WorldWideScience

Sample records for becquerelite

  1. The transformation of uranyl oxide hydrates: The effect of dehydration on synthetic metaschoepite and its alteration to becquerelite

    International Nuclear Information System (INIS)

    Sowder, A.G.; Clark, S.B.; Fjeld, R.A.

    1999-01-01

    The U(VI) solid phases schoepite, metaschoepite, and dehydrated schoepite are important reservoirs of mobile uranium in the environment. These simple uranyl oxide hydrates result from weathering of uranium minerals and the corrosion of anthropogenic uranium solids. The authors have studied the role of hydrational water among these phases and in subsequent transformation to other secondary metal-U(VI) oxide hydrates. Synthetic metaschoepite (MS, UO 3 ·2.0H 2 O), its dehydrated phases, and its secondary alteration products were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), and high-resolution thermogravimetric analysis (HRTGA). Drying MS at 105 C resulted in the formation of a dehydrated phase (UO 3 ·0.9H 2 O) that was structurally distinct from natural dehydrated schoepite (DS, UO 3 ·0.75H 2 O) reported by others. Unlike natural DS, their dehydrated material was easily rehydrated, although crystallinity of the rehydrated phase was reduced. The rates of transformation of synthetic MS and dehydrated MS in the presence of Ca 2+ to form becquerelite (Ca[(UO 2 ) 6 O 4 (OH) 6 ]·8H 2 O) were determined. Alteration rates were significantly faster when the starting material had been dehydrated. These results are explained in the context of structural aspects of U(VI) solid phases, and the possible impact of hydration on long-term stability of U(VI) oxide hydrates in environmental systems is discussed

  2. Uranium minerals from the San Marcos District, Chihuahua, Mexico

    Science.gov (United States)

    Reyes-Cortés, Manuel; Fuentes-Cobas, Luis; Torres-Moye, Enrique; Esparza-Ponce, Hilda; Montero-Cabrera, María Elena

    2010-05-01

    The mineralogy of the two uranium deposits (Victorino and San Marcos I) of Sierra San Marcos, located 30 km northwest of Chihuahua City, Mexico, was studied by optical microscopy, powder X-ray diffraction with Rietveld analysis, scanning electron microscopy with energy dispersive X-ray analysis, inductively coupled plasma spectrometry, and gamma spectrometry. At the San Marcos I deposit, uranophane Ca(UO2)2Si2O7·6(H2O) (the dominant mineral at both deposits) and metatyuyamunite Ca(UO2)(V2O8)·3(H2O) were observed. Uranophane, uraninite (UO2+x), masuyite Pb(UO2)3O3(OH)·3(H2O), and becquerelite Ca(UO2)6O4(OH)6 ·(8H2O) are present at the Victorino deposit. Field observations, coupled with analytical data, suggest the following sequence of mineralization: (1) deposition of uraninite, (2) alteration of uraninite to masuyite, (3) deposition of uranophane, (4) micro-fracturing, (5) calcite deposition in the micro-fractures, and (6) formation of becquerelite. The investigated deposits were formed by high-to low-temperature hydrothermal activity during post-orogenic evolution of Sierra San Marcos. The secondary mineralization occurred through a combination of hydrothermal and supergene alteration events. Becquerelite was formed in situ by reaction of uraninite with geothermal carbonated solutions, which led to almost complete dissolution of the precursor uraninite. The Victorino deposit represents the second known occurrence of becquerelite in Mexico, the other being the uranium deposits at Peña Blanca in Chihuahua State.

  3. Characterization of uranium minerals from Chihuahua using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Burciaga V, D. C.; Reyes C, M.; Reyes R, A.; Renteria V, M.; Esparza P, H.; Fuentes C, L.; Fuentes M, L; Silva S, M.; Herrera P, E.; Munoz, A.; Montero C, M. E. [Centro de Investigacion en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua (Mexico)

    2010-02-15

    Uranium mineral deposits in the vicinity of Chihuahua City (northern Mexico) have motivated a multidisciplinary investigation due to their tech no-environmental importance. It provides a broad scope study of representative mineral samples extracted from the San Marcos deposit, located northwest of Chihuahua City. The zone of interest is the source of the Sacramento River, which runs at Chihuahua City. The high uranium content of the San Marcos deposit, which was formed by hydrothermal mineralization, has resulted in elevated levels of uranium in surface and ground water, fish, plants and sediments in this region. Mineral identification of the uranium-bearing phases was accomplished with a suite of techniques. Among these phases are those called meta tyuyamunite (Ca(UO{sub 2}){sub 2}(VO{sub 4}){sub 2{center_dot}}3-5 H{sub 2}O) and becquerelite [Ca(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6{center_dot}}8(H{sub 2}O)]. It was decided to study an almost pure meta tyuyamunite sample extracted from Pena Blanca, Chihuahua uranium ore and to synthesize the becquerelite, using a modified procedure from a published one. In the current work the crystal structure of meta tyuyamunite is presented, resolved by the Rietveld refinement. Both samples were studied by X-ray absorption fine structure at beamline 2-3, Stanford Synchrotron Radiation Light source. In the present work both the spectra and extended X-ray absorption fine structure parameters are presented. (Author)

  4. Characterization of uranium minerals from Chihuahua using synchrotron radiation

    International Nuclear Information System (INIS)

    Burciaga V, D. C.; Reyes C, M.; Reyes R, A.; Renteria V, M.; Esparza P, H.; Fuentes C, L.; Fuentes M, L; Silva S, M.; Herrera P, E.; Munoz, A.; Montero C, M. E.

    2010-01-01

    Uranium mineral deposits in the vicinity of Chihuahua City (northern Mexico) have motivated a multidisciplinary investigation due to their tech no-environmental importance. It provides a broad scope study of representative mineral samples extracted from the San Marcos deposit, located northwest of Chihuahua City. The zone of interest is the source of the Sacramento River, which runs at Chihuahua City. The high uranium content of the San Marcos deposit, which was formed by hydrothermal mineralization, has resulted in elevated levels of uranium in surface and ground water, fish, plants and sediments in this region. Mineral identification of the uranium-bearing phases was accomplished with a suite of techniques. Among these phases are those called meta tyuyamunite (Ca(UO 2 ) 2 (VO 4 ) 2 ·3-5 H 2 O) and becquerelite [Ca(UO 2 ) 6 O 4 (OH) 6 ·8(H 2 O)]. It was decided to study an almost pure meta tyuyamunite sample extracted from Pena Blanca, Chihuahua uranium ore and to synthesize the becquerelite, using a modified procedure from a published one. In the current work the crystal structure of meta tyuyamunite is presented, resolved by the Rietveld refinement. Both samples were studied by X-ray absorption fine structure at beamline 2-3, Stanford Synchrotron Radiation Light source. In the present work both the spectra and extended X-ray absorption fine structure parameters are presented. (Author)

  5. New french uranium mineral species

    International Nuclear Information System (INIS)

    Branche, G.; Chervet, J.; Guillemin, C.

    1952-01-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; β uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the α uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [fr

  6. Kinetic and thermodynamic studies of uranium minerals. Assessment of the long-term evolution of spent nuclear fuel

    International Nuclear Information System (INIS)

    Casas, I.; Bruno, J.; Cera, E.; Finch, R.J.; Ewing, R.C.

    1994-10-01

    We have studied the dissolution behavior of uraninite, becquerelite, schoepite and uranophane. The information obtained under a variety of experimental conditions has been combined with extensive solid phase characterizations, performed in both leached and unleached samples. The overall objective is to construct a thermodynamic and kinetic model for the long-term oxidation alteration of UO 2 (s), as an analogy of the spent nuclear fuel matrix. We have determined the solubility product for becquerelite (logK s0 32.7±1.3) and uranophane (logK s0 = 7.8±0.8). In some experiments, the reaction progress has shown initial dissolution of uranophane followed by precipitation of a secondary solid phase, characterized as soddyite. The solubility production for this phase has been determined (logK s0 = 3.0±2.9). We have studied the kinetics of dissolution of uraninite, uranophane and schoepite under oxidizing conditions in synthetic granitic groundwater. BET measurements have been performed for uraninite and uranophane. For schoepite, the measurement has not been performed due to lack of sufficient amount of sample. The normalized rates of dissolution of uraninite and uranophane have been calculated referred to the uranium release, as 1.97x10 -8 moles h -1 m -2 and 4.0x 10 -9 moles h -1 m -2 , respectively. For schoepite, the dissolution process has shown two different rates, with a relatively fast initial dissolution rate of 1.97x10 -8 moles h -1 followed, after approximately 1000 hours, by a slower one of 1.4x10 -9 moles h -1 . No formation of secondary phases has been observed in those experiments, although final uranium concentrations have in all cases exceeded the solubility of uranophane, the thermodynamically more stable phase under the experimental conditions. 24 refs, 45 figs

  7. Sensitivity analysis of uranium solubility under strongly oxidizing conditions

    International Nuclear Information System (INIS)

    Liu, L.; Neretnieks, I.

    1999-01-01

    To evaluate the effect of geochemical conditions in the repository on the solubility of uranium under strongly oxidizing conditions, a mathematical model has been developed to determine the solubility, by utilizing a set of nonlinear algebraic equations to describe the chemical equilibria in the groundwater environment. The model takes into account the predominant precipitation-dissolution reactions, hydrolysis reactions and complexation reactions that may occur under strongly oxidizing conditions. The model also includes the solubility-limiting solids induced by the presence of carbonate, phosphate, silicate, calcium, and sodium in the groundwater. The thermodynamic equilibrium constants used in the solubility calculations are essentially taken from the NEA Thermochemical Data Base of Uranium, with some modification and some uranium minerals added, such as soddyite, rutherfordite, uranophane, uranyl orthophosphate, and becquerelite. By applying this model, the sensitivities of uranium solubility to variations in the concentrations of various groundwater component species are systematically investigated. The results show that the total analytical concentrations of carbonate, phosphate, silicate, and calcium in deep groundwater play the most important role in determining the solubility of uranium under strongly oxidizing conditions

  8. Thermodynamics of Uranyl Minerals: Enthalpies of Formation of Uranyl Oxide Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    K. Kubatko; K. Helean; A. Navrotsky; P.C. Burns

    2005-05-11

    The enthalpies of formation of seven uranyl oxide hydrate phases and one uranate have been determined using high-temperature oxide melt solution calorimetry: [(UO{sub 2}){sub 4}O(OH){sub 6}](H{sub 2}O){sub 5}, metaschoepite; {beta}-UO{sub 2}(OH){sub 2}; CaUO{sub 4}; Ca(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 8}, becquerelite; Ca(UO{sub 2}){sub 4}O{sub 3}(OH){sub 4}(H{sub 2}O){sub 2}; Na(UO{sub 2})O(OH), clarkeite; Na{sub 2}(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 7}, the sodium analogue of compreignacite and Pb{sub 3}(UO{sub 2}){sub 8}O{sub 8}(OH){sub 6}(H{sub 2}O){sub 2}, curite. The enthalpy of formation from the binary oxides, {Delta}H{sub f-ox}, at 298 K was calculated for each compound from the respective drop solution enthalpy, {Delta}H{sub ds}. The standard enthalpies of formation from the elements, {Delta}H{sub f}{sup o}, at 298 K are -1791.0 {+-} 3.2, -1536.2 {+-} 2.8, -2002.0 {+-} 3.2, -11389.2 {+-} 13.5, -6653.1 {+-} 13.8, -1724.7 {+-} 5.1, -10936.4 {+-} 14.5 and -13163.2 {+-} 34.4 kJ mol{sup -1}, respectively. These values are useful in exploring the stability of uranyl oxide hydrates in auxiliary chemical systems, such as those expected in U-contaminated environments.

  9. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 2. Contaminant release model.

    Science.gov (United States)

    Cantrell, Kirk J; Krupka, Kenneth M; Deutsch, William J; Lindberg, Michael J

    2006-06-15

    Release of U and 99Tc from residual sludge in Hanford waste tanks 241-C-203 and 241-C-204 atthe U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington state was quantified by water-leaching, selective extractions, empirical solubility measurements, and thermodynamic modeling. A contaminant release model was developed based on these experimental results and solid-phase characterization results presented elsewhere. Uranium release was determined to be controlled by two phases and occurred in three stages. In the first stage, U release is controlled by the solubility of tejkaite, which is suppressed by high concentrations of sodium released from the dissolution of NaNO3 in the residual sludges. Equilibrium solubility calculations indicate the U released during this stage will have a maximum concentration of 0.021 M. When all the NaNO3 has dissolved from the sludge, the solubility of the remaining cejkaite will increase to 0.28 M. After cejkaite has completely dissolved, the majority of the remaining U is in the form of poorly crystalline Na2U2O7 [or clarkeite Na[(UO2)O(OH)](H20)0-1]. In contact with Hanford groundwater this phase is not stable, and becquerelite becomes the U solubility controlling phase, with a calculated equilibrium concentration of 1.2 x 10(-4) M. For Tc, a significant fraction of its concentration in the residual sludge was determined to be relatively insoluble (20 wt % for C-203 and 80 wt % for C-204). Because of the low concentrations of Tc in these sludge materials, the characterization studies did not identify any discrete Tc solids phases. Release of the soluble fraction of Tc was found to occur concomitantly with NO3-. It was postulated that a NaNO3-NaTcO4 solid solution could be responsible for this behavior. The Tc release concentrations for the soluble fraction were estimated to be 2.4 x 10-6 M for C-203 and 2.7 x 10(-5) M for C-204. Selective extraction results indicated that the recalcitrant fraction of Tc was