WorldWideScience

Sample records for becquerelite

  1. Uranium minerals from the San Marcos District, Chihuahua, Mexico

    Science.gov (United States)

    Reyes-Cortés, Manuel; Fuentes-Cobas, Luis; Torres-Moye, Enrique; Esparza-Ponce, Hilda; Montero-Cabrera, María Elena

    2010-05-01

    The mineralogy of the two uranium deposits (Victorino and San Marcos I) of Sierra San Marcos, located 30 km northwest of Chihuahua City, Mexico, was studied by optical microscopy, powder X-ray diffraction with Rietveld analysis, scanning electron microscopy with energy dispersive X-ray analysis, inductively coupled plasma spectrometry, and gamma spectrometry. At the San Marcos I deposit, uranophane Ca(UO2)2Si2O7·6(H2O) (the dominant mineral at both deposits) and metatyuyamunite Ca(UO2)(V2O8)·3(H2O) were observed. Uranophane, uraninite (UO2+x), masuyite Pb(UO2)3O3(OH)·3(H2O), and becquerelite Ca(UO2)6O4(OH)6 ·(8H2O) are present at the Victorino deposit. Field observations, coupled with analytical data, suggest the following sequence of mineralization: (1) deposition of uraninite, (2) alteration of uraninite to masuyite, (3) deposition of uranophane, (4) micro-fracturing, (5) calcite deposition in the micro-fractures, and (6) formation of becquerelite. The investigated deposits were formed by high-to low-temperature hydrothermal activity during post-orogenic evolution of Sierra San Marcos. The secondary mineralization occurred through a combination of hydrothermal and supergene alteration events. Becquerelite was formed in situ by reaction of uraninite with geothermal carbonated solutions, which led to almost complete dissolution of the precursor uraninite. The Victorino deposit represents the second known occurrence of becquerelite in Mexico, the other being the uranium deposits at Peña Blanca in Chihuahua State.

  2. Products of in Situ Corrosion of Depleted Uranium Ammunition in Bosnia and Herzegovina Soils.

    Science.gov (United States)

    Wang, Yuheng; von Gunten, Konstantin; Bartova, Barbora; Meisser, Nicolas; Astner, Markus; Burger, Mario; Bernier-Latmani, Rizlan

    2016-11-15

    Hundreds of tons of depleted uranium (DU) ammunition were used in previous armed conflicts in Iraq, Bosnia and Herzegovina, and Serbia/Kosovo. The majority (>90%) of DU penetrators miss their target and, if left in the environment, corrode in these postconflict zones. Thus, the best way to understand the fate of bulk DU material in the environment is to characterize the corrosion products of intact DU penetrators under field conditions for extended periods of time. However, such studies are scarce. To fill this knowledge gap, we characterized corrosion products formed from two intact DU penetrators that remained in soils in Bosnia and Herzegovina for over seven years. We used a combination of X-ray powder diffraction, electron microscopy, and X-ray absorption spectroscopy. The results show that metaschoepite (UO3(H2O)2) was a main component of the two DU corrosion products. Moreover, studtite ((UO2)O2(H2O)2·2(H2O)) and becquerelite (Ca(UO2)6O4(OH)6·8(H2O)) were also identified in the corrosion products. Their formation through transformation of metaschoepite was a result of the geochemical conditions under which the penetrators corroded. Moreover, we propose that the transformation of metaschoepite to becquerelite or studtite in the DU corrosion products would decrease the potential for mobilization of U from corroded DU penetrators exposed to similar environments in postconflict areas.

  3. An investigation of the interactions of Eu³⁺ and Am³⁺ with uranyl minerals: implications for the storage of spent nuclear fuel.

    Science.gov (United States)

    Biswas, Saptarshi; Steudtner, Robin; Schmidt, Moritz; McKenna, Cora; León Vintró, Luis; Twamley, Brendan; Baker, Robert J

    2016-04-21

    The reaction of a number of uranyl minerals of the (oxy)hydroxide, phosphate and carbonate types with Eu(iii), as a surrogate for Am(iii), have been investigated. A photoluminescence study shows that Eu(iii) can interact with the uranyl minerals Ca[(UO2)6(O)4(OH)6]·8H2O (becquerelite) and A[UO2(CO3)3]·xH2O (A/x = K3Na/1, grimselite; CaNa2/6, andersonite; and Ca2/11, liebigite). For the minerals [(UO2)8(O)2(OH)12]·12H2O (schoepite), K2[(UO2)6(O)4(OH)6]·7H2O (compreignacite), A[(UO2)2(PO4)2]·8H2O (A = Ca, meta-autunite; Cu, meta-torbernite) and Cu[(UO2)2(SiO3OH)2]·6H2O (cuprosklodowskite) no Eu(iii) emission was observed, indicating no incorporation into, or sorption onto the structure. In the examples with Eu(3+) incorporation, sensitized emission is seen and the lifetimes, hydration numbers and quantum yields have been determined. Time Resolved Laser Induced Fluroescence Spectroscpoy (TRLFS) at 10 K have also been measured and the resolution enhancements at these temperatures allow further information to be derived on the sites of Eu(iii) incorporation. Infrared and Raman spectra are recorded, and SEM analysis show significant morphology changes and the substitution of particularly Ca(2+) by Eu(3+) ions. Therefore, Eu(3+) can substitute Ca(2+) in the interlayers of becquerelite and liebigite and in the structure of andersonite, whilst in grimselite only sodium is exchanged. These results have guided an investigation into the reactions with (241)Am on a tracer scale and results from gamma-spectrometry show that becquerelite, andersonite, grimselite, liebigite and compreignacite can include americium in the structure. Shifts in the U[double bond, length as m-dash]O and C-O Raman active bands are similar to that observed in the Eu(iii) analogues and Am(iii) photoluminescence measurements are also reported on these phases; the Am(3+) ion quenches the emission from the uranyl ion.

  4. New french uranium mineral species; Nouvelles especes uraniferes francaises

    Energy Technology Data Exchange (ETDEWEB)

    Branche, G.; Chervet, J.; Guillemin, C. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; {beta} uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the {alpha} uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [French] Dans ce travail, les auteurs etudient les nouveaux mineraux uraniferes francais: parsonsite et renardite, phosphates hydrates de plomb et d'uranium; kasolite: silicate hydrate d'uranium et de plomb uranopilite: sulfate d'uranium hydrate; bayleyite: carbonate d'uranium et de magnesium hydrate; {beta} uranolite: silicate d'uranium et de calcium hydrate. Pour tous ces mineraux, les auteurs donnent les caracteres cristallographiques, optiques, et les analyses chimiques quantitatives. Par contre, les especes suivantes, tres rares dans les gites francais, n'ont pas permis d'effectuer d'analyses quantitatives. Ce sont: l'ianthinite: oxyde uraneux hydrate; l'{alpha} uranotile: silicate d'uranium et de calcium hydrate; le bassetite: phosphate d'uranium et de fer hydrate; la hosphuranylite: phosphate duranium hydrate; la becquerelite: oxyde d'uranium hydrate; la curite: oxyde d

  5. Corrosion of Uranium in Desert Soil, with Application to GCD Source Term M

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, HOWARD L.; BACA, JULIANNE; KRUMHANSL, JAMES L.; STOCKMAN, HARLAN W.; THOMPSON, MOLLIE E.

    1999-09-01

    Uranium fragments from the Sandia Sled Track were studied as analogues for weapons components and depleted uranium buried at the Greater Confinement Disposal (GCD) site in Nevada. The Sled Track uranium fragments originated as weapons mockups and counterweights impacted on concrete and soil barriers, and experienced heating and fragmentation similar to processes thought to affect the Nuclear Weapons Accident Residues (NWAR) at GCD. Furthermore, the Sandia uranium was buried in unsaturated desert soils for 10 to 40 years, and has undergone weathering processes expected to affect the GCD wastes. Scanning electron microscopy, X-ray diffraction and microprobe analyses of the fragments show rapid alteration from metals to dominantly VI-valent oxy-hydroxides. Leaching studies of the samples give results consistent with published U-oxide dissolution rates, and suggest longer experimental periods (ca. 1 year) would be required to reach equilibrium solution concentrations. Thermochemical modeling with the EQ3/6 code indicates that the uranium concentrations in solutions saturated with becquerelite could increase as the pore waters evaporate, due to changes in carbonate equilibria and increased ionic strength.

  6. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Zachara, J.M.; Liu, C.; Gassman, P.L.; Felmy, A.R. [Pacific Northwest National Lab., Richland, WA (United States); Clark, S.B. [Washington State Univ., Pullman, WA (United States)

    2008-07-01

    In this work we applied time-resolved laser-induced fluorescence spectroscopy (TRLIF) at both room temperature (RT) and near liquid-helium temperature (6 K) to characterize a series of natural and synthetic minerals of uranium carbonate, phosphate and oxyhydroxides including rutherfordine, zellerite, liebigite, phosphuranylite, meta-autunite, meta-torbernite, uranyl phosphate, sodium-uranyl-phosphate, becquerelite, schoepite, meta-schoepite, dehydrated schoepite and compreignacite, and have compared the spectral characteristics among these minerals as well as our previously published data on uranyl silicates. For the carbonate minerals, the fluorescence spectra of rutherfordine showed significant difference from those of zellerite and liebigite. The fluorescence spectra of the phosphate minerals closely resemble each other despite the differences in their composition and structure. For all uranium oxyhydroxides, the fluorescence spectra are largely red-shifted as compared to those of the uranium carbonates and phosphates and their vibronic bands are broad and less resolved at RT. The enhanced spectra resolution at 6 K allows more accurate determination of the fluorescence band origin and offers a complemental method to measure the O=U=O symmetrical stretch frequency, {nu}{sub 1}, from the spacings of the vibronic bands of the fluorescence spectra. The average {nu}{sub 1} values appear to be inversely correlated with the average pK{sub a} values of the anions. (orig.)

  7. Thermodynamics of Uranyl Minerals: Enthalpies of Formation of Uranyl Oxide Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    K. Kubatko; K. Helean; A. Navrotsky; P.C. Burns

    2005-05-11

    The enthalpies of formation of seven uranyl oxide hydrate phases and one uranate have been determined using high-temperature oxide melt solution calorimetry: [(UO{sub 2}){sub 4}O(OH){sub 6}](H{sub 2}O){sub 5}, metaschoepite; {beta}-UO{sub 2}(OH){sub 2}; CaUO{sub 4}; Ca(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 8}, becquerelite; Ca(UO{sub 2}){sub 4}O{sub 3}(OH){sub 4}(H{sub 2}O){sub 2}; Na(UO{sub 2})O(OH), clarkeite; Na{sub 2}(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 7}, the sodium analogue of compreignacite and Pb{sub 3}(UO{sub 2}){sub 8}O{sub 8}(OH){sub 6}(H{sub 2}O){sub 2}, curite. The enthalpy of formation from the binary oxides, {Delta}H{sub f-ox}, at 298 K was calculated for each compound from the respective drop solution enthalpy, {Delta}H{sub ds}. The standard enthalpies of formation from the elements, {Delta}H{sub f}{sup o}, at 298 K are -1791.0 {+-} 3.2, -1536.2 {+-} 2.8, -2002.0 {+-} 3.2, -11389.2 {+-} 13.5, -6653.1 {+-} 13.8, -1724.7 {+-} 5.1, -10936.4 {+-} 14.5 and -13163.2 {+-} 34.4 kJ mol{sup -1}, respectively. These values are useful in exploring the stability of uranyl oxide hydrates in auxiliary chemical systems, such as those expected in U-contaminated environments.

  8. Dissolution of unirradiated UO{sub 2} fuel in synthetic groundwater. Final report (1996-1998)

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled `Source term for performance assessment of spent fuel as a waste form`. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO{sub 2} solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO{sub 2} solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N{sub 2}, O{sub 2} < l ppm) to reducing (N{sub 2}, low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO{sub 2} pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO{sub 2} powder showed that the increase in the salinity (< 1.7 M) had a minor effect on the measured steady-state concentrations of U. The concentrations, (1.2 ...2.5) x 10{sup -5} M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U{sub 3}O{sub 8}-UO{sub 3}) was identified with XRD when studying possible secondary phases after the contact time of one year

  9. An integrated study of uranyl mineral dissolution processes. Etch pit formation, effects of cations in solution, and secondary precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, M. [Laurentian Univ., Sudbury, ON (Canada). Dept. of Earth Sciences; Hawthorne, F.C. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Geological Sciences; Mandaliev, P. [Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland). Dept. of Environmental Sciences; Burns, P.C.; Maurice, P.A. [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences

    2011-07-01

    Understanding the mechanism(s) of uranium-mineral dissolution is crucial for predictive modeling of U mobility in the subsurface. In order to understand how pH and type of cation in solution may affect dissolution, experiments were performed on mainly single crystals of curite, Pb{sup 2+}{sub 3}(H{sub 2}O){sub 2}[(UO{sub 2}){sub 4}O{sub 4}(OH){sub 3}]{sub 2}, becquerelite, Ca(H{sub 2}O){sub 8}[(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}], billietite, Ba(H{sub 2}O){sub 7}[(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}], fourmarierite Pb{sup 2+}{sub 1-x}(H{sub 2}O){sub 4}[(UO{sub 2}){sub 4}O{sub 3-2x}(OH){sub 4+2x}] (x= 0.00-0.50), uranophane, Ca(H{sub 2}O){sub 5}[(UO{sub 2})(SiO{sub 3}OH)]{sub 2}, zippeite, K{sub 3}(H{sub 2}O){sub 3}[(UO{sub 2}){sub 4}(SO{sub 4}){sub 2}O{sub 3}(OH)], and Na-substituted metaschoepite, Na{sub 1-x}[(UO{sub 2}){sub 4}O{sub 2-x}(OH){sub 5+x}] (H{sub 2}O){sub n}. Solutions included: deionized water; aqueous HCl solutions at pH 3.5 and 2; 0.5 mol L{sup -1} Pb(II)-, Ba-, Sr-, Ca-, Mg-, HCl solutions at pH 2; 1.0 mol L{sup -1} Na- and K-HCl solutions at pH 2; and a 0.1 mol L{sup -1} Na{sub 2}CO{sub 3} solution at pH 10.5. Uranyl mineral basal surface microtopography, micromorphology, and composition were examined prior to, and after dissolution experiments on micrometer scale specimens using atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Evolution of etch pit depth at different pH values and experimental durations can be explained using a stepwave dissolution model. Effects of the cation in solution on etch pit symmetry and morphology can be explained using an adsorption model involving specific surface sites. Surface precipitation of the following phases was observed: (a) a highly-hydrated uranyl-hydroxy-hydrate in ultrapure water (on all minerals), (b) a Na-uranyl-hydroxy-hydrate in Na{sub 2}CO{sub 3} solution of pH 10.5 (on uranyl-hydroxy-hydrate minerals), (c) a Na-uranyl-carbonate on zippeite, (d) Ba- and