To apply the

  4. The amount of glacial erosion of the bedrock

    International Nuclear Information System (INIS)

    Paasse, Tore

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m

  5. The amount of glacial erosion of the bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Paasse, Tore [Geological Survey of Sweden, Uppsala (Sweden)

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m.

  6. Bedrock topography beneath uppermost part of Aletsch glacier, Central Swiss Alps, revealed from cosmic-ray muon radiography

    Science.gov (United States)

    Nishiyama, Ryuichi; Ariga, Akitaka; Ariga, Tomoko; Käser, Samuel; Lechmann, Alessandro; Mair, David; Scampoli, Paola; Vladymyrov, Mykhailo; Ereditato, Antonio; Schlunegger, Fritz

    2017-04-01

    In mountainous landscapes such as the Central Alps of Europe, the bedrock topography is one of the most interesting subjects of study since it separates the geological substratum (bedrock) from the overlying unconsolidated units (ice). The geometry of the bedrock topography puts a tight constraint on the erosional mechanism of glaciers. In previous studies, it has been inferred mainly from landscapes where glaciers have disappeared after the termination of the last glacial epoch. However, the number of studies with a focus on the structure beneath active glaciers is limited, because existing exploration methods have limitation in resolution and mobility. The Eiger-μ project proposes a new technology, called muon radiography, to investigate the bedrock geometry beneath active glaciers. The muon radiography is a recent technique that relies on the high penetration power of muon components in natural cosmic rays. Specifically, one can resolve the internal density profile of a gigantic object by measuring the attenuation rate of the intensity of muons after passing through it, as in medical X-ray diagnostic. This technique has been applied to many fields such as volcano monitoring (eg. Ambrosino et al., 2015; Jourde et al., 2016; Nishiyama et al., 2016), detection of seismic faults (eg. Tanaka et al., 2011), inspection inside nuclear reactors, etc. The first feasibility test of the Eiger-μ project has been performed at Jungfrau region, Central Swiss Alps, Switzerland. We installed cosmic-ray detectors consisting of emulsion films at three sites along the Jungfrau railway tunnel facing Aletsch glacier (Jungfraufirn). The detectors stayed 47 days in the tunnel and recorded the tracks of muons which passed through the glacier and bedrock (thickness is about 100 m). Successively the films were chemically developed and scanned at University of Bern with microscopes originally developed for the analysis of physics experiments on neutrino oscillation. The analysis of muon

  7. Yield of bedrock wells in the Nashoba terrane, central and eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Barbaro, Jeffrey R.

    2012-01-01

    The yield of bedrock wells in the fractured-bedrock aquifers of the Nashoba terrane and surrounding area, central and eastern Massachusetts, was investigated with analyses of existing data. Reported well yield was compiled for 7,287 wells from Massachusetts Department of Environmental Protection and U.S. Geological Survey databases. Yield of these wells ranged from 0.04 to 625 gallons per minute. In a comparison with data from 103 supply wells, yield and specific capacity from aquifer tests were well correlated, indicating that reported well yield was a reasonable measure of aquifer characteristics in the study area. Statistically significant relations were determined between well yield and a number of cultural and hydrogeologic factors. Cultural variables included intended water use, well depth, year of construction, and method of yield measurement. Bedrock geology, topography, surficial geology, and proximity to surface waters were statistically significant hydrogeologic factors. Yield of wells was higher in areas of granites, mafic intrusive rocks, and amphibolites than in areas of schists and gneisses or pelitic rocks; higher in valleys and low-slope areas than on hills, ridges, or high slopes; higher in areas overlain by stratified glacial deposits than in areas overlain by till; and higher in close proximity to streams, ponds, and wetlands than at greater distances from these surface-water features. Proximity to mapped faults and to lineaments from aerial photographs also were related to well yield by some measures in three quadrangles in the study area. Although the statistical significance of these relations was high, their predictive power was low, and these relations explained little of the variability in the well-yield data. Similar results were determined from a multivariate regression analysis. Multivariate regression models for the Nashoba terrane and for a three-quadrangle subarea included, as significant variables, many of the cultural and

  8. Deep geological disposal of nuclear waste in the Swedish crystalline bedrock

    International Nuclear Information System (INIS)

    Thegerstroem, Claes; Laarouchi Engstroem, Saida

    2013-01-01

    Nuclear power companies in Sweden jointly established the Swedish Nuclear Fuel and Waste Management Company (SKB) in the 1970s. SKB's assignment is to manage and dispose of all radioactive waste from Swedish nuclear power plants in such a way as to secure maximum safety for human beings and the environment. Since 1992 a stepwise process has been under way, aiming at finding a site for a final repository for spent nuclear fuel. This process was based on our view that a successful work requires that the safety of the site finally selected is met and that the municipality is in favour of the siting. SKB's record of communication related activities includes a wide variety of experiences, and we have learned from all of them. Over time we have identified a number of basic conditions, which are fundamental for a stable and successful siting process. - The siting process shall be transparent and based on voluntary participation. - It's important to maintain a constant dialogue and to express it in comprehensible terms. - A clear division of responsibilities between stakeholders is a key question. - Give the process the time that is needed - try to avoid being in too much of a hurry. - A step-wise and adaptive approach to the implementation of the disposal system. - Despite all non-technical aspects of communication, the continued good performances of operating facilities and of R and D work to guarantee top-quality technical systems are a must. (orig.)

  9. Outcrop samples from Forsmark. Determination of thermal properties by the TPS-Method

    Energy Technology Data Exchange (ETDEWEB)

    Adl-Zarrabi, Bijan [Swedish National Testing and Research Inst., Boras (Sweden)

    2003-04-01

    Porosity, density and thermal properties were measured for five different outcrop samples from Forsmark namely: two samples of Metatonalit, Metadiorit, Metagranit and Metagranodiorit. Measurements were performed according to SKB's method descriptions SKB MD 191.001 (Determination of thermal properties, thermal conductivity and specific heat, by using TPS-method) and SKB MD 160.002 ( Determination of density and porosity of the intact rocks). In addition to material properties, the influence of orientation on thermal properties was investigated. The amount of material delivered was too small to produce all needed samples for measurement of thermal properties and determination of the influence of orientation. Thus the influence of orientation on thermal properties was not made in accordance with SKB MD 191.001. The influence of orientation is determined by using a single sided method, which gives the relative relation between two major orientations of the rock. Results obtained by these measurements were in the expected normal variation range. The results indicated that the samples of Metatonalit (MBS020002b) and Metagranit behaved as an anisotropic material (the difference between orientations was about 20-24%) and the samples made of Metatonalit (MBS020002b) and Metagranodiorit could be assumed as an isotropic material (the difference between orientations was about 0.5-2%). The difference in thermal properties of different orientation in sample Metadiorit is about 13%.

  10. Review of the conclusions of the 1996 workshop on safety culture, in Forsmark, Sweden

    International Nuclear Information System (INIS)

    Eckered, T.

    1997-01-01

    The IAEA/SiP Senior Managers Workshop on International Promotion of Safety Culture for the NPPs with RBMK reactors was organized by IAEA and the Swedish International Project Nuclear Safety (SiP). It took place at the Forsmark NPP, Sweden, from 1 to 4 October 1996. The objective of the workshop were to provide a forum managers to exchange national and international experience on factors influencing safety culture, to better understand these factors and to further enhance promotion of safety culture. The Workshop participants started work by agreeing to seek the answers to the following three questions: 1. What constitutes a good Safety Culture? 2. What is good and bad in our own countries and plants from a Safety Culture point of view? 3. Where can we find advice and help from our colleagues to improve our own Safety Culture? This was the first workshop specifically addressing Safety Culture in RBMK countries. The aim was therefore not to produce good practices, but to lay a foundation for further work and development. A follow-up workshop should deepen the understanding of the SC concept and address specific SC matters identified at this Workshop

  11. Outcrop samples from Forsmark. Determination of thermal properties by the TPS-Method

    International Nuclear Information System (INIS)

    Adl-Zarrabi, Bijan

    2003-04-01

    Porosity, density and thermal properties were measured for five different outcrop samples from Forsmark namely: two samples of Metatonalit, Metadiorit, Metagranit and Metagranodiorit. Measurements were performed according to SKB's method descriptions SKB MD 191.001 (Determination of thermal properties, thermal conductivity and specific heat, by using TPS-method) and SKB MD 160.002 ( Determination of density and porosity of the intact rocks). In addition to material properties, the influence of orientation on thermal properties was investigated. The amount of material delivered was too small to produce all needed samples for measurement of thermal properties and determination of the influence of orientation. Thus the influence of orientation on thermal properties was not made in accordance with SKB MD 191.001. The influence of orientation is determined by using a single sided method, which gives the relative relation between two major orientations of the rock. Results obtained by these measurements were in the expected normal variation range. The results indicated that the samples of Metatonalit (MBS020002b) and Metagranit behaved as an anisotropic material (the difference between orientations was about 20-24%) and the samples made of Metatonalit (MBS020002b) and Metagranodiorit could be assumed as an isotropic material (the difference between orientations was about 0.5-2%). The difference in thermal properties of different orientation in sample Metadiorit is about 13%

  12. The Physical Mechanism of Core-Wide and Local Instabilities at the Forsmark-1 BWR

    International Nuclear Information System (INIS)

    Analytis, G. Th.

    1998-10-01

    During the last 15 years, the problem of BWR instabilities has attracted the attention of a number of researchers. From the theoretical point of view, one would be interested in physically understanding the mechanisms responsible for the in- and out-of-phase core wide power oscillations observed at certain operating points of the power-flow map in different BWRs. From the practical point of view, one must try to avoid these 'incidents' since either locally, or globally, the power may substantially exceed the prescribed levels. In this work, we shall use RAMONA3-12 and analyse a rather unusual instability incident at Forsmark-1 in which in addition to the core-wide fundamental spatial mode oscillation, there were local large amplitude power oscillations at different radial positions in the core. We were able to reproduce these unusual experimental findings by assuming that there are large amplitude Density Wave Oscillations (DWOs) in different bundles, induced by the fact that these bundles were not seated properly into the lower fuel support plate. (author)

  13. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  14. The impact of dynamic topography on the bedrock elevation and volume of the Pliocene Antarctic Ice Sheet

    Science.gov (United States)

    Austermann, Jacqueline; Pollard, David; Mitrovica, Jerry X.; Moucha, Robert; Forte, Alessandro M.; DeConto, Robert M.

    2015-04-01

    Reconstructions of the Antarctic ice sheet over long timescales (i.e. Myrs) require estimates of bedrock elevation through time. Ice sheet models have accounted, with varying levels of sophistication, for changes in the bedrock elevation due to glacial isostatic adjustment (GIA), but they have neglected other processes that may perturb topography. One notable example is dynamic topography, the deflection of the solid surface of the Earth due to convective flow within the mantle. Numerically predicted changes in dynamic topography have been used to correct paleo shorelines for this departure from eustasy, but the effect of such changes on ice sheet stability is unknown. In this study we use numerical predictions of time-varying dynamic topography to reconstruct bedrock elevation below the Antarctic ice sheet during the mid Pliocene warm period (~3 Ma). Moreover, we couple this reconstruction to a three-dimensional ice sheet model to explore the impact of dynamic topography on the evolution of the Antarctic ice sheet since the Pliocene. Our modeling indicates significant uplift in the area of the Transantarctic Mountains (TAM) and the adjacent Wilkes basin. This predicted uplift, which is at the lower end of geological inferences of uplift of the TAM, implies a lower elevation of the basin in the Pliocene. Relative to simulations that do not include dynamic topography, the lower elevation leads to a smaller Antarctic Ice Sheet volume and a more significant retreat of the grounding line in the Wilkes basin, both of which are consistent with offshore sediment core data. We conclude that reconstructions of the Antarctic Ice Sheet during the mid-Pliocene warm period should be based on bedrock elevation models that include the impact of both GIA and dynamic topography.

  15. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  16. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  17. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    International Nuclear Information System (INIS)

    Nilsson, Ann-Chatrin; Borgiel, Micke; Qvarfordt, Susanne

    2010-09-01

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  18. Structural Geology

    Science.gov (United States)

    Weber, John; Frankel, Kurt L.

    2011-05-01

    Structural geology and continental tectonics were ushered in to the modern quantitative age of geosciences with the arrival of the global plate tectonics paradigm (circa 1968), derived using new data from the oceans' depths, and John Ramsay's 1967 seminal work, Folding and Fracturing of Rocks. Fossen is to be applauded for crafting a unique, high-caliber, and accessible undergraduate textbook on structural geology that faithfully reflects this advance and the subsequent evolution of the discipline. This well-written text draws on Fossen's wealth of professional experience, including his broad and diverse academic research and experience in the petroleum industry. This book is beautifully illustrated, with excellent original color diagrams and with impressive color field photographs that are all keyed to locations and placed into geologic context.

  19. Earthquake activity in Sweden. Study in connection with a proposed nuclear waste repository in Forsmark or Oskarshamn

    International Nuclear Information System (INIS)

    Boedvarsson, Reynir; Lund, Bjoern; Roberts, Roland; Slunga, Ragnar

    2006-02-01

    The aim of this report is to evaluate the risks for future earthquakes in the vicinity of the proposed nuclear waste repository sites at Forsmark and Oskarshamn. Time periods of 100 and 1,000 years will be considered, which implies that the focus of this study is on an evaluation of the current, general situation in the region. Major events on a longer time scale, such as an ice-age, will only be briefly considered. Earthquakes are products of ongoing deformations within the Earth and this report will, therefore, concentrate on the current state of knowledge about deformations in the region. As earthquakes are our most important source of information about deformations at depth in the crust, we will focus on the available seismic data using the Nordic earthquake catalog maintained at the Institute of Seismology, Helsinki University, and the recent data from the new Swedish National Seismic Network. Direct measurements of surface deformation using the Global Positioning System will also be utilized in the analysis. Sweden is a low seismicity area, with most earthquakes being observed in the south-west, around Lake Vaenern, along the north-east coast and in Norrbotten. South-eastern Sweden is on the contrary relatively inactive. Seismicity is also, generally, episodic in time which together with the short period of instrumental observation, approximately 100 years, makes our knowledge about the activity far from complete. Although very large earthquakes (magnitude about 8) have occurred in Sweden, it is generally agreed that these were connected to the late stages of deglaciation at the end of the previous ice-age. At the time scales considered in this report, inferences from current seismicity is of more relevance. This data suggests that we should expect at least one magnitude 5 earthquake in our region every century and one magnitude 6 earthquake every one thousand years. In order to illustrate the effects of static and dynamic deformation from a magnitude 5

  20. Earthquake activity in Sweden. Study in connection with a proposed nuclear waste repository in Forsmark or Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir; Lund, Bjoern; Roberts, Roland; Slunga, Ragnar [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2006-02-15

    The aim of this report is to evaluate the risks for future earthquakes in the vicinity of the proposed nuclear waste repository sites at Forsmark and Oskarshamn. Time periods of 100 and 1,000 years will be considered, which implies that the focus of this study is on an evaluation of the current, general situation in the region. Major events on a longer time scale, such as an ice-age, will only be briefly considered. Earthquakes are products of ongoing deformations within the Earth and this report will, therefore, concentrate on the current state of knowledge about deformations in the region. As earthquakes are our most important source of information about deformations at depth in the crust, we will focus on the available seismic data using the Nordic earthquake catalog maintained at the Institute of Seismology, Helsinki University, and the recent data from the new Swedish National Seismic Network. Direct measurements of surface deformation using the Global Positioning System will also be utilized in the analysis. Sweden is a low seismicity area, with most earthquakes being observed in the south-west, around Lake Vaenern, along the north-east coast and in Norrbotten. South-eastern Sweden is on the contrary relatively inactive. Seismicity is also, generally, episodic in time which together with the short period of instrumental observation, approximately 100 years, makes our knowledge about the activity far from complete. Although very large earthquakes (magnitude about 8) have occurred in Sweden, it is generally agreed that these were connected to the late stages of deglaciation at the end of the previous ice-age. At the time scales considered in this report, inferences from current seismicity is of more relevance. This data suggests that we should expect at least one magnitude 5 earthquake in our region every century and one magnitude 6 earthquake every one thousand years. In order to illustrate the effects of static and dynamic deformation from a magnitude 5

  1. Scope, delimitations and inquiries for environmental impact statements for an encapsulation plant and a repository for spent nuclear fuels. Forsmark; Omfattning, avgraensningar och utredningar foer miljoekonsekvensbeskrivningar (MKB) foer inkapslingsanlaeggning och slutfoervar foer anvaent kaernbraensle. Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-15

    SKB has studied different alternatives for locating a plant for encapsulating spent fuel element for later disposal in an underground repository. SKB aims to apply for a license to build this plant close to the Central interim storage for spent fuels (Clab), at Oskarshamn. An alternative localization can be Forsmark, should the repository be localized there. This report gives a review of the work and inquiries that will form the basis for the EIS documents. A similar report is published for the Oskarshamn localization.

  2. Ground source energy in crystalline bedrock - increased energy extraction by using hydraulic fracturing in boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Ramstad, Randi Kalstad

    2004-11-01

    The use of improved equipment and methodology can result in considerable reductions in the drilling costs for medium- to large sized ground source heat pump system in crystalline bedrock. The main point has been to use special techniques within hydraulic fracturing to create a larger heat exchange area in the bedrock, and thus a greater energy extraction per borehole. The energy extraction is based on circulating groundwater. Stimulation with hydraulic fracturing is a well known technique in order to improve borehole yields for drinking water-, oil-, and geothermal purposes. A procedure for injection of propping agents in selected borehole sections, and custom-made equipment for hydraulic fracturing in crystalline bedrock, a double packer, have been developed in this study. The propping agents are likely to ensure a permanent improvement of the hydraulic conductivity in a long-run perspective. In addition to a pre-test, a comprehensive test programme has been performed at each of the two pilot plants at Bryn and at the former property of Energiselskapet Asker og Baerum (EAB) in Baerum municipality outside Oslo, Norway. A total of 125 stimulations with hydraulic fracturing using water-only and hydraulic fracturing with injection of sand have been performed in 9 boreholes. Test pumping and geophysical logging (temperature, electrical conductivity, gamma radiation, optical televiewer and flow measurements) have been carried out in order to document the effect of the hydraulic fracturing. The pilot plants at Bryn and EAB, where the ground source heat pump systems are based on circulating groundwater, have demonstrated the short-period energy extraction, limitations and opportunities of the concept for hydraulic fracturing and increased energy extraction in different geological and hydrogeological areas. The bedrock at Bryn and EAB is characterized as a low-metamorphic sandstone and a nodular limestone, respectively. At Bryn, the five boreholes were organised with a

  3. Status report on the geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences); Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young (Oak Ridge National Lab., TN (United States)); Lietzke, D.A. (Lietzke (David A.), Rutledge, TN (United States)); McMaster, W.M. (McMaster (William M.), Heiskell, TN (United States))

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  4. Status report on the geology of the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth

  5. Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin

    Science.gov (United States)

    Lampe, David C.

    2009-01-01

    The U.S. Geological Survey is assessing groundwater availability in the Lake Michigan Basin. As part of the assessment, a variable-density groundwater-flow model is being developed to simulate the effects of groundwater use on water availability throughout the basin. The hydrogeologic framework for the Lake Michigan Basin model was developed by grouping the bedrock geology of the study area into hydrogeologic units on the basis of the functioning of each unit as an aquifer or confining layer within the basin. Available data were evaluated based on the areal extent of coverage within the study area, and procedures were established to characterize areas with sparse data coverage. Top and bottom altitudes for each hydrogeologic unit were interpolated in a geographic information system for input to the model and compared with existing maps of subsurface formations. Fourteen bedrock hydrogeologic units, making up 17 bedrock model layers, were defined, and they range in age from the Jurassic Period red beds of central Michigan to the Cambrian Period Mount Simon Sandstone. Information on groundwater salinity in the Lake Michigan Basin was compiled to create an input dataset for the variable-density groundwater-flow simulation. Data presented in this report are referred to as 'salinity data' and are reported in terms of total dissolved solids. Salinity data were not available for each hydrogeologic unit. Available datasets were assigned to a hydrogeologic unit, entered into a spatial database, and data quality was visually evaluated. A geographic information system was used to interpolate salinity distributions for each hydrogeologic unit with available data. Hydrogeologic units with no available data either were set equal to neighboring units or were vertically interpolated by use of values from units above and below.

  6. Periglacial disruption and subsequent glacitectonic deformation of bedrock : an example from Anglesey, North Wales, UK

    OpenAIRE

    Phillips, Emrys; Lee, Jonathan R.; Riding, James B.; Kendall, Rhian; Hughes, Leanne

    2012-01-01

    The deformed metasedimentary bedrock and overlying diamictons in western Anglesey, NW Wales, record evidence of glacier-permafrost interactions during the Late Devensian (Weichselian). The locally highly brecciated New Harbour Group bedrock is directly overlain by a bedrock-rich diamicton which preserves evidence of having undergone both periglacial (brecciation, hydrofracturing) and glacitectonic deformation (thrusting, folding), and is therefore interpreted as periglacial head d...

  7. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  8. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10 -13 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the postglacial

  9. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10{sup -6} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10{sup -11} m{sup 2}/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of

  10. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10{sup -6} m{sup 2}/s or 1.3 x 10{sup -6} m{sup 2}/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose

  11. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10{sup -13} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the

  12. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10 -6 m 2 /s or 1.3 x 10 -6 m 2 /s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose from the Baltic Sea some

  13. Rock types and ductile structures on a rock domain basis, and fracture orientation and mineralogy on a deformation zone basis. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael [Geological Survey of Sweden, Uppsala (Sweden); Forssberg, Ola [Golder Associates AB, Uppsala (Sweden)

    2006-09-15

    This report presents the results of the analysis of base geological data in order to establish the dominant rock type, the subordinate rock types and the orientation of ductile mineral fabrics within each rock domain included in the regional geological model, version 1.2. An assessment of the degree of homogeneity of each domain is also provided. The analytical work has utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values or best-fit great circles and corresponding pole values have been calculated for the ductile structural data. These values have been used in the geometric modelling of rock domains in the regional model, version 1.2. Furthermore, all analytical results have been used in the assignment of properties to rock domains in this model. A second analytical component reported here addresses the orientation and mineralogy of fractures in the deterministic deformation zones that are included in the regional geological model, version 1.2. The analytical work has once again utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values are presented for the orientation of fracture sets in the deterministic deformation zones that have been identified with the help of new borehole data. The frequencies of occurrence of different minerals along the fractures in these deformation zones as well as the orientation of fractures in the zones, along which different minerals occur, are also presented. The results of the analyses have been used in the establishment of a conceptual structural model for the Forsmark site and in the assignment of properties to deterministic deformation zones in model version 1.2.

  14. Stratigraphic architecture of bedrock reference section, Victoria Crater, Meridiani Planum, Mars

    Science.gov (United States)

    Edgar, Lauren A.; Grotzinger, John P.; Hayes, Alex G.; Rubin, David M.; Squyres, Steve W.; Bell, James F.; Herkenhoff, Ken E.

    2012-01-01

    The Mars Exploration Rover Opportunity has investigated bedrock outcrops exposed in several craters at Meridiani Planum, Mars, in an effort to better understand the role of surface processes in its geologic history. Opportunity has recently completed its observations of Victoria crater, which is 750 m in diameter and exposes cliffs up to ~15 m high. The plains surrounding Victoria crater are ~10 m higher in elevation than those surrounding the previously explored Endurance crater, indicating that the Victoria crater exposes a stratigraphically higher section than does the Endurance crater; however, Victoria strata overlap in elevation with the rocks exposed at the Erebus crater. Victoria crater has a well-developed geomorphic pattern of promontories and embayments that define the crater wall and that reveal thick bedsets (3–7m) of large-scale cross-bedding, interpreted as fossil eolian dunes. Opportunity was able to drive into the crater at Duck Bay, located on the western margin of Victoria crater. Data from the Microscopic Imager and Panoramic Camera reveal details about the structures, textures, and depositional and diagenetic events that influenced the Victoria bedrock. A lithostratigraphic subdivision of bedrock units was enabled by the presence of a light-toned band that lines much of the upper rim of the crater. In ascending order, three stratigraphic units are named Lyell, Smith, and Steno; Smith is the light-toned band. In the Reference Section exposed along the ingress path at Duck Bay, Smith is interpreted to represent a zone of diagenetic recrystallization; however, its upper contact also coincides with a primary erosional surface. Elsewhere in the crater the diagenetic band crosscuts the physical stratigraphy. Correlation with strata present at nearby promontory Cape Verde indicates that there is an erosional surface at the base of the cliff face that corresponds to the erosional contact below Steno. The erosional contact at the base of Cape Verde

  15. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  16. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  17. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    Energy Technology Data Exchange (ETDEWEB)

    Truve, Johan; Cederlund, Goeran [Svensk Naturfoervaltning AB, Ramsberg (Sweden)

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented.

  18. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2011-12-01

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca 2+ associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved

  19. Evaluating hydrochemical data from shallow groundwater in Forsmark from a microbiological perspective

    International Nuclear Information System (INIS)

    Hallbeck, Lotta

    2008-03-01

    Oxygen is one of the chemical species that can corrode a copper canister in a KBS-3 repository. It is therefore important to determine whether oxygen dissolved in precipitation or groundwater could reach repository depth by groundwater transport. This matter can be determined by gaining an understanding of the oxygen-consuming microbial processes that take place in shallow groundwater in the area of interest. This report evaluates hydrogeochemical data from shallow groundwater in the Forsmark area from a microbiological perspective. Hydrogeochemical data were gathered from soil pipes at depths from 1.6 to 9.6 m and from percussion-drilled boreholes having mid-point depths of between c. 30 and c. 180 m. Only a few of the percussion-drilled boreholes had packers installed. The sampled sections were therefore very long, allowing groundwater from many different depths to mix. Oxygen and oxidation-reduction potential (ORP) were measured in groundwater in soil pipes but not in percussion-drilled boreholes. The poor quality of the oxygen data made it difficult to identify the depth of origin of completely oxygen-free groundwater. Parameters that indicated ongoing anaerobic microbial processes, such as nitrite, ferrous iron, dissolved manganese, and sulphide, were found in many soil pipes. The soil pipes displayed individual chemical profiles in terms of chemical species related to microbial activity. The microbial activity could not be linked to the classes of soil pipe, i.e. recharge, discharge, or intermittent. Existing soil pipes and percussion-drilled boreholes could be used for additional sampling of microbial parameters. Such sampling would benefit from careful hypothesis-driven description of the sampling parameters and experience-guided choice of sampling methods

  20. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    International Nuclear Information System (INIS)

    Truve, Johan; Cederlund, Goeran

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented

  1. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    International Nuclear Information System (INIS)

    Aneljung, Maria; Gustafsson, Lars-Goeran

    2007-04-01

    The hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow, transport mechanisms and the contact between ground- and surface water at the Forsmark site. The surface water system at Forsmark is described with the 1D modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. In spring 2007, a new data freeze will be available and a process of updating, rebuilding and calibrating the MIKE SHE model will start, based on the latest data set. Prior to this, it is important to gather as much knowledge as possible on calibration methods and to define critical calibration parameters and areas within the model. In this project, an optimization of the numerical description and an initial calibration of the MIKE SHE model has been made, and an updated base case has been defined. Data from 5 surface water level monitoring stations, 4 surface water discharge monitoring stations and 32 groundwater level monitoring stations (SFM soil boreholes) has been used for model calibration and evaluation. The base case simulations generally show a good agreement between calculated and measured water levels and discharges, indicating that the total runoff from the area is well described by the model. Moreover, with two exceptions (SFM0012 and SFM0022) the base case results show very good agreement between calculated and measured groundwater head elevations for boreholes installed below lakes. The model also shows a reasonably good agreement between calculated and measured groundwater head elevations or depths to phreatic surfaces in many other points. The following major types of calculation-measurement differences can be noted: Differences in groundwater level amplitudes due to transpiration processes. Differences in absolute mean groundwater head, due to differences between borehole casing levels and the interpolated DEM. Differences in absolute mean head elevations, due to local errors in hydraulic conductivity values

  2. Geology Fulbrights

    Science.gov (United States)

    Fulbright grants in geology for 1988-89 remain open. Specific opportunities are available in Egypt, German Democratic Republic, Hungary, Iceland, Iraq, Kuwait, Morocco, Mozambique, Oman, Poland, Sudan, Syria, Tanzania, Turkey, U.S.S.R., West Bank, Yemen, and Zimbabwe. Other countries are also open to applications in any discipline, and geology is among their preferred fields.The grants are available until awarded and are open only to U.S. citizens. In Central and South America and French-speaking Africa, knowledge of host-country language is required. For more information, contact the Council for International Exchange of Scholars (CIES), 11 Dupont Circle N.W., Suite 300, Washington, DC 20036; tel. 202-939-5401.

  3. Bedrock erosion by sliding wear in channelized granular flow

    Science.gov (United States)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of

  4. Fractured Bedrock Storm Flow: a New Pathway for Runoff Generation

    Science.gov (United States)

    Oshun, J.; Salve, R.; Rempe, D. M.; Dietrich, W. E.; Fung, I.

    2010-12-01

    Groundwater dynamics in the fractured weathered bedrock underlying hillslopes may dominate storm runoff in many hilly and mountainous areas Few studies, however, have explored this runoff generation process. Here we use an intensively monitored site to study the spatial relationships between fractured bedrock and hydraulic properties in the weathered zone below a forested hillslope. The study site, Rivendell, is a 4000 m2 catchment draining directly into Elder Creek in the Angelo Coast Range Reserve (ACRR) in Northern California. The site is underlain by highly fractured and weak mudstones and boudinaged, ridge-forming sandstones that are turbidite sequences of the Coastal Franciscan Belt. The site receives an average of 1800mm of precipitation annually, with the vast majority falling between October and May. Rivendell has a thinly mantled soil layer underlain by a fractured rock zone, which thickens upslope to a depth of up to 30 m. Standard penetration tests show a consistent increase in bedrock resistance at depth before an abrupt lower boundary upon which the water table is perched. We use seven monitoring wells, precipitation data, soil moisture data, a steam gauge in Elder Creek, and well pump tests to characterize water movement through the fractured rock zone.. We analyze the lag time between peak rainfall and peak response at seven wells and Elder Creek from 2007-2010. The water table varies across the slope between 4 and 25 m below the ground surface, and the dynamic range of well water level increases with distance from Elder Creek. The magnitude and timing of well response shows a relationship to depth, magnitude of rainfall and antecedent moisture conditions. Although nearly all runoff is generated through fractured bedrock, we observe that Elder Creek consistently shows the shortest lag times compared to the wells on the hillslope. Wells show different trends in magnitude and timing of response throughout the rainy season. Pump tests reveal a

  5. The occurrence of waterfowl in the biotest basin at the Forsmark nuclear power plant, Sweden, 1981-1984

    International Nuclear Information System (INIS)

    Sandstroem, U.

    1985-01-01

    During the period Sep 1981 to Aug 1984 a monthly census was taken of waterfowl in the Biotest basin and its surroundings at Forsmark, as well as in a reference area in the region. During the same period the staff of the Biotest basin made weekly censuses of the basin. The aim of the censuses was to establish if there was any increase in the number of waterfowl in the Biotest basin and its surroundings caused by the discharge of cooling water from the two nuclear power reactors that are in operation in Forsmark. Seventeen waterfowl species were observed in the area during the period studied. Of these species five were regularly observed viz.: the Mute Swan (Cygnus olor), the Mallard (Anas plathyryncos), the Tufted Duck (Aythya fuligula), the Goldeneye (Bucephala clangula) and the Goosander (Mergus merganser). The first four species were generally found in low numbers in the Biotest basin and its surroundings, as well as in the reference area. This implies that the Biotest basin and its surroundings has not become an area of importance during the winter for waterfowl, with one exception: the Goosander. The Goosander showed an increasing population growth in the Biotest basin and its surroundings during the studied period with a maximum average in in the basin during the last winter. As a result, the size of the Goosander population may affect the number of small fish in the Biotest basin. (author)

  6. Geological maps and cross-sections of southern Sweden

    International Nuclear Information System (INIS)

    Kornfaelt, K.A.

    1987-12-01

    The report is meant to give complementary information to the maps of precambrian and sedimentary rocks, which have been compiled by the Geological Survey of Sweden (SGU), by order of the Swedish Nuclear Fuel and Waste Management Co. (SKB) and South Sweden Power Supply (SK). The local branch of the Geological Survey in Goeteborg has compiled the maps of the bedrock Goeteborg and Boras. The purpose of the work was to compile maps of the bedrock to the scale of 1:250000 as well as to the scale of 1:1000000, covering an area corresponding to the mapsheets to the scale of 1:250000: Goeteborg, Boraas, Joenkoeping, Oskarshamn, Malmoe, Karlskrona and Kalmar. Also lineament maps to the scale of 1:250000, covering the same area, have been compiled. (orig./DG)

  7. Alternative modelling of brittle structures in a sub-area of the SKB candidate area at Forsmark, eastern Sweden

    International Nuclear Information System (INIS)

    Askling, Per; Tiren, Sven A.; Beckholmen, Monica; Straeng, Thomas

    2008-11-01

    One way to test the confidence of a presented model is to construct an alternative model. Such work is cognitive process of skill acquisition and also a process of understanding data in the sense of sorting and classifying data. This is of particular interest for the Swedish Radiation Safety Authority (SSM) in their technical review of SKB's on-going site investigation programme for potential repository sites. In this study, an alternative brittle deformation model of a selected part of the SKB candidate area in eastern Sweden was constructed. The input data set was obtained from SKB's database SICADA and is a selected set of data from five cored boreholes drilled from two drill-sites and comprises geophysical borehole logs, geological core-logs, hydrological logs (PFL; Posiva Flow Log) and borehole deviation measurements. Statistical cluster analysis applied on the geophysical borehole data were used to obtain the locations of bedrock with contrasting physical characteristics similar to those of brittle deformation zones. The cluster analysis is an objective procedure, contrasting with SKB's more subjective approach to the single-hole interpretation. Thus some differences are expected which could illustrate the effect of methodology that includes subjective 'expert judgement.' and indicate the possibility of alternative interpretations. The information about brittle structures in the geological boreholes logs was sorted and classification was made according to character of the structures (all fractures, open fractures, partly open fractures, frequency, orientate on/identification of fracture sets, sections of crush rock, and alteration). A separate study was performed to relate rock alteration with structures. The resolution applied in the fracture statistics is one metre, i.e. all studied entities were expressed per metre borehole length. All clusters were structurally characterized by the fractures inside the clusters (orientation and density of fractures) and

  8. Alternative modelling of brittle structures in a sub-area of the SKB candidate area at Forsmark, eastern Sweden.

    Energy Technology Data Exchange (ETDEWEB)

    Askling, Per; Tiren, Sven A.; Beckholmen, Monica; Straeng, Thomas (Geosigma AB, Uppsala (Sweden))

    2008-11-15

    One way to test the confidence of a presented model is to construct an alternative model. Such work is cognitive process of skill acquisition and also a process of understanding data in the sense of sorting and classifying data. This is of particular interest for the Swedish Radiation Safety Authority (SSM) in their technical review of SKB's on-going site investigation programme for potential repository sites. In this study, an alternative brittle deformation model of a selected part of the SKB candidate area in eastern Sweden was constructed. The input data set was obtained from SKB's database SICADA and is a selected set of data from five cored boreholes drilled from two drill-sites and comprises geophysical borehole logs, geological core-logs, hydrological logs (PFL; Posiva Flow Log) and borehole deviation measurements. Statistical cluster analysis applied on the geophysical borehole data were used to obtain the locations of bedrock with contrasting physical characteristics similar to those of brittle deformation zones. The cluster analysis is an objective procedure, contrasting with SKB's more subjective approach to the single-hole interpretation. Thus some differences are expected which could illustrate the effect of methodology that includes subjective 'expert judgement.' and indicate the possibility of alternative interpretations. The information about brittle structures in the geological boreholes logs was sorted and classification was made according to character of the structures (all fractures, open fractures, partly open fractures, frequency, orientate on/identification of fracture sets, sections of crush rock, and alteration). A separate study was performed to relate rock alteration with structures. The resolution applied in the fracture statistics is one metre, i.e. all studied entities were expressed per metre borehole length. All clusters were structurally characterized by the fractures inside the clusters (orientation and

  9. Forsmark site investigation. Programme for long-term observations of geosphere and biosphere after completed site investigations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    The site investigation at Forsmark was terminated the last of June, 2007. Hundreds of investigations have been conducted during a period of more than five years. Monitoring of a number of geoscientific parameters and biological objects has been one important part of the site investigation programme. Monitoring is defined as recurrent measurements of the same parameters/objects, so that time series are generated. Long-term monitoring of for example weather parameters, surface water discharge in brooks, and the groundwater head in a large number of boreholes has been conducted during the site investigations. Furthermore, repeated sampling of precipitation, surface water and groundwater in soil and rock for hydrochemical analyses has been carried out, and the groundwater flow in isolated borehole sections has been measured several times. Besides, some biological objects, for example rare bird species, have been invented each year of the site investigation. The measured parameters and the invented objects are characterized by a certain degree of time dependent variability, which is also site-specific. The aim of the monitoring is primarily to establish the 'undisturbed' conditions, the so called 'baseline'. If a deep repository is sited at Forsmark, many site-specific conditions will change, due to natural causes as well as to the construction works. Knowledge about the undisturbed conditions strengthens the ability to reveal and quantify such changes and to distinguish natural changes from those caused by the human activities. Another object of monitoring is to, by the study of the variability pattern of the monitored parameters, elevate the knowledge about the underlying, often complex causes governing the variations. In this way the description of site-specific conditions may be more precise and the prospects of modelling important processes are improved. After completion of the site investigations, a period of about two years will follow, when

  10. Geological Character and Mineral Resources of South Central Lake Erie.

    Science.gov (United States)

    1982-10-01

    Analyses of the seismic profiles, sediment cores, and grab samples show that four major geologic units are present. Paleozoic shale bedrock with a...accumulating in deepwater, low-energy areas adjacent to the ridge and Presque Isle platform . Sand and gravel of suitable size distribution and composition...are present in large quantities in two locales. The ridge and platform features contain about 39 million cubic meters of proven resources within 2.3

  11. Present status and an appreciation of the consequences for recreation and outdoor leisure activities from siting a nuclear waste repository at Forsmark

    International Nuclear Information System (INIS)

    Ottosson, Pia

    2007-07-01

    This report describes how the area around Forsmark is used with respect to recreation and outdoor life. It also describes the impact of the final repository on recreation and outdoor life if it is located in Forsmark. The studied area is situated in the parish of Forsmark in the municipality of Oesthammar. Forsmark nuclear power plant and the final repository for radioactive operational waste, SFR, are situated within the area and there are both houses and holiday houses. The area is used for leisure pursuit by inhabitants and employees at FKA and SKB, but also by a number of different associations and by tourists. Statistical data shows that the parish of Forsmark is sparsely populated. The area was previously dominated by one big landowner and the land surrounding the nuclear power plant was inaccessible to the general public during that period. The outdoor life is therefore less widespread here than along other parts of the east coast. The value of the area does not lie in paths and trails, bike tracks and bathing places, but in the unspoiled countryside, the wildlife and the bird life. Recreation such as hunting and fishing is very popular in the area. The construction of a final repository will increase traffic and hence increase noise and motion in the area. This will mainly impact the enjoyment value for the people spending time in the area. No other significant consequences are expected as the final repository will be mainly situated within the existing industrial complex and hence the character of the area should remain unchanged

  12. Site characterizations around KURT area-Geologic model (Version 1)-

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Kim, Geon Young

    2009-08-01

    To characterize the geologic elements around study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as geophysical surveys and borehole drillings were carried out since 1997. Especially, the KURT (KAERI Underground Research Tunnel) was constructed to understand the deep geological environments in 2006. At recent, the deep boreholes, which have 500m depth at left research module inside the KURT and 1,000m depth outside the KURT, were drilled around the KURT area to confirm and validate the geological model. The objective of this research is to construct the first version of geological model around KURT area in the point of hydro-geological view. The data in this study are based on the surface geological investigation and borehole investigations drilled in until 2005. At results, total 4 geological elements are obtained from geological analysis, which are a subsurface weathered zone, log-angled fractures zone, fracture zones and bedrock. And, the geometries of these elements are also plotted by three-dimensional model. The first version of geological model which is built in this study will be supported to construct the hydrogeological model and geochemical model

  13. Geological safety aspects of nuclear waste disposalin in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, L.; Hakkarainen, V.; Kaija, J.; Kuivamaki, A.; Lindberg, A.; Paananen, M.; Paulamaki, S.; Ruskeeniemi, T., e-mail: lasse.ahonen@gtk.fi

    2011-07-01

    The management of nuclear waste from Finnish power companies is based on the final geological disposal of encapsulated spent fuel at a depth of several hundreds of metres in the crystalline bedrock. Permission for the licence requires that the safety of disposal is demonstrated in a safety case showing that processes, events and future scenarios possibly affecting the performance of the deep repository are appropriately understood. Many of the safety-related issues are geological in nature. The Precambrian bedrock of Finland has a long history, even if compared with the time span considered for nuclear waste disposal, but the northern location calls for a detailed study of the processes related to Quaternary glaciations. This was manifested in an extensive international permafrost study in northern Canada, coordinated by GTK. Hydrogeology and the common existence of saline waters deep in the bedrock have also been targets of extensive studies, because water chemistry affects the chemical stability of the repository near-field, as well as radionuclide transport. The Palmottu natural analogue study was one of the international high-priority natural analogue studies in which transport phenomena were explored in a natural geological system. Currently, deep biosphere processes are being investigated in support of the safety of nuclear waste disposal. (orig.)

  14. Sediment Dynamics and the Burial and Exhumation of Bedrock Reefs as Elucidated by High-resolution Repetitive Sonar Surveys: Northern Monterey Bay, CA

    Science.gov (United States)

    Storlazzi, C. D.; Fregoso, T. A.; Golden, N. E.; Finlayson, D. P.

    2011-12-01

    Two high-resolution bathymetric and acoustic backscatter sonar surveys were conducted along the energetic emergent inner shelf of northern Monterey Bay, CA, USA, in the fall of 2005 and the spring of 2006 to determine the impact of winter storm waves, beach erosion, and river floods on biologically-important bedrock reef habitats. The surveys extended from water depths of 4 m to 22 m and covered an area of 3.14 km2, of which 45.8% was bedrock, gravel, and coarse-grained sand and 54.2% was fine-grained sand. Our analysis of the bathymetric and acoustic backscatter data demonstrates that during the 6 months between surveys, 11.4% of the study area was buried by fine-grained sand while erosion exposed of bedrock or coarse-grained sand over 26.5% of the study area. The probability of burial decreased with increasing water depth and rugosity; the probability of exhumation increased with increasing seabed slope and rugosity. Much of the detected change was at the boundary between bedrock and unconsolidated sediment due to burial or exhumation of bedrock. In a number of cases, however, the change in seabed character was apparently due to fluctuations in sediment grain size, where scour exposed what appeared to be an underlying coarser-grained lag or fine-grained sand buried coarser-grained sand. These findings suggest that, in some places, (a) single acoustic surveys typically employed for geologic characterization and/or habitat mapping may not adequately characterize the geomorphology and sedimentologic nature of rocky, energetic inner shelves, and (b) burial and exhumation likely play a role in the life history of the numerous organisms that inhabit these reefs and thus information on the frequency and magnitude of such processes may better constrain our understanding of physical controls on benthic species' distribution patterns.

  15. Long-term bedrock behavior research for soft rock

    International Nuclear Information System (INIS)

    Inoue, Hiroyuki; Noda, Kenji

    2002-02-01

    When a formation disposal system is thought about, it is important to evaluate long-term dynamics behavior of boundary condition and near field bedrock of an artificial barrier adequately. In this study, three matters were executed for improvement of a dependability of the evaluation as follows. (1) Creep test was executed as purpose by dependability improvement of evaluation technique of creep problem by Okubo model. Okubo model constant was calculated than the unconfined compression test which let strain rate change with true rock, and the creep test which the constant was used, and estimated breaking time was done. As a result, the estimation of breaking time by Okubo model almost suffered according to the estimation although a variation of test-piece influenced it. (2) A tunnel model apparatus was produced in the purpose which grasped near field bedrock behavior, and it was tested. Simulation rock test body of 1 m * 1 m * 0.5 m was used for a test, and 15 cm tunnel excavation was carried out in an initial stress bottom. Quantities of inner space displacement were measured in a test, and a hardness-test was done after dismantlement, and looseness area was grasped quantitatively. As a result, the looseness area was able to be estimated with about 17.5 cm than tunnel center position. (3) A test approach in deep underground laboratory was examined, and examination/the in situ test which took advantage of rock core analysis/borehole as purpose and done examination item by grip of long-term bedrock behavior (a bord is taken advantage of, and bord itself is used) was shown. In addition, layout of the deep underground laboratory which carried out various tests about long-term behavior in 3 depth was shown. (author)

  16. Effects of Bedrock Landsliding on Cosmogenically Determined Erosion Rates

    Science.gov (United States)

    Niemi, Nathan; Oskin, Mike; Burbank, Douglas; Heimsath, Arjun

    2005-01-01

    The successful quantification of long-term erosion rates underpins our understanding of landscape. formation, the topographic evolution of mountain ranges, and the mass balance within active orogens. The measurement of in situ-produced cosmogenic radionuclides (CRNs) in fluvial and alluvial sediments is perhaps the method with the greatest ability to provide such long-term erosion rates. In active orogens, however, deep-seated bedrock landsliding is an important erosional process, the effect of which on CRN-derived erosion rates is largely unquantified. We present a numerical simulation of cosmogenic nuclide production and distribution in landslide-dominated catchments to address the effect of bedrock landsliding on cosmogenic erosion rates in actively eroding landscapes. Results of the simulation indicate that the temporal stability of erosion rates determined from CRN concentrations in sediment decreases with increased ratios of landsliding to sediment detachment rates within a given catchment area, and that larger catchment areas must be sampled with increased frequency of landsliding in order to accurately evaluate long-term erosion rates. In addition, results of this simulation suggest that sediment sampling for CRNs is the appropriate method for determining long-term erosion rates in regions dominated by mass-wasting processes, while bedrock surface sampling for CRNs is generally an ineffective means of determining long-term erosion rates. Response times of CRN concentrations to changes in erosion rate indicate that climatically driven cycles of erosion may be detected relatively quickly after such changes occur, but that complete equilibration of CRN concentrations to new erosional conditions may take tens of thousands of years. Simulation results of CRN erosion rates are compared with a new, rich dataset of CRN concentrations from the Nepalese Himalaya, supporting conclusions drawn from the simulation.

  17. Basis for applying for exemption according to species protection regulation. Final repository for spent nuclear fuel at Forsmark; Underlag till ansoekan om dispens enligt artskyddsfoerordningen. Slutfoervar foer anvaent kaernbraensle i Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    SKB will submit applications for permits and admissibility under the Environmental Act and under the Nuclear Activities Act to construct and operate a disposal facility for spent nuclear fuel at Forsmark. In the final repository the spent nuclear fuel from Swedish nuclear power plants is placed in order to protect human health and the environment against harmful effects of ionizing radiation. Construction and operation of the disposal facility in Forsmark will make an impact, give effects and consequences for the natural environment. Utilization of land for the construction of the facility and the impact on ground water as a result of groundwater drainage is expected to have negative consequences for the species included in species protection regulation. Thus, the planned activity require exemption from species protection regulation (SFS 2007:845). The purpose of this document is to provide a basis for an application for exemption under 14 paragraph species protection regulation from the prohibitions of 4, 6, 7 and 8 paragraph species protection regulation. A basis for the exemption application is that the proposed activity is considered to have an 'overriding public interest' prescribed in 14 paragraph species protection regulation. The document reports the impact, effects and consequences of the planned activities on species covered in the species protection regulation. The impact on protected species can be divided into two categories: - Direct effects on protected species and their habitats by utilization of the land. - Indirect effects on protected species and their habitats in the drainage of groundwater and the effect on groundwater levels. The document also includes a description of planned actions to prevent, restrict and compensate for the effects and consequences that the activity may cause. By applying for an exemption under 14 paragraph species protection regulation in a separate order from the application for permit according to chapters 9

  18. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  19. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  20. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe-Bronge, Laine; Wester, Kjell [SwedPower, Stockholm (Sweden)

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km{sup 2} ) and a local level (1 km{sup 2} ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two

  1. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    International Nuclear Information System (INIS)

    Boresjoe-Bronge, Laine; Wester, Kjell

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km 2 ) and a local level (1 km 2 ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two steps. In

  2. Use of Geodetic Laser Scanning to Evaluate the Curvature of Bedrock Surfaces in an Investigation of Sheeting Joint Formation

    Science.gov (United States)

    Martel, S. J.; Mitchell, K.

    2007-12-01

    We are using aerial and tripod-mounted geodetic laser scanning (GLS) data, together with photography and large-scale geologic mapping, to investigate the formation of sheeting joints in Yosemite National Park. Sheeting joints are opening-mode fractures that form subparallel to the topography, and over broad areas in Yosemite they define the bedrock surface. Rock slabs bounded by sheeting joints superficially resemble the layers of an onion. Our hypothesis is that sheeting joints form where a tensile stress normal to the topographic surface exists in the shallow subsurface. This condition is met where k2 P22 + k3 P33 > γ cosβ, where k2 and k3 are the principal curvatures of the bedrock surface, P22 and P33 are the corresponding normal stresses parallel to the principal stresses, γ is the unit weight of the rock, and β is the slope angle. Sheeting joints are predicted where at least one of the principal curvatures is sufficiently convex (negative) and the corresponding normal stress is sufficiently compressive (negative). We use aerial GLS data with a vertical resolution of ~10 cm and a point spacing of ~1 m to measure the slope and curvature of the bedrock surface at the scale of a ridge or valley. We use tripod-mounted GLS data with a point spacing of ~5 cm, large-scale geologic mapping, and photographs to detect steps between consecutive sheeting joints, with the step height giving the sheet joint spacing. Outcrops hosting sheeting joints have a stair-step appearance with a distinctive curvature signature: high convex curvature at the top of a step, and high concave curvature at the step bottom. Steps between sheeting joints with a spacing of less than a meter or so are difficult to detect using the aerial GLS data. Apparently the interpolation of aerial data onto a grid, necessary for our curvature codes, and the smoothing of gridded data to filter out trees compromises the value of the aerial GLS data in detecting the step edges, even though the vertical

  3. Bedrock gorges in the central mainland Kachchh: Implications for ...

    Indian Academy of Sciences (India)

    Author Affiliations. M G Thakkar1 B Goyal1 A K Patidar2 D M Maurya2 L S Chamyal2. Department of Geology, R R Lalan College, Bhuj, Kachchh 370 001, India. Department of Geology, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.

  4. Nd and Sr isotopes: implications of provenance and geological mapping

    International Nuclear Information System (INIS)

    Albuquerque, Marcio Fernando dos Santos; Horbe, Adriana Maria Coimbra; Dantas, Elton Luiz

    2015-01-01

    XRD, Nd and Sr isotopes, major, minor and traces elements quantification were applied to rocks, lateritic crusts and soils from Sumauma Supergroup and Alto Tapajos Group, in order to indicate provenance of the rocks and using lateritic products as geologic mapping tool. For the rocks, the results showed sources related to provinces Tapajos Parima, Rondonia Juruena, Sunsas, Carajas and Amazonia Central. However, the incision of Cachimbo graben allowed which the Sumauma Supergroup erosion also were source for the Alto Tapajos Group, allied to contribution of volcanics from Colider Group. Lateritic crusts and soils are correlates to bedrocks, allowing the use as geologic mapping tool. (author)

  5. Groundwater management in coastal zones and on islands in crystalline bedrock areas of Sweden

    Science.gov (United States)

    Banzhaf, Stefan; Ekström, Linda Louise; Ljungkvist, Andreas; Granberg, Maria; Merisalu, Johanna; Pokorny, Sebastian; Barthel, Roland

    2017-04-01

    Groundwater problems in coastal regions are usually not associated with the sparsely populated shores of water-rich Scandinavia. However, the combination of geology and the specific conditions of water usage create challenges even there. Along the Swedish coast, much of the groundwater occurs in fractured bedrock or in relatively small, shallow, and isolated quaternary sedimentary formations. Those aquifers cannot provide water to larger permanent settlements and are thus neither useful for the public water supply nor have previously received much attention from water authorities or researchers. However, of the 450,000 private wells in Sweden, many are located in coastal areas or on islands, creating pressure on groundwater resources in summer months as periods with low or no natural groundwater recharge. In view of the increasing water demand, as well as the awareness of environmental impacts and climate change, Swedish municipalities now recognize groundwater usage in coastal areas is a major concern. Here, we present the results of an investigation on the "Koster" archipelago which forms a microcosm of coastal zone groundwater problems in Sweden. Koster's geology is dominated by fractured, crystalline bedrock with occasional shallow quaternary deposits in between. With around 300 permanent residents, and up to 6,000 summer guests in peak holiday season, the existing water supply based on 800 private wells is at its limit. Water availability forms an obstacle to future development and the current mode of operation is unsustainable. Therefore, the municipality must decide how to secure future water supply which involves complex legal problems, as well as social, cultural, economic, hydrogeological, and environmental questions. As there are no observation wells on the islands, we used approximately 220 of the 800 wells (65% dug and shallow, 35% drilled and up to 120m deep) for our monitoring. Additionally, water samples were collected by property owners on four

  6. Stress variations during a glacial cycle at 500 m depth in Forsmark and Oskarshamn: Earth model effects

    International Nuclear Information System (INIS)

    Lund, Bjoern

    2006-06-01

    This study has considered the response to a glaciation of Earth models of increasingly complex structure in elastic parameters and viscosity. The models are one-dimensional in the sense that they vary only in the depth direction, i.e. there are only uniform, horizontal layers in the models. I find that as the complexity of the models increase, and the properties of the uppermost kilometer of the Earth become less affected by average properties from deeper down, the flexural stresses at 500 m depth decrease, as expected. A lower Young's modulus, lower compressibility and lower density in the uppermost layer all act to lower the stresses. However, the three properties act differently on the resulting response. Introducing layering in Young's modulus generally decreases the stresses all along a profile through the ice model. Going from incompressible to compressible models affect the stresses outside the ice edge significantly more than the stresses under the ice sheet. Introducing layering in density conversely affect the stresses under the ice sheet more than those outside the ice edge. The combined effects of the most complex models tested here show that the glacially induced horizontal stresses at 500 m depth decrease to levels very similar in magnitude to the loading stress. There are, however, temporal variations in these horizontal stresses that do not follow the loading stress and which induce tensional or compressional horizontal stresses that persist when no ice is present.As is well known, changes in viscosity structure has a very large effect on the Earth response. Viscosity affect both the magnitudes of the induced stresses and the temporal behavior of the stress evolution. This is confirmed in the current study.The glacially induced stresses for some of the models have been used in combination with the current background stress field at Forsmark and Oskarshamn, as estimated in SKB's site models, to evaluate fault stability throughout a glacial cycle. The

  7. Geologic Map of the Atlin Quadrangle, Southeastern Alaska

    Science.gov (United States)

    Brew, David A.; Himmelberg, Glen R.; Ford, Arthur B.

    2009-01-01

    This map presents the results of U.S. Geological Survey (USGS) geologic bedrock mapping studies in the mostly glacier covered Atlin 1:250,000-scale quadrangle, northern southeastern Alaska. These studies are part of a long-term systematic effort by the USGS to provide bedrock geologic and mineral-resource information for all of southeastern Alaska, covering all of the Tongass National Forest (including Wilderness Areas) and Glacier Bay National Park and Preserve. Some contributions to this effort are those concerned with southwesternmost part of the region, the Craig and Dixon Entrance quadrangles (Brew, 1994; 1996) and with the Wrangell-Petersburg area (Brew, 1997a-m; Brew and Grybeck, 1997; Brew and Koch, 1997). As shown on the index map (fig. 1), the study area is almost entirely in the northern Coast Mountains adjacent to British Columbia, Canada. No previous geologic map has been published for the area, although Brew and Ford (1985) included a small part of it in a preliminary compilation of the adjoining Juneau quadrangle; and Brew and others (1991a) showed the geology at 1:500,000 scale. Areas mapped nearby in British Columbia and the United States are also shown on figure 1. All of the map area is in the Coast Mountains Complex as defined by Brew and others (1995a). A comprehensive bibliography is available for this and adjacent areas (Brew, 1997n).

  8. Sorption processes of radiocesium in soil and bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-06-01

    Three recent studies on cesium sorption in soil and bedrock are reviewed. {sup 137}Cs, originating from fallouts of nuclear weapons tests and the Chernobyl accident was found to decrease in an exponential manner in forest soil, and the highest fraction in soil profiles was found in the organic layer. Also, the mineral layer below the organic layer contained a large fraction of cesium inventory but at depths below 20 cm only a very small fraction was observed. In the bedrock of Olkiluoto, where the final repository for spent nuclear fuel from the Finnish nuclear power plants will be constructed, mica mineral biotite plays the most important role in cesium sorption. The selectivity of biotite decreases in the order Cs > K > Na > Ca and the overall selectivity coefficient for Cs/Ca exchange was approximately five and seven orders of magnitude higher than those for Cs/Na and Cs/K exchange reactions, respectively. Ion exchange isotherms for Cs/Na and Cs/K exchange were modelled by assuming three different ion exchange sites: frayed edge sites (FES), basal plane sites and intermediate sites. The selectivity coefficients derived for these sites were successfully used to predict cesium sorption in a mica gneiss rock. Sorption of cesium in mineral soil layers from the Olkiluoto overburden were studied using three different approaches: model batch experiments, an in-situ method and calculations. All three approaches gave the same trend but the distribution coefficient values varied in range of one order of magnitude.

  9. Bedrock neutralization study for the Bruin Lagoon Superfund Site

    International Nuclear Information System (INIS)

    Patelunas, G.M.; Lenhardt, D.R.; Niece, J.E.

    1989-01-01

    The Bruin Lagoon site is located in Bruin Butler County, Pennsylvania, and is listed as No. 3 on the U.S. Environmental Protection Agencies' National Priority List. The Lagoon contains waste petroleum tars, sulfuric acid, coal combustion ash, spent bauxite and other waste materials. This paper reports on the bedrock neutralization study, conducted to assess the feasibility of injecting caustic solutions into acid-contaminated bedrock beneath the lagoon. The site is underlain by a fine to medium grain quartz sandstone which is contaminated with acid to depths in excess of 30 feet. For this investigation, Nx-cores were obtained and pressure tests conducted to a depth of 30 feet below the top of rock. Leach tests were conducted on contaminated core sections using sodium hydroxide and sodium carbonate solutions. A total of 12 core sections were exposed in 3-inch diameter test cylinders and permeated under a positive pressure of 25 to 50 psi. Measurements of leachate volume, temperature, pH, and hydraulic conductivity were recorded

  10. Constraining local subglacial bedrock erosion rates with cosmogenic nuclides

    Science.gov (United States)

    Wirsig, Christian; Ivy-Ochs, Susan; Christl, Marcus; Reitner, Jürgen; Reindl, Martin; Bichler, Mathias; Vockenhuber, Christof; Akcar, Naki; Schlüchter, Christian

    2014-05-01

    The constant buildup of cosmogenic nuclides, most prominently 10Be, in exposed rock surfaces is routinely employed for dating various landforms such as landslides or glacial moraines. One fundamental assumption is that no cosmogenic nuclides were initially present in the rock, before the event to be dated. In the context of glacially formed landscapes it is commonly assumed that subglacial erosion of at least a few meters of bedrock during the period of ice coverage is sufficient to remove any previously accumulated nuclides, since the production of 10Be ceases at a depth of 2-3 m. Insufficient subglacial erosion leads to overestimation of surface exposure ages. If the time since the retreat of the glacier is known, however, a discordant concentration of cosmogenic nuclides delivers information about the depth of subglacial erosion. Here we present data from proglacial bedrock at two sites in the Alps. Goldbergkees in the Hohe Tauern National Park in Austria and Gruebengletscher in the Grimsel Pass area in Switzerland. Samples were taken inside as well as outside of the glaciers' Little Ice Age extent. Measured nuclide concentrations are analyzed with the help of a MATLAB model simulating periods of exposure or glacial cover of user-definable length and erosion rates.

  11. SKB 91. Final disposal of spent nuclear fuel. Importance of the bedrock for safety

    International Nuclear Information System (INIS)

    1992-05-01

    The safety of a deep repository for spent nuclear fuel has been assessed in this report. The spent fuel is assumed to be encapsulated in a copper canister and deposited at a depth of 600 m in the bedrock. The primary purpose has been to shed light on the importance of the geological features of the site for the safety of a final repository. The assessment shows that the encapsulated fuel will, in all likelihood, be kept isolated from the groundwater for millions of years. This is considerably longer than the more than 100 000 years that are required in order for the toxicity of the waste to have declined to a level equivalent to that of rich uranium ores. However, in order to be able to study the role of the rock as a barrier to the dispersal of radioactive materials, calculations have been carried out under the assumption that waste canisters leak. The results show that the safety of a carefully designed repository is only affected to a small extent by the ability of the rock to retain the escaping radionuclides. The primary role of the rock is to provide stable mechanical and chemical conditions in the repository over a long period of time so that the function of the engineered barriers is not jeopardized. (187 refs.) (au)

  12. Feasibility study and technical proposal for long-term observations of bedrock stability with gps

    International Nuclear Information System (INIS)

    Ruizhi Chen; Kakkuri, J.

    1994-01-01

    In order to study the regional crustal deformation pattern in the territory of Finland, the Finnish Geodetic Institute is establishing the Finnish Permanent GPS Network, which is part of the Fennoscandian Permanent GPS Network. The Finnish GPS Network consists of a 12 stations located in different geological structures. The operation procedure of the network is described in the report. Feasibility study for monitoring the bedrock stability at local scale was performed. The study was carried out on the basis of an experiment on a baseline of 1041 metres. Twelve artificial movements ranging from 1 mm to 22 mm were generated with a precision-manufactured screw drive (with an accuracy of better than +-0.05 mm). The artificial movements were then detected with the GPS measurements. A preliminary analysis of the GPS data shows that the maximum difference between the GPS detected movements and the artificial movements is 0.9 mm with a standard deviation of +-0.46 mm. The observation time for reaching such accuracy is about 55 minutes. Three GPS networks were preliminarily designed for the radioactive waste disposal investigation sites of Olkiluoto, Kivetty and Romuvaara. Detailed research plan for achieving the best possible result from GPS measurements was proposed. (58 refs., 25 figs., 1 tab.)

  13. Hydraulic Parameter Generation Technique Using a Discrete Fracture Network with Bedrock Heterogeneity in Korea

    Directory of Open Access Journals (Sweden)

    Jae-Yeol Cheong

    2017-12-01

    Full Text Available In instances of damage to engineered barriers containing nuclear waste material, surrounding bedrock is a natural barrier that retards radionuclide movement by way of adsorption and delay due to groundwater flow through highly tortuous fractured rock pathways. At the Gyeongju nuclear waste disposal site, groundwater mainly flows through granitic and sedimentary rock fractures. Therefore, to understand the nuclide migration path, it is necessary to understand discrete fracture networks based on heterogeneous fracture orientations, densities, and size characteristics. In this study, detailed heterogeneous fracture distribution, including the density and orientation of the fractures, was considered for a region that has undergone long periods of change from various geological activities at and around the Gyeongju site. A site-scale discrete fracture network (DFN model was constructed taking into account: (i regional fracture heterogeneity constrained by a multiple linear regression analysis of fracture intensity on faults and electrical resistivity; and (ii the connectivity of conductive fractures having fracture hydraulic parameters, using transient flow simulation. Geometric and hydraulic heterogeneity of the DFN was upscaled into equivalent porous media for flow and transport simulation for a large-scale model.

  14. Generalizing geological maps with the GeoScaler software: The case study approach

    Science.gov (United States)

    Smirnoff, Alex; Huot-Vézina, Gabriel; Paradis, Serge J.; Boivin, Ruth

    2012-03-01

    Map generalization is rapidly becoming an important task in surficial and bedrock geology as broader regional and cross-boundary compilations are made from maps originally describing more specific areas. However, the entire process is still not defined in sufficient detail and relatively few automated tools are available. Moreover, the existing tools are primarily designed for generalization of topographic maps and do not address the needs specific to geology. Here we present two case studies describing our approach to the generalization of surficial and bedrock geology maps, respectively. To accomplish the task, we employed the GeoScaler software developed at the Laboratoire de cartographie numérique et de photogrammétrie (LCNP) of the Quebec division of the Geological Survey of Canada (Version 2009). The software is free over the Internet but requires an ArcGIS (ArcInfo) license. Four surficial geology maps at 1:250,000 scale were produced from 14 maps scaled at 1:100,000, while a single compilation of six bedrock maps was generalized from 1:125,000 to 1:500,000 scale. We describe the general considerations required to approach any generalization exercise, applied software, objectives, input data, major generalization steps, and the final results. All generalized maps were favorably evaluated by experts in geological mapping and the surficial maps have been published.

  15. Calculating the spatio-temporal variability of bedrock exposure on seasonal hydrograph timescales as a prerequisite to modeling bedrock river evolution

    Science.gov (United States)

    Hurst, A. A.; Anderson, R. S.; Tucker, G. E.

    2017-12-01

    Erosion of bedrock river channels exerts significant control on landscape evolution because it communicates climatic and tectonic signals across a landscape by setting the lower erosional boundaries for hillslopes. Hillslope erosion delivers sediment to the channels, which then either store or transport the sediment. At times of high storage, access to the bedrock floor of the channel is limited, inhibiting bedrock erosion. This affects the timescale of channel response to imposed base-level lowering, which in turn affects hillslope erosion. Because occasional exposure of the bedrock bed is a minimum prerequisite for bedrock erosion, we seek to understand the evolution of sediment cover, or scour history, with sufficient resolution to answer when and where the bed is exposed. The scour history at a site is governed by grain size, bed and channel morphology, sediment concentration in the water, and seasonal flow conditions (hydrograph). The transient nature of bedrock exposure during high-flow events implies that short-term sediment cover dynamics are important for predicting long-term bedrock incision rates. Models of channel profile evolution, or of landscape evolution, generally ignore evolution of sediment cover on the hydrograph timescale. To develop insight into the necessary and sufficient conditions for bedrock exposure followed by reburial, we have developed a 1-D model of the evolution of alluvial cover thickness in a long channel profile in response to a seasonal hydrograph. This model tracks erosion, deposition, and the concentration of sediment in the water column separately, and generates histories of scour and fill over the course of the hydrograph. We compare the model's predictions with net-scour measurements in tributaries of the Grand Canyon and with scour-chain and accelerometer measurements in the Cedar River, Washington. By addressing alluvial scour on short timescales, we acknowledge the processes required to allow bedrock incision and

  16. Rock-block configuration in Uppland and the Aalands-hav basin, the regional surroundings of the SKB site in Forsmark, Sea and land areas, eastern Sweden

    International Nuclear Information System (INIS)

    Beckholmen, Monica; Tiren, Sven A.

    2010-12-01

    The Forsmark SKB site lies at the west-northwest trending shoreline in northern Uppland, sheltered from the sea by one of the larger islands in the Uppland archipelago, Graesoe. To assess the structures around Forsmark also in the sea area, the bottom structures of the Aalands-hav basin were investigated by means of depth readings from sea charts. Two rock-block maps with rock blocks at different scales were constructed and analysed for their top surface elevation. The topography in Uppland is more broken in the sea area east and northeast of Forsmark than it is on land. The major structure in the Aalands-hav basin is a westnorth- westerly line that passes southwest of Aaland, with a very steep gradient from the Aaland archipelago down to an exceptionally low sea-floor valley. On its southern side it rises in steps to a low flat basin divided into a deeper western half and a somewhat shallower eastern half. The deep west-north-westerly zone can be traced on-land past Oeregrund and Forsmark. West of Oeregrund however, the main trough swings into a north-northwesterly direction, just west of Graesoe. The southern border south of Oeregrund and Forsmark, shows a major drop in elevation northern side down. Forsmark thus lies on a ribbon with lower ground on both its southern and northern boundaries. This west-north-westerly belt is cut in two by a major north-south lineament that cuts through the archipelago between Aaland and Graesoe with a very deep canyon. This structure was seismically active in June 2006. The southern part of this line constitutes the western border of the low basin and has a steep gradient on its western side up to the Uppland mainland. The deep basin is filled with Jotnian metasediments. South of this basin, the Uppland mainland continues under water towards the east. South of Aaland an east-north-easterly ridge separates the low basin to the north from an east-west trending trough which is the eastern continuation of a major onland structure

  17. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  18. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  19. Surveys of mammal populations in the areas adjacent to Forsmark and Tierp. A pilot study 2001-2002

    International Nuclear Information System (INIS)

    Cederlund, Goeran; Hammarstroem, Angelica; Wallin, Kjell

    2003-04-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. To get relevant data on the dynamics of the mammal populations it is important to estimate the abundance and variations over time. Data achieved can be used to specifically monitor endangered species (like wolf, Canis lupus, and otter, Lutra lutra), detect effects from e.g. drilling activities on populations (important to hunters) and be used for assessment programs (MKB). One of the major goals is to monitor populations over several years and to obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclide. From late 2001 to late spring 2002 a pilot study was accomplished in the areas surrounding the suggested areas in the Tierp region and in Forsmark (Oskarshamn was not included in this pilot study). A reference area was chosen near the coast some 20 km north of Forsmark. The aim was to initiate surveys of most of the larger mammal species that were expected to be found in the region. Selected species were wolf, lynx, otter, marten, mink, red fox, beaver, wild boar, red deer, roe deer, moose, European hare and mountain hare. Several methods were used and adapted to expected habitat use and expected local density of the species. Line transects were used on snow to index (frequency of tracks crossing the transects) or calculate actual number (for example the Buffon method). Pellet counts were used in spring to calculate hare and cervid (moose and deer species) density. In mid winter an aerial (helicopter) survey was conducted along the coast to count moose. The aquatic mammals were tracked on snow along selected parts of the streams and

  20. Surveys of mammal populations in the areas adjacent to Forsmark and Tierp. A pilot study 2001-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cederlund, Goeran; Hammarstroem, Angelica; Wallin, Kjell [Svensk Viltfoervaltning AB, Ramsberg (Sweden)

    2003-04-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. To get relevant data on the dynamics of the mammal populations it is important to estimate the abundance and variations over time. Data achieved can be used to specifically monitor endangered species (like wolf, Canis lupus, and otter, Lutra lutra), detect effects from e.g. drilling activities on populations (important to hunters) and be used for assessment programs (MKB). One of the major goals is to monitor populations over several years and to obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclide. From late 2001 to late spring 2002 a pilot study was accomplished in the areas surrounding the suggested areas in the Tierp region and in Forsmark (Oskarshamn was not included in this pilot study). A reference area was chosen near the coast some 20 km north of Forsmark. The aim was to initiate surveys of most of the larger mammal species that were expected to be found in the region. Selected species were wolf, lynx, otter, marten, mink, red fox, beaver, wild boar, red deer, roe deer, moose, European hare and mountain hare. Several methods were used and adapted to expected habitat use and expected local density of the species. Line transects were used on snow to index (frequency of tracks crossing the transects) or calculate actual number (for example the Buffon method). Pellet counts were used in spring to calculate hare and cervid (moose and deer species) density. In mid winter an aerial (helicopter) survey was conducted along the coast to count moose. The aquatic mammals were tracked on snow along selected parts of the streams and

  1. Analysis of workability of rocks and type of prequarternary bedrock in the selected part of the Ostrava conurbation by means of geographic information systems

    Directory of Open Access Journals (Sweden)

    Marian Marschalko

    2008-06-01

    Full Text Available An up-to-date topic with which engineering geology can contribute to the requirements of practice and research, in particularthe needs of land use planning, state administration, building offices, developers, etc. is an analysis of new possibilities of providingreference information on the engineering-geological conditions by means of geographic information systems. The study in the presentedpaper deals with an evaluation of two geofactors. They are the character of rocks workability and Pre-quaternary bedrock. Workabilityis a significant limiting factor, which affects the used technology and financial demands of earth work. Especially in case of demandingconstructions, the Pre-quaternary bedrock is a geological environment which will have to be interacted with and must be taken intoaccount during selecting engineering foundation. The overall project was divided into five model areas (1-5, while this paper evaluatesa partial model area of no.1, which is defined by topographical map in drawing scale 1:10 1000 (topographic sheet No. 15-43-10.Namely they are Slezské, Moravské Ostravy, Vítkovic a Radvanice. The mentioned methodology was applied in the interest area forthe first time.

  2. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    International Nuclear Information System (INIS)

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb; Sohlenius, Gustav

    2009-03-01

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  3. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb (ECOMatters Inc., Pinawa (Canada)); Sohlenius, Gustav (Geological Survey of Sweden (SGU), Uppsala (Sweden))

    2009-03-15

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  4. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Questions on geology in connection with final radioactive waste disposal in the Fennoscandian Shield

    International Nuclear Information System (INIS)

    Bjoerklund, A.

    1990-01-01

    The use of nuclear power involves handling and disposal of radioactive waste. A number of methods for disposal have been proposed, one of which is the construction of repositories in crystalline bedrock of old continental crust. This possibility is usually considered reliable because of the relative stability of such bedrock. The Fennoscandian area has repeatedly been glaciated during the past 3 mission years. The last glacial event terminated some 10 000 years ago. This glacial ''massage'' has maintained a dense network of fractures and faults open for circulating water and ascending gas. Blocks of relatively unfractured bedrock have been proposed as suitable sites for the disposal of nuclear waste. Such questions concern neotectonic activity, the movement, salt content and amount of water at a few hundred metres depth, the mobility of elements in the bedrock as well as the geological processes which might be active beneath any future ice cap. Deep groundwaters, dating of young fracture minerals and neotectonic movements have been studied during 1985 - 1989 in a Nordic reserach program sponsored by NKA, the Nordic Liaison Committee for Atomic Energy. Deep saline groundwaters may have a negative effect on repositories of nuclear waste and the knowledge of the location of such waters may also give a hint as to the pattern of water movement in the bedrock. Therefore the composition, origin and location of deep groundwaters were studied. The development of faults in the bedrock through a site of waste disposal before the radioactivity in the waste has decayed to a safe level is considered a serious risk factor. Neotectonic movements have mostly followed old faults and fracture zones in the bedrock, which repeatedly have been reactivated during geological time, leaving blocks between the faults tectonically undisturbed. (CLS) 80 refs

  6. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, H.; Plantman, P.; Borgiel, M. [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    1999-12-15

    (boulders, rock) a luxuriant growth of the bladder wrack (Fucus vesiculosus) could be seen. Also, the moss Fontinalis dalecarlica was not unusual. This moss is frequently observed in the Gulf of Bothnia but does not occur in the Baltic proper. Among the animals, the blue mussel (Mytilus edulis) was to a large extent missing, although suitable substrate was present. In the Bothnian Sea the marine mussel Mytilus extends up to the Northern Quark, but usually only scattered, few individuals are found at each site along the whole coast. The blue mussel never has the same mass-occurrence as can be observed in the Stockholm archipelago and further south in the Baltic proper. Thus, the ecosystem of the SFR-area has a function somewhat different from the Baltic proper as the filter feeders lack to a large extent. The species biomass was determined by collecting 54 quantitative samples (usually 12 samples per transect). At comparable depths, when excluding the bladder wrack (Fucus vesiculosus) and the blue mussel (Mytilus edulis) the total depth distribution of plant and animal biomass was similar those of the Graesoe-Singoe area (ranging between 30-60 g dry weight m{sup -2} of plants and 20-50 g of animals). However, the total biomass of both the bladder wrack (Fucus vesiculosus) and the filter feeding blue mussel (Mytilus edulis) was considerable lower in the Forsmark area. This can to some extent be explained by the difference in dominating substrate (mostly rocky) as well as a larger influence from the Baltic proper in the Graesoe-Singoe area. For the low amounts of Mytilus see explanation given above.

  7. The evolution of stream coupled hillslopes by bedrock landsliding in a rapidly eroding mountain belt, Taiwan

    Science.gov (United States)

    Wenske, Dirk; Jen, Chia-Hung; Böse, Margot; Lin, Jiun-Chuan

    2010-05-01

    dataset collected allows estimations for the erosion depth of the bedrock landslide derived material. A comparison between the two study sites allows to study the mechanisms of hillslope channel coupling under the influence of different fluvial dynamics. References Hovius,N., Stark,C.P., Chu, H.-T.,& Lin, J.-C. (2000): The Journal of Geology, 2000 (108), 73-89 Lin, J.-C., Petley, D., Jen, C.-H., Koh, A. & Hsu, M.-L. (2006): Slope movements in a dynamic environment - A case study of Tachia River, Central Taiwan. - Quaternary International 147 (1), 103-112

  8. 3D Bedrock Structure of Bornova Plain and Its surroundings (İzmir/Western Turkey)

    Science.gov (United States)

    Pamuk, Eren; Gönenç, Tolga; Özdağ, Özkan Cevdet; Akgün, Mustafa

    2018-01-01

    An earthquake record is needed on engineering bedrock to perform soil deformation analysis. This record could be obtained in different ways (seismographs on engineering bedrock; by the help of the soil transfer function; scenario earthquakes). S-wave velocity ( V s) profile must be known at least till engineering bedrock for calculating soil transfer functions true and completely. In addition, 2D or 3D soil, engineering-seismic bedrock models are needed for soil response analyses to be carried out. These models are used to determine changes in the amplitude and frequency content of earthquake waves depending on the seismic impedance from seismic bedrock to the ground surface and the basin effects. In this context, it is important to use multiple in situ geophysical techniques to create the soil-bedrock models. In this study, 2D and 3D soil-bedrock models of Bornova plain and its surroundings (Western Turkey), which are very risky in terms of seismicity, were obtained by combined survey of surface wave and microgravity methods. Results of the study show that the engineering bedrock depths in the middle part of Bornova plain range from 200 to 400 m and the southern and northern parts which are covered limestone and andesite show the engineering bedrock ( V s > 760 m/s) feature. In addition, seismic bedrock ( V s < 3000 m/s) depth changes from 550 to 1350 m. The predominant period values obtained from single station microtremor method change from 0.45 to 1.6 s while they are higher than 1 s in the middle part of Bornova plain where the basin is deeper. Bornova Plain has a very thick sediment units which have very low V s values above engineering bedrock. In addition, it is observed sudden changes at the interfaces of the layer in horizontal and vertical directions.

  9. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  10. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Department of Resources — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  11. Improvement of geological subsurface structure models for Kanto area, Japan, based on records of microtremor array and earthquake observations