WorldWideScience

Sample records for bed conversion

  1. Developments in fluidized bed conversion of solid fuels

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2016-01-01

    Full Text Available A summary is given on the development of fluidized bed conversion (combustion and gasification of solid fuels. First, gasification is mentioned, following the line of development from the Winkler gasifier to recent designs. The combustors were initially bubbling beds, which were found unsuitable for combustion of coal because of various drawbacks, but they proved more useful for biomass where these drawbacks were absent. Instead, circulating fluidized bed boilers became the most important coal converters, whose design now is quite mature, and presently the increments in size and efficiency are the most important development tasks. The new modifications of these conversion devices are related to CO2 capture. Proposed methods with this purpose, involving fluidized bed, are single-reactor systems like oxy-fuel combustion, and dual-reactor systems, including also indirect biomass gasifiers.

  2. Biomass Conversion into Solid Composite Fuel for Bed-Combustion

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available The purpose of this research is the conversion of different types of biomass into solid composite fuel. The subject of research is the heat conversion of biomass into solid composite fuel. The research object is the biomass of the Tomsk region (Russia: peat, waste wood, lake sapropel. Physical experiment of biomass conversion is used as method of research. The new experimental unit for thermal conversion of biomass into carbon residue, fuel gas and pyrolysis condensate is described. As a result of research such parameters are obtained: thermotechnical biomass characteristics, material balances and product characteristics of the heat-technology conversion. Different methods of obtaining solid composite fuel from the products of thermal technologies are considered. As a result, it is established: heat-technology provides efficient conversion of the wood chips and peat; conversion of the lake sapropel is inefficient since the solid composite fuel has the high ash content and net calorific value.

  3. Engineering bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.

    2014-01-01

    A comparison between two numerical models describing the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. Both models consider the incoming biomass as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed...... of the syngas predicted by the two models is equal to about 7%. The application to different types of biomass shows that the difference in the predictions increases as the carbon content grows. The phenomenological model, in fact, generally considers higher conversion rates of this element to volatiles...

  4. Experimental study on temperature characteristics and energy conversion in packed bed reactor with dielectric barrier discharge

    Science.gov (United States)

    Li, Sen; Tang, Zuchen; Gu, Fan

    2010-10-01

    The temperature characteristics and energy conversion in packed bed reactor combined with a dielectric barrier discharge (DBD) plasma was investigated experimentally. The pellet temperatures of two types packed bed reactor, cylindrical reactor and parallel-plate reactor, was measured in conditions of various inlet voltage of DBD plasma. The relationship between pellet temperature of the packed bed and applied voltage of DBD plasma was discovered. The experimental result indicates a tendency that the pellet temperature of packed bed increases as the applied voltage of inlet plasma increases. When the voltage of inlet plasma is high enough, the pellet temperature increment decreases. Simultaneously,the packed bed temperature is sensitive to the inlet plasma energy and there is a potential application to heat exchanger. Moreover the proportion of energy consumption of plasma inputting into packed bed reactor was analyzed and calculated. The mechanisms that electrical energy of inlet plasma is transformed into heat energy in the two phases, gaseous and pellets of the packed bed reactor are different. The energy consumption in pellet phase is dielectric polarization loss and depends on packed bed geometry and DBD plasma etc. The energy consumption in gaseous phase is plasma sheath procedure. The important factors effecting on gas discharge are gaseous component and voltage, frequency of power.

  5. Bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.

    2013-01-01

    to describe the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. In this work both models consider the incoming solid fuel as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed is treated as a 0D system, but the thermo......Because of the complexity to describe and solve thermo-chemical processes occurring in a fuel bed in grate-fired boiler, it is often necessary to simplify the process and use modeling techniques based on overall mass, energy and species conservation. A comparison between two numerical models......-chemical processes are divided in two successive sections: drying and conversion (which includes pyrolysis, gasification and combustion). The second model is an empirical 1D approach. The two models need input data such as composition, temperature and feeding rate of biomass and primary air. Temperature, species...

  6. Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer

    Institute of Scientific and Technical Information of China (English)

    Phavanee Narataruksa; Sabaithip Tungkamani; Karn Pana-Suppamassadu; Phongsak Keeratiwintakorn; Siriluck Nivitchanyong; Piyapong Hunpinyo; Hussanai Sukkathanyawat; Prayut Jiamrittiwong; Visarut Nopparat

    2012-01-01

    Recently,Fischer-Tropsch synthesis (FTS) has become an interesting technology because of its potential role in producing biofuels via Biomassto-Liquids (BTL) processes.In Fischer-Tropsch (FT) section,biomass-derived syngas,mainly composed of a mixture of carbon monoxide (CO)and hydrogen (H2),is converted into various forms of hydrocarbon products over a catalyst at specified temperature and pressure.Fixed-bed reactors are typically used for these processes as conventional FT reactors.The fixed-bed or packed-bed type reactor has its drawbacks,which are heat transfer limitation,i.e.a hot spot problem involved highly exothermic characteristics of FT reaction,and mass transfer limitation due to the condensation of liquid hydrocarbon products occurred on catalyst surface.This work is initiated to develop a new chemical reactor design in which a better distribution of gaseous reactants and hydrocarbon products could be achieved,and led to higher throughput and conversion.The main goal of the research is the enhancement of a fixed-bed reactor,focusing on the application of KenicsTM static mixer insertion in the tubular packed-bed reactor.Two FTS experiments were carried out using two reactors i.e.,with and without static mixer insertion within catalytic beds.The modeled syngas used was a mixed gas composed of H2/CO in 2 ∶ 1 molar ratio that was fed at the rate of 30 mL(STP)·min-1 (GHSV ≈ 136 mL·g-1cat·h-1) into the fixed Ru supported aluminum catalyst bed of weight 13.3 g.The reaction was carried out at 180 ℃ and atmospheric pressure continuously for 36 h for both experiments.Both transient and steady-state conversions (in terms of time on stream) were reported.The results revealed that the steady-state CO conversion for the case using the static mixer was approximately 3.5 times higher than that of the case without static mixer.In both cases,the values of chain growth probability of hydrocarbon products (α) for Fischer-Tropsch synthesis were 0.92 and 0.89 for

  7. Dual-Bed Catalytic System for Direct Conversion of Methane to Liquid Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    N.A.S.Amin; Sriraj Ammasi

    2006-01-01

    A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.

  8. Research on coal staged conversion poly-generation system based on fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Mingjiang Ni; Chao Li; Mengxiang Fang; Qinhui Wang; Zhongyang Luo; Kefa Cen

    2014-01-01

    A new coal staged conversion poly-generation system combined coal combustion and pyrolysis has been developed for clean and high efficient utilization of coal. Coal is the first pyrolysed in a fluidized pyrolyzer. The pyrolysis gas is then purified and used for chemical product or liquid fuel production. Tar is collected during purification and can be processed to extract high value product and to make liquid fuels by hydro-refining. Semi-coke from the pyrolysis reactor is burned in a circulating fluidized bed (CFB) combustor for heat or power generation. The system can realize coal multi-product generation and has a great potential to increase coal utilization value. A 1 MW poly-generation system pilot plant and a 12 MW CFB gas, tar, heat and power poly-generation system was erected. The experimental study focused on the two fluidized bed operation and characterization of gas, tar and char yields and compositions. The results showed that the system could operate stable, and produce about 0.12 m3/kg gas with 22 MJ/m3 heating value and about 10 wt%tar when using Huainan bituminous coal under pyrolysis temperature between 500 and 600 ?C. The produced gases were mainly H2, CH4, CO, CO2, C2H4, C2H6, C3H6 and C3H8. The CFB combustor can burn semi-coke steadily. The application prospect of the new system was discussed.

  9. Recommendations for conversions of grate fired boilers to fluidising beds; Anvisningar foer konvertering av rosterpannor till fluidiserad baeddteknik

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lars; Ingman, Rolf [AaF Energikonsult AB, Stockholm (Sweden)

    2001-03-01

    This report gives advice and recommendations for retrofitting of grate fired boilers to fluidising beds. Nine plants have been visited and experiences from these conversion projects have been gathered and analysed. Among the important points planning, fuel specification, heat balance calculations and clarifying of delivery limits can be mentioned. It is also important not to underestimate the need for education of the operational staff.

  10. Reduced bed temperature at thermo-chemical conversion of difficult fuels; Saenkt baeddtemperatur vid termokemisk omvandling av svaara braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Haraldsson, Conny; Johansson, Andreas; Claesson, Frida; Baefver, Linda; Ryde, Daniel

    2010-05-15

    needed to obtain reliable quantitative results. Under pyrolysis (in nitrogen), a strong coupling was found between temperature and measured concentrations of alkali and zinc in the flue gas, especially between 750 and 850 deg C. These findings imply that reactors for gasification (or pyrolysis) of waste and biofuels will benefit from being operated at temperatures below 850 deg C to reduce the alkali content in the product gas. On the other hand, there could be other advantages of operating a gasifier at higher temperatures. The influence of the reactor temperature on the release of alkali metals was found to be less pronounced during combustion as compared to pyrolysis. The reason for this could be that oxygen takes part in the reaction scheme controlling the release of the alkali metals, but it could also be a consequence of locally higher temperatures in the fuel particle while burning. The tests showed that a larger fraction of zinc was released during devolatilisation, compared to the alkali metals of which typically less than 10 % was found to be released during devolatilisation. Some additional tests where HCl was added to the fluidizing gas showed, as expected, that the presence of HCl increases the release of alkali metals from the bottom ash. Agglomeration temperatures were determined for two bed sand samples that had been extracted under operating bed temperatures of 870 and 750 deg C in a commercial waste fired FB-boiler. While sand samples were heated in order to find the agglomeration temperature, considerably more alkali metals were released from the sand sampled at 750 deg C. The agglomeration temperature was somewhat lower for this sand, but it was still considerably higher than normal operating bed temperature of the boiler. The present lab-scale study shows that the release of alkali metals and zinc into the flue gas from waste is reduced, or at least considerably decelerated, by a lowered fuel conversion temperature. However, the atmosphere and bed

  11. The Effect of Computer Games on the Proficiency of the B.Ed. Teacher Trainees in Using the Conventional Expressions in Conversations

    Science.gov (United States)

    Muthiah, Rajendran

    2015-01-01

    The purpose of the study is to assess the effect of computer games on the proficiency of the B.Ed teacher trainees in using the conventional expressions in conversations. The role of technology in language learning has made outdated, drills, grammatical explanations and translation of texts, and the focus is shifted to communication based…

  12. Reduced bed temperature at thermo-chemical conversion of difficult fuels; Saenkt baeddtemperatur vid termokemisk omvandling av svaara braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Haraldsson, Conny; Johansson, Andreas; Claesson, Frida; Baefver, Linda; Ryde, Daniel

    2010-05-15

    needed to obtain reliable quantitative results. Under pyrolysis (in nitrogen), a strong coupling was found between temperature and measured concentrations of alkali and zinc in the flue gas, especially between 750 and 850 deg C. These findings imply that reactors for gasification (or pyrolysis) of waste and biofuels will benefit from being operated at temperatures below 850 deg C to reduce the alkali content in the product gas. On the other hand, there could be other advantages of operating a gasifier at higher temperatures. The influence of the reactor temperature on the release of alkali metals was found to be less pronounced during combustion as compared to pyrolysis. The reason for this could be that oxygen takes part in the reaction scheme controlling the release of the alkali metals, but it could also be a consequence of locally higher temperatures in the fuel particle while burning. The tests showed that a larger fraction of zinc was released during devolatilisation, compared to the alkali metals of which typically less than 10 % was found to be released during devolatilisation. Some additional tests where HCl was added to the fluidizing gas showed, as expected, that the presence of HCl increases the release of alkali metals from the bottom ash. Agglomeration temperatures were determined for two bed sand samples that had been extracted under operating bed temperatures of 870 and 750 deg C in a commercial waste fired FB-boiler. While sand samples were heated in order to find the agglomeration temperature, considerably more alkali metals were released from the sand sampled at 750 deg C. The agglomeration temperature was somewhat lower for this sand, but it was still considerably higher than normal operating bed temperature of the boiler. The present lab-scale study shows that the release of alkali metals and zinc into the flue gas from waste is reduced, or at least considerably decelerated, by a lowered fuel conversion temperature. However, the atmosphere and bed

  13. Fluidized-bed gasification of biomass: Conversion of fine carabon particles in the freeboard; Biomassevergasung in der Wirbelschicht: Umsatz von feinen Kohlenstoffpartikeln im Freeboard

    Energy Technology Data Exchange (ETDEWEB)

    Miccio, F. [Ist. Ricerche sulla Combustione-CNR, Napoli (Italy); Moersch, O.; Spliethoff, H.; Hein, K.R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1998-09-01

    The conversion of carbon particles in gasification processes was investigated in a fluidized-bed reactor of the Institute of Chemical Engineering and Steam Boiler Technology of Stuttgart University. This reactor is heated electrically to process temperature, and freeboard coal particles can be sampled using an isokinetic probe. The fuel used in the experiments consisted of beech wood chips. The temperature and air rating, i.e. the main parameters of the process, were varied in order to investigate their influence on product gas quality and carbon conversion. The conversion rate is influenced to a significant extent by grain disintegration and discharge of carbon particles. In gasification conditions, a further conversion process takes place in the freeboard. (orig.) [Deutsch] In dieser Arbeit wird die Umsetzung von Kohlenstoffpartikeln unter Vergasungsbedingungen untersucht. Die Versuche wurden an einem Wirbelschichtreaktor des Instituts fuer Verfahrenstechnik und Dampfkesselwesen der Universitaet Stuttgart durchgefuehrt. Dieser Reaktor wird elektrisch auf Prozesstemperatur beheizt. Mit Hilfe einer isokinetischen Sonde koennen Proben von Kohlenstoffpartikeln im Freeboard genommen werden. Als Brennstoff wurden zerkleinerte Buchenholz-Hackschnitzel eingesetzt. Variiert wurden als Hauptparameter des Prozesses Temperatur und Luftzahl. Untersucht wurde der Einfluss dieser Parameter auf die Qualitaet des Produktgases und die Umsetzung des Kohlenstoffes. Kornzersetzungs- und Austragsvorgaenge von Kohlenstoffpartikeln spielen eine wichtige Rolle fuer den Kohlenstoffumsatz. Unter Vergasungsbedingungen findet im Freeboard eine weitere Umsetzung der Partikel statt. (orig.)

  14. Catalytic conversion of chloromethane to methanol and dimethyl ether over two catalytic beds: a study of acid strength

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.R.; Leite, T.C.M.; Mota, C.J.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica], e-mail: cmota@iq.ufrj.br

    2010-07-15

    The catalytic hydrolysis of chloromethane to methanol and dimethyl ether (DME) was studied over metal-exchanged Beta and Mordenite zeolites, acidic MCM-22 and SAPO-5. The use of a second catalytic bed with HZSM-5 zeolite increased the selectivity to DME, due to methanol dehydration on the acid sites. The effect was more significant on catalysts presenting medium and weak acid site distribution, showing that dehydration of methanol to DME is accomplished over sites of higher acid strength. (author)

  15. Conversion of olive pomace oil to cocoa butter-like fat in a packed-bed enzyme reactor.

    Science.gov (United States)

    Ciftçi, Ozan Nazim; Fadiloğlu, Sibel; Göğüş, Fahrettin

    2009-01-01

    Refined olive pomace oil (ROPO) was utilized as a source oil for production of cocoa butter-like fat. Immobilized sn-1,3 specific lipase catalyzed acidolysis of ROPO with palmitic (PA) and stearic (SA) acids was performed in a laboratory scale packed-bed reactor. Effect of reactor conditions on product formation was studied at various substrate mole ratios (ROPO:PA:SA; 1:1:1, 1:1:3, 1:3:3, 1:2:6), enzyme loads (10%, 20%, 40%), substrate flow rates (1.5, 4.5, 7.5, 15 ml/min) and solvent amounts (150, 400 ml). The highest yield (10.9% POP, 19.7% POS and 11.2% SOS) was obtained at 40% enzyme load, 1:2:6 substrate mole ratio, 45 degrees C, 7.5 ml/min substrate flow rate, 150 ml solvent and 3h reaction time. The melting profile and SFC of the product were comparable to those of CB. Polarized light microscope (PLM) images showed no drastic changes in polymorphic behavior between CB and product.

  16. RESEARCH ON REUSE OF PAPERMAKING LIGNIN-CONVERSION OF LIGNIN TO BTX BY CATALYTIC PYROLYSIS IN A POWDER PARTICLE FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Chang Wang; Chongwo Li; Qingzhu Jia

    2004-01-01

    Experiments on the catalytic pyrolysis of the papermaking lignin were conduced by using a new type of powder-particle fluidized bed to improve the yield of the light aromatic hydrocarbon, i.e. benzene,toluene, xylene and naphthalene (BTXN), in which the primary decomposition and secondary catalytic reaction occur simultaneously at ambient pressure.The effect of catalyst species, fluidizing gases and pyrolysis temperature on the yield of the BTXN were investigated. The content of sulfur is high in the papermaking lignin, and the volatile matter is effected by the temperature. In the case of the inert media silica sand, the yield and the distribution of the pyrolysis products were almost unchanged under the different kind of atmosphere. In the case of the catalyst CoMo-B with hydrogen atmosphere, the intermediate BTXN yield reached 2.52wt%, dry, 3.3 times as much as that in the case of silica sand.Therefore, in order to obtain valuable BTXN as an intermediate in the pyrolysis as much as possible, it is extremely important to select high sulfur resistance and hydrogenization activity catalyst.

  17. RESEARCH ON REUSE OF PAPERMAKING LIGNIN-CONVERSION OF LIGNIN TO BTX BY CATALYTIC PYROLYSIS IN A POWDER PARTICLE FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    ChangWang; ChongwoLi; QingzhuJia

    2004-01-01

    Experiments on the catalytic pyrolysis of the papermaking lignin were conduced by using a new type of powder-particle fluidized bed to improve the yield of the light aromatic hydrocarbon, i.e. benzene, toluene, xylene and naphthalene (BTXN), in which the primary decomposition and secondary catalytic reaction occur simultaneously at ambient pressure. The effect of catalyst species, fluidizing gases and pyrolysis temperature on the yield of the BTXN were investigated. The content of sulfur is high in the papermaking lignin, and the volatile matter is effected by the temperature. In the case of the inert media silica sand, the yield and the distribution of the pyrolysis products were almost unchanged under the different kind of atmosphere. In the case of the catalyst CoMo-B with hydrogen atmosphere, the intermediate BTXN yield reached 2.52wt%, dry, 3.3 times as much as that in the case of silica sand. Therefore, in order to obtain valuable BTXN as an intermediate in the pyrolysis as much as possible, it is extremely important to select high sulfur resistance and hydrogenization activity catalyst.

  18. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  19. Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, Fausto; Sint Annaland, van Martin; Kuipers, J.A.M.

    2010-01-01

    In this theoretical work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, has been compared for ultra-pure hydrogen production via methane reforming. Using detailed theoretical models, the required membrane area to reach a given conversion

  20. Bed rest during pregnancy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000581.htm Bed rest during pregnancy To use the sharing features on ... your daily activities. Why Do I Need Bed Rest? Bed rest used to be recommended routinely for ...

  1. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  2. Agglomeration in fluidized beds: detection and counteraction

    NARCIS (Netherlands)

    Bartels. M.

    2008-01-01

    Fluidized beds comprise a quantity of solid particles that is suspended by an upward flowing gas. They are used for a variety of processes in the chemical industry, such as catalytic reactions, drying, coating and energy conversion. A major problem in industrial practice is the occurrence of unwante

  3. Contentious Conversations

    Science.gov (United States)

    Zuidema, Leah A.

    2011-01-01

    The idea of joining a conversation through reading and writing is not new; in his 1941 book "The Philosophy of Literary Form: Studies in Symbolic Action," Kenneth Burke suggests that the acts of reading and writing are like entering a parlor where others are already conversing. The author explores the place of professional debate within NCTE and…

  4. Conversational Narcissism.

    Science.gov (United States)

    Vangelisti, Anita L.; And Others

    1990-01-01

    Examines narcissistic communication and the ways it is exhibited in everyday conversation. Identifies the following behavioral referents: boasting, refocusing the topic of conversation on the self, exaggerating hand and body movements, using a loud tone of voice, and "glazing over" when others speak. Suggests that conversational…

  5. Introduction to Bed Bugs

    Science.gov (United States)

    The common bed bug (Cimex lectularius) is a pest – feeding on blood, causing itchy bites and generally irritating their human hosts. EPA and other agencies all consider bed bugs a public health pest, but bed bugs are not known to transmit disease.

  6. Conversation Analysis.

    Science.gov (United States)

    Schiffrin, Deborah

    1990-01-01

    Summarizes the current state of research in conversation analysis, referring primarily to six different perspectives that have developed from the philosophy, sociology, anthropology, and linguistics disciplines. These include pragmatics; speech act theory; interactional sociolinguistics; ethnomethodology; ethnography of communication; and…

  7. Conversion Disorder

    Science.gov (United States)

    ... Recent significant stress or emotional trauma Being female — women are much more likely to develop conversion disorder Having a mental health condition, such as mood or anxiety disorders, dissociative disorder or certain personality disorders Having ...

  8. Strategic conversation

    Directory of Open Access Journals (Sweden)

    Nicholas Asher

    2013-08-01

    Full Text Available Models of conversation that rely on a strong notion of cooperation don’t apply to strategic conversation — that is, to conversation where the agents’ motives don’t align, such as courtroom cross examination and political debate. We provide a game-theoretic framework that provides an analysis of both cooperative and strategic conversation. Our analysis features a new notion of safety that applies to implicatures: an implicature is safe when it can be reliably treated as a matter of public record. We explore the safety of implicatures within cooperative and non cooperative settings. We then provide a symbolic model enabling us (i to prove a correspondence result between a characterisation of conversation in terms of an alignment of players’ preferences and one where Gricean principles of cooperative conversation like Sincerity hold, and (ii to show when an implicature is safe and when it is not. http://dx.doi.org/10.3765/sp.6.2 BibTeX info

  9. Direct Conversion of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R

    1964-01-01

    Topics include: direct versus dynamic energy conversion; laws governing energy conversion; thermoelectricity; thermionic conversion; magnetohydrodynamic conversion; chemical batteries; the fuel cell; solar cells; nuclear batteries; and advanced concepts including ferroelectric conversion and thermomagnetic conversion.

  10. Conversational Telugu.

    Science.gov (United States)

    Beinstein, Judith; And Others

    The purpose of this text is to develop elementary conversational skills in Telugu. The language materials consist of four types of language learning activities. The first, and most predominant, is the unit microwave cycle. These cycles divide the learning process into two basic phases, the first of which involves mimicry, memorization, and…

  11. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  12. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  13. Fluidized bed calciner apparatus

    Science.gov (United States)

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  14. Bed Bugs FAQs

    Science.gov (United States)

    ... Bed bugs have been found in five-star hotels and resorts and their presence is not determined ... sleep. These areas include apartments, shelters, rooming houses, hotels, cruise ships, buses, trains, and dorm rooms. They ...

  15. Tapered bed bioreactor

    Science.gov (United States)

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  16. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  17. Internal Combustion Engines as Fluidized Bed Reactors

    Science.gov (United States)

    Lavich, Zoe; Taie, Zachary; Menon, Shyam; Beckwith, Walter; Daly, Shane; Halliday, Devin; Hagen, Christopher

    2016-11-01

    Using an internal combustion engine as a chemical reactor could provide high throughput, high chemical conversion efficiency, and reactant/product handling benefits. For processes requiring a solid catalyst, the ability to develop a fluidized bed within the engine cylinder would allow efficient processing of large volumes of fluid. This work examines the fluidization behavior of particles in a cylinder of an internal combustion engine at various engine speeds. For 40 micron silica gel particles in a modified Megatech Mark III transparent combustion engine, calculations indicate that a maximum engine speed of about 60.8 RPM would result in fluidization. At higher speeds, the fluidization behavior is expected to deteriorate. Experiments gave qualitative confirmation of the analytical predictions, as a speed of 48 RPM resulted in fluidized behavior, while a speed of 171 RPM did not. The investigation shows that under certain conditions a fluidized bed can be obtained within an engine cylinder. Corresponding Author.

  18. Fluidized-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  19. Fixed-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  20. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    Science.gov (United States)

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  1. Bed bug deterrence

    Directory of Open Access Journals (Sweden)

    Haynes Kenneth F

    2010-09-01

    Full Text Available Abstract A recent study in BMC Biology has determined that the immature stage of the bed bug (the nymph signals its reproductive status to adult males using pheromones and thus avoids the trauma associated with copulation in this species. The success of this nymphal strategy of deterrence is instructive. Against the background of increasing problems with bed bugs, this research raises the question whether pheromones might be used to control them. See research article http://www.biomedcentral.com/1741-7007/8/121

  2. in Spouted Bed

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2013-01-01

    Full Text Available Samples of active coke, fresh and spent after cleaning flue gases from communal waste incinerators, were investigated. The outer layers of both coke particles were separately removed by comminution in a spouted bed. The samples of both active cokes were analysed by means of densities, mercury porosimetry, and adsorption technique. Remaining cores were examined to determine the degree of consumption of coke by the sorption of hazardous emissions (SO2, HCl, and heavy metals through its bed. Differences in contamination levels within the porous structure of the particles were estimated. The study demonstrated the effectiveness of commercial active coke in the cleaning of flue gases.

  3. Virtual Test Bed

    Science.gov (United States)

    2016-06-07

    SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Virtual Test Bed 5a. CONTRACT NUMBER 5b. GRANT...Virtual Test Bed Donald T. Resio U.S. Army Engineer Research and Development Center Coastal and Hydraulics Laboratory Vicksburg, MS 39180-6199 Phone...into three parts: 1) assembly of field and laboratory data sets for testing ; 2) set-up of a benchmark system; and 3) exercising the benchmark system

  4. Fixed bed pyrolysis of the rapeseed cake

    Energy Technology Data Exchange (ETDEWEB)

    Sensoz, S.; Yorgun, S.; Angin, D.; Culcuoglu, E.; Ozcimen, D.; Karaosmanoglu, F.

    2001-12-15

    The fixed bed atmospheric pressure pyrolysis and nitrogen swept pyrolysis of the rapeseed cake obtained from cold extraction press have been investigated. Experiments were performed in the Heinze retort at a 7{sup o}C min{sup -1} heating rate, with a 500{sup o}C final temperature varying sweep gas velocity (50, 100, 150, 200, 250, 300 cm{sup 3} min{sup -1}) under nitrogen atmosphere. Liquid, gas, and char yields were determined, pyrolysis conversion was calculated, and liquid, char, and gas products were presented as an environmentally friendly fuel candidate. (author)

  5. Surviving Bed Rest

    Science.gov (United States)

    ... your pregnancy — and your bed rest start a family tree that you can share with your child someday firm up your baby-name choices; use books and websites for ideas organize photo albums read anything — ... people (friends and family) whom you know will probably give gifts build ...

  6. MULTISTAGE FLUIDIZED BED REACTOR

    Science.gov (United States)

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  7. Fluidized bed combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kullendorff, A.; Wikner, J.

    1985-03-25

    The chamber is confined in a pressure vessel. The lower part of the chamber has tilted parallel gutters up to the height of the fluidized bed. The slope of the gutter walls is 5 degrees-15 degrees and the top area of the gutters is 1.3 to 3 times larger than their bottom.

  8. VA National Bed Control System

    Data.gov (United States)

    Department of Veterans Affairs — The VA National Bed Control System records the levels of operating, unavailable and authorized beds at each VAMC, and it tracks requests for changes in these levels....

  9. Bathing a patient in bed

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000427.htm Bathing a patient in bed To use the sharing features on this page, please enable JavaScript. Some patients cannot safely leave their beds to bathe. For ...

  10. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  11. Geomechanics of bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Serata, S.; Milnor, S.W.

    1979-06-08

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained.

  12. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  13. Hydrodynamic characterization of fluid bed cokers

    Energy Technology Data Exchange (ETDEWEB)

    Knapper, B. [Saskatchewan Univ., Saskatoon, SK (Canada); Berruti, F. [Western Ontario Univ., London, ON (Canada); Grace, J.R.; Bi, H.T.; Lim, C.J. [British Columbia Univ., Vancouver, BC (Canada)

    2002-07-01

    Syncrude Canada Ltd. uses fluid bed cokers for thermal conversion of bitumen from Northern Alberta tar sands into distillates. This paper presents the results of a study that examined the hydrodynamic characteristics of a geometrically and dynamically scaled-down cold flow model of an industrial fluid bed coker. The cold flow model was constructed with Plexiglass with a semi-circular geometry to enable flow visualization of the solid particles. Several operating conditions were examined and measured for key characteristic parameters. Local void fractions were measured with an optical fibre probe, and a suction probe was used to determine the local solids mass fluxes at varying radial and axial locations of the fluidized bed. It was determined that there are large axial and radial variations in both the local voidage and solids mass flux in terms of gas-solids flow. The core-annulus model for dilute riser flow gives unsatisfactory predictions because the model is not able to forecast radial variations in the annular region. A modified core-annulus flow model was developed to address this problem. The modified model has continuous profiles for the gas velocity and solids flux to significantly improve predictions.16 refs., 1 tab., 3 figs.

  14. Moving Bed Gasification of Low Rank Alaska Coal

    Directory of Open Access Journals (Sweden)

    Mandar Kulkarni

    2012-01-01

    Full Text Available This paper presents process simulation of moving bed gasifier using low rank, subbituminous Usibelli coal from Alaska. All the processes occurring in a moving bed gasifier, drying, devolatilization, gasification, and combustion, are included in this model. The model, developed in Aspen Plus, is used to predict the effect of various operating parameters including pressure, oxygen to coal, and steam to coal ratio on the product gas composition. The results obtained from the simulation were compared with experimental data in the literature. The predicted composition of the product gas was in general agreement with the established results. Carbon conversion increased with increasing oxygen-coal ratio and decreased with increasing steam-coal ratio. Steam to coal ratio and oxygen to coal ratios impacted produced syngas composition, while pressure did not have a large impact on the product syngas composition. A nonslagging moving bed gasifier would have to be limited to an oxygen-coal ratio of 0.26 to operate below the ash softening temperature. Slagging moving bed gasifiers, not limited by operating temperature, could achieve carbon conversion efficiency of 99.5% at oxygen-coal ratio of 0.33. The model is useful for predicting performance of the Usibelli coal in a moving bed gasifier using different operating parameters.

  15. Modeling of Sulfur Retention in Circulating Fluidized Bed Coal Combustors

    Institute of Scientific and Technical Information of China (English)

    乔锐; 吕俊复; 刘青; 吴学安; 岳光溪

    2001-01-01

    A comprehensive model for predicting the sulfur retention performance in circulating fluidized bedcombustors was developed which involves the different residence times, the wide particle size distribution andthe different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO4 is highlighted. Thesimulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle sizedistribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfuretention performance in circulating fluidized bed (CFB) combustors.``

  16. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  17. Understanding and predicting bed humidity in fluidized bed granulation.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John; Winstead, Denita

    2008-04-01

    Bed humidity is a critical parameter that needs to be controlled in a fluidized bed granulation to ensure reliability. To predict and control the bed humidity during the fluidized bed granulation process, a simple model based on the mass conservation of moisture was developed. The moisture mass balance model quantitatively simulates the effects of spray rate, binder solution concentration, airflow rate, inlet air temperature, and dew point on the bed humidity. The model was validated by a series of granulations performed in different scale granulators including Glatt GPCG-1, GPCG-15, and GPCG-60. Good agreement was observed between the theoretical prediction and the measured loss on drying (LOD). The model developed in the current work enables us to choose the appropriate parameters for the fluidized bed granulation and can be used as a valuable tool in process scaling-up.

  18. Bed Rest Muscular Atrophy

    Science.gov (United States)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  19. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  20. Racing for the Bed

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    No one knows when the people ofMacheng City began to employthe marriage custom of racingfor the bed, once a custom unique to theTujia ethnic minority. It is said that at the end of awedding, bride and bridegroom enter thebridal chamber together and race for thebed. The one who is the first to sit on thebed will be the master of the new familyIt sounds unreasonable, but quite anumber of people believe in it.Therefore, on the wedding night, manybrides and bridegrooms try their best to

  1. Biparticle fluidized bed reactor

    Science.gov (United States)

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  2. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    reactions occur in gas phase. Each section was divided into a number of small cells, over which mass and energy balances were applied. Due to the high heating rate in circulating fluidized bed, the pyrolysis was considered instantaneous. A number of homogeneous and heterogeneous reactions were considered in the model. Mass transfer resistance was considered negligible since the reactions were under kinetic control due to good gas-solid mixing. The model is capable of predicting the bed temperature distribution along the gasifier, the concentration and distribution of each species in the vertical direction of the bed, the composition and lower heating value (LHV) of produced gas, the gasification efficiency, the overall carbon conversion and the produced gas production rate. A sensitivity analysis was performed to test its response to several gasifier operating conditions. The model sensitivity analysis showed that equivalence ratio (ER), bed temperature, fluidization velocity, biomass feed rate and moisture content had various effects on the gasifier performance. However, the model was more sensitive to variations in ER and bed temperature. The model was validated using the experimental results obtained from the demonstration plant. The reactor was operated on rice husk at various ERs, fluidization velocities and biomass feed rates. The model gave reasonable predictions. The model was also validated by comparing the simulation results with two other different size CFBBGs using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries. A thermodynamic model was developed under ASPEN PLUS environment. Using the approach of Gibbs free energy minimization, the model was essentially independent of kinetic parameters. A sensitivity analysis was performed on the model to test its response to operating variables, including ER and biomass moisture content. The results

  3. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  4. Variability of Bed Drag on Cohesive Beds under Wave Action

    Directory of Open Access Journals (Sweden)

    Ilgar Safak

    2016-04-01

    Full Text Available Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law, a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 - 4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  5. Experimental Study on Coal Multi-generation in Dual Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    Fan Xiaoxu; Lu Qinggang; Na Yongjie; Liu Qi

    2007-01-01

    An atmospheric test system of dual fluidized beds for coal multi-generation was built. One bubbling fluidized bed is for gasification and a circulating fluidized bed for combustion. The two beds are combined with two valves:one valve to send high temperature ash from combustion bed to the gasification bed and another valve to send char and ash from gasification bed to combustion bed. Experiments on Shenhua coal multi-generation were made at temperatures from 1112 K to 1191 K in the dual fluidized beds. The temperatures of the combustor are stable and the char combustion efficiency is about 98%. Increasing air/coal ratio to the fluidized bed leads to the increase of temperature and gasification efficiency. The maximum gasification efficiency is 36.7% and the calorific value of fuel gas is 10.7 MJ/Nm3. The tar yield in this work is 1.5%, much lower than that of pyrolysis.Carbon conversion efficiency to fuel gas and flue gas is about 90%.

  6. Chinese Conversation Structure

    Institute of Scientific and Technical Information of China (English)

    LIU Yan

    2016-01-01

    This paper aims to describe the features of Chinese conversation structure. Specifically speaking, the structure will be analyzed from the following four aspects:openings and pre-sequence, adjacency pairs, pre-closing and closing. Generally speak-ing, Chinese conversation structure is similar to English conversation structure. But still a lot of differences are found due to cul-tural factors.

  7. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  8. NGL data conversion system

    Science.gov (United States)

    Shoji, Masahiro; Horiuchi, Nobuyasu

    2005-06-01

    We are developing a NGL data conversion system for EPL, for LEEPL, and for EBDW, which is based on our established photomask data conversion system, PATACON PC-cluster. For EPL data conversion, it has SF division, Complementary division, Stitching, Proximity effect correction, Alignment mark insertion, EB stepper control data creation, and Mask inspection data creation. For LEEPL data conversion, it has Pattern checking, Complementary division, Stitching, Stress distortion correction, Alignment mark insertion, and Mask inspection data creation. For EB direct-writing data conversion, it has Proximity effect correction and Extraction of aperture pattern for cell projection exposure.

  9. A CFD model for biomass combustion in a packed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Ovi, Ifat Rabbil Qudrat; Naser, Jamal

    2016-07-01

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO2 emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can't model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  10. Physical-Mathematical Model for Fixed-Bed Solid Fuel Gasification Process Simulation

    OpenAIRE

    Slyusarskiy Konstantin V.; Korotkikh Alexander G.; Sorokin Ivan V.

    2017-01-01

    Phycial-mathmatical model for fixed-bed coal gasification process simulation is proposed. The heterogeneous carbon oxidation chemical reactions were simulated via Arrhenius equation while homogeneous reactions in gas phase were calculated using Gibbs free energy minimization procedure. The syngas component concentration field and fuel conversion distribution as well as syngas final temperature and composition were defined for fixed bed gasification of T-grade coal of Kuznetskiy deposit. The o...

  11. Experimental study and Monte Carlo modeling of object motion in a bubbling fluidized bed

    OpenAIRE

    García Gutiérrez, Luis Miguel

    2016-01-01

    Fluidized beds are employed for a wide variety of applications such as drying, coating of particles, catalytic reactions, or thermal conversion processes. In a number of these applications, objects differing in density and/or size from the dense phase material are found in the bed. These objects can be agglomerates, catalysts or reactants. In this PhD thesis, a fundamental study of the motion of objects is presented, but considering also the main characteristics of the thermal ...

  12. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)

    2015-07-15

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.

  13. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review

    Energy Technology Data Exchange (ETDEWEB)

    Alauddin, Zainal Alimuddin Bin Zainal; Lahijani, Pooya [School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Mohammadi, Maedeh; Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-12-15

    A literature review on gasification of lignocellulosic biomass in various types of fluidized bed gasifiers is presented. The effect of several process parameters such as catalytic bed material, bed temperature and gasifying agent on the performance of the gasifier and quality of the producer gas is discussed. Based on the priorities of researchers, the optimum values of various desired outputs in the gasification process including improved producer gas composition, enhanced LHV, less tar and char content, high gas yield and enhanced carbon conversion and cold gas efficiency have been reported. The characteristics and performance of different fluidized bed gasifiers were assessed and the obtained results from the literature have been extensively reviewed. Survey of literature revealed that several industrial biomass gasification plants using fluidized beds are currently conducting in various countries. However, more research and development of technology should be devoted to this field to enhance the economical feasibility of this process for future exploitations. (author)

  14. Defluidization in fluidized bed gasifiers using high-alkali content fuels

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    major concern in thermal conversion of biomass encountered in fluidized beds is bed agglomeration, which may result in de-fluidization, leading to unscheduled downtime and additional costs. Biomass fuels, especially herbaceous plants, often contain significant amounts of silicon, potassium...... using strawas a fuel. It was seen that in sand þ KCl agglomerates, the sand particles were bound by KCl melts. Onlyvery limited chemical reaction was observed between KCl and the sand particles and no presence of silicate melts in the agglomerates. For sand þ K2CO3 mixtures and for LTCFB bed material...

  15. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  16. How to Find Bed Bugs

    Science.gov (United States)

    ... strap of old box spring covering that is housing adults, skin castings, feces, and eggs. (Photo courtesy ... Bed bugs can survive and remain active at temperatures as low as 7°C (46°F), but they die ...

  17. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk

    2008-01-01

    This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can...... be carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed joints....

  18. Bed Bugs: The Australian Response

    Directory of Open Access Journals (Sweden)

    Richard C. Russell

    2011-04-01

    Full Text Available Australia has experienced a sudden and unexpected resurgence in bed bug infestations from both Cimex lectularius L. and Cimex hemipterus F. A survey in 2006 revealed that infestations had increased across the nation by an average of 4,500% since the start of the decade. In response, a multi-disciplinary approach to combat the rise of this public health pest was implemented and involved the coordinated efforts of several organizations. The key components of the strategy included the introduction of a pest management standard ‘A Code of Practice for the Control of Bed Bug Infestations in Australia’ that defines and promotes ‘best practice’ in bed bug eradication, the development of a policy and procedural guide for accommodation providers, education of stakeholders in best management practices, and research. These strategies continue to evolve with developments that lead to improvements in ‘best practice’ while bed bugs remain problematic in Australia.

  19. Getting Rid of Bed Bugs

    Science.gov (United States)

    Jump to main content US EPA United States Environmental Protection Agency Search Search Bed Bugs Share Facebook Twitter ... integrated pest management. Preparing for control is very important whether you are considering hiring a professional or ...

  20. Top Ten Bed Bug Tips

    Science.gov (United States)

    ... temperatures are necessary for successful heat treatment. Black plastic bags in the sun might work to kill bed ... Place the used bag in a tightly sealed plastic bag and in an outside garbage bin. 10. Turn ...

  1. Sea bed mapping and inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference has 24 presentations on the topics: Sea bed mapping, inspection, positioning, hydrography, marine archaeology, remote operation vehicles and computerized simulation technologies, oil field activities and plans, technological experiences and problems. (tk)

  2. Bedømmelsens kompleksitet

    Directory of Open Access Journals (Sweden)

    Elsa Schmidt

    2006-03-01

    Full Text Available I artiklen sammenholdes hverdagens bedømmelser af mennesker med de bedømmelser, der sker ved eksaminer. Der er forskelle på grund af det retlige grundlag, men også ligheder. Konkrete erfaringer med klage- og ankesager gennem 8 år fra faget psykologi på landsplan opsummeres. Nogle få praktiske løsninger beskrives.

  3. Dual Fluidized Bed Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  4. The Conversation Class

    Science.gov (United States)

    Jackson, Acy L.

    2012-01-01

    The conversation class occupies a unique place in the process of learning English as a second or foreign language. From the author's own experience in conducting special conversation classes with Persian-speaking adults, he has drawn up a number of simple but important guidelines, some of which he hopes may provide helpful suggestions for the…

  5. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, Dragan

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of wat

  6. Content for Conversation Partners.

    Science.gov (United States)

    Olson, Kathleen

    2002-01-01

    Suggests that a good strategy for helping English language learners to develop communicative competence in English is by pairing them with native English speakers. In such conversation programs, conversation partners should be provided with topics and activities that incorporate the goals, interests, and experiences of the learners. Recommends…

  7. Canning Canned Conversations.

    Science.gov (United States)

    Gilmore, Michael P.; Daigaku, Sanyo

    Ways to improve the role-playing conversations found in most second language textbooks are outlined. It is argued that the conversations are often restrictive, dull, and repetitive, and students respond to them in kind. The teacher can make the target language used more interesting by creating new characters, situations, settings, or objectives.…

  8. Predictability of conversation partners

    CERN Document Server

    Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-01-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information theoretic method to the spatiotemporal data of cell-phone locations, Song et al. (2010) found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one's conversation partners is defined as the degree to which one's next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between close sensor nodes. We find t...

  9. Political conversations on Facebook

    DEFF Research Database (Denmark)

    Sørensen, Mads P.

    2016-01-01

    Political conversations are according to theories on deliberative democracy essential to well-functioning democracies. Traditionally these conversations have taken place in face-to-face settings, in e.g. party meetings and town meetings. However, social media such as Facebook and Twitter offers new...... possibilities for online political conversations between citizens and politicians. This paper examines the presence on Facebook and Twitter of Members of the Danish national Parliament, the Folketing, and focusses on a quantitative mapping of the political conversation activities taking place in the threads...... following Facebook posts from Danish Members of Parliament (MPs). The paper shows that, in comparison with previous findings from other countries, Danish MPs have a relatively high degree of engagement in political conversations with citizens on Facebook – and that a large number of citizens follow MPs...

  10. 49 CFR 236.336 - Locking bed.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking bed. 236.336 Section 236.336 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.336 Locking bed. The various parts of the locking bed, locking bed supports, and tappet...

  11. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.

    Science.gov (United States)

    Yanguo Zhang; Qinghai Li; Aihong Meng; Changhe Chen

    2011-03-01

    This paper presents an experimental study of carbon monoxide (CO) formation and emissions in both grate drying bed incinerators and circulating fluidized bed (CFB) incinerators to simulate the two key parts of a combined grate and circulating fluidized bed (grate-CFB) incinerator in order to investigate pollutant emission control in municipal solid waste (MSW) combustion that occurs in a grate-CFB incinerator utilizing a patented technology. Polyvinyl chloride, polystyrene, kitchen waste, paper, textile, etc. were chosen to simulate the MSW. The effects of temperature, air staging, and moisture on the CO formation and emissions were analysed for both the grate drying bed combustion and the CFB combustion. In the grate drying bed, the low temperatures increased the carbon to CO conversion rate which also increased slightly with the moisture content. Industrial field tests in a commercial grate-CFB incinerator showed that the CO concentration at the grate drying bed exit was very high and decreased along furnace height. The carbon to CO conversion rates were 0-20% for the grate drying bed which exceeded the range of 0.8-16% measured in a grate drying bed exit of the commercial grate-CFB incinerator tests. In the commercial grate-CFB incinerator tests, at excess air ratios ranging from 1.5-2.0 or more, the CO emissions decreased to a low and stable level, whose corresponding carbon to CO conversion rates were far lower than 0-10%. The low CO emission is one of the factors enabling the polychlorinated dibenzodioxin/polychlorinated dibenzofuran emissions to satisfy the Chinese national regulations.

  12. Rapid ignition of fluidized bed boiler

    Science.gov (United States)

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  13. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  14. Method for using fast fluidized bed dry bottom coal gasification

    Science.gov (United States)

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  15. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  16. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...... of design. Three distinctions are drawn through which to develop this discussion of models in an architectural context. An examination of these distinctions serves to nuance particular characteristics and roles of models, the modelling activity itself and those engaged in it....

  17. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  18. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  19. Collection and conversion of algal lipid

    Science.gov (United States)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  20. Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite.

    Science.gov (United States)

    Wang, Xia; Liu, Xueying; Zhao, Chuanming; Ding, Yi; Xu, Ping

    2011-05-01

    The development of appropriate reactors is crucial for the production of biodiesel. In this study, a packed-bed reactor system using lipase-Fe(3)O(4) nanoparticle biocomposite catalyst was successfully developed for biodiesel production based on soybean oil methanolysis. Emulsification before methanolysis improved the reaction rate. The lipase-nanoparticle biocomposite showed high activity and stability in the single-packed-bed reactor at an optimal flow rate (0.25 mL min(-1)). After 240 h of reaction, the conversion rate was sustained as high as 45%. The conversion rate and stability achieved using the four-packed-bed reactor were much higher than those achieved using the single-packed-bed reactor. The conversion of biodiesel was maintained at a high rate of over 88% for 192 h, and it only slightly declined to approximately 75% after 240 h of reaction. The packed-bed reactor system, therefore, has a great potential for achieving the design and operation of enzymatic biodiesel production on the industrial scale.

  1. Fluid bed solids heater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  2. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    The present Ph.D thesis describes an experimental and theoretical investigation of the formation and destruction of nitrogen oxides (NOx and N2O) in fluidized bed combustion (FBC) of coal. A review of the current knowledge of nitrogen chemistry in FBC is presented. The review covers both laboratory...... for the emission of NOx from FBC has been developed as part of a JOULE project. The model is based on the two-phase theory of fluidization for the bed with a Kunii-Levenspiel type freeboard model and includes submodels for coal devolatilization, combustion of volatiles and char and a detailed model of NO formation...... plant were used for model verification. The simulations of the NO emission during staged combustion and NH3 injection for NO reduction were in qualitative agreement with the experimental data. A parametric study of the influence of operating conditions on the conversion of fuel-N to NO showed...

  3. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  4. Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2: Experimental Validation of Model Results

    NARCIS (Netherlands)

    Wang, Xiaoquan; Kersten, Sascha R.A.; Prins, Wolter; Swaaij, van Wim P.M.

    2005-01-01

    Various types of cylindrical biomass particles (pine, beech, bamboo, demolition wood) have been pyrolyzed in a batch-wise operated fluid bed laboratory setup. Conversion times, product yields, and product compositions were measured as a function of the particle size (0.7−17 mm), the vapor's residenc

  5. The influence of particle residence time distribution on the reactivity in fluidized bed reactors

    NARCIS (Netherlands)

    Heesink, A.B.M.; Klaus, J.; Swaaij, van W.P.M.

    1994-01-01

    The influence of particle residence time distribution on the average conversion rate (or reactivity) of particles undergoing a non-catalytic gas-solid reaction inside a continuously operated fluidized bed reactor is evaluated. A so called ß-factor is defined as the ratio of the actual reactivity in

  6. Managing social media conversations

    OpenAIRE

    2015-01-01

    The purpose of this thesis was to explore how companies can manage (monitor and control) social media conversations. Regardless of the companies’ presence in social media networks, they or their industry are constantly being discussed in social media. Therefore organisations should be present in social media, monitor and participate in conversations, in order to turn them into their benefit. There are software and services available to help in monitoring. Variety of tools and statistic de...

  7. Conversational flow promotes solidarity.

    Directory of Open Access Journals (Sweden)

    Namkje Koudenburg

    Full Text Available Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here. The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay. Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  8. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  9. Benzene conversion by manganese dioxide assisted silent discharge plasma

    Institute of Scientific and Technical Information of China (English)

    LU Bin; JI Min; YU Xin; FENG Tao; YAO Shuiliang

    2007-01-01

    Non-thermal plasma technologies have shown their promising potential specially for the low concentration of volatile organic compound control in indoor air in recent years.But it is also high energy consuming.So,to improve the energy efficiency,adding catalysts which enhance the plasma chemical reactions to plasma reactors may be a good selection.Therefore,in this study the manganese dioxide assisted silent discharge plasma was developed for benzene conversion at a relatively high energy efficiency.The results show that MnO2 could promote complete oxidation of benzene with O2 and O3 produced in the plasma discharge zone.The energy efficiency of benzene conversion with MnO2 was two folds as much as that without catalysts.It was also found that the site of MnO2 in the reactor and the energy density had effects on benzene conversion.While the energy density was lower than 48 J/L,benzene conversion decreased with the increase in the distance between MnO2 bed and the plasma discharge zone.Whereas when the energy density was higher than 104 J/L,benzene conversion had an optimal value that was governed by the distance between MnO2 bed and the plasma discharge zone.The mechanism of benzene oxidation in plasma discharges and over MnO2 is discussed in detail.

  10. Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

    Directory of Open Access Journals (Sweden)

    S. J. Solomon

    2005-01-01

    Full Text Available A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 seconds. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol.

  11. Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

    Directory of Open Access Journals (Sweden)

    S. J. Solomon

    2005-05-01

    Full Text Available A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 s. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol.

  12. Methods for natural gas and heavy hydrocarbon co-conversion

    Science.gov (United States)

    Kong, Peter C.; Nelson, Lee O.; Detering, Brent A.

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  13. Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane

    Institute of Scientific and Technical Information of China (English)

    Ali Darvishi; Razieh Davand; Farhad Khorasheh; Moslem Fattahi

    2016-01-01

    An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re-actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of smal diameter tubes immersed in a shel through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefin over V2O5/γ-Al2O3 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa-rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100%conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run-away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl-ene production in an industrial scale reactor.

  14. Laboratory rearing of bed bugs

    Science.gov (United States)

    The resurgence of bed bugs Cimex lectularius L. in the United States and worldwide has resulted in an increase in research by university, government, and industry scientists directed at the biology and control of this blood-sucking pest. A need has subsequently arisen for producing sufficient biolog...

  15. Devolatilization of wood and wastes in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Barea, Alberto; Nilsson, Susanna; Vidal Barrero, Fernando; Campoy, Manuel

    2010-11-15

    Experiments were carried out in a laboratory fluidized bed (FB) to characterize the devolatilization behavior of wood and various wastes at temperatures applicable to FB gasification and combustion, i.e. 750-900 C. The fuels tested were pellets made of wood, meat and bone meal, and compost (from municipal solid wastes), as well as dried granulates of sewage sludge (DSS). Determination of yields of char, condensate and light gas, as well as the composition of the gas and the time of devolatilization during the pyrolysis of single fuel batches was made. A simple model was developed to analyze the mode of conversion of a single wood pellet and DSS granulate, giving insight on the controlling mechanisms during devolatilization. The devolatilization kinetics of DSS was determined by tests using fine granulates. The model was successfully applied to simulate the conversion of large DSS granulates and wood pellets under the whole range of temperatures analyzed. (author)

  16. Oxygen Carrier Aided Combustion (OCAC of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material

    Directory of Open Access Journals (Sweden)

    Magnus Rydén

    2016-11-01

    Full Text Available Oxygen Carrier Aided Combustion (OCAC is realized by using an active oxygen-carrying bed material in fluidized bed boilers. The active material is reduced in fuel rich parts of the boiler and oxidized in air rich parts. Advantages could be achieved such as new mechanisms for oxygen transport in space and time. Here calcined manganese ore has been used as active bed material in a 12 MWth circulating fluidized bed boiler. The fuel was wood chips and the campaign lasted more than two weeks. From an operational point of view, manganese ore worked excellently. From the temperature profile of the boiler it can be concluded that fuel conversion was facilitated, especially in the dense bottom bed. The effect did not always translate to reduced emissions, which suggests that final combustion in the cyclone outlet was also influenced. Substituting 10% of the sand bed with manganese ore made it possible to reduce the air to fuel ratio without generating large amounts of CO. The use of 100% manganese ore resulted in higher emissions of CO than the sand reference, but, when combined sulphur feeding, dramatic reductions in CO emissions, up to 90% compared to sand reference, was achieved.

  17. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  18. Direct conversion technology

    Energy Technology Data Exchange (ETDEWEB)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  19. Freely flowing conversations

    DEFF Research Database (Denmark)

    Aakjær, Marie Kirstejn; Andrade, David; Dexters, Peter

    2012-01-01

    on - and support “positive deviants” (Pascal, Sternin and Sternin) – courageous individuals and groups (inmates as well as staff) who transform conversations into new actions and behavioral traits that become beckons of an improved future. In the following we explore concrete examples of efforts at improving......Some would say this article is an impossibility - the authors being a project manager from the Department of Prisons an (ex) inmate and a Designer doing an industrial PhD in the prisons. We hope that others may see this article as an embodiment of how taking part in new conversations...... and in regards to rehabilitation efforts. In the context of prisons UDI is inspired by the complexity approach (Stacey 2005). We seek to facilitate freely flowing conversations between inmates, staff and managers – pushing the boundaries of existing norms, roles and beliefs. In the end however we rely...

  20. [Historical analysis of the hospital bed].

    Science.gov (United States)

    Fajardo-Ortiz, Guillermo; Fajardo-Dolci, Germán

    2010-01-01

    Until now the bed has been the basic physical resource in hospitals. This type of furniture has served to study and treat patients, through out the centuries it has undergone changes in the materials they are made of dimensions, functionality, accessories, aesthetic, and design. The hospital bed history is not well known, there are thousands of documents about the evolution of hospitals, but not enough is known about hospital beds, a link between the past and the present. The medical, anthropological, technological, social, and economic dynamics and knowledge have produced a variety of beds in general and hospital beds in particular. From instinctive, rustic, poor and irregular "sites" that have differed in shape and size they had evolved into ergonomic equipment. The history of the hospital bed reflects the culture, techniques and human thinking. Current hospital beds include several types: for adults, for children, for labor, for intensive therapy, emergency purposes, census and non census beds etc.

  1. Chinese Bedding Technology Standard under Drafting

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    National Home Textile Standardization Technology Committee(NHTSTC)set up its Bedding Branch Committee. This will promote the work of Chinese bedding technology standardization and a symbol that China step up to meet the

  2. Pulling a patient up in bed

    Science.gov (United States)

    Moving a patient in bed ... takes at least 2 people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  3. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    Science.gov (United States)

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  4. Predictability of Conversation Partners

    Science.gov (United States)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  5. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  6. Detecting, Modelling and Measuring Disturbances in Fixed-bed Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, Sven

    2010-07-01

    Combustion of fixed fuel beds in grate furnaces is one of the most common techniques within production of heat and power from solid fuels. The grate furnace used to be a working horse for combustion of hard coal, while today the incitement of using renewable fuel sources has turned biomass and municipal waste into dominating fuel types. These fuels are more conveniently managed by the robust grate furnace than by, for example, fluidised bed or suspension boilers. However, the introduction of the, in many cases, complicated and heterogeneous biomass and waste fuels have, while at the same time subjected to increasingly stringent demands on efficiency and emission of harmful substances, given rise to diffuse challenges to the operation and design of grate furnaces. The influence of the heterogeneous fuels and the low air flow rate required for low nitric oxide emissions are, to a large extent, unclear. The outcome is that different furnaces not only rely on diverging strategies of design and operation - they also show a variety of disturbance characteristics. To make way for more efficient use of modern biomass fuels in grate furnaces, by improving the understanding of the combustion situation and disturbance characteristics, the following steps were made in this study: (1) a set of grate furnaces were investigated separating hands-on problems from underlying research oriented questions, (2) three methods for detecting and measuring disturbances in grate furnaces were developed, and (3) the fundamentals behind disturbances in the part of a fuel bed of grate furnace dominated by char conversion were addressed by mathematical modelling. The outcome of the inventory of furnaces is that fuel-bed channelling and grate material deterioration are common - the first causing increased emissions of unburned carbon compounds and nitric oxides, while the latter giving rise to high material costs and operation failures. In some furnaces, the disturbances could be detected by

  7. Bed Bug Education for School Maintenance

    Science.gov (United States)

    Henriksen, Missy

    2012-01-01

    Bed bugs are a growing problem, not only in homes and hotels, but also in schools and colleges. Facility administrators and staff need to understand the bed bug resurgence and develop best practices to deal with an infestation. In this article, the author offers tips for preventing and treating bed bugs in school and university settings.

  8. 21 CFR 868.5180 - Rocking bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  9. Characteristics of fluidized-packed beds

    Science.gov (United States)

    Gabor, J. D.; Mecham, W. J.

    1968-01-01

    Study of fluidized-packed bed includes investigation of heat transfer, solids-gas mixing, and elutriation characteristics. A fluidized-packed bed is a system involving the fluidization of small particles in the voids of a packed bed of larger nonfluidized particles.

  10. Fluidization quality analyzer for fluidized beds

    Science.gov (United States)

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  11. Review of acute cancer beds.

    LENUS (Irish Health Repository)

    Evans, D S

    2012-01-01

    A review of admissions to cancer services at University Hospital Galway (UHG) was undertaken to assess the appropriateness of hospital usage. All cancer specialty patients admitted from 26-28 May 2009 were reviewed (n = 82). Chi square tests, Exact tests, and One-way ANOVA were utilised to analyse key issues emerging from the data. Fifty (61%) were classified as emergencies. Twenty three (67%) occupied a designated cancer bed with 24 (30%) in outlying non-oncology wards. The mean length of stay was 29.3 days. Possible alternatives to admission were identified for 15 (19%) patients. There was no evidence of discharge planning for 50 (60%) admissions. There is considerable potential to make more appropriate utilisation of UHG for cancer patients, particularly in terms of reducing bed days and length of stay and the proportion of emergency cancer admissions, and further developing integrated systems of discharge planning.

  12. Gender Differences in Conversation

    Institute of Scientific and Technical Information of China (English)

    陈媛媛

    2014-01-01

    Men and women applied language distinct from each other in many ways. The thesis gives an illustration of gender dif-ferences in conversation and different interpretive frames within which the discourse between men and women take place. More profoundly, it tries to explain them from perspective of socialization.

  13. Solar energy conversion

    OpenAIRE

    Crabtree, George W.; Lewis, Nathan S.

    2007-01-01

    If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience.

  14. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  15. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  16. Predicting AD conversion

    DEFF Research Database (Denmark)

    Liu, Yawu; Mattila, Jussi; Ruiz, Miguel �ngel Mu�oz

    2013-01-01

    To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal type and visual assessment of medial temporal lobe atrophy (MTA) on MRI...

  17. Leadership is a conversation.

    Science.gov (United States)

    Groysberg, Boris; Slind, Michael

    2012-06-01

    Globalization and new technologies have sharply reduced the efficacy of command-and-control management and its accompanying forms of corporate communication. In the course of a recent research project, the authors concluded that by talking with employees, rather than simply issuing orders, leaders can promote operational flexibility, employee engagement, and tight strategic alignment. Groysberg and Slind have identified four elements of organizational conversation that reflect the essential attributes of interpersonal conversation: intimacy, interactivity, inclusion, and intentionality. Intimacy shifts the focus from a top-down distribution of information to a bottom-up exchange of ideas. Organizational conversation is less corporate in tone and more casual. And it's less about issuing and taking orders than about asking and answering questions. Interactivity entails shunning the simplicity of monologue and embracing the unpredictable vitality of dialogue. Traditional one-way media-print and broadcast, in particular-give way to social media buttressed by social thinking. Inclusion turns employees into full-fledged conversation partners, entitling them to provide their own ideas, often on company channels. They can create content and act as brand ambassadors, thought leaders, and storytellers. Intentionality enables leaders and employees to derive strategically relevant action from the push and pull of discussion and debate.

  18. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither sing...

  19. THE BAUXITES AND JELAR - BEDS

    Directory of Open Access Journals (Sweden)

    Krešimir Sakač

    1993-12-01

    Full Text Available Minor bauxite deposits and occurrences were formed in technically disturbed environments in the middle part of the Adriatic geotectonic unit in Dinarides, contemporary with the clastic Jelar-beds in the Late Lutetian time. Uneven chemical composition of these Eocene bauxites, their sporadic occurrences in developed paleorelief as well as characteristic petrographic composition of the immediate overlying rocks point out at different genetical conditions (the paper is published in Croatian.

  20. Waste tyre pyrolysis: modelling of a moving bed reactor.

    Science.gov (United States)

    Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M

    2010-12-01

    This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model.

  1. The Physical Models of Cyclone Diplegs in Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    K.Smolders; D.Geldart; J.Baeyens

    2001-01-01

    In most industrial fluidization units, two- or three-stage cyclone systems are used to clean the product gases. To return the solids to the bed, these cyclones are fitted with diplegs. By pass of gas from the bed through the dipleg is partially overcome by the back pressure build-up in the dipleg and by adding a trickle valve at the bottom of the dipleg. Diplegs of primary cyclones, operating at a high solid loading behave differently from diplegs of secondary and tertiary cyclones which operate at low solid loading. Both types have been investigated by pressure drop measurements, visual observation and by measurements of the air flow rate flowing up the riser. The primary dipleg was also studied using electrical capacitance tomography. The results are reported hereafter and will give a first indication towards the right design of the dipleg and the selection of the trickle valve. The influence of gas flow in the dipleg on the conversion in a catalytic fluidized bed reactor is found to be negligible.

  2. Fluidization Characteristics of a Prototype Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    F. ABERUAGBA

    2005-01-01

    Full Text Available The fluidization characteristics of a prototype-fluidized bed laboratory reactor were understudied in order to investigate the suitable conditions at which the dehydrogenation reaction of butane could be carried out. To achieve this, a reactor with an effective volume of 1100ml was fabricated and coupled with temperature and pressure accessories.Zeolites were obtained from the market and clay obtained from different sources and pre-treated was used as catalyst. Airflow at high velocity between 3000-7000ml/hr was used as the fluidising medium to obtain the bed characteristics while butane gas was used to obtain the dehydrogenation kinetics.The temperature of the reactor system was varied between 353K and 413K while maintaining constant pressure of 1.5 105 N/m2 through a manifold gauge and a constant catalyst weight. Various methods such as pressure fluctuations, visual observations, and bed expansion were used to determine the transition velocity at which fluidization begins. It was observed that this depends on factors such as mean particle size, particle size distribution, and column diameter.The minimum fluidizing velocity obtained for zeolite was 0.0133m/s and 0.0102m/s for treated clay materials both for a particle size of 250μm. The conversion of butane over the catalysts showed an increase in both cases with a maximum at 0.9813 at 413K. This decreases as the reaction progresses.

  3. Agglomeration-Free Distributor for Fluidized Beds

    Science.gov (United States)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  4. 生物质鼓泡流化床和循环流化床气化对比试验%Comparison of Bubbling Fluidized Bed and Circulating Fluidized Bed in Gasification of Biomass

    Institute of Scientific and Technical Information of China (English)

    范晓旭; 贤建伟; 初雷哲; 杨立国

    2011-01-01

    在内径为φ0.2 m、高6 m的流化床装置上,利用两种不同粒径的石英砂,分别进行了高速鼓泡流化床(BFB)和循环流化床(CFB)的冷态压力分布试验和热态气化试验.结果表明:冷态试验中,鼓泡流化床压力分布主要集中在底部的密相区,循环流化床压力分布更趋均匀.热态稳定气化阶段,循环流化床轴向温差只有40℃,气化的燃气热值、碳转化率和气化效率均高于鼓泡流化床.%The results from biomass gasification in a pilot-scale (6m tall × 0. 2 m internal diameter) air-blown circulating fluidized bed gasifier was tested and compared with bubbling fluidized bed gasifier. The results showed that the diameters of bed material in bubbling fluidized bed and circulating fluidized bed were different. The bubbling fluidized bed had a dense zone and bed material was homogeneous distribution in circulating fluidized bed. The temperature of the circulating fluidized bed was more uniform than bubbling fluidized bed. The carbon conversion rate, gasification efficiency and low gas heat value of circulating fluidized bed were larger than that of bubbling fluidized bed gasifier.

  5. 模拟移动床利用安全因子法分离第三代高纯果糖%Conversion of High Fructose Corn Syrup F,2 to F9o with Simulated Moving Bed by Safety Factor Method

    Institute of Scientific and Technical Information of China (English)

    曹龙奎; 王菲菲; 于宁

    2011-01-01

    Purpose: To prepare high fructose corn syrup Fg0 (with a fructose content of 90%) from F42 (with a fructose content of 42%) by simulated moving bed chromatography (SMB). Methods : The effects of resin type, feeding volume and rate, corn syrup concentration and operating temperature on separation degree were investigated by single-column pulse experiments. The theoretical SMB parameters were identified by the safety factor method and experimentally modified to be the optimal parameters. Results: The theoretically stimulated and experimental results showed good agreement. The optimal SMB parameters were switching time 469 s, feeding rate 1.574 L/h, elution solution flow rate 0.325 L/h, extraction solution flow rate 0.902 L/h, raffinate flow rate 0.951 L/h, and cycling flow rate 1.897 L/h. The yield and purity in the final product were 80.32% and 99.91% for fructose and 90.13 % and 92.34% for glucose, respectively.%目的:研究以果葡糖浆为原料,利用模拟移动床法(simulated movingbed,SMB),从果葡糖浆中分离第3代高纯度果糖的工艺方法。方法:首先通过对分离度影响因素的分析,进行单柱脉冲实验,确定树脂型号、进料体积、进料流速、进料浓度以及操作温度等操作参数,然后通过安全因予法得到SMB的简易参数设计方法,确定模拟移动床的理论参数,并在实验中修正得到实际的最佳参数。结果:理论模拟结果很好的吻合实验结果,实验得到模拟移动床最佳参数为切换时问469s、进料流速0.325L/h、洗脱液流速1.574L/h、提

  6. Equilibrium bed-concentration of nonuniform sediment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Knowledge of the equilibrium bed-concentration is vital to mathematical modeling of the river-bed deformation associated with suspended load but previous investigations only dealt with the reference concentration of uniform sediment because of difficulties in observation of the bed-concentration. This work is a first attempt to develop a theoretical formula for the equilibrium bed-concentration of any fraction of nonuniform sediment defined at the bed-surface. The formula is based on a stochastic-mechanistic model for the exchange of nonuniform sediment near the bed, and described as a function of incipient motion probability, non-ceasing probability, pick-up probability, and the ratio of the average single-step continuous motion time to static time. Comparison of bed-concentration calculated from the proposed formula with the measured data showed satisfactory agreement, indicating the present formula can be used for solving the differential equation governing the motion of suspended load.

  7. Plasma-based conversion of CO2: current status and future challenges.

    Science.gov (United States)

    Bogaerts, Annemie; Kozák, Tomas; van Laer, Koen; Snoeckx, Ramses

    2015-01-01

    This paper discusses our recent results on plasma-based CO2 conversion, obtained by a combination of experiments and modeling, for a dielectric barrier discharge (DBD), a microwave plasma and a packed bed DBD reactor. The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.

  8. A semi-empirical model for pressurised air-blown fluidized-bed gasification of biomass.

    Science.gov (United States)

    Hannula, Ilkka; Kurkela, Esa

    2010-06-01

    A process model for pressurised fluidized-bed gasification of biomass was developed using Aspen Plus simulation software. Eight main blocks were used to model the fluidized-bed gasifier, complemented with FORTRAN subroutines nested in the programme to simulate hydrocarbon and NH(3) formation as well as carbon conversion. The model was validated with experimental data derived from a PDU-scale test rig operated with various types of biomass. The model was shown to be suitable for simulating the gasification of pine sawdust, pine and eucalyptus chips as well as forest residues, but not for pine bark or wheat straw.

  9. Physical-Mathematical Model for Fixed-Bed Solid Fuel Gasification Process Simulation

    Directory of Open Access Journals (Sweden)

    Slyusarskiy Konstantin V.

    2017-01-01

    Full Text Available Phycial-mathmatical model for fixed-bed coal gasification process simulation is proposed. The heterogeneous carbon oxidation chemical reactions were simulated via Arrhenius equation while homogeneous reactions in gas phase were calculated using Gibbs free energy minimization procedure. The syngas component concentration field and fuel conversion distribution as well as syngas final temperature and composition were defined for fixed bed gasification of T-grade coal of Kuznetskiy deposit. The optimal fuel residence time and gasifyer specific productivity were defined. The prevail reactions in oxidizing and reduction zones together with its height were defined.

  10. Experimental study and Monte Carlo modeling of object motion in a bubbling fluidized bed

    OpenAIRE

    García Gutiérrez, Luis Miguel

    2014-01-01

    Mención Internacional en el título de doctor Fluidized beds are employed for a wide variety of applications such as drying, coating of particles, catalytic reactions, or thermal conversion processes. In a number of these applications, objects differing in density and/or size from the dense phase material are found in the bed. These objects can be agglomerates, catalysts or reactants. In this PhD thesis, a fundamental study of the motion of objects is presented, but consideri...

  11. Mechanisms of formation and destruction of nitrogen oxides during polyamide incineration in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Hahnel, F.; Gadiou, R.; Prado, G. [Univ. de Haute Alsace, Mulhouse (France). Lab. de Gestion des Risques et Environnement

    1998-09-01

    In order to study the incineration of nitrogen-containing polymers, a fludized bed has been built. This paper reports the results for polyamide 6-6 incineration. The main nitrogen containing species have been identified, and the axial profiles of concentration of nitrogen oxides, HCN and NH3 have been measured. The main steps of decomposition of the polyamide were identified. We present an experimental investigation of the influence of operating parameters (temperature, excess air) on the formation and reduction of polymer combustion products. The yields of conversion of nitrogen to the different N-species have been calculated as a function of excess air in the fluidized bed. (orig.)

  12. RADIAL PROFILE OF THE SOLID FRACTION IN A LIQUID-SOLID CIRCULATING FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Tiefeng Wang; Jinfu Wang; Jing Lin; Yong Jin

    2003-01-01

    @@ Liquid-solid circulating fluidized beds have a number of attractive features suitable for processes where liquid-solid contact is important (Liang et al., 1996; Zhang et al., 2002).Liang et al. (1996) and Zheng et al. (2002) studied the radial profile of the solid fraction in the liquid-solid circulating fluidization regime and found that it is not uniform, unlike the conventional liquid-solid fluidized bed. This non-uniformity can affect reactant concentration distribution, mass transfer and ultimately reactant conversion.Therefore, information on the radial flow structure is crucial to reactor design and process optimization.

  13. MIXING PATTERNS AND RESIDENCE TIME DETERMINATION IN A BUBBLING FLUIDIZED BED SYSTEM

    Directory of Open Access Journals (Sweden)

    A. E. Ghaly

    2012-01-01

    Full Text Available Fluidized bed gasification can be used to convert the solar energy stored as carboneous compounds in bio-mass into a carbon neutral fuel with reduced emissions. Canada produces 20.57 million tonnes of wheat straw annually which could be used for green energy production. Wheat straw residue gasification has the capability of replacing 7.5 % (0.62 EJ of Canada’s annual fossil fuel consumption. To achieve efficient gasification in a fluidized bed proper fuel mixing and residence time must be achieved. The aim of this study was to investigate the effects of sand particle size, distributor plate shape and angle, bed height and fluidizing velocity on particle mixing and residence time in the fluidized bed reactor. Greater values of the residence time were obtained with course sand whereas lower values were obtained with fine sand. An in-crease in the angle of convex or a decrease in the angle of a concave of the distributor plate resulted in an increase in the residence time. Both the concave and convex distributor plates achieved vertical upward and downward movements of the bed material resulting in continuous bed material turnover and, thus, good mixing. However, the concave plate achieved longer residence time which will result in better conversion efficiency. To improve the mixing properties of the binary mixture, which has great tendency for segregation due to density differences, an angled distributor plate (concave or convex should be used. Considerable increases in the residence time were recorded with increases in the bed height. Increasing the fluidizing velocity decreased the residence time due to the increase in the bubble velocity. However, since the conversion efficiency is affected by the degree of mixing, it will also be improved by increasing the fluidization velocity. A velocity above 1.50 Umf is recommended for better fluidization and improved mixing.

  14. Conversion electron surface imaging

    CERN Document Server

    Irwin, G M; Wehner, A

    1999-01-01

    A method of imaging the Moessbauer absorption over the surface of a sample based on counting conversion electrons emitted from the surface following resonant absorption of gamma radiation is described. This Conversion Electron Surface Imaging (CESI) method is somewhat analogous to Magnetic Resonance Imaging (MRI), particularly chemical shift imaging, and similar tomographic reconstruction techniques are involved in extracting the image. The theory behind the technique and a prototype device is described, as well as the results of proof-of-principle experiments which demonstrate the function of the device. Eventually this same prototype device will be part of a system to determine the spatial variation of the Moessbauer spectrum over the surface of a sample. Applications include imaging of variations of surface properties of steels and other iron containing alloys, as well as other surfaces over which sup 5 sup 7 Fe has been deposited.

  15. Les conversions de cens

    Directory of Open Access Journals (Sweden)

    Laurent Feller

    2006-09-01

    Full Text Available Dans le cadre d’une recherche entamée sur la circulation des richesses au Moyen Âge, la réflexion s’est dirigée vers la question de la conversion, c’est-à-dire du passage d’une forme à une autre dans la mesure des valeurs (argent contre nature, objets dont l’usage se transforme en s’échangeant, conversions monétaires. Un cycle de trois rencontres est prévu afin de débrouiller une question complexe qui devrait permettre au groupe d’éclairer la question de la valeur des choses au Moyen Âge. La...

  16. Conversations with Miss Jane

    Directory of Open Access Journals (Sweden)

    Geneviève Fabre

    2006-05-01

    Full Text Available Considering the wide range of conversations in the autobiography, this essay will attempt to appraise the importance of these verbal exchanges in relation to the overall narrative structure of the book and to the prevalent oral tradition in Louisiana culture, as both an individual and communal expression. The variety of circumstances, the setting and staging, the interlocutors , and the complex intersection of time and place, of stories and History, will be examined; in these conversations with Miss Jane many actors participate, from  the interviewer-narrator, to most characters; even the reader becomes involved.Speaking, hearing, listening, keeping silent is an elaborate ritual that performs many functions; besides conveying news or rumors, it imparts information on the times and on the life of a “representative” woman whose existence - spanning a whole century- is both singular and emblematic. Most importantly this essay will analyse the resonance of an eventful and often dramatic era on her sensibility and conversely show how her evolving sensibility informs that history and draws attention to aspects that might have passed unnoticed or be forever silenced. Jane’s desire for liberty and justice is often challenged as she faces the possibilities of life or death.Conversations build up a complex, often contradictory, but compelling portrait: torn between silence and vehemence, between memories and the urge to meet the future, Jane summons body and mind to find her way through the maze of a fast changing world; self-willed and obstinate she claims her right to speak, to express with wit and wisdom her firm belief in the word, in the ability to express deep seated convictions and faith and a whole array of feelings and emotions.

  17. Clinical linguistics: conversational reflections.

    Science.gov (United States)

    Crystal, David

    2013-04-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference participants during that time.

  18. Natural gas conversion process

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

  19. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    SHEN LaiHong; ZHENG Min; XIAO Jun; ZHANG Hui; XIAO Rui

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier.It can be used for CO2 capture in power generating processes. In this paper,chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the condensation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal.Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier particles, etc., are discussed. Some useful results are achieved. The suitable temperature of air reactor should be between 1050-1150Cand the optimal temperature of the fuel reactor be between 900-950℃.

  20. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the con- densation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier par- ticles, etc., are discussed. Some useful results are achieved. The suitable tem- perature of air reactor should be between 1050―1150℃and the optimal temperature of the fuel reactor be between 900―950℃.

  1. The Berlin emissivity database (BED)

    Science.gov (United States)

    Maturilli, A.; Helbert, J.; Moroz, L.

    2008-03-01

    Remote-sensing infrared spectroscopy is the principal field of investigation for planetary surfaces composition. Past, present and future missions to the solar system bodies include in their payload, instruments measuring the emerging radiation in the infrared range. Apart from measuring the reflected radiance, more and more spacecrafts are equipped with instruments measuring directly the emitted radiation from the planetary surface. The emitted radiation is not only a function of the composition of the material but also of its texture and especially the grain size distribution. For the interpretation of the measured data an emissivity spectral library of planetary analogue materials in grain size fractions appropriate for planetary surfaces is needed. The Berlin emissivity database (BED) presented here is focused on relatively fine-grained size separates, providing thereby a realistic basis for the interpretation of thermal emission spectra of planetary regoliths. The BED is therefore complimentary to existing thermal emission libraries, like the ASU library for example. BED currently contains emissivity spectra of plagioclase and potassium feldspars, low Ca and high Ca pyroxenes, olivine, elemental sulfur, Martian analogue minerals and volcanic soils, and a lunar highland soil sample measured in the wavelength range from 7 to 22 μm as a function of particle size. For each sample we measured the spectra of four particle size separates ranging from <25 to 250 μm. The device we used is built at DLR (Berlin) and is coupled to a Fourier-transform infrared spectrometer Bruker IFS 88 purged with dry air and equipped with a nitrogen-cooled MCT detector. All spectra were acquired with a spectral resolution of 4 cm -1. We are currently working on upgrading our emissivity facility. A new spectrometer (Bruker VERTEX 80 V) and new detectors will allow us to measure the emissivity of samples in the wavelength range from 1 to 50 μm in a vacuum environment. This will be

  2. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  3. [Special beds. Pulmonary therapy system].

    Science.gov (United States)

    Calixto Rodríguez, Joaquín; Rodríguez Martínez, Xavier; Marín i Vivó, Gemma; Paunellas Albert, Josep

    2008-10-01

    To be bedridden reduces one's capacity to move and produces muscular debility that affects the respiratory system leading to a decreased effectiveness in expectoration, the ability to spit up sputum. The pulmonary therapy system integrated in a bed is the result of applying motorized elements to the articulation points of the bad in order to achieve safe positions at therapeutic angles, which improve the breathing-perfusion (blood flow) relationship. This system also makes it possible to apply vibration waves to the patient which favor the elimination of bronchial-pulmonary secretions, the rehabilitation of the bedridden patient and decrease the work load for nursing personnel.

  4. Designing a CR Test bed

    DEFF Research Database (Denmark)

    2014-01-01

    with their own set up, since the potential costs and efforts could not pay back in term of expected research results. Software Defined Radio solutions offer an easy way to communication researchers for the development of customized research test beds. While several hardware products are commercially available......, an overview on common research-oriented software products for SDR development, namely GNU Radio, Iris, and ASGARD, will be provided, including how to practically start the software development of simple applications. Finally, best practices and examples of all the software platforms will be provided, giving...

  5. Ocean energy conversion - A reality

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    This chapter presents an overview of ocean energy conversion in respect of its significance as the renewable energy resources. It deals with the thermodynamic principles relating to ocean thermal energy conversion (OTEC). Besides, it provides an in...

  6. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  7. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  8. Special Features in Children's Conversations.

    Science.gov (United States)

    Karjalainen, Merja

    In a study of features that seem to be typical of children's conversations, 10 Finnish preschool children's conversations were videotaped and audiotaped over a period of 10 hours. The children were taped in conversation, play, fairy tale, and eating situations. Among the findings are that all children enjoy playing with language, but some initiate…

  9. The WCSAR telerobotics test bed

    Science.gov (United States)

    Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.

    1988-01-01

    Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.

  10. Classifying bed inclination using pressure images.

    Science.gov (United States)

    Baran Pouyan, M; Ostadabbas, S; Nourani, M; Pompeo, M

    2014-01-01

    Pressure ulcer is one of the most prevalent problems for bed-bound patients in hospitals and nursing homes. Pressure ulcers are painful for patients and costly for healthcare systems. Accurate in-bed posture analysis can significantly help in preventing pressure ulcers. Specifically, bed inclination (back angle) is a factor contributing to pressure ulcer development. In this paper, an efficient methodology is proposed to classify bed inclination. Our approach uses pressure values collected from a commercial pressure mat system. Then, by applying a number of image processing and machine learning techniques, the approximate degree of bed is estimated and classified. The proposed algorithm was tested on 15 subjects with various sizes and weights. The experimental results indicate that our method predicts bed inclination in three classes with 80.3% average accuracy.

  11. The Application of Conversational Implicature in Doctor-Patient Conversation

    Institute of Scientific and Technical Information of China (English)

    GAO Chong

    2014-01-01

    The doctor-patient conversation is the major way of communication between doctors and patients. A good conversa-tion helps to construct a harmonious doctor-patient relationship. This paper attempts to analyze the doctor-patient conversation by applying the Theory of Conversational Implicature. The theory is accepted as the cooperative principle consisting of four max-ims:quantity, quality, relation, manner. This paper will analyse how the four maxims work and the violating of the maxims in the doctor-patient conversation. Through linguistic study of the conversation, we try to find out the problems in the doctor-patient conversation and to provide some directive linguistic suggestions to doctors and patients.

  12. Moodle 20 Course Conversion

    CERN Document Server

    Wild, Ian

    2011-01-01

    With clear instructions and plenty of screenshots, this book provides all the support and guidance you will need as you begin to convert your teaching to Moodle. Step-by-step tutorials use real-world examples to show you how to convert to Moodle in the most efficient and effective ways possible. Moodle Course Conversion carefully illustrates how Moodle can be used to teach content and ideas and clearly demonstrates the advantages of doing so. This book is for teachers, tutors, and lecturers who already have a large body of teaching material and want to use Moodle to enhance their course, rathe

  13. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  14. Broadband frequency conversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Jensen, Ole Bjarlin; Dam, Jeppe Seidelin;

    that ensures phase matching over a broad spectral range in the BBO crystal. Since the tuning mechanism relies on all-passive components with extremely short response times the proposed method is well suited for short pulse, broad bandwidth laser sources like mode-locked lasers or super-continuum sources......We demonstrate a method for frequency conversion of broadly tunable or broad bandwidth light in a static, passive setup. Using simple optical components like lenses, mirrors and gratings and a BiBO crystal as the nonlinear material, we are able to frequency double a single-frequency, tunable...

  15. Cooperative internal conversion process

    CERN Document Server

    Kálmán, Péter

    2015-01-01

    A new phenomenon, called cooperative internal conversion process, in which the coupling of bound-free electron and neutron transitions due to the dipole term of their Coulomb interaction permits cooperation of two nuclei leading to neutron exchange if it is allowed by energy conservation, is discussed theoretically. General expression of the cross section of the process is reported in one particle nuclear and spherical shell models as well in the case of free atoms (e.g. noble gases). A half-life characteristic of the process is also determined. The case of $Ne$ is investigated numerically. The process may have significance in fields of nuclear waste disposal and nuclear energy production.

  16. Packed fluidized bed blanket for fusion reactor

    Science.gov (United States)

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  17. Experimental and Numerical Study on Ultra-Low Concentration Coal Bed Methane Combustion in a Fluidized Bed%超低浓度煤层气在流化床中燃烧的实验和数值研究

    Institute of Scientific and Technical Information of China (English)

    杨仲卿; 张力; 唐强; 蒲舸

    2011-01-01

    超低浓度煤层气由于甲烷含量低、浓度变化大而较难加以利用。采用实验和数值模拟的方法,研究了超低浓度煤层气在流化床中的燃烧,分析了床层温度、甲烷体积浓度,流化风速对甲烷燃烧效率的影响,并用数学模型预测了甲烷沿床层高度方向的分布。研究表明,数学模型和实验数据吻合较好。床层温度是煤层气燃烧反应的关键因素,甲烷的转化率随着床层温度的升高而增加。燃烧反应主要发生在乳化相,且主要集中在床层的下部。甲烷的转化率随着流化风速和煤层气中甲烷浓度的增加而减少。在床层温度为650℃时,甲烷浓度低于1%的煤层气的甲烷转化率均大于93%。增加床层高度可使甲烷完全转化。%The ultra-low concentration coal bed methane is difficult to utilize due to its low methane content and fluctuated concentration. Coal bed methane combustion in a fluidized bed was studied experimentally and numerically. The effects of bed temperature, methane volumetric concentration and fluidized velocity on methane conversion were analyzed. The methane profile along bed height was predicted with the mathematical model. The results show that the model compares reasonably well with experimental data. Bed temperature is a major factor on combustion. And the methane conversion increases with the rising bed temperature. The combustion reaction is mainly occurred in the emulsion phase and at lower part of the bed. The methane conversion decreases with the increasing fluidized velocity and inlet methane concentration. When the bed temperature is 650℃ and methane concentration is less than 1%, the conversion is greater than 93%. More methane can be consumed when the bed height is increasing.

  18. Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor

    Science.gov (United States)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.

    2017-01-01

    Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.

  19. Conversion program in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, E.B. [Studsvik Nuclear AB, Nykoeping (Sweden)

    1997-08-01

    The conversion of the Swedish 50 MW R2 reactor from HEU to LEU fuel has been successfully accomplished over a 16 cycles long process. The conversion started in January 1991 with the introduction of 6 LEU assemblies in the 8*8 core. The first all LEU core was loaded in March 1993 and physics measurements were performed for the final licensing reports. A total of 142 LEU fuel assemblies have been irradiated up until September 1994 without any fuel incident. The operating licence for the R2 reactor was renewed in mid 1994 taking into account new fuel type. The Swedish Nuclear Inspectorate (SKI) pointed out one crucial problem with the LEU operation, that the back end of the LEU fuel cycle has not yet been solved. For the HEU fuel Sweden had the reprocessing alternative. The country is now relying heavily on the success of the USDOEs Off Site Fuels Policy to take back the spent fuel from the research reactors. They have in the meantime increased their intermediate storage facilities. There is, however, a limit both in time and space for storage of MTR-type of assemblies in water. The penalty of the lower thermal neutron flux in LEU cores has been reduced by improvements of the new irradiation rigs and by fine tuning the core calculations. The Studsvik code package, CASMO-SIMULATE, widely used for ICFM in LWRs has been modified to suit the compact MTR type of core.

  20. Equipment for gas conversion

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-01-28

    Equipment is proposed for vapor conversion of hydrocarbons (Uv), possibly in a mixture with air, in order to produce an inorganic gas, which chiefly consists of H2 and COx. It consists of a reaction pipe made of an inorganic refractory ceramic and equipped along the wall circumference with heaters. The reaction pipe is filled with a combined, multilayer catalyst (Kt) carrier, made of gamma-A1203 which in the transverse cross section has a multipore reticular or fibrous structure. Replacement of the traditional steel (St) materials for the walls of the reaction pipe with ceramic materials reduces the output of the hydrocarbon which contaminates the surface (Pv) of the catalyst; the use of a multilayer carrier for the catalyst made of gamma-A1203 with a porous reticular or fibrous structure reduces the pressure losses in the reactor and facilitates the replacement of the spent catalyst. The equipment is designed for vapor conversion of natural gas, C3H8, and vapors of kerosene, naphtha and so on.

  1. An experimental study of the selective oxidation of ethene in a wall cooled tubular packed bed reactor

    NARCIS (Netherlands)

    Borman, P.C.; Westerterp, K.R.

    1992-01-01

    The selective oxidation of ethene over a silver on ¿-alumina catalyst was studied in a wall cooled tubular reactor. Temperatures were measured inside the bed at different axial and radical positions as well as the overall conversion and selectivity. Locally measured temperatures vary after repacking

  2. CERTS Microgrid Laboratory Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

    2009-06-18

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field

  3. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis

    OpenAIRE

    Inoue, Takao; Sternberg, Paul W.

    2010-01-01

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited numb...

  4. Flue gas desulfurization by rotating beds

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-01-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE [number sign]FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0[sub 2] absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0[sub 2] absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m[sub 2]/m[sub 3]. Liquid flow rates to 36 kg/s*m[sub 2], gas flow rate to 2.2 kg/s*m[sub 2], and gravitational fields to 300 g were covered in this study.

  5. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  6. CERTS Microgrid Laboratory Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    ETO, J.; LASSETER, R.; SCHENKMAN, B.; STEVENS, J.; KLAPP, D.; VOLKOMMER, H.; LINTON, E.; HURTADO, H.; ROY, J.

    2010-06-08

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1 a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2 an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3 a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources.

  7. Metabolic Resistance in Bed Bugs

    Directory of Open Access Journals (Sweden)

    Omprakash Mittapalli

    2011-03-01

    Full Text Available Blood-feeding insects have evolved resistance to various insecticides (organochlorines, pyrethroids, carbamates, etc. through gene mutations and increased metabolism. Bed bugs (Cimex lectularius are hematophagous ectoparasites that are poised to become one of the major pests in households throughout the United States. Currently, C. lectularius has attained a high global impact status due to its sudden and rampant resurgence. Resistance to pesticides is one factor implicated in this phenomenon. Although much emphasis has been placed on target sensitivity, little to no knowledge is available on the role of key metabolic players (e.g., cytochrome P450s and glutathione S-transferases towards pesticide resistance in C. lectularius. In this review, we discuss different modes of resistance (target sensitivity, penetration resistance, behavioral resistance, and metabolic resistance with more emphasis on metabolic resistance.

  8. Experimental Study and Modelling of Char Combustion under Fluidized Bed Conditions

    Institute of Scientific and Technical Information of China (English)

    ZhangYongzhe; ManfredC.Wirsum; 等

    1998-01-01

    The combustion behavior of chars from two Chinese coals has been investigated in a laboratory scale bubbling fludized bed system in Siegen University,Germany,Experimental equipment and method are introduced.The shrinking-core model and the “shrinking-particl” model were employed to evaluate the kinetic parameters.The results indicated that the char conversion process of these two coals can be well described by the two models.

  9. Coal conversion. 1977 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The status and progress in US DOE's projects in coal gasification, liquefaction, and fluidized-bed combustion are reviewed with financing, flowsheets, history, progress and status of each (57 projects). (LTN)

  10. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  11. Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Malte Bartels; Weigang Lin; John Nijenhuis; Freek Kapteijn; J. Ruud van Ommen [Delft University of Technology - DelftChemTech, Delft (Netherlands)

    2008-10-15

    Fluidized-bed conversion of solid fuels is a well-established and widely used technology. Yet, operational problems are encountered in industrial practice. One of the most important problems is the occurrence of agglomeration at high temperature, meaning that bed particles adhere to each other to form larger entities (agglomerates). This process is often not recognized until sudden defluidization and often leads to a costly shutdown of the whole installation. In particular, the thermal conversion of certain biomass fuels, which is becoming increasingly popular, increases the risk of agglomeration. This paper critically reviews the current research status of this topic in terms of agglomeration mechanisms, detection and counteraction strategies. To understand the complex phenomenon of agglomeration in fluidized beds at high temperatures different areas are distinguished viz. hydrodynamics, chemical reaction mechanisms, particle interaction mechanisms and molecular cramming. Special emphasis is given to the detection of agglomeration. The range of detection methods is comprised of fuel ash analysis methods to predict potential agglomeration as well as analysis methods based on (on-line) process measurements, such as pressure and temperature. Finally, different methods to counteract agglomeration phenomena are presented; they comprise operational measures, utilization of additives, alternative bed materials and improved reactor design. 176 refs., 22 figs., 1 tab.

  12. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed

    Directory of Open Access Journals (Sweden)

    Olek Malgorzata

    2013-01-01

    Full Text Available Abstract Background The process of thermal decomposition of dichloromethane (DCM and chlorobenzene (MCB during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.

  13. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  14. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    -oxygenates through thermal retro-aldol condensations. One compound, glycolaldehyde, could be prepared in yields of over 60% by this method; as this compound can potentially be used as a starting point for producing a wide range of chemicals, such as ethylene glycol or acetic acid, this process could prove...... to be an efficient initial conversion step in the utilization of biomass for chemicals production. The shift from an oil based chemical industry to one based on renewable resources is bound to happen sooner or later, however the environmental problems associated with the burning of fossil resources means......Modern civilization is dependent on oil to supply energy for power, heating and transportation and carbon for the production of the plethora of chemicals needed. Oil is however a limited resource and alternatives need to be identified before we freeze in the dark [1]. This thesis deals...

  15. Conversations About Responsible Nanoresearch.

    Science.gov (United States)

    Kjølberg, Kamilla Lein; Strand, Roger

    2011-04-01

    There is currently a strong focus on responsible research in relation to the development of nanoscience and nanotechnology. This study presents a series of conversations with nanoresearchers, with the 'European Commission recommendation on a code of conduct for responsible nanosciences and nanotechnologies research' (EC-CoC) as its point of departure. Six types of reactions to the document are developed, illustrating the diversity existing within the scientific community in responses towards this kind of new approaches to governance. Three broad notions of responsible nanoresearch are presented. The article concludes by arguing that while the suggestion put forward in the EC-CoC brings the concept of responsible nanoresearch a long way, one crucial element is to be wanted, namely responsible nanoresearch as increased awareness of moral choices.

  16. Conversation with Meir Sternberg

    Directory of Open Access Journals (Sweden)

    Federico Pianzola

    2011-07-01

    Full Text Available Below are the videos of the interview recorded the 21st May 2011 in Fribourg (CH, in occasion of the first RRN conference.Conversation with Meir Sternberg.Part 1 of 8 - Narratology: classical and postclassical studies. Part 2 of 8 - The development of an original theoretical framework. Part 3 of 8 - Sternberg and Genette: different ways for the same problems. Part 4 of 8 - «There are no forms except in terms of functions». Part 5 of 8 - A life writing articles: so many papers and just four books. Part 6 of 8 - Two arguments against mimetical approaches to narrative. Part 7 of 8 - «Narrative is not given, it is a construct». Part 8 of 8 - The proteus principle. the many-to-many correspondence between forms and functions.

  17. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  18. Quantum optical waveform conversion

    CERN Document Server

    Kielpinski, D; Wiseman, HM

    2010-01-01

    Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

  19. Automated FORTRAN conversion

    Science.gov (United States)

    Aharonian, Gregory

    1986-01-01

    The most pratical solution to the conversion of FORTRAN to other programming languages which STO and a few others have adopted, uses an intermediate language that is easy to translate FORTRAN into, and allows for source codes in other languages to be generated automatically. The intermediate language is the union of all other programming languages (and the trick is to create a useful union) with some extensions that reflect the nature of the algorithms. The benefits of this approach are many. First the original FORTRAN program has to be rewritten only once, and then only parts of the program: most FORTRAN code passes through without and change (i.e., assignment and simple IF statements). Software tools are provided to ease this initial translation. Once in the intermediate language, the algorithm can then be obtained in any other language automatically. An example of a subroutine from the Rispack library in ten different languages is given.

  20. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  1. Nonlinear dynamical characteristics of bed load motion

    Institute of Scientific and Technical Information of China (English)

    BAI; Yuchuan; XU; Haijue; XU; Dong

    2006-01-01

    Bed forms of various kinds that evolve naturally on the bottom of sandy coasts and rivers are a result of the kinematics of bed load transport. Based on the group motion of particles in the bed load within the bottom layer, a study on the nonlinear dynamics of bed load transport is presented in this paper. It is found that some development stages, such as the initiation, the equilibrium sediment transport, and the transition from a smooth bed to sand dunes, can be accounted for by different states in the nonlinear system of the bed load transport. It is verified by comparison with experimental data reported by Laboratoire Nationae D'Hydraulique, Chatou, France, that the evolution from a smooth bed to sand dunes is determined by mutation in the bed load transport. This paper presents results that may offer theoretical explanations to the experimental observations. It is also an attempt to apply the state-of-the-art nonlinear science to the classical sediment transport mechanics.

  2. Hipparions of the Laetolil Beds, Tanzania

    NARCIS (Netherlands)

    Hooijer, D.A.

    1979-01-01

    The Laetolil Beds in Tanzania, 20-30 miles south of Olduvai Gorge, have been extensively sampled by parties under the leadership of Mrs. Dr. Mary D. Leakey, who very kindly sent me Hipparion material collected in 1974, 1975, and 1976. In a restudy of proboscidean material from these beds described b

  3. Bed-levelling experiments with suspended load

    NARCIS (Netherlands)

    Talmon, A.M.; De Graaff, J.

    1991-01-01

    Bed-levelling experiments are conducted in a straight laboratory channel. The experiments involve a significant fraction of suspended sediment transport. The purpose of the experiments is to provide data for modelling of the direction of sediment transport on a transverse sloping alluvial river bed,

  4. International Standardization of Bed Rest Standard Measures

    Science.gov (United States)

    Cromwell, Ronita L.

    2010-01-01

    This slide presentation gives an overview of the standardization of bed rest measures. The International Countermeasures Working Group attempted to define and agree internationally on standard measurements for spaceflight based bed rest studies. The group identified the experts amongst several stakeholder agencys. It included information on exercise, muscle, neurological, psychological, bone and cardiovascular measures.

  5. Effective Thermal Conductivity of Adsorbent Packed Beds

    Science.gov (United States)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  6. Gruppebaseret behandling af BED - et faseopdelt behandlingstilbud

    DEFF Research Database (Denmark)

    Laust, Jakob; Lau, Marianne Engelbrecht; Waaddegaard, Mette

    2015-01-01

    konsekvenser. BED blev i 2013 optaget i DSM-5 (Diagnostic and Statistical Manual of Mental Disorders) som en selvstændig diagnose og BED forventes medtaget i den forestående revision af det internationale diagnose system, ICD-11. Sundhedsstyrelsen gav på denne baggrund satspuljemidler til erfaringsopsamling...

  7. Particle pressures in fluidized beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  8. Particle Pressures in Fluidized Beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  9. Determination of true bed thickness using folded bed model and borehole data

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.S.; Velasquillo-Martinez, L.G.; Grajales-Nishimura, J.M.; Murillo-Muneton, G. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Garcia-Hernandez, J. [Petroleos Mexicanos Exploracion y Produccion, Tamaulipas (Mexico); Nieto-Samaniego, A.F. [Nacional Autonoma de Mexico Univ., Veracruz (Mexico). Centro de Geociencias

    2007-11-15

    The actual thickness of a given formation perpendicular to the bedding plane is known as the true bed thickness. Petroleum engineers rely on information regarding true bed thickness, particularly in dipping beds and in deviated holes because reservoir volume and isochore maps depend on these properties and not on the measured thickness. True bed thickness can be estimated from information gathered from well logs such as the dipmeter and borehole images. However, when deviations and dips exceed 10 degrees, corrections are needed. In this paper, a folded bed model was proposed to calculate the true bed thickness in the subsurface utilizing well log data. The value of true bed thickness (t) was shown to depend on the angle and the direction of the dip of the measured formation, as well as the drift angle and azimuth of the borehole. A case study from the Cantarell oil field in the southern Gulf of Mexico, offshore Campeche, was used to test the folded bed method. The model was shown to yield more uniform spatial change of the values of t, compared to the monoclinal bed model that often overestimates the average value of t. The maximum relative deviation of t from the monoclinal bed model reached 22.3 per cent and the maximum absolute deviation of t reached 34.5 m. The key factors that influence the values of t were found to be the bed dip, the dip difference between the top and base of the bed and the deviated angle of the well. The folded bed model yielded fewer changed values of the true bed thickness. 10 refs., 2 tabs., 9 figs.

  10. Studies on Catalyst Deactivation Rate and Byproducts Yield during Conversion of Methanol to Olefins

    Institute of Scientific and Technical Information of China (English)

    Yan Dengchao; Munib Shahda; Weng Huixin

    2006-01-01

    The conversion of methanol to olefins (MTO) over the SAPO-34 catalyst in fixed-bed microreactor was studied. The effect of reaction temperatures for methanol conversion to olefins and byproducts was investigated. A temperature of 425 ℃ appeared to be the optimum one suitable for conversion of methanol to olefins. Since the presence of water could increase the olefins selectivity, the methanol conversion reactions with mixed water/methanol feed were also studied. The effect of weight hourly space velocity on conversion of methanol was also studied. The results indicated that the olefins selectivity was significantly increased as WHSV increased till approximately 7.69 h-1 then it began to level off. Different factors affecting the catalyst deactivation rate was studied, showing that the catalyst deactivation time was dependent on reaction conditions, and temperatures higher and lower than the optimal one made the catalyst deactivation faster.Adding water to methanol could slow down the catalyst deactivation rate.

  11. Does Bedding Affect the Airway and Allergy?

    Directory of Open Access Journals (Sweden)

    J Crane

    2011-03-01

    Full Text Available Various cross-sectional and longitudinal studies have suggested that synthetic bedding is associated with asthma, allergic rhinitis and eczema while feather bedding seems to be protective. Synthetic bedding items have higher house dust mite allergen levels than feather bedding items. This is possibly the mechanism involved although fungal and bacterial proinflammatory compounds and volatile organic compounds may play a role. In this review we present and discuss the epidemiological evidence and suggest possible mechanisms. Primary intervention studies are required to show whether feather bedding is protective for the development of childhood asthma and allergic diseases while secondary intervention studies are required to potentially reduce symptoms and medication use in subjects with established disease.

  12. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    Subhasish Dey; Uddaraju V Raju

    2002-10-01

    An experimental study on incipient motion of gravel and coal beds under unidirectional steady-uniform flow is presented. Experiments were carried out in a flume with various sizes of gravel and coal samples. The critical bed shear stresses for the experimental runs determined using side-wall correction show considerable disagreement with the standard curves. The characteristic parameters affecting the incipient motion of particles in rough-turbulent regime, identified based on physical reasoning and dimensional analysis, are the Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress for the initial movement of gravel and coal beds were obtained using experimental data. The method of application of critical bed shear stress equations is also mentioned.

  13. Innovative Bed Load Measurement System for Large Alpine Gravel-Bed Rivers

    Science.gov (United States)

    Seitz, H.; Habersack, H. M.

    2009-04-01

    The aim of the work is to figure out the bed load transport processes using direct and surrogate measurement methods for the free flowing reach of the Drau River and its most important tributary Isel River, both large Alpine gravel-bed rivers, situated in the south western part of Austria. There are some techniques for bed load measurements in natural streams; we used collecting moving particles and indirectly determining transport intensity at the study sites. Former measurements in the study reach were performed also using mobile bed load samplers and fixed bed load samplers. Individually they all are adequate bed load measurement instruments - used in combination they are complementing one another, whereas each applied separately leads to specific deficits. The investigation payed special attention on results out of the geophone installations, whereas steel plate vibrations (the plates are mounted on top of concrete structures even with the river bed surface) caused by bed load particles with a diameter larger than about 20 mm are inducing a signal into the geophones. The signal above a defined threshold voltage than is recorded in a computer system as the sum of impacts during one minute intervals. The spatio-temporal distribution of the transported bed load material, its amount and the transport processes itself could be figured out for the first time out of continuous data collection since 2006 for large alpine gravel-bed rivers. Before building up the gauging stations there were no continuous recordings of bed load transport processes in large alpine rivers over their entire cross section, hence the investigation promises a better process understanding and the possibility to determine bed load transport rates and a rough approximation of the grain size distributions of the transported bed load material under different flow conditions. A relation between detected geophone records, the flow discharge and direct bed load sampling methods (Large Helley Smith

  14. Review on Telephone Conversations Analysis

    Institute of Scientific and Technical Information of China (English)

    张咏梅

    2014-01-01

    Telephone conversation, one of the most common uses of human communication, has been a hot topic in linguistic field in modern times. This essay aims at reviewing the main theories and findings in telephone conversation analysis and provid-ing some insights of this aspect which can often be overlooked in our daily life. It is also hoped that this essay can help to pave a foundation for further in-depth study in telephone conversations.

  15. Pellet bed reactor concept for nuclear electric propulsion

    Science.gov (United States)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert

    1993-01-01

    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  16. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  17. Calcium sulphoaluminate cement made from fluidized bed combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bernards, G.; Marroccoli, M.; Montagnaro, F.; Valenti, G.L.

    2000-07-01

    Wastes generated in a bench-scale atmospheric fluidized bed combustor, using two different coals (one from Poland and one from South Africa) and a high-lime limestone sorbent, were employed as raw materials for the synthesis of calcium sulphoaluminate (4 CaO{sub 3} Al{sub 2}O{sub 3}.SO{sub 3})-based cements, which can be utilized for a wide range of applications. Raw mixes containing the bed material were heated in an electric oven in the temperature range 1000-1200{degree}C. The best results in terms of reactants conversion and selectivity towards 4 CaO{sub 2} Al{sub 2}O{sub 3}.SO{sub 3} were obtained at 1200{degree}C with the addition of an external source of alumina which was required to avoid melting phenomena or integrate the Al{sub 2}O{sub 3} content necessary for the 4CaO{sub 3}.Al{sub 2}O{sub 3}-SO{sub 3} formation. 7 refs., 7 tabs.

  18. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    Science.gov (United States)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  19. CERTS Microgrid Laboratory Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Lasseter, R. H.; Eto, J. H.; Schenkman, B.; Stevens, J.; Volkmmer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J.

    2010-06-08

    CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a 'microgrid'. The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults.

  20. Mix bed type desalting device

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Shuichi; Shiozawa, Yoshihiro; Kazama, Seiichi

    1998-12-18

    The present invention provides a condensate desalting device of a BWR type reactor capable of preventing degradation of ion exchange resins by water containing oxidative materials such as hydrogen peroxide thereby keeping reactor water at high purity. Namely, a mixed bed type desalting device comprises a desalting tower for removing impurities in water by ion exchange resins and a regeneration device for cleaning/regenerating the ion exchange resins. Means for loading iron cruds into water is disposed in the desalting tower. With such a constitution, oxidative materials such as hydrogen peroxide react with the iron cruds thereby enabling to suppress oxidative reaction during ion exchange. Since passage or cleaning/regeneration of water is conducted while loading the iron cruds between ion exchange resin particles and on the surface layer of an ion exchange resin layer by using the above-mentioned reaction, degradation of ion exchange performance of the ion exchange resins by hydrogen peroxide can be prevented upon condensate cleaning operation or resin cleaning/regeneration. As a result, degradation of quality of reactor water can be suppressed. (I.S.)

  1. Modeling nitrate removal in a denitrification bed.

    Science.gov (United States)

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C

    2015-03-15

    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality.

  2. Factors Associated With Infant Bed-Sharing

    Science.gov (United States)

    Heere, Megan; Moughan, Beth; Alfonsi, Joseph; Rodriguez, Jennifer; Aronoff, Stephen

    2017-01-01

    Objective: Bed-sharing is associated with sudden infant death syndrome and accidental suffocation and strangulation in bed. The purpose of this study was to identify risk factors for newborn bed-sharing. Methods: Postpartum mothers from a university maternity service were contacted by phone to complete a survey. Demographic and environmental data were collected; newborn bed-sharing and sleep environment were self-reported. Results: A total of 1261 mothers completed surveys; bed-sharing was reported by 79 mothers (6.3%). Multivariate logistic regression identified referral to a nurse (odds ratio [OR] = 10; 95% confidence interval [CI] = 4.5-30) and sleep location “other” than a crib, bassinet, or Pack and Play (OR = 7.1; 95% CI = 1.9-25.9) as factors associated with an increased risk of bed-sharing; formula feeding (OR = 0.4; 95% CI = 0.20-0.77) and crib sleeping (OR = 0.49; 95% CI = 0.26-0.86) reduced this risk. Conclusion: Infants with no identifiable places to sleep, significant health issues, and who are breastfed are more likely to bed-share. Interventional studies should be directed at these factors. PMID:28229101

  3. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  4. Heat and Mass Transfer Enforcement of Vibrating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    ChuZhide; YangJunhong; 等

    1994-01-01

    This paper briefly introduces the development of vibrating fluidized bed at home and abroad,elaborates the vibration properties of vibrating fluidized bed.the fluidizing velocity and pressure drop of the bed layer,it also deduces the non-steady state drying dynamic equations of vibrating fluidized bed,analyzes main factors which influence the drying rate and inquires into drying rules of fixed bed and vibrating fluidized bed.

  5. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (USA)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (USA))

    1990-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. Success in this program will be a major step in improving in predictive capabilities for coal conversion processes including: demonstrated accuracy and reliability and a generalized first principles'' treatment of coals based on readily obtained composition data. The progress during the fifteenth quarterly of the program is presented. 56 refs., 41 figs., 5 tabs.

  6. Free running droplets on packed powder beds

    Science.gov (United States)

    Whitby, Catherine P.; Bian, Xun; Sedev, Rossen

    2013-06-01

    We observed that water drops placed on horizontal beds of fine molybdenite particles move freely over the bed surface for about 1 second. The drops collect an irregular coating of unevenly distributed particles as they bounce and roll. We manipulated the distance that the drops travel, and hence the area of the droplet surface coated with particles, by varying the water surface tension and the kinetic energy of the initial droplet impact on the bed surface. Our results highlight the role of contact angle hysteresis in particle encapsulation of liquid drops.

  7. Ash problem at wood fired fluidized bed plants; Askproblem vid skogsbraensleeldning i fluidbaedd

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Soeren; Nystroem, Olle; Axby, Fredrik [Sycon Energikonsult AB, Malmoe (Sweden); Andersson, Christer; Kling, Aasa [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-03-01

    Several ash related problems occurs during conversion from fossil fuels to bio fuels. The most frequent and expensive problem is agglomeration of bed material (in fluidized beds) and fouling on superheating surfaces. The last problem leads to corrosion problem and decreased transfer of heat. This project is the first part of a proposed project focussed on fluidized bed combustion (FB), because FB have become the dominating technology for combustion of biofuels. The project includes this first update of what has been done by different research institutes since 1997 and results of questionnaire on operating problems to owners of fluidized bed plants. A couple of pilot studies and different thermodynamical studies of bed agglomeration with biofuel combustion have been done during the latest years. There are no published reports where the results from agglomeration tests in pilot scale are verified in full scale plants. No project was found which deals with the fouling problem in the cyclone in a circulating fluidized bed. The knowledge of the mechanisms of deposits growth on heat surfaces is incomplete and more research has to be done of what can prevent the deposit growth. Experience from full scale plants shows that the deposits on heat surfaces grows during a period and after that it falls of the heating surface. There is little knowledge of which ash and flue gas conditions that affects these conditions for bio fuel. The operational experience with wood fuels in circulating fluidized beds is that the main problem with bed material is in the inlet and outlet of the cyclone. A total desulfonated of the bed occurs only when there has been other disturbances or because of operator mistakes. There are a number of things which seem to influence on the deposit problems: (1) Boilers with long residence time have less problem than boilers with short residence time. (2) Fuel size. No plant owner have continuos analysis of the fuel size, but combustion with problem have a

  8. Modelling the bed characteristics in fluidised-beds for top-spray coating processes

    Institute of Scientific and Technical Information of China (English)

    Mike Vanderroost; Frederik Ronsse; Koen Dewettinck; Jan G.Pieters

    2012-01-01

    A particle sub-model describing the bed characteristics of a bubbling fluidised bed is presented.Atomisation air,applied at high pressures via a nozzle positioned above the bed for s pray formation,is incorporated in the model since its presence has a profound influence on the bed characteristics,though the spray itself is not yet considered.A particle sub-model is developed using well-known empirical relations for particle drag force,bubble growth and velocity and particle distribution above the fluidised-bed surface.Simple but effective assumptions and abstractions were made concerning bubble distribution,particle ejection at the bed surface and the behaviour of atomisation air flow upon impacting the surface of a bubbling fluidised bed.The model was shown to be capable of predicting the fluidised bed characteristics in terms of bed heights,voidage distributions and solids volume fractions with good accuracy in less than 5 min of calculation time on a regular desktop PC.It is therefore suitable for incorporation into general process control models aimed at dynamic control for process efficiency and product quality in top-spray fluidised bed coating processes.

  9. Passive acoustic monitoring of bed load discharge in a large gravel bed river

    Science.gov (United States)

    Geay, T.; Belleudy, P.; Gervaise, C.; Habersack, H.; Aigner, J.; Kreisler, A.; Seitz, H.; Laronne, J. B.

    2017-02-01

    Surrogate technologies to monitor bed load discharge have been developed to supplement and ultimately take over traditional direct methods. Our research deals with passive acoustic monitoring of bed load flux using a hydrophone continuously deployed near a river bed. This passive acoustic technology senses any acoustic waves propagated in the river environment and particularly the sound due to interparticle collisions emitted during bed load movement. A data set has been acquired in the large Alpine gravel-bedded Drau River. Analysis of the short-term frequency response of acoustic signals allows us to determine the origin of recorded noises and to consider their frequency variations. Results are compared with ancillary field data of water depth and bed load transport inferred from the signals of a geophone array. Hydrophone and geophone signals are well correlated. Thanks to the large network of deployed geophones, analysis of the spatial resolution of hydrophone measurements shows that the sensor is sensitive to bed load motion not only locally but over distances of 5-10 m (10-20% of river width). Our results are promising in terms of the potential use of hydrophones for monitoring bed load transport in large gravel bed rivers: acoustic signals represent a large river bed area, rather than being local; hydrophones can be installed in large floods; they can be deployed at a low cost and provide continuous monitoring at high temporal resolution.

  10. Volumetric TAN Conversion Rate - Reduction in Energy Consumption Using Moving Bed Biofilter

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Land-based reuse systems offer many advantages over netpens or flow-through systems. This includes reduced siting problems, better control of water quality, and...

  11. Surface TAN Conversion Rate - Reduction in Energy Consumption Using Moving Bed Biofilter

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Land-based reuse systems offer many advantages over netpens or flow-through systems. This includes reduced siting problems, better control of water quality, and...

  12. Faculty Meetings: Hidden Conversational Dynamics

    Science.gov (United States)

    Bowman, Richard F.

    2015-01-01

    In the everydayness of faculty meetings, collegial conversations mirror distinctive dynamics and practices, which either enhance or undercut organizational effectiveness. A cluster of conversational practices affect how colleagues connect, engage, interact, and influence others during faculty meetings in diverse educational settings. The…

  13. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices...

  14. Conversational Competence in Academic Settings

    Science.gov (United States)

    Bowman, Richard F.

    2014-01-01

    Conversational competence is a process, not a state. Ithaca does not exist, only the voyage to Ithaca. Vibrant campuses are a series of productive conversations. At its core, communicative competence in academic settings mirrors a collective search for meaning regarding the purpose and direction of a campus community. Communicative competence…

  15. Conversing Life: An Autoethnographic Construction

    Science.gov (United States)

    Hoelson, Christopher N.; Burton, Rod

    2012-01-01

    This autoethnography is a constructed account of a co-exploration into the nature and effects of a longitudinal dyadic conversation process from a relational constructionist perspective. The conversations, between me as participant autoethnographer and a co-participant, aimed at maximising personal learning for both. Through co-created contexts of…

  16. The Practicalities of Document Conversion.

    Science.gov (United States)

    Galbraith, Ian

    1993-01-01

    Describes steps involved in the conversion of source documents to scanned digital image format. Topics addressed include document preparation, including photographs and oversized material; indexing procedures, including automatic indexing possibilities; scanning documents, including resolution and throughput; quality control; backfile conversion;…

  17. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  18. Development of a Reactor Model for Chemical Conversion of Lunar Regolith

    Science.gov (United States)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.

  19. Bed Bug Infestations and Control Practices in China: Implications for Fighting the Global Bed Bug Resurgence

    Directory of Open Access Journals (Sweden)

    Changlu Wang

    2011-04-01

    Full Text Available The bed bug resurgence in North America, Europe, and Australia has elicited interest in investigating the causes of the widespread and increasing infestations and in developing more effective control strategies. In order to extend global perspectives on bed bug management, we reviewed bed bug literature in China by searching five Chinese language electronic databases. We also conducted telephone interviews of 68 pest control firms in two cities during March 2011. In addition, we conducted telephone interviews to 68 pest control companies within two cities in March 2011. Two species of bed bugs (Cimex lectularius L. and Cimex hemipterus (F. are known to occur in China. These were common urban pests before the early1980s. Nationwide “Four-Pest Elimination” campaigns (bed bugs being one of the targeted pests were implemented in China from 1960 to the early 1980s. These campaigns succeeded in the elimination of bed bug infestations in most communities. Commonly used bed bug control methods included applications of hot water, sealing of bed bug harborages, physical removal, and applications of residual insecticides (mainly organophosphate sprays or dusts. Although international and domestic travel has increased rapidly in China over the past decade (2000–2010, there have only been sporadic new infestations reported in recent years. During 1999–2009, all documented bed bug infestations were found in group living facilities (military dormitories, worker dormitories, and prisons, hotels, or trains. One city (Shenzhen city near Hong Kong experienced significantly higher number of bed bug infestations. This city is characterized by a high concentration of migratory factory workers. Current bed bug control practices include educating residents, washing, reducing clutter, putting items under the hot sun in summer, and applying insecticides (pyrethroids or organophosphates. There have not been any studies or reports on bed bug insecticide

  20. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  1. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  2. Protecting Your Home from Bed Bugs

    Science.gov (United States)

    ... bed bugs easier to see. Be sure to purchase a high quality encasement that will resist tearing ... Contact Us Hotlines FOIA Requests Frequent Questions Follow. Facebook Twitter YouTube Flickr Instagram Last updated on December ...

  3. Adult Bed-Wetting: A Concern?

    Science.gov (United States)

    ... D. Bed-wetting that starts in adulthood (secondary enuresis) is uncommon and requires medical evaluation. Causes of ... Erik P. Castle, M.D. References Adult nocturnal enuresis. National Association for Continence. http://www.nafc.org/ ...

  4. IceBridge BedMachine Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains bed topography beneath the Greenland Ice Sheet based on mass conservation derived from airborne radar tracks and satellite radar. The data...

  5. D7 debris-bed experiment. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G W; Ottinger, C A; Lipinski, R J

    1983-08-01

    The D7 experiment investigated heat removal from a shallow, stratified bed of UO/sub 2/ particulate in sodium. The particle diameters ranged from 0.1 to 1.0 mm, with the largest particles at the bottom. The bed thickness was 74 mm and the average porosity was 41%. The incipient dryout power varied from 0.43 W/g to 0.25 W/g as the sodium subcooling (saturation temperature minus overlying pool temperature) was reduced from 390/sup 0/C to 170/sup 0/C. These powers were only slighlty above the incipient boiling powers. Such low dryout powers are believed due to the interaction of capillary force with bed stratification. With a subccoling of 130/sup 0/C several sudden decreases in the saturation temperature occurred. These are believed due to channel formation, which causes a reduction in the capillary pressure in the bed.

  6. Ultra high temperature particle bed reactor design

    Science.gov (United States)

    Lazareth, Otto; Ludewig, Hans; Perkins, K.; Powell, J.

    1990-01-01

    A direct nuclear propulsion engine which could be used for a mission to Mars is designed. The main features of this reactor design are high values for I(sub sp) and very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H2 passes over the fuel bed, removes the heat, and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this particle bed reactor design is suitable as a propulsion unit for this mission.

  7. Do-it-yourself Bed Bug Control

    Science.gov (United States)

    Controlling bed bugs is complex. Using an integrated pest management (IPM) approach incorporates both non-chemical and pesticide methods. Success depends on the extent of the infestation, clutter on site, and resident participation.

  8. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid...

  9. The influence of fibrous bed bulk density on the bed properties

    Directory of Open Access Journals (Sweden)

    Šećerov-Sokolović Radmila M.

    2003-01-01

    Full Text Available The mean properties of seven different fibrous materials and the properties of their different bed bulk densities were investigated. The morphology of the surface, size and geometry were measured by optical microscopy. The bed porosity was measured by the weighing method. The experimental bed permeability, in a high range of bulk density, was calculated from the values of the sanitary water pressure drop at a constant temperature of 15°C, since the data followed Darcy's law. The Reynolds number for a fibrous bed was calculated using a relation from the literature. The Reynolds number was less than 1 for all ranges of fluid velocity. Three empirical relations for fibrous bed permeability were used and compared with the experimental data. It was determined that the empirical data depended on the fiber diameter and fraction of solid in the bed. The relative error linearly increased with increasing fiber diameter.

  10. The effect of vibration on bed voidage behaviors in fluidized beds with large particles

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H.; Zhang, J.; Zhang, B.

    2007-07-01

    The effects of vibration parameters, operating conditions and material properties on bed voidage were investigated using an optical fiber probe approach in a vibrating fluidized bed with a diameter of 148 mm. Variables studied included frequency (0-282 s{sup -1}), amplitude (0 mm-1 mm), bed height (0.1 m-0.4 m) as well as four kinds of particles (belonging to Geldart's B and D groups). The axial and radial voidage distribution with vibration is compared with that without vibration, which shows vibration can aid in the fluidization behaviors of particles. For a larger vibration amplitude, the vibration seriously affects bed voidage. The vibration energy can damp out for particle layers with increasing the bed height. According to analysis of experimental data, an empirical correlation for predicting bed voidage, giving good agreement with the experimental data and a deviation within {+-}15%, was proposed. 20 refs., 8 figs., 2 tabs.

  11. Bed dynamics of gas-solid fluidized bed with rod promoter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dynamic characteristics of a gas-solid fluidized bed with different rod promoters have been investigated in terms of bed expansion and fluctuation, minimum fluidization velocity and distributor-to-bed pressure drop ratio at minimum fluidization velocity. Experimentation based on statistical design has been carried out and model equations using factorial design of experiments have been developed for the above mentioned quantities for a promoted gas-solid fluidized bed. The model equations have been tested with additional experimental data. The system variables include four types of rod promoters of varying blockage volume, bed particles of four sizes and four initial static bed heights. A comparison between the predicted values of the output variables using the proposed model equation with their corresponding experimental ones shows fairly good agreement.

  12. The effect of vibration on bed voidage behaviors in fluidized beds with large particles

    Directory of Open Access Journals (Sweden)

    H. Jin

    2007-09-01

    Full Text Available The effects of vibration parameters, operating conditions and material properties on bed voidage were investigated using an optical fiber probe approach in a vibrating fluidized bed with a diameter of 148 mm. Variables studied included frequency (0-282 s-1, amplitude (0 mm-1 mm, bed height (0.1 m-0.4 m as well as four kinds of particles (belonging to Geldart's B and D groups. The axial and radial voidage distribution with vibration is compared with that without vibration, which shows vibration can aid in the fluidization behaviors of particles. For a larger vibration amplitude, the vibration seriously affects bed voidage. The vibration energy can damp out for particle layers with increasing the bed height. According to analysis of experimental data, an empirical correlation for predicting bed voidage, giving good agreement with the experimental data and a deviation within ±15%, was proposed.

  13. PRESSURE FLUCTUATIONS IN GAS-SOLIDS FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Hsiaotao Bi; Aihua Chen

    2003-01-01

    Pressure fluctuation data measured in a series of fluidized beds with diameters of 0.05, 0.1, 0.29, 0.60 and 1.56 m showed that the maximum amplitude or standard deviation increased with increasing the superficial gas velocity and static bed height for relatively shallow beds and became insensitive to the increase in static bed height in relatively deep beds. The amplitude appeared to be less dependent on the measurement location in the dense bed. Predictions based on bubble passage, bubble eruption at the upper bed surface and bed oscillation all failed to explain all observed trends and underestimated the amplitude of pressure fluctuations, suggesting that the global pressure fluctuations in gas-solids bubbling fluidized beds are the superposition of local pressure variations, bed oscillations and pressure waves generated from the bubble formation in the distributor region, bubble coalescence during their rise and bubble eruption at the upper bed surface.

  14. Effect of Operating Conditions on Catalytic Gasification of Bamboo in a Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Thanasit Wongsiriamnuay

    2013-01-01

    Full Text Available Catalytic gasification of bamboo in a laboratory-scale, fluidized bed reactor was investigated. Experiments were performed to determine the effects of reactor temperature (400, 500, and 600°C, gasifying medium (air and air/steam, and catalyst to biomass ratio (0 : 1, 1 : 1, and 1.5 : 1 on product gas composition, H2/CO ratio, carbon conversion efficiency, heating value, and tar conversion. From the results obtained, it was shown that at 400°C with air/steam gasification, maximum hydrogen content of 16.5% v/v, carbon conversion efficiency of 98.5%, and tar conversion of 80% were obtained. The presence of catalyst was found to promote the tar reforming reaction and resulted in improvement of heating value, carbon conversion efficiency, and gas yield due to increases in H2, CO, and CH4. The presence of steam and dolomite had an effect on the increasing of tar conversion.

  15. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  16. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (Pdietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  17. Conversion of wood residues to diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, J.L.

    1981-01-01

    The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The general conversion scheme is shown. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, paraffinic fuel and/or high octane gasoline. A flow diagram of the continuous laboratory unit is shown. A fluidized bed pyrolysis system is used for gasification. Capacity is about 10 lbs/h of feedstock. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. If a high octane gasoline is desired, the paraffinic fuel is passed through a conventional catalytic reformer. The normal propanol could be used as a fuel extender if blended with the hydrocarbon fuel products. Off gases from the downstream reactors are of high quality due to the accumulation of low molecular weight paraffins.

  18. Water produced with coal-bed methane

    Science.gov (United States)

    ,

    2000-01-01

    Natural gas produced from coal beds (coal-bed methane, CBM) accounts for about 7.5 percent of the total natural gas production in the United States. Along with this gas, water is also brought to the surface. The amount of water produced from most CBM wells is relatively high compared to conventional natural gas wells because coal beds contain many fractures and pores that can contain and transmit large volumes of water. In some areas, coal beds may function as regional or local aquifers and important sources for ground water. The water in coal beds contributes to pressure in the reservoir that keeps methane gas adsorbed to the surface of the coal. This water must be removed by pumping in order to lower the pressure in the reservoir and stimulate desorption of methane from the coal (fi g. 1). Over time, volumes of pumped water typically decrease and the production of gas increases as coal beds near the well bore are dewatered.

  19. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    Institute of Scientific and Technical Information of China (English)

    Tingwen Li; Pradeep Gopalakrishnana; Rahul Garg; Mehrdad Shahnam

    2012-01-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD-DEM simulations of small-scale systems.Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing,bed expansion,bubble behavior,solids velocities,and particle kinetic energy.Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters.However,a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters,indicating the transition from 2D flow to 3D flow within the range of 20-40 particle diameters.Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds.Hence,for quantitative comparison with experiments in pseudo-2D columns,the effect of wails has to be accounted for in numerical simulations.

  20. Multiscale statistical characterization of migrating bed forms in gravel and sand bed rivers

    Science.gov (United States)

    Singh, Arvind; Lanzoni, Stefano; Wilcock, Peter R.; Foufoula-Georgiou, Efi

    2011-12-01

    Migrating bed forms strongly influence hydraulics, transport, and habitat in river environments. Their dynamics are exceedingly complex, making it difficult to predict their geometry and their interaction with sediment transport. Acoustic instrumentation now permits high-resolution observations of bed elevation as well as flow velocity. We present a space-time characterization of bed elevation series in laboratory experiments of sand and gravel transport in a large 84 m long, 2.75 m wide flume. We use a simple filtering and thresholding methodology to estimate bed form heights and report that the shape of their probability density function (pdf) remains invariant to discharge for both gravel and sand and has a positive tail slightly thicker than Gaussian. Using a wavelet decomposition, we quantify the presence of a rich multiscale statistical structure and estimate the scale-dependent celerity of migrating bed forms, showing the faster movement of smaller bed forms relative to the larger ones. The nonlinear dynamics of gravel and sand bed forms is also examined, and the predictability time, i.e., the interval over which one can typically forecast the system, is estimated. Our results demonstrate that flow rate as well as bed sediment composition exert a significant influence on the multiscale dynamics and degree of nonlinearity and complexity of bed form evolution.

  1. Control of the Bed Temperature of a Circulating Fluidized Bed Boiler by using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    AYGUN, H.

    2012-05-01

    Full Text Available Circulating fluidized bed boilers are increasingly used in the power generation due to their higher combustion efficiency and lower pollutant emissions. Such boilers require an effective control of the bed temperature, because it influences the boiler combustion efficiency and the rate of harmful emissions. A Particle-Swarm-Optimization-Proportional-Integrative-Derivative (PSO-PID controller for the bed temperature of a circulating fluidized bed boiler is presented. In order to prove the capability of the proposed controller, its performances are compared at different boiler loads with those of a Fuzzy Logic (FL controller. The simulation results demonstrate some advantages of the proposed controller.

  2. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  3. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul; Shahnam, Mehrdad

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.

  4. Petite fabrique de conversation francaise (Little Factory of French Conversation).

    Science.gov (United States)

    Dubroca, Danielle

    1987-01-01

    A technique using dialogues and realistic prose passages from the works of Georges Simenon and Simone de Beauvoir to teach French conversational skills at the college level is explained and illustrated. (MSE)

  5. Biomass-Ash-Induced Agglomeration in a Fluidized Bed. Part 1: Experimental Study on the Effects of a Gas Atmosphere

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    Fluidized beds have been widely applied to gasification and combustion of biomass. During gasification, a high temperature is preferable to increase the carbon conversion and to reduce the undesirable tar. However, the high temperature may lead to a severe agglomeration problem in a fluidized bed....... Understanding of the agglomeration in various atmospheres is crucial to optimize the design and operation conditions. This study focuses on the effects of gases on agglomeration tendency with different types of biomass, including corn straw, rice straw, and wheat straw. The biomass ash samples are mixed...

  6. Roadmap on optical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-06-24

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  7. Roadmap on optical energy conversion

    Science.gov (United States)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  8. A note on conversational interruptions A note on conversational interruptions

    OpenAIRE

    Anthony F. Deyes

    2008-01-01

    In their seminal article, Sacks, Schegloff and Jefferson (1974) examine procedures for turn-taking in conversation. Sometimes, they note, a s peaker will select who has the next turn, but more frequently a "self-select" system operates, whereby the participants in a conversation themselves determine when they wish to speak. But how, ask Sacks, Schegloff and Jefferson, do the interlocutors secure a turn in the ongoing flow of another speaker's utterance? To answer this question the author...

  9. Conversion of Abbandoned Military Areas

    Directory of Open Access Journals (Sweden)

    Daiva Marcinkevičiūtė

    2011-03-01

    Full Text Available The article analyses the situation of abandoned military sites, their value and significance of their conservation. It also reviews their impact on their environment and their potential in tourism, environmental, economic and social spheres. Further the positive experiences in military sites' conversion are studied. The importance of society's involvement in the conversions is discussed. The situation of XIX-XX age's military object's, the significance of their conservation and their potential in tourism market is separately analysed. The results of two researches are introduced, one of which inquires about the Lithuanian military objects' potential in tourism sphere, another one explores the possibilities of conversion. Article in Lithuanian

  10. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  11. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...... at the plane of the external image) which is denominated D2 and wherein D1 is larger than a second diameter D2 and wherein the telescope further comprises a third optical component (103) and a fourth optical component (104); arranged for re-imaging the first image into a second image of the back-focal plane...

  12. Direct Energy Conversion Literature Abstracts

    Science.gov (United States)

    1963-12-01

    in a bed of needed and should be placed in more zirconia chips to heat a molybdenum emitter extensive attack rate experiments to to 1500*C. The...of America, Semiconductor and Materials Division, Somerville, N.J. S374 hII(IC-CAPACITY MAGNESIUM BATTERIES, Naval Ordnance Laboratory, Corona , Calif

  13. 21 CFR 892.1350 - Nuclear scanning bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  14. 21 CFR 880.5120 - Manual adjustable hospital bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual adjustable hospital bed. 880.5120 Section... Therapeutic Devices § 880.5120 Manual adjustable hospital bed. (a) Identification. A manual adjustable hospital bed is a device intended for medical purposes that consists of a bed with a manual...

  15. Secondary reactions of tar during thermochemical biomass conversion[Dissertation 14341

    Energy Technology Data Exchange (ETDEWEB)

    Morf, P.O.

    2001-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology in Zurich presents and discusses the results obtained during the examination of the processes involved in the formation and conversion of tar in biomass gasification plant. Details are given on the laboratory reactor system used to provide separated tar production and conversion for the purposes of the experiments carried out. The results of analyses made of the tar and the gaseous products obtained after its conversion at various temperatures are presented. The development of kinetic models using the results of the experiments that were carried out is described. The results of the experiments and modelling are compared with the corresponding results obtained using a full-scale down-draft, fixed-bed gasifier. The author is of the opinion that the reaction conditions found in full-scale gasifiers can be well simulated using heterogeneous tar conversion experiments using the lab reactor system.

  16. [Comparison of PAHs distribution in stabilized sludge by sludge drying bed and reed bed].

    Science.gov (United States)

    Cui, Yu-Bo; Sun, Hong-Jie; Ran, Chun-Qiu; Li, Jin-Feng; Xie, Yao

    2013-03-01

    The difference in the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in planted and unplanted sludge drying bed was investigated. Pilot-scale sludge drying bed and reed bed had the same size of 3.0 m x 1.0 m x 1.3 m (L x W x H), and the bed height consisted of a 65 cm media layer and a 65 cm super height. Both beds had a ventilation pipe which was mounted on the drainage pipes. The experiment lasted for three years, and the first two years was the sludge loading period, and the third year was the natural stabilization period. In the first two years, a total thickness of 8.4 m of sludge was loaded and the average sludge loading rate was 41.3 kg x (m2 x a)(-1). After the three-year stabilization, the contents of the sixteen PAHs decreased with time in both the sludge drying bed and the reed bed. The total PAHs contents in the surface, middle and bottom sludge layers in the sludge drying bed were 4.161, 3.543 and 3.118 mg x kg(-1) (DW), corresponding to 26.91%, 37.77% and 45.23% of removal; and the values in the reed bed were 2.722, 1.648 and 1.218 mg x kg(-1) (DW), corresponding to 52.18%, 71.05% and 78.60% of removal. The average PAHs removal in the reed bed was 29.86% higher than that in the sludge drying bed. In the stabilized sludge, the removal of low-molecular-weight PAHs predominated. The results suggested that reed played a positive role in the removal of PAHs.

  17. A Conversation Well Worth Remembering

    Science.gov (United States)

    Woolven-Allen, John

    2009-01-01

    To mark the 200th anniversary of Charles Darwin's birth, a special event was held at Oxford, which included a "Conversation" between Professor Richard Dawkins and Bishop Richard Harries. Here we present a personal reminiscence of the event.

  18. Compact energy conversion module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  19. Feature conversion for concurrent engineering

    NARCIS (Netherlands)

    De Kraker, J.K.

    1998-01-01

    Feature conversion for concurrent engineering integrates two modern product development paradigms. Concurrent engineering is a product development paradigm in which multiple engineering disciplines participate. It optimizes a product with respect to available resources and product quality, for which

  20. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  1. Incineration of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics

    Institute of Scientific and Technical Information of China (English)

    Feng Duan; Chiensong Chyang; Jiaruei Wen; Jim Tso

    2013-01-01

    Some municipal solid waste (MSW) can be used as the fuel.Combustion of MSW with high nitrogen content is successfully conducted in a lab-scale vortexing fluidized-bed incinerator (VFBI).Pigskin with 16.5 wt.% nitrogen content was used to simulate the high nitrogen content kitchen waste,and silica sand was used as the bed material.The effects of operating conditions,such as the bed temperature,freeboard temperature,excess oxygen ratio,and static bed height on the CO and NO concentrations at the exit of combustor and cyclone were investigated.The experimental results show that the freeboard temperature is the most important factor for CO emission.The order of operating conditions impact on the NO emission is:(1) excess oxygen ratio; (2) bed temperature; (3)freeboard temperature; and (4) static bed height.Utilizing cyclone can significantly reduce the CO emission concentration when the CO concentration released from the freeboard is higher than 50 ppm.On the other hand,the cyclone has no significant effect on the NO emission.Despite having high nitrogen content,a low conversion from fuel-N to NO was attained.Compared with other types of combustors,VFBI reduces the CO and NO emission concentrations much better when burning MSW with high nitrogen content.

  2. Incineration of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics.

    Science.gov (United States)

    Duan, Feng; Chyang, Chiensong; Wen, Jiaruei; Tso, Jim

    2013-09-01

    Some municipal solid waste (MSW) can be used as the fuel. Combustion of MSW with high nitrogen content is successfully conducted in a lab-scale vortexing fluidized-bed incinerator (VFBI). Pigskin with 16.5 wt.% nitrogen content was used to simulate the high nitrogen content kitchen waste, and silica sand was used as the bed material. The effects of operating conditions, such as the bed temperature, freeboard temperature, excess oxygen ratio, and static bed height on the CO and NO concentrations at the exit of combustor and cyclone were investigated. The experimental results show that the freeboard temperature is the most important factor for CO emission. The order of operating conditions impact on the NO emission is: (1) excess oxygen ratio; (2) bed temperature; (3) freeboard temperature; and (4) static bed height. Utilizing cyclone can significantly reduce the CO emission concentration when the CO concentration released from the freeboard is higher than 50 ppm. On the other hand, the cyclone has no significant effect on the NO emission. Despite having high nitrogen content, a low conversion from fuel-N to NO was attained. Compared with other types of combustors, VFBI reduces the CO and NO emission concentrations much better when burning MSW with high nitrogen content.

  3. Humor and embodied conversational agents

    OpenAIRE

    Nijholt, A.

    2003-01-01

    This report surveys the role of humor in human-to-human interaction and the possible role of humor in human-computer interaction. The aim is to see whether it is useful for embodied conversational agents to integrate humor capabilities in their internal model of intelligence, emotions and interaction (verbal and nonverbal) capabilities. A current state of the art of research in embodied conversational agents, affective computing and verbal and nonverbal interaction is presented. The report ad...

  4. Conversational implicature in business negotiation

    Institute of Scientific and Technical Information of China (English)

    刘秀云

    2008-01-01

    Conversational implicature is a feature of language in use. This paper is trying to explore the conversational implicature phenomenonin business negotiation. From pragmatics view, it analyses the potential meaning of break off the Negotiation and carry on the negotiation in business negotiation. Through carefully selected examples, it manages to show how to behave politely in business negotiation. It's hoped that this paper can help those who are in such field to achieve successful negotiation.

  5. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  6. Translation of Conversational Implicature and the Strategies

    Institute of Scientific and Technical Information of China (English)

    TIAN Yuan

    2015-01-01

    Grice introduced the theory of conversational implicature which is essential in translation, especially in conversation translation of fictions. Four most commonly-seen and effective strategies of translating the conversational implicature are going to discussed.

  7. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    Science.gov (United States)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  8. Bed Stability and Debris Flow Erosion: A Dynamic "Shields Criterion" Associated with Bed Structure

    Science.gov (United States)

    Longjas, A.; Hill, K. M.

    2015-12-01

    Debris flows are mass movements that play an important role in transporting sediment from steep uplands to rivers at lower slopes. As the debris flow moves downstream, it entrains materials such as loose boulders, gravel, sand and mud deposited locally by shorter flows such as slides and rockfalls. To capture the conditions under which debris flows entrain bed sediment, some models use something akin to the Shields' criterion and an excess shear stress of the flow. However, these models typically neglect granular-scale effects in the bed which can modify the conditions under which a debris flow is erosional or depositional. For example, it is well known that repeated shearing causes denser packing in loose dry soils, which undoubtedly changes their resistance to shear. Here, we present laboratory flume experiments showing that the conditions for entrainment by debris flows is significantly dependent on the aging of an erodible bed even for narrowly distributed spherical particles. We investigate this quantitatively using particle tracking measurements to quantify instantaneous erosion rates and the evolving bed structure or "fabric". With progressive experiments we find a signature that emerges in the bed fabric that is correlated with an increasing apparent "fragility" of the bed. Specifically, a system that is originally depositional may become erosional after repeated debris flow events, and an erodible bed becomes increasingly erodible with repeated flows. We hypothesize that related effects of bed aging at the field scale may be partly responsible for the increasing destructiveness of secondary flows of landslides and debris flows.

  9. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis.

    Science.gov (United States)

    Inoue, Takao; Sternberg, Paul W

    2010-02-15

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited number of cell types including vulval cells whose divisions are affected in bed-3 mutants. A bed-3 mutation also affects the expression pattern of the cdh-3 cadherin gene in the vulva. The phenotype of bed-3 mutants is similar to the phenotype caused by mutations in cog-1 (Nkx6), a component of a gene regulatory network controlling cell type specific gene expression in the vulval lineage. These results suggest that bed-3 is a key component linking the gene regulatory network controlling cell-type specification to control of cell division during vulval organogenesis.

  10. Comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, Fausto; Sint Annaland, van Martin; Kuipers, J.A.M.

    2009-01-01

    In this work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, have been compared for the reforming of methane for the production of ultra-pure hydrogen. Using detailed theoretical models, the required membrane area to reach a given conversi

  11. NONUNIFORM OPEN CHANNEL FLOW WITH UPWARD SEEPAGE THROUGH LOOSE BEDS

    Institute of Scientific and Technical Information of China (English)

    Subhasish DEY

    2003-01-01

    The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steadynonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of twodimensional flow in open channels.

  12. Experiments on the dryout behavior of stratified debris beds

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Simon; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    In case of a severe accident with loss of coolant and core meltdown a particle bed (debris) can be formed. The removal of decay heat from the debris bed is of prime importance for the bed's long-term coolability to guarantee the integrity of the RPV. In contrast to previous experiments, the focus is on stratified beds. The experiments have pointed out that the bed's coolability is significantly affected.

  13. [Analysis of novel style biological fluidized bed A/O combined process in dyeing wastewater treatment].

    Science.gov (United States)

    Wei, Chao-Hai; Huang, Hui-Jing; Ren, Yuan; Wu, Chao-Fei; Wu, Hai-Zhen; Lu, Bin

    2011-04-01

    A novel biological fluidized bed was designed and developed to deal with high-concentration refractory organic industrial wastewater. From 12 successful projects, three cases of dyeing wastewater treatment projects with the scale of 1200, 2000 and 13000 m3/d respectively were selected to analyze the principle of treating refractory organic wastewater with fluidized bed technology and discuss the superiority of self-developed biological fluidized bed from the aspects of technical and economic feasibility. In the three cases, when the hydraulic retention time (HRT) of biological system were 23, 34 and 21. 8 h, and the volume loading of influents (COD) were 1.75, 4.75 and 2.97 kg/(m3 x d), the corresponding COD removal were 97.3%, 98.1% and 95.8%. Furthermore the operating costs of projects were 0.91, 1.17 and 0.88 yuan per ton of water respectively. The index of effluent all met the 1st grade of Guangdong Province wastewater discharge standard. Results showed that the biological fluidized bed had characteristics of shorter retention time, greater oxygen utilization rate, faster conversion rate of organic pollutants and less sludge production, which made it overcome the shortcomings of traditional methods in printing and dyeing wastewater treatment. Considering the development of technology and the combination of ecological security and recycling resources, a low-carbon wastewater treatment process was proposed.

  14. IHI-FW circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Omata, K.; Ishimoto, R.; Asai, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1993-07-01

    The technology and application of the circulating fluidized bed boiler (IHI-FW) are outlined. Circulating fluidized bed boilers have various features as compared with bubbling fluidized bed boilers as follows; a high combustion efficiency, efficient use of limestone for desulfurization, low NOx emission, adaptability to various fuels and capability to cope with load change. The IHI-FW boiler is furthermore featured by water-wall furnace of all-welded structure, water-cooled/steam cooled cyclone, and simple circulating system. The 30 t/h circulating fluidized bed boiler was introduced into the Tsu Works, Omikenshi Co., Ltd., Japan for private power generation. The boiler equipped with a backup heavy oil burner mainly uses semi-anthracite coal, and besides sulfur capture and NOx reduction functions of a bed, a bag filter with a high dust collecting efficiency is installed in an exhaust gas system. The installation period was reduced to 2.5 months, a half of conventional ones, by more assembly in a factory followed by less field works. 7 figs., 2 tabs.

  15. Grain Exchange Probabilities Within a Gravel Bed

    Science.gov (United States)

    Haschenburger, J.

    2008-12-01

    Sediment transfers in gravel-bed rivers involve the vertical exchange of sediments during floods. These exchanges regulate the virtual velocity of sediment and bed material texture. This study describes general tendencies in the vertical exchange of gravels within the substrate that result from multiple floods. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, British Columbia. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2000 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1991 and 1992. These tracers have been recovered 10 times over 12 flood seasons to quantify their vertical position in the streambed. For analysis, the bed is divided into layers based on armor layer thickness. Once tracers are well mixed within the streambed, grains in the surface layer are most likely to be mixed into the subsurface, while subsurface grains are most likely to persist within the subsurface. Fractional exchange probabilities approach size independence when the most active depth of the substrate is considered. Overall these results highlight vertical mixing as an important process in the dispersion of gravels.

  16. Wear prediction in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, E.J. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  17. Nonlinear Mechanism of Bed Load Transport

    Institute of Scientific and Technical Information of China (English)

    XU Haijue; BAI Yuchuan; NG Chiu-On

    2009-01-01

    From the group movement of the bed load within the bottom layer, details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper. Whether the sediment is initiated into motion cor-responds to whether the constant term in the equation is equal to zero. If constant term is zero and no dispersive force is considered, the equation represents the traditional Shields initiation curve, and if constant term is zero with-out the dispersive force being considered, then a new Shields curve which is much lower than the traditional one is got, The fixed point of the equation corresponds to the equilibrium sediment transport of bed load. In the mutation analysis, we have found that the inflection point is the demarcation point of breaking. In theory, the breaking point corresponds to the dividing boundary line, across which the bed form changes from flat bed to sand ripple or sand dune. Compared with the experimental data of Chatou Hydraulic Lab in France, the conclusions are verified.

  18. Measurement of powder bed density in powder bed fusion additive manufacturing processes

    Science.gov (United States)

    Jacob, G.; Donmez, A.; Slotwinski, J.; Moylan, S.

    2016-11-01

    Many factors influence the performance of additive manufacturing (AM) processes, resulting in a high degree of variation in process outcomes. Therefore, quantifying these factors and their correlations to process outcomes are important challenges to overcome to enable widespread adoption of emerging AM technologies. In the powder bed fusion AM process, the density of the powder layers in the powder bed is a key influencing factor. This paper introduces a method to determine the powder bed density (PBD) during the powder bed fusion (PBF) process. A complete uncertainty analysis associated with the measurement method was also described. The resulting expanded measurement uncertainty, U PBD (k  =  2), was determined as 0.004 g · cm-3. It was shown that this expanded measurement uncertainty is about three orders of magnitude smaller than the typical powder bed density. This method enables establishing correlations between the changes in PBD and the direction of motion of the powder recoating arm.

  19. Mechanisms of Ectopic Gene Conversion

    Directory of Open Access Journals (Sweden)

    P.J. Hastings

    2010-11-01

    Full Text Available Gene conversion (conversion, the unidirectional transfer of DNA sequence information, occurs as a byproduct of recombinational repair of broken or damaged DNA molecules. Whereas excision repair processes replace damaged DNA by copying the complementary sequence from the undamaged strand of duplex DNA, recombinational mechanisms copy similar sequence, usually in another molecule, to replace the damaged sequence. In mitotic cells the other molecule is usually a sister chromatid, and the repair does not lead to genetic change. Less often a homologous chromosome or homologous sequence in an ectopic position is used. Conversion results from repair in two ways. First, if there was a double-strand gap at the site of a break, homologous sequence will be used as the template for synthesis to fill the gap, thus transferring sequence information in both strands. Second, recombinational repair uses complementary base pairing, and the heteroduplex molecule so formed is a source of conversion, both as heteroduplex and when donor (undamaged template information is retained after correction of mismatched bases in heteroduplex. There are mechanisms that favour the use of sister molecules that must fail before ectopic homology can be used. Meiotic recombination events lead to the formation of crossovers required in meiosis for orderly segregation of pairs of homologous chromosomes. These events result from recombinational repair of programmed double-strand breaks, but in contrast with mitotic recombination, meiotic recombinational events occur predominantly between homologous chromosomes, so that transfer of sequence differences by conversion is very frequent. Transient recombination events that do not form crossovers form both between homologous chromosomes and between regions of ectopic homology, and leave their mark in the occurrence of frequent non-crossover conversion, including ectopic conversion.

  20. A browser-based tool for conversion between Fortran NAMELIST and XML/HTML

    Science.gov (United States)

    Naito, O.

    A browser-based tool for conversion between Fortran NAMELIST and XML/HTML is presented. It runs on an HTML5 compliant browser and generates reusable XML files to aid interoperability. It also provides a graphical interface for editing and annotating variables in NAMELIST, hence serves as a primitive code documentation environment. Although the tool is not comprehensive, it could be viewed as a test bed for integrating legacy codes into modern systems.

  1. Tube erosion in bubbling fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.K. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center; Stallings, J.W. [Electric Power Research Inst., Palo Alto, CA (United States)

    1991-12-31

    This paper reports on experimental and theoretical studies that were preformed of the interaction between bubbles and tubes and tube erosion in fluidized beds. The results are applicable to the erosion of horizontal tubes in the bottom row of a tube bundle in a bubbling bed. Cold model experimental data show that erosion is caused by the impact of bubble wakes on the tubes, with the rate of erosion increasing with the velocity of wake impact with the particle size. Wake impacts resulting from the vertical coalescence of pairs of bubbles directly beneath the tube result in particularly high rates of erosion damage. Theoretical results from a computer simulation of bubbling and erosion show very strong effects of the bed geometry and bubbling conditions on computed rates of erosion. These results show, for example, that the rate of erosion can be very sensitive to the vertical location of the bottom row of tubes with respect to the distributor.

  2. Magnetohydrodynamic Flow Past a Permeable Bed

    Directory of Open Access Journals (Sweden)

    R. Venugopal

    1983-01-01

    Full Text Available The paper evaluates mass flow velocity heat transfer rates and velocity/temperature distributions in the viscous, incompressible and slightly conducting fluid past a permeable bed in three different configurations namely (1 Couette flow (2 Poiseuille flow and (3 free surface flow, under the influence of a uniform transverse magnetic field. To discuss the solution, the flow region is divided into two zones : Zone 1 (from the impermeable upper rigid plate to the permeable bed in which the flow is laminar and governed by Navier-Stokes equations, and Zone 2 (the permeable bed below the nominal surface in which the flow is governed by Darcy law. The paper also investigates the effects of magnetic field, porosity and Biot number on the physical quantities mentioned above.

  3. Methane desorption from a coal-bed

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Alexeev; E.P. Feldman; T.A. Vasilenko [National Academy of Sciences of Ukraine, Donetsk (Ukraine). Donetsk Institute for Physics of Mining Processes

    2007-11-15

    We study the desorption of methane from a coal-bed. A model taking into account both methane diffusion in coal-blocks and its filtration through the system of open pores and cracks is developed. Methane pressure in the coal-bed is found for an arbitrary instant of time. Dependency of the rate of methane release upon the block size, open and closed porosity, viscosity, solubility, bed pressure and temperature is established. We derive the effective coefficient of diffusion of methane in blocks containing closed pores filled with gaseous methane. It is shown that at a hindered diffusion methane is distinctly divided into the 'quick' and the 'slow' one. 25 refs., 5 figs.

  4. Experiments and Modeling of the Preparation of Ultrafine Calcium Carbonate in Spouted Beds with Inert Particles

    Institute of Scientific and Technical Information of China (English)

    林诚; 朱涛; 朱跃姿; 张济宇

    2003-01-01

    A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.

  5. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R.G.; Akgerman, A.; Philip, C.V.; Erkey, C.; Feng, Z.; Postula, W.S.; Wang, J.

    1995-03-01

    This project was initiated because the supply of isobutylene had been identified as a limitation on the production of methyl-t-butyl ether, a gasoline additive. Prior research on isobutylene synthesis had been at low conversion (less than 5%) or extremely high pressures (greater than 300 bars). The purpose of this research was to optimize the synthesis of a zirconia based catalyst, determine process conditions for producing isobutylene at pressures less than 100 bars, develop kinetic and reactor models, and simulate the performance of fixed bed, trickle bed and slurry flow reactors. A catalyst, reactor models and optimum operating conditions have been developed for producing isobutylene from coal derived synthesis gas. The operating conditions are much less severe than the reaction conditions developed by the Germans during and prior to WWII. The low conversion, i.e. CO conversion less than 15%, have been perceived to be undesirable for a commercial process. However, the exothermic nature of the reaction and the ability to remove heat from the reactor could limit the extent of conversion for a fixed bed reactor. Long residence times for trickle or slurry (bubble column) reactors could result in high CO conversion at the expense of reduced selectivities to iso C{sub 4} compounds. Economic studies based on a preliminary design, and a specific location will be required to determine the commercial feasibility of the process.

  6. Conversion chimique du gaz naturel Chemical Conversion of Natural Gas

    Directory of Open Access Journals (Sweden)

    Chaumette P.

    2006-11-01

    Full Text Available Dans cet article sont passés en revue les travaux de recherche et développement et les procédés existants dans le domaine de la conversion chimique du gaz naturel. Les deux voies possibles, conversion directe du méthane et conversion indirecte, via le gaz de synthèse, sont présentées. Tant la préparation d'hydrocarbures utilisables comme carburants, que celle des composés de bases pour la pétrochimie ou la chimie sont évoquées. L'accent est mis sur l'étape clé du développement de chaque procédé qui, selon le produit visé, consiste en la mise au point d'un nouveau système catalytique, en un changement de la technologie du réacteur, ou en la mise au point d'une section fractionnement moins complexe. This article reviews the research and development work and the existing processes in the area of chemical conversion of natural gas. The two possible methods, direct conversion of methane and indirect conversion via synthesis gas, are discussed. The preparation of hydrocarbons that can be used as fuels and the production of building blocks for the petrochemical and chemical industries are both dealt with. The accent is placed on the key step in developing each process. Depending on the target product, this key step consists in working out a new catalytic system, changing reactor technology or engineering a less complex fractionation section.

  7. Novel Simulated moving bed technologies

    Energy Technology Data Exchange (ETDEWEB)

    Purdue University

    2003-12-30

    Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars (i.e. glucose and xylose). Once these sugars are separated from other impurities, they can serve as feedstock in fermentation to produce ethanol (as fuels), lactic acid, or other valuable chemicals. The need for producing fuels and chemicals from renewable biomass has become abundantly clear over the last decade. However, the cost of producing fermentable sugars from biomass hydrolyzate using existing technology is relatively high and has been a major obstacle. The objective of this project is to develop an efficient and economical simulated moving bed (SMB) process to recover fermentable sugars from biomass hydrolyzate. Sulfuric acid can hydrolyze the cellulose and hemicellulose in biomass to sugars, but this process can generate byproducts such as acetic acid, and can lead to further degradation of the xylose to furfural and glucose to hydroxymethyl furfural (HMF). Also, lignin and other compounds in the biomass will degrade to various phenolic compounds. If the concentrations of these compounds exceed certain threshold levels, they will be toxic to the downstream fermentation, and will severely limit the usefulness of the derived sugars. Standard post-hydrolysis processing involves neutralization of sulfuric acid, usually with lime (calcium hydroxide). A study by Wooley et al.showed that the limed hydrolyzate gave a low ethanol yield in fermentation test (20% of theoretical yield compared to 77% of theoretical yield from fermentation of pure sugars). They showed that instead of adding lime, an ion exclusion chromatography process could be used to remove acids, as well as to isolate the sugars from the biomass hydrolyzate. In this project, we investigated the feasibility of developing an economical SMB process based on (1) a polymeric adsorbent, Dowex99, which was used by Wooley et al., (2) a second polymeric adsorbent, poly-4-vinyl pyridine (or PVP in short, Reilly

  8. Novel Simulated moving bed technologies

    Energy Technology Data Exchange (ETDEWEB)

    Purdue University

    2003-12-30

    Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars (i.e. glucose and xylose). Once these sugars are separated from other impurities, they can serve as feedstock in fermentation to produce ethanol (as fuels), lactic acid, or other valuable chemicals. The need for producing fuels and chemicals from renewable biomass has become abundantly clear over the last decade. However, the cost of producing fermentable sugars from biomass hydrolyzate using existing technology is relatively high and has been a major obstacle. The objective of this project is to develop an efficient and economical simulated moving bed (SMB) process to recover fermentable sugars from biomass hydrolyzate. Sulfuric acid can hydrolyze the cellulose and hemicellulose in biomass to sugars, but this process can generate byproducts such as acetic acid, and can lead to further degradation of the xylose to furfural and glucose to hydroxymethyl furfural (HMF). Also, lignin and other compounds in the biomass will degrade to various phenolic compounds. If the concentrations of these compounds exceed certain threshold levels, they will be toxic to the downstream fermentation, and will severely limit the usefulness of the derived sugars. Standard post-hydrolysis processing involves neutralization of sulfuric acid, usually with lime (calcium hydroxide). A study by Wooley et al.showed that the limed hydrolyzate gave a low ethanol yield in fermentation test (20% of theoretical yield compared to 77% of theoretical yield from fermentation of pure sugars). They showed that instead of adding lime, an ion exclusion chromatography process could be used to remove acids, as well as to isolate the sugars from the biomass hydrolyzate. In this project, we investigated the feasibility of developing an economical SMB process based on (1) a polymeric adsorbent, Dowex99, which was used by Wooley et al., (2) a second polymeric adsorbent, poly-4-vinyl pyridine (or PVP in short, Reilly

  9. Exercise countermeasures for bed-rest deconditioning

    Science.gov (United States)

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  10. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor

    Institute of Scientific and Technical Information of China (English)

    D.Torres; S.de Llobet; J.L.Pinilla; M.J.Lázaro; I.Suelves; R.Moliner

    2012-01-01

    Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work.A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR).A parametric study of the effects of some process variables,including reaction temperature and space velocity,is undertaken.The operating conditions strongly affect the catalyst performance.Methane conversion was increased by increasing the temperature and lowering the space velocity.Using temperatures between 700 and 900 ℃ and space velocities between 3 and 6 LN/(gcat·h),a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run.In addition,carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.

  11. A two-parameter preliminary optimization study for a fluidized-bed boiler through a comprehensive mathematical simulator

    Energy Technology Data Exchange (ETDEWEB)

    Rabi, Jose A.; Souza-Santos, Marcio L. de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: jrabi@fem.unicamp.br; dss@fem.unicamp.br

    2000-07-01

    Modeling and simulation of fluidized-bed equipment have demonstrated their importance as a tool for design and optimization of industrial equipment. Accordingly, this work carries on an optimization study of a fluidized-bed boiler with the aid of a comprehensive mathematical simulator. The configuration data of the boiler are based on a particular Babcock and Wilcox Co. (USA) test unit. Due to their importance, the number of tubes in the bed section and the air excess are chosen as the parameters upon which the optimization study is based. On their turn, the fixed-carbon conversion factor and the boiler efficiency are chosen as two distinct optimization objectives. The results from both preliminary searches are compared. The present work is intended to be just a study on possible routes for future optimization of larger boilers. Nonetheless, the present discussion might give some insight on the equipment behavior. (author)

  12. Effects of material properties on the competition mechanism of heat transfer of a granular bed in rotary cylinders

    Institute of Scientific and Technical Information of China (English)

    Xie Zhi-Yin; Feng Jun-Xiao

    2013-01-01

    Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes.The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process,including heat conductivity,heat capacity,and shear modulus.Moreover,a new Péclet number is derived to determine the dominant mechanism of the heating rate within the particle bed,which is directly related to thermal and mechanical properties.The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity,or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely,it shows a fast-mixing bed when particle convection governs the heating rate.The simulation results show good agreement with the theoretical predictions.

  13. Study on Olefins Yield from Methanol Conversion over Different Catalysts

    Institute of Scientific and Technical Information of China (English)

    Munib Shahda; Yan Dengchao; Wang Zhihe; Wen Huixin

    2006-01-01

    Conversion of Methanol to Olefins (MTO) under different reaction conditions was experimentally investigated over different catalysts, and comparison was made between the SAPO-34 and GOR-MLC catalysts. Optimization of reaction conditions has been explored. Conversion of methanol to olefins over these catalysts under different reaction temperatures was experimentally studied. In a fixed bed micro-reactor, the influence of temperature was found to be one of the major factors. For both catalysts the olefins yield was increased significantly when water was added to the methanol feed. A temperature range of 460-480 ℃ appeared to be the optimum range suitable for methanol conversion with appropriate catalyst activity and C2-C3 olefins yield. Some other hydrocarbons appeared during the MTO reaction in the presence of the SAPO-34 catalyst, while a lot of dimethylether was formed when the GOR-MLC catalyst was used. In the course of the MTO reaction, the GOR-MLC catalyst was found to have a faster catalyst deactivation rate compared to the SAPO-34 catalyst.

  14. Cardiac atrophy after bed rest and spaceflight

    Science.gov (United States)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  15. South Africa slashes pebble-bed cash

    Science.gov (United States)

    Cartlidge, Edwin

    2010-04-01

    A novel modular technology that promised to make nuclear power cheaper and safer has suffered a serious blow following withdrawal of support from the South African government. It decided not to renew funding for the pebble-bed modular reactor beyond 31 March this year following a lack of interest from other investors and no customers for its product. The company developing the reactor concept - Pebble Bed Modular Reactor Ltd (PBMR) - is to axe three-quarters of its roughly 800 staff and its chief executive has resigned.

  16. Numerical simulation of nuclear pebble bed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shams, A., E-mail: shams@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Roelofs, F., E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Baglietto, E., E-mail: emiliob@MIT.EDU [Massachusetts Institute of Technology (MIT) (United States)

    2015-08-15

    Highlights: • Numerical simulations of a single face cubic centred pebble bed are performed. • Wide range of turbulence modelling techniques are used to perform these calculations. • The methods include 1-DNS, 1-LES, 3-Hybrid (RANS/LES) and 3-RANS models, respectively. • The obtained results are extensively compared to provide guidelines for such flow regimes. • These guidelines are used to perform reference LES for a limited sized random pebble bed. - Abstract: High Temperature Reactors (HTRs) are being considered all over the world. An HTR uses helium gas as a coolant, while the moderator function is taken up by graphite. The fuel is embedded in the graphite moderator. A particular inherent safety advantage of HTR designs is that the graphite can withstand very high temperatures, that the fuel inside will stay inside the graphite pebble and cannot escape to the surroundings even in the event of loss of cooling. Generally, the core can be designed using a graphite pebble bed. Some experimental and demonstration reactors have been operated using a pebble bed design. The test reactors have shown safe and efficient operation, however questions have been raised about possible occurrence of local hot spots in the pebble bed which may affect the pebble integrity. Analysis of the fuel integrity requires detailed evaluation of local heat transport phenomena in a pebble bed, and since such phenomena cannot easily be modelled experimentally, numerical simulations are a useful tool. As a part of a European project, named Thermal Hydraulics of Innovative Nuclear Systems (THINS), a benchmarking quasi-direct numerical simulation (q-DNS) of a well-defined pebble bed configuration has been performed. This q-DNS will serve as a reference database in order to evaluate the prediction capabilities of different turbulence modelling approaches. A wide range of numerical simulations based on different available turbulence modelling approaches are performed and compared with

  17. Lake bed classification using acoustic data

    Science.gov (United States)

    Yin, Karen K.; Li, Xing; Bonde, John; Richards, Carl; Cholwek, Gary

    1998-01-01

    As part of our effort to identify the lake bed surficial substrates using remote sensing data, this work designs pattern classifiers by multivariate statistical methods. Probability distribution of the preprocessed acoustic signal is analyzed first. A confidence region approach is then adopted to improve the design of the existing classifier. A technique for further isolation is proposed which minimizes the expected loss from misclassification. The devices constructed are applicable for real-time lake bed categorization. A mimimax approach is suggested to treat more general cases where the a priori probability distribution of the substrate types is unknown. Comparison of the suggested methods with the traditional likelihood ratio tests is discussed.

  18. Critical conditions of bed sediment entrainment due to debris flow

    Directory of Open Access Journals (Sweden)

    M. Papa

    2004-01-01

    Full Text Available The present study describes entrainment characteristics of bed material into debris flow, based on flume tests, numerical and dimensional analyses. Flume tests are conducted to investigate influences of bed sediment size on erosion rate by supplying debris flows having unsaturated sediment concentration over erodible beds. Experimental results show that the erosion rate decreases monotonically with increase of sediment size, although erosion rate changes with sediment concentration of debris flow body. In order to evaluate critical condition of bed sediment entrainment, a length scale which measures an effective bed shear stress is introduced. The effective bed shear stress is defined as total shear stress minus yield stress on the bed surface. The results show that critical entrainment conditions can be evaluated well in terms of Shields curve using the effective bed shear stress instead of a usual bed shear stress.

  19. From Modern Push-Button Hospital-beds to 20th Century Mechatronic Beds: A Review

    Science.gov (United States)

    Ghersi, I.; Mariño, M.; Miralles, M. T.

    2016-04-01

    The aim of this work is to present the different aspects of modern high complexity electric beds of the period 1940 until 2000 exclusively. The chronology of the product has been strictly divided into three big stages: electric and semi-electric beds (until the 90’s), mechatronic beds (90’s until 2000) and, mechatronic intelligent beds of the last 15 years. The latter are not considered in this work due to the extension for its analysis. The justification for classifying the product is presented under the concepts of medical, assistive and mobility devices. Relevant aspects of common immobility problems of the different types of patients for which the beds are mainly addressed are shown in detail. The basic functioning of the patient’s movement generator and the implementation of actuators, together with IT programs, specific accessories and connectivity means and network-communication shown in this work, were those that gave origin to current mechatronic beds. We present the historical evolution of high complexity electric beds by illustrating cases extracted from a meticulous time line, based on patents, inventions and publications in newspapers and magazines of the world. The criteria adopted to evaluate the innovation were: characteristics of controls; accessories (mattresses, lighting, siderails, etc.), aesthetic and morphologic properties and outstanding functionalities.

  20. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  1. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    Directory of Open Access Journals (Sweden)

    Arlene Garcia

    2014-12-01

    Full Text Available The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20° to load and unload pigs. Three ramp angles (0°, 10° or 20°, five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay, two moistures (dry or wet bedding; >50% moisture over two seasons (>23.9 °C summer, <23.9 °C winter were assessed for slips/falls/vocalizations (n = 6,000 pig observations. “Score” was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P < 0.01. Providing bedding reduced (P < 0.05 scores regardless of whether the bedding was dry or wet. Scores increased as the slope increased (P < 0.01. Provision of bedding, other than feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was

  2. Perspectives for Fluidized Bed Nuclear Reactor Technology using Rotating Fluidized Beds in a Static Geometry

    Science.gov (United States)

    Broqueville, Axel De; Wilde, Juray De

    The new concept of a rotating fluidized bed in a static geometry opens perspectives for fluidized bed nuclear reactor technology and is experimentally and numerically investigated. With conventional fluidized bed technology, the maximum attainable power is rather limited and maximum at a certain fluidization gas flow rate. Using a rotating fluidized bed in a static geometry, the fluidization gas drives both the centrifugal force and the counteracting radial gas-solid drag force in a similar way. This allows operating the reactor at any chosen sufficiently high solids loading over a much wider fluidization gas flow rate range and in particular at much higher fluidization gas flow rates than with conventional fluidized bed reactor technology, offering increased flexibility with respect to cooling via the fluidization gas. Furthermore, the centrifugal force can be a multiple of earth gravity, allowing radial gas-solid slip velocities much higher than in conventional fluidized beds. The latter result in gas-solid heat transfer coefficients one or multiple orders of magnitude higher than in conventional fluidized beds. The combination of dense operation and high fluidization gas flow rates allows process intensification and a more compact reactor design.

  3. Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

    OpenAIRE

    Hsiao-Ching Chen; Hen-Yi Ju; Tsung-Ta Wu; Yung-Chuan Liu; Chih-Chen Lee; Cheng Chang; Yi-Lin Chung; Chwen-Jen Shieh

    2010-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of mol...

  4. Simulation of circulating fluidized bed gasification for characteristic study of pakistani coal

    Directory of Open Access Journals (Sweden)

    Ramzan Naveed

    2015-03-01

    Full Text Available A process model for turbulent pressurized circulating fluidized-bed coal gasifier is created using ASPEN PLUS software. Both hydrodynamic and reaction kinetics parameter are taken into account, whose expressions for fluidized bed are adopted from the literature. Various reactor models available in ASPEN PLUS with calculator as External Block are nested to solve hydrodynamics and kinetics. Multiple operational parameters for a pilot-plant circulating fluidized-bed coal gasifier are used to demonstrate the effects on coal gasification characteristics. This paper presents detailed information regarding the simulation model, including robust analysis of the effect of stoichiometric ratio, steam to coal ratio, gasification temperature and gasification agent temperature. It is observed that, with the increase in the flow rate of air, the components hydrogen, carbon monoxide, carbon dioxide and methane reduce, which causes the Lower Heating Value (LHV of synthesis gas (Syn. Gas to decrease by about 29.3%, while increment in the steam flow rate shows a minute increase in heating value of only 0.8%. Stoichiometric ratio has a direct relationship to carbon conversion efficiency and carbon dioxide production. Increasing the steam to coal ratio boosts the production of hydrogen and carbon monoxide, and causes a drop in both carbon dioxide concentration and the conversion efficiency of carbon. High gasifying agent temperature is desired because of high concentration of CO and H2, increasing carbon conversion and LHV. A high gasifying agent temperature is the major factor that affects the coal gasification to enhance H2 and CO production rapidly along with other gasification characteristics.

  5. Conversational Markers of Constructive Discussions

    CERN Document Server

    Niculae, Vlad

    2016-01-01

    Group discussions are essential for organizing every aspect of modern life, from faculty meetings to senate debates, from grant review panels to papal conclaves. While costly in terms of time and organization effort, group discussions are commonly seen as a way of reaching better decisions compared to solutions that do not require coordination between the individuals (e.g. voting)---through discussion, the sum becomes greater than the parts. However, this assumption is not irrefutable: anecdotal evidence of wasteful discussions abounds, and in our own experiments we find that over 30% of discussions are unproductive. We propose a framework for analyzing conversational dynamics in order to determine whether a given task-oriented discussion is worth having or not. We exploit conversational patterns reflecting the flow of ideas and the balance between the participants, as well as their linguistic choices. We apply this framework to conversations naturally occurring in an online collaborative world exploration ga...

  6. Frequency conversion of structured light

    CERN Document Server

    Steinlechner, Fabian; Pruneri, Valerio; Torres, Juan P

    2015-01-01

    We demonstrate the coherent frequency conversion of structured light, optical beams in which the phase varies in each point of the transverse plane, from the near infrared (803nm) to the visible (527nm). The frequency conversion process makes use of sum-frequency generation in a periodically poled lithium niobate (ppLN) crystal with the help of a 1540-nm Gaussian pump beam. We perform far-field intensity measurements of the frequency-converted field, and verify the sought-after transformation of the characteristic intensity and phase profiles for various input modes. The coherence of the frequency-conversion process is confirmed using a mode-projection technique with a phase mask and a single-mode fiber. The presented results could be of great relevance to novel applications in high-resolution microscopy and quantum information processing.

  7. Blind-date Conversation Joining

    Directory of Open Access Journals (Sweden)

    Luca Cesari

    2013-07-01

    Full Text Available We focus on a form of joining conversations among multiple parties in service-oriented applications where a client may asynchronously join an existing conversation without need to know in advance any information about it. More specifically, we show how the correlation mechanism provided by orchestration languages enables a form of conversation joining that is completely transparent to clients and that we call 'blind-date joining'. We provide an implementation of this strategy by using the standard orchestration language WS-BPEL. We then present its formal semantics by resorting to COWS, a process calculus specifically designed for modelling service-oriented applications. We illustrate our approach by means of a simple, but realistic, case study from the online games domain.

  8. Effects of bed-load movement on flow resistance over bed forms

    Indian Academy of Sciences (India)

    Mohammad Hossein Omid; Masoud Karbasi; Javad Farhoudi

    2010-12-01

    The effect of bed-load transport on flow resistance of alluvial channels with undulated bed was experimentally investigated. The experiments were carried out in a tilting flume 250 mm wide and 12·5 m long with glass-sides of rectangular cross-section and artificial dune shaped floor that was made from Plexi-glass. Steady flow of clear as against sediment-laden water with different flow depths and velocities were studied in the experiments with a fine sand ($d_{50} =$ 0·5 mm). The results indicate that the transport of fine particles ($d_{50} =$ 0·5 mm) can decrease the friction factor by 22% and 24% respectively for smooth and rough beds. Increasing the bed-load size ($d_{50} =$ 2·84 mm) can decrease the friction factor by 32% and 39% respectively for smooth and rough beds. The decrease in flow resistance is due to filling up of the troughs of dunes. This separation zone is responsible for increasing the flow resistance. On the upstream side of dunes condition is similar to plane bed. Presence of bed-load causes to increase the shear velocity and hence increasing flow resistance. But decreasing in flow resistance is more and it causes to decrease the total flow resistance. Grains saturated the troughs in the bed topography, effectively helping in smoothening of bed irregularities.

  9. La Conversation par le theatre (Conversation through Theater).

    Science.gov (United States)

    Bayoff, Marie-Jose

    1986-01-01

    A successful advanced college-level French conversation course using French theater as a basis for students to learn oral skills has six phases: an overview of the history of French theater, reading, adaptation of the text, rehearsal-readings, final rehearsals, and performance. (MSE)

  10. Wavelength conversion devices and techniques

    DEFF Research Database (Denmark)

    Stubkjær, Kristian; Jørgensen, Carsten; Danielsen, Søren Lykke;

    1996-01-01

    Wavelength division multiplexed (WDM) networks are currently subject to an immense interest because of the extra capacity and flexibility they provide together with the possibilities for graceful system upgrades. For full network flexibility it is very attractive to be able to translate the chann...... wavelengths in an easy way and preferably without opto-electronic conversion. Here, we will first briefly look at advantages of employing optical wavelength converters in WDM networks and next review the optical wavelength conversion devices with emphasis on recent developments....

  11. Mineral resources of the Devil's Garden Lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas, Lake County, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Keith, W.J.; King, H.D.; Gettings, M.E. (Geological Survey, Reston, VA (USA)); Johnson, F.L. (US Bureau of Mines (US))

    1988-01-01

    The Devel's Garden lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas include approximately 70,940 acres and are underlain entirely by Pleistocene or Holocene lava flows and associated sediments. There is no evidence of hydrothermal alteration in the study areas. No resources were identified in the study areas, but there is low potential for perlite resources in the southern part of the Devil's Garden Lava Bed and the northern half of the Squaw Ridge Lava Bed areas. All three study areas have low potential for geothermal resources and for oil and gas resources.

  12. Conversion of municipal solid waste to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-09-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  13. Study of oil and residual fractions in products of thermal destruction of bitumen beds

    Energy Technology Data Exchange (ETDEWEB)

    Diskina, D.Ye.; Kadyrov, M.U.; Shabalina, T.N.; Soldatova, V.G.; Tokareva, R.V.; Tyshchenko, N.Ye.; Usacheva, G.M.; Vigdergauz, M.S.

    1981-01-01

    Investigation of average and heavy fractions derived from thermodestruction products in the bitumen bed at Mordovo-Karmal in Tatariya. Composition of average fractions is characterized by presence of unsaturated and a certain volume of oxygen-containing compounds, as well as high content of S and a low congelation temp. With respect to content of aromatic compounds, these fractions are similar to fractions of sulphurous oils. Residual fractions (..-->..350/sup 0/) were studied by conversion chromatography; these have low values of viscosity, density, content of S (in comparison with the same fractions of Mordovo-Karmal oil). Examines potential directions for utilizing these fractions.

  14. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully withnitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammoxgranular sludge with good settling property and high conversion activity. The Anammox reactor worked well with theshortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitritewas 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding

  15. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xu, Guangwen [State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Suda, Toshiyuki [Research Laboratory, IHI Corporation, Ltd., Yokohama (Japan); Murakami, Takahiro [National Institute of Advanced Science and Technology, Tsukuba (Japan)

    2010-08-15

    Biomass containing water of 30-65 wt.% and rich in cellulose, such as various grounds of drinking materials and the lees of spirit and vinegar, is not suitable for biological digestion, and the thermal conversion approach has to be applied to its conversion into bioenergy. The authors have recently worked on converting such biomass into middle heating-value gas via dual fluidized bed gasification (DFBG) integrated with various process intensification technologies. This article is devoted to highlighting those technical ways, including the choice of the superior technical deployment for a DFBG system, the impregnation of Ca onto fuel in fuel drying, the integration of gas cleaning with fuel gasification via two-stage DFBG (T-DFBG), and the decoupling of fuel drying/pyrolysis and char gasification via the decoupled DFBG (D-DFBG). The attained results demonstrated that the superior deployment of bed combination for the DFBG should be a bubbling/turbulent fluidized bed gasifier integrated with a pneumatic riser combustor. In terms of improving efficiency of fuel conversion into combustible gas and suppressing tar generation during gasification, the impregnation of Ca onto fuel exhibited distinctively high upgrading effect, while both the T-DFBG and D-DFBG were also demonstrated to be effective to a certain degree. (author)

  16. Effect of char preparation temperature on the evolution of nitrogen-containing species during char oxidation at fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W.; Lu, J.; Yue, G. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Beer, J.M. [Massachusetts Inst. of Technology, Boston, MA (United States). Dept. of Chemical and Fuel Engineering; Molina, A.; Sarofim, A.F. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    2002-07-01

    Fluidized bed combustion is gaining popularity as a means to burn coal and waste fuels because the low temperatures of fluidized bed combustors generally result in low thermal nitric oxide (NO) production. However, nitrous oxide (N{sub 2}O) emissions can be relativity high and strategies must be developed to reduce emissions of this greenhouse gas. This paper presents the results of a laboratory study that examined the effect of pyrolysis temperature on the conversion of char-N to N{sub 2}O, NO and hydrogen cyanide (HCN) in fluidized bed combustion. When anthracite coal was used, an increase in the pyrolysis temperature resulted in reduced conversion of char-N to N{sub 2}O and HCN. However, the conversion to NO increased. This observation may be due to the lower hydrogen content of the chars produced at higher temperature and their lower reactivity. Other possibilities may be that the lower char reactivity for chars produced at high pyrolysis temperature may affect the reactions occurring in the boundary layer. Chars of lower reactivity in particular, may react at lower particle temperature and under high transient oxygen concentrations. A simplified char combustion representation was used to examine the effect of temperature and equivalence ratio on HCN oxidation. A reduction of equivalence ratio could explain some of the observed variations in product distribution with increased pyrolysis temperature. 19 refs., 1 tab., 5 figs.

  17. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  18. Collisions, Cannibals, and the Memory of Long-lost Bed Forms: The Hyster(et)ical Story Revealed

    Science.gov (United States)

    Jerolmack, D. J.; Martin, R. L.

    2015-12-01

    Sandy river-bed morphology often lags changes in water discharge, producing hysteresis in the relation between discharge and bed-form geometry. While this effect is well known, its origins are not. In this talk we present experimental and field results that reveal these origins. We show that the primary mechanism of bed form growth in a rising flood is merger induced by collisions, which occur due to a dispersion in migration rates. At the start of a flood the bed forms are small and transport rate is high, so growth is rapid. Conversely, on the falling limb of a flood the bed forms are large while the transport rate is small. If the flood recedes rapidly enough, the large bed forms cease migrating and small, secondary bed forms emerge on their backs. These smaller features cannibalize the original, relict structures which slowly diffuse away. (We do not distinguish between ripples and dunes, the data do not indicate any reason to do so, and we therefore recuse ourselves from discussing that tiring topic.). The timescale of decay is much larger than growth, leaving a memory of peak-flood conditions that may persist until the next flood. Thus, the timescales of both growth (Tg) and decay (Td) are related to a simple bed form turnover time - the time to displace a bed form's volume by transport - however, the turnover time is different for growth vs. decay. This reveals three different regimes for the response of bed forms to a flood: (1) a slow flood with a timescale Tf > Td > Tg is quasi-steady, i.e., bed forms grow and shrink with no lag between morphology and flow; (2) an intermediate flood with Td > Tf > Tg exhibits quasi-steady growth, but decay lags the flow; and (3) a fast flood with Td > Tg > Tf produces a lag between morphology and flow over the entire hydrograph. Regimes 2 and 3 produce hysteretical behavior, with 3 being the most extreme. We discuss the implications of these results for: predicting stage-discharge relations, anticipating and understanding

  19. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  20. A curved flume bed-load experiment

    NARCIS (Netherlands)

    Talmon, A.M.; Marsman, E.R.A.

    1988-01-01

    In this report the results of a bed-load experiment in a curved flume are presented. The experiments have been carried out in the Laboratory of Fluid Mechanics (L.F.M.) at the Delft University of Technology. The main object of the experiments is to develop and to test data-acquisition procedures for

  1. Multiscale modeling of gas-fluidized beds

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Andrews, A.T.; Sundaresan, S.; Kuipers, J.A.M.

    2006-01-01

    Numerical models of gas-fluidized beds have become an important tool in the design and scale up of gas-solid chemical reactors. However, a single numerical model which includes the solid-solid and solid-fluid interaction in full detail is not feasible for industrial-scale equipment, and for this rea

  2. Control of fluidized bed tea drying

    NARCIS (Netherlands)

    Temple, S.J.

    2000-01-01

    Tea is a product made from the leaf of the tea bush by several processes, including drying. The drying stage is the most energy intensive, and has tight performance criteria. This project investigated the options for the control of a fluidized bed tea dryer. The work included establishing some of th

  3. Wound bed preparation from a clinical perspective

    Directory of Open Access Journals (Sweden)

    A S Halim

    2012-01-01

    Full Text Available Wound bed preparation has been performed for over two decades, and the concept is well accepted. The ′TIME′ acronym, consisting of tissue debridement, i nfection or inflammation, moisture balance and edge effect, has assisted clinicians systematically in wound assessment and management. While the focus has usually been concentrated around the wound, the evolving concept of wound bed preparation promotes the treatment of the patient as a whole. This article discusses wound bed preparation and its clinical management components along with the principles of advanced wound care management at the present time. Management of tissue necrosis can be tailored according to the wound and local expertise. It ranges from simple to modern techniques like wet to dry dressing, enzymatic, biological and surgical debridement. Restoration of the bacterial balance is also an important element in managing chronic wounds that are critically colonized. Achieving a balance moist wound will hasten healing and correct biochemical imbalance by removing the excessive enzymes and growth factors. This can be achieved will multitude of dressing materials. The negative pressure wound therapy being one of the great breakthroughs. The progress and understanding on scientific basis of the wound bed preparation over the last two decades are discussed further in this article in the clinical perspectives.

  4. Endogenous pancreatic polypeptide in different vascular beds

    DEFF Research Database (Denmark)

    Henriksen, J H; Schwartz, Tania; Bülow, J B

    1986-01-01

    The plasma concentration of pancreatic polypeptide (PP-like immunoreactivity) was measured in different vascular beds in order to determine regional kinetics of endogenous PP in fasting, supine subjects with normal or moderately decreased kidney function. Patients with kidney disease (n = 10) had...

  5. Cognitive nonlinear radar test-bed

    Science.gov (United States)

    Hedden, Abigail S.; Wikner, David A.; Martone, Anthony; McNamara, David

    2013-05-01

    Providing situational awareness to the warfighter requires radar, communications, and other electronic systems that operate in increasingly cluttered and dynamic electromagnetic environments. There is a growing need for cognitive RF systems that are capable of monitoring, adapting to, and learning from their environments in order to maintain their effectiveness and functionality. Additionally, radar systems are needed that are capable of adapting to an increased number of targets of interest. Cognitive nonlinear radar may offer critical solutions to these growing problems. This work focuses on ongoing efforts at the U.S. Army Research Laboratory (ARL) to develop a cognitive nonlinear radar test-bed. ARL is working toward developing a test-bed that uses spectrum sensing to monitor the RF environment and dynamically change the transmit waveforms to achieve detection of nonlinear targets with high confidence. This work presents the architecture of the test-bed system along with a discussion of its current capabilities and limitations. A brief outlook is presented for the project along with a discussion of a future cognitive nonlinear radar test-bed.

  6. Multi-bed patient room architectural evaluation

    Directory of Open Access Journals (Sweden)

    Evangelia Sklavou

    2016-12-01

    Full Text Available Introduction: Leveraging the physical environment’s merits is crucial in healthcare settings towards fostering sustainable healing conditions. In the future, the need to retrofit hospitals already appears more probable than to build new facilities. In Greece, holistic healthcare architecture has significant potential and room to develop. Aim: The architectural research of multi-bed patient room environment. Method: A sample of multi-bed patient rooms of a Greek hospital was studied per architectural documentation and user evaluation survey. Beyond recording the existing situation and user experience, user group differences and the influence of window proximity were studied. The survey sample was based on convenience and comprised 160 patients and 136 visitors. Statistical analysis was performed in SPSS 20, using chi-square exact tests of independence. The chosen level of significance was p < 0.05. Results: Architectural documentation showed that the building morphology had a positive impact in patient rooms, with regard to sunlight penetration and view. Further solar daylight control was deemed necessary, to facilitate overall environmental comfort conditions. High spatial density and considerable disadvantages of the middle patient bed, compared to the one bedside the window and the one further in the back of the room, were also ascertained. User groups did not evaluate their surroundings significantly different, with the exception of ease of access to the view. Window proximity influenced both patients and visitors in evaluating ease of access to the view and visual discomfort. Patients were further affected on window size evaluation and visitors on view related aspects. Conclusions: Synergy between building form and function contributes in creating holistic sustainable healing environments. User evaluation can deviate from objective documentation. Patients and visitors experienced the patient room in a similar manner. The middle bed was

  7. Updated Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Carpenter, Joyce; Orozco, Nicole; Weir, Natalee; Wilson, Mark

    2014-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  8. Teachers' Conversation with Partial Autobiographies.

    Science.gov (United States)

    Aoki, Naoko

    2002-01-01

    Reports a teachers' conversation group that was part of a course in a Japanese as a second language teacher education program. Explains the rationale for using this format and quotes part of a story one student wrote and two stories told by other students on a theme in the written story. Relates these two stories to histories of students'…

  9. Coaching Conversations: Enacting Instructional Scaffolding

    Science.gov (United States)

    Gibson, Sharan A.

    2011-01-01

    This study analyzed coaching conversations and interviews of four coach/teacher partnerships for specific ways in which kindergarten and first-grade teachers, and coaches, conceptualized instructional scaffolding for guided reading. Interview transcripts were coded for coaches' and teachers' specific hypotheses/ ideas regarding instructional…

  10. Humor and embodied conversational agents

    NARCIS (Netherlands)

    Nijholt, A.

    2003-01-01

    This report surveys the role of humor in human-to-human interaction and the possible role of humor in human-computer interaction. The aim is to see whether it is useful for embodied conversational agents to integrate humor capabilities in their internal model of intelligence, emotions and interactio

  11. Turbulence and energy conversion research

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, R.A.

    1985-07-01

    This report examines the role of fluid mechanics research (particularly turbulence research) in improving energy conversion systems. In this report two of the listed application areas are selected as examples: fluidization and cavitation. Research needs in general, and research possibilities for ECUT in particular, are examined.

  12. Conversation Analysis and Applied Linguistics.

    Science.gov (United States)

    Schegloff, Emanuel A.; Koshik, Irene; Jacoby, Sally; Olsher, David

    2002-01-01

    Offers biographical guidance on several major areas of conversation-analytic work--turn-taking, repair, and word selection--and indicates past or potential points of contact with applied linguistics. Also discusses areas of applied linguistic work. (Author/VWL)

  13. Direct Energy Conversion Literature Abstracts

    Science.gov (United States)

    1962-12-01

    here-between in contact with Tecnica Ital.26:65-71, Jan/Feb.1961. said second electrode. (U.S. Patent Off. Off. Gaz. 773:260, Dec.5,1961). In Italian...DETERMINATION OF MOLECULAR WEIGHT. Mikrochim. Acta p.457-466, 3168 S 1951. Huber, H. and Bensimon, J. SUR LA CONVERSION DIRECTE DE CHALEUR EN (In English

  14. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  15. Fluctuations and time scales for bed-load sediment motion over a smooth bed

    Institute of Scientific and Technical Information of China (English)

    Francesco Ballio n; Alessio Radice

    2015-01-01

    Results are presented for experiments of bed-load sediment transport over a plane, smooth bed. The smooth-bed configuration, though not adequate for mimicking natural streams, enables the effects of bed roughness to be filtered out, thus, highlighting the role of flow turbulence for particle dynamics. Sediments were individually tracked along their paths, measuring position and velocity of the individual grains. A number of analyses were then applied to the data: probability density function, auto-correla-tion, and spectra of the grain velocity. Several Lagrangian time scales of particle motion were obtained and compared to available data for the turbulent flow field to determine a phenomenological inter-pretation of the process.

  16. Centerline Bed Elevation Profile of Sand Bed Channel due to Bar Formation

    Science.gov (United States)

    Tholibon, D. A.; Ariffin, J.; Abdullah, J.; Muhamad, N. S.

    2016-07-01

    Numerous data on bar formation have been accumulated yet the methods to predict bar geometry especially bar height are still insufficient. Objectives of this study to determine the trend in term of a significant difference of centreline bed elevation profile along the longitudinal distance. This can be investigate by carried out an experimental work in an erodible sand bed channel using a large-scale physical river model. The study included the various hydraulic characteristics with steady flow rates and sediment supply. An experimental work consists of four matrices of flow rate and channel width with other variables namely grains size and bed slope were kept constant. Analysis have included the discussion on a significant difference of centreline bed elevation profile along the longitudinal distance. As a conclusion the higher velocity in the smaller channel width have induced erosion of the banks that resulted in elevation increase while the larger flow rates have contributed to higher elevation.

  17. EXPERIMENTAL RESEARCH OF CYLINDER-TO-BED HEAT TRANSFER IN AGITATED FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cylinder-to-bed heat transfer in agitated fluidized beds was studied experimentally.In the experiments, the aluminum particles were used as bed material, the diameter of which ranges from 0.5mm to 2mm.The effects of gas velocity, particles size, and agitator rotary speed on heat transfer were studied.From the experimental results, we have come to the following conclusions: (1) There are optimal ranges for airflow velocity and rotary speed to get optimal heat transfer coefficient; (2) The cylinder-to-bed heat transfer is greatly affected by gas velocity, rotary speed and particles sizes and the effect of rotary speed on heat transfer is similar to that of gas velocity; (3) Higher heat transfer coefficient is obtained with smaller particles.

  18. Combined-cycle power stations using ``clean-coal-technologies``: Thermodynamic analysis of full gasification vs. fluidized bed combustion with partial gasification

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, G.; Chiesa, P. [Politecnico di Milano, Milan (Italy). Dept. of Energetics; DeVita, L. [Eniricerche, Milan (Italy)

    1994-12-31

    A novel class of power plants for clean conversion of coal into power has been recently proposed, based on the concept of partial coal gasification and fluidized-bed combustion of unconverted char from gasification. This paper focuses on the thermodynamic aspects of these plants, in comparison with full gasification cycles, assessing their performance on the basis of a common advanced power plant technology level. Several plant configurations are considered, including pressurized or atmospheric fluidized-bed, air- or steam-cooled, with different carbon conversion in the gasifier. The calculation method, used for reproducing plant energy balances and for performance prediction, is described in the paper. A complete second-law analysis is carried out, pointing out the efficiency loss breakdown for both technologies. Results show that partial gasification plants can achieve efficiencies consistently higher than IGCC, depending on plant configuration and carbon conversion, making this solution a viable and attractive option for efficient coal utilization.

  19. Combined-cycle power stations using clean-coal technologies: Thermodynamic analysis of full gasification versus fluidized bed combustion with partial gasification

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, G.; Chiesa, P. [Politecnico di Milano, Milan (Italy). Dept. of Energetics; DeVita, L. [Eniricerche, Milan (Italy)

    1996-10-01

    A novel class of power plants for clean conversion of coal into power has been recently proposed, based on the concept of partial coal gasification and fluidized-bed combustion of unconverted char from gasification. This paper focuses on the thermodynamic aspects of these plants, in comparison with full gasification cycles, assessing their performance on the basis of a common advanced power plant technology level. Several plant configurations are considered, including pressurized or atmospheric fluidized-bed, air- or steam-cooled, with different carbon conversion in the gasifier. The calculation method, used for reproducing plant energy balances and for performance prediction, is described in the paper. A complete second-law analysis is carried out, pointing out the efficiency loss breakdown for both technologies. Results show that partial gasification plants can achieve efficiencies consistently higher than IGCC, depending on plant configuration and carbon conversion, making this solution a viable and attractive option for efficient coal utilization.

  20. A note on conversational interruptions A note on conversational interruptions

    Directory of Open Access Journals (Sweden)

    Anthony F. Deyes

    2008-04-01

    Full Text Available In their seminal article, Sacks, Schegloff and Jefferson (1974 examine procedures for turn-taking in conversation. Sometimes, they note, a s peaker will select who has the next turn, but more frequently a "self-select" system operates, whereby the participants in a conversation themselves determine when they wish to speak. But how, ask Sacks, Schegloff and Jefferson, do the interlocutors secure a turn in the ongoing flow of another speaker's utterance? To answer this question the authors introduce the notion of "transition relevance place", that is, a point in the turn-holder's utterance where another speaker is most likely to take up a turn. Clearly the most obvious transition relevance place occurs at the end of an utterance sentence, where a pause may be made. However, clause or thersyntactic boundaries also offer opportunities for other speakers to interrupt. As Sacks et al point out, if conversational participants do not take up a turn at a transition relevance place the turn holder will normally continue. In their seminal article, Sacks, Schegloff and Jefferson (1974 examine procedures for turn-taking in conversation. Sometimes, they note, a s peaker will select who has the next turn, but more frequently a "self-select" system operates, whereby the participants in a conversation themselves determine when they wish to speak. But how, ask Sacks, Schegloff and Jefferson, do the interlocutors secure a turn in the ongoing flow of another speaker's utterance? To answer this question the authors introduce the notion of "transition relevance place", that is, a point in the turn-holder's utterance where another speaker is most likely to take up a turn. Clearly the most obvious transition relevance place occurs at the end of an utterance sentence, where a pause may be made. However, clause or thersyntactic boundaries also offer opportunities for other speakers to interrupt. As Sacks et al point out, if conversational participants do not take up

  1. Measuring bed shear stress along vegetated river beds using FST-hemispheres.

    Science.gov (United States)

    Bockelmann-Evans, B N; Davies, R; Falconer, R A

    2008-09-01

    The measurement of the bed shear stress along vegetated river beds is essential for accurately predicting the water level, velocity and solute and sediment transport fluxes in computational hydroenvironmental models. Details are given herein of an experimental and theoretical study to determine the bed boundary shear stress along vegetated river beds introducing a novel field measuring method, namely the FliessWasserStammtisch (FST)-hemispheres. Although investigations have been conducted previously for sedimentary channels using the FST-hemispheres, this preliminary study is thought to be the first time that such hemispheres have been used to investigate the bed shear stresses in vegetated channels. FST-hemispheres were first developed by Statzner and Müller [1989. Standard hemispheres as indicators of flow characteristics in lotic benthos research. Freshwater Biology 21, 445-459] to act as an integrated indicator of the gross hydrodynamic stresses present near the bed. Test and validation data were found to be at least of the same order of magnitude for the stresses predicted from literature for sedimentary channels, with this study establishing the commencement of a database of calibrated FST-hemisphere laboratory data for vegetated channel beds. In a series of experiments, depths ranging from 0.1 to 0.28 m were considered, equating directly to comparable conditions in small rivers or streams. The results of this study provide a basis for enabling the FST-hemispheres to be used to evaluate the boundary shear stress for a wider range of applications in the future, including vegetated river beds.

  2. Properties Influencing Plasma Discharges in Packed Bed Reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for CO2 removal and conversion of waste gases into higher value compounds. We report on results of a computational investigation of PBR-DBD properties using the plasma hydrodynamics simulator nonPDPSIM with a comparison to experiments. Dielectric beads (rods in 2D) were inserted between two coplanar electrodes, 1 cm apart filled by humid air. A step-pulse of -30 kV was applied to the top electrode. Material properties of the beads (dielectric constant, secondary emission coefficient) and gas properties (photoionization and photo-absorption cross-sections, temperature) were varied. We found that photoionization plays a critical role in the propagation of the discharge through the PBR, as it serves to seed charges in regions of high electric field. Increasing rates of photo-ionization enable increases in the discharge propagation velocity, ionization rates and production of radicals. A transition between DBD-like and arc-like discharges occurs as the radiation mean free path decreases. Increasing the dielectric constant of the beads increased electric fields in the gas, which translated to increased discharge propagation velocity and charge density until ɛ/ɛ0 100. Secondary electron emission coefficient and gas temperature have minimal impacts on the discharge propagation though the latter did affect the production of reactive species. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  3. Roughness coefficient and its uncertainty in gravel-bed river

    Institute of Scientific and Technical Information of China (English)

    Ji-Sung KIM; Chan-Joo LEE; Won KIM; Yong-Jeon KIM

    2010-01-01

    Manning's roughness coefficient was estimated for a gravel-bed river reach using field measurements of water level and discharge,and the applicability of various methods used for estimation of the roughness coefficient was evaluated.Results show that the roughness coefficient tends to decrease with increasing discharge and water depth,and over a certain range it appears to remain constant.Comparison of roughness coefficients calculated by field measurement data with those estimated by other methods shows that,although the field-measured values provide approximate roughness coefficients for relatively large discharge,there seems to be rather high uncertainty due to the difference in resultant values.For this reason,uncertainty related to the roughness coefficient was analyzed in terms of change in computed variables.On average,a 20%increase of the roughness coefficient causes a 7% increase in the water depth and an 8% decrease in velocity,but there may be about a 15% increase in the water depth and an equivalent decrease in velocity for certain cross-sections in the study reach.Finally,the validity of estimated roughness coefficient based on field measurements was examined.A 10% error in discharge measurement may lead to more than 10% uncertainty in roughness coefficient estimation,but corresponding uncertainty in computed water depth and velocity is reduced to approximately 5%.Conversely,the necessity for roughness coefficient estimation by field measurement is confirmed.

  4. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Mazac, V. [Energoprojekt Praha, Ostrava (Czechoslovakia); Novacek, A. [Moravskoslezske teplamy, Ostrava (Czechoslovakia); Volny, J. [Templamy Karvina (Czechoslovakia)

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  5. HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds

    Institute of Scientific and Technical Information of China (English)

    CHI Yong; WEN Jun-ming; ZHANG Dong-ping; YAN Jian-hua; NI Ming-jiang; CEN Ke-fa

    2005-01-01

    The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a ф150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed incinerator was found in this study. The Hclemission is increasing with the growth of bed temperature, while it is decreasing with the increment of oxygen concentration at furnace exit.When the weight percentage of auxiliary coal is increased, the conversion rate of Cl to HCl is increasing. The HCl emission is decreased,if the sorbent(CaO) is added during the incineration process. Based on these experimental results, a 14 x 6 × 1 three-layer BP neural networks prediction model of HCl emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the HCl emission of MSW/coal cofired fluidized bed incinerator.

  6. HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds.

    Science.gov (United States)

    Chi, Yong; Wen, Jun-Ming; Zhang, Dong-Ping; Yan, Jian-Hua; Ni, Ming-Jiang; Cen, Ke-Fa

    2005-01-01

    The HCl emission characteristics of typical municipal solid waste (MSW) components and their mixtures have been investigated in a phi 150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed incinerator was found in this study. The HCl emission is increasing with the growth of bed temperature, while it is decreasing with the increment of oxygen concentration at furnace exit. When the weight percentage of auxiliary coal is increased, the conversion rate of Cl to HCl is increasing. The HCl emission is decreased, if the sorbent (CaO) is added during the incineration process. Based on these experimental results, a 14 x 6 x 1 three-layer BP neural networks prediction model of HCl emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the HCl emission of MSW/coal co-fired fluidized bed incinerator.

  7. Bed Bugs (Cimex lectularius) as Vectors of Trypanosoma cruzi

    Science.gov (United States)

    Salazar, Renzo; Castillo-Neyra, Ricardo; Tustin, Aaron W.; Borrini-Mayorí, Katty; Náquira, César; Levy, Michael Z.

    2015-01-01

    Populations of the common bed bug, Cimex lectularius, have recently undergone explosive growth. Bed bugs share many important traits with triatomine insects, but it remains unclear whether these similarities include the ability to transmit Trypanosoma cruzi, the etiologic agent of Chagas disease. Here, we show efficient and bidirectional transmission of T. cruzi between hosts and bed bugs in a laboratory environment. Most bed bugs that fed on experimentally infected mice acquired the parasite. A majority of previously uninfected mice became infected after a period of cohabitation with exposed bed bugs. T. cruzi was also transmitted to mice after the feces of infected bed bugs were applied directly to broken host skin. Quantitative bed bug defecation measures were similar to those of important triatomine vectors. Our findings suggest that the common bed bug may be a competent vector of T. cruzi and could pose a risk for vector-borne transmission of Chagas disease. PMID:25404068

  8. Bed bugs (Cimex lectularius) as vectors of Trypanosoma cruzi.

    Science.gov (United States)

    Salazar, Renzo; Castillo-Neyra, Ricardo; Tustin, Aaron W; Borrini-Mayorí, Katty; Náquira, César; Levy, Michael Z

    2015-02-01

    Populations of the common bed bug, Cimex lectularius, have recently undergone explosive growth. Bed bugs share many important traits with triatomine insects, but it remains unclear whether these similarities include the ability to transmit Trypanosoma cruzi, the etiologic agent of Chagas disease. Here, we show efficient and bidirectional transmission of T. cruzi between hosts and bed bugs in a laboratory environment. Most bed bugs that fed on experimentally infected mice acquired the parasite. A majority of previously uninfected mice became infected after a period of cohabitation with exposed bed bugs. T. cruzi was also transmitted to mice after the feces of infected bed bugs were applied directly to broken host skin. Quantitative bed bug defecation measures were similar to those of important triatomine vectors. Our findings suggest that the common bed bug may be a competent vector of T. cruzi and could pose a risk for vector-borne transmission of Chagas disease.

  9. Bed Rest and Immobilization: Risk Factors for Bone Loss

    Science.gov (United States)

    ... browser. Home Osteoporosis Osteoporosis and Other Conditions Bed Rest and Immobilization: Risk Factors for Bone Loss Publication ... Line For Your Information The Impact of Bed Rest and Inactivity Some people can’t perform weight- ...

  10. Biomass ash - bed material interactions leading to agglomeration in fluidised bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Visser, H.J.M.; Hofmans, H.; Huijnen, R.; Kastelein, R.; Kiel, J.H.A. [ECN Biomass, Petten (Netherlands)

    2000-07-01

    The present study has been aimed at improving the fundamental understanding of mechanisms underlying agglomeration and defluidisation in fluidised bed combustion and gasification of biomass and waste. To this purpose dedicated lab-scale static heating and fluidisation experiments have been conducted with carefully selected and prepared ashes and bed materials, viz. straw ash/sand and willow ash/sand mixtures, mullite subjected to straw gasification and artificially coated mullite. The main conclusion is that ash/bed material interaction processes are very important and often determine the bed agglomeration and defluidisation tendency. In the static heating experiments with both ash/sand mixtures, partial melting-segregation of ash components and dissolution/reaction with the bed material are processes that determine the melt composition. This melt composition and behaviour can deviate considerably form expectations based on ash-only data. Artificially coated bed materials prove to be very useful for systematic studies on the influence of coating composition and thickness on agglomeration tendency. For the coated mullite samples, different stages in the defluidisation process are identified and the influence of coating properties (thickness, composition, morphology) and operating parameters is elucidated. The behaviour of the mullite appears to be dominated by a remnant glass phase. On the one hand, this glass phase accounts for an alkali-getter capability, while on the other hand it is mainly responsible for agglomeration at temperatures {>=} 800C. 3 refs.

  11. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    Science.gov (United States)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  12. Proceedings of the third annual underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Annual Underground Coal Conversion Symposium was held at Fallen Leaf Lake, CA, June 6--9, 1977. It was sponsored by the U.S. Department of Energy and hosted by Lawrence Livermore Laboratory. Forty-one papers have been entered individually into EDB and ERA; ten papers had been entered previously from other sources. The papers cover the in-situ gasification of lignite, subbituminous coal and bituminous coal, in flat lying seams and a steeply dipping beds, at moderate and at greater depths, and describe various technologies of (borehole linking, well spacings, gasifying agents (air, oxygen, steam, hydrogen, including mixtures). Measuring instruments for diagnostic and process control purposes are described. Environmental impacts (ground subsidence and possible groundwater pollution) are the subject of several papers. Finally, mathematical modelling and projected economics of the process are developed. (LTN)

  13. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.; Gray, Michel J.; Fernandez, Carlos A.; Saraf, Laxmikant; Garcia-Perez, Manuel; Wolcott, Michael P.

    2015-11-13

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compounds was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.

  14. Flow Pattern Identification of Fluidized Beds Using ECT

    Institute of Scientific and Technical Information of China (English)

    S. Liu; W.Q. Yang; H. Wang; G. Yan; Z. Pan

    2001-01-01

    Electrical capacitance tomography (ECT) was applied in measuring solids distribution in square circulating fluidized beds. The fluidization conditions varied from bubbling fluidized bed to circulating fluidized bed. In the whole range of fluidization conditions, ECT was able to instantaneously provide the solids concentration and voids distributions in the fluidized beds. According to the acquired data from ECT and reconstructed image,different fluidization regimes can also be identified.

  15. Collecting aerosol in airflow with a magnetically stabilized fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A magnetically stabilized fluidized bed (MSB) is a highly efficient filter that takes the advantage of both fluidized beds and fixed beds. This paper presents the research to collect aerosol in airflow with a MSB. The filtering model of MSB is established with its parameters including magnetic field intensity,gas superficial velocity, average grain-size, and bed height on thecollection efficiency of MSB. The model is verified by experiments.

  16. Fluidized Bed Asbestos Sampler Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Karen E. Wright; Barry H. O' Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  17. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  18. Fluidization of potato starch in a stirred vibrating fluidized bed

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    1996-01-01

    A novel gas-solid reactor for cohesive C-powders such as potato starch is introduced, designed and characterized, the so-called stirred vibrating fluidized bed. The effects of a sinusoidal vibration of the gas distributor and/or stirring of the bed are investigated. The fluidization index, bed expan

  19. 21 CFR 890.5160 - Air-fluidized bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food... DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a) Identification. An air-fluidized bed is a device employing the circulation of filtered air through...

  20. 21 CFR 890.5225 - Powered patient rotation bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered patient rotation bed. 890.5225 Section 890.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... rotation bed. (a) Identification. A powered patient rotation bed is a device that turns a patient who...

  1. 21 CFR 880.5140 - Pediatric hospital bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pediatric hospital bed. 880.5140 Section 880.5140...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5140 Pediatric hospital bed. (a) Identification. A pediatric hospital bed is a...

  2. Model for the Evolving Bed Surface around an Offshore Monopile

    DEFF Research Database (Denmark)

    Hartvig, Peres Akrawi

    2012-01-01

    This paper presents a model for the bed surface around an offshore monopile. The model has been designed from measured laboratory bed surfaces and is shown to reproduce these satisfactorily for both scouring and backfilling. The local rate of the bed elevation is assumed to satisfy a certain gene...

  3. 21 CFR 890.5180 - Manual patient rotation bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual patient rotation bed. 890.5180 Section 890...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5180 Manual patient rotation bed. (a) Identification. A manual patient rotation bed is a device that turns a patient who...

  4. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and thermal-hydraulic

  5. Udder health in a Danish compost bedded pack barn

    DEFF Research Database (Denmark)

    Svennesen, Line; Enevoldsen, Carsten; Bjerg, Bjarne Schmidt;

    Besides welfare advantages of the compost bedded pack system (CBP) there could be a negative effect of the organic bedding on udder health. Our objectives were to evaluate the effects of a CBP on udder health compared to a free stall system (FS) with sand bedded cubicles. Within the same Danish...

  6. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    Science.gov (United States)

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  7. Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

    Directory of Open Access Journals (Sweden)

    Hsiao-Ching Chen

    2011-01-01

    Full Text Available An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435 as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31±2.07% and 82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  8. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  9. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  10. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R.G.; Akgerman, A.

    1994-05-06

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

  11. The effect of familiarity of conversation partners on conversation turns contributed by augmented and typical speakers.

    Science.gov (United States)

    Tsai, Meng-Ju

    2013-08-01

    The purpose of this current research was to determine the effect of familiarity of conversation partners on contributed conversation turns to dyadic conversation between individuals who use AAC and typically speaking conversation partners. Three groups (G1-G3) participated in this study. Each group contained seven participants, including an individual who used a speech-generating device (SGD) and familiar and unfamiliar conversation partners. Each 20-min dyadic conversation was video-recorded for analysis of contributed conversation turns. The findings of the current study showed that the asymmetries of contributed conversation turns exist in both familiar and unfamiliar dyadic conversation between AAC users and typically speaking conversation partners. In addition, the asymmetry in the familiar dyadic conversation did not differ from that in the unfamiliar dyadic conversation.

  12. IMAGE CONVERSION FOR LASER PYROGRAPHY

    Directory of Open Access Journals (Sweden)

    Adrian PETRU

    2015-12-01

    Full Text Available All previous studies of pyrography have been focussed on colour obtained through modifying the work parameters. This paper analyses colour nuances obtained by laser woodworking by measuring colour changes digitally. The investigated parameter is colour reproduction by laser technology, using different image conversion methods (Halftone Round, Jarvis, and so on. The changes of image reproduction are analysed globally and colour by colour. The results show that the colour nuances are represented to a more and less degree, according to the conversion method selected. To evaluate the aesthetic changes, CIEL*a*b* colour measurements were applied. The results show that laser burning on wood surfaces has a great influence on wood colour. These findings will be useful to develop innovative design possibilities for wood surfaces for furniture and other products.

  13. Catalytic conversions of methyltetrahydrophthalic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Lezdin, S.Yu.; Dokuchaeva, T.G.; Sibarov, D.A.; Panfilova, N.N.; Proskuryakov, V.A.

    1987-07-10

    Catalysts with various amounts (from 2.0 to 6.0 mass %) of the active component were tested for estimation of the hydrogenating and dehydrogenating properties of palladium on alumina. Alumina-palladium catalyst with a palladium content of 5.0 mass % has the highest activity and selectivity in synthesis of 4-MPA. The yield of 4-MPA under the optical conditions found is 60-61% on the converted feed, with 100% conversion. Alumina-palladium catalyst with a palladium content of 3.0 mass % has the highest activity and selectivity in synthesis of 4-MHHPA. Under the optimal conditions found the yield of 4-MHHPA is 75-80% on the converted feed, with 100% conversion.

  14. Electrocatalysts for carbon dioxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  15. Caring, conversing, and realizing values

    DEFF Research Database (Denmark)

    Hodges, Bert; Steffensen, Sune Vork; Martin, James E.

    2012-01-01

    of this issue, though, is the role of conversations in humans caring for each other and the ecosystems of which they are a part. Emergency medical care, parents and children playing, and students learning a second language, are among the contexts of caring considered. Also considered are ways in which symbol......Language serves many functions for humans, but three of the most important are coordination, learning, and friendship. All of those functions were well served by the conversations from which this special issue emerged, a conference, ‘‘Grounding language in perception and (inter) action’’, held...... at Gordon College in June 2009. The conference brought together researchers primarily from three research traditions, dynamical systems theory, distributed language, and ecological psychology, and each of these perspectives is reviewed and illustrated in this special issue. The particular focus...

  16. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel

    2017-01-01

    This textbook is appropriate for use in graduate-level curricula in analog-to-digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters. It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation. This book presents an overview of the state of the art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, third edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 22-nm technology and the need for a more statistical approach to accuracy. Pedagogical enhancements to this edition include additional, new exercises, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate. Considerable background information and practical tips, from designing a PCB, to lay-o...

  17. A new bed elevation dataset for Greenland

    Directory of Open Access Journals (Sweden)

    J. A. Griggs

    2012-11-01

    Full Text Available We present a new bed elevation dataset for Greenland derived from a combination of multiple airborne ice thickness surveys undertaken between the 1970s and 2011. Around 344 000 line kilometres of airborne data were used, with the majority of this having been collected since the year 2000, when the last comprehensive compilation was undertaken. The airborne data were combined with satellite-derived elevations for non glaciated terrain to produce a consistent bed digital elevation model (DEM over the entire island including across the glaciated/ice free boundary. The DEM was extended to the continental margin with the aid of bathymetric data, primarily from a compilation for the Arctic. Ice shelf thickness was determined where a floating tongue exists, in particular in the north. The across-track spacing between flight lines warranted interpolation at 1 km postings near the ice sheet margin and 2.5 km in the interior. Grids of ice surface elevation, error estimates for the DEM, ice thickness and data sampling density were also produced alongside a mask of land/ocean/grounded ice/floating ice. Errors in bed elevation range from a minimum of ±6 m to about ±200 m, as a function of distance from an observation and local topographic variability. A comparison with the compilation published in 2001 highlights the improvement in resolution afforded by the new data sets, particularly along the ice sheet margin, where ice velocity is highest and changes most marked. We use the new bed and surface DEMs to calculate the hydraulic potential for subglacial flow and present the large scale pattern of water routing. We estimate that the volume of ice included in our land/ice mask would raise eustatic sea level by 7.36 m, excluding any solid earth effects that would take place during ice sheet decay.

  18. A Primer on Wound Bed Preparation

    OpenAIRE

    Gokoo, Chuck

    2009-01-01

    Successful wound closure and healing are a major concern for today's clinician. Determining if the wound will progress or not relies on a comprehensive assessment, recognition of wound characteristics that will promote or impede the healing process and preparing the wound bed such that pathological features are removed allowing the healing cascade to occur. When complications are no longer a roadblock the wound will achieve a stable microenvironment and progress through the normal repairative...

  19. Transcriptomics of the Bed Bug (Cimex lectularius)

    OpenAIRE

    Xiaodong Bai; Praveen Mamidala; Swapna P Rajarapu; Jones, Susan C.; Omprakash Mittapalli

    2011-01-01

    BACKGROUND: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pestici...

  20. Biological denitrification in a fluidized bed.

    Science.gov (United States)

    Narjari, N K; Khilar, K C; Mahajan, S P

    1984-12-01

    A fluidized bed biofilm reactor using sand as the carrier particle was employed to study the effects of superficial velocity on the removal of nitrates as well as on the growth of the biofilm. Velocity was found to affect significantly both nitrate removal and biofilm growth. An analysis based on heterogenous catalysis was used to describe the denitrification process. There is good agreement between analysis and experimental measurements for startup and steady-state operating conditions.

  1. Particle Dynamics and Gravel-Bed Adjustments

    Science.gov (United States)

    1993-05-01

    detecteur des movement des sediments fins. Societe hydrotechnique de France. Transport Hydraulique et Decantation des Materiaux Solides. pp3 9 p. 38...Kirkby, MJ. (Eds.) Channel Ndork Hydrology. Wiley. Chichester. pp 129-173. 67. Lapointe, M.F. (1992) Burst-like sediment suspension events in a sand bed...alluvial sand suspension by eddy correlation. Earth Surface Processes & Landforms, 11, (in press). 69. Soulsby, R.L. (1983) The bottom boundary layer of

  2. Cluster Dynamics in a Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  3. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  4. New Dimensions of Moving Bed Biofilm Carriers

    OpenAIRE

    Piculell, Maria

    2016-01-01

    The moving bed biofilm reactor (MBBR) is a biological wastewater treatment process in which microorganisms grow as biofilms on suspended carriers. Conventionally, MBBRs are mainly designed and optimized based on the carrier surface area, neglecting the dynamic relationship between carrier design, reactor operation and biofilm characteristics, such as biofilm thickness and the composition of the microbial community. The purpose of this research project was to learn more about the roles of the ...

  5. Advanced Low-Temperature Fluid Bed Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Wangerow, J.R. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    This paper discusses the results obtained in an ongoing study geared towards developing advanced mixed-metal oxide sorbents for desulfurization of coal-derived fuel gases in the temperature range of 350 to 550{degrees}C. The paper focuses on the study related to the development of durable sorbents suitable for fluidized-bed application and addresses thermodynamic considerations, sulfidation kinetics, regenerability, and the physical and chemical characteristics of a number of novel sorbents.

  6. LIVE-BED SCOUR IN LONG CONTRACTIONS

    Institute of Scientific and Technical Information of China (English)

    Subhasish DEY; Rajkumar V.RAIKAR

    2006-01-01

    This paper presents a simple analytical model, developed using the energy and continuity equations,for the computation of the live-bed scour depth in long contractions. The model agrees satisfactorily with experimental data. Equations previously proposed in the literature for estimation of the equilibrium scour depth in long contractions are compared with experimental data. The comparison indicates that the equation given by Lim is the best predictor among those examined.

  7. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  8. A Conversation with Adam Heller

    OpenAIRE

    Heller, A.; Cairns, EJ

    2015-01-01

    © 2015 by Annual Reviews. All rights reserved.Adam Heller, Ernest Cockrell Sr. Chair in Engineering Emeritus of the John J. McKetta Department of Chemical Engineering at The University of Texas at Austin, recalls his childhood in the Holocaust and his contributions to science and technology that earned him the US National Medal of Technology and Innovation in a conversation with Elton J. Cairns, Professor of Chemical and Biomolecular Engineering at the University of California, Berkeley. Dr. ...

  9. Religious Conversion, Models and Paradigms

    OpenAIRE

    Boz, Tuba

    2012-01-01

    This papers examines the experiences of converts to Islam among Australian women in the milieu of polemic views and debates such as ‘Islam versus the west', which is most visible in the image of the ‘eastern' ‘oppressed' Muslim woman. Employing the experiences of Australian Muslim women converts in Melbourne, issues concerning identity politics, and the individuals and social dimensions of conversion are investigated. While there is an array of literature about Muslim women from various disci...

  10. Trykfald over en bed af fliskoks

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik Birk

    En (atmosfærisk) luftstrøm ledtes gennem en fast bed af delvist forgasset fliskoks med en binær partikelstørrelsesfordeling (8 og 16 mm). Under variation af størrelsesfordeling og strømningshastighed registreredes det resulterende trykfald gennem bedden. Eksisterende estimationsformler for trykfa......En (atmosfærisk) luftstrøm ledtes gennem en fast bed af delvist forgasset fliskoks med en binær partikelstørrelsesfordeling (8 og 16 mm). Under variation af størrelsesfordeling og strømningshastighed registreredes det resulterende trykfald gennem bedden. Eksisterende estimationsformler...... for trykfaldet blev valideret for de givne kokspartikler. Note: Dette er en bearbejdning af rapporten “Trykfald over en Bed af Fliskoks” ved Donovan og Hindsgaul 1997 [1]. I nogle tilfælde er brugen af symboler ændret i forhold til rapporten for at opnå bedre konsistens ligesom fundne fejl er rettet. Både den...

  11. Ice sheets on plastically-yielding beds

    Science.gov (United States)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  12. Single-stage fluidized-bed gasification

    Science.gov (United States)

    Lau, F. S.; Rue, D. M.; Weil, S. A.; Punwani, D. V.

    1982-04-01

    The single-stage fluidized-bed gasification process, in addition to being a simple system, maximizes gas production and allows the economic exploitation of small peat deposits. The objective of this gasification project is to conduct experiments in order to obtain data for designing a single-stage fluidized-bed gasifier, and to evaluate the economics of converting peat to synthesis gas and to SNG by this process. An existing high-temperature and high-pressure process development unit (PDU) was modified to permit the direct feeding of peat to the fluidized bed. Peat flows by gravity from the feed hopper through a 6-inch line to the screw-feeder conveyor. From there, it is fed to the bottom tee section of the reactor and transported into the gasification zone. Oxygen and steam are fed through a distributing ring into the reactor. Gasification reactions occur in the annulus formed by the reactor tube and a central standpipe. Peat ash is discharged from the reactor by overflowing into the standpipe and is collected in a solids receiver.

  13. Thermal degradation of PMMA in fluidised beds.

    Science.gov (United States)

    Smolders, K; Baeyens, J

    2004-01-01

    In recent years, the production and consumption of plastics have increased significantly and wastes are commonly incinerated or dumped in a landfill. Plastics pyrolysis, on the other hand, may provide an alternative means for disposal of plastic wastes with recovery of valuable gasoline-range hydrocarbons or the monomer. Pyrolysis of polymethyl methacrylate (PMMA) may result in very high recycling rates (90-98%) of the monomer methylmethacrylate (MMA) since the cracking of MMA to lighter molecules (CO2, CO and light hydrocarbons) is limited. The MMA-yield is mainly dependent on the residence time of the gas in the reactor and to a lesser extent on the operating temperature. The paper presents experimental work performed in a lead bath and in a fluidised bed. At low temperatures, the reaction is kinetically controlled, whereas at high temperatures, heat transfer restricts the overall reaction rate. It was demonstrated that the heat transfer in the fluid bed could be estimated by the equation of Kothari. A design procedure for a fluid bed PMMA-depolymerisation reactor is outlined and illustrated for a process of 1 tpd PMMA.

  14. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  15. Shock Interaction with Random Spherical Particle Beds

    Science.gov (United States)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  16. Status of the fluidized bed unit

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  17. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  18. FBR and RBR particle bed space reactors

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10/sup 0/K), high coolant-outlet temperatures (1500 to 3000/sup 0/K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H/sub 2/-cooled mode. The RBR will operate only in the open-cycle H/sub 2/-cooled mode.

  19. Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst: A simulation study using experimental kinetic model

    Institute of Scientific and Technical Information of China (English)

    Nakisa Yaghobi; Mir Hamid Reza Ghoreishy

    2008-01-01

    The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.

  20. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    Science.gov (United States)

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0.

  1. Tar reduction in pyrolysis vapours from biomass over a hot char bed.

    Science.gov (United States)

    Gilbert, P; Ryu, C; Sharifi, V; Swithenbank, J

    2009-12-01

    The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 degrees C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0-450 mm), temperatures (500-800 degrees C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84-14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 degrees C, compared to that for pyrolysis at 500 degrees C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 degrees C to 8.0 wt% at 800 degrees C, forming CO, H(2) and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 degrees C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction.

  2. Performance analysis of RDF gasification in a two stage fluidized bed-plasma process.

    Science.gov (United States)

    Materazzi, M; Lettieri, P; Taylor, R; Chapman, C

    2016-01-01

    The major technical problems faced by stand-alone fluidized bed gasifiers (FBG) for waste-to gas applications are intrinsically related to the composition and physical properties of waste materials, such as RDF. The high quantity of ash and volatile material in RDF can provide a decrease in thermal output, create high ash clinkering, and increase emission of tars and CO2, thus affecting the operability for clean syngas generation at industrial scale. By contrast, a two-stage process which separates primary gasification and selective tar and ash conversion would be inherently more forgiving and stable. This can be achieved with the use of a separate plasma converter, which has been successfully used in conjunction with conventional thermal treatment units, for the ability to 'polish' the producer gas by organic contaminants and collect the inorganic fraction in a molten (and inert) state. This research focused on the performance analysis of a two-stage fluid bed gasification-plasma process to transform solid waste into clean syngas. Thermodynamic assessment using the two-stage equilibrium method was carried out to determine optimum conditions for the gasification of RDF and to understand the limitations and influence of the second stage on the process performance (gas heating value, cold gas efficiency, carbon conversion efficiency), along with other parameters. Comparison with a different thermal refining stage, i.e. thermal cracking (via partial oxidation) was also performed. The analysis is supported by experimental data from a pilot plant.

  3. Chemical looping combustion in a rotating bed reactor--finding optimal process conditions for prototype reactor.

    Science.gov (United States)

    Håkonsen, Silje Fosse; Blom, Richard

    2011-11-15

    A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.

  4. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed.

  5. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  6. Modification of the Engelund bed-load formula

    Institute of Scientific and Technical Information of China (English)

    Zhen Meng; Danxun Li; Xingkui Wang

    2016-01-01

    The classic Engelund bed-load formula involves four oversimplified assumptions concerning the quantity of particles per unit bed area that can be potentially entrained into motion, the probability of sediment being entrained into motion at a given instant, the mean velocity of bed-load motion, and the dimen-sionless incipient shear stress. These four aspects are reexamined in the light of new findings in hydrodynamics, and a modified bed-load formula is then proposed. The modified formula shows promise as being reliable in predicting bed-load transport rates in a wide range of flow intensities.

  7. Some hydrodynamic aspects of 3-phase inverse fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hydrodynamics of 3-phase inverse fluidized bed is studied experimentally using low density particles for different liquid and gas velocities.The hydrodynamic characteristics studied include pressure drop, minimum liquid and gas fluidization velocities and phase holdups. The minimum liquid fluidization velocity determined using the bed pressure gradient, decreases with increase in gas velocity. The axial profiles of phase holdups shows that the liquid holdup increases along the bed height, whereas the solid holdup decreases down the bed. However, the gas holdup is almost uniform in the bed.

  8. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  9. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    Hydrogen is considered to be an important potential energy carrier; however, its advantages are unlikely to be realized unless efficient means can be found to produce it without generation of CO{sub 2}. Sorption-enhanced steam methane reforming (SE-SMR) represent a novel, energy-efficient hydrogen production route with in situ CO{sub 2} capture, shifting the reforming and water gas shift reactions beyond their conventional thermodynamic limits. The use of fluidized bed reactors for SE-SMR has been investigated. Arctic dolomite, a calcium-based natural sorbent, was chosen as the primary CO{sub 2}-acceptor in this study due to high absorption capacity, relatively high reaction rate and low cost. An experimental investigation was conducted in a bubbling fluidized bed reactor of diameter 0.1 m, which was operated cyclically and batch wise, alternating between reforming/carbonation conditions and higher-temperature calcination conditions. Hydrogen concentrations of >98 mole% on a dry basis were reached at 600 C and 1 atm, for superficial gas velocities in the range of {approx}0.03-0.1 m/s. Multiple reforming-regeneration cycles showed that the hydrogen concentration remained at {approx}98 mole% after four cycles. The total production time was reduced with an increasing number of cycles due to loss of CO{sub 2}-uptake capacity of the dolomite, but the reaction rates of steam reforming and carbonation seemed to be unaffected for the conditions investigated. A modified shrinking core model was applied for deriving carbonation kinetics of Arctic dolomite, using experimental data from a novel thermo gravimetric reactor. An apparent activation energy of 32.6 kj/mole was found from parameter fitting, which is in good agreement with previous reported results. The derived rate expression was able to predict experimental conversion up to {approx}30% very well, whereas the prediction of higher conversion levels was poorer. However, the residence time of sorbent in a continuous

  10. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    Hydrogen is considered to be an important potential energy carrier; however, its advantages are unlikely to be realized unless efficient means can be found to produce it without generation of CO{sub 2}. Sorption-enhanced steam methane reforming (SE-SMR) represent a novel, energy-efficient hydrogen production route with in situ CO{sub 2} capture, shifting the reforming and water gas shift reactions beyond their conventional thermodynamic limits. The use of fluidized bed reactors for SE-SMR has been investigated. Arctic dolomite, a calcium-based natural sorbent, was chosen as the primary CO{sub 2}-acceptor in this study due to high absorption capacity, relatively high reaction rate and low cost. An experimental investigation was conducted in a bubbling fluidized bed reactor of diameter 0.1 m, which was operated cyclically and batch wise, alternating between reforming/carbonation conditions and higher-temperature calcination conditions. Hydrogen concentrations of >98 mole% on a dry basis were reached at 600 C and 1 atm, for superficial gas velocities in the range of {approx}0.03-0.1 m/s. Multiple reforming-regeneration cycles showed that the hydrogen concentration remained at {approx}98 mole% after four cycles. The total production time was reduced with an increasing number of cycles due to loss of CO{sub 2}-uptake capacity of the dolomite, but the reaction rates of steam reforming and carbonation seemed to be unaffected for the conditions investigated. A modified shrinking core model was applied for deriving carbonation kinetics of Arctic dolomite, using experimental data from a novel thermo gravimetric reactor. An apparent activation energy of 32.6 kj/mole was found from parameter fitting, which is in good agreement with previous reported results. The derived rate expression was able to predict experimental conversion up to {approx}30% very well, whereas the prediction of higher conversion levels was poorer. However, the residence time of sorbent in a continuous

  11. Nitrogen removal in a combined system: vertical vegetated bed over horizontal flow sand bed.

    Science.gov (United States)

    Kantawanichkul, S; Neamkam, P; Shutes, R B

    2001-01-01

    Pig farm wastewater creates various problems in many areas throughout Thailand. Constructed wetland systems are an appropriate, low cost treatment option for tropical countries such as Thailand. In this study, a combined system (a vertical flow bed planted with Cyperus flabelliformis over a horizontal flow sand bed without plants) was used to treat settled pig farm wastewater. This system is suitable for using in farms where land is limited. The average COD and nitrogen loading rate of the vegetated vertical flow bed were 105 g/m2 x d and 11 g/m2 x d respectively. The wastewater was fed intermittently at intervals of 4 hours with a hydraulic loading rate of 3.7 cm/d. The recirculation of the effluent increased total nitrogen (TN) removal efficiency from 71% to 85%. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal efficiencies were 95% and 98%. Nitrification was significant in vertical flow Cyperus bed, and the concentration of nitrate increased by a factor of 140. The horizontal flow sand bed enhanced COD removal and nitrate reduction was 60%. Plant uptake of nitrogen was 1.1 g N/m2 x d or dry biomass production was 2.8 kg/m2 over 100 days.

  12. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  13. In-bed sulphur capture during pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA))

    1991-11-01

    The Institute of Gas Technology is developing a pressurized fluidized-bed hydroretorting (PFH) process for the production of oil from Eastern oil shales. The sulphur present in the Eastern oil shales is converted to H{sub 2}S during hydroretorting. A solid sorbent (limestone or siderite) may be added to the PFH reactor with the oil shale to achieve in-bed desulphurization. The effects of operating conditions on the effectiveness of in-bed sulphur capture with limestone and siderite have been investigated. Reactivities of a limestone and a siderite towards H{sub 2}S were determined in experiments conducted in an ambient pressure thermogravimetric analyser. These tests were conducted in the temperature range of 480-565{degree}C using solid sorbents with an average particle diameter of 0.018 cm ({minus}60{plus}100 mesh). The results of thermogravimetric analysis tests indicate that both limestone and siderite should be capable of capturing a significant fraction of H{sub 2}S removal with in-bed sorbents. The results of these tests confirm that a significant fraction of H{sub 2}S produced in the PFH reactor can be removed with in-bed sorbents. 10 refs., 8 figs., 6 tabs.

  14. Staged fluidized-bed combustion and filter system

    Science.gov (United States)

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  15. Conversion Disorder Presenting As Neuritic Leprosy

    Directory of Open Access Journals (Sweden)

    Sayal SK

    2000-01-01

    Full Text Available Conversion disorder is not normally listed amongst the conditions in differential diagnosis of leprosy neuropathy. A case conversion reaction who was initially diagnosed as neuritic leprosy is reported. Patient responded to narcosuggestion and psychotherapy.

  16. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  17. Life cycle impact assessment of various waste conversion technologies.

    Science.gov (United States)

    Khoo, Hsien H

    2009-06-01

    Advanced thermal treatment technologies utilizing pyrolysis or gasification, as well as a combined approach, are introduced as sustainable methods to treat wastes in Singapore. Eight different technologies are evaluated: pyrolysis-gasification of MSW; pyrolysis of MSW; thermal cracking gasification of granulated MSW; combined pyrolysis, gasification and oxidation of MSW; steam gasification of wood; circulating fluidized bed (CFB) gasification of organic wastes; gasification of RDF; and the gasification of tyres. Life cycle assessment is carried out to determine the environmental impacts of the various waste conversion systems including global warming potential, acidification potential, terrestrial eutrophication and ozone photochemical formation. The normalization and weighting results, calculated according to Singapore national emission inventories, showed that the two highest impacts are from thermal cracking gasification of granulated MSW and the gasification of RDF; and the least are from the steam gasification of wood and the pyrolysis-gasification of MSW. A simplified life cycle cost comparison showed that the two most costs-effective waste conversion systems are the CFB gasification of organic waste and the combined pyrolysis, gasification and oxidation of MSW. The least favorable - highest environmental impact as well as highest costs - are the thermal cracking gasification of granulated MSW and the gasification of tyres.

  18. Conversion of Biomass Syngas to DME Using a Microchannel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianli; Wang, Yong; Cao, Chunshe; Elliott, Douglas C.; Stevens, Don J.; White, James F.

    2005-03-01

    The capability of a microchannel reactor for direct synthesis of dimethylether (DME) from biomass syngas was explored. The reactor was operated in conjunction with a hybrid catalyst system consisting of methanol synthesis and dehydration catalysts, and the influence of reaction parameters on syngas conversion was investigated. The activities of different dehydration catalysts were compared under DME synthesis conditions. Reaction temperature and pressure exhibited similar positive effects on DME formation. A catalytic stability test of the hybrid catalyst system was performed for 880 hours, during which CO conversion only decreased from 88% to 81%. In the microchannel reactor, the catalyst deactivation rate appeared to be much slower than in a tubular fixed-bed reactor tested for comparison. Test results also indicated that the dehydration reaction rate and the water depletion rate via a water-gas-shift reaction should be compatible in order to achieve high selectivity to DME. Using the microchannel reactor, it was possible to achieve a space time yield almost three times higher than commercially demonstrated performance results. A side-by-side comparison indicated that the heat removal capability of the microchannel reactor was at least six times greater than that of a commercial slurry reactor under similar reaction conditions.

  19. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    Science.gov (United States)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  20. ASSESSMENT OF BED-LOAD PREDICTORS BASED ON SAMPLING IN A GRAVEL BED RIVER

    Institute of Scientific and Technical Information of China (English)

    HADDADCHI Arman; OMID Mohammad H.; DEHGHANI Amir A.

    2012-01-01

    Bedload transport in alluvial channels has been extensively studied and different equations based on field and/or experimental data have been proposed.Prediction of bed-load transport rate using different equations results in wide ranges which are not always reliable.In this study,some of the universal bedload predictors were evaluated with measured load by a Helley-Smith sampler in the Node River,a gravel bed fiver in the northeast part of Iran.From 19 sets of data,14 series of data were used to evaluate the bed-load transport equations.The results show that the equations presented by Van Rijn,Meyer-Peter and Mueller,and Ackers and White may adequately predict bedload transport in the range of field data.

  1. Alpine radar conversion for LAWR

    Science.gov (United States)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this

  2. Continuous thorium biosorption--dynamic study for critical bed depth determination in a fixed-bed reactor.

    Science.gov (United States)

    Picardo, Marta Cristina; Ferreira, Ana Cristina de Melo; da Costa, Antonio Carlos Augusto

    2009-01-01

    The objective of the work was to evaluate the biosorption of thorium by the seaweed Sargassum filipendula in a dynamic system. Different bed depths were tested with the purpose of evaluating the critical bed depth for total uptake of the radioactive element. Several bed depths were tested, ranging from 5.0 to 40.0 cm. Bed depths tested presented distinct capacities to accumulate thorium. An increase in biosorption efficiency was observed with an increase in bed depth. The 30.0 cm bed produced an effluent still containing detectable levels of thorium. The critical bed depth suitable for a complete removal of thorium by S.filipendula biomass was equal to 40.0 cm.

  3. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  4. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  5. Materials for energy conversion devices

    CERN Document Server

    Sorrell, C C; Sugihara, S

    2005-01-01

    As the finite capacity and pollution problems of fossil fuels grow more pressing, new sources of more sustainable energy are being developed. Materials for energy conversion devices summarises the key research on new materials which can be used to generate clean and renewable energy or to help manage problems from existing energy sources. The book discusses the range of materials that can be used to harness and convert solar energy in particular, including the properties of oxide materials and their use in producing hydrogen fuel. It covers thermoelectric materials and devices for power genera

  6. Supported Conversation for hospital staff

    DEFF Research Database (Denmark)

    Forchhammer, Hysse B; Løvholt, Annelise P.; Mathiesen, Lone Lundbak

    in communication and interaction, Supported Conversation for Adults with Aphasia (SCA) was adapted and implemented in a large neurological department at Rigshospitalet-Glostrup in Copenhagen. Method 152 staff members representing different health professionals were assigned to one of eleven courses during a six...... immediately before course attendance and 3-6 months afterwards. Results Self-rated knowledge of aphasia had significantly improved when assessed 3-6 months after the course and improvement was seen for all groups of health professionals. Comfort and ease in communicating with PWA and ability to solve problems...

  7. Combustion of coked sand in a two-stage fluidized bed system

    Energy Technology Data Exchange (ETDEWEB)

    Coronella, C.J.; Seader, J.D. (University of Utah, Salt Lake City, UT (USA). Dept. of Chemical Engineering)

    1992-02-01

    An advanced multiple-stage fluidized bed reactor system has been devised for the energy-efficient extraction and conversion, from tar sand, of bitumen into synthetic crude oil. The reactor consists of four fluidized beds arranged as stages in series with respect to flow of sand. In the first stage, tar sands are heated, causing the bitumen to pyrolyse into coke, which is deposited on the sand, and gas, which is mostly condensed into oil. The coke is partially combusted with air or enriched oxygen in the second stage, which is thermally coupled to the first stage by multiple vertical heat pipes. Combustion is completed adiabatically in the third stage and heat recovery from the sand is carried out in the fourth stage. By conducting the coke combustion in two stages in this manner, the overall reactor residence time to produce clean sand is greatly reduced from that for a single combustion stage. Laboratory experimental studies have confirmed the ability to operate and control the two thermally coupled stages. The two-phase bubbling bed model of Grace, amended to account for bubble growth in the axial direction, has been adopted to model the mass transfer and fluid mechanics of the fluidized beds. The model for the first and second combustion stages is complete. Predictions for exit reactor conditions at various operating conditions are in reasonable agreement with experimental observations. The operating parameters have been found to exert a much greater influence on the predictions of the model than do the values of the physical parameters, indicating a desirable degree of reactor stability. Extension of the model to the pyrolysis and heat recovery stages will permit the optimization of the reactor configuration and operating conditions. 26 refs., 6 figs.

  8. Hydrodynamic study on gasification of biomass in a fluidized bed gasifier

    Directory of Open Access Journals (Sweden)

    S.BASKARA SETHUPATHY

    2012-01-01

    Full Text Available Current scenario of energy insecurity urges us to realize the importance of alternate energy sources. In country with variety of vegetation like India, Biomass finds its place of which fluidized bed gasification of biomass could be more effective. This paper emphasizes the importance of a fluidized bed gasifier for energy conversion of agro-residues for useful purposes. Coconut Shell and Ground nut shell of gross calorific value 19.43MJ/kg and 14.91 MJ/kg respectively are taken for the study. The particle size is restricted not to exceed 3mm. Various empirical correlations involved in fluidization are studied and their interdependence is detailed. From various published data, importance of inert materials and their relative proportions with biomass fuels are studied and optimum biomass to sand ratio is fixed as 10 to 15% by mass. Equations for predicting the minimum fluidization velocities of these mixtures are also discussed. Variations of Fluidization parameters such asminimum fluidization velocity, bubble rise velocity, expanded bed height with respect to temperature, equivalence ratio, particle size is studied and their quantification is analyzed. A 108 mm internal diameter and 1400 mm high FBG is used for the study. Fuel is fed through screw feeder and air is supplied through blower. In the down stream side cyclone separator is placed after which the sampling and burner lines are connected. A regression model is developed and the feasibility of gasifying coconut shell and groundnut shell are discussed. Earlier and present work of coconut shell gasification proves fluidized bed gasification is more appropriate for agro residues.

  9. Efficacy of pine leaves as an alternative bedding material for broiler chicks during summer season

    Directory of Open Access Journals (Sweden)

    Gourav Sharma

    2015-10-01

    Full Text Available Aim: The aim was to assess the efficacy of pine leaves as an alternative bedding material on the performance of broiler chicks. Materials and Methods: The present study was conducted in summer. Total 120, day old Vencobb straight run chicks were procured, and after 5 days of brooding, chicks were randomly distributed into four treatment groups viz. paddy husk (Group I, paddy straw (Group II, pine leaves (Group III, and combination of paddy straw and pine leaves (Group IV, each having 30 chicks with 3 replicates of 10 chicks each. Chicks were reared under intensive conditions in houses that have a semi-controlled environment, with optimum temperature and adequate ventilation. Food and water were provided as per NRC (1994 requirement. Results: The average body weight after 6 weeks of the experiment was 2018.83±31.11, 1983.80±33.27, 2007.36±35.73, and 1938.43±36.35 g. The bedding type had no significant effect on the carcass characteristics viz. evisceration rate and proportion of cut-up parts of the carcass except giblet yield. The experiment suggested that performance of broiler chicks reared on paddy straw and pine leaves as litter material, had improved body weight and feed conversion ratio as compared to rearing on paddy husk as bedding material. Bacterial count, parasitic load and the N, P, K value of manure of different bedding material shows no significant difference. Conclusion: Pine leaves have a potential to be used as an alternative source of litter material to economize poultry production in a sustainable way, so as to make poultry farming as a profitable entrepreneur.

  10. Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1995-09-01

    The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

  11. A new bed elevation dataset for Greenland

    Science.gov (United States)

    Bamber, J. L.; Griggs, J. A.; Hurkmans, R. T. W. L.; Dowdeswell, J. A.; Gogineni, S. P.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E.; Steinhage, D.

    2013-03-01

    We present a new bed elevation dataset for Greenland derived from a combination of multiple airborne ice thickness surveys undertaken between the 1970s and 2012. Around 420 000 line kilometres of airborne data were used, with roughly 70% of this having been collected since the year 2000, when the last comprehensive compilation was undertaken. The airborne data were combined with satellite-derived elevations for non-glaciated terrain to produce a consistent bed digital elevation model (DEM) over the entire island including across the glaciated-ice free boundary. The DEM was extended to the continental margin with the aid of bathymetric data, primarily from a compilation for the Arctic. Ice thickness was determined where an ice shelf exists from a combination of surface elevation and radar soundings. The across-track spacing between flight lines warranted interpolation at 1 km postings for significant sectors of the ice sheet. Grids of ice surface elevation, error estimates for the DEM, ice thickness and data sampling density were also produced alongside a mask of land/ocean/grounded ice/floating ice. Errors in bed elevation range from a minimum of ±10 m to about ±300 m, as a function of distance from an observation and local topographic variability. A comparison with the compilation published in 2001 highlights the improvement in resolution afforded by the new datasets, particularly along the ice sheet margin, where ice velocity is highest and changes in ice dynamics most marked. We estimate that the volume of ice included in our land-ice mask would raise mean sea level by 7.36 m, excluding any solid earth effects that would take place during ice sheet decay.

  12. A new bed elevation dataset for Greenland

    Directory of Open Access Journals (Sweden)

    J. L. Bamber

    2013-03-01

    Full Text Available We present a new bed elevation dataset for Greenland derived from a combination of multiple airborne ice thickness surveys undertaken between the 1970s and 2012. Around 420 000 line kilometres of airborne data were used, with roughly 70% of this having been collected since the year 2000, when the last comprehensive compilation was undertaken. The airborne data were combined with satellite-derived elevations for non-glaciated terrain to produce a consistent bed digital elevation model (DEM over the entire island including across the glaciated–ice free boundary. The DEM was extended to the continental margin with the aid of bathymetric data, primarily from a compilation for the Arctic. Ice thickness was determined where an ice shelf exists from a combination of surface elevation and radar soundings. The across-track spacing between flight lines warranted interpolation at 1 km postings for significant sectors of the ice sheet. Grids of ice surface elevation, error estimates for the DEM, ice thickness and data sampling density were also produced alongside a mask of land/ocean/grounded ice/floating ice. Errors in bed elevation range from a minimum of ±10 m to about ±300 m, as a function of distance from an observation and local topographic variability. A comparison with the compilation published in 2001 highlights the improvement in resolution afforded by the new datasets, particularly along the ice sheet margin, where ice velocity is highest and changes in ice dynamics most marked. We estimate that the volume of ice included in our land-ice mask would raise mean sea level by 7.36 m, excluding any solid earth effects that would take place during ice sheet decay.

  13. Gene conversion in the rice genome

    DEFF Research Database (Denmark)

    Xu, Shuqing; Clark, Terry; Zheng, Hongkun;

    2008-01-01

    BACKGROUND: Gene conversion causes a non-reciprocal transfer of genetic information between similar sequences. Gene conversion can both homogenize genes and recruit point mutations thereby shaping the evolution of multigene families. In the rice genome, the large number of duplicated genes...... is not tightly linked to natural selection in the rice genome. To assess the contribution of segmental duplication on gene conversion statistics, we determined locations of conversion partners with respect to inter-chromosomal segment duplication. The number of conversions associated with segmentation is less...

  14. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  15. Erosion of heat exchanger tubes in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  16. Agglomeration in a fluidized bed using multiple jet streams

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Abbasian, J. (Institute of Gas Technology, Chicago, IL (United States)); Kothari, M.; Hariri, H.; Arastoopour, H. (Illinois Inst. of Tech., Chicago, IL (United States))

    1992-01-01

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  17. Agglomeration in a fluidized bed using multiple jet streams

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Abbasian, J. [Institute of Gas Technology, Chicago, IL (United States); Kothari, M.; Hariri, H.; Arastoopour, H. [Illinois Inst. of Tech., Chicago, IL (United States)

    1992-12-31

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  18. High resolution A/D conversion based on piecewise conversion at lower resolution

    Science.gov (United States)

    Terwilliger, Steve

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  19. Mechanism test bed. Flexible body model report

    Science.gov (United States)

    Compton, Jimmy

    1991-01-01

    The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined.

  20. Transients in a circulating fluidized bed boiler

    Science.gov (United States)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  1. CFD study of a fluidized bed

    OpenAIRE

    Lundberg, Joachim

    2008-01-01

    The aim of this thesis is to investigate the momentum exchange between the phases in a bubbling fluidized bed. The momentum exchange can be described by a drag model. Several drag models with different assumptions are developed. The drag models investigated in this work is the Syamlal O’Brien model, the Gidaspow model, Hill Koch Ladd model, the RUC model and an iterative version of the Syamlal O’Brien called the Richardson Zaki model. The models have been derived and studied in de...

  2. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  3. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  4. Velocity Fluctuations in Gas-Fluidized Beds

    Science.gov (United States)

    Cody, G. D.

    1998-03-01

    Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres

  5. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J. M

    2013-01-01

    This textbook is appropriate for use in graduate-level curricula in analog to digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters.  It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation.  This book presents an overview of the state-of-the-art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, second edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 45-nm technology and the need for a more statistical approach to accuracy.  Pedagogical enhancements to this edition include more than twice the exercises available in the first edition, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate.  Considerable background information and pr...

  6. Biological conversion of synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H[sub 2]0 [yields] CO[sub 2] + H[sub 2]. C. thiosulfatophilum is also a H[sub 2]S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25[degree] and 30[degree]C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30[degree], 32[degree] or 34[degree]C. The rate of conversion of COs and H[sub 2]O to CO[sub 2] and H[sub 2]S may be modeled by a first order rate expression. The rate constant at 30[degree]C was found to be 0.243 h[sup [minus]1]. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: [mu] = [sub 351] + I[sub o]/[sup 0.152]I[sub o]. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

  7. Astrophysicists' conversational connections on Twitter.

    Science.gov (United States)

    Holmberg, Kim; Bowman, Timothy D; Haustein, Stefanie; Peters, Isabella

    2014-01-01

    Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists' activities (i.e., publishing and tweeting frequency) and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions) on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators) and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets). The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions.

  8. Astrophysicists' conversational connections on Twitter.

    Directory of Open Access Journals (Sweden)

    Kim Holmberg

    Full Text Available Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists' activities (i.e., publishing and tweeting frequency and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets. The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions.

  9. Bilingualism accentuates children's conversational understanding.

    Directory of Open Access Journals (Sweden)

    Michael Siegal

    Full Text Available BACKGROUND: Although bilingualism is prevalent throughout the world, little is known about the extent to which it influences children's conversational understanding. Our investigation involved children aged 3-6 years exposed to one or more of four major languages: English, German, Italian, and Japanese. In two experiments, we examined the children's ability to identify responses to questions as violations of conversational maxims (to be informative and avoid redundancy, to speak the truth, be relevant, and be polite. PRINCIPAL FINDINGS: In Experiment 1, with increasing age, children showed greater sensitivity to maxim violations. Children in Italy who were bilingual in German and Italian (with German as the dominant language L1 significantly outperformed Italian monolinguals. In Experiment 2, children in England who were bilingual in English and Japanese (with English as L1 significantly outperformed Japanese monolinguals in Japan with vocabulary age partialled out. CONCLUSIONS: As the monolingual and bilingual groups had a similar family SES background (Experiment 1 and similar family cultural identity (Experiment 2, these results point to a specific role for early bilingualism in accentuating children's developing ability to appreciate effective communicative responses.

  10. Photochemical conversion of solar energy.

    Science.gov (United States)

    Balzani, Vincenzo; Credi, Alberto; Venturi, Margherita

    2008-01-01

    Energy is the most important issue of the 21st century. About 85% of our energy comes from fossil fuels, a finite resource unevenly distributed beneath the Earth's surface. Reserves of fossil fuels are progressively decreasing, and their continued use produces harmful effects such as pollution that threatens human health and greenhouse gases associated with global warming. Prompt global action to solve the energy crisis is therefore needed. To pursue such an action, we are urged to save energy and to use energy in more efficient ways, but we are also forced to find alternative energy sources, the most convenient of which is solar energy for several reasons. The sun continuously provides the Earth with a huge amount of energy, fairly distributed all over the world. Its enormous potential as a clean, abundant, and economical energy source, however, cannot be exploited unless it is converted into useful forms of energy. This Review starts with a brief description of the mechanism at the basis of the natural photosynthesis and, then, reports the results obtained so far in the field of photochemical conversion of solar energy. The "grand challenge" for chemists is to find a convenient means for artificial conversion of solar energy into fuels. If chemists succeed to create an artificial photosynthetic process, "... life and civilization will continue as long as the sun shines!", as the Italian scientist Giacomo Ciamician forecast almost one hundred years ago.

  11. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  12. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  13. [Neurology of hysteria (conversion disorder)].

    Science.gov (United States)

    Sonoo, Masahiro

    2014-07-01

    Hysteria has served as an important driving force in the development of both neurology and psychiatry. Jean Martin Charcot's devotion to mesmerism for treating hysterical patients evoked the invention of psychoanalysis by Sigmund Freud. Meanwhile, Joseph Babinski took over the challenge to discriminate between organic and hysterical patients from Charcot and found Babinski's sign, the greatest milestone in modern neurological symptomatology. Nowadays, the usage of the term hysteria is avoided. However, new terms and new classifications are complicated and inconsistent between the two representative taxonomies, the DSM-IV and ICD-10. In the ICD-10, even the alternative term conversion disorder, which was becoming familiar to neurologists, has also disappeared as a group name. The diagnosis of hysteria remains important in clinical neurology. Extensive exclusive diagnoses and over investigation, including various imaging studies, should be avoided because they may prolong the disease course and fix their symptoms. Psychological reasons that seem to explain the conversion are not considered reliable. Positive neurological signs suggesting nonorganic etiologies are the most reliable measures for diagnosing hysteria, as Babinski first argued. Hysterical paresis has several characteristics, such as giving-way weakness or peculiar distributions of weakness. Signs to uncover nonorganic paresis utilizing synergy include Hoover's test and the Sonoo abductor test.

  14. Modular Pebble Bed Reactor Project, University Research Consortium Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew

    2000-07-01

    This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for

  15. Fibroblast Growth Factor-23 in Bed Rest and Spaceflight

    Science.gov (United States)

    Bokhari, R.; Zwart, S. R; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2014-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight. Presented with an imbalanced dietary phosphorus to calcium ratio, increased secretion of FGF23 will inhibit renal phosphorus reabsorption, resulting in increased excretion and reduced circulating phosphorus. Increased intake and excretion of phosphorus is associated with increased kidney stone risk in both the terrestrial and microgravity environments. Highly processed foods and carbonated beverages are associated with higher phosphorus content. Ideally, the dietary calcium to phosphorus ratio should be at minimum 1:1. Nutritional requirements for spaceflight suggest that this ratio not be less than 0.67 (3), while the International Space Station (ISS) menu provides 1020 mg Ca and 1856 mg P, for a ratio of 0.55 (3). Subjects in NASA's bed rest studies, by design, have consumed intake ratios much closer to 1.0 (4). FGF23 also has an inhibitory influence on PTH secretion and 1(alpha)-hydroxylase, both of which are required for activating vitamin D with the conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. Decreased 1,25-dihydroxyvitamin D will result in decreased intestinal phosphorus absorption, and increased urinary phosphorus excretion (via decreased renal reabsorption). Should a decrease in 1

  16. The conversational interface talking to smart devices

    CERN Document Server

    McTear, Michael; Griol, David

    2016-01-01

    This book provides a comprehensive introduction to the conversational interface, which is becoming the main mode of interaction with virtual personal assistants, smart devices, various types of wearables, and social robots. The book consists of four parts: Part I presents the background to conversational interfaces, examining past and present work on spoken language interaction with computers; Part II covers the various technologies that are required to build a conversational interface along with practical chapters and exercises using open source tools; Part III looks at interactions with smart devices, wearables, and robots, and then goes on to discusses the role of emotion and personality in the conversational interface; Part IV examines methods for evaluating conversational interfaces and discusses future directions. · Presents a comprehensive overview of the various technologies that underlie conversational user interfaces; · Combines descriptions of conversational user interface technologies with a gui...

  17. Design of generic coal conversion facilities: Indirect coal liquefaction, Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    A comprehensive review of Fischer-Tropsch (F-T) technology, including fixed, fluidized, and bubble column reactors, was undertaken in order to develop an information base before initiating the design of the Fischer-Tropsch indirect liquefaction PDU as a part of the Generic Coal Conversion Facilities to be built at the Pittsburgh Energy Technology Center (PETC). The pilot plant will include a fixed bed and slurry bubble column reactor for the F-T mode of operation. The review encompasses current status of both these technologies, their key variables, catalyst development, future directions, and potential improvement areas. However, more emphasis has been placed on the slurry bubble column reactor since this route is likely to be the preferred technology for commercialization, offering process advantages and, therefore, better economics than fixed and fluidized bed approaches.

  18. The impact of bed temperature on heat transfer characteristic between fluidized bed and vertical rifled tubes

    Science.gov (United States)

    Blaszczuk, Artur; Nowak, Wojciech

    2016-10-01

    In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.

  19. Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers

    CERN Document Server

    Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

    2011-01-01

    A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

  20. Soft-bed experiments beneath Engabreen, Norway: regelation infiltration, basal slip and bed deformation

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Moore, P. L.; Jackson, M.; Lappegard, G.; Kohler, J.

    To avoid some of the limitations of studying soft-bed processes through boreholes, a prism of simulated till (1.8 m × 1.6 m × 0.45 m) with extensive instrumentation was constructed in a trough blasted in the rock bed of Engabreen, a temperate glacier in Norway. Tunnels there provide access to the bed beneath 213 m of ice. Pore-water pressure was regulated in the prism by pumping water to it. During experiments lasting 7-12 days, the glacier regelated downward into the prism to depths of 50- 80 mm, accreting ice-infiltrated till at rates predicted by theory. During periods of sustained high pore water pressure (70-100% of overburden), ice commonly slipped over the prism, due to a water layer at the prism surface. Deformation of the prism was activated when this layer thinned to a sub-millimeter thickness. Shear strain in the till was pervasive and decreased with depth. A model of slip by ploughing of ice-infiltrated till across the prism surface accounts for the slip that occurred when effective pressure was sufficiently low or high. Slip at low effective pressures resulted from water-layer thickening that increased non-linearly with decreasing effective pressure. If sufficiently widespread, such slip over soft glacier beds, which involves no viscous deformation resistance, may instigate abrupt increases in glacier velocity.

  1. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  2. [Comparative pathology of the microcirculatory bed].

    Science.gov (United States)

    Strukov, A I; Vorob'eva, A A

    1976-11-01

    This paper presents an analysis of publications, mostly by Soviet authores, on clinical studies and morphological examinations of the microcirculatory bed in different pathology. It is concluded that the microcirculatory bed should be regarded as an integral system responding to the pathological effects by a local and general reaction of its structural components and by changing the rheological properties of blood. Two types of changes develop in the microcirculatory system -- sterotyped ones, typical for extreme states (various kinds of shock, hypertensive crisis, stress situations), and those specific for certain diseases (diabetes melitus, essential hypertension, athersclerosis, collagenoses, etc.). In all the above diseases the pathological process affects the functional structures of microcirculation that undergo a rearrangement in accordance with the requirements of the body. In the initial period of the disease this re-arrangement is of a compensatory nature and passes ahead of the clinical manifestations. A comparison of the pictutrs obtained by biomicroscopy of the bulbconjunctiva of the eye and of other mucosae with film preparations of the serosae demonstrates their complete similarity. Therefore, the method of biomicroscopy of the eyeball and of the mucosae as a method reflecting the state of microcirculation in the body as a whole should become an integral part of the clinical examination of patients.

  3. Time constant of the cerebral arterial bed.

    Science.gov (United States)

    Kasprowicz, Magdalena; Diedler, Jennifer; Reinhard, Matthias; Carrera, Emmanuel; Smielewski, Peter; Budohoski, Karol P; Sorrentino, Enrico; Haubrich, Christina; Kirkpatrick, Peter J; Pickard, John D; Czosnyka, Marek

    2012-01-01

    We have defined a novel cerebral hemodynamic index, a time constant of the cerebral arterial bed (τ), the product of arterial compliance (C(a)) and cerebrovascular resistance (CVR). C(a) and CVR were calculated based on the relationship between pulsatile arterial blood pressure (ABP) and transcranial Doppler cerebral blood flow velocity. This new parameter theoretically estimates how fast the cerebral arterial bed is filled by blood volume after a sudden change in ABP during one cardiac cycle. We have explored this concept in 11 volunteers and in 25 patients with severe stenosis of the internal carotid artery (ICA). An additional group of 15 subjects with non-vascular dementia was studied to assess potential age dependency of τ. The τ was shorter (p = 0.011) in ICA stenosis, both unilateral (τ = 0.18 ± 0.04 s) and bilateral (τ = 0.16 ± 0.03 s), than in controls (τ = 0.22 ± 0.0 s). The τ correlated with the degree of stenosis (R = -0.62, p = 0.001). In controls, τ was independent of age. Further study during cerebrovascular reactivity tests is needed to establish the usefulness of τ for quantitative estimation of haemodynamics in cerebrovascular disease.

  4. Lifting a large object from an anisotropic porous bed

    Science.gov (United States)

    Karmakar, Timir; Raja Sekhar, G. P.

    2016-09-01

    An analytical study of two dimensional problem of lifting an object from the top of a fully saturated rigid porous bed is discussed. It is assumed that the porous bed is anisotropic in nature. The flow within the gap region between the object and the porous bed is assumed to be governed by Stokes equation while the flow within the porous bed is governed by Brinkman equation. The breakout phenomenon for different kinds of soil is reported. The effect of mechanical properties like anisotropic permeability, grain diameter size, and porosity on streamlines, velocity, and force is analyzed. Relevant comparison with C. C. Mei, R. W. Yeung, and K. F. Liu ["Lifting a large object from a porous bed," J. Fluid. Mech. 152, 203-215 (1985)] and Y. Chang, L. H. Huang and F. P. Y. Yang ["Two-dimensional lift-up problem for a rigid porous bed," Phys. Fluids, 27, 053101 (2015)] is done.

  5. RESEARCH ON DENSITY STABILITY OF AIR DENSE MEDIUM FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    骆振福; 陈清如

    1994-01-01

    In this papcr on thc basis of studying the distribution of fine coal in the dense medium fluidized bed, the optimal size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously accumulate in fluidized bed, thus inevitably reducing the density of the bed. In order to keep bed density stable, the authors adopted such measures as split-flow of used medium and complement of fresh dense medium. The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have established some relative dynamic mathematical models for it.

  6. Effect of concentration and substrate flow rate on isomaltulose production from sucrose by Erwinia sp. cells immobilized in calcium-alginate using packed bed reactor.

    Science.gov (United States)

    Kawaguti, Haroldo Yukio; Harumi Sato, Hélia

    2010-09-01

    Isomaltulose was obtained from sucrose solution by immobilized cells of Erwinia sp. D12 using a batch and a continuous process. Parameters for sucrose conversion into isomaltulose were evaluated using both experimental design and response surface methodology. Erwinia sp. D12 cells were immobilized in different alginates, and the influence of substrate flow rate and concentration parameters to produce isomaltulose from sucrose were observed. Response surface methodology demonstrated that packed bed columns containing cells immobilized in low-viscosity sodium alginate (250 cP) presented a mean isomaltulose conversion rate of 47%. In a continuous process, both sucrose substrate concentration and substrate flow rate parameters had a significant effect (p < 0.05) and influenced the conversion of sucrose into isomaltulose. Higher conversion rates of sucrose into isomaltulose, from 53-75% were obtained using 75 g of immobilized cells at a substrate flow rate of 0.6 mL/min.

  7. Method of hydrodynamic studies of wells in beds

    Energy Technology Data Exchange (ETDEWEB)

    Fedin, L.M.; Bondarenko, Ye.S.; Fedin, K.L.; Lisin, N.I.; Reytenbakh, V.G.

    1982-01-01

    A method is proposed for hydrodynamic studies of wells in beds including the termination of the coefficient of piezoconductance by spasmodic change in pressure in the well. It is distinguished by the fact that in order to reduce the time for idling of the well, above the studied bed an output meter is installed and the output of the bed fluid is measured during the time from spasmodic change in pressure to establishment of the stationary output.

  8. Human Odorant Reception in the Common Bed Bug, Cimex lectularius

    OpenAIRE

    Feng Liu; Nannan Liu

    2015-01-01

    The common bed bug Cimex lectularius is a temporary ectoparasite on humans and currently resurgent in many developed countries. The ability of bed bugs to detect human odorants in the environment is critical for their host-seeking behavior. This study deciphered the chemical basis of host detection by investigating the neuronal response of olfactory sensilla to 104 human odorants using single sensillum recording and characterized the electro-physiological responses of bed bug odorant receptor...

  9. Fluidized Bed Sputtering for Particle and Powder Metallization

    Science.gov (United States)

    2013-04-01

    Fluidized Bed Sputtering for Particle and Powder Metallization by Daniel M. Baechle, J. Derek Demaree, James K. Hirvonen, and Eric D...5069 ARL-TR-6435 April 2013 Fluidized Bed Sputtering for Particle and Powder Metallization Daniel M. Baechle, J. Derek Demaree, James K...YYYY) April 2013 2. REPORT TYPE Final 3. DATES COVERED (From - To) June 2008–June 2012 4. TITLE AND SUBTITLE Fluidized Bed Sputtering for

  10. Fluidized-bed calciner with combustion nozzle and shroud

    Science.gov (United States)

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  11. Kinetics, mass transfer and hydrodynamics in a packed bed aerobic reactor fed with anaerobically treated domestic sewage.

    Science.gov (United States)

    Fazolo, A; Pasotto, M B; Foresti, E; Zaiat, M

    2006-10-01

    This study presents an assessment of the kinetic, mass transfer and hydrodynamic parameters of a pilot-scale fixed bed reactor containing immobilized biomass in polyurethane matrices and fed with the effluent of a horizontal-flow fixed bed anaerobic reactor, which was used to treat domestic sewage. It was found that the liquid-solid and intra-particle mass transfer resistances significantly affected the overall oxygen consumption rate and that mechanical agitation could minimize such resistances. The volumetric oxygen transfer coefficient (kLa) values for superficial air velocities between 8.4 cm min(-1) and 57.0 cm min(-1) varied from 20.8 h(-1) to 58.8 h(-1) for tap water, and 16.8 h(-1) to 53.0 h(-1) for the anaerobic pre-treated effluent. The intrinsic oxygen uptake rate was estimated to be 19.9 mgO2 gVSS(-1) h(-1). A first-order kinetic model with residual concentration was considered to adequately represent the COD removal rate, whereas nitrogen conversion was considered to be well represented by a model of pseudo-first-order reaction in series. It was also found that the ammonium conversion to nitrite was the limiting step of the overall nitrogen conversion rate. The hydrodynamic behavior of the reactor was represented by three to four completely mixed reactors in series.

  12. Ethanol production from dry-mill corn starch in a fluidized-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M.S.; Nghiem, N.P.; Davison, B.H.

    1998-08-01

    The development of a high-rate process for the production of fuel ethanol from dry-mill corn starch using fluidized-bed bioreactor (FBR) technology is discussed. Experiments were conducted in a laboratory scale FBR using immobilized biocatalysts. Two ethanol production process designs were considered in this study. In the first design, simultaneous saccharification and fermentation was performed at 35 C using {kappa}-carageenan beads (1.5 mm to 1.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. For dextrin feed concentration of 100 g/L, the single-pass conversion ranged from 54% to 89%. Ethanol concentrations of 23 to 36 g/L were obtained at volumetric productivities of 9 to 15 g/L-h. No accumulation of glucose was observed, indicating that saccharification was the rate-limiting step. In the second design, saccharification and fermentation were carried out sequentially. In the first stage, solutions of 150 to 160 g/L dextrins were pumped through an immobilized glucoamylase packed column maintained at 55 C. Greater than 95% conversion was obtained at a residence time of 1 h, giving a product of 165 to 170 g glucose/L. In the second stage, these glucose solutions were fed to the FBR containing Z. mobilis immobilized in {kappa}-carageenan beads. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L was achieved, giving an overall productivity of 23 g/L-h.

  13. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  14. Conversation Simulation and Sensible Surprises

    Science.gov (United States)

    Hutchens, Jason L.

    I have entered the Loebner Prize five times, winning the "most humanlike program" category in 1996 with a surly ELIZA-clone named HeX, but failed to repeat the performance in subsequent years with more sophisticated techniques. Whether this is indicative of an unanticipated improvement in "conversation simulation" technology, or whether it highlights the strengths of ELIZA-style trickery, is as an exercise for the reader. In 2000, I was invited to assume the role of Chief Scientist at Artificial Intelligence Ltd. (Ai) on a project inspired by the advice given by Alan Turing in the final section of his classic paper - our quest was to build a "child machine" that could learn and use language from scratch. In this chapter, I will discuss both of these experiences, presenting my thoughts regarding the Chinese Room argument and Artificial Intelligence (AI) in between.

  15. Photoelectrochemical based direct conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Arent, D.; Peterson, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  16. Representing Conversations for Scalable Overhearing

    CERN Document Server

    Gutnik, G; 10.1613/jair.1829

    2011-01-01

    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conv...

  17. Facilitating Conversations about Managerial Identities

    DEFF Research Database (Denmark)

    Madsen, Mona Toft

    for identity work was introduced. The empirical starting point was progressive performativity and constructionistic process consultation with the intention to engage with a practical context, a company. The empirical study was based on a) individual interviews with three middle managers in a project......-based organization in the engineering consulting sector b) a reflection meeting, where the same three managers were gathered, and conversations were facilitated based on identity work in the context of earlier interviews. More specifically, three themes were discussed; flat organizational structure, tensions between...... project work and professional development, and the role of Department Heads. Theoretically, the study contributes to discussions on the need for legitimizing different mixtures of bureaucratic and post bureaucratic ideals. Methodological reflections are made in the discussion as well....

  18. Video Format Conversion Chip Design

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper introduces the design of an IC, which is capable of cross-converting between various DTV standards, up to the HDTV resolution. A multi-phase FIR-based filtering algorithm is developed to perform the video scaling tasks. A dedicated fast SDRAM interface is designed in the system, providing an economical high-density storage for frame buffer. Meanwhile, film material pre-processing and frame/field rate up-conversion are also implemented in the memory control block. Finally, all the programmable parameters, such as the filter properties, can be set dynamically at run-time through an I2C interface, making the IC a very flexible system.This design has been verified through an FPGA emulation system. Subjective test of the output images indicates that the IC is a suitable and high quality solution to consumer applications.

  19. Conversation Analysis in Applied Linguistics

    DEFF Research Database (Denmark)

    Kasper, Gabriele; Wagner, Johannes

    2014-01-01

    with understanding fundamental issues of talk in action and of intersubjectivity in human conduct. The field has expanded its scope from the analysis of talk—often phone calls—towards an integration of language with other semiotic resources for embodied action, including space and objects. Much of this expansion has...... been driven by applied work. After laying out CA's standard practices of data treatment and analysis, this article takes up the role of comparison as a fundamental analytical strategy and reviews recent developments into cross-linguistic and cross-cultural directions. The remaining article focuses......For the last decade, conversation analysis (CA) has increasingly contributed to several established fields in applied linguistics. In this article, we will discuss its methodological contributions. The article distinguishes between basic and applied CA. Basic CA is a sociological endeavor concerned...

  20. A Map Enters the Conversation

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    Over the past decade STS scholars have been engaged in a continuous dialogue about the performativity of their methods and the interventions of their research practices. A frequently posed question is how STS can make a difference to its fields of study, what John Law has called its different...... 'modes of mattering'. In this paper I explore what difference digital cartography can make to STS practice. I draw on three examples from my own work where digitally mediated maps have entered the conversation and made critical, often surprising, differences to the research process. In my first example...... the map is brought along as an ethnographic device on a piece of fieldwork, in my second example it serves as the central collaborative object in a participatory design project, and in my third example the map becomes the object of contestation as it finds itself centre stage in the controversy...