WorldWideScience

Sample records for becker muscular dystrophy

  1. Cardiomyopathy in becker muscular dystrophy:Overview

    Institute of Scientific and Technical Information of China (English)

    Rady Ho; My-Le Nguyen; Paul Mather

    2016-01-01

    Becker muscular dystrophy(BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed.

  2. Peter Becker and his Nazi past: the man behind Becker muscular dystrophy and Becker myotonia.

    Science.gov (United States)

    Zeidman, Lawrence A; Kondziella, Daniel

    2014-04-01

    Peter Becker was a German neurologist who helped classify the muscular dystrophies, and described Becker muscular dystrophy and Becker myotonia. His involvement in National Socialism began in 1933, when he was compelled by his peers to join the SA (brown shirts). He later joined the Nazi party, the Nazi Doctors Association, and the Nazi Lecturers' Association. He renewed his SA membership to maintain his position at a genetics institute. Colleagues stated postwar that he was not an active Nazi, and he was de-Nazified in 1947, able to continue his career. Later, Becker admitted to most, but not all, of his Nazi memberships in his autobiography, and wrote 2 books exploring the origins of Nazism and racial hygiene. The "neurologic court of opinion" must weigh in on how we should best remember Becker, and at the very least, we as neurologists must learn the dangers of career opportunism at any cost.

  3. Valley sign in Becker muscular dystrophy and outliers of Duchenne and Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Pradhan Sunil

    2004-04-01

    Full Text Available Valley sign has been described in patients with Duchenne muscular dystrophy (DMD. As there are genetic and clinical similarities between DMD and Becker muscular dystrophy (BMD, this clinical sign is evaluated in this study in BMD and DMD/BMD outliers. To evaluate the sign, 28 patients with Becker muscular dystrophy (BMD, 8 DMD/BMD outliers and 44 age-matched male controls with other neuromuscular diseases were studied. The sign was examined after asking patients to abduct their arms to about 90ºwith hands directed upwards; the muscle bulk over the back of the shoulders was observed. The sign was considered positive if the infraspinatus and deltoid muscles were enlarged and between these two muscles, the muscles forming the posterior axillary fold were wasted as if there were a valley between the two mounts. Twenty-five BMD patients and 7 DMD/BMD outliers had positive valley sign. However, it was less remarkable in comparison to DMD. It was absent in all the 44 controls. It was concluded that the presence of valley sign may help in differentiating BMD from other progressive neuromuscular disorders of that age group.

  4. Resistance training in patients with limb-girdle and becker muscular dystrophies

    DEFF Research Database (Denmark)

    Sveen, Marie-Louise; Andersen, Søren P; Ingelsrud, Lina H;

    2013-01-01

    In this study we investigated the effect of strength training in patients with limb-girdle muscular dystrophy (LGMD) and Becker muscular dystrophy (BMD).......In this study we investigated the effect of strength training in patients with limb-girdle muscular dystrophy (LGMD) and Becker muscular dystrophy (BMD)....

  5. Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy

    NARCIS (Netherlands)

    Hoogerwaard, EM; van der Wouw, PA; Wilde, AAM; Bakker, E; Ippel, PF; Oosterwijk, JC; Majoor-Krakauer, DF; van Essen, AJ; Leschot, NJ; de Visser, M

    1999-01-01

    A cross-sectional study in a cohort of DNA proven carriers of Duchenne (DMD) and Becker (BMD) muscular dystrophy was undertaken with the following objectives: (1) to estimate the frequency of electrocardiographic (ECG) and echocardiographic abnormalities; (2) to establish the proportion of carriers

  6. Cardiac involvement in Duchenne and Becker muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Sophie; Mavrogeni; George; Markousis-Mavrogenis; Antigoni; Papavasiliou; Genovefa; Kolovou

    2015-01-01

    Duchenne and Becker muscular dystrophy(DMD/BMD) are X-linked muscular diseases responsible for over 80% of all muscular dystrophies. Cardiac disease is a common manifestation,not necessarily related to the degree of skeletal myopathy; it may be the predominant manifestation with or without any other evidence of muscular disease. Death is usually due to ventricular dysfunction,heart block or malignant arrhythmias. Not only DMD/BMD patients,but also female carriers may present cardiac involvement. Clinically overt heart failure in dystrophinopathies may be delayed or absent,due to relative physical inactivity. The commonest electrocardiographic findings include conduction defects,arrhythmias(supraventricular or ventricular),hypertrophy and evidence of myocardial necrosis. Echocardiography can assess a marked variability of left ventricular dysfunction,independently of age of onset or mutation groups. Cardiovascular magnetic resonance(CMR) has documented a pattern of epicardial fibrosis in both dystrophinopathies’ patients and carriers that can be observed even if overt muscular disease is absent. Recently,new CMR techniques,such as postcontrast myocardial T1 mapping,have been used in Duchenne muscular dystrophy to detect diffuse myocardial fibrosis. A combined approach using clinical assessment and CMR evaluation may motivate early cardioprotective treatment in both patients and asymptomatic carriers and delay the development of serious cardiac complications.

  7. Signs and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in the Netherlands : a cohort study

    NARCIS (Netherlands)

    Hoogerwaard, EM; Bakker, E; Ippel, PF; Oosterwijk, JC; Majoor-Krakauer, DF; Leschot, NJ; Van Essen, AJ; Brunner, HG; van der Wouw, PA; Wilde, AAM; de Visser, M

    1999-01-01

    Background Carriers of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) may show muscle weakness or dilated cardiomyopathy. Studies focusing on skeletal-muscle involvement were done before DNA analysis was possible. We undertook a cross-sectional study in a population of definit

  8. Cardiac involvement in patients with limb-girdle muscular dystrophy type 2 and Becker muscular dystrophy

    DEFF Research Database (Denmark)

    Sveen, Marie-Louise; Thune, Jens Jakob; Køber, Lars;

    2008-01-01

    of dystrophic changes on muscle biopsy. CONCLUSIONS: This study demonstrates a high prevalence of cardiac involvement in patients with LGMD2I, LGMD2E, and BMD. Patients with LGMD2A, LGMD2D, and unclassified LGMD2 have a much lower and milder prevalence of cardiac involvement.......OBJECTIVE: To investigate the extent of cardiac involvement in patients with 1 of the 12 groups of recessively inherited limb-girdle muscular dystrophy type 2 (LGMD2A-L) and Becker muscular dystrophy (BMD). DESIGN: Prospective screening. SETTING: Neuromuscular Clinic and Department of Cardiology...... at Rigshospitalet. Patients One hundred one patients with LGMD2A-I and BMD and 29 patients with LGMD2 and no molecular diagnosis. MAIN OUTCOME MEASURES: Clinical investigation, echocardiography, and electrocardiographic findings. RESULTS: Cardiac involvement was present in 24 of 100 patients (24%) with LGMD2A...

  9. Measuring Disease Severity in Duchenne and Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Melinda F. Davis

    2010-10-01

    Full Text Available Medical investigations use a wide variety of outcome indicators that are often not comparable. It can be challenging to integrate results across multiple studies that do not share a common metric. Some conditions such as Duchenne and Becker muscular dystrophy have a predictable course of disease progression. Severity can be inferred from a patient's medical history. This paper describes the development of a disease severity measure using common markers of disease progression. Rasch modeling was used to estimate severity using dichotomous events that indicate disease progression. Caregivers of 34 young men with Duchenne or Becker muscular dystrophy completed structured interviews about their care and medical history. Interview questions included surgeries (tendon release, scoliosis, tracheostomy, respiratory equipment (assisted ventilation, cough assist devices, and the use of other medical equipment (e.g., braces, walkers, wheelchairs, transfer boards, hospital beds. The resulting measure had a reliability of .83. The correlation between the severity measure and the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS was .68. Preliminary results and item calibrations are provided for the severity measure that can be estimated from caregiver reports or administrative data. DOI: 10.2458/azu_jmmss.v1i1.76

  10. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. (Penn State College of Medicine, Hershey, PA (United States)); Shokeir, M. (Univ. Hospital, Saskatchewan (Canada))

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  11. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Directory of Open Access Journals (Sweden)

    Kazunari Momma

    Full Text Available Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  12. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Science.gov (United States)

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  13. Effect of sildenafil on skeletal and cardiac muscle in Becker muscular dystrophy

    DEFF Research Database (Denmark)

    Witting, Nanna; Kruuse, Christina; Nyhuus, Bo

    2014-01-01

    OBJECTIVE: Patients with Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy lack neuronal nitric oxide synthase (nNOS). nNOS mediates physiological sympatholysis, thus ensuring adequate blood supply to working muscle. In mice lacking dystrophin, restoration of nNOS effects by a phosp...

  14. Clinical genetic aspects of Duchenne and Becker muscular dystrophy in the Netherlands

    NARCIS (Netherlands)

    Helderman-van den Enden, Apollonia Theodora Josina Maria

    2012-01-01

    Dystrophinopathies include the well known Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). This thesis is a collection of several clinical and genetic studies on dystrophinopathies with implications for genetic counselling of patients and their families and for future therapy (

  15. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy

    NARCIS (Netherlands)

    van Westrum, S. M. Schade; Hoogerwaard, E. M.; Dekker, L.; Standaar, T. S.; Bakker, E.; Ippel, P. F.; Oosterwijk, J. C.; Majoor-Krakauer, D. F.; van Essen, A. J.; Leschot, N. J.; Wilde, A. A. M.; de Haan, R. J.; de Visser, M.; van der Kooi, A. J.

    2011-01-01

    Objectives: Cardiac involvement has been reported in carriers of dystrophin mutations giving rise to Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). The progress of these abnormalities during long-term follow-up is unknown. We describe the long-term follow-up of dilated cardio

  16. Serum Creatinine Level: A Supplemental Index to Distinguish Duchenne Muscular Dystrophy from Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Huili Zhang

    2015-01-01

    Full Text Available Background. To improve assessment of dystrophinopathy, the aim of this study was to identify whether serum creatinine (Crn level reflects disease severity. Methods. Biochemical, Vignos score, and genetic data were collected on 212 boys with dystrophinopathy. Results. Serum Crn level had a strong inverse correlation with Vignos score by simple correlation (r=-0.793 and partial correlation analysis after adjustment for age, height, and weight (r=-0.791; both P<0.01. Serum Crn level was significantly higher in patients with in-frame than out-of-frame mutations (Z=-4.716, P<0.01 and in Becker muscular dystrophy (BMD patients than Duchenne muscular dystrophy (DMD patients at ages 4, 5, 7, and 9 yr (all P<0.0125. After adjusting for age, height, and weight, BMD patients still had a significantly higher serum Crn level than DMD patients (β=7.140, t=6.277, P<0.01. Conclusions. Serum Crn level reflected disease severity and may serve as a supplemental index to distinguish DMD from BMD in clinical practice.

  17. Functional muscle ischemia in Duchenne and Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Gail D Thomas

    2013-12-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD/BMD comprise a spectrum of devastating X-linked muscle wasting disease for which there is no treatment. DMD/BMD is caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that stabilizes the muscle membrane and also targets other proteins to the sarcolemma. Among these is the muscle-specific isoform of neuronal nitric oxide synthase (nNOSµ which binds spectrin-like repeats within dystrophin’s rod domain and the adaptor protein α-syntrophin. Dystrophin deficiency causes loss of sarcolemmal nNOSµ and reduces paracrine signaling of muscle-derived nitric oxide (NO to the microvasculature, which renders the diseased muscle fibers susceptible to functional muscle ischemia during exercise. Repeated bouts of functional ischemia superimposed on muscle fibers already weakened by dystrophin deficiency result in use-dependent focal muscle injury. Genetic and pharmacologic strategies to boost nNOSµ-NO signaling in dystrophic muscle alleviate functional muscle ischemia and show promise as novel therapeutic interventions for the treatment of DMD/BMD.

  18. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2.

    Science.gov (United States)

    Witting, N; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest that this unusual phenotype is caused by translation re-initiation downstream from the mutation site.

  19. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic......, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest...

  20. The clinical and molecular genetic approach to Duchenne and Becker muscular dystrophy : an updated protocol

    NARCIS (Netherlands)

    vanEssen, AJ; Kneppers, ALJ; vanderHout, AH; Scheffer, H; Ginjaar, IB; tenKate, LP; vanOmmen, GJB; Buys, CHCM; Bakker, E

    1997-01-01

    Detection of large rearrangements in the dystrophin gene in Duchenne and Becker muscular dystrophy is possible in about 65-70% of patients by Southern blotting or multiplex PCR. Subsequently, carrier detection is possible by assessing the intensity of relevant bands, but preferably by a non-quantita

  1. Community-engaged approaches to explore research priorities in Duchenne and Becker muscular dystrophy

    NARCIS (Netherlands)

    Peay, Holly Landrum

    2015-01-01

    This thesis presents a series of translational research studies to explore topics of importance to a patient stakeholder community--Duchenne and Becker muscular dystrophy. The overarching objective was to inform a patient/family foundation's interventions and policy and advocacy approaches. Results

  2. Diagnosis of becker muscular dystrophy : Results of Re-analysis of DNA samples

    NARCIS (Netherlands)

    Straathof, Chiara S M; Van Heusden, Dave; Ippel, Pieternella F.; Post, Jan G.; Voermans, Nicol C.; De Visser, Marianne; Brusse, Esther; Van Den Bergen, Janneke C.; Van Der Kooi, Anneke J.; Verschuuren, Jan J G M; Ginjaar, Hendrika B.

    2015-01-01

    Introduction: The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. Methods: All requests for DNA analysis

  3. Progression of cardiac involvement in patients with limb-girdle type 2 and Becker muscular dystrophies

    DEFF Research Database (Denmark)

    Petri, Helle; Sveen, Marie-Louise; Thune, Jens Jakob;

    2015-01-01

    AIM: To assess the degree and progression of cardiac involvement in patients with limb-girdle type 2 (LGMD2) and Becker muscular dystrophies (BMD). METHODS: A follow-up study of 100 LGMD2 (types A-L) and 30 BMD patients assessed by electrocardiogram (ECG) and echocardiography, supplemented...

  4. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I

    DEFF Research Database (Denmark)

    Løkken, Nicoline; Hedermann, Gitte; Thomsen, Carsten;

    2016-01-01

    We investigated whether a linear relationship between muscle strength and cross-sectional area (CSA) is preserved in calf muscles of patients with Becker muscular dystrophy (BMD, n = 14) and limb-girdle type 2I muscular dystrophy (LGMD2I, n = 11), before and after correcting for muscle fat...... infiltration. The Dixon magnetic resonance imaging technique was used to quantify fat and calculate a fat-free contractile CSA. Strength was assessed by dynamometry. Muscle strength/CSA relationships were significantly lower in patients versus controls. The strength/contractile-CSA relationship was still...

  5. Duchenne and Becker muscular dystrophies: An Indian update on genetics and rehabilitation

    Directory of Open Access Journals (Sweden)

    Nadkarni Jayshree

    2008-01-01

    Full Text Available The application of molecular diagnostic techniques has greatly improved the diagnosis, carrier detection, prenatal testing and genetic counseling for families with Duchenne and Becker muscular dystrophy (D/BMD in India. The prediction of Duchenne muscular dystrophy (DMD patients to have out-framed deletions and Becker′s muscular dystrophy (BMD patients to have in-frame deletions of dystrophin gene holds well in the vast majority of cases. Mutation detection is obviously critical for diagnosis but it may also be important for future therapeutic purposes. These factors underscore the need for earlier referral, genetic counseling and provision of support and rehabilitation services which are the main priorities for psychosocial assessment and intervention at medical and social levels.

  6. Becker and limb-girdle muscular dystrophy associated with pituitary dwarfism.

    Science.gov (United States)

    Marconi, G; Taiuti, R; Sbrilli, C; Pizzi, A

    1987-08-01

    In 1981 a report appeared of a patient with Duchenne muscular dystrophy associated with dwarfism caused by growth hormone deficiency, in whom the muscular disease was unusually benign. The authors suggested that the benign course might be related to the growth hormone deficiency and dwarfism. Other authors later supported this idea, having observed that in dystrophic mice and hamsters with congenital and experimentally induced pituitary dwarfism, respectively, pathological expressions of the dystrophy were markedly reduced. In this paper one case of Becker and one of limb-girdle dystrophy, each associated with short stature and growth hormone deficiency are described. In these cases the disease did not have a particularly benign course. It is concluded that caution is necessary, at least in certain cases, before an association between reduced muscular growth and the dystrophic process can be assumed.

  7. Growth Hormone Deficiency in a Patient with Becker Muscular Dystrophy: A Pediatric Case Report

    OpenAIRE

    Valeria Calcaterra; Annachiara Malvezzi; Rossana Toglia; Angela Berardinelli; Elena Bozzola; Mauro Bozzola; Daniela Larizza

    2013-01-01

    Objective. To describe a biochemical growth hormone (GH) deficiency and to evaluate therapeutic result in a six-year-old male with Becker muscular dystrophy (BMD). Methods. GH peak was evaluated after response to arginine and insulin. Bone age was evaluated according to Greulich and Pyle method. Results. The GH-supplementary therapy was very effective in terms of growth gain. Conclusion. The possibility of a growth hormone deficiency and treatment with GH in patients with BMD cannot be exclu...

  8. Duchenne and Becker muscular dystrophy: a molecular and immunohistochemical approach Distrofia muscular de Duchenne e Becker: abordagem molecular e imuno-histoquímica

    OpenAIRE

    Aline Andrade Freund; Rosana Herminia Scola; Raquel Cristina Arndt; Paulo José Lorenzoni; Claudia Kamoy Kay; Lineu Cesar Werneck

    2007-01-01

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations in the dystrophin gene. We studied 106 patients with a diagnosis of probable DMD/BMD by analyzing 20 exons of the dystrophin gene in their blood and, in some of the cases, by immunohistochemical assays for dystrophin in muscle biopsies. In 71.7% of the patients, deletions were found in at least one of the exons; 68% of these deletions were in the hot-spot 3' region. Deletions were found in 81.5% of t...

  9. Studying the role of dystrophin-associated proteins in influencing Becker muscular dystrophy disease severity.

    Science.gov (United States)

    van den Bergen, J C; Wokke, B H A; Hulsker, M A; Verschuuren, J J G M; Aartsma-Rus, A M

    2015-03-01

    Becker muscular dystrophy is characterized by a variable disease course. Many factors have been implicated to contribute to this diversity, among which the expression of several components of the dystrophin associated glycoprotein complex. Together with dystrophin, most of these proteins anchor the muscle fiber cytoskeleton to the extracellular matrix, thus protecting the muscle from contraction induced injury, while nNOS is primarily involved in inducing vasodilation during muscle contraction, enabling adequate muscle oxygenation. In the current study, we investigated the role of three components of the dystrophin associated glycoprotein complex (beta-dystroglycan, gamma-sarcoglycan and nNOS) and the dystrophin homologue utrophin on disease severity in Becker patients. Strength measurements, data about disease course and fresh muscle biopsies of the anterior tibial muscle were obtained from 24 Becker patients aged 19 to 66. The designation of Becker muscular dystrophy in this study was based on the mutation and not on the clinical severity. Contrary to previous studies, we were unable to find a relationship between expression of nNOS, beta-dystroglycan and gamma-sarcoglycan at the sarcolemma and disease severity, as measured by muscle strength in five muscle groups and age at reaching several disease milestones. Unexpectedly, we found an inverse correlation between utrophin expression at the sarcolemma and age at reaching disease milestones.

  10. Duchenne and Becker Muscular Dystrophy: Contribution of a Molecular and Immunohistochemical Analysis in Diagnosis in Morocco

    Directory of Open Access Journals (Sweden)

    Hanane Bellayou

    2009-01-01

    Full Text Available Duchenne muscular dystrophy (DMD and Becker muscular dystrophy (BMD are X-linked recessive disorders caused by mutations of the DMD gene located at Xp21. In DMD patients, dystrophin is virtually absent; whereas BMD patients have 10% to 40% of the normal amount. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. To explain the contribution of immunohistochemical and genetic analysis in the diagnosis of these dystrophies, we present 10 cases of DMD/BMD with particular features. We have analyzed the patients with immunohistochemical staining and PCR multiplex to screen for exons deletions. Determination of the quantity and distribution of dystrophin by immunohistochemical staining can confirm the presence of dystrophinopathy and allows differentiation between DMD and BMD, but dystrophin staining is not always conclusive in BMD. Therefore, only identification involved mutation by genetic analysis can establish a correct diagnosis.

  11. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alyson A. Fiorillo

    2015-09-01

    Full Text Available The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31. microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  12. Orthodontic treatment in a patient with unilateral open-bite and Becker muscular dystrophy. A 5-year follow-up

    Directory of Open Access Journals (Sweden)

    Juan Fernando Aristizabal

    2014-12-01

    Full Text Available INTRODUCTION: Becker muscular dystrophy is an X-chromosomal linked anomaly characterized by progressive muscle wear and weakness. This case report shows the orthodontic treatment of a Becker muscular dystrophy patient with unilateral open bite.METHODS: To correct patient's malocclusion, general anesthesia and orthognathic surgery were not considered as an option. Conventional orthodontic treatment with intermaxillary elastics and muscular functional therapy were employed instead.RESULTS: After 36 months, open bite was corrected. The case remains stable after a 5-year post-treatment retention period.

  13. Genetic polymorphism in muscle biopsies of Duchenne and Becker muscular dystrophy patients.

    Directory of Open Access Journals (Sweden)

    Anand A

    1999-07-01

    Full Text Available Duchenne muscular dystrophy (DMD, with an incidence of one in 3500 male new borns, and its milder variant, Becker muscular dystrophy (BMD, are allelic X-linked recessive disorders, caused by mutations in the gene coding for dystrophin, a 427 kD cytoskeleton protein. There are no available molecular markers to differentiate these two. The purpose of this study was to study genetic polymorphism in muscular dystrophy and explore its potential in discriminating these two allelic forms of the disease. The results revealed unambiguously the presence of three transcripts : 598bp, 849bp and 1583bp long which are selectively expressed in the muscles afflicted with muscular dystrophy as compared to the normal muscle. 1583bp gene transcript was conspicuously present in the muscle tissues of both DMD and BMD patients whereas 598bp and 849bp long transcripts were exclusively present in DMD but not in BMD patients or normal human subjects. These gene transcripts had no sequence homology with dystrophin gene and these were also present in the families belonging to DMD and BMD patients. These results point to the fact that based upon the selective expression of these three gene transcripts, one could not only differentiate between DMD and BMD diseases at the molecular level, but also between normal and dystrophic muscle. Further, these findings also reveal that apart from dystrophin gene, these gene transcripts may also be responsible for the differential progression of DMD/BMD phenotype.

  14. Evaluation of Limb-Girdle Muscular Dystrophy

    Science.gov (United States)

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  15. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur R

    2003-01-01

    Full Text Available The diagnosis of Duchenne Muscular Dystrophy (DMD and Becker Muscular Dystrophy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. Most recent and accurate method for diagnosing DMD/BMD is by detection of mutations in the DMD gene. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hotspot′ regions allowing determination of deletion end point. Intragenic deletions were detected in 74 patients indicating that the use of PCR-based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  16. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y. [Tel Aviv Univ. (Israel)

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  17. RESULTS OF MEDICO-GENETIC STUDY OF PATIENTS WITH DUCHENNE/BECKER PROGRESSIVE MUSCULAR DYSTROPHIES IN UZBEKISTAN

    Directory of Open Access Journals (Sweden)

    Umida Tulkinovna Omonova

    2014-11-01

    Full Text Available The purpose of study was to analyze clinical and genetic polymorphism of Duchenne/Becker progressive muscular dystrophies among patients with neuromuscular diseases in Uzbekistan. 106 male patients with progressive pseudohypertrophic forms of muscular dystrophy were retrospectively and prospectively analyzed in the period from 2004 till 2014: 93 patients with Duchenne PMD aged from 3 years to 18 years and 13 patients with Becker PMD aged from 10 years to 25 years, who had been examined in the medico-genetic consulting department of the Republican Center “Mother and Child Screening” of Tashkent city. Comprehensive clinical, neurophysiological, biochemical and genetic study of patients as the integral part in the differential diagnosis of Duchenne/Becker progressive muscular dystrophies allows creating the national database on D/B PMD to prevent the birth of children in families burdened by this disease.

  18. Rapid carrier and prenatal diagnosis of Duchenne and Becker muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.G.; Cole, C.G.; Hart, K.A.; Bobrow, M.; Bentley, D.R. (Guy' s Hospital, London (England))

    1989-01-25

    Carrier and prenatal diagnosis of Duchenne and Becker muscular dystrophy (DMD and BMD) by DNA methods uses Southern blotting to detect either the informative segregation of restriction fragment length polymorphisms (RFLPs) or the absence of restriction fragments in affected males. Recently, the use of the polymerase chain reaction (PCR) for rapid detection of deletions in some affected males was reported eliminating the need for Southern blotting of 37% of all samples. This approach is not applicable, however, to non-deletion cases or for carrier diagnosis. The authors have used PCR for rapid analysis of intragenic RFLPs to permit both carrier and prenatal diagnosis in the majority of familial cases.

  19. Growth Hormone Deficiency in a Patient with Becker Muscular Dystrophy: A Pediatric Case Report

    Directory of Open Access Journals (Sweden)

    Valeria Calcaterra

    2013-01-01

    Full Text Available Objective. To describe a biochemical growth hormone (GH deficiency and to evaluate therapeutic result in a six-year-old male with Becker muscular dystrophy (BMD. Methods. GH peak was evaluated after response to arginine and insulin. Bone age was evaluated according to Greulich and Pyle method. Results. The GH-supplementary therapy was very effective in terms of growth gain. Conclusion. The possibility of a growth hormone deficiency and treatment with GH in patients with BMD cannot be excluded, especially considering the good therapeutic response.

  20. Growth hormone deficiency in a patient with becker muscular dystrophy: a pediatric case report.

    Science.gov (United States)

    Calcaterra, Valeria; Malvezzi, Annachiara; Toglia, Rossana; Berardinelli, Angela; Bozzola, Elena; Bozzola, Mauro; Larizza, Daniela

    2013-01-01

    Objective. To describe a biochemical growth hormone (GH) deficiency and to evaluate therapeutic result in a six-year-old male with Becker muscular dystrophy (BMD). Methods. GH peak was evaluated after response to arginine and insulin. Bone age was evaluated according to Greulich and Pyle method. Results. The GH-supplementary therapy was very effective in terms of growth gain. Conclusion. The possibility of a growth hormone deficiency and treatment with GH in patients with BMD cannot be excluded, especially considering the good therapeutic response.

  1. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur P

    2004-01-01

    Full Text Available The diagnosis of Duchenna Muscular Dystrophy (DMD and Becker Muscular Dystorphy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hot spot′ regions allowing determinations of deletion end points. Intragenic deletions were detected in 74 patients indicating that the use of PCR- based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  2. DGGE based whole-gene mutation scanning of the dystrophlin gene in Duchenne and Becker muscular dystrophy patients

    NARCIS (Netherlands)

    Hofstra, RMW; Mulder, IM; Vossen, R; de Koning-Gans, PAM; Kraak, M; Ginjaar, IB; van der Hout, AH; Bakker, E; Buys, CHCM; van Essen, AJ; den Dunnen, JT

    2004-01-01

    Duchenne and Becker muscular dystrophy (DMD and BMD) are caused by mutations in the dystrophin gene. Large rearrangements in the gene are found in about two,thirds of DMD patients, with similar to60% carrying deletions and 5-10% carrying duplications. Most of the remaining 30-35% of patients are exp

  3. Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient.

    Science.gov (United States)

    Greer, Kane; Mizzi, Kayla; Rice, Emily; Kuster, Lukas; Barrero, Roberto A; Bellgard, Matthew I; Lynch, Bryan J; Foley, Aileen Reghan; O Rathallaigh, Eoin; Wilton, Steve D; Fletcher, Sue

    2015-07-01

    We report a dystrophinopathy patient with an in-frame deletion of DMD exons 45-47, and therefore a genetic diagnosis of Becker muscular dystrophy, who presented with a more severe than expected phenotype. Analysis of the patient DMD mRNA revealed an 82 bp pseudoexon, derived from intron 44, that disrupts the reading frame and is expected to yield a nonfunctional dystrophin. Since the sequence of the pseudoexon and canonical splice sites does not differ from the reference sequence, we concluded that the genomic rearrangement promoted recognition of the pseudoexon, causing a severe dystrophic phenotype. We characterized the deletion breakpoints and identified motifs that might influence selection of the pseudoexon. We concluded that the donor splice site was strengthened by juxtaposition of intron 47, and loss of intron 44 silencer elements, normally located downstream of the pseudoexon donor splice site, further enhanced pseudoexon selection and inclusion in the DMD transcript in this patient.

  4. Extensive functional evaluations to monitor aerobic training in Becker Muscular Dystrophy: A case report

    Directory of Open Access Journals (Sweden)

    Caterina Tramonti

    2016-06-01

    Full Text Available Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease’s rehabilitative treatment.

  5. Effects of Sildenafil on Cerebrovascular Reactivity in Patients with Becker Muscular Dystrophy

    DEFF Research Database (Denmark)

    Lindberg, Ulrich; Witting, Nanna; Lundgaard, Stine J.

    2017-01-01

    Patients suffering from Becker muscular dystrophy (BMD) have dysfunctional dystrophin proteins and are deficient in neuronal nitric oxide synthase (nNOS) in muscles. This causes functional ischemia and contributes to muscle wasting. Similar functional ischemia may be present in brains of patients...... with BMD, who often have mild cognitive impairment, and nNOS may be important for the regulation of the microvascular circulation in the brain. We hypothesized that treatment with sildenafil, a phosphodiesterase type 5 inhibitor that potentiates nitric oxide responses, would augment both the blood oxygen...... assessed by 3 T magnetic resonance (MR) scanning, evoked potentials, somatosensory task-induced BOLD functional MR imaging, regional and global perfusion, and angiography before and after 4 weeks of sildenafil, 20 mg (Revatio in gelatine capsules, oral, 3 times daily), or placebo treatment. Sildenafil...

  6. Dystrophin, utrophin and {beta}-dystroglycan expression in skeletal muscle from patients with Becker muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Kawajiri, Masakazu; Mitsui, Takao; Kawai, Hisaomi [Univ. of Tokushima (Japan)] [and others

    1996-08-01

    The precise localization and semiquantitative correlation of dystrophin, utrophin and {beta}-dystroglycan expression on the sarcolemma of skeletal muscle cells obtained from patients with Becker muscular dystrophy (BMD) was studied using three types of double immunofluorescence. Staining intensity was measured using a confocal laser microscope. Each of these proteins was identified at the same locus on the sarcolemma. The staining intensities of dystrophin and utrophin were approximately reciprocal at sarcolemmal sites where dystrophin expression was obviously observed. The staining intensity of {beta}-dystroglycan was strong in areas where dystrophin staining was also strong and utrophin expression was weak. Quantitative analysis revealed that the staining intensity of {beta}-dystroglycan minus that of dystrophin approximated the staining intensity of utrophin, indicating that the sum of dystrophin and utrophin expression corresponds to that of {beta}-dystroglycan. These results suggest that utrophin may compensate for dystrophin deficiency found in BMD by binding to {beta}-dystroglycan. 35 refs., 3 figs., 1 tab.

  7. Endurance training improves fitness and strength in patients with Becker muscular dystrophy

    DEFF Research Database (Denmark)

    Sveen, Marie Louise; Jeppesen, Tina D; Hauerslev, Simon

    2008-01-01

    in healthy subjects (16 +/- 2% and 17 +/- 2%). CK levels did not increase with training, and number of central nuclei, necrotic fibres and fibres expressing neonatal myosin heavy chain did not change in muscle biopsies. Strength in muscles involved in cycle exercise (knee extension, and dorsi- and plantar......Studies in a dystrophinopathy model (the mdx mouse) suggest that exercise training may be deleterious for muscle integrity, but exercise has never been studied in detail in humans with defects of dystrophin. We studied the effect of endurance training on conditioning in patients...... with the dystrophinopathy, Becker muscular dystrophy (BMD). Eleven patients with BMD and seven matched, healthy subjects cycled 50, 30 min sessions at 65% of their maximal oxygen uptake (VO(2max)) over 12 weeks, and six patients continued cycling for 1 year. VO(2max), muscle biopsies, echocardiography, plasma creatine...

  8. Becker muscular dystrophy in Indian patients: Analysis of dystrophin gene deletion patterns

    Directory of Open Access Journals (Sweden)

    Dastur Rashna

    2008-01-01

    Full Text Available Background: Becker muscular dystrophy (BMD is caused by mutations in the dystrophin gene with variable phenotypes. Becker muscular dystrophy patients have low levels of nearly full-length dystrophin and carry in-frame mutations, which allow partial functioning of the protein. Aim: To study the deletion patterns of BMD and to correlate the same with reading frame rule and different phenotypes. Setting: A tertiary care teaching hospital. Design: This is a prospective hospital-based study. Materials and Methods: Thirty-two exons spanning different "hot spot" regions using Multiplex PCR techniques were studied in 347 patients. Two hundred and twenty-two showed deletions in one or more of the 32 exons. Out of these, 46 diagnosed as BMD patients were analyzed. Results: Forty-six BMD patients showed deletions in both regions of the dystrophin gene. Out of these 89.1% (41/46 were in-frame deletions. Deletions starting with Exon 45 were found in 76.1% (35/46 of the cases. Mutations in the majority of cases i.e. 39/46 (84.8% were seen in 3′ downstream region (Exon 45-55, distal rod domain. Few, i.e. 5/46 (10.8% showed deletions in 5′ upstream region (Exons 3-20, N-terminus and proximal rod domain of the gene, while in 2/46 (4.4% large mutations (>40 bp spanning both regions (Exons 3-55 were detected. Conclusion: This significant gene deletion analysis has been carried out for BMD patients particularly from Western India using 32 exons.

  9. "Molecular Analysis of Iranian Patients with Duchenne/Becker Muscular Dystrophies"

    Directory of Open Access Journals (Sweden)

    S Kheradmand kia

    2003-09-01

    Full Text Available Duchenne Muscular Dystrophy (DMD and the milder allelic Becker Muscular Dystrophy (BMD are X-linked disorders. Both DMD & BMD result from heterogenous mutation in the dystrophin gene and in about 65% of the cases one or more exons of the gene are deleted or duplicated. One third of cases arise from new mutation and the rest are familial. To analyze the prevalence of deletion in Iranian patients, a deletion screening was performed on group 18 exons of dystrophin gene. Deletions were detected in 56.8% of patients. Seventy four percent of deleted exons were located in the major hot spot region, whereas 26% were in the minor hot spot one. The most frequently deleted exons were exons 50, 48 & 47 16.2%, 16.2% & 12% respectively. No deletion was detected in exon 43. The intragenic RFLP analysis (pERT87-15/BamHI & pERT87-8/Taql were carried out on DNA samples obtained from 22 Iranian unrelated families (196 males & females showing DMD & BMD clinical symptoms, that 45% of them had informative patterns. The percentage of heterozygosity was 22.75% for BamHl intragenic RFLP, and 22.75% for Taql intragenic RFLP.

  10. Fluorescent multiplex linkage analysis and carrier detection for Duchenne/Becker muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, L.S.; Hoffman, E.P. (Univ. of Pittsburgh Schoool of Medicine, Pittsburgh, PA (United States)); Tarleton, J. (Self Memorial Hospital, Greenwood, SC (United States)); Popovich, B. (Children' s Hosptial and Health Center, San Diego, CA (United States)); Seltzer, W.K. (Univ. of Colorado Health Sciences Center, Denver, CO (United States))

    1992-10-01

    The authors have developed a fast and accurate PCR-based linkage and carrier detection protocol for families of Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD) patients with or without detectable deletions of the dystrophin gene, using fluorescent PCR products analyzed on an automated sequencer. When a deletion is found in the affected male DMD/BMD patient by standard multiplex PCR, fluorescently labeled primers specific for the deleted and nondeleted exon(s) are used to amplify the DNA of at-risk female relatives by using multiplex PCR at low cycle number (20 cycles). The products are then quantitatively analyzed on an automatic sequencer to determine whether they are heterozygous for the deletion and thus are carriers. As a confirmation of the deletion data, and in cases in which a deletion is not found in the proband, fluorescent multiplex PCR linkage is done by using four previously described polymorphic dinucleotide sequences. The four (CA)[sub n] repeats are located throughout the dystrophin gene, making the analysis highly informative and accurate. The authors present the successful application of this protocol in families who proved refractory to more traditional analyses. 22 refs., 3 figs.

  11. Cardiac involvement of progressive muscular dystrophy (Becker type, Limb-girdle type and Fukuyama type) evaluated by radionuclide method

    Energy Technology Data Exchange (ETDEWEB)

    Nagamachi, Shigeki; Inoue, Kenjiro; Jinnouchi, Seishi; Hoshi, Hiroaki; Ono, Seiji; Ohnishi, Takashi; Futami, Shigemi; Watanabe, Katsushi; Hayashi, Tohru (Miyazaki Medical Coll., Kiyotake (Japan))

    1994-02-01

    Tl-201 SPECT and Tc-99m-Human serum albumin (HSA) multigated radionuclide ventriculography were performed on 11 patients with progressive muscular dystrophy (Becker type 2, Fukuyama type 2, Limb-girdle type 7) to evaluate myocardial involvement. Hypoperfusion was detected in 8 patients on Tl-201 SPECT. Decreases in both systolic function (left ventricular ejection fraction; LVEF) and diastolic function (peak filling rate; PFR) were also seen in these patients. A high incidence of myocardial involvement of these kinds of progressive muscular dystrophy was suggested. (author).

  12. Muscle MRS detects elevated PDE/ATP ratios prior to fatty infiltration in Becker muscular dystrophy.

    Science.gov (United States)

    Wokke, B H; Hooijmans, M T; van den Bergen, J C; Webb, A G; Verschuuren, J J; Kan, H E

    2014-11-01

    Becker muscular dystrophy (BMD) is characterized by progressive muscle weakness. Muscles show structural changes (fatty infiltration, fibrosis) and metabolic changes, both of which can be assessed using MRI and MRS. It is unknown at what stage of the disease process metabolic changes arise and how this might vary for different metabolites. In this study we assessed metabolic changes in skeletal muscles of Becker patients, both with and without fatty infiltration, quantified via Dixon MRI and (31) P MRS. MRI and (31) P MRS scans were obtained from 25 Becker patients and 14 healthy controls using a 7 T MR scanner. Five lower-leg muscles were individually assessed for fat and muscle metabolite levels. In the peroneus, soleus and anterior tibialis muscles with non-increased fat levels, PDE/ATP ratios were higher (P < 0.02) compared with controls, whereas in all muscles with increased fat levels PDE/ATP ratios were higher compared with healthy controls (P ≤ 0.05). The Pi /ATP ratio in the peroneus muscles was higher in muscles with increased fat fractions (P = 0.005), and the PCr/ATP ratio was lower in the anterior tibialis muscles with increased fat fractions (P = 0.005). There were no other significant changes in metabolites, but an increase in tissue pH was found in all muscles of the total group of BMD patients in comparison with healthy controls (P < 0.05). These findings suggest that (31) P MRS can be used to detect early changes in individual muscles of BMD patients, which are present before the onset of fatty infiltration.

  13. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  14. Duchenne and Becker muscular dystrophy: a molecular and immunohistochemical approach Distrofia muscular de Duchenne e Becker: abordagem molecular e imuno-histoquímica

    Directory of Open Access Journals (Sweden)

    Aline Andrade Freund

    2007-03-01

    Full Text Available Duchenne muscular dystrophy (DMD and Becker muscular dystrophy (BMD are caused by mutations in the dystrophin gene. We studied 106 patients with a diagnosis of probable DMD/BMD by analyzing 20 exons of the dystrophin gene in their blood and, in some of the cases, by immunohistochemical assays for dystrophin in muscle biopsies. In 71.7% of the patients, deletions were found in at least one of the exons; 68% of these deletions were in the hot-spot 3' region. Deletions were found in 81.5% of the DMD cases and in all the BMD cases. The cases without deletions, which included the only woman in the study with DMD, had dystrophin deficiency. The symptomatic female carriers had no deletions but had abnormal dystrophin distribution in the sarcolemma (discontinuous immunostains. The following diagnoses were made for the remaining cases without deletions with the aid of a muscle biopsy: spinal muscular atrophy, congenital myopathy; sarcoglycan deficiency and unclassified limb-girdle muscular dystrophy. Dystrophin analysis by immunohistochemistry continues to be the most specific method for diagnosis of DMD/BMD and should be used when no exon deletions are found in the dystrophin gene in the blood.As distrofias musculares de Duchenne (DMD e de Becker (DMB são doenças causadas por mutação no gene da distrofina. Foram estudados 106 casos com a suspeita diagnóstica de DMD/BMD com a analise de 20 exons do gene da distrofina no sangue e biópsia muscular com imuno-histoquímica para distrofina em alguns casos. Em 71,7% dos casos foi encontrada deleção em pelo menos um dos exons, sendo que 68% das deleções localizam-se na região 3' hot spot. Foram encontradas deleções em 81,5% dos DMD e em todos os BMD, sendo que os sem deleção tinham deficiência de distrofina, incluindo a mulher com DMD. As portadoras sintomáticas não tinham deleções mas anormalidades na distribuição da distrofina no sarcolema. Os outros casos sem deleção, com auxilio da

  15. Muscular Dystrophy

    Science.gov (United States)

    ... Devices The Search for a Cure en español Distrofia muscular About MD Muscular dystrophy (MD) is a genetic ... muscles and cause different degrees of muscle weakness. Duchenne muscular dystrophy is the most common and the most ...

  16. Muscular Dystrophy

    Science.gov (United States)

    ... Devices The Search for a Cure en español Distrofia muscular About MD Muscular dystrophy (MD) is a ... muscles and cause different degrees of muscle weakness. Duchenne muscular dystrophy is the most common and the ...

  17. Evidence of Insulin Resistance and Other Metabolic Alterations in Boys with Duchenne or Becker Muscular Dystrophy

    Science.gov (United States)

    Rodríguez-Cruz, Maricela; Sanchez, Raúl; Escobar, Rosa E.; Cruz-Guzmán, Oriana del Rocío; López-Alarcón, Mardia; Bernabe García, Mariela; Coral-Vázquez, Ramón; Matute, Guadalupe; Velázquez Wong, Ana Claudia

    2015-01-01

    Aim. Our aim was (1) to determine the frequency of insulin resistance (IR) in patients with Duchenne/Becker muscular dystrophy (DMD/BMD), (2) to identify deleted exons of DMD gene associated with obesity and IR, and (3) to explore some likely molecular mechanisms leading to IR. Materials and Methods. In 66 patients with DMD/BMD without corticosteroids treatment, IR, obesity, and body fat mass were evaluated. Molecules involved in glucose metabolism were analyzed in muscle biopsies. Results show that 18.3%, 22.7%, and 68% were underweight, overweight, or obese, and with high adiposity, respectively; 48.5% and 36.4% presented hyperinsulinemia and IR, respectively. Underweight patients (27.3%) exhibited hyperinsulinemia and IR. Carriers of deletions in exons 45 (OR = 9.32; 95% CI = 1.16–74.69) and 50 (OR = 8.73; 95% CI = 1.17–65.10) from DMD gene presented higher risk for IR than noncarriers. We observed a greater staining of cytoplasmic aggregates for GLUT4 in muscle biopsies than healthy muscle tissue. Conclusion. Obesity, hyperinsulinemia, and IR were observed in DMD/BMD patients and are independent of corticosteroids treatment. Carriers of deletion in exons 45 or 50 from DMD gene are at risk for developing IR. It is suggested that alteration in GLUT4 in muscle fibers from DMD patients could be involved in IR. PMID:26089900

  18. A novel splice site mutation in a Becker muscular dystrophy patient.

    Science.gov (United States)

    Bartolo, C; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Hall, C D; Mendell, J R; Prior, T W

    1996-04-01

    A Becker muscular dystrophy patient was found to have a single base substitution at the 5' end of intron 54. This single base substitution disrupts the invariant GT dinucleotide within the 5' donor splice site and was shown to cause an out of frame deletion of exon 54 during mRNA processing. This is predicted to produce a truncated dystrophin protein which is more consistent with a DMD phenotype. However, small quantities of normal mRNA are also transcribed and these are sufficient to produce a reduced amount of normal molecular weight dystrophin and give rise to a milder BMD phenotype. This indicates that a single base substitution at an invariant dinucleotide of the splice site consensus sequence may still allow read through of the message and allow the production of some normal protein. This shows that there are a greater number of possible intronic mutations that can lead to a mild phenotype and it also underlines the importance of performing cDNA analysis when screening for small gene alterations in the BMD patient population.

  19. Dystrophin hydrophobic regions in the pathogenesis of Duchenne and Becker muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Yingyin Liang

    2015-05-01

    Full Text Available The aim of our study was to determine the role of dystrophin hydrophobic regions in the pathogenesis of Duchenne (DMD and Becker (BMD muscular dystrophies, by the Kyte-Doolittle scale mean hydrophobicity profile and 3D molecular models. A total of 1038 cases diagnosed with DMD or BMD with the in-frame mutation were collected in our hospital and the Leiden DMD information database in the period 2002-2013. Correlation between clinical types and genotypes were determined on the basis of these two sources. In addition, the Kyte-Doolittle scale mean hydrophobicity of dystrophin was analyzed using BioEdit software and the models of the hydrophobic domains of dystrophin were constructed. The presence of four hydrophobic regions is confirmed. They include the calponin homology CH2 domain on the actin-binding domain (ABD, spectrin-type repeat 16, hinge III and the EF Hand domain. The severe symptoms of DMD usually develop as a result of the mutational disruption in the hydrophobic regions I, II and IV of dystrophin – those that bind associated proteins of the dystrophin-glycoprotein complex (DGC. On the other hand, when the hydrophobic region III is deleted, the connection of the ordered repeat domains of the central rod domain remains intact, resulting in the less severe clinical presentation. We conclude that mutational changes in the structure of hydrophobic regions of dystrophin play an important role in the pathogenesis of DMD.

  20. Duchenne or Becker muscular dystrophy: A clinical, genetic and immunohistochemical study in China

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2011-01-01

    Full Text Available Background and Objective: Duchenne and Becker muscular dystrophies are X-linked diseases caused by mutations in the dystrophin gene, which affect approximately 1 in 3,500 and 1 in 18,000 boys, respectively. The aim of this work was to develop a method to assist the diagnosis and classification of the disease. Materials and Methods: A large data set of dystrophin mutations was detected in 167 Chinese patients by multiplex ligation-dependent probe amplification and sequencing. Muscle biopsy, immunohistochemistry and STR analysis were also carried out in the patients and carriers. Results: One hundred and three deletions, 23 duplications and two-point mutations. The deletion of one or more exons was detected in 103 (61.7% patients. The region spanning exons 44-55 was the most frequent deletion. The duplication was identified in 23 (13.8% patients, which was more common than previously reported. Most duplications were found in exons 2-18. Six out of the 45 muscle biopsies analyzed showed the presence of other muscle diseases. Conclusions: This study may be important to enable comparisons of mutation type and the most appropriate analytical approach for samples from different geographical areas and ethnicities.

  1. Molecular Diagnosis of Duchenne/Becker Muscular Dystrophy: Analysis of Exons Deletion and Carrier Detection

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Akbari

    2010-01-01

    Full Text Available Objective: Duchenne and Becker Muscular Dystrophy (DMD and BMD are X-linked conditionsresulting from a defect in the dystrophin gene located at Xp21.2. DMD is the mostfrequent neuromuscular disease in humans (1/3500 male newborns. In approximately65% of DMD and BMD patients, deletions in the dystrophin gene have been identified asthe molecular determinant. The frequency and distribution of dystrophin gene deletions inDMD/BMD patients from different populations are different.The aim of this study was to delineate various types of deleted exons and their frequencyin affected male patients and identification of carrier females by linkage analysis.Materials and Methods: In this study 100 unrelated patients with DMD/BMD were studiedfor intragenic deletions in 28 exons and the promoter region of the dystrophin geneusing multiplex PCR. We also performed linkage analysis within the dystrophin gene utilizing8 short tandem repeat markers.Results: Fifty-two (52% patients showed intragenic deletions. A total of 81% of the deletionswere located at the distal hot spot region (44-55 exons and 19% of the deletionswere located at the proximal region (exon 2-19. The most frequent deleted exons were47(16%, 48 and 46 (11%.Most of the STR markers showed heterozygosity in the families studied. The linkageanalysis was useful for detecting carrier status.Conclusion: The present study suggests that intragenic dystrophin gene deletions occurwith the same frequency in Iranian patients compared with other ethnic groups.

  2. A case of Becker muscular dystrophy with early manifestation of cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ki Hyun Doo

    2012-09-01

    Full Text Available An 18-year-old boy was admitted with chest discomfort, nausea, and dyspnea at rest. At the age of 3 years, he underwent muscle biopsy and dystrophin gene analysis owing to an enlarged calf muscle and elevated serum kinase level (6,378 U/L without overt weakness; based on the results, Becker muscular dystrophy (BMD was diagnosed. The dystrophin gene showed deletion of exons 45 to 49. He remained ambulant and could step upstairs without significant difficulties. A chest roentgenogram showed cardiomegaly (cardiothoracic ratio, 54%, and his electrocardiogram (ECG showed abnormal ST-T wave, biatrial enlargement, and left ventricular hypertrophy. The 2-dimensional and M-mode ECGs showed a severely dilated left ventricular cavity with diffuse hypokinesis. The systolic indices were reduced, including fractional shortening (9% and ejection fraction (19%. Despite receiving intensive medical treatment, he died from congestive heart failure 5 months after the initial cardiac symptoms. We report a case of BMD with early-onset dilated cardiomyopathy associated with deletion of exons 45 to 49. Early cardiomyopathy can occur in BMD patients with certain genotypes; therefore, careful follow-up is required even in patients with mild phenotypes of BMD.

  3. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Elisabeth Le Rumeur

    2015-07-01

    Full Text Available Mutations of the dystrophin DMD gene, essentially deletions of one or several exons, are the cause of two devastating and to date incurable diseases, Duchenne (DMD and Becker (BMD muscular dystrophies. Depending upon the preservation or not of the reading frame, dystrophin is completely absent in DMD, or present in either a mutated or a truncated form in BMD. DMD is a severe disease which leads to a premature death of the patients. Therapy approaches are evolving with the aim to transform the severe DMD in the BMD form of the disease by restoring the expression of a mutated or truncated dystrophin. These therapies are based on the assumption that BMD is a mild disease. However, this is not completely true as BMD patients are more or less severely affected and no molecular basis of this heterogeneity of the BMD form of the disease is yet understood. The aim of this review is to report for the correlation between dystrophin structures in BMD deletions in view of this heterogeneity and to emphasize that examining BMD patients in details is highly relevant to anticipate for DMD therapy effects.

  4. Evidence of Insulin Resistance and Other Metabolic Alterations in Boys with Duchenne or Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Maricela Rodríguez-Cruz

    2015-01-01

    Full Text Available Aim. Our aim was (1 to determine the frequency of insulin resistance (IR in patients with Duchenne/Becker muscular dystrophy (DMD/BMD, (2 to identify deleted exons of DMD gene associated with obesity and IR, and (3 to explore some likely molecular mechanisms leading to IR. Materials and Methods. In 66 patients with DMD/BMD without corticosteroids treatment, IR, obesity, and body fat mass were evaluated. Molecules involved in glucose metabolism were analyzed in muscle biopsies. Results show that 18.3%, 22.7%, and 68% were underweight, overweight, or obese, and with high adiposity, respectively; 48.5% and 36.4% presented hyperinsulinemia and IR, respectively. Underweight patients (27.3% exhibited hyperinsulinemia and IR. Carriers of deletions in exons 45 (OR = 9.32; 95% CI = 1.16–74.69 and 50 (OR = 8.73; 95% CI = 1.17–65.10 from DMD gene presented higher risk for IR than noncarriers. We observed a greater staining of cytoplasmic aggregates for GLUT4 in muscle biopsies than healthy muscle tissue. Conclusion. Obesity, hyperinsulinemia, and IR were observed in DMD/BMD patients and are independent of corticosteroids treatment. Carriers of deletion in exons 45 or 50 from DMD gene are at risk for developing IR. It is suggested that alteration in GLUT4 in muscle fibers from DMD patients could be involved in IR.

  5. Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Registry

    Science.gov (United States)

    2016-08-26

    Myotonic Dystrophy; Facioscapulohumeral Muscular Dystrophy; Muscular Dystrophy; Myotonic Dystrophy Type 1; Myotonic Dystrophy Type 2; Congenital Myotonic Dystrophy; PROMM (Proximal Myotonic Myopathy); Steinert's Disease; Myotonic Muscular Dystrophy

  6. A different spectrum of DMD gene mutations in local Chinese patients with Duchenne/Becker muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Ivan Fai-man Lo; Kent Keung-san Lai; Tony Ming-for Tong; Stephen Tak-sum Lam

    2006-01-01

    Background Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive, allelic disorders. This study was conducted to look into the spectrum of DMD gene mutations in Hong Kong Chinese patients with Duchenne or Becket muscular dystrophy (DMD/BMD), and to study genotype-phenotype correlation.Methods A retrospective review of 67 patients.Results Twenty-three (34.3%) patients had exon deletions; whereas 5 (7.5%) patients had exon duplications.Twenty-three (34.3%) patients had small mutations, including 17-point mutations and 6 small insertions or deletions. No correlation was found between the type of mutation and the muscle phenotype or mental retardation.Significantly fewer maternal carriers were found in patients with exon deletions, and a positive family history was more common in those with small mutations. DMD phenotype was significantly less common in patients with exon deletions/duplications at the 5' hotspot, whereas all 4 small mutations associated with mental retardation were located in the 3' end of the gene.Conclusions The percentage of DMD exon deletions in local Chinese patients was significantly lower than the commonly quoted 60%. This indicated an ethnic or regional difference in predisposition to DMD exon deletions.

  7. A comprehensive database of Duchenne and Becker muscular dystrophy patients in Children's Hospital of Fudan University

    Directory of Open Access Journals (Sweden)

    Xi-hua LI

    2015-05-01

    Full Text Available Background China is one of the countries that have the largest number of patients suffering from Duchenne and Becker muscular dystrophy (DMD/BMD. Although the building of international DMD/BMD databases has laid a foundation for clinical drug development and clinical trials, it has not yet been carried out in China. In this study, a modified registry form of Remudy was applied to 229 DMD/BMD patients in order to establish a comprehensive database, which will lay the groundwork for international cooperation.  Methods A total of 229 DMD/BMD patients diagnosed by genetic testing or muscle biopsy admitted in Children's Hospital of Fudan University (CHFU during the period of August 2011 to December 2013 were enrolled in this study. The data included sex, age, age at diagnosis, geographic distribution of patients, DMD gene mutation types, family history, walking capability, cardiac and respiratory function, steroid treatment and rehabilitation intervention.  Results There were 194 DMD and 35 BMD male patients who were diagnosed at the age of 0-18 years, and among them, most patients were diagnosed at the age of > 3-4 (16.59%, 38/229 and > 7-8 (14.85%, 34/229 years. Exon deletion was the most frequent genetic mutations for DMD/BMD [65.46% (127/194 and 74.29% (26/35], respectively. Patients with a family history accounted for 23.14% (53/229. The rate of DMD registrants losing walking capability was 17.53% (34/194, and all the BMD registrants were able to walk. Cardiac functions were examined in 46.29% (106/229 DMD/BMD boys and respiratory functions were examined in 17.90% (41/229 DMD/BMD boys. The proportion of DMD patients receiving prednisone with dosage of 0.75 mg/(kg·d was 26.29% (51/194.  Conclusions This database describes in detail the genotype, clinical manifestation, diagnosis and treatment and rehabilitation status of 229 DMD/BMD patients in China. The database not only provides comprehensive information for DMD/BMD patient management

  8. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants

    Indian Academy of Sciences (India)

    MARYAM HAGHSHENAS; MOHAMMAD TAGHI AKBARI; SHOHREH ZARE KARIZI; FARAVAREH KHORDADPOOR DEILAMANI; SHAHRIAR NAFISSI; ZIVAR SALEHI

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progres-sive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletionsor duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to eval-uate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show anylarge deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependentprobe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50–79. Also exon 44 wassequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed fournonsense, one frameshift and two splice site mutations as well as two missense variants

  9. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    Science.gov (United States)

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  10. More deletions in the 5{prime} region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-06

    This report describes mutations in the dystrophin gene and the frequency of these mutations in Filipino pedigrees with Duchenne and Becker muscular dystrophy (DMD/BMD). The findings suggest the presence of genetic variability among DMD/BMD patients in different populations. 13 refs., 1 tab.

  11. Muscular Dystrophy

    Science.gov (United States)

    ... muscular dystrophy. It's important to be vaccinated for pneumonia and to keep up to date with influenza shots. Dietary changes haven't been shown to slow the progression of muscular dystrophy. But proper nutrition is essential because limited mobility can contribute to ...

  12. Germinal mosaicism in a sample of families with Duchenne/Becker muscular dystrophy with partial deletions in the DMD gene.

    Science.gov (United States)

    Bermúdez-López, Cesárea; García-de Teresa, Benilde; González-del Angel, Ariadna; Alcántara-Ortigoza, Miguel Angel

    2014-02-01

    Germinal mosaicism should be considered when estimating the recurrence risk in families with Duchenne/Becker muscular dystrophy (D/BMD). Germinal mosaicism, however, has not been assessed in Mexican families with deletions in the DMD gene. To determine the distribution of deletions in the two hot spots and the proportion of de novo and transmitted deletions, we analyzed 153 individuals with D/BMD and a DMD partial deletion and 322 of their maternal female relatives. Predilection for the distal hot spot was observed in 112 families (73%), while gene dosage analysis of female relatives of D/BMD patients identified germinal mosaicism deletions in at least 11.6% of the patients' families, thought to result from de novo mutations. Recurrence risk due to germinal mosaicism justifies carrier detection in maternal female relatives and prenatal diagnosis in mothers of individuals with apparently de novo DMD deletions.

  13. Mutation analysis in Duchenne and Becker muscular dystrophy patients from Bulgaria shows a peculiar distribution of breakpoints by intron

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, A.; Bronzova, J.; Kremensky, I. [Univ. Hospital of Obstetrics and Gynecology, Sofia (Bulgaria)] [and others

    1996-10-02

    For the first time in Bulgaria, a deletion/duplication screening was performed on a group of 84 unrelated Duchenne/Becker muscular dystrophy patients, and the breakpoint distribution in the dystrophin gene was analyzed. Intragenic deletions were detected in 67.8% of patients, and intragenic duplications in 2.4%. A peculiar distribution of deletion breakpoints was found. Only 13.2% of the deletion breakpoints fell in the {open_quotes}classical{close_quotes} hot spot in intron 44, whereas the majority (> 54%) were located within the segment encompassing introns 45-51, which includes intron 50, the richest in breakpoints (16%) in the Bulgarian sample. Comparison with data from Greece and Turkey points at the probable existence of a deletion hot spot within intron 50, which might be a characteristic of populations of the Balkan region. 17 refs., 2 figs.

  14. Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, L.T.; Man, Nguyen Thi; Morris, G.E. [Wales Institute, Clwyd (United Kingdom)] [and others

    1995-08-28

    We have produced a new panel of 20 monoclonal antibodies (mAbs) against a region of the dystrophin protein corresponding to a deletion-prone region of the Duchenne muscular dystrophy gene (exons 45-50). We show that immunohistochemistry or Western blotting with these {open_quotes}exon-specific{close_quotes} mAbs can provide a valuable addition to Southern blotting or PCR methods for the accurate identification of genetic deletions in Becker muscular dystrophy patients. The antibodies were mapped to the following exons: exon 45 (2 mAbs), exon 46 (6), exon 47 (1), exons 47/48 (4), exons 48-50 (6), and exon 50 (1). PCR amplification of single exons or groups of exons was used both to produce specific dystrophin immunogens and to map the mAbs obtained. PCR-mediated mutagenesis was also used to identify regions of dystrophin important for mAb binding. Because the mAbs can be used to characterize the dystrophin produced by individual muscle fibres, they will also be useful for studying {open_quotes}revertant{close_quotes} fibres in Duchenne muscle and for monitoring the results of myoblast therapy trials in MD patients with deletions in this region of the dystrophin gene. 27 refs., 7 figs., 3 tabs.

  15. Deletion analysis of the dystrophin gene in Duchenne and Becker muscular dystrophy patients: Use in carrier diagnosis

    Directory of Open Access Journals (Sweden)

    Kumari D

    2003-04-01

    Full Text Available The dystrophin gene was analyzed in 8 Duchenne muscular dystrophy (DMD and 10 Becker muscular dystrophy (BMD unrelated families (22 subjects: 18 index cases and 4 sibs for the presence of deletions by multiplex polymerase chain reaction (mPCR; 27 exons and Southern hybridization using 8 cDMD probes. Deletions were identified in 5 DMD and 7 BMD patients (6 index cases and 1 sib. The concordance between the clinical phenotype and 'reading frame hypothesis' was observed in 11/12 patients (92%. The female relatives of DMD/BMD patients with identifiable deletions were examined by quantitative mPCR. Carriers were identified in 7 families. We also describe a variation in the HindIII pattern with cDNA probe 8 and 11-14. Molecular characterization of the dystrophin gene in this study has been helpful in advising the patients concerning the inheritance of the condition, and carrier diagnosis of female relatives, and should also prove useful for prenatal diagnosis.

  16. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Directory of Open Access Journals (Sweden)

    Narinder Janghra

    Full Text Available Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these

  17. Carrier detection of duchenne and becker muscular dystrophy using muscle dystrophin immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Acary S. Bulle Oliveira

    1992-12-01

    Full Text Available To ascertain whether dystrophin immunohistochemistry could improve DMD/ BMD carrier detection, we analyzed 14 muscle biopsies from 13 DMD and one BMD probable and possible carriers. All women were also evaluated using conventional methods, including genetic analysis, clinical and neurological evaluation, serum CK levels, KMG, and muscle biopsy. In 6 cases, there was a mosaic of dystrophin-positive and dystrophin-deficient fibers that allowed to make the diagnosis of a carrier state. Comparing dystrophin immunohistochemistry to the traditional methods, it was noted that this method is less sensitive than serum CK measuremens, but is more sensitive than EMG and muscle biopsy. The use of dystrophin immunohistochemistry in addition to CK, EMG and muscle biopsy improved the accuracy of carrier detection. This method is also helpful to distinguish manifesting DMD carriers from patients with other neuromuscular diseases like limb-girdle muscular dystrophy and spinal muscular atrophy.

  18. Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations

    Science.gov (United States)

    Okubo, Mariko; Minami, Narihiro; Goto, Kanako; Goto, Yuichi; Noguchi, Satoru; Mitsuhashi, Satomi; Nishino, Ichizo

    2016-01-01

    Duchenne and Becker muscular dystrophies (DMD/BMD) are the most common inherited neuromuscular disease. The genetic diagnosis is not easily made because of the large size of the dystrophin gene, complex mutational spectrum and high number of tests patients undergo for diagnosis. Multiplex ligation-dependent probe amplification (MLPA) has been used as the initial diagnostic test of choice. Although MLPA can diagnose 70% of DMD/BMD patients having deletions/duplications, the remaining 30% of patients with small mutations require further analysis, such as Sanger sequencing. We applied a high-throughput method using Ion Torrent next-generation sequencing technology and diagnosed 92% of patients with DMD/BMD in a single analysis. We designed a multiplex primer pool for DMD and sequenced 67 cases having different mutations: 37 with deletions/duplications and 30 with small mutations or short insertions/deletions in DMD, using an Ion PGM sequencer. The results were compared with those from MLPA or Sanger sequencing. All deletions were detected. In contrast, 50% of duplications were correctly identified compared with the MLPA method. Small insertions in consecutive bases could not be detected. We estimated that Ion Torrent sequencing could diagnose ~92% of DMD/BMD patients according to the mutational spectrum of our cohort. Our results clearly indicate that this method is suitable for routine clinical practice providing novel insights into comprehensive genetic information for future molecular therapy. PMID:26911353

  19. Becker Muscular Dystrophy (BMD) caused by duplication of exons 3-6 of the dystrophin gene presenting as dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, A.C.; Allingham-Hawkins, D.J.; Becker, L. [Univ. of Toronto, Ontario (Canada)] [and others

    1994-09-01

    X-linked dilated cardiomyopathy (XLCM) is a progressive myocardial disease presenting with congestive heart failure in teenage males without clinical signs of skeletal myopathy. Tight linkage of XLCM to the DMD locus has been demonstrated; it has been suggested that, at least in some families, XLCM is a {open_quotes}dystrophinopathy.{close_quotes} We report a 14-year-old boy who presented with acute heart failure due to dilated cardiomyopathy. He had no history of muscle weakness, but physical examination revealed pseudohypertrophy of the calf muscles. He subsequently received a heart transplantation. Family history was negative. Serum CK level at the time of diagnosis was 10,416. Myocardial biopsy showed no evidence of carditis. Dystrophin staining of cardiac and skeletal muscle with anti-sera to COOH and NH{sub 2}termini showed a patchy distribution of positivity suggestive of Becker muscular dystrophy. Analysis of 18 of the 79 dystrophin exons detected a duplication that included exons 3-6. The proband`s mother has an elevated serum CK and was confirmed to be a carrier of the same duplication. A mutation in the muscle promotor region of the dystrophin gene has been implicated in the etiology of SLCM. However, Towbin et al. (1991) argued that other 5{prime} mutations in the dystrophin gene could cause selective cardiomyopathy. The findings in our patient support the latter hypothesis. This suggests that there are multiple regions in the dystrophin gene which, when disrupted, can cause isolated dilated cardiomyopathy.

  20. Muscular Dystrophy

    Science.gov (United States)

    Muscular dystrophy (MD) is a group of more than 30 inherited diseases. They all cause muscle weakness and muscle loss. Some forms of MD appear in infancy ... types can vary in whom they affect, which muscles they affect, and what the symptoms are. All ...

  1. Duchenne/Becker muscular dystrophy: A report on clinical, biochemical, and genetic study in Gujarat population, India

    Directory of Open Access Journals (Sweden)

    Mandava V Rao

    2014-01-01

    Full Text Available Objective: In India, various groups have studied different regions to find out deletion pattern of dystrophin gene. We have investigated its deletion pattern among Duchenne/Becker muscular dystrophy (D/BMD patients across Gujarat. Moreover, in this study we also correlate the same with reading frame rule. However, we too consider various clinicopathological features to establish as adjunct indices when deletion detection fails. Materials and Methods: In this pilot study, a total of 88 D/BMD patients consulting at our centers in Gujarat, India were included. All patients were reviewed on basis of their clinical characteristics, tested by three primer sets of 10-plex, 9-plex, and 7-plex polymerase chain reaction (PCR for genetic analysis; whereas, biochemical indices were measured using automated biochemical analyzers. Results: The diagnosis of D/BMD was confirmed by multiplex-PCR (M-PCR in D/BMD patients. A number of 65 (73.86% out of 88 patients showed deletion in dystrophin gene. The exon 50 (58.46% was the most frequent deletion found in our study. The mean age of onset of DMD and BMD was 4.09 ΁ 0.15 and 7.14 ΁ 0.55 years, respectively. In patients, mean creatine phosphokinase (CPK, lactate dehydrogenase (LDH, and myoglobin levels were elevated significantly (P < 0.05 in comparison to controls. Addition to CPK, LDH and myoglobin are good adjunct when deletion detection failed. These data are further in accordance with world literature when correlated with frame rule. Conclusion: The analysis has been carried out for the first time for a total of 88 D/BMD patients particularly from Gujarat, India. More research is essential to elucidate specific mutation pattern in association with management and therapies of proband.

  2. Becker muscular dystrophy patients with deletions around exon 51; a promising outlook for exon skipping therapy in Duchenne patients.

    NARCIS (Netherlands)

    Helderman-van den Enden, A.T.; Straathof, C.S.; Aartsma-Rus, A.; Dunnen, J.T. den; Verbist, B.M.; Bakker, E.; Verschuuren, J.J.; Ginjaar, H.B.

    2010-01-01

    Theoretically, 13% of patients with Duchenne muscular dystrophy may benefit from antisense-mediated skipping of exon 51 to restore the reading frame, which results in the production of a shortened dystrophin protein. We give a detailed description with longitudinal follow up of three patients with B

  3. Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach

    Directory of Open Access Journals (Sweden)

    Thiene Gaetano

    2008-11-01

    Full Text Available Abstract Background Becker-Kiener muscular dystrophy (BMD represents an X-linked genetic disease associated with myocardial involvement potentially resulting in dilated cardiomyopathy (DCM. Early diagnosis of cardiac involvement may permit earlier institution of heart failure treatment and extend life span in these patients. Both echocardiography and nuclear imaging methods are capable of detecting later stages of cardiac involvement characterised by wall motion abnormalities. Cardiovascular magnetic resonance (CMR has the potential to detect cardiac involvement by depicting early scar formation that may appear before onset of wall motion abnormalities. Methods In a prospective two-center-study, 15 male patients with BMD (median age 37 years; range 11 years to 56 years underwent comprehensive neurological and cardiac evaluations including physical examination, echocardiography and CMR. A 16-segment model was applied for evaluation of regional wall motion abnormalities (rWMA. The CMR study included late gadolinium enhancement (LGE imaging with quantification of myocardial damage. Results Abnormal echocardiographic results were found in eight of 15 (53.3% patients with all of them demonstrating reduced left ventricular ejection fraction (LVEF and rWMA. CMR revealed abnormal findings in 12 of 15 (80.0% patients (p = 0.04 with 10 (66.6% having reduced LVEF (p = 0.16 and 9 (64.3% demonstrating rWMA (p = 0.38. Myocardial damage as assessed by LGE-imaging was detected in 11 of 15 (73.3% patients with a median myocardial damage extent of 13.0% (range 0 to 38.0%, an age-related increase and a typical subepicardial distribution pattern in the inferolateral wall. Ten patients (66.7% were in need of medical heart failure therapy based on CMR results. However, only 4 patients (26.7% were already taking medication based on clinical criteria (p = 0.009. Conclusion Cardiac involvement in patients with BMD is underdiagnosed by echocardiographic methods resulting

  4. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    Science.gov (United States)

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  5. Early cardiac failure in a child with Becker muscular dystrophy is due to an abnormally low amount of dystrophin transcript lacking exon 13.

    Science.gov (United States)

    Ishigaki, C; Patria, S Y; Nishio, H; Yoshioka, A; Matsuo, M

    1997-12-01

    Two Japanese brothers with Becker muscular dystrophy were shown by polymerase chain reaction (PCR) and cDNA sequence analysis to produce a dystrophin gene transcript lacking a single exon: that is, number 13. Despite having the same deletion mutation, the brothers showed clearly different clinical phenotypes: the younger brother developed cardiac failure at the age of nine, while the elder brother was asymptomatic. As alternative splicing was not responsible for this clinical difference, the amount of dystrophin transcript was examined by using reverse transcription semi-nested and parallel PCR. The results showed that the amount of the dystrophin transcript in the younger brother was 20% of that of the elder brother. This finding suggested that lesser amount of dystrophin transcript in the younger brother was responsible for the early onset of cardiac failure. This would represent a novel molecular mechanism for dystrophinopathy.

  6. A case of Becker muscular dystrophy resulting from the skipping of four contiguous exons (71-74) of the dystrophin gene during mRNA maturation.

    Science.gov (United States)

    Patria, S Y; Alimsardjono, H; Nishio, H; Takeshima, Y; Nakamura, H; Matsuo, M

    1996-07-01

    The mutations in one-third of both Duchenne and Becker muscular dystrophy patients remain unknown because they do not involve gross rearrangements of the dystrophin gene. Here we report the first example of multiple exon skipping during the splicing of dystrophin mRNA precursor encoded by an apparently normal dystrophin gene. A 9-year-old Japanese boy exhibiting excessive fatigue and high serum creatine kinase activity was examined for dystrophinopathy. An immunohistochemical study of muscle tissue biopsy disclosed faint and discontinuous staining of the N-terminal and rod domains of dystrophin but no staining at all of the C-terminal domain of dystrophin. The dystrophin transcript from muscle tissue was analyzed by the reverse transcriptase polymerase chain reaction. An amplified product encompassing exons 67-79 of dystrophin cDNA was found to be smaller than that of the wild-type product. Sequence analysis of this fragment showed that the 3' end of exon 70 was directly connected to the 5' end of exon 75 and, thus, that exons 71-74 were completely absent. As a result, a truncated dystrophin protein lacking 110 amino acids from the C-terminal domain should result from translation of this truncated mRNA, and the patient was diagnosed as having Becker muscular dystrophy at the molecular level. Genomic DNA was analyzed to identify the cause of the disappearance of these exons. Every exon-encompassing region could be amplified from genomic DNA, indicating that the dystrophin gene is intact. Furthermore, sequencing of these amplified products did not disclose any particular nucleotide change that could be responsible for the multiple exon skipping observed. Considering that exons 71-74 are spliced out alternatively in some tissue-specific isoforms, to suppose that the alternative splicing machinery is present in the muscle tissue of the index case and that it is activated by an undetermined mechanism is reasonable. These results illustrate a novel genetic anomaly that

  7. Screening Duchenne and Becker muscular dystrophy patients for deletions in 30 exons of the dystrophin gene by three-multiplex PCR

    Energy Technology Data Exchange (ETDEWEB)

    Risch, N. (Yale Univ., New Haven, CT (United States))

    1992-09-01

    Deletion mutations of the dystrophin gene may cause either the severe Duchenne muscular dystrophy (DMD) or the milder, allelic Becker muscular dystrophy (BMD) and are clustered in two high-frequency-deletion regions (HFDRs) located, respectively, 500 kb and 1,200 kb downstream from the 5[prime] end of the gene. Three PCR reactions described allowed the analysis of a total of 30 exons and led, to the identification of three additional deletions involving the following exons: (a) 42 only, (b) 28-42, and (c) 16 only, none of which were detected with the two original multiplex reactions. Therefore, the three modified multiplexes detected 95 of the 96 deletions identified among the 152 patients studied so far by using Southern analysis and cDNA probes. The only deletion that remained undetected with this system involves exons 22-25 and generates the junction fragment described elsewhere. The percentage of deletion mutations among DMS/BMD patients amounts to 63%, which is in agreement with similar estimates from other laboratories. When field-inversion gel electrophoresis is coupled to Southern analysis, the detection rate of deletion and duplication mutations reaches 65%.

  8. 假肥大型肌营养不良症的产前基因诊断%Prenatal molecular diagnosis of Duchenne and Becker muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    黎青; 李少英; 胡冬贵; 孙筱放; 陈敦金; 张成; 蒋玮莹

    2006-01-01

    Objective: Duchenne and Becker muscular dystrophy (DMD/BMD) is an X-linked lethal recessive disease caused by mutations in the dystrophy gene. There is no efficient treatment for this serious and disabling disease. We established a combination method to detect carriers and perform prenatal diagnosis. Methods: In our study, from 1994 to 2005, using a different combination of 5 methods, including SRY gene amplification, multiplex PCR, multiplex Fluorescence PCR capillary electrophoresis, multiplex ligation-dependent probe amplification (MLPA) and linkage analysis of short tandem repeats (STR), 36 prenatal diagnosis were performed for pregnancies at risk of having a DMD/BMD baby through amniocentesis. Results: Fourteen out of 21 male fetuses were found to be affected and respective pregnancies were terminated. A combined diagnostic rate of 83% was achieved for 30 cases with deletions, duplications, and non-deletion mutations after tested by more than one method. Conclusion: Using a combined method, we can diagnoses patients and carriers in DMD families, and perform prenatal diagnosis for the risk fetus. MLPA provides a simple, rapid and accurate method for deletions and duplications of all the 79 DMD exons. MLPA method for DMD diagnosis is the first report in our country.

  9. Muscular Dystrophy

    Science.gov (United States)

    ... It Like for Teens With MD? en español Distrofia muscular Aside from seeing the telethon on Labor Day ... and rule out other diseases that affect the muscles or nerves. Some tests measure how nerves and muscles are working. Others ...

  10. Comparison of the clinical state and its changes in patients with Duchenne and Becker muscular dystrophy with results of in vivo {sup 31}P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, M. [MR Unit, Inst. for Clinical and Experimental Medicine, Prague (Czech Republic); Grosmanova, A. [Dept. of Neuropediatrics, Thomayer`s Hospital, Prague (Czech Republic); Horska, A. [MR Unit, Inst. for Clinical and Experimental Medicine, Prague (Czech Republic); Urban, P. [Dept. of Analytical Chemistry, Prague Inst. of Chemical Technology (Czech Republic)

    1993-12-01

    A total of 14 boys with the Duchenne and Becker forms of muscular dystrophy (DMD, BMD) were examined using {sup 31}P magnetic resonance (MR) spectroscopy; 12 boys were examined repeatedly. The results were correlated with clinical findings (including those of genetic tests) and with data obtained from examinations of an age-matched control group. Evaluation of results using principal component analysis revealed maximum variability in the following ratios: phosphocreatine/inorganic phosphate (PCr/Pi), phosphocreatine/phosphodiesters (PCr/PDe) and phosphocreatine/phosphomonoesters (PCr/PMe). A decrease in PCr/Pi correlates with weakness of the hip girdle and of the lower part of the shoulder girdle in DMD/BMD patients. The values of all ratios in the group of patients with the DMD phenotype differ significantly from results obtained in the group with the BMD phenotype. Continuous follow-up of patients using {sup 31}P MR spectroscopy revealed a marked decrease in PCr/Pi in DMD/BMD patients at an age that could be expected in subjects with a typical clinical course of DMD/BMD. An attempt to manage a concomitant disease with prednisone and carnitene was followed by an increase in PCr/Pi in 3 cases. A rise in the PCr/Pi ratio signalled clinical improvement in the patients. A decrease in PCr/Pi was found after controlled physical training, a finding consistent with data obtained from clinical observations describing an adverse effect of physical stress on the dystrophic process. (orig.)

  11. Reliability of hand-held dynamometry for measurement of lower limb muscle strength in children with Duchenne and Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Wei SHI

    2015-05-01

    Full Text Available Objective To determine the reliability of hand-held dynamometry (HHD for lower limb isometric muscle strength measurement in children with Duchenne and Becker muscular dystrophy (DMD/BMD.  Methods A total of 21 children [20 males and one female; mean age was (7.88 ± 2.87 years, ranging between 3.96-14.09 years; mean age at diagnosis was (5.88 ± 2.88 years, ranging between 1.35-12.89 years; mean height was (120.64 ± 16.30 cm, ranging between 97-153 cm; mean body weight was (24.62 ± 9.05 kg, ranging between 14-50 kg] with DMD (19/21 and BMD (2/21 were involved from Rehabilitation Center of Children's Hospital of Fudan University. The muscle strength of hip, knee and ankle was measured by HHD under standardized test methods. The test-retest results were compared to determine the inter-test reliability, and the results among testers were compared to determine the inter-tester reliability.  Results HHD showed fine inter-tester reliability (ICC = 0.762-0.978 and inter-test reliability (ICC = 0.690-0.938 in measuring lower limb muscle strength of children with DMD/BMD. Results also showed relatively poor reliability in distal muscle groups (foot plantar flexion and dorsiflexion.  Conclusions HHD, showing fine inter-tester and inter-test reliability in measuring the lower limb muscle strength of children with DMD/BMD, can be used in monitoring muscle strength changing and assessing effects of clinical interventions. DOI: 10.3969/j.issn.1672-6731.2015.05.009

  12. Muscular Dystrophy Association

    Science.gov (United States)

    ... Families Live Unlimited Read More Deflazacort demonstrates significant muscle strength improvement in DMD Read More NDA Filing ... the Boot to Support Kids and Adults with Muscular Dystrophy, ALS and Related Diseases Read More Visit ...

  13. Adequate managment of patients with dystrophinopathies (muscular dystrophy Duchenne/Becker: objective scales and additional diagnostic methods

    Directory of Open Access Journals (Sweden)

    A. S. Nosko

    2014-01-01

    Full Text Available There are still no guidlines on managment of Duchenne/Becker myodystrophy in domestic medical practice. It leads to decrease of quality of life and, what is more important, lifespan of patients. In this article we have described our Western coleagues lаst decade experience, including consensus guidelines published in 2010 on mаnаgment of Duchenne myodystrophy, supplemented with our practicle experience. We have described standardized motor development scale and muscle tone score for patients with MDD/MDB, and algorithm of multidiscipline care with focus on prevention, diagnosis and treatment of main disease and steroid therapy complications: cardiovascular, orthopedics, respirator etc. These recommendations not only improve quality of live and extend lifespan of MDD/MDB patients, but allow to take part in multicentre trials on searching of pathognomonic and symptomatic treatment.

  14. Meaning of Muscular Dystrophy

    Science.gov (United States)

    ... MD Living With MD en español Qué significa distrofia muscular Over Labor Day, just as you're going ... blood test if a kid has Becker or Duchenne MD. Or the doctor might take a small piece of the muscle and look at it under a microscope to ...

  15. Meaning of Muscular Dystrophy

    Science.gov (United States)

    ... MD Living With MD en español Qué significa distrofia muscular Over Labor Day, just as you're ... grown-up. This article talks about two types: Duchenne and Becker MD. Generally, only boys get Duchenne ...

  16. Ullrich Congenital Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Goknur Haliloglu

    2011-09-01

    Full Text Available ObjectiveUllrich congenital muscular dystrophy is a rather severe type of congenitalmuscular dystrophy with early onset features related to motor development.In general it is inherited in autosomal recessive principles, however in theWestern world mostly seen with de novo dominant mutations in the collagenVI genes. Milder form of the condition is the Bethlem myopathy. There may beoverlap forms in the clinic resembling the Ehler-Danlos syndrome. There hasbeen some radical efforts for cure especially through the apoptosis cascades.Key words: Ullrich congenital muscular dystrophy, collgen VI genes, Bethlemmyopathy, autophagy.

  17. [Dystroglycan linkage and muscular dystrophy].

    Science.gov (United States)

    Shimizu, Teruo

    2002-11-01

    Dystroglycan is a key complex between basal lamina laminin, extracellularly and membrano-cytoskeleton, intracellularly. The damage of this linkage is turned out to cause muscular dystrophies. Dystroglycan knockout is lethal. Dystroglycan-associated intracellular proteins such as dystrophin, dystrobrevin, sarcoglycans, plectin and caveolin-3 are responsible for causing severe (Duchenne type) and moderate forms (Becker, LGMDs). Laminin, dystroglycan-binding extracellular protein, is deficient in the most severe form of congenital muscular dystrophy with normal intelligence and eye. Recently, a remarkable progress is made in most severe forms of congenital muscular dystrophy with anomalies of brain and eye such as Fukuyama type (Japan) and muscle-eye-brain disease (Finland). The gene product for Fukuyama type, fukutin, belongs to a family of glycosylation enzymes in bacteria and yeast. Since alpha-dystroglycan contains 14-15 o-glycans, ser/thr-mannose 2-1 GlcNAc 4-1 Gal 3-2 Sial in the middle third mucin-domain and the sial-o-glycan is essential for laminin-binding, and since alpha-dystroglycan is defective in Fukuyama type sarcolemma with anti both sugar moiety- and peptide-antidodies, defective fukutin causes incomplete o-glycosylation of alpha-dystroglycan. In '02, it is clarified that a glycosylation enzyme, POMGnT1 which modifies GlcNAc onto ser/thr-mannose, is defective in 6 MEB patients. The loss of the enzyme activity is turned out to lose alpha-dystroglycan from sarcolemma of MEB. These data strongly suggests that o-glycosylation defect of alpha-dystroglycan causes the most severe congenital muscular dystrophy such as Fukuyama type, MEB and Walker Warburg syndrome.

  18. Deletion of exon 26 of the dystrophin gene is associated with a mild Becker muscular dystrophy phenotype

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, Morten; Vissing, John

    2011-01-01

    calf hypertrophy was noted. Creatine kinase was normal or raised maximally to 500 U/l. The muscle biopsy was myopathic with increased fiber size variation and many internal nuclei, but no dystrophy. No comorbidity was found. In both cases, western blot showed a reduced dystrophin band. Genetic...... associated with an exon 26 deletion. The proband, a 23-year-old man, had slightly delayed motor milestones, walking 1 1/2 years old. He had no complaints of muscle weakness, but had muscle pain. Clinical examination revealed no muscle wasting or loss of power, but his CK was 1500-7000 U/l. Muscle biopsy...... showed dystrophic changes. He had comorbidity with dystonia, slight mental retardation, low stature and neuropathy. The brother of the proband's mother came to medical attention when he was 43 years old. He complained about muscle pain. On examination, a MRC grade 4+ hip extention palsy and a discrete...

  19. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi (Kobe Univ. School of Medicine (Japan))

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  20. Ullrich Congenital Muscular Dystrophy

    OpenAIRE

    2011-01-01

    ObjectiveUllrich congenital muscular dystrophy is a rather severe type of congenitalmuscular dystrophy with early onset features related to motor development.In general it is inherited in autosomal recessive principles, however in theWestern world mostly seen with de novo dominant mutations in the collagenVI genes. Milder form of the condition is the Bethlem myopathy. There may beoverlap forms in the clinic resembling the Ehler-Danlos syndrome. There hasbeen some radical efforts for cure espe...

  1. Ullrich Congenital Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Goknur Haliloglu

    2011-06-01

    Full Text Available ObjectiveUllrich congenital muscular dystrophy is a rather severe type of congenital muscular dystrophy with early onset features related to motor development.In general it is inherited in autosomal recessive principles, however in the Western world mostly seen with de novo dominant mutations in the collagen VI genes. Milder form of the condition is the Bethlem myopathy. There may be overlap forms in the clinic resembling the Ehler-Danlos syndrome. There has been some radical efforts for cure especially through the apoptosis cascades.

  2. Duchenne and Becker Muscular Dystrophies

    Science.gov (United States)

    ... the Achilles tendon stretched while the child is sleeping. Standing for a few hours each day, even with minimal weight bearing, promotes ... be some- what restricted to keep weight down. Obesity puts greater stress on ... have any harmful effect on the muscles. Those on prednisone and those ...

  3. Limb girdle muscular dystrophies

    DEFF Research Database (Denmark)

    Vissing, John

    2016-01-01

    PURPOSE OF REVIEW: The aim of the study was to describe the clinical spectrum of limb girdle muscular dystrophies (LGMDs), the pitfalls of the current classification system for LGMDs, and emerging therapies for these conditions. RECENT FINDINGS: Close to half of all LGMD subtypes have been...

  4. 以晕厥发病的成年Becker型肌营养不良症1例报道%One report of adult onset Becker muscular dystrophy with syncope

    Institute of Scientific and Technical Information of China (English)

    沈沸; 俞羚; 陆钦池; 朱莹; 李焰生

    2009-01-01

    @@ Becker型肌营养不良症(Becker muscular dystrophy, BMD)是由抗肌萎缩蛋白(Dystrophin蛋白)缺陷导致的缓慢进展的肌肉萎缩、无力伴假性肌肥大为特征的遗传性肌肉疾病.传统上,BMD多在5~10岁起病,至20~25岁丧失独立行走能力,存活至40岁左右[1].随着对Dystrophin蛋白基因的研究深入,已发现一些30岁以后发病或早期以心肌损害为主要表现的BMD[2,3].本文报道1例以心肌损害导致晕厥而首发的成年起病的BMD.

  5. Muscle diseases: the muscular dystrophies.

    Science.gov (United States)

    McNally, Elizabeth M; Pytel, Peter

    2007-01-01

    Dystrophic muscle disease can occur at any age. Early- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle. This chapter reviews the basic structural properties of muscle and genetic mechanisms that lead to myopathy and muscular dystrophies that affect all age groups.

  6. Poor Facial Affect Recognition among Boys with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Hinton, V. J.; Fee, R. J.; De Vivo, D. C.; Goldstein, E.

    2007-01-01

    Children with Duchenne or Becker muscular dystrophy (MD) have delayed language and poor social skills and some meet criteria for Pervasive Developmental Disorder, yet they are identified by molecular, rather than behavioral, characteristics. To determine whether comprehension of facial affect is compromised in boys with MD, children were given a…

  7. 女性DMD/BMD携带者的临床表现与发病机制研究%Symptoms and pathogenesis of manifesting carriers of Duchenne/Becker muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    张莉; 李西华; 王艺

    2013-01-01

    Duchenne and Becker muscular dystrophies,due to genovariation of the dystrophin gene,are X-linked recessively inherited progressive neuromuscular diseases and affect mainly male individuals.While it is estimated that 20% of female carriers may have various symptoms.The clinical picture of carriers includes muscle weakness,cardiac involvement,cognitive impairment and muscle cramps/myalgias,as well as an elevated serum creatine kinase level and dystrophin abnormalities in muscle tissue.Apart from some cases associated with chromosome aberrations,the pathogenesis in most female carriers are caused by skewed X inactivation.Given the low incidence of manifesting carriers and the wide spectrum of phenotypes,the diagnosis and treatment may be delayed.In addition,there is little experience to guide management and predict prognosis.%Duchenne和Becker肌营养不良(Duchenne/Becker muscular dystrophy,DMD/BMD)为dystrophin基因变异所致的X伴性隐性遗传病,主要影响男性患者,而20%左右的女性携带者表现出不同的临床症状,如肌无力、心脏受累、认知功能障碍、肌肉疼痛或痉挛等,伴有血清肌酸激酶的升高和肌肉病理的改变.倾斜的X染色体失活是主要的发病机制,在一些病例报道中也发现了一些特殊的核型导致疾病的进展.由于有症状的携带者发病率低、临床表现差异较大,且临床缺少规范的诊治管理和随访评估的经验,因此经常得不到及时准确的诊治.该文对女性携带者的症状、诊断及发病机制进行综述.

  8. Peter Becker and his Nazi past

    DEFF Research Database (Denmark)

    Zeidman, Lawrence A; Kondziella, Daniel

    2014-01-01

    Peter Becker was a German neurologist who helped classify the muscular dystrophies, and described Becker muscular dystrophy and Becker myotonia. His involvement in National Socialism began in 1933, when he was compelled by his peers to join the SA (brown shirts). He later joined the Nazi party, t...... cost....

  9. Modifying muscular dystrophy through TGFβ

    OpenAIRE

    Ceco, Ermelinda; McNally, Elizabeth M.

    2013-01-01

    Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle with replacement by scar or fibrosis resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing ef...

  10. The paradox of muscle hypertrophy in muscular dystrophy.

    Science.gov (United States)

    Kornegay, Joe N; Childers, Martin K; Bogan, Daniel J; Bogan, Janet R; Nghiem, Peter; Wang, Jiahui; Fan, Zheng; Howard, James F; Schatzberg, Scott J; Dow, Jennifer L; Grange, Robert W; Styner, Martin A; Hoffman, Eric P; Wagner, Kathryn R

    2012-02-01

    Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans and syndromes in mice, dogs, and cats. Affected humans and dogs have progressive disease that leads primarily to muscle atrophy. Mdx mice progress through an initial phase of muscle hypertrophy followed by atrophy. Cats have persistent muscle hypertrophy. Hypertrophy in humans has been attributed to deposition of fat and connective tissue (pseudohypertrophy). Increased muscle mass (true hypertrophy) has been documented in animal models. Muscle hypertrophy can exaggerate postural instability and joint contractures. Deleterious consequences of muscle hypertrophy should be considered when developing treatments for muscular dystrophy.

  11. Morphologic imaging in muscular dystrophies and inflammatory myopathies

    Energy Technology Data Exchange (ETDEWEB)

    Degardin, Adrian; Lacour, Arnaud; Vermersch, Patrick [CHU de Lille, Clinique neurologique, Lille (France); Morillon, David; Cotten, Anne [CHRU de Lille, Service de Radiologie Osteoarticulaire, Hopital Roger Salengro, Lille (France); Stojkovic, Tanya [G-H Pitie-Salpetriere, Institut de Myologie, Paris (France)

    2010-12-15

    To determine if magnetic resonance imaging (MR imaging) is useful in the diagnostic workup of muscular dystrophies and idiopathic inflammatory myopathies for describing the topography of muscle involvement. MR imaging was performed in 31 patients: 8 with dystrophic myotony types 1 (n = 4) or 2 (n = 4); 11 with limb-girdle muscular dystrophy, including dysferlinopathy, calpainopathy, sarcoglycanopathy, and dystrophy associated with fukutin-related protein mutation; 3 with Becker muscular dystrophy; and 9 with idiopathic inflammatory myopathies, including polymyositis, dermatomyositis, and sporadic inclusion body myositis. Analysis of T1 images enabled us to describe the most affected muscles and the muscles usually spared for each muscular disease. In particular, examination of pelvis, thigh, and leg muscles demonstrated significant differences between the muscular diseases. On STIR images, hyperintensities were present in 62% of our patients with muscular dystrophies. A specific pattern of muscular involvement was established for each muscular disease. Hyperintensities observed on STIR images precede fatty degeneration and are not specific for inflammatory myopathies. (orig.)

  12. Wasting mechanisms in muscular dystrophy.

    Science.gov (United States)

    Shin, Jonghyun; Tajrishi, Marjan M; Ogura, Yuji; Kumar, Ashok

    2013-10-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  13. Porcine models of muscular dystrophy

    Science.gov (United States)

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein, dystrophin. This disease is modeled by a variety of animal models including several fish models, mice, rats, and dogs. While these models have contributed substantially t...

  14. Diagnostic clues and manifesting carriers in fukutin-related protein (FKRP) limb-girdle muscular dystrophy.

    Science.gov (United States)

    Schottlaender, Lucia V; Petzold, Axel; Wood, Nicholas; Houlden, Henry

    2015-01-15

    Mutations in the fukutin-related protein (FKRP) gene are a known cause of autosomal recessive limb-girdle muscular dystrophy. Clinically, patients resemble Becker's muscular dystrophy and generally present in the first two decades of life with a mild, progressive phenotype. Cardiac involvement is variable. Heterozygous carriers are usually clinically unaffected. We report a patient presenting later in life with life-threatening cardiac failure and we describe for the first time clinically manifesting carriers in the family.

  15. Current status on diagnosis and management of Duchenne/Becker muscular dystrophy in Chongqing area%假肥大型肌营养不良的诊治与生存质量分析

    Institute of Scientific and Technical Information of China (English)

    胡君; 蒋莉; 袁召建; 朱进; 孔敏; 叶园珍

    2012-01-01

    Objective To improve the diagnosis and management of Duchenne/Becker muscular dystrophy (DMD/BMD). Methods Clinical data of 294 DMD/BMD cases were collected. Genomic DNA was extracted from the peripheral blood leukocytes using standard procedures and multiple polymerase chain reaction (mPCR) + short tandem repeat (STR) were applied to detect Dystrophin gene mutation. Gastrocnemius muscle biopsies were peroformed on 17 cases without Dystrophin gene mutations. The standard procedure of cross-culture adaptation was used to develop the Chinese version Pediatric Quality of Life Inventory? 3.0 Neuromuscular Module (PedsQLTM 3.0 NMM). The Chinese version PedsQLTM 3.0 NMM was then to performed on 39 patients and their parents. Results In total of 294 cases, ex-ons and STR deletion of Dystrophin were identified in % cases (32.65%) and exons deletions in central hot spot of recombination (exon 44-51) were identified in 82 cases (85.42%). Gastrocnemius muscle biopsies were positive in 14 cases (82.35%) of the 17 cases undergoing, biopsy. Chinese version PedsQLTM 3.0 NMM in 39 cases showed that patients with more severe conditions had lower scores of PedsQLTM 3.0 NMM (P < 0.05) , lower scores in communication and family dimensions (P > 0.05). Among the 101 DMD cases, only 18 were used prednisone with 0.75 mg/kg daily. Conclusions DMD/BMD is not uncommon in Southwest of China. Application of mPCR + STR can improve the detection accuracy of Dystrophin gene mutations but with low positive rate. Muscle biopsy is a good supplementary means for the diagnosis, illness severity is the main factor affecting quality of life (QOL) of DMD/BMD patients. DMD/BMD patients are generally lack of good communication and have a poor family economy. It is very urgent to develop the diagnosis and management of DMD/BMD guideline suitable for China's national conditions.%目的 分析西南地区假肥大型肌营养不良(Duchenne/Becker muscular dystrophy,DMD/BMD)患儿的诊治现状及生存

  16. Muscular dystrophies: key elements for everyday diagnosis and management

    Directory of Open Access Journals (Sweden)

    Alberto Palladino

    2013-12-01

    Full Text Available Muscular dystrophies are a heterogeneous group of inherited disorders that share similar clinical features and dystrophic changes on muscle biopsy, associated with progressive weakness. Weakness may be noted at birth or develop in late adult life. In recent years, cardiac involvement has been observed in a growing number of genetic muscle diseases, and considerable progress has been made in understanding the relationships between disease skeletal muscle and cardiac muscle disease. This review will focus on the skeletal muscle diseases most commonly associated with cardiac complications that can be diagnosed by echocardiography, such as dystrophinopathies including Duchenne (DMD and Becker (BMD muscular dystrophies, cardiomyopathy of DMD/BMD carriers and X-L dilated cardiomyopathy.

  17. Accurate assessment of intragenic recombination frequency within the Duchenne muscular dystrophy gene.

    Science.gov (United States)

    Abbs, S; Roberts, R G; Mathew, C G; Bentley, D R; Bobrow, M

    1990-08-01

    Polymorphic loci that lie at the two extremities of the Duchenne/Becker muscular dystrophy (DMD/BMD) gene have been used to estimate intragenic recombination rates. Multipoint linkage analysis of the CEPH panel of families suggests a total intragenic recombination frequency of nearly 0.12 (confidence intervals 0.041-0.226) over the genomic length of approximately 2 Mb.

  18. 假肥大型进行性肌营养不良120例疑诊患者的基因诊断%Genetic Diagnosis of 120 Suspected Cases with Duchenne/Becker Muscular Dystrophy

    Institute of Scientific and Technical Information of China (English)

    贺静; 朱宝生; 唐新华; 李利; 郑淑芳; 陈红; 苏洁; 章印红; 李秀玲

    2011-01-01

    目的 对120例假肥大型进行性肌营养不良(DMD/BMD )疑诊患者进行基因诊断,探讨云南人群DMD基因的缺失分布特点.方法 应用多重PCR法对2004年1月-2010年3月在本院遗传诊断中心门诊就诊的120例疑诊患者(均为男性;就诊年龄1个月~14岁)的DMD基因常见缺失的18个外显子进行检测,按缺失位点分析DMD患者的缺失分布情况.结果 在120例疑诊患者中检出61例DMD基因存在缺失,缺失发生在DMD基因5′端者占总例数的18.97%,缺失发生在基因中央区域者占81.03%.在未检出缺失的59例疑诊患者中,32例通过临床回访,其中24例按临床表现及相关检查临床诊断为DMD,另8例不符合DMD诊断.另有27例失访或不能明确为DMD.结论 云南人群中DMD基因外显子的缺失主要集中于DMD基因中央区域.对DMD疑诊患者DMD基因缺失检测后进行临床回访的临床诊疗具有重要意义.%Objective Genetic diagnosis of 120 cases of suspected Duchenne/Becker muscular dystrophy(DMD/BMD) were carried out to investigate the distribution of DMD gene deletion within populations in Yunnan province.Methods Multiplex polymerase chain reaction (mPCR) was applied for deletion analysis of 18 exons of DMD gene with higher deletion frequency in 120 cases of suspected DMD/BMD ( male,aged from 1 month to 14 years) who visited the Genetic Diagnosis Center of the First People's Hospital of Yunnan Province from Jan.2004 to Mar.2010.Distribution of DMD gene exon deletion was summarized consequently.Results Sixty - one of 120 cases had detected DMD exon deletions.Further analysis showed that 18.97% of gene exon deletions located in 5' -flanking region,81.03% located in central region.Thirty - two cases of 59 cases who had not been detected exon deletion were subjected to follow - up.Among them ,24 cases were diagnosed as DMD according to clinical manifestation and laboratory data, DMD could be excluded for the rest 8 eases.Furthermore ,27 cases

  19. Porcine models of muscular dystrophy.

    Science.gov (United States)

    Selsby, Joshua T; Ross, Jason W; Nonneman, Dan; Hollinger, Katrin

    2015-01-01

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.

  20. Targeting latent TGFβ release in muscular dystrophy.

    Science.gov (United States)

    Ceco, Ermelinda; Bogdanovich, Sasha; Gardner, Brandon; Miller, Tamari; DeJesus, Adam; Earley, Judy U; Hadhazy, Michele; Smith, Lucas R; Barton, Elisabeth R; Molkentin, Jeffery D; McNally, Elizabeth M

    2014-10-22

    Latent transforming growth factor-β (TGFβ) binding proteins (LTBPs) bind to inactive TGFβ in the extracellular matrix. In mice, muscular dystrophy symptoms are intensified by a genetic polymorphism that changes the hinge region of LTBP, leading to increased proteolytic susceptibility and TGFβ release. We have found that the hinge region of human LTBP4 was also readily proteolysed and that proteolysis could be blocked by an antibody to the hinge region. Transgenic mice were generated to carry a bacterial artificial chromosome encoding the human LTBP4 gene. These transgenic mice displayed larger myofibers, increased damage after muscle injury, and enhanced TGFβ signaling. In the mdx mouse model of Duchenne muscular dystrophy, the human LTBP4 transgene exacerbated muscular dystrophy symptoms and resulted in weaker muscles with an increased inflammatory infiltrate and greater LTBP4 cleavage in vivo. Blocking LTBP4 cleavage may be a therapeutic strategy to reduce TGFβ release and activity and decrease inflammation and muscle damage in muscular dystrophy.

  1. Duchenne muscular dystrophy: the management of scoliosis

    Science.gov (United States)

    Gardner, Adrian C.; Roper, Helen P.; Chikermane, Ashish A.; Tatman, Andrew J.

    2016-01-01

    This study summaries the current management of scoliosis in patients with Duchenne Muscular Dystrophy. A literature review of Medline was performed and the collected articles critically appraised. This literature is discussed to give an overview of the current management of scoliosis within Duchenne Muscular Dystrophy. Importantly, improvements in respiratory care, the use of steroids and improving surgical techniques have allowed patients to maintain quality of life and improved life expectancy in this patient group.

  2. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    Science.gov (United States)

    2016-08-02

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  3. [Congenital muscular dystrophies in children].

    Science.gov (United States)

    Scavone-Mauro, Cristina; Barros, Graciela

    2013-09-06

    From the clinical and genetic point of view, congenital muscular dystrophies (CMD) are a heterogenic group of diseases within neuromuscular pathologies. The best known forms are: merosin deficiency CMD, collagen VI deficiency CMD, LMNA-related CMD, selenoprotein-related CMD (SEPN1) and alpha-dystroglycan-related CMD. They present with a broad spectrum of clinical phenotypes. Most of them are transmitted by recessive autosomal inheritance. The initial manifestations very often begin in infancy or in the neonatal period. There are clinical suspicions of the existence of hypotonia and paresis, and they are characterised by a dystrophic pattern in the muscular biopsy (muscle replaced by fibroadipose tissue, with necrosis and cell regeneration). Advances in the understanding of the molecular pathogenesis of CMD have made it possible to make further progress in the classification of the different subtypes. The aim of this review is to comment on the advances made in recent years as regards the classification of CMD in terms of genetics, the proteins involved and their clinical presentation.

  4. Nutrition Considerations in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Davis, Jillian; Samuels, Emily; Mullins, Lucille

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a serious degenerative muscular disease affecting males. Diagnosis usually occurs in childhood and is confirmed through genetic testing and/or muscle biopsy. Accompanying the disease are several nutrition-related concerns: growth, body composition, energy and protein requirements, constipation, swallowing difficulties, bone health, and complementary medicine. This review article addresses the nutrition aspects of DMD.

  5. [Muscular Dystrophies Involving the Retinal Function].

    Science.gov (United States)

    Jägle, H

    2016-03-01

    Muscular dystrophies are rare disorders, with an incidence of approx. 20 in 100 000. Some dystrophies also affect retinal or optic nerve function. In such cases, the ophthalmological findings may be critical for differential diagnosis or patient counseling. For example in Duchenne muscular dystrophy, where the alteration in retinal function seems to reflect cerebral involvement. Other important forms are mitochondrial and metabolic disorders, such as the Kearns-Sayre syndrome and the Refsum syndrome. Molecular genetic analysis has become a major tool for differential diagnosis, but may be complex and demanding. This article gives an overview of major muscular dystrophies involving retinal function and their genetic origin, in order to guide differential diagnosis.

  6. Therapeutics in duchenne muscular dystrophy.

    Science.gov (United States)

    Strober, Jonathan B

    2006-04-01

    Duchenne muscular dystrophy (DMD) is a fatal disorder affecting approximately 1 in 3,500 live born males, characterized by progressive muscle weakness. Several different strategies are being investigated in developing a cure for this disorder. Until a cure is found, therapeutic and supportive care is essential in preventing complications and improving the afflicted child's quality of life. Currently, corticosteroids are the only class of drug that has been extensively studied in this condition, with controversy existing over the use of these drugs, especially in light of the multiple side effects that may occur. The use of nutritional supplements has expanded in recent years as researchers improve our abilities to use gene and stem cell therapies, which will hopefully lead to a cure soon. This article discusses the importance of therapeutic interventions in children with DMD, the current debate over the use of corticosteroids to treat this disease, the growing use of natural supplements as a new means of treating these boys and provides an update on the current state of gene and stem cell therapies.

  7. Duchenne muscular dystrophy and epilepsy.

    Science.gov (United States)

    Pane, M; Messina, S; Bruno, C; D'Amico, A; Villanova, M; Brancalion, B; Sivo, S; Bianco, F; Striano, P; Battaglia, D; Lettori, D; Vita, G L; Bertini, E; Gualandi, F; Ricotti, V; Ferlini, A; Mercuri, E

    2013-04-01

    Cognitive and behavioral difficulties occur in approximately a third of patients with Duchenne muscular dystrophy. The aim of our study was to assess the prevalence of epilepsy in a cohort of 222 DMD patients. Epileptic seizures were found in 14 of the 222 DMD patients (6.3%). The age of onset ranged from 3 months to 16 years (mean 7.8). Seizures were more often focal epilepsy (n=6), generalized tonic-clonic seizures (n=4) or absences (n=4). They were present in 12 of the 149 boys with normal IQ (8.1%) and in two of the 73 with mental retardation (2.7%). In two cases the parents did not report any past or present history of seizures but only 'staring episodes' interpreted as a sign of 'poor attention'. In both patients EEG showed the typical pattern observed in childhood absence epilepsy. Our results suggest that the prevalence of epilepsy in our study (6.3%) is higher than in the general pediatric population (0.5-1%). The risk of epilepsy does not appear to increase in patients with mental retardation.

  8. FDA OKs 1st Drug to Treat Duchenne Muscular Dystrophy

    Science.gov (United States)

    ... html FDA OKs 1st Drug to Treat Duchenne Muscular Dystrophy Exondys 51 seems to fill unmet need ... the first drug for a rare form of muscular dystrophy. Exondys 51 (eteplirsen) was granted accelerated approval ...

  9. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad BARZEGAR

    2015-01-01

    Full Text Available How to Cite This Article: Barzegar M, Habibi P, Bonyady M, Topchizadeh V, Shiva Sh. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran. Iran J Child Neurol. 2015 Winter; 9(1: 42-48.AbstractObjectiveDuchene and Becker Muscular Dystrophy (DMD/ BMD are x-linked disorders that both are the result of heterogeneous mutations in the dystrophin gene. The frequency and distribution of dystrophin gene deletions in DMD/ BMD patients show different patterns among different populations. This study investigates the deletion rate, type, and distribution of this gene in the Azeri Turk population of North West Iran.Materials &MethodsIn this study, 110 patients with DMD/ BMD were studied for intragenic deletions in 24 exons and promoter regions of dystrophin genes by using multiplex PCR.ResultsDeletions were detected in 63 (57.3% patients, and around 83% localized in the mid-distal hotspot of the gene (on exons 44–52, 21 cases (33.3 % with singleexon deletions, and 42 cases (66.6% with multi-exonic deletions. The most frequent deleted exons were exon 50 (15 % and exon 49 (14%. No deletion was detected in exon 3.ConclusionThis study suggests that the frequency and pattern of dystrophin gene deletions in DMD/ BMD in the Azeri Turk population of North West Iran occur in the same pattern when compared with other ethnic groups.ReferencesEmery AE. Clinical and molecular studies in Duchenne muscular dystrophy. Prog Clin Biol Res 1989; 306:15-28.Moser H. Duchenne muscular dystrophy: pathogenic aspects and genetic prevention. Hum Genet 1984; 66(1:17-40.Emery AE. Population Frequencies of inherited neuromuscular diseases: a world survey Neuromuscul Disord 1991; I (I:19-29.Bushby KM, Thmabyayah M, Gardner M D. Prevalence and incidence of Becker muscular dystrophy. Lancet 1991; 337(8748:1022-1024.Koenig M, Hoffman EP, Bertelosn CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne muscular dystrophy (DMD DNA and

  10. Circulating Biomarkers for Duchenne Muscular Dystrophy

    Science.gov (United States)

    Aartsma-Rus, Annemieke; Spitali, Pietro

    2015-01-01

    Abstract Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput – omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products. PMID:27858763

  11. Weight reduction in boys with muscular dystrophy.

    Science.gov (United States)

    Edwards, R H; Round, J M; Jackson, M J; Griffiths, R D; Lilburn, M F

    1984-06-01

    Many children with muscular dystrophy are overweight, and although weight control is pursued in some centres it is unusual to encourage severe dietary restriction for fear that it might lead to accelerated loss of muscle. In this study, two overweight boys with muscular dystrophy were monitored by whole-body nitrogen balance, total body potassium, strength and functional measurements during calorie restriction. Both patients were found to have a transient loss of nitrogen on commencing the low calorie intake: thereafter, weight loss was not found to have any deleterious effect on muscle bulk or function in either patient. It is suggested that controlled weight-reduction in obese children with muscular dystrophy is a safe and practical way of losing excess fat, which can improve mobility and self-esteem, and may possibly effect longevity.

  12. Correlation between electroretinographic findings, clinical phenotypic and genotypic analysis in Duchenne and Becker muscular dystrophy%进行性肌营养不良患者视网膜眼电图表型与临床分型及基因型的关系

    Institute of Scientific and Technical Information of China (English)

    杨渝; 张成; 盛文利; 潘速跃; 吴德正; 江福钿

    2001-01-01

    Objective To explore the relationship between electrophysiological changes, clinical phenotype and genotype in Duchenne and Becker muscular dystrophy(DMD/BMD), to address the expression and roles of dystrophin and its isoforms on the retina, and to inquire into the molecular mechanism of the abnormal electroretinogram(ERG) on DMD/BMD patients with different genotype.Methods Gene deletions were screened by multiplex DNA amplification with eleven primers on twenty-two consecutive patients with DMD and BMD, and then, the ERG was tested according to international ERG standard.Results ERG phenotype was associated with the site of DMD gene defects rather than the severity of the phenotype. Patients with deletion in the central region of the gene had more severe changes in the scotopic ERG as compared to those with gene non-deletion.Conclusion The ERG genotype-phenotype correlation suggests that DP260 may play the most important role in the retinal neurotransmission.%目的 研究进行性肌营养不良(Duchenne/Becker muscular dystrophy, DMD/BMD)患者视网膜眼电图(electroretinogram,ERG)表型与临床分型以及基因型的关系,进一步探讨不同基因型的DMD患者抗肌营养不良蛋白(dystrophin)及其同源蛋白在视网膜上的表达及功能,揭示DMD出现ERG异常的分子机理。方法 用11对引物对22例临床确诊的DMD/BMD患者作三步多重PCR进行基因缺失分析,并行ERG检查。结果 DMD/BMD患者ERG改变与临床分型及病情严重程度无关,与DMD/BMD的基因型有关,基因中央区缺失型的ERG异常率明显高于基因非缺失型。结论 DMD/BMD的ERG改变与DMD基因突变位点有关,可能DP260转录启动子与视网膜电信号的传导关系最密切。

  13. The limb-girdle muscular dystrophies.

    Science.gov (United States)

    Wicklund, Matthew P; Kissel, John T

    2014-08-01

    A collection of more than 30 genetic muscle diseases that share certain key features, limb-girdle muscular dystrophies are characterized by progressive weakness and muscle atrophy of the hips, shoulders, and proximal extremity muscles with postnatal onset. This article discusses clinical, laboratory, and histologic features of the 6 most prevalent limb-girdle dystrophies. In this large group of disorders, certain distinctive features often can guide clinicians to a correct diagnosis.

  14. Advances in gene therapy for muscular dystrophies.

    Science.gov (United States)

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  15. Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy.

    Science.gov (United States)

    Sun, Guilian; Haginoya, Kazuhiro; Wu, Yanling; Chiba, Yoko; Nakanishi, Tohru; Onuma, Akira; Sato, Yuko; Takigawa, Masaharu; Iinuma, Kazuie; Tsuchiya, Shigeru

    2008-04-15

    The detailed process of how dystrophic muscles are replaced by fibrotic tissues is unknown. In the present study, the immunolocalization and mRNA expression of connective tissue growth factor (CTGF) in muscles from normal and dystrophic human muscles were examined with the goal of elucidating the pathophysiological function of CTGF in muscular dystrophy. Biopsies of frozen muscle from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, congenital muscular dystrophy, spinal muscular atrophy, congenital myopathy were analyzed using anti-CTGF polyclonal antibody. Reverse transcription-polymerase chain reaction (RT-PCR) was also performed to evaluate the expression of CTGF mRNA in dystrophic muscles. In normal muscle, neuromuscular junctions and vessels were CTGF-immunopositive, which suggests a physiological role for CTGF in these sites. In dystrophic muscle, CTGF immunoreactivity was localized to muscle fiber basal lamina, regenerating fibers, and the interstitium. Triple immunolabeling revealed that activated fibroblasts were immunopositive for CTGF and transforming growth factor-beta1 (TGF-beta1). RT-PCR analysis revealed increased levels of CTGF mRNA in the muscles of DMD patients. Co-localization of TGF-beta1 and CTGF in activated fibroblasts suggests that CTGF expression is regulated by TGF-beta1 through a paracrine/autocrine mechanism. In conclusion, TGF-beta1-CTGF pathway may play a role in the fibrosis that is commonly observed in muscular dystrophy.

  16. Anoctamin 5 muscular dystrophy in Denmark

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, Morten; Petri, Helle

    2013-01-01

    Since the initial description in 2010 of anoctamin 5 deficiency as a cause of muscular dystrophy, a handful of papers have described this disease in cases of mixed populations. We report the first large regional study and present data on new aspects of prevalence, muscular and cardiac phenotypic...... characteristics, and muscle protein expression. All patients in our neuromuscular unit with genetically unclassified, recessive limb girdle muscular dystrophy (LGMD2), Miyoshi-type distal myopathy (MMD) or persistent asymptomatic hyperCK-emia (PACK) were assessed for mutations in the ANO5 gene. Genetically...... confirmed patients were evaluated with muscular and cardiopulmonary examination. Among 40 unclassified patients (28 LGMD2, 5 MMD, 7 PACK), 20 were homozygous or compound heterozygous for ANO5 mutations, (13 LGMD2, 5 MMD, 2 PACK). Prevalence of ANO5 deficiency in Denmark was estimated at 1:100.000 and ANO5...

  17. The superhealing MRL background improves muscular dystrophy

    OpenAIRE

    2012-01-01

    Abstract Background Mice from the MRL or “superhealing” strain have enhanced repair after acute injury to the skin, cornea, and heart. We now tested an admixture of the MRL genome and found that it altered the course of muscle pathology and cardiac function in a chronic disease model of skeletal and cardiac muscle. Mice lacking γ-sarcoglycan (Sgcg), a dystrophin-associated protein, develop muscular dystrophy and cardiomyopathy similar to their human counterparts with limb girdle muscular dyst...

  18. A Drosophila model for Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Plas, Mariska Cathelijne van der

    2008-01-01

    Duchenne Muscular Dystrophy (DMD) is a severe X-linked disease characterized by progressive muscle wasting and sometimes mild mental retardation. The disease is caused by mutations in the dystrophin gene. DMD is correlated with the absence of Dp427, which is located along the sarcolemma in skeletal

  19. Brain Function in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2002-02-01

    Full Text Available The role of dystrophin disorders in the CNS function of boys with Duchenne muscular dystrophy (DMD and the dystrophin-deficient mdx mouse, an animal model of DMD, is reviewed at the University of New South Wales, University of Sydney, Australia.

  20. Visuospatial Attention Disturbance in Duchenne Muscular Dystrophy

    Science.gov (United States)

    De Moura, Maria Clara Drummond Soares; do Valle, Luiz Eduardo Ribeiro; Resende, Maria Bernadete Dutra; Pinto, Katia Osternack

    2010-01-01

    Aim: The cognitive deficits present in the Duchenne muscular dystrophy (DMD) are not yet well characterized. Attention, considered to be the brain mechanism responsible for the selection of sensory stimuli, could be disturbed in DMD, contributing, at least partially, to the observed global cognitive deficit. The aim of this study was to…

  1. Clinical features of facioscapulohumeral muscular dystrophy 2.

    NARCIS (Netherlands)

    Greef, J.C. de; Lemmers, R.J.; Camano, P.; Day, J.W.; Sacconi, S.; Dunand, M.; Engelen, B.G.M. van; Kiuru-Enari, S.; Padberg, G.W.A.M.; Rosa, A.L.; Desnuelle, C.; Spuler, S.; Tarnopolsky, M.; Venance, S.L.; Frants, R.R.; Maarel, S.M. van der; Tawil, R.

    2010-01-01

    OBJECTIVE: In some 5% of patients with facioscapulohumeral muscular dystrophy (FSHD), no D4Z4 repeat contraction on chromosome 4q35 is observed. Such patients, termed patients with FSHD2, show loss of DNA methylation and heterochromatin markers at the D4Z4 repeat that are similar to patients with D4

  2. Motor unit reorganization in progressive muscular dystrophies and congenital myopathies.

    Science.gov (United States)

    Szmidt-Sałkowska, Elżbieta; Gaweł, Małgorzata; Lipowska, Marta

    2015-01-01

    The aim of this study was to analyze motor unit reorganization in different types of progressive muscular dystrophies and congenital myopathies. The study population consisted of patients with genetically verified progressive muscular dystrophies: Duchenne (DMD) (n=54), Becker (BMD) (n=30), facio-scapulo-humeral (FSHD) (n=37), and Emery-Dreifuss (E-DD) (n=26). Patients with probable limb-girdle dystrophy (L-GD) (n=58) and congenital myopathies (n=35) were also included in the study. Quantitative EMG recordings were obtained from 469 muscles. Muscle activity at rest and during slight voluntary and maximal muscle contraction was analyzed. The motor unit activity potential (MUAP) duration, amplitude, area, size index (SI), polyphasicity, and the presence of "outliers" were evaluated. Diminished values of MUAP parameters and decreased maximal amplitude of maximal muscle contraction were recorded most frequently in DMD and mainly in the biceps brachii muscles. SI was the most frequently changed EMG parameter. "Outliers" with amplitude below the normal range were recorded more frequently then a decreased mean MUAP amplitude (what could indicate a very high sensitivity of this EMG parameter). Pathological interference pattern was recorded in 34.7% of biceps brachii and in 21.2% of rectus femoris muscles. In FSHD, decreased MUAP duration and SI and pathological interference pattern with low amplitude were recorded most frequently in the tibial anterior and deltoid muscles. The presence of potentials with reduced parameters is a result of decreasing motor unit area (reduced number and size of muscle fibers), while high amplitude potentials recorded in BMD and E-DD could indicate a slow and mild course of disease and muscle regeneration.

  3. Translational Research for Muscular Dystrophy

    Science.gov (United States)

    2014-05-01

    by successful treatment of patient mutations. In Aim 3, we have completed generation of a DBA/2J congenic mdx strain that appears to better model the...in-frame deletions that are expected to arise by successful treatment of patient mutations. Our transgenic experiments will model the best-case...macrophage infiltration and necrosis), weight loss after weaning, joint contractures , kyphosis, dystrophy of extraocular muscles, abnormal

  4. Distinct genetic regions modify specific muscle groups in muscular dystrophy

    OpenAIRE

    2010-01-01

    Phenotypic expression in the muscular dystrophies is variable, even with the identical mutation, providing strong evidence that genetic modifiers influence outcome. To identify genetic modifier loci, we used quantitative trait locus mapping in two differentially affected mouse strains with muscular dystrophy. Using the Sgcg model of limb girdle muscular dystrophy that lacks the dystrophin-associated protein γ-sarcoglycan, we evaluated chromosomal regions that segregated with two distinct quan...

  5. Molecular mechanisms in muscular dystrophy: a gene expression profiling study.

    OpenAIRE

    2006-01-01

    The muscular dystrophies are a group of neuromuscular disorders characterized by progres¬sive muscle weakness and wasting. Although the underlying genetic defects of a large number of muscular dystrophies are now know, the molecular mechanisms resulting in the devastating effects of the disease are not yet clear. Furthermore, the muscular dystrophies differ in clinical presentation and severity. The processes responsible for this di¬vergence are largely unknown as well. In this thesis, gene e...

  6. New Advanced Technology for Muscular Dystrophy

    Science.gov (United States)

    2009-11-01

    References Aristotle. 350 BC. Historia Animalium: Books VII–X. 1991 edition. D.M. Balme, editor. Harvard University Press, Cambridge, MA. 435–437...hematological disease, and have been proposed as a source for cell based therapies of muscular dystrophy. Since the University of Minnesota is a center...Blood and Marrow Transplantation program at the University of Minnesota to assure that we receive appropriate tissues as they become available. Having

  7. Growth hormone evaluation in Duchenne muscular dystrophy.

    Science.gov (United States)

    Merlini, L; Granata, C; Ballestrazzi, A; Cornelio, F; Tassoni, P; Tugnoli, S; Cacciari, E

    1988-10-01

    Growth hormone (GH) release with pharmacological tests and sleep test, somatomedin C and auxological features were studied in 10 patients affected by Duchenne Muscular Dystrophy. GH release in these patients seems to be lower than normal; moreover some of them are of short stature without an evident relationship with GH deficit. The possible significance of the data obtained is discussed, particularly in relation to the clinical course of the disease, and to current therapeutic trials with a GH release inhibitor (mazindol).

  8. [Management of myocardial damage in muscular dystrophy].

    Science.gov (United States)

    Tamura, Takuhisa

    2011-11-01

    Heart failure (HF) is a fatal complication in many muscular dystrophy cases and has become the most common cause of death in Duchenne muscular dystrophy (DMD) since 2001. HF deaths in DMD occur in young patients and increase, along with respiratory failure, in older patients. Managing HF, therefore, is the most important component of DMD treatment. Management of HF is necessary in DMD patients of all ages because myocardial damage progresses regardless of age and disability. Electrocardiography, echocardiography, myocardial single-photon emission computed tomography (SPECT), and natriuretic peptides are used for the diagnosis of myocardial damage and chronic HF. Tissue Doppler echocardiography is in particularly useful for early detection of minute myocardial damage and dysfunction in DMD. The first-line drugs for chronic HF are angiotensin-converting enzyme inhibitors, and the prognosis of DMD patients has been improved using these drugs and beta-blockers. Diuretics are added in the presence of pulmonary congestion. Digoxin is most effective at a blood level of 0.5-0.8 ng/mL because of its pharmacokinetics in DMD. Surgical treatment may be necessary in cases of intractable HF. Cardiac resynchronization therapy (biventricular pacing), a treatment with an artificial pacemaker, is indicated for cases that meet specific criteria, including HF with ventricular dyssynchrony. Applications of partial left ventriculectomy (Batista procedure) and left ventricular assist devices in muscular dystrophy are likely in the near future.

  9. 一个假肥大型肌营养不良症伴心脏扩大家系的遗传学及临床研究%Genetic and clinical study on a family with Becker's muscular dystrophy combined with cardiac dilatation

    Institute of Scientific and Technical Information of China (English)

    刘亚欣; 邹玉宝; 蒋雄京; 张慧敏; 吴海英; 郑德裕; 惠汝太; 高凌根; 周宪梁; 宋雷; 王林平; 张琳; 田涛; 孙凯; 王继征

    2012-01-01

    Background Duchenne's or Becker's muscular dystrophy is a serious X- linked neuromuscular disorder. Mutations in the dystro-phin gene on chromosome Xp21.1. have been reported to cause BMD. It primarily involved the skeletal muscle, characterized by weakness and muscle atrophy of hereditary muscle disease following as low progressive increase of symme try. DMD is usually with serious condition and with a poor prognosis. BMD patients can usually walk and have a near normal life span, and there is a chance of them developing cardiac problems. Objective: To study the clinical characteristics and genetic analysis and management of Becker's muscular dystrophy combined with cardiac involvement, and to expand our understanding of this disorder. Methods The proband and the family members had genetic testing, and these subjects also had physical examination and received muscle biopsy and routine pathological checks and cardiac evaluation. One hundred control subjects without diagnostic features of BMD were also recruited. Genomic DNA was extracted from leukocytes of peripheral blood from the patients and the control subjects. We screened the dystrophin gene in the indexes, and also screened for the mutation in their families and 100 controls. Results The proband was diagnosed with BMD by the identification of a mutation( c.4998_5000Del GCA,p.l667del) in the exon 35 of the dystrophin gene. Three cases were diagnosed with BMD by the identification of this mutation. All genetically affected subjects had a history of weakness of the quadriceps femoris as well as increased serum creatine kinase level at rest and cardiac involvement. Conclusion Genetic analysis enables a precise diagnosis of BMD, and heart transplantation is an effective treatment for the patient with severe heart failure.%背景假肥大型进行性肌营养不良是由抗肌萎缩蛋白基因突所致的一种X连锁隐性遗传神经肌肉疾病,又称为杜氏或贝克肌营养不良(Duchenne's or Becker

  10. Expression of tissue inhibitor of metalloproteinase-1 in progression muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective Tissue inhibitor of metalloproteinase-1 ( TIMP-1 ) is a multifunctional protein that has thc capacity to modify cellular activities and to modulate matrix turnover. This paper revealed the contributive role of TIMP-1 in progressive muscular dystrophy (PMD). Methods We examined the expression and cellular localization of TIMP-1 protein using biopsied frozen muscle from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD) , congenital muscular dystrophy (CMD) by immunohistochemistry, double immunofluorescence and Western blot analysis. Results The results of immunohistochemistry and double immunofluorescence showed that TIMP-1 was positive only in vascular endothelial cells of normal muscles. Immunohistochemistry and Western blot analysis showed that the staining intensity was distinctly increased in some dystrophic muscles of PMD for TIMP-1. Double immunofluorescence revealed that TIMP-1 strongly expressed in the regenerating muscle fibers, macrophages and macrophage infiltrating necrotic fibers. Some activated fibroblasts in endomysium and perimysium of DMD and CMD muscles were also positive for TIMP1. Conclusion The functional consequence of overexpression of TIMP-1 in the dystrophic muscles is unknown, but the elevated local expression of TIMP-1 in diseased muscles of PMD and their distinct distribution pattern provide evidence that TIMP-1 may participate in the pathogenesis of PMD.

  11. Living with muscular dystrophy: health related quality of life consequences for children and adults

    Directory of Open Access Journals (Sweden)

    de Boone Judith

    2007-06-01

    Full Text Available Abstract Background Muscular dystrophies are chronic diseases manifesting with progressive muscle weakness leading to decreasing activities and participation. To understand the impact on daily life, it is important to determine patients' quality of life. Objective To investigate Health Related Quality of Life (HRQoL of children and adults with muscular dystrophy (MD, and to study the influence of type and severity of MD on HRQoL in adult patients. Methods Age-related HRQoL questionnaires were administered to 40 children (8–17 years, and 67 adult patients with muscular dystrophies. Results Significant differences in HRQoL were found in children and adults with MD compared to healthy controls. Patients with Becker muscular dystrophy reported a better HRQoL on the several scales compared to patients with other MDs. Severity was associated with worse fine motor functioning and social functioning in adult patients. Conclusion This is one of the first studies describing HRQoL of patients with MD using validated instruments in different age groups. The results indicate that having MD negatively influences the HRQoL on several domains.

  12. Effect of cellular therapy in progression of Becker’s muscular dystrophy: a case study

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2016-03-01

    Full Text Available Becker muscular dystrophy (BMD is an inherited disorder due to deletions of the dystrophin gene that leads to muscle weakness. Effects of bone marrow mononuclear cell (BMMNC transplantation in Muscular Dystrophy have shown to be safe and beneficial. We treated a 20-year-old male suffering from BMD with autologous BMMNC transplantation followed by multidisciplinary rehabilitation. He presented with muscle weakness and had difficulty in performing his activities. The BMMNCs were transplanted via intrathecal and intramuscular routes. The effects were measured on clinical and functional changes. Over 9 months, gradual improvement was noticed in muscle strength, respiratory functions and North Star Ambulatory Assessment Scale. Functional Independence Measure, Berg Balance Score, Brooke and Vignos Scale remained stable indicating halting of the progression. The case report suggests that cellular therapy combined with rehabilitation may have possibility of repairing and regenerating muscle fibers and decreasing the rate of progression of BMD.

  13. Molecular mechanisms in muscular dystrophy : a gene expression profiling study.

    NARCIS (Netherlands)

    Turk, Rolf

    2006-01-01

    The muscular dystrophies are a group of neuromuscular disorders characterized by progres¬sive muscle weakness and wasting. Although the underlying genetic defects of a large number of muscular dystrophies are now know, the molecular mechanisms resulting in the devastating effects of the disease are

  14. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    OpenAIRE

    Oriana del Rocío Cruz Guzmán; Ana Laura Chávez García; Maricela Rodríguez-Cruz

    2012-01-01

    Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine di...

  15. Sleep disordered breathing in facioscapulohumeral muscular dystrophy.

    Science.gov (United States)

    Della Marca, Giacomo; Frusciante, Roberto; Dittoni, Serena; Vollono, Catello; Buccarella, Cristina; Iannaccone, Elisabetta; Rossi, Monica; Scarano, Emanuele; Pirronti, Tommaso; Cianfoni, Alessandro; Mazza, Salvatore; Tonali, Pietro A; Ricci, Enzo

    2009-10-15

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most frequent forms of muscular dystrophy. The aims of this study were: 1) to evaluate the prevalence of sleep disordered breathing (SDB) in patients with FSHD; 2) to define the sleep-related respiratory patterns in FSHD patients with SDB; and 3) to find the clinical predictors of SDB. Fifty-one consecutive FSHD patients were enrolled, 23 women, mean age 45.7+/-12.3 years (range: 26-72). The diagnosis of FSHD was confirmed by genetic tests. All patients underwent medical and neurological evaluations, subjective evaluation of sleep and full-night laboratory-based polysomnography. Twenty patients presented SDB: 13 presented obstructive apneas, four presented REM related oxygen desaturations and three showed a mixed pattern. Three patients needed positive airways pressure. SDB was not related to the severity of the disease. Body mass index, neck circumference and daytime sleepiness did not allow prediction of SDB. In conclusion, the results suggest a high prevalence of SDB in patients with FSHD. The presence of SDB does not depend on the clinical severity of the disease. SDB is often asymptomatic, and no clinical or physical measure can reliably predict its occurrence. A screening of SDB should be included in the clinical assessment of FSHD.

  16. Muscle MRI findings in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gerevini, Simonetta; Caliendo, Giandomenico; Falini, Andrea [IRCCS San Raffaele Scientific Institute, Neuroradiology Unit, Head and Neck Department, Milan (Italy); Scarlato, Marina; Previtali, Stefano Carlo [IRCCS San Raffaele Scientific Institute, Department of Neurology, INSPE and Division of Neuroscience, Milan (Italy); Maggi, Lorenzo; Pasanisi, Barbara; Morandi, Lucia [Fondazione IRCCS Istituto Neurologico ' ' Carlo Besta' ' , Neuromuscular Diseases and Neuroimmunology Unit, Milan (Italy); Cava, Mariangela [IRCCS San Raffaele Scientific Institute, Department of Radiology and Center for Experimental Imaging, Milan (Italy)

    2016-03-15

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. (orig.)

  17. Congenital muscular dystrophy with inflammation: Diagnostic considerations

    Directory of Open Access Journals (Sweden)

    Kaumudi Konkay

    2016-01-01

    Full Text Available Background and Purpose: Muscle biopsy features of congenital muscular dystrophies (CMD vary from usual dystrophic picture to normal or nonspecific myopathic picture or prominent fibrosis or striking inflammatory infiltrate, which may lead to diagnostic errors. A series of patients of CMD with significant inflammatory infiltrates on muscle biopsy were correlated with laminin α 2 deficiency on immunohistochemistry (IHC. Material and Methods: Cryostat sections of muscle biopsies from the patients diagnosed as CMD on clinical and muscle biopsy features from 1996 to 2014 were reviewed with hematoxylin and eosin(H&E, enzyme and immunohistochemistry (IHC with laminin α 2. Muscle biopsies with inflammatory infiltrate were correlated with laminin α 2 deficiency. Results: There were 65 patients of CMD, with inflammation on muscle biopsy in 16. IHC with laminin α 2 was available in nine patients, of which six showed complete absence along sarcolemma (five presented with floppy infant syndrome and one with delayed motor milestones and three showed discontinuous, and less intense staining. Conclusions: CMD show variable degrees of inflammation on muscle biopsy. A diagnosis of laminin α 2 deficient CMD should be considered in patients of muscular dystrophy with inflammation, in children with hypotonia/delayed motor milestones.

  18. The superhealing MRL background improves muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Heydemann Ahlke

    2012-12-01

    Full Text Available Abstract Background Mice from the MRL or “superhealing” strain have enhanced repair after acute injury to the skin, cornea, and heart. We now tested an admixture of the MRL genome and found that it altered the course of muscle pathology and cardiac function in a chronic disease model of skeletal and cardiac muscle. Mice lacking γ-sarcoglycan (Sgcg, a dystrophin-associated protein, develop muscular dystrophy and cardiomyopathy similar to their human counterparts with limb girdle muscular dystrophy. With disruption of the dystrophin complex, the muscle plasma membrane becomes leaky and muscles develop increased fibrosis. Methods MRL/MpJ mice were bred with Sgcg mice, and cardiac function was measured. Muscles were assessed for fibrosis and membrane leak using measurements of hydroxyproline and Evans blue dye. Quantitative trait locus mapping was conducted using single nucleotide polymorphisms distinct between the two parental strains. Results Introduction of the MRL genome reduced fibrosis but did not alter membrane leak in skeletal muscle of the Sgcg model. The MRL genome was also associated with improved cardiac function with reversal of depressed fractional shortening and the left ventricular ejection fraction. We conducted a genome-wide analysis of genetic modifiers and found that a region on chromosome 2 was associated with cardiac, diaphragm muscle and abdominal muscle fibrosis. Conclusions These data are consistent with a model where the MRL genome acts in a dominant manner to suppress fibrosis in this chronic disease setting of heart and muscle disease.

  19. Oculopharyngeal muscular dystrophy: a polyalanine myopathy.

    Science.gov (United States)

    Brais, Bernard

    2009-01-01

    It has been 10 years since the identification of the first PABPN1 gene (GCN)(n)/polyalanine mutations responsible for oculopharyngeal muscular dystrophy (OPMD). These mutations have been found in most cases of OPMD diagnosed in more than 35 countries. Sequence analyses have shown that such mutations have occurred numerous times in human history. Although PABPN1 was found early on to be a component of the classic filamentous intranuclear inclusions (INIs), mRNA and other proteins also have been found to coaggregate in the INIs. It is still unclear if the INIs play a pathologic or a protective role. The generation of numerous cell and animal models of OPMD has led to greater insight into its complex molecular pathophysiology and identified the first candidate therapeutic molecules. This paper reviews basic and clinical research on OPMD, with special emphasis on recent developments in the understanding of its pathophysiology.

  20. Natural history of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Qing KE

    2015-05-01

    Full Text Available Duchenne muscular dystrophy (DMD is X-linked recessive hereditary disease. DMD gene mutations result in dystrophin deficiency, which causes not only muscle movement disorders but also scoliosis, cognitive dysfunction, urinary tract diseases, respiratory diseases and heart diseases. Most patients die in early adult for respiratory and circulatory failure. Early multidisciplinary therapies will significantly delay disease progression and improve patients' quality of life. However, DMD diagnosis and treatment exist significantly time delay now. In this study, we review the natural history of DMD, including motor, cognitive, respiratory and heart function, for improving DMD early recognition, diagnosis and treatment, so as to benefit DMD patients. DOI: 10.3969/j.issn.1672-6731.2015.05.004

  1. Cardiac assessment of patients with late stage Duchenne muscular dystrophy

    NARCIS (Netherlands)

    van Bockel, E. A. P.; Lind, J. S.; Zijlstra, J. G.; Wijkstra, P. J.; Meijer, P. M.; van den Berg, M. P.; Slart, R. H. J. A.; Aarts, L. P. H. J.; Tulleken, J. E.

    2009-01-01

    Background. Duchenne muscular dystrophy (DMD) patients used to die mainly from pulmonary problems. However, as advances in respiratory care increase life expectancy, mortality due to cardiomyopathy rises. Echocardiography remains the standard diagnostic modality for cardiomyopathy in DMD patients, b

  2. The new frontier in muscular dystrophy research: booster genes

    DEFF Research Database (Denmark)

    Engvall, Eva; Wewer, Ulla M

    2003-01-01

    More than 30 different forms of muscular dystrophy (MD) have been molecularly characterized and can be diagnosed, but progress toward treatment has been slow. Gene replacement therapy has met with great difficulty because of the large size of the defective genes and because of difficulties...... of the boosters are better understood, drugs may be developed to provide the boost to muscle. Some of the experiences in models of muscular dystrophy may inspire new approaches in other genetic degenerative diseases as well....

  3. Current and emerging treatment strategies for Duchenne muscular dystrophy

    OpenAIRE

    Mah JK

    2016-01-01

    Jean K Mah Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Abstract: Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the...

  4. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    Directory of Open Access Journals (Sweden)

    Oriana del Rocío Cruz Guzmán

    2012-01-01

    Full Text Available Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset.

  5. Wnt7a treatment ameliorates muscular dystrophy.

    Science.gov (United States)

    von Maltzahn, Julia; Renaud, Jean-Marc; Parise, Gianni; Rudnicki, Michael A

    2012-12-11

    Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder of childhood marked by progressive debilitating muscle weakness and wasting, and ultimately death in the second or third decade of life. Wnt7a signaling through its receptor Fzd7 accelerates and augments regeneration by stimulating satellite stem cell expansion through the planar cell polarity pathway, as well as myofiber hypertrophy through the AKT/mammalian target of rapamycin (mTOR) anabolic pathway. We investigated the therapeutic potential of the secreted factor Wnt7a for focal treatment of dystrophic DMD muscles using the mdx mouse model, and found that Wnt7a treatment efficiently induced satellite cell expansion and myofiber hypertrophy in treated mucles in mdx mice. Importantly, Wnt7a treatment resulted in a significant increase in muscle strength, as determined by generation of specific force. Furthermore, Wnt7a reduced the level of contractile damage, likely by inducing a shift in fiber type toward slow-twitch. Finally, we found that Wnt7a similarly induced myotube hypertrophy and a shift in fiber type toward slow-twitch in human primary myotubes. Taken together, our findings suggest that Wnt7a is a promising candidate for development as an ameliorative treatment for DMD.

  6. Dr. Peter Emil Becker and the Third Reich.

    Science.gov (United States)

    Hill, Frank

    2013-08-01

    In 1985 the physician after whom Becker Muscular Dystrophy is named, German neurologist Dr. Peter Emil Becker (1908-2000), published an autobiographical article in the American Journal of Medical Genetics in which he disavowed any association with the Nazi Party. A closer look at the evidence, however, suggests otherwise. Review of war records and related sources raise concern for Dr. Becker's affiliation with the Nazi Party and his contributions to its ideology.

  7. Dysphagia in Duchenne Muscular Dystrophy Assessed by Validated Questionnaire

    Science.gov (United States)

    Archer, Sally K.; Garrod, Rachel; Hart, Nicholas; Miller, Simon

    2013-01-01

    Background: Duchenne muscular dystrophy (DMD) leads to progressive muscular weakness and death, most typically from respiratory complications. Dysphagia is common in DMD; however, the most appropriate swallowing assessments have not been universally agreed and the symptoms of dysphagia remain under-reported. Aims: To investigate symptoms of…

  8. Recent advances in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Perkins KJ

    2012-10-01

    Full Text Available Kelly J Perkins,1,2 Kay E Davies21Sir William Dunn School of Pathology, 2MRC Functional Genomics Unit, University of Oxford, Oxford, UKAbstract: Duchenne muscular dystrophy (DMD, an allelic X-linked progressive muscle-wasting disease, is one of the most common single-gene disorders in the developed world. Despite knowledge of the underlying genetic causation and resultant pathophysiology from lack of dystrophin protein at the muscle sarcolemma, clinical intervention is currently restricted to symptom management. In recent years, however, unprecedented advances in strategies devised to correct the primary defect through gene- and cell-based therapeutics hold particular promise for treating dystrophic muscle. Conventional gene replacement and endogenous modification strategies have greatly benefited from continued improvements in encapsidation capacity, transduction efficiency, and systemic delivery. In particular, RNA-based modifying approaches such as exon skipping enable expression of a shorter but functional dystrophin protein and rapid progress toward clinical application. Emerging combined gene- and cell-therapy strategies also illustrate particular promise in enabling ex vivo genetic correction and autologous transplantation to circumvent a number of immune challenges. These approaches are complemented by a vast array of pharmacological approaches, in particular the successful identification of molecules that enable functional replacement or ameliorate secondary DMD pathology. Animal models have been instrumental in providing proof of principle for many of these strategies, leading to several recent trials that have investigated their efficacy in DMD patients. Although none has reached the point of clinical use, rapid improvements in experimental technology and design draw this goal ever closer. Here, we review therapeutic approaches to DMD, with particular emphasis on recent progress in strategic development, preclinical evaluation and

  9. Errata: Measuring Disease Severity in Duchenne and Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Melinda F. Davis

    2011-05-01

    Full Text Available Reports an error in Davis et al. (2010.  The functional motor scale used in Davis et al. (2010 was the EK (Egen Klassifikation Scale, rather than the Amyotrophic Lateral Sclerosis Functional Rating Scale (Steffensen et al., 2002; Cedarbaum & Stambler, 1997.  Both scales are 10-item, disease-specific measures that assess mobility and respiratory function in individuals with progressive muscle weakness.  This error does not change the conclusions. DOI: 10.2458/azu_jmmss.v1i2.12366

  10. Molecular diagnosis of Duchenne muscular dystrophy.

    Science.gov (United States)

    Nallamilli, Babi Ramesh Reddy; Ankala, Arunkanth; Hegde, Madhuri

    2014-10-01

    Duchenne Muscular Dystrophy (DMD) is an X-linked inherited neuromuscular disorder caused by mutations in the dystrophin gene (DMD; locus Xp21.2). The mutation spectrum of DMD is unique in that 65% of causative mutations are intragenic deletions, with intragenic duplications and point mutations (along with other sequence variants) accounting for 6% to 10% and 30% to 35%, respectively. The strategy for molecular diagnostic testing for DMD involves initial screening for deletions/duplications using microarray-based comparative genomic hybridization (array-CGH) followed by full-sequence analysis of DMD for sequence variants. Recently, next-generation sequencing (NGS)-based targeted gene analysis has become clinically available for detection of point mutations and other sequence variants (small insertions, deletions, and indels). This unit initially discusses the strategic algorithm for establishing a molecular diagnosis of DMD and later provides detailed protocols of current molecular diagnostic methods for DMD, including array-CGH, PCR-based Sanger sequencing, and NGS-based sequencing assay.

  11. Optimizing Bone Health in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Jason L. Buckner

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA, as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.

  12. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S;

    2013-01-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies.......We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies....

  13. NIH study shows increased risk for two types of myotonic muscular dystrophy

    Science.gov (United States)

    Adults with a form of muscular dystrophy called myotonic muscular dystrophy (MMD) may be at increased risk of developing cancer, according to a study by investigators at the National Cancer Institute (NCI), part of the National Institutes of Health.

  14. LAMA2-related myopathy; frequency among congenital and limb-girdle muscular dystrophies

    DEFF Research Database (Denmark)

    Løkken, Nicoline; Born, Alfred Peter; Duno, Morten;

    2015-01-01

    Introduction: Muscular dystrophy caused by LAMA2-gene mutations is an autosomal recessive disease typically presenting as a severe, early-onset congenital muscular dystrophy (CMD). However, milder cases with a limb-girdle type muscular dystrophy (LGMD) have been described. Methods: In this study...

  15. Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair.

    Science.gov (United States)

    Swaggart, Kayleigh A; Demonbreun, Alexis R; Vo, Andy H; Swanson, Kaitlin E; Kim, Ellis Y; Fahrenbach, John P; Holley-Cuthrell, Jenan; Eskin, Ascia; Chen, Zugen; Squire, Kevin; Heydemann, Ahlke; Palmer, Abraham A; Nelson, Stanley F; McNally, Elizabeth M

    2014-04-22

    Many monogenic disorders, including the muscular dystrophies, display phenotypic variability despite the same disease-causing mutation. To identify genetic modifiers of muscular dystrophy and its associated cardiomyopathy, we used quantitative trait locus mapping and whole genome sequencing in a mouse model. This approach uncovered a modifier locus on chromosome 11 associated with sarcolemmal membrane damage and heart mass. Whole genome and RNA sequencing identified Anxa6, encoding annexin A6, as a modifier gene. A synonymous variant in exon 11 creates a cryptic splice donor, resulting in a truncated annexin A6 protein called ANXA6N32. Live cell imaging showed that annexin A6 orchestrates a repair zone and cap at the site of membrane disruption. In contrast, ANXA6N32 dramatically disrupted the annexin A6-rich cap and the associated repair zone, permitting membrane leak. Anxa6 is a modifier of muscular dystrophy and membrane repair after injury.

  16. Idiopathic intracranial hypertension in a child with Duchenne muscular dystrophy.

    Science.gov (United States)

    Weig, Spencer G; Zinn, Matthias M; Howard, James F

    2011-12-01

    Duchenne muscular dystrophy is an X-linked, recessively inherited disorder characterized by progressive weakness attributable to the absence of dystrophin expression in muscle. In multiple studies, the chronic administration of corticosteroids slowed the loss of ambulation that develops in mid to late childhood. Corticosteroids, however, frequently produce unacceptable side effects, including Cushingoid appearance and weight gain. Deflazacort, an oxazoline analogue of prednisolone, produces equivalent benefits on muscle with fewer reported Cushingoid side effects. We present a 9-year-old boy with Duchenne muscular dystrophy who developed morbid obesity and subsequent idiopathic intracranial hypertension after 2 years of receiving deflazacort. Although deflazacort is typically thought to produce less obesity than prednisone, severe Cushingoid side effects may occur in some individuals. To our knowledge, this description is the first of idiopathic intracranial hypertension complicating chronic corticosteroid treatment of Duchenne muscular dystrophy.

  17. Neuropsychological profile of duchenne muscular dystrophy.

    Science.gov (United States)

    Perumal, Anna Roshini; Rajeswaran, Jamuna; Nalini, Atchayaram

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an inherited myogenic disorder characterized by progressive muscle wasting. DMD is a fatal X-linked recessive disorder with an estimated prevalence of 1 in 3,500 male live births. This disease has long been associated with intellectual impairment. Research has shown that boys with DMD have variable intellectual performance, indicating the presence of specific cognitive deficits. The aim of the study was to use a battery of intelligence, learning, and memory tests to identify a neuropsychological profile in boys with DMD. A total of 22 boys diagnosed with DMD in the age range of 6 to 10 years old were evaluated using the Wechsler Intelligence Scale for Children-Third Edition, Rey's Auditory Verbal Learning Test, and the Memory for Designs Test. The data were interpreted using means, standard deviations, percentages, and percentiles. Normative data were also used for further interpretation. The results showed that boys with DMD had a significantly lower IQ (88.5). Verbal IQ (86.59) was found to be lower than Performance IQ (92.64). There was evidence of impaired performance on the Processing Speed, Freedom From Distractibility, and Verbal Comprehension Indexes. Specific deficits in information processing, complex attention, immediate verbal memory span, verbal working memory, verbal comprehension, vocabulary, visuoconstruction ability, and verbal learning and encoding were observed. However, perceptional organization, general fund of information, abstract reasoning, visual discrimination and acuity, visual learning and memory, and verbal memory were adequate. The neuropsychological findings support the hypothesis that these children have specific cognitive deficits as opposed to a global intellectual deficit.

  18. Gastrointestinal manifestations in myotonic muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Massimo Bellini; Sonia Biagi; Cristina Stasi; Francesco Costa; Maria Gloria Mumolo; Angelo Ricchiuti; Santino Marchi

    2006-01-01

    Myotonic dystrophy (MD) is characterized by myotonic phenomena and progressive muscular weakness.Involvement of the gastrointestinal tract is frequent and may occur at any level. The clinical manifestations have previously been attributed to motility disorders caused by smooth muscle damage, but histologic evidence of alterations has been scarce and conflicting.A neural factor has also been hypothesized. In the upper digestive tract, dysphagia, heartburn, regurgitation and dyspepsia are the most common complaints, while in the lower tract, abdominal pain, bloating and changes in bowel habits are often reported. Digestive symptoms may be the first sign of dystrophic disease and may precede the musculo-skeletal features. The impairment of gastrointestinal function may be sometimes so gradual that the patients adapt to it with little awareness of symptoms. In such cases routine endoscopic and ultrasonographic evaluations are not sufficient and targeted techniques (electrogastrography, manometry,electromyography, functional ultrasonography,scintigraphy, etc.) are needed. There is a low correlation between the degree of skeletal muscle involvement and the presence and severity of gastrointestinal disturbances whereas a positive correlation with the duration of the skeletal muscle disease has been reported.The drugs recommended for treating the gastrointestinal complaints such as prokinetic, antidyspeptic drugs and laxatives, are mainly aimed at correcting the motility disorders.Gastrointestinal involvement in MD remains a complex and intriguing condition since many important problems are still unsolved. Further studies concentrating on genetic aspects, early diagnostic techniques and the development of new therapeutic strategies are needed to improve our management of the gastrointestinal manifestations of MD.

  19. Muscle regeneration and inflammation in patients with facioscapulohumeral muscular dystrophy

    DEFF Research Database (Denmark)

    Hauerslev, S; Ørngreen, Mette Cathrine; Hertz, Jens Michael;

    2013-01-01

    The aim of this study was to investigate whether inflammation and regeneration are prominent in mildly affected muscles of patients with facioscapulohumeral muscular dystrophy type 1A (FSHD1A). Inflammation in muscle has been suggested by MRI studies in patients with FSHD1A.......The aim of this study was to investigate whether inflammation and regeneration are prominent in mildly affected muscles of patients with facioscapulohumeral muscular dystrophy type 1A (FSHD1A). Inflammation in muscle has been suggested by MRI studies in patients with FSHD1A....

  20. Structural deterioration of tendon collagen in genetic muscular dystrophy.

    Science.gov (United States)

    Stinson, R H

    1975-08-19

    The structure of gastrocnemius tendons from chickens with genetically induced muscular dystrophy has been studied by low-angle X-ray diffraction. Compared with normal samples there is poor alignment of collagen within the tendons. This difference is quite pronounced at eight weeks when the affected birds are still in comparatively good physical condition. Similar changes have been reported for birds with nutritionally induced muscular dystrophy (Bartlett, M. W., Egelstaff, P. A., Holden, T. M., Stinson, R. H. and Sweeny, P. R. (1973) Biochim. Biophys. Acta 328, 213-220).

  1. Duchenne muscular dystrophy with associated growth hormone deficiency.

    Science.gov (United States)

    Ghafoor, Tariq; Mahmood, Arshad; Shams, Shahnaz

    2003-12-01

    A patient with Duchenne muscular dystrophy (DMD) and growth hormone (GH) deficiency is described who had no clinical evidence of muscular weakness before initiation of GH replacement therapy. Treatment with human GH resulted in appearance of symptoms of easy fatigability and proximal muscle weakness. Thorough investigations including serum creatinine phosphokinase (CK) levels is recommended in every patient with GH deficiency before starting GH replacement therapy.

  2. Non-Invasive Biomarkers for Duchenne Muscular Dystrophy and Carrier Detection

    Directory of Open Access Journals (Sweden)

    Mónica Alejandra Anaya-Segura

    2015-06-01

    Full Text Available Non-invasive biological indicators of the absence/presence or progress of the disease that could be used to support diagnosis and to evaluate the effectiveness of treatment are of utmost importance in Duchenne Muscular Dystrophy (DMD. This neuromuscular disorder affects male children, causing weakness and disability, whereas female relatives are at risk of being carriers of the disease. A biomarker with both high sensitivity and specificity for accurate prediction is preferred. Until now creatine kinase (CK levels have been used for DMD diagnosis but these fail to assess disease progression. Herein we examined the potential applicability of serum levels of matrix metalloproteinase 9 (MMP-9 and matrix metalloproteinase 2 (MMP-2, tissue inhibitor of metalloproteinases 1 (TIMP-1, myostatin (GDF-8 and follistatin (FSTN as non-invasive biomarkers to distinguish between DMD steroid naïve patients and healthy controls of similar age and also for carrier detection. Our data suggest that serum levels of MMP-9, GDF-8 and FSTN are useful to discriminate DMD from controls (p < 0.05, to correlate with some neuromuscular assessments for DMD, and also to differentiate between Becker muscular dystrophy (BMD and Limb-girdle muscular dystrophy (LGMD patients. In DMD individuals under steroid treatment, GDF-8 levels increased as FSTN levels decreased, resembling the proportions of these proteins in healthy controls and also the baseline ratio of patients without steroids. GDF-8 and FSTN serum levels were also useful for carrier detection (p < 0.05. Longitudinal studies with larger cohorts are necessary to confirm that these molecules correlate with disease progression. The biomarkers presented herein could potentially outperform CK levels for carrier detection and also harbor potential for monitoring disease progression.

  3. Current understanding of dystrophin-related muscular dystrophy and therapeutic challenges ahead

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guang-qian; XIE Hui-qi; ZHANG Su-zhen; YANG Zhi-ming

    2006-01-01

    Objective To review the recent research progress in dystrophin-related muscular dystrophy includes X-linked hereditary Duchenne and Becker muscular dystrophies (DMD and BMD).Data sources Information included in this article was identified by searches of PUBMED and other online resources using the key terms DMD, dystrophin, mutations, animal models, pathophysiology, gene expression, stem cells, gene therapy, cell therapy, and pharmacological.Study selection Mainly original milestone articles and timely reviews written by major pioneer investigators of the field were selected.Results The key issues related to the genetic basis and pathophysiological factors of the diseases were critically addressed. The availabilities and advantages of various animal models for the diseases were described. Major molecular and cellular therapeutic approaches were also discussed, many of which have indeed exhibited some success in pre-clinical studies but at the same time encountered a number of technical hurdles, including the efficient and systemic delivery of a functional gene and myogenic precursor/stem cells to repair genetic defects.Conclusions Further understanding of pathophysiological mechanisms at molecular levels and regenerative properites of myogenic precursor/stem cells will promote the development of multiple therapeutic strategies. The combined use of multiple strategies may represent the major challenge as well as the greatest hope for the therapy of these diseases in coming years.

  4. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents

    Directory of Open Access Journals (Sweden)

    Steve D Wilton

    2011-03-01

    Full Text Available Steve D Wilton, Sue FletcherCentre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, Perth, WA, AustraliaAbstract: The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms.Keywords: Duchenne muscular dystrophy, molecular therapeutics, small molecules

  5. Screening of Dystrophin Gene Deletions in Egyptian Patients with DMD/BMD Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Laila K. Effat

    2000-01-01

    Full Text Available Duchenne muscular dystrophy (DMD and Becker muscular dystrophy (BMD are allelic disorders caused by mutations within the dystrophin gene. Our study has identified 100 Egyptian families collected from the Human Genetics Clinic, National Research Center, Cairo. All cases were subjected to complete clinical evaluation pedigree analysis, electromyography studies, estimation of serum creatine phosphokinase enzyme (CPK levels and DNA analysis. Multiplex PCR using 18 pairs of specific primers were used for screening of deletion mutations within the dystrophin gene. A frequency of 55% among the families. Sixty per cent of detected deletions involved multiple exons spanning the major or the minor hot spot of the dystrophin gene. The remainder 40% which mainly involved exon 45. Comparing these findings with frequencies of other countries it was found that our figures fall within the reported range of 40%– for deletions. The distribution of deletions in our study and other different studies was variable and specific ethnic differences do not apparently account for specific deletions. In addition this study concluded that employment of the 18 exon analysis is a cost effective and a highly accurate (97% to launch a nationwide program.

  6. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Hauerslev Simon

    2012-03-01

    Full Text Available Abstract Background Limb girdle muscular dystrophy (LGMD type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC, vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  7. Modifying muscular dystrophy through transforming growth factor-β.

    Science.gov (United States)

    Ceco, Ermelinda; McNally, Elizabeth M

    2013-09-01

    Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle, with replacement by scar or fibrotic tissue, resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing effort to define the genetic and molecular bases that influence muscular dystrophy onset and progression. Modifier genes for muscle disease have been identified through both candidate gene approaches and genome-wide surveys. Multiple lines of experimental evidence have now converged on the transforming growth factor-β (TGF-β) pathway as a modifier for muscular dystrophy. TGF-β signaling is upregulated in dystrophic muscle as a result of a destabilized plasma membrane and/or an altered extracellular matrix. Given the important biological role of the TGF-β pathway, and its role beyond muscle homeostasis, we review modifier genes that alter the TGF-β pathway and approaches to modulate TGF-β activity to ameliorate muscle disease.

  8. The role of stem cells in muscular dystrophies.

    Science.gov (United States)

    Meregalli, Mirella; Farini, Andrea; Colleoni, Federica; Cassinelli, Letizia; Torrente, Yvan

    2012-06-01

    Muscular dystrophies are heterogeneous neuromuscular disorders of inherited origin, including Duchenne muscular dystrophy (DMD). Cell-based therapies were used to promote muscle regeneration with the hope that the host cells repopulated the muscle and improved muscle function and pathology. Stem cells were preferable for therapeutic applications, due to their capacity of self-renewal and differentiative potential. In the last years, encouraging results were obtained with adult stem cells to treat muscular dystrophies. Adult stem cells were found into various tissues of the body and they were able to maintain, generate, and replace terminally differentiated cells within their own specific tissue because of cell turnover or tissue injury. Moreover, it became clear that these cells could participate into regeneration of more than just their resident organ. Here, we described multiple types of muscle and non muscle-derived myogenic stem cells, their characterization and their possible use to treat muscular dystrophies. We also underlined that most promising possibility for the management and therapy of DMD is a combination of different approaches, such as gene and stem cell therapy.

  9. Functional protein networks unifying limb girdle muscular dystrophy

    NARCIS (Netherlands)

    Morrée, Antoine de

    2011-01-01

    Limb Girdle Muscular Dystrophy (LGMD) is a rare progressive heterogeneous disorder that can be caused by mutations in at least 21 different genes. These genes are often widely expressed and encode proteins with highly differing functions. And yet mutations in all of them give rise to a similar clini

  10. Occupational Potential in a Population with Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Schkade, Janette K.; And Others

    1987-01-01

    Twenty-five males with Duchenne muscular dystrophy were tested to assess their potential for occupational activity. Tests measured possible sensory deficits, strength, endurance, and fatigue in response to sustained fine motor activity. Results indicate that, within limitations, persons with this diagnosis can engage in activity leading to skill…

  11. Swallow Characteristics in Patients with Oculopharyngeal Muscular Dystrophy

    Science.gov (United States)

    Palmer, Phyllis M.; Neel, Amy T.; Sprouls, Gwyneth; Morrison, Leslie

    2010-01-01

    Purpose: This prospective investigation evaluates oral weakness and its impact on swallow function, weight, and quality of life in patients with oculopharyngeal muscular dystrophy (OPMD). Method: Intraoral pressure, swallow pressure, and endurance were measured using an Iowa Oral Performance Instrument in participants with OPMD and matched…

  12. Becker′s Muscular Dystrophy-A Case Report

    Directory of Open Access Journals (Sweden)

    Rajendran P

    1998-01-01

    Full Text Available A case of Becker′s Muscular dystrophy (BMD in a 26-year-old male is reported. Muscle biopsy immunohistochemical staining showed absence of labelling for dystrophin along the sacrolemmal membrane in majority of the fibres. Antibodies to adhalin and merosin showed normal localisation along the sacrolemma.

  13. Oculopharyngeal muscular dystrophy with limb girdle weakness as major complaint.

    NARCIS (Netherlands)

    Sluijs, B.M. van der; Hoefsloot, L.H.; Padberg, G.W.A.M.; Maarel, S.M. van der; Engelen, B.G.M. van

    2003-01-01

    This first description of the oculopharyngeal muscular dystrophy (OPMD) phenotype in Dutch patients shows that limb girdle weakness can occur early in the course of disease and can give the first and major complaint in OPMD patients. The aim of this study was to examine clinically, histologically an

  14. Facioscapulohumeral muscular dystrophy and respiratory failure; what about the diaphragm?

    NARCIS (Netherlands)

    Hazenberg, A.; Alfen, N. van; Voet, N.B.M.; Kerstjens, H.A.; Wijkstra, P.J.

    2015-01-01

    INTRODUCTION: We present a case of facioscapulohumeral muscular dystrophy (FSHD) with a diaphragm paralysis as the primary cause of ventilatory failure. FSHD is an autosomal dominant inherited disorder with a restricted pattern of weakness. Although respiratory weakness is a relatively unknown in FS

  15. Strength training and albuterol in facioscapulohumeral muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, EL; Vogels, OJM; van Asseldonk, RJGP; Lindeman, E; Hendriks, JCM; Wohlgemuth, M; van der Maarel, SM; Padberg, GW

    2004-01-01

    Background: In animals and healthy volunteers beta2-adrenergic agonists increase muscle strength and mass, in particular when combined with strength training. In patients with facioscapulohumeral muscular dystrophy (FSHD) albuterol may exert anabolic effects. The authors evaluated the effect of stre

  16. Strength training and albuterol in facioscapulohumeral muscular dystrophy.

    NARCIS (Netherlands)

    Kooi, E.L. van der; Vogels, O.J.M.; Asseldonk, R.J. van; Lindeman, E.J.M.; Hendriks, J.C.M.; Wohlgemuth, M.; Maarel, S.M. van der; Padberg, G.W.A.M.

    2004-01-01

    BACKGROUND: In animals and healthy volunteers beta2-adrenergic agonists increase muscle strength and mass, in particular when combined with strength training. In patients with facioscapulohumeral muscular dystrophy (FSHD) albuterol may exert anabolic effects. The authors evaluated the effect of stre

  17. Phonological Awareness Skills in Young Boys with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Waring, Phoebe; Woodyatt, Gail

    2011-01-01

    Substantial research has detailed the reading deficits experienced by children with Duchenne muscular dystrophy (DMD). Although phonological awareness (PA) is vital in reading development, little is known about PA in the DMD population. This pilot study describes the PA abilities of a group of five young children with DMD, comparing the results…

  18. Dasatinib as a treatment for Duchenne muscular dystrophy.

    Science.gov (United States)

    Lipscomb, Leanne; Piggott, Robert W; Emmerson, Tracy; Winder, Steve J

    2016-01-15

    Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy.

  19. Comparison of Deflazacort and Prednisone in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Parvaneh KARIMZADEH

    2012-03-01

    Full Text Available How to Cite this Article: Karimzadeh P, Ghazavi A. Comparison of Deflazacort and Prednisone in Duchenne Muscular Dystrophy. IranianJournal of Child Neurology 2012;6(1:5-12.ObjectiveDuchenne muscular dystrophy (DMD is a degenerative disease that usually becomes clinically detectable in childhood as progressive proximal weakness. No cure is yet available for DMD, but the use of steroids improves muscle strength and function. This study has been carried out to select the best steroid for the management of DMD.Materials & MethodsThis study is a single-blind, randomized clinical trial with a sample volume of 34 DMD patients. Half of these patients were treated with deflazacort (0.9 mg/kg daily and the other half with prednisone (0.75 mg/kg daily for a period of 18 months. The motor function score and excess body weight were registered one year after the start and also at the end of the study and compared between the two groups.ResultsDeflazacort was more effective in the improvement of motor function after one year, but there was no significant difference between the two drugs at the end of the study (18 months after start. Weight gain after one year and at the end of the study was higher in prednisone group and steroid treatment with deflazacort appears to cause fewer side effects than prednisone regarding weight gain.ConclusionDeflazacort seems to be more effective than prednisone in the improvement of motor function causing fewer side effects, particularly weight gain. This medication may be important for the improvement of motor function and could be used as the best steroidal treatment for Duchenne muscular dystrophy. References Lankester BJA, Whitehouse MR, Gargan MF. Duchenne muscular dystrophy. Current Orthopedics 2007;21:298- 300. Wenger DR, Rang M. The art and practice of children’s orthopedics. Philadelphia, PA: Lippincott; Baltimore: Williams and Wilkins; 1993. Sussman M. Duchenne muscular dystrophy. J Am Acad Orthop Surg 2002 Mar

  20. Therapeutic Potential of Immunoproteasome Inhibition in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Farini, Andrea; Sitzia, Clementina; Cassani, Barbara; Cassinelli, Letizia; Rigoni, Rosita; Colleoni, Federica; Fusco, Nicola; Gatti, Stefano; Bella, Pamela; Villa, Chiara; Napolitano, Filomena; Maiavacca, Rita; Bosari, Silvano; Villa, Anna; Torrente, Yvan

    2016-11-01

    Duchenne muscular dystrophy is an inherited fatal genetic disease characterized by mutations in dystrophin gene, causing membrane fragility leading to myofiber necrosis and inflammatory cell recruitment in dystrophic muscles. The resulting environment enriched in proinflammatory cytokines, like IFN-γ and TNF-α, determines the transformation of myofiber constitutive proteasome into the immunoproteasome, a multisubunit complex involved in the activation of cell-mediate immunity. This event has a fundamental role in producing peptides for antigen presentation by MHC class I, for the immune response and also for cytokine production and T-cell differentiation. Here, we characterized for the first time the presence of T-lymphocytes activated against revertant dystrophin epitopes, in the animal model of Duchenne muscular dystrophy, the mdx mice. Moreover, we specifically blocked i-proteasome subunit LMP7, which was up-regulated in dystrophic skeletal muscles, and we demonstrated the rescue of the dystrophin expression and the amelioration of the dystrophic phenotype. The i-proteasome blocking lowered myofiber MHC class I expression and self-antigen presentation to T cells, thus reducing the specific antidystrophin T cell response, the muscular cell infiltrate, and proinflammatory cytokine production, together with muscle force recovery. We suggest that i-proteasome inhibition should be considered as new promising therapeutic approach for Duchenne muscular dystrophy pathology.

  1. Immunohistochemical alterations of dystrophin in congenital muscular dystrophy Alterações imuno-hístoquímicas da distrofina na distrofia muscular congênita

    Directory of Open Access Journals (Sweden)

    Lineu Cesar Werneck

    1995-09-01

    Full Text Available The dystrophin distribution in the plasma muscle membrane using immunohystochemistry was studied in 22 children with congenital muscular dystrophy. The dystrophin was detected by immunofluorescence in muscle biopsy through a polyclonal antibody. All the cases had patchy interruptions of the fluorescence in the plasma membrane. A large patchy interruption of the sarcolemma was found in 17 cases, small interruption in 12, and a combination of large and small patchy discontinuity in 7. Small gaps around the fiber like a rosary were found in 15 cases. The frequency of these abnormalities ranged cases from: all fibers in 5 cases, frequent in 8, occasional in 5, and rare in 4. Five cases had total absence of immunofluorescence. These results suggest that the dystrophin expression is abnormal in this group of children and that this type of abnormalities can not be differentiated from early Becker muscular dystrophy nor childhood autosomal recessive muscular dystrophy through immunohystochemistry alone.Foi estudada a distribuição da distrofina na membrana plasmática das fibras musculares em 22 crianças com distrofia muscular congênita, através de técnicas de imuno-histoquímica. A distrofina foi identificada nas biópsias musculares processadas a fresco, por técnicas de imunofluorescência utilizando anticorpos policlonais. Todos os casos tinham interrupções da imunofluorescência na membrana plasmática. Em 17 elas eram grandes, em 12 eram pequenas e em 7 eram de ambos os tipos. Fibras com interrupções pequenas e constantes, como um rosário, foram vistas em 15 casos. Essas anormalidades estavam presentes em todas as fibras em 5 casos, eram frequentes em 8, ocasionais em 5 e raras em 4. Cinco casos mostraram fibras sem distrofina. Esses dados sugerem que a expressão da distrofina é anormal nesse grupo de crianças. Essas anormalidades podem também ser encontradas em casos precoces de distrofia muscular de Becker e distrofia autoss

  2. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    Science.gov (United States)

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  3. Muscular dystrophy meets protein biochemistry, the mother of invention.

    Science.gov (United States)

    Funk, Steven D; Miner, Jeffrey H

    2017-03-01

    Muscular dystrophies result from a defect in the linkage between the muscle fiber cytoskeleton and the basement membrane (BM). Congenital muscular dystrophy type MDC1A is caused by mutations in laminin α2 that either reduce its expression or impair its ability to polymerize within the muscle fiber BM. Defects in this BM lead to muscle fiber damage from the force of contraction. In this issue of the JCI, McKee and colleagues use a laminin polymerization-competent, designer chimeric BM protein in vivo to restore function of a polymerization-defective laminin, leading to normalized muscle structure and strength in a mouse model of MDC1A. Delivery of such a protein to patients could ameliorate many aspects of their disease.

  4. Satellite Cells in Muscular Dystrophy - Lost in Polarity.

    Science.gov (United States)

    Chang, Natasha C; Chevalier, Fabien P; Rudnicki, Michael A

    2016-06-01

    Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.

  5. Progress study of the cardiac damage in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    ZHANG Yao

    2013-05-01

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal muscular disease with rapid progression in children. Most patients die of respiratory and circulatory failure before the age of 20 if there is no systematic treatment. Now the heart problem in this disease has become increasingly prominent, and is thought to be closely associated with certain dystrophin exon deletion. We would like to review the epidemiology, relevance of dystrophin, pathogenesis, clinical manifestations and pathological features, as well as early prevention and treatment of DMD.

  6. Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption

    OpenAIRE

    1997-01-01

    Genetic defects in a number of components of the dystrophin–glycoprotein complex (DGC) lead to distinct forms of muscular dystrophy. However, little is known about how alterations in the DGC are manifested in the pathophysiology present in dystrophic muscle tissue. One hypothesis is that the DGC protects the sarcolemma from contraction-induced damage. Using tracer molecules, we compared sarcolemmal integrity in animal models for muscular dystrophy and in muscular dystrophy patient samples. Ev...

  7. Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice, and zebrafish

    OpenAIRE

    2006-01-01

    The muscular dystrophies are a heterogeneous group of genetically caused muscle degenerative disorders. The Kunkel laboratory has had a longstanding research program into the pathogenesis and treatment of these diseases. Starting with our identification of dystrophin as the defective protein in Duchenne muscular dystrophy (DMD), we have continued our work on normal dystrophin function and how it is altered in muscular dystrophy. Our work has led to the identification of the defective genes in...

  8. Translational Studies of GALGT2 Gene Therapy for Duchenne Muscular Dystrophy

    Science.gov (United States)

    2014-10-01

    Therapy for Duchenne Muscular Dystrophy PRINCIPAL INVESTIGATOR: Paul T. Martin, PhD CONTRACTING ORGANIZATION: The Research Institute...for Duchenne Muscular Dystrophy 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0416 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paul T. Martin...translational studies in support of developing GALGT2 gene therapy for use in Duchenne Muscular dystrophy patients. In year 2, we have completed

  9. Sarcopenia and sarcopenic obesity in patients with muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Luciano eMerlini

    2014-10-01

    Full Text Available Aging sarcopenia and muscular dystrophy are two conditions characterized by lower skeletal muscle quantity, lower muscle strength, and lower physical performance. Aging is associated with a peculiar alteration in body composition called sarcopenic obesity characterized by a decrease in lean body mass and increase in fat mass. To evaluate the presence of sarcopenia and obesity in a cohort of adult patients with muscular dystrophy we have used the measurement techniques considered golden standard for sarcopenia that is for muscle mass dual energy X-ray absorptiometry (DXA, for muscle strength hand held dynamometry, and for physical performance gait speed. The study involved 14 adult patients with different types of muscular dystrophy. We were able to demonstrate that all patient were sarcopenic-obese. We showed in fact that all were sarcopenic based on appendicular lean, fat & bone free, mass index (ALMI. In addition all resulted obese according to the % of body fat determined by DXA in contrast with their body mass index ranging from underweight to obese. Skeletal muscle mass determined by DXA was markedly reduced in all patients and correlated with residual muscle strength determined by hand held dynamometry, and physical performances determined by gait speed and respiratory function. Finally we showed that ALMI was the best linear explicator of muscle strength and physical function. Altogether, our study suggest the relevance of a proper evaluation of body composition in muscular dystrophy and we propose to use, both in research and practice, the measurement techniques that has already been demonstrated effective in aging sarcopenia.

  10. Aerobic training and postexercise protein in facioscapulohumeral muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Grete; Prahm, Kira P; Dahlqvist, Julia R;

    2015-01-01

    OBJECTIVE: To investigate the effect of regular aerobic training and postexercise protein-carbohydrate supplementation in patients with facioscapulohumeral muscular dystrophy (FSHD). METHODS: In this randomized, double-blind, placebo-controlled parallel study, we randomized untrained men (n = 21...... not add any further improvement to training effects alone. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that regular aerobic training with or without postexercise protein-carbohydrate supplementation improves fitness and workload in patients with FSHD....

  11. Torn apart: membrane rupture in muscular dystrophies and associated cardiomyopathies

    OpenAIRE

    2007-01-01

    Muscular dystrophies are often caused by mutations in cytoskeletal proteins that render cells more susceptible to strain-induced injury in mechanically active tissues such as skeletal or cardiac muscle. In this issue of the JCI, Han et al. report that dysferlin participates in membrane resealing in cardiomyocytes and that exercise results in increased membrane damage and disturbed cardiac function in dysferlin-deficient mice (see the related article beginning on page 1805). Thus, in addition ...

  12. Neurotrophins, cytokines, oxidative parameters and funcionality in Progressive Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    CLARISSA M. COMIM

    2015-09-01

    Full Text Available We investigated the levels of brain derived-neurotrophic factor (BDNF, cytokines and oxidative parameters in serum and tried to correlate them with the age and functionality of patients with Progressive Muscle Dystrophies (PMD. The patients were separated into six groups (case and controls pared by age and gender, as follows: Duchenne Muscular Dystrophy (DMD; Steinert Myotonic Dystrophy (SMD; and Limb-girdle Muscular Dystrophy type-2A (LGMD2A. DMD patients (±17.9 years old had a decrease of functionality, an increase in the IL-1β and TNF-α levels and a decrease of IL-10 levels and superoxide dismutase activity in serum. SMD patients (±25.8 years old had a decrease of BDNF and IL-10 levels and superoxide dismutase activity and an increase of IL-1β levels in serum. LGMD2A patients (±27.7 years old had an decrease only in serum levels of IL-10. This research showed the first evidence of BDNF involvement in the SMD patients and a possible unbalance between pro-inflammatory and anti-inflammatory cytokine levels, along with decreased superoxide dismutase activity in serum of DMD and SMD patients.

  13. Muscular dystrophy in PTFR/cavin-1 null mice

    Science.gov (United States)

    Ding, Shi-Ying; Pilch, Paul F.

    2017-01-01

    ice and humans lacking the caveolae component polymerase I transcription release factor (PTRF, also known as cavin-1) exhibit lipo- and muscular dystrophy. Here we describe the molecular features underlying the muscle phenotype for PTRF/cavin-1 null mice. These animals had a decreased ability to exercise, and exhibited muscle hypertrophy with increased muscle fiber size and muscle mass due, in part, to constitutive activation of the Akt pathway. Their muscles were fibrotic and exhibited impaired membrane integrity accompanied by an apparent compensatory activation of the dystrophin-glycoprotein complex along with elevated expression of proteins involved in muscle repair function. Ptrf deletion also caused decreased mitochondrial function, oxygen consumption, and altered myofiber composition. Thus, in addition to compromised adipocyte-related physiology, the absence of PTRF/cavin-1 in mice caused a unique form of muscular dystrophy with a phenotype similar or identical to that seen in humans lacking this protein. Further understanding of this muscular dystrophy model will provide information relevant to the human situation and guidance for potential therapies.

  14. Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy.

    Science.gov (United States)

    Paran, Christopher W; Zou, Kai; Ferrara, Patrick J; Song, Haowei; Turk, John; Funai, Katsuhiko

    2015-12-01

    Muscular dystrophy is accompanied by a reduction in activity of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) that contributes to abnormal Ca(2+) homeostasis in sarco/endoplasmic reticulum (SR/ER). Recent findings suggest that skeletal muscle fatty acid synthase (FAS) modulates SERCA activity and muscle function via its effects on SR membrane phospholipids. In this study, we examined muscle's lipid metabolism in mdx mice, a mouse model for Duchenne muscular dystrophy (DMD). De novo lipogenesis was ~50% reduced in mdx muscles compared to wildtype (WT) muscles. Gene expressions of lipogenic and other ER lipid-modifying enzymes were found to be differentially expressed between wildtype (WT) and mdx muscles. A comprehensive examination of muscles' SR phospholipidome revealed elevated phosphatidylcholine (PC) and PC/phosphatidylethanolamine (PE) ratio in mdx compared to WT mice. Studies in primary myocytes suggested that defects in key lipogenic enzymes including FAS, stearoyl-CoA desaturase-1 (SCD1), and Lipin1 are likely contributing to reduced SERCA activity in mdx mice. Triple transgenic expression of FAS, SCD1, and Lipin1 (3TG) in mdx myocytes partly rescued SERCA activity, which coincided with an increase in SR PE that normalized PC/PE ratio. These findings implicate a defect in lipogenesis to be a contributing factor for SERCA dysfunction in muscular dystrophy. Restoration of muscle's lipogenic pathway appears to mitigate SERCA function through its effects on SR membrane composition.

  15. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    Science.gov (United States)

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  16. Noncoding RNAs: Emerging Players in Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Germana Falcone

    2014-01-01

    Full Text Available The fascinating world of noncoding RNAs has recently come to light, thanks to the development of powerful sequencing technologies, revealing a variety of RNA molecules playing important regulatory functions in most, if not all, cellular processes. Many noncoding RNAs have been implicated in regulatory networks that are determinant for skeletal muscle differentiation and disease. In this review, we outline the noncoding RNAs involved in physiological mechanisms of myogenesis and those that appear dysregulated in muscle dystrophies, also discussing their potential use as disease biomarkers and therapeutic targets.

  17. Resveratrol ameliorates muscular pathology in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Hori, Yusuke S; Kuno, Atsushi; Hosoda, Ryusuke; Tanno, Masaya; Miura, Tetsuji; Shimamoto, Kazuaki; Horio, Yoshiyuki

    2011-09-01

    Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. We previously showed that resveratrol (3,5,4'-trihydroxy-trans-stilbene), an antioxidant and activator of the NAD(+)-dependent protein deacetylase SIRT1, delays the progression of heart failure and prolongs the lifespan of δ-sarcoglycan-deficient hamsters. Because a defect of dystroglycan complex causes muscular dystrophies, and δ-sarcoglycan is a component of this complex, we hypothesized that resveratrol might be a new therapeutic tool for muscular dystrophies. Here, we examined resveratrol's effect in mdx mice, an animal model of Duchenne muscular dystrophy. mdx mice that received resveratrol in the diet for 32 weeks (4 g/kg diet) showed significantly less muscle mass loss and nonmuscle interstitial tissue in the biceps femoris compared with mdx mice fed a control diet. In the muscles of these mice, resveratrol significantly decreased oxidative damage shown by the immunostaining of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine and suppressed the up-regulation of NADPH oxidase subunits Nox4, Duox1, and p47(phox). Resveratrol also reduced the number of α-smooth muscle actin (α-SMA)(+) myofibroblast cells and endomysial fibrosis in the biceps femoris, although the infiltration of CD45(+) inflammatory cells and increase in transforming growth factor-β1 (TGF-β1) were still observed. In C2C12 myoblast cells, resveratrol pretreatment suppressed the TGF-β1-induced increase in reactive oxygen species, fibronectin production, and expression of α-SMA, and SIRT1 knockdown blocked these inhibitory effects. SIRT1 small interfering RNA also increased the expression of Nox4, p47(phox), and α-SMA in C2C12 cells. Taken together, these findings indicate that SIRT1 activation may be a useful strategy for treating muscular dystrophies.

  18. Loss of heterozygosity and carrier identification in Duchenne muscular dystrophy: a familiar case with recombination event

    Directory of Open Access Journals (Sweden)

    Fonseca-Mendoza Dora Janeth

    2012-04-01

    Full Text Available Duchenne/Becker Muscular Dystrophy (DMD/BMD is an X-linked recessive disease characterizedby muscular weakness. It is caused by mutations on the dystrophin gen. Loss of heterozygosityallows us to identify female carriers of deletions on the dystrophin gen. Objective: identifyfemale carriers in a family with a patient affected by DMD. Material and methods: nine familymembers and the affected child were analyzed using DNA extraction and posterior amplificationof ten STRs on the dystrophin gen. Haplotypes were constructed and the carrier status determinedin two of the six women analyzed due to loss of heterozygosity in three STRs. Additionally, weobserved a recombination event. Conclusions: loss of heterozygosity allows us to establish witha certainty of 100% the carrier status of females with deletions on the dystrophin gen. By theconstruction of haplotypes we were able to identify the X chromosome with the deletion in twoof the six women analyzed. We also determined a recombination event in one of the sisters of theaffected child. These are described with a high frequency (12%. A possible origin for the mutationis a gonadal mosaicism in the maternal grandfather or in the mother of the affected childin a very early stage in embryogensis. This can be concluded using the analysis of haplotypes.

  19. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. (Harvard Medical School, Boston, MA (United States)); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya (National Inst. of Neuroscience, Tokyo (Japan))

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  20. Ullrich Congenital Muscular Dystrophy (UCMD: Clinical and Genetic Correlations

    Directory of Open Access Journals (Sweden)

    Bita BOZORGMEHR

    2013-08-01

    Full Text Available How to Cite This Article: Bozorgmehr B, Kariminejad A, Nafissi Sh, Jebelli B, Andoni U, Gartioux C, Ledeuil C, Allamand Y, Richard P, Kariminejad MH. Ullrich Congenital Muscular Dystrophy (UCMD:Clinical and Genetic Correlations. Iran J Child Neurol. 2013 Summer; 7(3: 15-22.  Objective:Ullrich congenital muscular dystrophy (UCMD corresponds to the severe end of the clinical spectrum of neuromuscular disorders caused by mutations in the genes encoding collagen VI (COL VI. We studied four unrelated families with six affected children that had typical UCMD with dominant and recessive inheritance.Materials & MethodsFour unrelated Iranian families with six affected children with typical UCMD were analyzed for COLVI secretion in skin fibroblast culture and the secretion of COLVI in skin fibroblast culture using quantitative RT–PCR (Q-RT-PCR, and mutation identification was performed by sequencing of complementary DNA.ResultsCOL VI secretion was altered in all studied fibroblast cultures. Two affected sibs carried a homozygous nonsense mutation in exon 12 of COL6A2, while another patient had a large heterozygous deletion in exon 5-8 of COL6A2. The two other affected sibs had homozygote mutation in exon 24 of COL6A2, and the last one was homozygote in COL6A1.ConclusionIn this study, we found out variability in clinical findings and genetic inheritance among UCMD patients, so that the patient with complete absence of COLVI was severely affected and had a large heterozygous deletion in COL6A2. In contrast, the patients with homozygous deletion had mild to moderate decrease in the secretion of COL VI and were mildly tomoderately affected.References1. Voit T. Congenital Muscular Dystrophies Brain Dev 1998;20(2: 65-74.2. Ullrich OZ Ges. Scleroatonic Muscular Dystrophy. NeurolPsychiatr 1930;126:171-201.3. Ullrich O. Monatsschr. Kinderheilkd 1930;47:502-10.4. Mercuri E, Yuva Y, Brown SC, Brockington M, Kinali M, Jungbluth H, et al. Collagen VI involvement in

  1. Miyoshi-type distal muscular dystrophy - Clinical spectrum in 24 Dutch patients

    NARCIS (Netherlands)

    Linssen, WHJP; Notermans, NC; VanderGraaf, Y; Wokke, JHJ; VanDoorn, PA; Howeler, CJ; Busch, HFM; DeJager, AEJ; DeVisser, M

    1997-01-01

    Miyoshi-type distal muscular dystrophy has now been found to be more frequent outside Japan than was previously thought. We studied 24 Dutch patients with Miyoshi-type distal muscular dystrophy and focused on its clinical expression and natural history, muscle CT-scans and muscle biopsy findings. Ou

  2. Clinical and molecular characterization of limb-girdle muscular dystrophy due to LAMA2 mutations

    DEFF Research Database (Denmark)

    Gavassini, Bruno F; Carboni, Nicola; Nielsen, Jørgen E;

    2011-01-01

    In this study we describe the clinical and molecular characteristics of limb-girdle muscular dystrophy (LGMD) due to LAMA2 mutations.......In this study we describe the clinical and molecular characteristics of limb-girdle muscular dystrophy (LGMD) due to LAMA2 mutations....

  3. Meeting the Assistive Technology Needs of Students with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Heller, Kathryn Wolff; Mezei, Peter J.; Avant, Mary Jane Thompson

    2009-01-01

    Students with Duchenne muscular dystrophy (DMD) have a degenerative disease that requires ongoing changes in assistive technology (AT). The AT team needs to be knowledgeable about the disease and its progression in order to meet these students' changing needs in a timely manner. The unique needs of students with Duchenne muscular dystrophy in…

  4. Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles

    NARCIS (Netherlands)

    G. Tasca (Giorgio); M. Pescatori (Mario); M. Monforte (Mauro); M. Mirabella (Massimiliano); E. Iannaccone (Elisabetta); R. Frusciante (Roberto); T. Cubeddu (Tiziana); F. Laschena (Francesco); P. Ottaviani (Pierfrancesco); E. Ricci (Enzo)

    2012-01-01

    textabstractBackground: Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies and is characterized by a non-conventional genetic mechanism activated by pathogenic D4Z4 repeat contractions. By muscle Magnetic Resonance Imaging (MRI) we observed that T2-short tau

  5. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Irina T Zaharieva

    Full Text Available Duchenne muscular Dystrophy (DMD is an inherited disease caused by mutations in the dystrophin gene that disrupt the open reading frame, while in frame mutations result in Becker muscular dystrophy (BMD. Ullrich congenital muscular dystrophy (UCMD is due to mutations affecting collagen VI genes. Specific muscle miRNAs (dystromirs are potential non-invasive biomarkers for monitoring the outcome of therapeutic interventions and disease progression. We quantified miR-1, miR-133a,b, miR-206 and miR-31 in serum from patients with DMD, BMD, UCMD and healthy controls. MiR-1, miR-133a,b and miR-206 were upregulated in DMD, but unchanged in UCMD compared to controls. Milder DMD patients had higher levels of dystromirs than more severely affected patients. Patients with low forced vital capacity (FVC values, indicating respiratory muscle weakness, had low levels of serum miR-1 and miR-133b. There was no significant difference in the level of the dystromirs in BMD compared to controls. We also assessed the effect of dystrophin restoration on the expression of the five dystromirs in serum of DMD patients treated systemically for 12 weeks with antisense oligomer eteplirsen that induces skipping of exon 51 in the dystrophin gene. The dystromirs were also analysed in muscle biopsies of DMD patients included in a single dose intramuscular eteplirsen clinical trial. Our analysis detected a trend towards normalization of these miRNA between the pre- and post-treatment samples of the systemic trial, which however failed to reach statistical significance. This could possibly be due to the small number of patients and the short duration of these clinical trials. Although longer term studies are needed to clarify the relationship between dystrophin restoration following therapeutic intervention and the level of circulating miRNAs, our results indicate that miR-1 and miR-133 can be considered as exploratory biomarkers for monitoring the progression of muscle weakness

  6. Antenatal Diagnosis and Carrier Detection of Pseudohypertrophic Muscular Dystrophy%假肥大型肌营养不良症产前诊断与遗传咨询

    Institute of Scientific and Technical Information of China (English)

    尹耕心

    2004-01-01

    假肥大型肌营养不良症(pseudohypertophic muscular dvstrophy)是由于基因缺陷引起的疾病,以进行性肌肉萎缩与肌无力为主要特征,分Duchenne型(Duchenne muscular dystrophy,DMD)和Becker型(Becker muscular dystrophy,BMD)。DMD是假肥大型肌营养不良症中最常见和最严重的类型,发病率为活产男婴的1/3500,多数于12~13岁前丧失行走能

  7. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  8. Inspiratory flow reserve in boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    De Bruin, P F; Ueki, J; Bush, A; Y Manzur, A; Watson, A; Pride, N B

    2001-06-01

    Patients with advanced muscular dystrophy frequently develop ventilatory failure. Currently respiratory impairment usually is assessed by measuring vital capacity and the mouth pressure generated during a maximal inspiratory maneuver (PI,max), neither of which directly measures ventilatory capacity. We assessed inspiratory flow reserve in 26 boys [mean (SD) age 12.8 (3.8) years] with Duchenne muscular dystrophy (DMD) without ventilatory failure and in 28 normal boys [mean (SD) age 12.6 (1.9) years] by analyzing the ratio between the largest inspiratory flow during tidal breathing (V'I,max(t)) and during a forced vital capacity maneuver (V'I,max(FVC), (V'I,max(t)/V'I,maxFVC). We have compared this ratio with the forced vital capacity FVC and PI,max measured at functional residual capacity. Mean PI,max was -90(30)cmH2O, average 112% (range 57-179%) of predicted values in control boys and -31(11)cmH2O, average 40% predicted values in DMD boys (control vs DMD, P ratio was higher in DMD 0.22 (0.08) than in controls 0.12 (0.03) (P reserve in DMD. Inspiratory flow reserve was within the normal range in 8 of 19 DMD patients with PI,max less than 50% of predicted values. We conclude that measurement of inspiratory flow reserve (V'I,max(t)/V'I,maxFVC ratio) provides a simple and direct assessment of dynamic inspiratory muscle function which is not replicated by static measurement of PI,max or vital capacity and might be useful in assessment of respiratory impairment in boys with Duchenne muscular dystrophy. Follow-up studies are required to establish whether measures of inspiratory flow reserve are of clinical value in predicting subsequent ventilatory failure.

  9. Cellular Therapies for Muscular Dystrophies: Frustrations and Clinical Successes.

    Science.gov (United States)

    Negroni, Elisa; Bigot, Anne; Butler-Browne, Gillian S; Trollet, Capucine; Mouly, Vincent

    2016-02-01

    Cell-based therapy for muscular dystrophies was initiated in humans after promising results obtained in murine models. Early trials failed to show substantial clinical benefit, sending researchers back to the bench, which led to the discovery of many hurdles as well as many new venues to optimize this therapeutic strategy. In this review we summarize progress in preclinical cell therapy approaches, with a special emphasis on human cells potentially attractive for human clinical trials. Future perspectives for cell therapy in skeletal muscle are discussed, including the perspective of combined therapeutic approaches.

  10. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    DEFF Research Database (Denmark)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most...... promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense...

  11. Management of scoliosis in patients with Duchenne muscular dystrophy and spinal muscular atrophy: A literature review.

    Science.gov (United States)

    Garg, Sumeet

    2016-01-01

    Scoliosis occurs in nearly all non-ambulatory children with spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Non-operative treatments have not been shown to be effective at preventing progression of scoliosis. Progressive scoliosis can impact the ability of patients to sit comfortably, be cosmetically unappealing, and in severe cases exacerbate pulmonary disease. The main goal of operative treatment is to improve sitting balance and prevent progression of scoliosis. Complication rates are high and there is little data on effect of operative treatment on quality of life in children with SMA and DMD. Comprehensive multi-disciplinary pre-operative evaluations are vital to reduce the risks of operative treatment.

  12. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Patrizia Pessina

    2015-06-01

    Full Text Available Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD, skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.

  13. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy.

    Science.gov (United States)

    Pessina, Patrizia; Kharraz, Yacine; Jardí, Mercè; Fukada, So-ichiro; Serrano, Antonio L; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2015-06-09

    Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD), skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.

  14. Drugs in development and dietary approach for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Angelini C

    2015-08-01

    Full Text Available Corrado Angelini, Elisabetta Tasca Neuromuscular Laboratory, Fondazione San Camillo Hospital IRCCS, Venice, Italy Abstract: Therapeutic trials studying Duchenne muscular dystrophy (DMD in Europe and the USA have been done using a protocol that includes manual muscle testing and functional testing, and have shown the efficacy of steroid drugs in various doses and regimens. Further, drisapersen and eteplirsen (exon skipping drugs and ataluren (a drug to overcome stop codon mutations have achieved some clinical improvement. Cardioprotective drugs are efficacious in DMD, and eplerenone, an aldosterone inhibitor and diuretic, is now being used to treat the disease. The dietary approach should be used in wheelchair-bound DMD children in combination with respiratory assistance. The importance of some of the treatments proposed is that they might also be useful in other genetic disorders where stop codon mutations are present; moreover, it is possible that these new treatments will improve quality of life for many patients. Keywords: Duchenne muscular dystrophy, steroids, ataluren, drisapersen, eplerenone, eteplirsen

  15. Care to child with muscular dystrophies dependent of home technology: mothers´ conception

    Directory of Open Access Journals (Sweden)

    Fabíola Sousa de Oliveira

    2013-05-01

    Full Text Available It was aimed to understand the mother's conception on care to child with muscular dystrophies dependent on technology. Descriptive study with qualitative approach carried out in a children's hospital of the tertiary net in Fortaleza-Ceará, Brazil, as well as in homes of children with muscular dystrophy assisted by the Home Ventilation Assistance Program. The informants were mothers of children with dystrophy aged between zero and four years old, admitted in the Special Patients Unit and assisted by this program. We performed semi-structured interviews and after analysis, the following categories emerged: Care of children with muscular dystrophy and Feelings and expectations of mothers of children with muscular dystrophy. We identified that some mothers consider the child's daily life within the normal patterns, and others report difficulties, creating anxiety and fear of death. Thus, we verify the importance of nurses in the training of these mothers for directed care enabling to overcome stressful moments.

  16. Gene changes in Duchenne muscular dystrophy: Comparison of multiplex PCR and multiplex ligation-dependent probe amplification techniques

    Directory of Open Access Journals (Sweden)

    Kohli Sudha

    2010-01-01

    Full Text Available Background: Duchenne muscular dystrophy (DMD is a common X-linked recessive neuromuscular disorder, affecting 1 in 3,500 live male births. About 65% of cases are caused by deletions; ~5% to 8%, by duplication; and the remaining, by point mutations of the dystrophin gene. The frequency of complex rearrangements (double-deletion and non-contiguous duplications is reported to be 4%. Aim: In this study, we examined the usefulness of multiplex ligation-dependent probe amplification (MLPA for screening of deletion and duplication mutations in a group of DMD/ BMD (Becker muscular dystrophy patients from India. Patients and Methods: We analyzed 180 patients referred from all over India, by both multiplex PCR technique (22 exons and MLPA (all 79 exons. Results and Conclusion: By multiplex PCR, deletions were detected in 90 (50% patients. MLPA studies in these cases detected 3 additional deletions, 16 (8.9% duplications and 2 point mutations. MLPA is useful to verify absence of deletions/ duplications in all 79 exons. This sets the stage to look for point mutations using RNA- or DNA-based tests because of the availability of the drug PTC124. Also, the extent of the deletions and duplications could be more accurately defined by MLPA. The delineation of the precise extent of deletion helps in deciding whether exon-skipping technique would be useful as therapy.

  17. Identificación de mutaciones y diagnóstico molecular de portadoras en familias mexicanas con distrofia muscular Duchenne/Becker

    OpenAIRE

    S. Canizales; Salamanca, F.; GarcÍa, N.; D. Arenas

    2008-01-01

    Introducción: La Distrofia muscular de Duchenne/Becker (DMD/BMD) es la miopatía hereditaria más frecuente en las poblaciones humanas. Se caracteriza por una debilidad muscular progresiva que ocasiona, para el tipo Duchenne, la muerte por falla cardiaca y/o respiratoria durante la segunda década de la vida. Para el tipo Becker las alteraciones musculares son menos severas y los pacientes generalmente sobreviven hasta la edad adulta. El gen DMD, responsable de la enfermedad, se localiza en el b...

  18. Muscle exercise in limb girdle muscular dystrophies: pitfall and advantages.

    Science.gov (United States)

    Siciliano, Gabriele; Simoncini, Costanza; Giannotti, Stefano; Zampa, Virna; Angelini, Corrado; Ricci, Giulia

    2015-05-01

    Different genetic mutations underlying distinct pathogenic mechanisms have been identified as cause of muscle fibers degeneration and strength loss in limb girdle muscular dystrophies (LGMD). As a consequence, exercise tolerance is affected in patients with LGMD, either as a direct consequence of the loss of muscle fibers or secondary to the sedentary lifestyle due to the motor impairment. It has been debated for many years whether or not muscle exercise is beneficial or harmful for patients with myopathic disorders. In fact, muscular exercise would be considered in helping to hinder the loss of muscle tissue and strength. On the other hand, muscle structural defects in LGMD can result in instability of the sarcolemma, making it more likely to induce muscle damage as a consequence of intense muscle contraction, such as that performed during eccentric training. Several reports have suggested that supervised aerobic exercise training is safe and may be considered effective in improving oxidative capacity and muscle function in patients with LGMD, such as LGMD2I, LGMD2L, LGMD2A. More or less comfortable investigation methods applied to assess muscle function and structure can be useful to detect the beneficial effects of supervised training in LGMD. However, it is important to note that the available trials assessing muscle exercise in patients with LGMD have often involved a small number of patients, with a wide clinical heterogeneity and a different experimental design. Based on these considerations, resistance training can be considered part of the rehabilitation program for patients with a limb-girdle type of muscular dystrophy, but it should be strictly supervised to assess its effects and prevent possible development of muscle damage.

  19. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    Directory of Open Access Journals (Sweden)

    Ana Cotta

    2014-09-01

    Full Text Available Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  20. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    Science.gov (United States)

    Cotta, Ana; Carvalho, Elmano; da-Cunha-Júnior, Antonio Lopes; Paim, Júlia Filardi; Navarro, Monica M; Valicek, Jaquelin; Menezes, Miriam Melo; Nunes, Simone Vilela; Xavier Neto, Rafael; Takata, Reinaldo Issao; Vargas, Antonio Pedro

    2014-09-01

    Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  1. Limb-girdle muscular dystrophy subtypes: First-reported cohort from northeastern China.

    Science.gov (United States)

    Mahmood, Omar Abdulmonem; Jiang, Xinmei; Zhang, Qi

    2013-07-15

    The relative frequencies of different subtypes of limb-girdle muscular dystrophies vary widely among different populations. We estimated the percentage of limb-girdle muscular dystrophy subtypes in Chinese people based on 68 patients with limb-girdle muscular dystrophy from the Myology Clinic, Neurology Department, First Hospital of Jilin University, China. A diagnosis of calpainopathy was made in 12 cases (17%), and dysferlin deficiency in 10 cases (15%). Two biopsies revealed α-sarcoglycan deficiency (3%), and two others revealed a lack of caveolin-3 (3%). A diagnosis of unclassified limb-girdle muscular dystrophy was made in the remaining patients (62%). The appearances of calpain 3- and dysferlin-deficient biopsies were similar, though rimmed vacuoles were unique to dysferlinopathy, while inflammatory infiltrates were present in both these limb-girdle muscular dystrophy type 2D biopsies. Macrophages were detected in seven dysferlinopathy biopsies. The results of this study suggest that the distribution of limb-girdle muscular dystrophy subtypes in the Han Chinese population is similar to that reported in the West. The less necrotic, regenerating and inflammatory appearance of limb-girdle muscular dystrophy type 2A, but with more lobulated fibers, supports the idea that calpainopathy is a less active, but more chronic disease than dysferlinopathy. Unusual features indicated an extended limb-girdle muscular dystrophy disease spectrum. The use of acid phosphatase stain should be considered in suspected dysferlinopathies. To the best of our knowledge, this is the first report to define the relative proportions of the various forms of limb-girdle muscular dystrophy in China, based on protein testing.

  2. Limb-girdle muscular dystrophy subtypes First-reported cohort from northeastern China*

    Institute of Scientific and Technical Information of China (English)

    Omar Abdulmonem Mahmood; Xinmei Jiang; Qi Zhang

    2013-01-01

    The relative frequencies of different subtypes of limb-girdle muscular dystrophies vary widely among different populations. We estimated the percentage of limb-girdle muscular dystrophy sub-types in Chinese people based on 68 patients with limb-girdle muscular dystrophy from the Myology Clinic, Neurology Department, First Hospital of Jilin University, China. A diagnosis of calpainopathy was made in 12 cases (17%), and dysferlin deficiency in 10 cases (15%). Two biopsies revealedα-sarcoglycan deficiency (3%), and two others revealed a lack of caveolin-3 (3%). A diagnosis of unclassified limb-girdle muscular dystrophy was made in the remaining patients (62%). The ap-pearances of calpain 3-and dysferlin-deficient biopsies were similar, though rimmed vacuoles were unique to dysferlinopathy, while inflammatory infiltrates were present in both these limb-girdle muscular dystrophy type 2D biopsies. Macrophages were detected in seven dysferlinopathy biop-sies. The results of this study suggest that the distribution of limb-girdle muscular dystrophy sub-types in the Han Chinese population is similar to that reported in the West. The less necrotic, re-generating and inflammatory appearance of limb-girdle muscular dystrophy type 2A, but with more lobulated fibers, supports the idea that calpainopathy is a less active, but more chronic disease than dysferlinopathy. Unusual features indicated an extended limb-girdle muscular dystrophy disease spectrum. The use of acid phosphatase stain should be considered in suspected dysferlinopathies. To the best of our knowledge, this is the first report to define the relative proportions of the various forms of limb-girdle muscular dystrophy in China, based on protein testing.

  3. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  4. Most expression and splicing changes in myotonic dystrophy type 1 and type 2 skeletal muscle are shared with other muscular dystrophies.

    Science.gov (United States)

    Bachinski, Linda L; Baggerly, Keith A; Neubauer, Valerie L; Nixon, Tamara J; Raheem, Olayinka; Sirito, Mario; Unruh, Anna K; Zhang, Jiexin; Nagarajan, Lalitha; Timchenko, Lubov T; Bassez, Guillaume; Eymard, Bruno; Gamez, Josep; Ashizawa, Tetsuo; Mendell, Jerry R; Udd, Bjarne; Krahe, Ralf

    2014-03-01

    The prevailing pathomechanistic paradigm for myotonic dystrophy (DM) is that aberrant expression of embryonic/fetal mRNA/protein isoforms accounts for most aspects of the pleiotropic phenotype. To identify aberrant isoforms in skeletal muscle of DM1 and DM2 patients, we performed exon-array profiling and RT-PCR validation on the largest DM sample set to date, including Duchenne, Becker and tibial muscular dystrophy (NMD) patients as disease controls, and non-disease controls. Strikingly, most expression and splicing changes in DM patients were shared with NMD controls. Comparison between DM and NMD identified almost no significant differences. We conclude that DM1 and DM2 are essentially identical for dysregulation of gene expression, and DM expression changes represent a subset of broader spectrum dystrophic changes. We found no evidence for qualitative splicing differences between DM1 and DM2. While some DM-specific splicing differences exist, most of the DM splicing differences were also seen in NMD controls. SSBP3 exon 6 missplicing was observed in all diseased muscle and led to reduced protein. We conclude there is no widespread DM-specific spliceopathy in skeletal muscle and suggest that missplicing in DM (and NMD) may not be the driving mechanism for the muscle pathology, since the same pathways show expression changes unrelated to splicing.

  5. Current and emerging treatment strategies for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Mah JK

    2016-07-01

    Full Text Available Jean K Mah Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Abstract: Duchenne muscular dystrophy (DMD is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments

  6. Deleciones en el gen de la distrofina en 62 familias colombianas: correlación genotipo-fenotipo para la distrofia muscular de Duchenne y Becker

    Directory of Open Access Journals (Sweden)

    Carlos M. Restrepo

    2004-12-01

    Full Text Available Introduction: A genotype-phenotype correlation was established by dystrophin gene deletion analysis in Duchenne and Becker muscular dystrophies patients (DMD/BMD. Objectives: To establish a correlation between molecular genotype and clinical phenotype in a Colombian population. Materials and methods: A PCR (Polymerase Chain Reaction amplification of 18 exons (included in the two hot spots regions was performed in 62 affected families. Results: Nineteen patients showed deletions in several exons of the dystrophin gene. This corresponds to 31% of analyzed males in the present population. Conclusions: For each DMD/DMB affected male with deletion in the dystrophin gene, a correlation between disease severity and extent of deletion was established. The data showed that most out-frame deletions cause DMD phenotype, while the in-frame deletions results in BMD phenotype. This correlation was described by Koenig in his “open reading frame hypothesis”. In the present study it was possible to establish a direct correlation between mutation state and clinical severity in 79% of patients. This may help clinical evaluation of DMD/DMB patients.

  7. Laminins in peripheral nerve development and muscular dystrophy.

    Science.gov (United States)

    Yu, Wei-Ming; Yu, Huaxu; Chen, Zu-Lin

    2007-06-01

    Laminins are extracellular matrix (ECM) proteins that play an important role in cellular function and tissue morphogenesis. In the peripheral nervous system (PNS), laminins are expressed in Schwann cells and participate in their development. Mutations in laminin subunits expressed in the PNS and in skeleton muscle may cause peripheral neuropathies and muscular dystrophy in both humans and mice. Recent studies using gene knockout technology, such as cell-type specific gene targeting techniques, revealed that laminins and their receptors mediate Schwann cell and axon interactions. Schwann cells with disrupted laminin expression exhibit impaired proliferation and differentiation and also undergo apoptosis. In this review, we focus on the potential molecular mechanisms by which laminins participate in the development of Schwann cells.

  8. [Potential of the zebrafish model to study congenital muscular dystrophies].

    Science.gov (United States)

    Ryckebüsch, Lucile

    2015-10-01

    In order to better understand the complexity of congenital muscular dystrophies (CMD) and develop new strategies to cure them, it is important to establish new disease models. Due to its numerous helpful attributes, the zebrafish has recently become a very powerful animal model for the study of CMD. For some CMD, this vertebrate model is phenotypically closer to human pathology than the murine model. Over the last few years, researchers have developed innovative techniques to screen rapidly and on a large scale for muscle defects in zebrafish. Furthermore, new genome editing techniques in zebrafish make possible the identification of new disease models. In this review, the major attributes of zebrafish for CMD studies are discussed and the principal models of CMD in zebrafish are highlighted.

  9. Treatment of Duchenne muscular dystrophy with growth hormone inhibitors.

    Science.gov (United States)

    Zatz, M; Betti, R T; Frota-Pessoa, O

    1986-07-01

    A controlled, double-blind therapeutic trial with the drug mazindol, a growth hormone inhibitor, was performed in a pair of 7 1/2 year-old monozygotic twins, with Duchenne muscular dystrophy (DMD). The rationale for this trial was based on a patient (reported previously) affected simultaneously with DMD and growth hormone (GH) deficiency, who is showing a benign course of the dystrophic process and is still walking at 18 years. One of the twins received 2 mg of mazindol daily, while the other received a placebo. The assessment, repeated every 2 months, included weight and height measurements, functional and motor ability tests, ergometry and determinations of serum enzymes and GH levels. After one year of trial the code was broken and it was seen that the twin under placebo treatment was strikingly worse than his brother, the progression of whose condition was practically arrested. These results strongly suggest that treatment with a GH inhibitor is beneficial for DMD patients.

  10. Duchenne muscular dystrophy drugs face tough path to approval.

    Science.gov (United States)

    Hodgkinson, L; Sorbera, L; Graul, A I

    2016-03-01

    Highly anticipated as new disease-modifying treatments for Duchenne muscular dystrophy (DMD), therapeutics by BioMarin Pharmaceutical (Kyndrisa™; drisapersen) and Sarepta Therapeutics (eteplirsen; AVI-4658) both recently received negative FDA reviews and are now facing battles for approval in the U.S. At present, BioMarin is committed to working with the FDA to forge a pathway to approval following the failure of its NDA, while Sarepta awaits the formal decision on its NDA, which is expected by late May 2016. Despite the critical nature of both reviews, analysts consider that there is still a narrow possibility of approval of both drugs. According to Consensus forecasts from Thomson Reuters Cortellis for Competitive Intelligence, Kyndrisa is forecast to achieve sales of USD 533.71 million in 2021.

  11. Prenatal Diagnosis of the Duchenne Muscular Dystrophy. A Family Presentation

    Directory of Open Access Journals (Sweden)

    Humberto Perera Navarro

    2007-05-01

    Full Text Available The Duchenne muscular dystrophy is one of the most frequent hereditary myopathies that exist. It is characterized by degeneration of the muscle skeletal fibers which produce handicap in the first decade of life bringing about death due to cardiac or respiratory failure. The responsible gene of the disease is known as DMD and it is located in the X chromosome shorter arm. A family history is presented in which the pregnant woman who is the sick patient’s sister asks for a prenatal diagnosis. An indirect molecular study was performed with the STR-50 polymorphic marker. After the analysis of the results in which the lab methodology was applied, the fetus was found to be sick and the family decided to interrupt the pregnancy.

  12. Distrofia muscular de Emery-Dreifuss: relato de caso Emery-Dreifuss muscular dystrophy: case report

    Directory of Open Access Journals (Sweden)

    Ana Lucila Moreira Carsten

    2006-06-01

    Full Text Available A distrofia muscular de Emery-Dreifuss é uma forma de distrofia muscular freqüentemente associada a contraturas articulares e defeitos de condução cardíaca, que pode ser causada pela deficiência da proteína emerina na membrana nuclear interna das fibras musculares. Descrevemos o caso de um homem de 19 anos com diminuição de força muscular, hipotrofia nas cinturas escapular e pélvica, disfagia, contraturas articulares em cotovelos e tornozelos, apresentando história familiar compatível com herança ligada ao cromossomo X. A investigação mostrou creatinaquinase sérica elevada, eletrocardiograma com bloqueio atrioventricular de primeiro grau e bloqueio de ramo direito, eletroneuromiografia normal, biópsia muscular com alterações miopáticas e a análise por imuno-histoquímica mostrou deficiência de emerina. São discutidas as manifestações clínicas e genéticas, alterações laboratoriais e eletroneuromiográficas, bem como, a importância do estudo do padrão de herança no aconselhamento genético destas famílias.The Emery-Dreifuss muscular dystrophy is a form of muscular dystrophy that frequently presents early contractures and cardiac conduction defects, caused by emerin deficiency in the inner nuclear membrane of the muscular fibers. A 19-years-old man it presented muscle weakness and hypotrophy in the proximal upper and lower limbs, dysphagia and early contractures in elbows and ankles, with familiar history compatible with X-linked inheritance form. The investigation showed increased serum creatinekinase levels electrocardiogram had a first degree atrioventricular block and right bundle branch block normal electromyography and nerve conduction study muscle biopsy disclosed myopathic characteristics and nuclear protein immunohystochemical analysis showed deficiency of emerin. The clinical and genetics manifestations, laboratorial and electromyography changes, as well as, the study of the pattern of inheritance for

  13. Neuroimaging study of Fukuyama type congenital muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Murasugi, Hiroko (Tokyo Women' s Medical Coll. (Japan))

    1992-11-01

    Fukuyama type congenital muscular dystrophy (FCMD) has been attracting attention in recent years because of its brain malformation and progressive muscular dystrophy. The intravitam recognition of brain malformation has been remarkably enhanced by the advent of noninvasive neuroimaging techniques such as CT and MRI. In this study, 87 cranial CT scans and 22 MRIs of the brain, carried out on 60 patients with FCMD, were systematically surveyed, and the correlation between neuroradiological findings and clinical disabilities, and, in two autopsy cases, neuropathological findings was evaluated. Four cases of lissencephalic, 29 of pachygyric, and one of polymicrogyric (suspected) brain surface, and 2 normal brain surfaces were recognized. The patients with lissencephalic brain surface were compared using Dobyns' criteria. Grading of pachygyria was judged as bilateral II in 52% of cases and bilateral I in 48%. The surface of the occipital lobe could not be confirmed with either CT or MRI. Polymicrogyria was suspected using MRI but could not confirmed with CT. Five caces of lissencephaly had never learned any meaningful words and all but one were bedridden because of poor head control. The abilities of patients were better when the grading of pachygyria was milder. Mental disability and peak motor function correlate more closely with the degree and extent of brain malformation than with muscle degeneration. The decrease in radiodensity in the white matter was remarkable in 12 out of 19 cases (63%), and was usually bilaterally symmetrical. An increase in radiodensity in the white matter with age was observed in 3 patients. The rate of myelination was slower than normal in 3 out of the 6 cases. (author).

  14. Comparison of Deflazacort and Prednisone in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Parvaneh KARIMZADEH

    2012-03-01

    Full Text Available ObjectiveDuchenne muscular dystrophy (DMD is a degenerative disease that usually becomes clinically detectable in childhood as progressive proximal weakness. No cure is yet available for DMD, but the use of steroids improves muscle strength and function. This study has been carried out to select the best steroid for the management of DMD.Materials & MethodsThis study is a single-blind, randomized clinical trial with a sample volume of 34 DMD patients. Half of these patients were treated with deflazacort (0.9 mg/kg daily and the other half with prednisone (0.75 mg/kg daily for a period of 18 months. The motor function score and excess body weight were registered one year after the start and also at the end of the study and compared between the two groups.ResultsDeflazacort was more effective in the improvement of motor function after one year, but there was no significant difference between the two drugs at the end of the study (18 months after start. Weight gain after one year and at the end of the study was higher in prednisone group and steroid treatment with deflazacort appears to cause fewer side effects than prednisone regarding weight gain.ConclusionDeflazacort seems to be more effective than prednisone in the improvement of motor function causing fewer side effects, particularly weight gain. This medication may be important for the improvement of motor function and could be used as the best steroidal treatment for Duchenne muscular dystrophy.

  15. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate

    NARCIS (Netherlands)

    Negroni, E.; Henault, E.; Chevalier, F.; Gilbert-Sirieix, M.; Kuppevelt, T.H. van; Papy-Garcia, D.; Uzan, G.; Albanese, P.

    2014-01-01

    Widespread skeletal muscle degeneration and impaired regeneration lead to progressive muscle weakness and premature death in patients with Duchenne muscular dystrophy (DMD). Dystrophic muscles are progressively replaced by nonfunctional tissue because of exhaustion of muscle precursor cells and exce

  16. Retinal arterial but not venous tortuosity correlates with facioscapulohumeral muscular dystrophy severity

    NARCIS (Netherlands)

    Longmuir, Susannah Q.; Mathews, Katherine D.; Longmuir, Reid A.; Joshi, Vinayak; Olson, Richard J.; Abramoff, M.D.

    2010-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease beginning with facial and shoulder girdle weakness with variable progression. Exudative retinal detachment, retinal vessel irregularities on fluorescein angiography, and retinal vessel tortuosity have been foun

  17. Intermittent prednisone therapy in Duchenne muscular dystrophy : A randomized controlled trial

    NARCIS (Netherlands)

    Beenakker, EAC; Fock, JM; Van Tol, M; Maurits, NM; Koopman, HM; Brouwer, OF; Van der Hoeven, JH

    2005-01-01

    Background: Prednisone treatment is used to prolong ambulation in patients with Duchenne muscular dystrophy (DMD). However, since severe adverse effects often accompany prednisone treatment, it is debatable whether the benefits of prednisone treatment outweigh its adverse effects. Objectives: To stu

  18. A heterozygous 21-bp deletion in CAPN3 causes dominantly inherited limb girdle muscular dystrophy

    DEFF Research Database (Denmark)

    Vissing, John; Barresi, Rita; Witting, Nanna;

    2016-01-01

    Limb girdle muscular dystrophy type 2A is the most common limb girdle muscular dystrophy form worldwide. Although strict recessive inheritance is assumed, patients carrying a single mutation in the calpain 3 gene (CAPN3) are reported. Such findings are commonly attributed to incomplete mutation...... creatine kinase or myoglobin. Muscle weakness was generally milder than observed in limb girdle muscular dystrophy type 2A, but affected the same muscle groups (proximal leg, lumbar paraspinal and medial gastrocnemius muscles). In some cases, the weakness was severely disabling. The 21-bp deletion did...... affecting the calpain 3 homodimer. This renders patients deficient in calpain 3 as in limb girdle muscular dystrophy type 2A, albeit in a milder form in most cases. Based on findings in 10 families, our study indicates that a dominantly inherited pattern of calpainopathy exists, and should be considered...

  19. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Hideya Mizuno

    Full Text Available Duchenne muscular dystrophy (DMD is a lethal X-linked disorder caused by mutations in the dystrophin gene, which encodes a cytoskeletal protein, dystrophin. Creatine kinase (CK is generally used as a blood-based biomarker for muscular disease including DMD, but it is not always reliable since it is easily affected by stress to the body, such as exercise. Therefore, more reliable biomarkers of muscular dystrophy have long been desired. MicroRNAs (miRNAs are small, ∼22 nucleotide, noncoding RNAs which play important roles in the regulation of gene expression at the post-transcriptional level. Recently, it has been reported that miRNAs exist in blood. In this study, we hypothesized that the expression levels of specific serum circulating miRNAs may be useful to monitor the pathological progression of muscular diseases, and therefore explored the possibility of these miRNAs as new biomarkers for muscular diseases. To confirm this hypothesis, we quantified the expression levels of miRNAs in serum of the dystrophin-deficient muscular dystrophy mouse model, mdx, and the canine X-linked muscular dystrophy in Japan dog model (CXMD(J, by real-time PCR. We found that the serum levels of several muscle-specific miRNAs (miR-1, miR-133a and miR-206 are increased in both mdx and CXMD(J. Interestingly, unlike CK levels, expression levels of these miRNAs in mdx serum are little influenced by exercise using treadmill. These results suggest that serum miRNAs are useful and reliable biomarkers for muscular dystrophy.

  20. DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies

    OpenAIRE

    2011-01-01

    Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD-pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD-gene defects and strain background stro...

  1. Advances in gene therapy for muscular dystrophies [version 1; referees: 2 approved

    OpenAIRE

    Hayder Abdul-Razak; Alberto Malerba; George Dickson

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currentl...

  2. The Intriguing Regulators of Muscle Mass in Sarcopenia and Muscular Dystrophy

    OpenAIRE

    Sakuma, Kunihiro; Aoi, Wataru; Yamaguchi, Akihiko

    2014-01-01

    Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This revie...

  3. [A benign variant of the course of Duchenne muscular dystrophy in a child with short stature].

    Science.gov (United States)

    Badalian, L O; Temin, P A; Kamennykh, L N; Zavadenko, N N; Nikanorova, M Iu; Arkhipov, B A; Malygina, N A

    1991-01-01

    The authors describe a case of a benign variety of progressive Duchenne type muscular dystrophy in a 8-year-old short-stature boy. Provide the electromyographic and electroneuromyographic data, measurements of the growth hormone in blood serum and osseous age. Make suggestions about coupled inheritance of progressive Duchenne type muscular dystrophy and short stature . The latter one is likely to be attended by a decrease of anabolic processes, which may determine a more benign course of the myodystrophic process.

  4. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    Science.gov (United States)

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  5. Clinical potential of ataluren in the treatment of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Namgoong JH

    2016-05-01

    Full Text Available John Hyun Namgoong, Carmen Bertoni Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA Abstract: Duchenne muscular dystrophy (DMD is an autosomal dominant, X-linked neuromuscular disorder caused by mutations in dystrophin, one of the largest genes known to date. Dystrophin gene mutations are generally transmitted from the mother to male offspring and can occur throughout the coding length of the gene. The majority of the methodologies aimed at treating the disorder have focused on restoring a shorter, although partially functional, dystrophin protein. The approach has the potential of converting a severe DMD phenotype into a milder form of the disease known as Becker muscular dystrophy. Others have focused on ameliorating the disease by targeting secondary pathologies such as inflammation or loss of regeneration. Of great potential is the development of strategies that are capable of restoring full-length dystrophin expression due to their ability to produce a normal, fully functional protein. Among these strategies, the use of read-through compounds (RTCs that could be administered orally represents an ideal option. Gentamicin has been previously tested in clinical trials for DMD with limited or no success, and its use in the clinic has been dismissed due to issues of toxicity and lack of clear benefits to patients. More recently, new RTCs have been identified and tested in animal models for DMD. This review will focus on one of those RTCs known as ataluren that has now completed Phase III clinical studies for DMD and at providing an overview of the different stages that have led to its clinical development for the disease. The impact that this new drug may have on DMD and its future perspectives will also be described, with an emphasis on the importance of further assessing the clinical benefits of this molecule in patients as it becomes available on the market in different countries

  6. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice.

  7. Motor assessment in patients with Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Gabriela Palhares Campolina Diniz

    2012-06-01

    Full Text Available OBJECTIVE: Evaluate muscle force and motor function in patients with Duchenne muscular dystrophy (DMD in a period of six months. METHOD: Twenty children and adolescents with diagnosis of DMD were evaluated trough: measurement of the strength of the flexors and extensors of the shoulder, elbow, wrist, knee and ankle through the Medical Research Council (MRC, and application of the Motor Function Measure (MFM. The patients were evaluated twice within a six-month interval. RESULTS: Loss of muscle strength was identified in the MRC score for upper proximal members (t=-2.17, p=0.04. In the MFM, it was noted significant loss in the dimension 1 (t=-3.06, p=0.006. Moderate and strong correlations were found between the scores for muscular strength and the MFM dimensions. CONCLUSION: The MFM scale was a useful instrument in the follow up of patients with DMD. Moreover, it is a more comprehensive scale to assess patients and very good for conducting trials to evaluate treatment.

  8. Investigation of Poor Academic Achievement in Children with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Hinton, V. J.; De Vivo, D. C.; Fee, R.; Goldstein, E.; Stern, Y.

    2004-01-01

    Duchenne Muscular Dystrophy (DMD) is a neurogenetic developmental disorder that presents with progressive muscular weakness. It is caused by a mutation in a gene that results in the absence of specific products that normally localize to muscle cells and the central nervous system (CNS). The majority of affected individuals have IQs within the…

  9. Structure and function of masticatory muscles in a case of muscular dystrophy

    DEFF Research Database (Denmark)

    Bakke, M; Kirkeby, S; Jensen, B L

    1990-01-01

    depressor strength corresponded more to reference values. This difference of muscular wasting might be caused by protective enzymes in the digastric muscle and/or functionally induced damage of the masseter. As affection from muscular dystrophy may vary greatly between the masticatory muscles, structural...

  10. The effects of myotonic dystrophy and Duchenne muscular dystrophy on the orofacial muscles and dentofacial morphology.

    Science.gov (United States)

    Kiliaridis, S; Katsaros, C

    1998-12-01

    This article takes a closer view of two of the less rare myopathies, myotonic dystrophy (MyD) and Duchenne muscular dystrophy (DMD). A high prevalence of malocclusions was found among the patients affected by these diseases. The development of the malocclusions in MyD patients seems to be strongly related to the vertical aberration of their craniofacial growth due to the involvement of the masticator, muscles in association with the possibly less affected suprahyoid musculature. Thus, a new situation is established around the teeth transversely. The lowered tongue is not in a position to counterbalance the forces developed during the lowering of the mandible by the stretched facial musculature. This may affect the teeth transversely, decreasing the width of the palate and causing posterior crossbite. The lowered position of the mandible, in combination with the decreased biting forces, may permit an overeruption of the posterior teeth, with increased palatal vault height and development of anterior open bite. The development of the malocclusions in DMD patients also seems to be strongly related to the involvement of the orofacial muscles by the disease. However, the posterior crossbite is not developed owing to the narrow maxillary arch, as is the case in MyD patients. On the contrary, the posterior crossbite in DMD is due to the transversal expansion of the mandibular arch, possibly because of the decreased tonus of the masseter muscle near the molars, in combination with the enlarged hypotonic tongue and the predominance of the less affected orbicularis oris muscle.

  11. An aberrant adenylate kinase isoenzyme from the serum of patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Hamada, M; Okuda, H; Oka, K; Watanabe, T; Ueda, K; Nojima, M; Kuby, S A; Manship, M; Tyler, F H; Ziter, F A

    1981-08-13

    The sera from patients with human Duchenne (X-linked) progressive muscular dystrophy contain elevated adenylate kinase (ATP: AMP phosphotransferase, EC 2.7.4.3) activities, in addition to their characteristically high creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) activities. By agarose gel electrophoresis of human Duchenne dystrophic serum, the presence of an apparently normal human serum adenylate kinase together with a variant species of adenylate kinase was detected. The latter enzyme species appeared, in its mobility, to be similar to that of the normal human liver-type adenylate kinase. The presence of this aberrant liver-type adenylate kinase could also be demonstrated by characteristic (for the liver type) inhibition patterns with P1,P5-di-(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate. On the other hand, by inhibition titrations with an anti-muscle-type adenylate kinase, hemolysates from the erythrocytes of several Duchenne and Becker's dystrophics were found to contain approx. 96% muscle-type adenylate kinase and their serum approx. 97% muscle-type adenylate kinase. These same patients contained approx. 89% M-M type creatine kinase in their serum (by inhibition against anti-human muscle-type creatine kinase) indicative of the presence also of M-B plus B-B type active isoenzymes. All of these data can best be explained by the presence of a variant or mutant adenylate kinase isoenzyme in the dystrophic serum. This isoenzyme appears to resemble the liver type in its inhibition patterns with P1,P5-di(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate, and in its heat stability (compare also the agarose gel electrophoresis pattern); but structurally, it is a muscle type, or derived from a muscle type, as shown immunologically by inhibition reactions with anti-muscle-type adenylate kinase. Whether this is a fetal-type isoenzyme of adenylate kinase will require further

  12. [Infrastructure for new drug development to treat muscular dystrophy: current status of patient registration (remudy)].

    Science.gov (United States)

    Nakamura, Harumasa; Kimura, En; Kawai, Mitsuru

    2011-11-01

    Clinical trials for new therapeutic strategies are now being planned for Duchenne and Becker muscular dystrophies (DMD/BMD); however, many challenges exist in the planning and conduction of a clinical trial for rare diseases. The epidemiological data, total number of patients, natural history, and clinical outcome measures are unclear. Adequate numbers of patients are needed to achieve significant results in clinical trials. As solutions to these problems, patient registries are an important infrastructure worldwide, especially in the case of rare diseases such as DMD/BMD. In Europe, TREAT-NMD, a clinical research network for neuromuscular disorders, developeda global database for dystrophinopathy patients. We developed a national registry of Japanese DMD/BMD patients in collaboration with TREAT-NMD. The database includes clinical and molecular genetic data as well as all required items for the TREAT-NMD global patient registry. As of July 2011, 750 patients were registered in the database. The purpose of this registry is the effective recruitment of eligible patients for clinical trials, and it may also provide timely information to individual patients about upcoming trials. This registry data also provides more detailed knowledge about natural history, epidemiology, and clinical care. In recent years, drug development has become dramatically globalized, and global clinical trials (GCTs) are being conducted in Japan. It is appropriate, particularly with regard to orphan diseases, to include Japanese patients in GCTs to increase evidence for evaluation, because such large-scale trials would be difficult to conduct solely within Japan. GCTs enable the synchronization of clinical drug development in Japan with that in Western countries, minimizing drug approval delays.

  13. Computer task performance by subjects with Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Malheiros SRP

    2015-12-01

    Full Text Available Silvia Regina Pinheiro Malheiros,1 Talita Dias da Silva,2 Francis Meire Favero,2 Luiz Carlos de Abreu,1 Felipe Fregni,3 Denise Cardoso Ribeiro,4 Carlos Bandeira de Mello Monteiro1,4,5 1School of Medicine of ABC, Santo Andre, Brazil; 2Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil; 3Center for Neurosciences, University of São Paulo, São Paulo, Brazil; 4Post-graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; 5School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil Aims: Two specific objectives were established to quantify computer task performance among people with Duchenne muscular dystrophy (DMD. First, we compared simple computational task performance between subjects with DMD and age-matched typically developing (TD subjects. Second, we examined correlations between the ability of subjects with DMD to learn the computational task and their motor functionality, age, and initial task performance.Method: The study included 84 individuals (42 with DMD, mean age of 18±5.5 years, and 42 age-matched controls. They executed a computer maze task; all participants performed the acquisition (20 attempts and retention (five attempts phases, repeating the same maze. A different maze was used to verify transfer performance (five attempts. The Motor Function Measure Scale was applied, and the results were compared with maze task performance.Results: In the acquisition phase, a significant decrease was found in movement time (MT between the first and last acquisition block, but only for the DMD group. For the DMD group, MT during transfer was shorter than during the first acquisition block, indicating improvement from the first acquisition block to transfer. In addition, the TD group showed shorter MT than the DMD group across the study.Conclusion: DMD participants improved their performance after practicing

  14. Desirability of early identification of Duchenne Muscular Dystrophy (DMD): parent’s experiences of the period prior to diagnosis.

    NARCIS (Netherlands)

    Eilers, R.; Kleinveld, J.H.; Vroom, E.; Westerman, M.J.; Plass, A.M.C.

    2012-01-01

    Duchenne Muscular Dystrophy (DMD), X-linked recessively inherited, is the most common progressive muscular disorder in children. Early diagnosis could offer opportunities for timely initiation of treatment possibilities, genetic counselling, and prevent a long diagnostic quest. Despite the availabil

  15. Umbilical cord mesenchymal stem cell transplantation for the treatment of Duchenne muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Yang; Yanxiang Wu; Xinping Liu; Yifeng Xu; Naiwu Lü; Yibin Zhang; Hongmei Wang; Xin Lü; Jiping Cui; Jinxu Zhou; Hong Shan

    2011-01-01

    Due to their relative abundance, stable biological properties and excellent reproductive activity,umbilical cord mesenchymal stem cells have previously been utilized for the treatment of Duchenne muscular dystrophy, which is a muscular atrophy disease. Three patients who were clinically and pathologically diagnosed with Duchenne muscular dystrophy were transplanted with umbilical cord mesenchymal stem cells by intravenous infusion, in combination with multi-point intramuscular injection. They were followed up for 12 months after cell transplantation. Results showed that clinical symptoms significantly improved, daily living activity and muscle strength were enhanced,the sero-enzyme, electromyogram, and MRI scans showed improvement, and dystrophin was expressed in the muscle cell membrane. Hematoxylin-eosin staining of a muscle biopsy revealed that muscle fibers were well arranged, fibrous degeneration was alleviated, and fat infiltration was improved. These pieces of evidence suggest that umbilical cord mesenchymal stem cell transplantation can be considered as a new regimen for Duchenne muscular dystrophy.

  16. Progressive muscular dystrophy: Duchenne type. Controversies of the kinesitherapy treatment

    Directory of Open Access Journals (Sweden)

    Ana Valéria de Araujo Leitão

    Full Text Available The authors carried out a study of children with progressive muscular dystrophy of Duchenne type (DMD, giving special attention to physiatrical follow-up, having in mind that the practice of exercises has been debated very much in the specialized literature. The goal of this study is to try to settle the limits for the utilization of kinesitherapy which should be applied only in specific situations, such as: after skeletal muscular trauma or when the respiratory system is at risk. In this situation the physiatrical procedure would be to restrict physical activity, with early use of wheelchairs and the exclusion of the use of orthoses for orthostatism. DMD, at present, has been considered a result of duplication (60%, deletion (5 to 6% or point mutations at gen Xp21 (Zatz, 1994, that codifies a protein called Dystrophin ( Hoffman et al., 1987. Dystrophin is a cytoskeletal sarcolemmic protein that constitutes about .002% of the total protein of the muscle, present in skeletal fibers concentrated in muscle tendinous joints, which supplies mechanical reinforcement to the surface of the membrane during stretching and shortening physical activity. This protein is absent in DMD cases, wherefore, the sarcolemma undergoes a segmentary necrosis losing its contractile property during eccentric and concentric physical activity. The importance of physiatrical follow-up for DMD patients is to avoid deformities and tendon shortening, to ameliorate the patient's quality of life, to provide respiratory assistance and general couseling to members of the patient's family. The objective of this study is to try to clarify the risks and possibilities of kinesitherapy applied to DMD cases.

  17. Calcium and the damage pathways in muscular dystrophy.

    Science.gov (United States)

    Allen, David G; Gervasio, Othon L; Yeung, Ella W; Whitehead, Nicholas P

    2010-02-01

    Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by the absence of the cytoskeletal protein dystrophin. Experiments on the mdx mouse, a model of DMD, have shown that mdx muscles are particularly susceptible to stretch-induced damage. In this review, we discuss evidence showing that a series of stretched contractions of mdx muscle fibres causes a prolonged increase in resting intracellular calcium concentration ([Ca2+]i). The rise in [Ca2+]i is caused by Ca2+ entry through a class of stretch-activated channels (SACNSC) for which one candidate gene is TRPC1. We review the evidence for activation of SACNSC in muscle by reactive oxygen species (ROS) and suggest that stretch-induced ROS production is part of the pathway that triggers increased channel activity. When the TRPC1 gene was transfected into C2 myoblasts, expression occurred throughout the cell. Only when the TRPC1 gene was coexpressed with caveolin-3 did the TRPC1 protein express in the membrane. When TRPC1 was expressed in the membrane, it could be activated by ROS to produce Ca2+ entry and this entry was inhibited by PP2, an inhibitor of src kinase. These results suggest that stretched contractions activate ROS production, which activates src kinase. Activity of this kinase causes opening of SACNSC and allows Ca2+ entry. This pathway appears to be a significant cause of muscle damage in DMD.

  18. Laminin-111: a potential therapeutic agent for Duchenne muscular dystrophy.

    Science.gov (United States)

    Goudenege, Sébastien; Lamarre, Yann; Dumont, Nicolas; Rousseau, Joël; Frenette, Jérôme; Skuk, Daniel; Tremblay, Jacques P

    2010-12-01

    Duchenne muscular dystrophy (DMD) still needs effective treatments, and myoblast transplantation (MT) is considered as an approach to repair damaged skeletal muscles. DMD is due to the complete loss of dystrophin from muscles. The lack of link between the contracting apparatus and the extracellular matrix leads to frequent damage to the sarcolemma triggering muscle fiber necrosis. Laminins are major proteins in the extracellular matrix. Laminin-111 is normally present in skeletal and cardiac muscles in mice and humans but only during embryonic development. In this study, we showed that intramuscular injection of laminin-111 increased muscle strength and resistance in mdx mice. We also used laminin-111 as a coadjuvant in MT, and we showed this protein decreased considerably the repetitive cycles of degeneration, inflammatory reaction, and regeneration. Moreover, MT is significantly improved. To explain the improvement, we confirmed with the same myoblast cell batch that laminin-111 improves proliferation and drastically increases migration in vitro. These results are extremely important because DMD could be treated only by the injection of a recombinant protein, a simple and safe therapy to prevent loss of muscle function. Moreover, the improvement in MT would be significant to treat the muscles of DMD patients who are already weak.

  19. Actin-organising properties of the muscular dystrophy protein myotilin.

    Science.gov (United States)

    von Nandelstadh, Pernilla; Grönholm, Mikaela; Moza, Monica; Lamberg, Arja; Savilahti, Harri; Carpén, Olli

    2005-10-15

    Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.

  20. [Principles of multidisciplinary management of Duchenne muscular dystrophy].

    Science.gov (United States)

    Chabrol, B; Mayer, M

    2015-12-01

    Given the gradual progression observed in Duchenne muscular dystrophy, organization of care in multidisciplinary consultations is essential for optimal management of the different aspects of the disease. Drawing up a care plan is always preceded by a specific consultation for the announcement of the diagnosis with both the parents and the child. Explaining to the child the origin of his problems with simple words, telling him that why he experienced a particular symptom has been understood, is a fundamental step. The child needs to receive the information at different times of the disease following the rhythms of the disease stages, with an appropriate lead time. With the progress achieved in managing this disease, more than 90% of these children now live into adulthood. The switch from pediatric consultations to adult consultations, marking the transition from childhood management at adulthood, is a major challenge in the organization of care. Although today death occurs most often in adulthood, some children die in childhood. For the majority of teams who care for children, whatever the initial pathology may be, the notion of care continuity and accompaniment from the announcement of the disease to the terminal phase is essential. Increasing numbers of therapeutic trials have been developed over the past few years aiming to investigate children with DMD. However, they must not neglect the overall management of these patients and provide the best accompaniment possible.

  1. Octreotide enhances positive calcium balance in Duchenne muscular dystrophy.

    Science.gov (United States)

    Nutting, D F; Schriock, E A; Palmieri, G M; Bittle, J B; Elmendorf, B J; Horner, L H; Edwards, M C; Griffin, J W; Sacks, H S; Bertorini, T E

    1995-09-01

    Although receptors for somatostatin are found in bone cells, the effect of somatostatin analogs on calcium metabolism is unknown. The authors studied, in a metabolic ward, the effect of octreotide (a long-acting somatostatin analog) and a placebo in two 6-day calcium balance periods in 8 children with Duchenne muscular dystrophy. As expected, octreotide (2 micrograms/kg, subcutaneously, every 8 hours) reduced serum growth hormone and somatomedin (IGF-1) to levels found in growth hormone deficiency. Octreotide enhanced calcium retention by 30% (96 mg daily [P < 0.04]) in 7 boys for whom complete data (diet, urine, and fecal calcium) were available. In 6 children with urinary calcium excretion (Uca) greater than 50 mg daily, octreotide markedly lowered Uca, from 114 +/- 23 mg daily to 61 +/- 9 mg daily (P < 0.03). Calcium retention occurred in patients with or without initial hypercalciuria, but the higher the basal Uca, the greater was the inhibition by octreotide (r = 0.79; P < 0.03). Inactive, nonambulatory patients had a more pronounced response of Uca to octreotide (P < 0.02). Octreotide caused a mild, nonsignificant reduction in fecal calcium, with no major changes in serum calcium, phosphorus, parathyroid hormone, urinary excretion of sodium and potassium, or in creatinine clearance. Based on the current observations and the presence of receptors for somatostatin in bone cells, this hormone may have, at least on a short-term basis, an anabolic effect on calcium, perhaps favoring its deposition in bone.

  2. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël

    2016-01-01

    The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity. PMID:27622734

  3. Muscle phenotypic variability in limb girdle muscular dystrophy 2 G.

    Science.gov (United States)

    Paim, Julia F; Cotta, Ana; Vargas, Antonio P; Navarro, Monica M; Valicek, Jaquelin; Carvalho, Elmano; da-Cunha, Antonio L; Plentz, Estevão; Braz, Shelida V; Takata, Reinaldo I; Almeida, Camila F; Vainzof, Mariz

    2013-06-01

    Limb girdle muscular dystrophy type 2 G (LGMD2G) is caused by mutations in the telethonin gene. Only few families were described presenting this disease, and they are mainly Brazilians. Here, we identified one additional case carrying the same common c.157C > T mutation in the telethonin gene but with an atypical histopathological muscle pattern. In a female patient with a long duration of symptoms (46 years), muscle biopsy showed, in addition to telethonin deficiency, the presence of nemaline rods, type 1 fiber predominance, nuclear internalization, lobulated fibers, and mitochondrial paracrystalline inclusions. Her first clinical signs were identified at 8 years old, which include tiptoe walking, left lower limb deformity, and frequent falls. Ambulation loss occurred at 41 years old, and now, at 54 years old, she presented pelvic girdle atrophy, winging scapula, foot deformity with incapacity to perform ankle dorsiflexion, and absent tendon reflexes. The presence of nemaline bodies could be a secondary phenomenon, possibly associated with focal Z-line abnormalities of a long-standing disease. However, these new histopathological findings, characteristic of congenital myopathies, expand muscle phenotypic variability of telethoninopathy.

  4. Red-Green Color Vision Impairment in Duchenne Muscular Dystrophy

    Science.gov (United States)

    Costa, Marcelo Fernandes ; Oliveira, Andre Gustavo Fernandes ; Feitosa-Santana, Claudia ; Zatz, Mayana ; Ventura, Dora Fix 

    2007-01-01

    The present study evaluated the color vision of 44 patients with Duchenne muscular dystrophy (DMD) (mean age 14.8 years; SD 4.9) who were submitted to a battery of four different color tests: Cambridge Colour Test (CCT), Neitz Anomaloscope, Ishihara, and American Optical Hardy-Rand-Rittler (AO H-R-R). Patients were divided into two groups according to the region of deletion in the dystrophin gene: upstream of exon 30 (n=12) and downstream of exon 30 (n=32). The control group was composed of 70 age-matched healthy male subjects with no ophthalmological complaints. Of the patients with DMD, 47% (21/44) had a red-green color vision defect in the CCT, confirmed by the Neitz Anomaloscope with statistical agreement (P.05). Of the patients with deletion downstream of exon 30, 66% had a red-green color defect. No color defect was found in the patients with deletion upstream of exon 30. A negative correlation between the color thresholds and age was found for the controls and patients with DMD, suggesting a nonprogressive color defect. The percentage (66%) of patients with a red-green defect was significantly higher than the expected <10% for the normal male population (P<.001). In contrast, patients with DMD with deletion upstream of exon 30 had normal color vision. This color defect might be partially explained by a retina impairment related to dystrophin isoform Dp260. PMID:17503325

  5. THE INFLUENCE OF HANDEDNESS ON THE DISTRIBUTION OF MUSCULAR WEAKNESS OF THE ARM IN FACIOSCAPULOHUMERAL MUSCULAR-DYSTROPHY

    NARCIS (Netherlands)

    BROUWER, OF; PADBERG, GW; VANDERPLOEG, RJO; RUYS, CJM; BRAND, R

    1992-01-01

    The strength of 10 muscle groups in both arms was measured using hand-held myometry to determine the influence of handedness on left-right differences of muscle strength in facioscapulohumeral muscular dystrophy (FSHD). Two groups of subjects were studied: 24 healthy volunteers (19 right-handed), an

  6. The Dutch patients' perspective on oculopharyngeal muscular dystrophy: A questionnaire study on fatigue, pain and impairments.

    Science.gov (United States)

    van der Sluijs, Barbara M; Knoop, Hans; Bleijenberg, Gijs; van Engelen, Baziel G M; Voermans, Nicol C

    2016-03-01

    Research on oculopharyngeal muscular dystrophy focuses mainly on genetic and pathophysiological aspects. Clinically, oculopharyngeal muscular dystrophy is often considered as a disease with a relatively mild initial disease course with no or only mild functional disabilities. However the occurrence of fatigue, pain and functional impairments other than dysphagia has never been studied systematically. The aim of this study is therefore to assess the prevalence of fatigue, pain, and functional limitations, and the social participation and psychological well-being of oculopharyngeal muscular dystrophy patients. We performed a questionnaire study on fatigue, pain, functional impairments, social participation and psychological distress in 35 genetically confirmed oculopharyngeal muscular dystrophy patients with an average disease duration of 11.6 years. We showed that 19 (54%) of the patients experienced severe fatigue and also 19 (54%) experienced pain. Limitations in daily life activities and social participation were detected in 33 (94%) of the patients. Many patients reported pelvic girdle weakness and limitations in ambulation. Fatigue severity was related to functional impairments, while pain and disease duration were not. Psychological distress was not different from healthy adults. In conclusion, fatigue and pain are present among approximately half of the patients, and almost all patients are impaired in daily life activities, social participation and ambulation. These data should be taken into account in symptomatic management of oculopharyngeal muscular dystrophy.

  7. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy.

    Science.gov (United States)

    Körner, Zandra; Fontes-Oliveira, Cibely C; Holmberg, Johan; Carmignac, Virginie; Durbeej, Madeleine

    2014-05-01

    Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted.

  8. Golden Retriever Muscular Dystrophy (GRMD) como modelo morfofuncional da reparação tecidual na Distrofia Muscular de Duchenne

    OpenAIRE

    Thaís Peixoto Gaiad Machado

    2009-01-01

    A fisioterapia motora vem sendo empregada como terapia de suporte para as distrofias musculares, porém, seu efeito no músculo distrófico e na função motora global precisa ser melhor compreendida para direcionar os tratamentos. Esta pesquisa objetiva elucidar o papel da fisioterapia motora na deposição de colágeno muscular, bem como em alguns parâmetros cinemáticos e dinâmicos da marcha do modelo Golden Retriever Muscular Dystrophy (GRMD). Fragmentos do músculo bíceps femoralis foram coletados...

  9. Treinamento físico na distrofia muscular de becker associada à insuficiência cardíaca

    Directory of Open Access Journals (Sweden)

    Jean Marcelo Roque

    2011-12-01

    Full Text Available A distrofia muscular de Becker (DMB integra as distrofinopatias que ocorrem devido a mutações genéticas que expressam a proteína distrofina no cromossomo X. O início dos sintomas neuromusculares normalmente precede o comprometimento da função cardíaca, podendo acontecer inversamente pela insuficiência cardíaca (IC. O treinamento físico é bem estabelecido na IC, porém, quando associada à DMB, é controverso e sem fundamento científico. Apresentamos o caso de um paciente com DMB associada à IC em fila de transplante cardíaco submetido a um programa de treinamento físico.

  10. Physical training in boys with Duchenne Muscular Dystrophy : the protocol of the No Use is Disuse study

    NARCIS (Netherlands)

    Jansen, M.; Groot, I.J.M. de; Alfen, N. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: "Use it or lose it" is a well known saying which is applicable to boys with Duchenne Muscular Dystrophy (DMD). Besides the direct effects of the muscular dystrophy, the increasing effort to perform activities, the fear of falling and the use of personal aids indirectly impair leg and arm

  11. Atualização do tratamento fisioterapêutico das distrofias musculares de Duchenne e de Becker - doi:10.5020/18061230.2005.p41

    OpenAIRE

    Simone Rizzo Nique da Silva; Sílvia Lemos Fagundes

    2012-01-01

    As distrofias musculares de Duchenne (DMD) e de Becker (DMB) consistem em distúrbios neuromusculares genéticos de herança autossômica recessiva, ligados ao cromossomo X, incuráveis e progressivos. O papel do profissional fisioterapeuta diante desses agravos ainda se encontra muito segmentário, com opiniões e condutas bastante controversas. Este estudo consiste em uma revisão bibliográfica sobre o tratamento fisioterapêutico das distrofias de Duchenne (DMD) e de Becker (DMB) e pretende evidenc...

  12. Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.

    Science.gov (United States)

    Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E

    2014-10-01

    Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship.

  13. Histopathological Evaluation of Skeletal Muscle with Specific Reference to Mouse Models of Muscular Dystrophy.

    Science.gov (United States)

    Terry, Rebecca L; Wells, Dominic J

    2016-12-01

    The muscular dystrophies are a diverse group of degenerative diseases for which many mouse models are available. These models are frequently used to assess potential therapeutic interventions and histological evaluation of multiple muscles is an important part of this assessment. Histological evaluation is especially useful when combined with tests of muscle function. This unit describes a protocol for necropsy, processing, cryosectioning, and histopathological evaluation of murine skeletal muscles, which is applicable to both models of muscular dystrophy and other neuromuscular conditions. Key histopathological features of dystrophic muscle are discussed using the mdx mouse (a model of Duchenne muscular dystrophy) as an example. Optimal handling during dissection, processing and sectioning is vital to avoid artifacts that can confound or prevent future analyses. Muscles carefully processed using this protocol are suitable for further evaluation using immunohistochemistry, immunofluorescence, special histochemical stains, and immuoblotting. © 2016 by John Wiley & Sons, Inc.

  14. Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy.

    Science.gov (United States)

    Whitehead, Nicholas P

    2016-01-01

    Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy in muscles from the dmd/mdx mouse, a genetic model of Duchenne muscular dystrophy. Statins decrease CYBB/NOX2 expression and activity and stimulate autophagy in skeletal muscle. Therefore, we treated dmd/mdx mice with simvastatin and showed decreased CYBB/NOX2-mediated oxidative stress and enhanced autophagy induction. This was accompanied by reduced muscle damage, inflammation and fibrosis, and increased muscle force production. Our data suggest that increased autophagy may be a potential mechanism by which simvastatin improves skeletal muscle health and function in muscular dystrophy.

  15. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy.

    Science.gov (United States)

    Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H

    2013-09-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.

  16. [7 MHz real-time sonography of the skeletal musculature in Duchenne muscular dystrophy].

    Science.gov (United States)

    Forst, R; Casser, H R

    1985-12-01

    The lumbar paravertebral musculature, the M. quadriceps femoris and M. triceps surae of boys suffering from Duchenne's muscular dystrophy of different clinical progression, were examined via sonography. The sonographic incisions were made at fixed levels. The sonographic findings were compared with those of healthy boys. The sonographic findings showed - depending on the clinical stage of Duchenne's muscular dystrophy - typical reflex patterns of different intensity determined by lipomatosis and fibrosis of the skeletal musculature, correlating with the clinical stage, and hence musclesonography is an important diagnostic element in the observation of the course and in therapy planning in Duchenne's muscular dystrophy. The 7-MHz transducer has an advantage over the low-frequency transducers mostly in use, because the image quality is substantially superior.

  17. Oculopharyngeal muscular dystrophy: a late-onset polyalanine disease.

    Science.gov (United States)

    Brais, B

    2003-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle disease of late onset associated with progressive ptosis of the eyelids, dysphagia, and unique tubulofilamentous intranuclear inclusions (INIs). OPMD is usually transmitted as an autosomal dominant trait (OMIM 164300). A rarer allelic autosomal recessive form has also been observed (OMIM 257950). Both forms are caused by short (GCG)8-13 expansions in the polyadenylate-binding protein nuclear 1 gene (PABPN1) located on chromosome 14q11.1. The mutations cause the lengthening of an N-terminal polyalanine domain. Both slippage and unequal recombination have been proposed as the mutation mechanisms. The size of the mutation has not yet been conclusively shown to inversely correlate with the severity of the phenotype. Mutated PABPN1 proteins have been shown to be constituents of the INIs. The INIs also contain ubiquitin, proteasome subunits, HSP 40, HSP 70, SKIP, and abundant poly(A)-mRNA. The exact mechanism responsible for polyalanine toxicity in OPMD is unknown. Various intranuclear inclusion dependent and independent mechanisms have been proposed based on the major known function of PABPN1 in polyadenylation of mRNA and its shuttling from the nucleus to the cytoplasm. OPMD is one of the few triplet-repeat diseases for which the function of the mutated gene is known. Because of the increasing number of diseases caused by polyalanine expansions and the pathological overlap with CAG/polyglutamine diseases, what pathological insight is gained by the study of OPMD could lead to a better understanding of a much larger group of developmental and degenerative diseases.

  18. Presence of mechanical dyssynchrony in duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Akula Nandakishore

    2011-02-01

    Full Text Available Abstract Background Cardiac dysfunction in boys with Duchenne muscular dystrophy (DMD is a leading cause of death. Cardiac resynchronization therapy (CRT has been shown to dramatically decrease mortality in eligible adult population with congestive heart failure. We hypothesized that mechanical dyssynchrony is present in DMD patients and that cardiovascular magnetic resonance (CMR may predict CRT efficacy. Methods DMD patients (n = 236 were stratified into 4 groups based on age, diagnosis of DMD, left ventricular (LV ejection fraction (EF, and presence of myocardial fibrosis defined as positive late gadolinum enhancement (LGE compared to normal controls (n = 77. Dyssynchrony indices were calculated based on timing of CMR derived circumferential strain (ecc. The calculated indices included cross-correlation delay (XCD, uniformity of strain (US, regional vector of variance (RVV, time to maximum strain (TTMS and standard deviation (SD of TTMS. Abnormal XCD value was defined as > normal + 2SD. US, RVV, TTMS and SD were calculated for patients with abnormal XCD. Results There was overall low prevalence of circumferential dyssynchrony in the entire DMD population; it increased to 17.1% for patients with abnormal EF and to 31.2% in the most advanced stage (abnormal EF with fibrosis. All but one DMD patient with mechanical dyssynchrony exhibited normal QRS duration suggesting absence of electrical dyssynchrony. The calculated US and RVV values (0.91 ± 0.09, 1.34 ± 0.48 indicate disperse rather than clustered dyssynchrony. Conclusion Mechanical dyssynchrony is frequent in boys with end stage DMD-associated cardiac dysfunction. It is associated with normal QRS complex as well as extensive lateral fibrosis. Based on these findings, it is unlikely that this patient population will benefit from CRT.

  19. Left ventricular T2 distribution in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Hagenbuch Sean

    2010-03-01

    Full Text Available Abstract Background Although previous studies have helped define the natural history of Duchenne Muscular Dystrophy (DMD-associated cardiomyopathy, the myocardial pathobiology associated with functional impairment in DMD is not yet known. The objective of this study was to assess the distribution of transverse relaxation time (T2 in the left ventricle (LV of DMD patients, and to determine the association of myocardial T2 heterogeneity to the severity of cardiac dysfunction. DMD patients (n = 26 and normal control subjects (n = 13 were studied by Cardiovascular Magnetic Resonance (CMR. DMD subject data was stratified based on subject age and LV Ejection Fraction (EF into the following groups: A (12 years, n = 5. LV mid-slice circumferential myocardial strain (εcc was calculated using tagged CMR imaging. T2 maps of the LV were generated for all subjects using a black blood dual spin echo method at two echo times. The Full Width at Half Maximum (FWHM was calculated from a histogram of LV T2 distribution constructed for each subject. Results In DMD subject groups, FWHM of the T2 histogram rose progressively with age and decreasing EF (Group A FWHM= 25.3 ± 3.8 ms; Group B FWHM= 30.9 ± 5.3 ms; Group C FWHM= 33.0 ± 6.4 ms. Further, FWHM was significantly higher in those with reduced circumferential strain (|εcc| ≤ 12% (Group B, and C than those with |εcc| > 12% (Group A. Group A FWHM was not different from the two normal groups (N1 FWHM = 25.3 ± 3.5 ms; N2 FWHM= 24.0 ± 7.3 ms. Conclusion Reduced EF and εcc correlates well with increased T2 heterogeneity quantified by FWHM, indicating that subclinical functional impairments could be associated with pre-existing abnormalities in tissue structure in young DMD patients.

  20. Idebenone reduces respiratory complications in patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    McDonald, Craig M; Meier, Thomas; Voit, Thomas; Schara, Ulrike; Straathof, Chiara S M; D'Angelo, M Grazia; Bernert, Günther; Cuisset, Jean-Marie; Finkel, Richard S; Goemans, Nathalie; Rummey, Christian; Leinonen, Mika; Spagnolo, Paolo; Buyse, Gunnar M

    2016-08-01

    In Duchenne muscular dystrophy (DMD), progressive loss of respiratory function leads to restrictive pulmonary disease and places patients at significant risk for severe respiratory complications. Of particular concern are ineffective cough, secretion retention and recurrent respiratory tract infections. In a Phase 3 randomized controlled study (DMD Long-term Idebenone Study, DELOS) in DMD patients 10-18 years of age and not taking concomitant glucocorticoid steroids, idebenone (900 mg/day) reduced significantly the loss of respiratory function over a 1-year study period. In a post-hoc analysis of DELOS we found that more patients in the placebo group compared to the idebenone group experienced bronchopulmonary adverse events (BAEs): placebo: 17 of 33 patients, 28 events; idebenone: 6 of 31 patients, 7 events. The hazard ratios (HR) calculated "by patient" (HR 0.33, p = 0.0187) and for "all BAEs" (HR 0.28, p = 0.0026) indicated a clear idebenone treatment effect. The overall duration of BAEs was 222 days (placebo) vs. 82 days (idebenone). In addition, there was also a difference in the use of systemic antibiotics utilized for the treatment of BAEs. In the placebo group, 13 patients (39.4%) reported 17 episodes of antibiotic use compared to 7 patients (22.6%) reporting 8 episodes of antibiotic use in the idebenone group. Furthermore, patients in the placebo group used systemic antibiotics for longer (105 days) compared to patients in the idebenone group (65 days). This post-hoc analysis of DELOS indicates that the protective effect of idebenone on respiratory function is associated with a reduced risk of bronchopulmonary complications and a reduced need for systemic antibiotics.

  1. Growth and psychomotor development of patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Sarrazin, Elisabeth; von der Hagen, Maja; Schara, Ulrike; von Au, Katja; Kaindl, Angela M

    2014-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common hereditary degenerative neuromuscular diseases and caused by mutations in the dystrophin gene. The objective of the retrospective study was to describe growth and psychomotor development of patients with DMD and to detect a possible genotype-phenotype correlation. Data from 263 patients with DMD (mean age 7.1 years) treated at the Departments of Pediatric Neurology in three German University Hospitals was assessed with respect to body measurements (length, weight, body mass index BMI, head circumference OFC), motor and cognitive development as well as genotype (site of mutation). Anthropometric measures and developmental data were compared to those of a reference population and deviations were analyzed for their frequency in the cohort as well as in relation to the genotypes. Corticosteroid therapy was implemented in 29 from 263 patients. Overall 30% of the patients exhibit a short statue (length development at 2-5 years of age, and this is even more prevalent when steroid therapy is applied (45% of patients with steroid therapy). The BMI shows a rightwards shift (68% > 50th centile) and the OFC a leftwards shift (65% development is delayed in a third of the patients (mean age at walking 18.3 months, 30% > 18 months, 8% > 24 months). Almost half of the patients show cognitive impairment (26% learning disability, 17% intellectual disability). Although there is no strict genotype-phenotype correlation, particularly mutations in the distal part of the dystrophin gene are frequently associated with short stature and a high rate of microcephaly as well as cognitive impairment.

  2. Evaluation of neural damage in Duchenne muscular dystrophy patients.

    Science.gov (United States)

    Salam, Ekram Abdel; Abdel-Meguid, Iman Ehsan; Shatla, Rania; Korraa, Soheir

    2014-05-01

    The presence of non-progressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy (DMD). Concurrently, the amyloid beta peptide (Aβ42) protein has been associated with changes in memory and cognitive functions. Also, it has been shown that different subtypes of neural stem/progenitor cells (CD 34, CD 45, nestin) are involved in the innate repair of plasticity mechanisms by the injured brain, in which Nerve Growth Factor (NGF) acts as chemotactic agents to recruit such cells. Accordingly, the present study investigated levels of CD 34, CD 45, nestin and NGF in an attempt to investigate makers of neural regeneration in DMD. Neural damage was assayed in terms of Aβ42. Results showed that Aβ42 (21.9 ± 6.7 vs. 12.13 ± 4.5) was significantly increased among DMD patients compared to controls. NGF (165.8 ± 72 vs. 89.8 ± 35.9) and mononuclear cells expressing nestin (18.9 ± 6 vs. 9 ± 4), CD 45 (64 ± 5.4 vs. 53.3 ± 5.2) and CD34 (75 ± 6.2 vs. 60 ± 4.8) were significantly increased among DMD patients compared to controls. In conclusion cognitive function decline in DMD patients is associated with increased levels of Aβ42, which is suggested to be the cause of brain damage in such patients. The significant increase plasma NFG and in the number of mononuclear cells bearing CD34, CD45 and nestin indicates that regeneration is an ongoing process in these patients. However, this regeneration cannot counterbalance the damage induced by dystrophine mutation and increased Aβ42.

  3. Immunoproteasome in animal models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Chen, Chiao-Nan Joyce; Graber, Ted G; Bratten, Wendy M; Ferrington, Deborah A; Thompson, LaDora V

    2014-04-01

    Increased proteasome activity has been implicated in the atrophy and deterioration associated with dystrophic muscles of Duchenne muscular dystrophy (DMD). While proteasome inhibitors show promise in the attenuation of muscle degeneration, proteasome inhibition-induced toxicity was a major drawback of this therapeutic strategy. Inhibitors that selectively target the proteasome subtype that is responsible for the loss in muscle mass and quality would reduce side effects and be less toxic. This study examined proteasome activity and subtype populations, along with muscle function, morphology and damage in wild-type (WT) mice and two murine models of DMD, dystrophin-deficient (MDX) and dystrophin- and utrophin-double-knockout (DKO) mice. We found that immunoproteasome content was increased in dystrophic muscles while the total proteasome content was unchanged among the three genotypes of mice. Proteasome proteolytic activity was elevated in dystrophic muscles, especially in DKO mice. These mice also exhibited more severe muscle atrophy than either WT or MDX mice. Muscle damage and regeneration, characterized by the activity of muscle creatine kinase in the blood and the percentage of central nuclei were equally increased in dystrophic mice. Accordingly, the overall muscle function was similarly reduced in both dystrophic mice compared with WT. These data demonstrated that there was transformation of standard proteasomes to immunoproteasomes in dystrophic muscles. In addition, DKO that showed greatest increase in proteasome activities also demonstrated more severe atrophy compared with MDX and WT. These results suggest a putative role for the immunoproteasome in muscle deterioration associated with DMD and provide a potential target for therapeutic intervention.

  4. Genetic Modifiers of Duchenne Muscular Dystrophy and Dilated Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Andrea Barp

    Full Text Available Dilated cardiomyopathy (DCM is a major complication and leading cause of death in Duchenne muscular dystrophy (DMD. DCM onset is variable, suggesting modifier effects of genetic or environmental factors. We aimed to determine if polymorphisms previously associated with age at loss of independent ambulation (LoA in DMD (rs28357094 in the SPP1 promoter, rs10880 and the VTTT/IAAM haplotype in LTBP4 also modify DCM onset.A multicentric cohort of 178 DMD patients was genotyped by TaqMan assays. We performed a time-to-event analysis of DCM onset, with age as time variable, and finding of left ventricular ejection fraction 70 mL/m2 as event (confirmed by a previous normal exam < 12 months prior; DCM-free patients were censored at the age of last echocardiographic follow-up.Patients were followed up to an average age of 15.9 ± 6.7 years. Seventy-one/178 patients developed DCM, and median age at onset was 20.0 years. Glucocorticoid corticosteroid treatment (n = 88 untreated; n = 75 treated; n = 15 unknown did not have a significant independent effect on DCM onset. Cardiological medications were not administered before DCM onset in this population. We observed trends towards a protective effect of the dominant G allele at SPP1 rs28357094 and recessive T allele at LTBP4 rs10880, which was statistically significant in steroid-treated patients for LTBP4 rs10880 (< 50% T/T patients developing DCM during follow-up [n = 13]; median DCM onset 17.6 years for C/C-C/T, log-rank p = 0.027.We report a putative protective effect of DMD genetic modifiers on the development of cardiac complications, that might aid in risk stratification if confirmed in independent cohorts.

  5. A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy.

    Science.gov (United States)

    Hicks, Debbie; Sarkozy, A; Muelas, N; Koehler, K; Huebner, A; Hudson, G; Chinnery, P F; Barresi, R; Eagle, M; Polvikoski, T; Bailey, G; Miller, J; Radunovic, A; Hughes, P J; Roberts, R; Krause, S; Walter, M C; Laval, S H; Straub, V; Lochmüller, H; Bushby, K

    2011-01-01

    The limb-girdle muscular dystrophies are a group of disorders with wide genetic and clinical heterogeneity. Recently, mutations in the ANO5 gene, which encodes a putative calcium-activated chloride channel belonging to the Anoctamin family of proteins, were identified in five families with one of two previously identified disorders, limb-girdle muscular dystrophy 2L and non-dysferlin Miyoshi muscular dystrophy. We screened a candidate group of 64 patients from 59 British and German kindreds and found the truncating mutation, c.191dupA in exon 5 of ANO5 in 20 patients, homozygously in 15 and in compound heterozygosity with other ANO5 variants in the rest. An intragenic single nucleotide polymorphism and an extragenic microsatellite marker are in linkage disequilibrium with the mutation, suggesting a founder effect in the Northern European population. We have further defined the clinical phenotype of ANO5-associated muscular dystrophy. Patients show adult onset proximal lower limb weakness with highly raised serum creatine kinase values (average 4500 IU/l) and frequent muscle atrophy and asymmetry of muscle involvement. Onset varies from the early 20 s to 50 s and the weakness is generally slowly progressive, with most patients remaining ambulant for several decades. Distal presentation is much less common but a milder degree of distal lower limb weakness is often observed. Upper limb strength is only mildly affected and cardiac and respiratory function is normal. Females appear less frequently affected. In the North of England population we have identified eight patients with ANO5 mutations, suggesting a minimum prevalence of 0.27/100,000, twice as common as dysferlinopathy. We suggest that mutations in ANO5 represent a relatively common cause of adult onset muscular dystrophy with high serum creatine kinase and that mutation screening, particularly of the common mutation c.191dupA, should be an early step in the diagnostic algorithm of adult limb-girdle muscular

  6. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2013-01-01

    Full Text Available Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.

  7. δ-Sarcoglycan-deficient muscular dystrophy: from discovery to therapeutic approaches

    Directory of Open Access Journals (Sweden)

    Blain Alison M

    2011-03-01

    Full Text Available Abstract Mutations in the δ-sarcoglycan gene cause limb-girdle muscular dystrophy 2F (LGMD2F, an autosomal recessive disease that causes progressive weakness and wasting of the proximal limb muscles and often has cardiac involvement. Here we review the clinical implications of LGMD2F and discuss the current understanding of the putative mechanisms underlying its pathogenesis. Preclinical research has benefited enormously from various animal models of δ-sarcoglycan deficiency, which have helped researchers to explore therapeutic approaches for both muscular dystrophy and cardiomyopathy.

  8. Rocuronium as muscle relaxant for electroconvulsive therapy in a patient with adult-onset muscular dystrophy.

    Science.gov (United States)

    Bryson, Ethan O; Aloysi, Amy S; Katz, Maya; Popeo, Dennis; Kellner, Charles H

    2011-12-01

    Adult-onset muscular dystrophy is an inherited myopathy characterized by a variable degree of progressive muscle weakness and degeneration. Although not usually fatal, significant muscle weakness results in an up-regulation of acetylcholine receptors on the less responsive postjunctional muscles. The resulting profound potassium release when these receptors are stimulated by the depolarizing muscle relaxant succinylcholine can result in potentially fatal cardiac arrhythmias. We report a case of electroconvulsive therapy safely administered in a 61-year-old man with adult-onset muscular dystrophy requiring muscle relaxation with rocuronium.

  9. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy.

    Science.gov (United States)

    Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali

    2015-12-01

    Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.

  10. Nutritional muscular dystrophy in a four-day-old Connemara foal

    Directory of Open Access Journals (Sweden)

    Katz LM

    2009-02-01

    Full Text Available Abstract This report describes a four-day-old, full-term Connemara colt, presented for the evaluation of a progressive inability to rise unassisted. A diagnosis of nutritional muscular dystrophy was made based on muscular weakness, elevated muscle enzymes and low vitamin E, selenium and glutathione peroxidase activity. The foal was treated with intramuscular vitamin E-selenium and made a full recovery.

  11. Clinical analysis of 155 patients with Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Qi BING

    2015-05-01

    Full Text Available Objective To investigate the clinical manifestations and laboratory examinations of Duchenne muscular dystrophy (DMD patients and evaluate the principle of intermittent intravenous combined with oral glucocorticoid therapy.  Methods The clinical features, laboratory examinations andfollow-up data of 155 DMD patients were collected. These patients were given dexamethasone 5-10 mg/d by intravenous infusion for 10-15 d and oral prednisone acetate 0.50-0.75 mg/(kg·d for one month. After treatment, the motor ability of lower limbs, the level of serum creatine kinase (CK and 99mTc-MIBI gated myocardial perfusion imaging (GMPI findings were compared with those before glucocorticoid therapy by statistical analysis.  Results 1 The motor ability was improved in 70 follow-up cases of DMD patients with long-term oral prednisone (squat and rise: Z = 207.000, P = 0.034; climbing stairs: Z = 237.000, P =0.008. 2 The level of serum CK of 155 first diagnosed patients reached the peak at 3 years old, and declined after the age of 8 (P < 0.05, for all. The serum CK of 70 follow-up cases was significantly decreased after 10-15 d dexamethasone intravenous infusion (P = 0.000, and increased again after one-month oral administration of prednisone acetate (P = 0.000, but was still lower than that before treatment (P = 0.008. 3 The 99mTc-MIBI GMPI of 77 patients showed different degrees of myocardial involvement and significantly uneven left ventricular radionuclide distribution, especially in apex cordis (55 cases, inferior wall (45 cases and anterior wall (30 cases of apex. Conclusions There exists increased level of serum CK in the sub⁃clinical stage of DMD. The level of serum CK declined year by year after the age of 8. Intermittent intravenous combined with oral glucocorticoid therapy has an important effect on protecting motor and cardiac functions, extending walking time and reducing serum CK level and muscle cell damage. Early glucocorticoid therapy is

  12. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy.

    Science.gov (United States)

    Wood, A J; Currie, P D

    2014-11-01

    The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss

  13. Na+ Dysregulation Coupled with Ca2+ Entry through NCX1 Promotes Muscular Dystrophy in Mice

    Science.gov (United States)

    Burr, Adam R.; Millay, Douglas P.; Goonasekera, Sanjeewa A.; Park, Ki Ho; Sargent, Michelle A.; Collins, James; Altamirano, Francisco; Philipson, Kenneth D.; Allen, Paul D.; Ma, Jianjie; López, José Rafael

    2014-01-01

    Unregulated Ca2+ entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na+-Ca2+ exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd−/−), Dysf−/−, and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd−/− mice. Measured increases in baseline Na+ and Ca2+ in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca2+ influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca2+ levels. Indeed, Atp1a2+/− (encoding Na+-K+ ATPase α2) mice, which have reduced Na+ clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na+-K+ ATPase inhibitor digoxin. Treatment of Sgcd−/− mice with ranolazine, a broadly acting Na+ channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology. PMID:24662047

  14. An examination of some factors influencing creatine kinase in the blood of patients with muscular dystrophy.

    Science.gov (United States)

    Jackson, M J; Round, J M; Newham, D J; Edwards, R H

    1987-01-01

    The natural variability of plasma creatine kinase activity has been examined in patients suffering from muscular dystrophy and in normal subjects. The coefficient of variation of the plasma creatine kinase activities was found to be large (approximately 35%) in both patients with Duchenne muscular dystrophy and normal control subjects. A comparison of the plasma activities of creatine kinase with other muscle-derived enzymes suggests that the cause of this variability is changes in the release of enzymes from muscle. Data obtained concerning the effect of physical activity on plasma creatine kinase activity are contradictory, but several young patients with Duchenne muscular dystrophy and a very high creatine kinase activity (greater than 5000 IU/liter) showed a decreased activity following admission to hospital. An estimate of the rate of efflux of certain kinase from muscle has been made, indicating that young ambulant patients with Duchenne muscular dystrophy have a grossly elevated muscle creatine kinase efflux (495.0 +/- 61.3 IU/kg muscle/hr) compared to control subjects (1.4 +/- 0.5 IU/kg muscle/hr).

  15. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene

    DEFF Research Database (Denmark)

    Xu, H; Wu, X R; Wewer, U M;

    1994-01-01

    The classic murine muscular dystrophy strain, dy, was first described almost 40 years ago. We have identified the molecular basis of an allele of dy, called dy2J, by detecting a mutation in the laminin alpha 2 chain gene--the first identified mutation in laminin-2. The G to A mutation in a splice...

  16. Refinement of antisense oligonucleotide mediated exon skipping as therapy for Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Heemskerk, Johannes Antonius

    2011-01-01

    In recent years, modulation of mRNA has emerged as a promising therapeutic tool. For instance, in the field of neuromuscular disorders therapeutic strategies are being developed for several diseases, including antisense oligonucleotide (AON) mediated exon skipping for Duchenne Muscular Dystrophy (DM

  17. Major histocompatibility complex and inflammatory cell subtype expression in inflammatory myopathies and muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Madhu Nagappa

    2013-01-01

    Full Text Available Background: In inflammatory myopathies muscle biopsy is a crucial diagnostic test. Misinterpretation between inflammatory myopathies and muscular dystrophies with inflammation is known. Materials and Methods: Thirty-one patients clinically and pathologically diagnosed to have polymyositis and dermatomyositis and 16 patients of muscular dystrophy with inflammation were studied for MHC-I, MHC-II, CD4 and CD8 expression in skeletal muscle tissue. Results: MHC-I upregulation was noted in all samples of PM and DM. Interstitial and perivascular inflammation in PM were predominantly CD8+ cells, in dermatomyositis, interstitial and perimysial perivascular inflammatory cells were CD4+ T cells and CD8+ T cells were seen around endomysial vessels. Interestingly MHC-I upregulation was seen in all 16 cases of muscular dystrophy with presence of inflammation. Conclusion: The pattern of MHC-I and II expression appeared to be similar in both inflammatory myopathies as well as in muscular dystrophies with inflammation and hence differentiating them on MHC - I expression was difficult.

  18. The influence of low dystrophin levels on disease pathology in mouse models for Duchenne Muscular Dystrophy

    NARCIS (Netherlands)

    Putten, Maaike van

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disorder, caused by mutations in the DMD gene that prevent synthesis of dystrophin. Fibers that lack dystrophin are sensitive to exercise-induced damage, resulting in progressive muscle wasting, loss of ambulation and premature de

  19. DNA damage, somatic aneuploidy, and malignant sarcoma susceptibility in muscular dystrophies.

    Science.gov (United States)

    Schmidt, Wolfgang M; Uddin, Mohammed H; Dysek, Sandra; Moser-Thier, Karin; Pirker, Christine; Höger, Harald; Ambros, Inge M; Ambros, Peter F; Berger, Walter; Bittner, Reginald E

    2011-04-01

    Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD-pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD-gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases.

  20. What's in a name? The clinical features of facioscapulohumeral muscular dystrophy

    NARCIS (Netherlands)

    Mul, K.; Lassche, S.; Voermans, N.C.; Padberg, G.W.; Horlings, G.C.; Engelen, B.G.M. van

    2016-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an inherited and progressive muscle disorder. Although its name suggests otherwise, it comprises weakness of the facial, shoulder and upper arm muscles, and also of the trunk and leg muscles. Its severity and disease course vary greatly and mild or ea

  1. Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E

    DEFF Research Database (Denmark)

    Semplicini, Claudio; Vissing, John; Dahlqvist, Julia R

    2015-01-01

    OBJECTIVE: To determine the clinical spectrum of limb-girdle muscular dystrophy 2E (LGMD2E) and to investigate whether genetic or biochemical features can predict the phenotype of the disease. METHODS: All LGMD2E patients followed in participating centers were included. A specific clinical protocol...

  2. Swallowing difficulties in Duchenne muscular dystrophy: indications for feeding assessment and outcome of videofluroscopic swallow studies

    DEFF Research Database (Denmark)

    Aloysius, A.; Born, P.; Kinali, M.

    2008-01-01

    Feeding difficulties are known to occur with advancing age in Duchenne muscular dystrophy (DMD). We evaluated the role of videofluoroscopy swallow study (VFSS) in a group of 30 DMD patients with feeding difficulties. Indications for feeding assessment were: respiratory infections potentially...

  3. Understanding the muscular dystrophy caused by deletion of choline kinase beta in mice.

    Science.gov (United States)

    Wu, Gengshu; Sher, Roger B; Cox, Gregory A; Vance, Dennis E

    2009-05-01

    Choline kinase in mice is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneously occurring genomic deletion in murine Chkb results in neonatal bone deformity and hindlimb muscular dystrophy. We have investigated the mechanism by which a lack of choline kinase beta, encoded by Chkb, causes hindlimb muscular dystrophy. The biosynthesis of phosphatidylcholine (PC) is impaired in the hindlimbs of Chkb -/- mice, with an accumulation of choline and decreased amount of phosphocholine. The activity of CTP: phosphocholine cytidylyltransferase is also decreased in the hindlimb muscle of mutant mice. Concomitantly, the activities of PC phospholipase C and phospholipase A2 are increased. The mitochondria in Chkb -/- mice are abnormally large and exhibit decreased inner membrane potential. Despite the muscular dystrophy in Chkb -/- mice, we observed increased expression of insulin like growth factor 1 and proliferating cell nuclear antigen. However, regeneration of hindlimb muscles of Chkb -/- mice was impaired when challenged with cardiotoxin. Injection of CDP-choline increased PC content of hindlimb muscle and decreased creatine kinase activity in plasma of Chkb -/- mice. We conclude that the hindlimb muscular dystrophy in Chkb -/- mice is due to attenuated PC biosynthesis and enhanced catabolism of PC.

  4. Improving the Reading Skills of Young People with Duchenne Muscular Dystrophy in Preparation for Adulthood

    Science.gov (United States)

    Hoskin, Janet; Fawcett, Angela

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a progressive genetic condition that affects both muscle and brain. Children with DMD are at risk of psycho-social difficulties such as poor academic achievement and behavioural and socio-emotional problems. This article by Janet Hoskin and Angela Fawcett, both from the University of Swansea, describes how 34…

  5. Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities

    NARCIS (Netherlands)

    vanderKnaap, MS; Smit, LME; Barth, PG; CatsmanBerrevoets, CE; Brouwer, OF; Begeer, JH; deCoo, IFM; Valk, J.

    1997-01-01

    A survey was performed of magnetic resonance imaging (MRI) findings in 21 patients with congenital muscular dystrophy (QID) with cerebral abnormalities to evaluate the contribution of MRI to the classification of CMD patients. In 5 patients with Walker-Warburg syndrome (WWS), MRI showed hydrocephalu

  6. Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models

    DEFF Research Database (Denmark)

    Kuang, W; Xu, H; Vachon, P H;

    1998-01-01

    Humans and mice with deficiency of the alpha2 subunit of the basement membrane protein laminin-2/merosin suffer from merosin-deficient congenital muscular dystrophy (MCMD). We have expressed a human laminin alpha2 chain transgene under the regulation of a muscle-specific creatine kinase promoter ...

  7. Prednisone 10 days on/10 days off in patients with Duchenne muscular dystrophy.

    NARCIS (Netherlands)

    Straathof, C.S.; Overweg-Plandsoen, W.C.; Burg, G.J. van den; Kooi, A.J. van der; Verschuuren, J.J.; Groot, I.J.M. de

    2009-01-01

    Corticosteroids are effective in improving motor function in Duchenne muscular dystrophy (DMD) patients within 6 months-2 years of treatment initiation, but there is as yet no consensus on which treatment scheme is the best. We retrospectively analyzed data of 35 DMD patients who were treated with p

  8. Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy

    NARCIS (Netherlands)

    Baker, NL; Morgelin, M; Peat, R; Goemans, N; North, KN; Bateman, JF; Lamande, [No Value

    2005-01-01

    Mutations in the three collagen VI genes COL6A1, COL6A2 and COL6A3 cause Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). UCMD, a severe disorder characterized by congenital muscle weakness, proximal joint contractures and marked distal joint hyperextensibility, has been considered

  9. Prevalence and psychosocial impact of lower urinary tract symptoms in patients with Duchenne muscular dystrophy.

    NARCIS (Netherlands)

    Wijk, H.A.R.; Messelink, B.J.; Heijnen, L.; Groot, I.J.M. de

    2009-01-01

    Patients with Duchenne muscular dystrophy (DMD) frequently report lower urinary tract symptoms at the outpatient rehabilitation clinic. The purpose of this study was to determine the prevalence of lower urinary tract symptoms in the Dutch male DMD population and their effect on quality of life. A po

  10. BIRTH AND POPULATION PREVALENCE OF DUCHENNE MUSCULAR-DYSTROPHY IN THE NETHERLANDS

    NARCIS (Netherlands)

    VANESSEN, AJ; BUSCH, HFM; TEMEERMAN, GJ; TENKATE, LP

    1992-01-01

    Mutations causing Duchenne muscular dystrophy (DMD) have a short survival. Therefore, birth and population prevalence are maintained by new mutations. The present inventory was made to estimate the birth and population prevalence rates of DMD in the Netherlands. Seven methods of case identification

  11. Prevalence and psychosocial impact of lower urinary tract symptoms in patients with Duchenne muscular dystrophy

    NARCIS (Netherlands)

    van Wijk, Evaline; Messelink, Bert J.; Heijnen, Lily; de Groot, Imelda J. M.

    2009-01-01

    Patients with Duchenne muscular dystrophy (DMD) frequently report lower urinary tract symptoms at the outpatient rehabilitation clinic. The purpose of this study was to determine the prevalence of lower urinary tract symptoms in the Dutch male DMD population and their effect on quality of life. A po

  12. Dystrophin gene mutation location and the risk of cognitive impairment in Duchenne muscular dystrophy.

    NARCIS (Netherlands)

    Taylor, P.J.; Betts, G.A.; Maroulis, S.; Gilissen, C.F.H.A.; Pedersen, R.L.; Mowat, D.R.; Johnston, H.M.; Buckley, M.F.

    2010-01-01

    BACKGROUND: A significant component of the variation in cognitive disability that is observed in Duchenne muscular dystrophy (DMD) is known to be under genetic regulation. In this study we report correlations between standardised measures of intelligence and mutational class, mutation size, mutation

  13. Zebrafish models flex their muscles to shed light on muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Joachim Berger

    2012-11-01

    Full Text Available Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  14. DNA damage, somatic aneuploidy, and malignant sarcoma susceptibility in muscular dystrophies.

    Directory of Open Access Journals (Sweden)

    Wolfgang M Schmidt

    2011-04-01

    Full Text Available Albeit genetically highly heterogeneous, muscular dystrophies (MDs share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD-pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD-gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1, amplification of oncogenes (Met, Jun, recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases.

  15. A novel gamma-sarcoglycan mutation causing childhood onset, slowly progressive limb girdle muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, AJ; de Visser, M; van Meegen, M; Ginjaar, HB; van Essen, AJ; Jennekens, FGI; Jongen, PJH; Leschot, NJ; Bolhuis, PA

    1998-01-01

    Limb girdle muscular dystrophy is a heterogeneous group of disorders. One autosomal recessive subtype, LGMD2C, has been linked to chromosome 13, and is caused by gamma-sarcoglycan deficiency in muscle. This report describes a novel missense mutation identified in a large consanguineous Dutch family

  16. Limb-girdle muscular dystrophy in the Netherlands: gene defect identified in half the families.

    NARCIS (Netherlands)

    Kooi, A.J. van der; Frankhuizen, W.S.; Barth, P.G.; Howeler, C.J.; Padberg, G.W.A.M.; Spaans, F.; Wintzen, A.R.; Wokke, J.H.J.; Ommen, G.J.B. van

    2007-01-01

    Pheno- and genotype correlation is attempted in a Dutch cross-sectional study on limb- girdle muscular dystrophy. Sarcoglycans, caveolin-3, calpain-3, and dysferlin were analyzed on muscle tissue. Mutation analysis of the calpain-3, caveolin-3, and fukutin-related protein gene was executed in succes

  17. Gait propulsion in patients with facioscapulohumeral muscular dystrophy and ankle plantarflexor weakness

    NARCIS (Netherlands)

    Rijken, N.H.M.; Engelen, B.G.M. van; Rooy, J.W.J. de; Weerdesteyn, V.G.M.; Geurts, A.C.H.

    2015-01-01

    Facioscapulohumeral muscular dystrophy is a slowly progressive hereditary disorder resulting in fatty infiltration of eventually most skeletal muscles. Weakness of trunk and leg muscles causes problems with postural balance and gait, and is associated with an increased fall risk. Although drop foot

  18. Noninvasive evaluation of respiratory muscles in pre-clinical model of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Daniela M. Oliveira

    2016-04-01

    Full Text Available Abstract Since respiratory insufficiency is the main cause of death in patients affected by Duchenne Muscular Dystrophy (DMD, the present study aims at establishing a new non-invasive method to evaluate the clinical parameters of respiratory conditions of experimental models affected by DMD. With this purpose in mind, we evaluated the cardiorespiratory clinical conditions, the changes in the intercostal muscles, the diaphragmatic mobility, and the respiratory cycles in Golden Retriever Muscular Dystrophy (GRMD employing ultrasonography (US. A control group consisting of dogs of the same race, but not affected by muscular dystrophy, were used in this study. The results showed that inspiration, expiration and plateau movements (diaphragm mobility were lower in the affected group. Plateau phase in the affected group was practically non-existent and showed that the diaphragm remained in constant motion. Respiratory rate reached 15.5 per minute for affected group and 26.93 per minute for the control group. Expiration and inspiration movements of intercostal muscles reached 8.99mm and 8.79mm, respectively, for control group and 7.42mm and 7.40mm, respectively, for affected group. Methodology used in the present analysis proved to be viable for the follow-up and evaluation of the respiratory model in GRMD and may be adapted to other muscular dystrophy experimental models.

  19. Pregnancy and delivery in Leyden-Möbius muscular dystrophy. Case Report.

    Science.gov (United States)

    Vavrinkova, Blanka; Binder, Tomas

    2015-01-01

    Leyden-Möbius muscular dystrophy is an autosomal recessive hereditary disease of unknown aetiology; it is a congenital disorder of protein metabolism primarily affecting proximal muscle groups leading to progressive muscular dystrophy. It later spreads to the muscles of the pelvic floor and lower extremities. The estimated incidence is 1:200,000. This paper describe a case of pregnancy and delivery in woman with progressive Leyden-Moebius muscular dystrophy. Cesarean section was performed due to progression of the underlying disease. First postoperative day DIC occure and surgical revision of abdominal cavity was performed. Although the uterine suture was strong, diffuse bleeding was present. Blood was not coagulating. Supravaginal amputation of the uterus was performed including left-sided adnexectomy due to bleeding from the left ovarium. Due to the severity of the condition and assumed necessity of long-term controlled ventilation, the patient was transferred to the intensive medicine department. She was dismissed home after 91 days of hospitalisation. Gravidity in advanced muscular dystrophy is rare and associated with a high risk. Due to muscle weakness, diaphragm weakness, atrophy of individual muscle groups, spine deformities and often dislocation of thoracic organs, these patients cannot avoid the caesarean section to end their pregnancy, followed by prolonged intubation and controlled ventilation. During pregnancy, the growing uterus elevates the diaphragm and impairs breathing. Therefore, pregnancies in such patients will probably always have to be ended prematurely.

  20. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  1. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    Science.gov (United States)

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  2. Specific sequence variations within the 4q35 region are associated with facioscapulohumeral muscular dystrophy.

    NARCIS (Netherlands)

    Lemmers, R.J.L.F.; Wohlgemuth, M.; Gaag, K.J. van der; Vliet, P. van der; Teijlingen, C.M. van; Knijff, P. de; Padberg, G.W.A.M.; Frants, R.R.; Maarel, S.M. van der

    2007-01-01

    Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is mainly characterized by progressive wasting and weakness of the facial, shoulder, and upper-arm muscles. FSHD is caused by contraction of the macrosatellite repeat D4Z4 on chromosome 4q35. The D4Z4 repeat is very polymorphic in leng

  3. Attenuated muscle regeneration is a key factor in dysferlin-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Chiu, Yen-Hui; Hornsey, Mark A; Klinge, Lars

    2009-01-01

    Skeletal muscle requires an efficient and active membrane repair system to overcome the rigours of frequent contraction. Dysferlin is a component of that system and absence of dysferlin causes muscular dystrophy (dysferlinopathy) characterized by adult onset muscle weakness, high serum creatine...

  4. Variable hypomethylation of D4Z4 in facioscapulohumeral muscular dystrophy.

    NARCIS (Netherlands)

    Overveld, P.G; Enthoven, L.; Ricci, E.; Rossi, M.; Felicetti, L.; Jeanpierre, M.; Winokur, S.T.; Frants, R.R.; Padberg, G.W.A.M.; Maarel, S.M. van der

    2005-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) progressively affects the facial, shoulder, and upper arm muscles and is associated with contractions of the polymorphic D4Z4 repeat array in 4q35. Recently, we demonstrated that FSHD alleles are hypomethylated at D4Z4. To study potential relationships b

  5. Recurrent somatic mosaicism for D4Z4 contractions in a family with facioscapulohumeral muscular dystrophy.

    NARCIS (Netherlands)

    Buzhov, B.T.; Lemmers, R.J.L.F.; Tournev, I.; Wielen, M.J.R. van der; Ishpekova, B.; Petkov, R.; Petrova, J.; Frants, R.R.; Padberg, G.W.A.M.; Maarel, S.M. van der

    2005-01-01

    Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat on 4q35. We describe a FSHD family of unusual genetic complexity presenting with two independent mitotic contractions of D4Z4 in two successive generations. In addition, a non-pathogenic FSHD

  6. Psycho-organic symptoms as early manifestation of adult onset POMT1-related limb girdle muscular dystrophy.

    Science.gov (United States)

    Haberlova, J; Mitrović, Z; Zarković, K; Lovrić, D; Barić, V; Berlengi, L; Bilić, K; Fumić, K; Kranz, K; Huebner, A; von der Hagen, M; Barresi, R; Bushby, K; Straub, V; Barić, I; Lochmüller, H

    2014-11-01

    We report two siblings of Croatian consanguineous healthy parents with a novel homozygous missense mutation in the POMT1 gene, presenting with intellectual disability and psychotic, in particular hallucinatory symptoms and abnormal brain MRIs, preceding classical symptoms of limb-girdle muscular dystrophy by several years. Weakness became apparent in early adulthood and both siblings remained ambulant into the 3rd and 4th decade of life. The muscle biopsy showed reduced α-dystroglycan compatible with the POMT1 defect. This case report extends the phenotypic spectrum of POMT1 associated muscular dystrophies to the adult onset limb girdle muscular dystrophies with psycho-organic deficits.

  7. A NEW APPROACH TO GENE DIAGNOSIS OF DUCHENNE/BECKER MUSCULAR DYSTROPHY AMPLIFIED FRAGMENT LENGTH POLYMORPHISMS

    Institute of Scientific and Technical Information of China (English)

    许顺斌; 黄尚志; 罗会元

    1994-01-01

    Four (CA), repeats, located in introns,44,45,49 and 50 of the dystrophin gene,were evaluated in Chinese.These loci are highly polymorphic,with polymorphism information contents of 0.872,0.772,0.870 and 0.718,respectively.All four loci can be easily amplified and labelled using two duplex PCR reactions with α-32P-dCTP and can be detected by denaturing polyacrylamide gel electrophoresis.Using these four loci and the two polymorphic(CA)n repeats located at the 5′ and 3′ ends of the dystrophin gene,we have developed a new PCR-based procedure-Amp-FLP( amplified fragment length polymorphism)linkage analysis for the gene diagnosis of DMD/BMD.This method can detect intragenic recombination rapidly and efficiently and greatly improves the success rate of carrier deterction and prenatal diagnosis in non-deletion DMD/BMD families.All of the loci used in this procedure are intragenic.In addition ,the loci in introns 44,45,49 and 50 are located in the deletion-prone region of the dystrophin gene,making them valuable and usefui in the identification of deletion mutations.Here we report one case of deletion detection using these four loci.

  8. Body weight-supported training in Becker and limb girdle 2I muscular dystrophy

    DEFF Research Database (Denmark)

    Jensen, Bente R; Berthelsen, Martin P; Husu, Edith;

    2016-01-01

    (walk/run, jogging in place or high knee-lift) training 3 times/week in a lower-body positive pressure environment. Closed-kinetic-chain leg muscle strength, isometric knee strength, rate of force development (RFD), and reaction time were evaluated. RESULTS: Baseline data indicated an intact neural...... activation pattern but showed compromised muscle contractile properties. Training (compliance 91%) improved functional leg muscle strength. Squat series performance increased 30%, calf raises 45%, and lunges 23%. CONCLUSIONS: Anti-gravity training improved closed-kinetic-chain leg muscle strength despite...... no changes in isometric knee extension strength and absolute RFD. The improved closed-kinetic-chain performance may relate to neural adaptation involving motor learning and/or improved muscle strength of other muscles than the weak knee extensors. Muscle Nerve 54: 239-243, 2016....

  9. Non-operative treatment for perforated gastro-duodenal peptic ulcer in Duchenne Muscular Dystrophy: a case report

    Directory of Open Access Journals (Sweden)

    Wever Jan

    2004-01-01

    Full Text Available Abstract Background Clinical characteristics and complications of Duchenne muscular dystrophy caused by skeletal and cardiac muscle degeneration are well known. Gastro-intestinal involvement has also been recognised in these patients. However an acute perforated gastro-duodenal peptic ulcer has not been documented up to now. Case presentation A 26-year-old male with Duchenne muscular dystrophy with a clinical and radiographic diagnosis of acute perforated gastro-duodenal peptic ulcer is treated non-operatively with naso-gastric suction and intravenous medication. Gastrointestinal involvement in Duchenne muscular dystrophy and therapeutic considerations in a high risk patient are discussed. Conclusion Non-surgical treatment for perforated gastro-duodenal peptic ulcer should be considered in high risk patients, as is the case in patients with Duchenne muscular dystrophy. Patients must be carefully observed and operated on if non-operative treatment is unsuccessful.

  10. Severe paraspinal muscle involvement in facioscapulohumeral muscular dystrophy

    DEFF Research Database (Denmark)

    Dahlqvist, Julia R; Vissing, Christoffer R; Thomsen, Carsten;

    2014-01-01

    OBJECTIVE: In this study, involvement of paraspinal muscles in 50 patients with facioscapulohumeral dystrophy (FSHD) was evaluated using MRI. METHODS: The Dixon MRI technique was used in this observational study to quantify muscle fat content of paraspinal and leg muscles. Muscle strength in the ...

  11. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy

    OpenAIRE

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of exten...

  12. Increased resting energy expenditure in subjects with Emery-Dreifuss muscular dystrophy.

    Science.gov (United States)

    Vaisman, N; Katzenellenbogen, S; Nevo, Y

    2004-02-01

    We have studied changes in energy expenditure and body composition in adult males with Emery-Dreifuss muscular dystrophy, age-matched males with hyperCKemia and age-matched healthy controls. All participants were studied twice, 2-3 years apart. Resting energy expenditure was studied by indirect calorimetry, lean body mass and body fat by dual X-ray absorptiometry, and muscle mass was estimated based on 24-h urinary creatinine excretion. At baseline and 2-3 years later, body fat was significantly higher (P energy expenditure, over the study period, increased significantly in patients with Emery-Dreifuss muscular dystrophy (P energy expenditure relative to healthy subjects. If not met by increased caloric intake, this greater energy expenditure may partially contribute to a further deterioration in their muscle performance.

  13. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    Science.gov (United States)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  14. Nutraceuticals and Their Potential to Treat Duchenne Muscular Dystrophy: Separating the Credible from the Conjecture.

    Science.gov (United States)

    Woodman, Keryn G; Coles, Chantal A; Lamandé, Shireen R; White, Jason D

    2016-11-09

    In recent years, complementary and alternative medicine has become increasingly popular. This trend has not escaped the Duchenne Muscular Dystrophy community with one study showing that 80% of caregivers have provided their Duchenne patients with complementary and alternative medicine in conjunction with their traditional treatments. These statistics are concerning given that many supplements are taken based on purely "anecdotal" evidence. Many nutraceuticals are thought to have anti-inflammatory or anti-oxidant effects. Given that dystrophic pathology is exacerbated by inflammation and oxidative stress these nutraceuticals could have some therapeutic benefit for Duchenne Muscular Dystrophy (DMD). This review gathers and evaluates the peer-reviewed scientific studies that have used nutraceuticals in clinical or pre-clinical trials for DMD and thus separates the credible from the conjecture.

  15. Nutraceuticals and Their Potential to Treat Duchenne Muscular Dystrophy: Separating the Credible from the Conjecture

    Directory of Open Access Journals (Sweden)

    Keryn G. Woodman

    2016-11-01

    Full Text Available In recent years, complementary and alternative medicine has become increasingly popular. This trend has not escaped the Duchenne Muscular Dystrophy community with one study showing that 80% of caregivers have provided their Duchenne patients with complementary and alternative medicine in conjunction with their traditional treatments. These statistics are concerning given that many supplements are taken based on purely “anecdotal” evidence. Many nutraceuticals are thought to have anti-inflammatory or anti-oxidant effects. Given that dystrophic pathology is exacerbated by inflammation and oxidative stress these nutraceuticals could have some therapeutic benefit for Duchenne Muscular Dystrophy (DMD. This review gathers and evaluates the peer-reviewed scientific studies that have used nutraceuticals in clinical or pre-clinical trials for DMD and thus separates the credible from the conjecture.

  16. [Anesthetic management of a pediatric patient with non-Fukuyama type congenital muscular dystrophy].

    Science.gov (United States)

    O'Higashi, T; Kato, S; Shirakami, G; Hirota, K; Suzuki, S; Sasai, S

    1997-01-01

    Non-Fukuyama type congenital muscular dystrophy (n-FCMD), a subtype of progressive muscular dystrophy (PMD), is a very rare autosomal recessive disorder. N-FCMD is characterized by severe and progressive motor weakness and atrophies of proximal muscles during the infant period. A 9-year-old boy with n-FCMD underwent elective surgery for muscle release around the hip joints bilaterally. As many perioperative complications related with volatile anesthetics and muscle relaxants had been reported in the anesthetic management of PMD, these drugs were thought to be contraindicated in patients with n-FCMD. Because n-FCMD seemed to have very similar pathogenesis with PMD, caudal epidural block was chosen, supplemented with the administration of diazepam, pentazocine and nitrous oxide. The operation and anesthesia were conducted uneventfully. No complications occurred postoperatively.

  17. Protein-carbohydrate supplements improve muscle protein balance in muscular dystrophy patients after endurance exercise

    DEFF Research Database (Denmark)

    Andersen, Grete; Ørngreen, Mette C; Preisler, Nicolai

    2015-01-01

    In healthy individuals, postexercise protein supplementation increases muscle protein anabolism. In patients with muscular dystrophies, aerobic exercise improves muscle function, but the effect of exercise on muscle protein balance is unknown. Therefore, we investigated 1) muscle protein balance...... before, during, and after exercise and 2) the effect of postexercise protein-carbohydrate supplementation on muscle protein balance in patients with muscular dystrophies. In 17 patients [7 women and 10 men, aged 33 ± 11 yr (18-52), body mass index: 22 ± 3 kg/m(2) (16-26)] and 8 healthy matched controls...... [3 women and 5 men, age 33 ± 13 years (19-54), body mass index: 23 ± 3 kg/m(2) (19-27)], muscle protein synthesis, breakdown, and fractional synthesis rates (FSR) were measured across the leg using tracer dilution methodology on two occasions, with and without oral postexercise protein...

  18. The experiences of patients with Duchenne muscular dystrophy in facing and learning about their clinical conditions

    Directory of Open Access Journals (Sweden)

    Haruo Fujino

    2016-10-01

    Full Text Available Patients experience extreme difficulty when facing an intractable genetic disease. Herein, we examine the experiences of patients with Duchenne muscular dystrophy in facing and learning about their disease. A total of seven patients with Duchenne muscular dystrophy (age range: 20–48 participated. We conducted in-depth interviews with them about how they learned of their disease and how their feelings regarding the disease changed over time. Transcribed data were analysed using thematic analysis. The following themes emerged from this analysis: “experiences before receiving the diagnosis,” “experiences when they learned of their condition and progression of the disease,” “supports,” and “desired explanations.” Anxiety and worry were most pronounced when they had to transition to using wheelchairs or respirators due to disease progression; indeed, such transitions affect the patients psychological adjustment. In such times, support from significant others in their lives helped patients adjust.

  19. Limb-girdle type muscular dystrophy%肢带型肌营养不良症

    Institute of Scientific and Technical Information of China (English)

    赵重波

    2006-01-01

    @@ 肌营养不良症(muscular dystrophy,MD)是一组与遗传有关的肌纤维变性和坏死疾病,主要临床特征为进行性肌肉无力和萎缩.一般为临床医生所熟知的是Duchenne/Becker型MD、面肩肱型MD、眼咽肌型MD,但在实践过程中常会碰到不符合上述类型的以肩胛带和骨盆带肌不同程度无力或萎缩为主要特点的MD,多笼统称为肢带型肌营养不良症(limb-girdle muscular dystrophy,LGMD).

  20. Limb girdle muscular dystrophy type 2L presenting as necrotizing myopathy.

    Science.gov (United States)

    Schneider, Ilka; Stoltenburg, Gisela; Deschauer, Marcus; Winterholler, Martin; Hanisch, Frank

    2014-05-01

    Recessive mutations in the ANO5 gene, encoding anoctamin 5, cause proximal limb girdle muscular dystrophy (LGMD2L), Miyoshi-type distal myopathy (MM3) and asymptomatic hyper- CKemia. We report a woman with exertion-induced myalgia and weakness in the hip girdle manifesting at the age of 40. Creatine kinase (CK) was increased 20-fold. Histologically the dominating feature was necrotizing myopathy, but long-term immunosuppressive therapy did not change CK level or myopathic symptoms. Molecular genetic investigation led to the finding of the homozygous ANO5 c.191dupA mutation. This is a report of a muscular dystrophy due to ANO5 mutation presenting histologically as necrotizing myopathy. For this reason our finding extends the histological spectrum of myopathies due to ANO5 mutations as well as the possible differential diagnoses for necrotizing myopathy.

  1. Importance of Skin Changes in the Differential Diagnosis of Congenital Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Uluç Yis

    2016-01-01

    Full Text Available Megaconial congenital muscular dystrophy (OMIM 602541 is characterized with early-onset hypotonia, muscle wasting, proximal weakness, cardiomyopathy, mildly elevated serum creatine kinase (CK levels, and mild-to-moderate intellectual disability. We report two siblings in a consanguineous family admitted for psychomotor delay. Physical examination revealed proximal muscle weakness, contractures in the knee of elder sibling, diffuse mild generalized muscle atrophy, and dry skin with ichthyosis together with multiple nummular eczema in both siblings. Serum CK values were elevated up to 500 U/L. For genetic work-up, we performed whole exome sequencing (WES after Nimblegen enrichment on the Illumina platform. The WES revealed a novel homozygous missense mutation in the Choline Kinase-Beta (CHKB gene c.1031G>A (p.R344Q in exon 9. Ichthyosis-like skin changes with intense pruritus and nummular eczema may lead to clinical diagnosis in cases with megaconial congenital muscular dystrophy.

  2. Phenotypic contrasts of Duchenne Muscular Dystrophy in women: Two case reports

    Directory of Open Access Journals (Sweden)

    Karen T. Nozoe

    2016-07-01

    Full Text Available We discussed two cases of symptomatic female carriers to Duchenne Muscular Dystrophy. The first case is a 20 year-old girl with classical phenotypic manifestation of the disease, similar to the condition in boys. The case 2 is a 62 year-old woman with progressive muscular weakness. The disease is much less common in woman than men so both cases described here are considered rare forms of the disease, with several clinical implications. In both cases, a progressive muscle weakness, impairment in walking and sleeping was observed, in addition to obstructive sleep apnea syndrome and alveolar hypoventilation, that required noninvasive ventilatory support.

  3. Novel LMNA mutations in patients with Emery-Dreifuss muscular dystrophy and functional characterization of four LMNA mutations

    OpenAIRE

    Scharner, Juergen; Brown, Charlotte A; Bower, Matthew; Iannaccone, Susan T.; Khatri, Ismail A.; Escolar, Diana; Gordon, Erynn; Felice, Kevin; Crowe, Carol A; Grosmann, Carla; Meriggioli, Matthew N.; Asamoah, Alexander; Gordon, Ora; Gnocchi, Viola F.; Ellis, Juliet A.

    2011-01-01

    Abstract Mutations in LMNA cause a variety of diseases affecting striated muscle including autosomal-Emery-Dreifuss muscular dystrophy (EDMD), LMNA-associated congenital muscular dystrophy (L-CMD) and limb-girdle muscular dystrophy type 1B (LGMD1B). Here, we describe novel and recurrent LMNA mutations identified in 50 patients from the USA and Canada, which is the first report of the distribution of LMNA mutations from a large cohort outside Europe. This augments the number of LMNA...

  4. Homozygotes for oculopharyngeal muscular dystrophy have a severe form of the disease.

    Science.gov (United States)

    Blumen, S C; Brais, B; Korczyn, A D; Medinsky, S; Chapman, J; Asherov, A; Nisipeanu, P; Codère, F; Bouchard, J P; Fardeau, M; Tomé, F M; Rouleau, G A

    1999-07-01

    Autosomal dominant oculopharyngeal muscular dystrophy (OPMD) usually begins with ptosis or dysphagia during the fifth or sixth decade of life. We studied 7 patients with OPMD symptoms starting before the age of 36 years. All were found to be homozygotes for the dominant (GCG)9 OPMD mutation. On average, disease onset was 18 years earlier than in heterozygotes, and patients had a significantly larger number of muscle nuclei containing intranuclear inclusions (INIs) (9.4 vs 4.9%).

  5. Initial Pulmonary Respiration Causes Massive Diaphragm Damage and Hyper-CKemia in Duchenne Muscular Dystrophy Dog

    OpenAIRE

    2013-01-01

    The molecular mechanism of muscle degeneration in a lethal muscle disorder Duchene muscular dystrophy (DMD) has not been fully elucidated. The dystrophic dog, a model of DMD, shows a high mortality rate with a marked increase in serum creatine kinase (CK) levels in the neonatal period. By measuring serum CK levels in cord and venous blood, we found initial pulmonary respiration resulted in massive diaphragm damage in the neonates and thereby lead to the high serum CK levels. Furthermore, mole...

  6. Expression of dystrophin-glycoprotein complex at the skeletal muscle sarcolemma in Duchenne muscular dystrophy

    OpenAIRE

    Zhao, Lei; Chao-ping HU; Wang, Yi; Shui-zhen ZHOU; Shi, Yi-Yun; Xi-hua LI

    2015-01-01

    Background  Eccentric exercise or high tension exercise could cause damage to skeletal muscle structure, resulting in deficiency of dystrophin and secondary loss of dystrophin-glycoprotein complex (DGC) from the sarcolemma, which indicated that down-regulation of dystrophin was one of the key points of skeletal muscle injury from eccentric exercise. Duchenne muscular dystrophy (DMD) is caused by mutations of DMD gene, resulting in the absence of dystrophin, which means that skeletal muscles o...

  7. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies.

    Science.gov (United States)

    Cirak, Sebahattin; Foley, Aileen Reghan; Herrmann, Ralf; Willer, Tobias; Yau, Shu; Stevens, Elizabeth; Torelli, Silvia; Brodd, Lina; Kamynina, Alisa; Vondracek, Petr; Roper, Helen; Longman, Cheryl; Korinthenberg, Rudolf; Marrosu, Gianni; Nürnberg, Peter; Michele, Daniel E; Plagnol, Vincent; Hurles, Matt; Moore, Steven A; Sewry, Caroline A; Campbell, Kevin P; Voit, Thomas; Muntoni, Francesco

    2013-01-01

    Dystroglycanopathies are a clinically and genetically diverse group of recessively inherited conditions ranging from the most severe of the congenital muscular dystrophies, Walker-Warburg syndrome, to mild forms of adult-onset limb-girdle muscular dystrophy. Their hallmark is a reduction in the functional glycosylation of α-dystroglycan, which can be detected in muscle biopsies. An important part of this glycosylation is a unique O-mannosylation, essential for the interaction of α-dystroglycan with extracellular matrix proteins such as laminin-α2. Mutations in eight genes coding for proteins in the glycosylation pathway are responsible for ∼50% of dystroglycanopathy cases. Despite multiple efforts using traditional positional cloning, the causative genes for unsolved dystroglycanopathy cases have escaped discovery for several years. In a recent collaborative study, we discovered that loss-of-function recessive mutations in a novel gene, called isoprenoid synthase domain containing (ISPD), are a relatively common cause of Walker-Warburg syndrome. In this article, we report the involvement of the ISPD gene in milder dystroglycanopathy phenotypes ranging from congenital muscular dystrophy to limb-girdle muscular dystrophy and identified allelic ISPD variants in nine cases belonging to seven families. In two ambulant cases, there was evidence of structural brain involvement, whereas in seven, the clinical manifestation was restricted to a dystrophic skeletal muscle phenotype. Although the function of ISPD in mammals is not yet known, mutations in this gene clearly lead to a reduction in the functional glycosylation of α-dystroglycan, which not only causes the severe Walker-Warburg syndrome but is also a common cause of the milder forms of dystroglycanopathy.

  8. Cardioembolic stroke prompting diagnosis of LMNA-associated Emery-Dreifuss muscular dystrophy.

    Science.gov (United States)

    Redondo-Vergé, Luis; Yaou, Rabah Ben; Fernández-Recio, María; Dinca, Luminita; Richard, Pascale; Bonne, Gisèle

    2011-10-01

    The diagnosis of Emery-Dreifuss muscular dystrophy (EDMD) is suggested by the combination of musculoskeletal weakness and wasting, joint contractures, and cardiac disease. Herein we report a patient in whom an ischemic stroke prompted the diagnosis of EDMD. A mutation in the LMNA gene (c.266G>T, p.Arg89Leu) was found. It had been reported previously exclusively with isolated cardiac disease, thus reinforcing the high phenotypic heterogeneity of laminopathies.

  9. The effect of mazindol on growth hormone secretion in boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Coakley, J H; Moorcraft, J; Hipkin, L J; Smith, C S; Griffiths, R D; Edwards, R H

    1988-12-01

    Mazindol has been reported to improve muscle function in Duchenne muscular dystrophy (DMD) by virtue of its growth hormone (GH) suppression. The effects were studied on GH secretion (in response to growth hormone releasing factor and sleep) of mazindol 2 mg daily for 3 months in five boys with DMD. No consistent change was found following mazindol therapy. Adverse effects were noted in all the boys which may preclude long term use of mazindol in DMD.

  10. The effect of mazindol on growth hormone secretion in boys with Duchenne muscular dystrophy.

    OpenAIRE

    Coakley, J. H.; Moorcraft, J; Hipkin, L J; Smith, C. S.; R.D. Griffiths; Edwards, R H

    1988-01-01

    Mazindol has been reported to improve muscle function in Duchenne muscular dystrophy (DMD) by virtue of its growth hormone (GH) suppression. The effects were studied on GH secretion (in response to growth hormone releasing factor and sleep) of mazindol 2 mg daily for 3 months in five boys with DMD. No consistent change was found following mazindol therapy. Adverse effects were noted in all the boys which may preclude long term use of mazindol in DMD.

  11. Progress and prospects of gene therapy clinical trials for the muscular dystrophies.

    Science.gov (United States)

    Bengtsson, Niclas E; Seto, Jane T; Hall, John K; Chamberlain, Jeffrey S; Odom, Guy L

    2016-04-15

    Clinical trials represent a critical avenue for new treatment development, where early phases (I, I/II) are designed to test safety and effectiveness of new therapeutics or diagnostic indicators. A number of recent advances have spurred renewed optimism toward initiating clinical trials and developing refined therapies for the muscular dystrophies (MD's) and other myogenic disorders. MD's encompass a heterogeneous group of degenerative disorders often characterized by progressive muscle weakness and fragility. Many of these diseases result from mutations in genes encoding proteins of the dystrophin-glycoprotein complex (DGC). The most common and severe form among children is Duchenne muscular dystrophy, caused by mutations in the dystrophin gene, with an average life expectancy around 25 years of age. Another group of MD's referred to as the limb-girdle muscular dystrophies (LGMDs) can affect boys or girls, with different types caused by mutations in different genes. Mutation of the α-sarcoglycan gene, also a DGC component, causes LGMD2D and represents the most common form of LGMD. Early preclinical and clinical trial findings support the feasibility of gene therapy via recombinant adeno-associated viral vectors as a viable treatment approach for many MDs. In this mini-review, we present an overview of recent progress in clinical gene therapy trials of the MD's and touch upon promising preclinical advances.

  12. MRI for the demonstration of subclinical muscle involvement in muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Sookhoo, S. [Department of Neuroradiology, Newcastle upon Tyne (United Kingdom); MacKinnon, I. [Department of Neuroradiology, Newcastle upon Tyne (United Kingdom); Bushby, K. [Department of Clinical Genetics, International Centre for Life, Newcastle upon Tyne (United Kingdom); Chinnery, P.F. [Department of Neurology, Regional Neurosciences Centre, Newcastle upon Tyne (United Kingdom); Birchall, D. [Department of Neuroradiology, Newcastle upon Tyne (United Kingdom)]. E-mail: daniel.birchall@nuth.nhs.uk

    2007-02-15

    Aim: To compare magnetic resonance imaging (MRI) with clinical examination for the detection of muscle abnormality in patients with muscular dystrophy. Methods: Muscle power in 20 patients with a variety of forms of muscular dystrophy was examined clinically using the Medical Research Council (MRC) grading scale, and patients were subsequently imaged with MRI. MRI and clinical examination for the detection of muscle normality and abnormality were compared using a McNemar chi-squared test to examine differences between the two methods. Results: MRI demonstrated radiological evidence of muscle abnormality more often than clinical examination; 50% of movements assessed as normal on clinical examination were associated with muscle abnormalities on MRI, including a significant proportion where there was severe radiological abnormality, indicating that focally advanced disease may be undetectable clinically. Conclusion: The combination of clinical examination and MRI could improve the accuracy of phenotypic characterization of patients with muscular dystrophy, and this in turn could allow a more focussed molecular analysis through muscle biopsy or genetic investigation. This may also be very helpful in the assessment of the degree of muscle compromise not only in the early phases of the disease but especially during follow-up and can be used in therapeutic trials.

  13. Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions.

    Science.gov (United States)

    Berry, Suzanne E

    2015-01-01

    Mesenchymal stem cells (MSCs) and mesoangioblasts (MABs) are multipotent cells that differentiate into specialized cells of mesodermal origin, including skeletal muscle cells. Because of their potential to differentiate into the skeletal muscle lineage, these multipotent cells have been tested for their capacity to participate in regeneration of damaged skeletal muscle in animal models of muscular dystrophy. MSCs and MABs infiltrate dystrophic muscle from the circulation, engraft into host fibers, and bring with them proteins that replace the functions of those missing or truncated. The potential for systemic delivery of these cells increases the feasibility of stem cell therapy for the large numbers of affected skeletal muscles in patients with muscular dystrophy. The present review focused on the results of preclinical studies with MSCs and MABs in animal models of muscular dystrophy. The goals of the present report were to (a) summarize recent results, (b) compare the efficacy of MSCs and MABs derived from different tissues in restoration of protein expression and/or improvement in muscle function, and (c) discuss future directions for translating these discoveries to the clinic. In addition, although systemic delivery of MABs and MSCs is of great importance for reaching dystrophic muscles, the potential concerns related to this method of stem cell transplantation are discussed.

  14. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Barresi Rita

    2011-06-01

    Full Text Available Abstract Muscular dystrophies are a large heterogeneous group of inherited diseases that cause progressive muscle weakness and permanent muscle damage. Very few muscular dystrophies show sufficient specific clinical features to allow a definite diagnosis. Because of the currently limited capacity to screen for numerous genes simultaneously, muscle biopsy is a time and cost-effective test for many of these disorders. Protein analysis interpreted in correlation with the clinical phenotype is a useful way of directing genetic testing in many types of muscular dystrophies. Immunohistochemistry and western blot are complementary techniques used to gather quantitative and qualitative information on the expression of proteins involved in this group of diseases. Immunoanalysis has a major diagnostic application mostly in recessive conditions where the absence of labelling for a particular protein is likely to indicate a defect in that gene. However, abnormalities in protein expression can vary from absence to very subtle reduction. It is good practice to test muscle biopsies with antibodies for several proteins simultaneously and to interpret the results in context. Indeed, there is a degree of direct or functional association between many of these proteins that is reflected by the presence of specific secondary abnormalities that are of value, especially when the diagnosis is not straightforward.

  15. Congenital muscular dystrophy: case report and review of the literature

    OpenAIRE

    2010-01-01

    Las distrofias musculares congénitas son entidades con herencia autosómica recesiva. Se clasifican en las que comprometen el sistema nervioso central y las que no lo hacen (forma clásica). Este último grupo se subdivide en distrofias sin déficit de merosina y con déficit de merosina.Se reporta el caso de un paciente con hipotonía grave, contracturas articulares y compromiso de la sustancia blanca del sistema nervioso central. Se considera el diagnóstico de distrofia muscular congénita con pos...

  16. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Jessica R. Terrill

    2016-10-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl. There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys.

  17. Deleciones en el gen de la distrofina en 62 familias colombianas: correlación genotipo-fenotipo para la distrofia muscular de Duchenne y Becker.

    Directory of Open Access Journals (Sweden)

    Claudia T. Silva

    2009-11-01

    Full Text Available INTRODUCCIÓN: La correlación genotipo-fenotipo se estableció mediante el análisis de deleciones del gen de la distrofina en pacientes con distrofia muscular de Duchenne y Becker (DMD/DMB. OBJETIVOS: Establecer la correlación entre el genotipo molecular y el fenotipo clínico de los pacientes. MATERIALES Y MÉTODOS: Se analizaron 62 afectados mediante amplificaciones por PCR múltiplex de 18 exones ubicados en los dos puntos proclives dentro del gen. RESULTADOS: En la población analizada, 19 pacientes mostraron deleción en el gen de la distrofina con los 18 exones estudiados, esto corresponde a 31% de hombres afectados con deleción. CONCLUSIONES: Teniendo en cuenta la hipótesis del corrimiento del marco de lectura traduccional (CMLT y la mutación observada en los afectados, se pudo determinar que las mutaciones out frame, resultan en pacientes con el fenotipo severo o distrofia muscular de Duchenne y las mutaciones in frame, resultan en pacientes con el fenotipo leve o distrofia muscular de Becker. Se pudo predecir un cuadro clínico de DMD o DMB en 79% de los casos, lo cual permite utilizar este sistema diagnóstico como una herramienta importante para ayudarle a los neurólogos en la valoración clínica de los pacientes en los cuales se encuentra deleciones.

  18. Toward fully automated genotyping: Allele assignment, pedigree construction, phase determination, and recombination detection in Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, M.W.; Burks, M.B. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Hoop, R.C.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, PA (United States)

    1994-10-01

    Human genetic maps have made quantum leaps in the past few years, because of the characterization of >2,000 CA dinucleotide repeat loci: these PCR-based markers offer extraordinarily high PIC, and within the next year their density is expected to reach intervals of a few centimorgans per marker. These new genetic maps open new avenues for disease gene research, including large-scale genotyping for both simple and complex disease loci. However, the allele patterns of many dinucleotide repeat loci can be complex and difficult to interpret, with genotyping errors a recognized problem. Furthermore, the possibility of genotyping individuals at hundreds or thousands of polymorphic loci requires improvements in data handling and analysis. The automation of genotyping and analysis of computer-derived haplotypes would remove many of the barriers preventing optimal use of dense and informative dinucleotide genetic maps. Toward this end, we have automated the allele identification, genotyping, phase determinations, and inheritance consistency checks generated by four CA repeats within the 2.5-Mbp, 10-cM X-linked dystrophin gene, using fluorescein-labeled multiplexed PCR products analyzed on automated sequencers. The described algorithms can deconvolute and resolve closely spaced alleles, despite interfering stutter noise; set phase in females; propagate the phase through the family; and identify recombination events. We show the implementation of these algorithms for the completely automated interpretation of allele data and risk assessment for five Duchenne/Becker muscular dystrophy families. The described approach can be scaled up to perform genome-based analyses with hundreds or thousands of CA-repeat loci, using multiple fluorophors on automated sequencers. 16 refs., 5 figs., 1 tab.

  19. Diagnosis delay of Duchenne Muscular Dystrophy Demora no diagnóstico da Distrofia Muscular de Duchenne

    Directory of Open Access Journals (Sweden)

    Alexandra Prufer de Queiroz Campos Araújo

    2004-06-01

    Full Text Available OBJECTIVES: to study the clinical features of Duchenne Muscular Dystrophy with emphasis on diagnosis delay. METHODS: an observational descriptive retrospective study was performed using medical records of patients with diagnosis of Duchenne Muscular Dystrophy given in the period from 1989 to 2000 at the neuropediatric out-patient clinic of a University Hospital. RESULTS: immunohistochemical results or deletion on the dystrophin gene confirmed the diagnosis of the 78 boys included in this study. Parents had noticed the first symptoms since the median age of two years. The final diagnosis was reached at a median age of seven. CONCLUSIONS: diagnosis age is closer to the age of ambulation loss than that of the first symptoms. There is a marked delay for the diagnosis of this disease in our setting.OBJETIVOS: estudar as características clínicas da Distrofia Muscular de Duchenne, com especial enfoque no tempo decorrido para o diagnóstico. MÉTODOS: realizou-se um estudo observacional descritivo e retrospectivo de pacientes com diagnóstico de distrofia muscular atendidos nos ambulatórios de neuropediatria de um Hospital Universitário no período de 1989 a 2000. RESULTADOS: foram incluídos 78 meninos com confirmação diagnóstica por imunohistoquímica ou deleção no gene da distrofina. A idade mediana da percepção dos primeiros sintomas pela família foi de dois anos e a idade mediana do diagnóstico definitivo de sete anos. CONCLUSÕES: a época do diagnóstico se aproxima mais da idade da perda da marcha do que do início dos sintomas. É grande a demora para o diagnóstico desta doença em nosso meio.

  20. P2RX7 Purinoceptor::a therapeutic target for ameliorating the symptoms of Duchenne muscular dystrophy

    OpenAIRE

    2015-01-01

    Editors' Summary Background Muscular dystrophies are inherited diseases in which the body’s muscles gradually weaken and waste away. The most common and severe muscular dystrophy—Duchenne muscular dystrophy (DMD)—also includes cognitive (thinking) and behavioral impairments and low bone density as well as chronic inflammation. DMD affects about 1 in 3,500 boys; girls can be carriers of DMD but rarely have any symptoms. At birth, boys who carry a mutation (genetic change) in the gene that make...

  1. Deleciones en el gen de la distrofina en 62 familias colombianas: correlación genotipo-fenotipo para la distrofia muscular de Duchenne y Becker

    OpenAIRE

    Silva, Claudia T.; Dora Fonseca; Carlos Martín Restrepo; Nora C. Contreras; Mateus, Heidi E

    2004-01-01

    INTRODUCCIÓN: La correlación genotipo-fenotipo se estableció mediante el análisis de deleciones del gen de la distrofina en pacientes con distrofia muscular de Duchenne y Becker (DMD/DMB). OBJETIVOS: Establecer la correlación entre el genotipo molecular y el fenotipo clínico de los pacientes. MATERIALES Y MÉTODOS: Se analizaron 62 afectados mediante amplificaciones por PCR múltiplex de 18 exones ubicados en los dos puntos proclives dentro del gen. RESULTADOS: En la población analizada, 19 p...

  2. Short stature in Duchenne muscular dystrophy: a study of 34 patients.

    Science.gov (United States)

    Nagel, B H; Mortier, W; Elmlinger, M; Wollmann, H A; Schmitt, K; Ranke, M B

    1999-01-01

    In Duchenne muscular dystrophy (DMD), short stature is a feature of unknown cause. This cross-sectional study of 34 male patients (mean age 8.0 y, age range 1.2-13.7 y) was conducted to examine the relationship between auxological parameters, markers of growth and the extent of muscular weakness. Weight and length at birth (SDS +/- SD; 0.0 +/- 1.2; 0.2 +/- 1.5) and target height SDS (-0.2 +/- 0.7) were normal. Height (HT) SDS (-1.0 +/- 1.1) was lower than the normal population (p Growth hormone deficiency does not seem to be the cause of short stature in DMD. Significantly low BAP levels are probably the result of the reduced muscle mass, which leads to a lower biomechanical load on the bone and thus a reduction in bone turnover. The short stature observed in our study is unlikely to be the result of muscular weakness.

  3. Muscular myopathies other than myotonic dystrophy also associated with (CTG n expansion at the DMPK locus

    Directory of Open Access Journals (Sweden)

    Vasavi Mohan

    2012-01-01

    Full Text Available Objective: Assess triplet repeat expansion (CTG n at the ′dystrophia-myotonica protein kinase′ (DMPK locus in muscular myopathies to elucidate its role in myopathic symptoms and enable genetic counseling and prenatal diagnosis in families. Methods and Results: Individuals with symptoms of myopathy, hypotonia and controls selected randomly from the population were evaluated for triplet repeat expansion of (CTG n repeats in the 3′untranslated region (UTR of DMPK gene, the causative mutation in myotonic dystrophy (DM. DNA was isolated from peripheral blood of 40 individuals; they presented symptoms of muscle myopathy ( n = 11, muscle hypotonia ( n = 4, members of their families ( n = 5 and control individuals from random population ( n = 20. Molecular analysis of genomic DNA by polymerase chain reaction (PCR using primers specific for the DMPK gene encompassing the triplet repeat expansion, showed that all controls ( n = 20 gave a 2.1 kb band indicating normal triplet repeat number. Three out of 11 cases (two clinically diagnosed DM and one muscular dystrophy had an expansion of the (CTG n repeat in the range of 1000-2100 repeats corresponding to the repeat number in cases of severe DM. Other two of these 11 cases, showed a mild expansion of ~ 66 repeats. Three samples, which included two cases of hypotonia and the father of a subject with muscular dystrophy, also gave a similar repeat expansion (~66 repeats. Conclusion: Results suggest a role of (CTG n expansion at the DMPK locus in unexplained hypotonias and muscular myopathies other than DM. This calls for screening of the triplet repeat expansion at the DMPK locus in cases of idiopathic myopathies and hypotonia.

  4. A sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual fibers in samples from patients with duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Chantal Beekman

    Full Text Available Duchenne muscular dystrophy (DMD is characterized by the absence or reduced levels of dystrophin expression on the inner surface of the sarcolemmal membrane of muscle fibers. Clinical development of therapeutic approaches aiming to increase dystrophin levels requires sensitive and reproducible measurement of differences in dystrophin expression in muscle biopsies of treated patients with DMD. This, however, poses a technical challenge due to intra- and inter-donor variance in the occurrence of revertant fibers and low trace dystrophin expression throughout the biopsies. We have developed an immunofluorescence and semi-automated image analysis method that measures the sarcolemmal dystrophin intensity per individual fiber for the entire fiber population in a muscle biopsy. Cross-sections of muscle co-stained for dystrophin and spectrin have been imaged by confocal microscopy, and image analysis was performed using Definiens software. Dystrophin intensity has been measured in the sarcolemmal mask of spectrin for each individual muscle fiber and multiple membrane intensity parameters (mean, maximum, quantiles per fiber were calculated. A histogram can depict the distribution of dystrophin intensities for the fiber population in the biopsy. This method was tested by measuring dystrophin in DMD, Becker muscular dystrophy, and healthy muscle samples. Analysis of duplicate or quadruplicate sections of DMD biopsies on the same or multiple days, by different operators, or using different antibodies, was shown to be objective and reproducible (inter-assay precision, CV 2-17% and intra-assay precision, CV 2-10%. Moreover, the method was sufficiently sensitive to detect consistently small differences in dystrophin between two biopsies from a patient with DMD before and after treatment with an investigational compound.

  5. Abnormal polyamine metabolism in hereditary muscular dystrophies: effect of human growth hormone.

    Science.gov (United States)

    Rudman, D; Kutner, M H; Chawla, R K; Goldsmith, M A

    1980-01-01

    Previous studies showed hyperre-sponsiveness to human growth hormone (hGH) in men with myotonic or limb girdle dystrophies (MMD or LGD). Because polyamines may mediate some actions of hGH, we have now investigated polyamine metabolism in these and other dystrophies. Under metabolic balance study conditions, serum and urine levels of putrescine (Pu), spermidine (Sd), spermine (Sm), and cadaverine (Cd) were measured in six normal men (36-44 yr), four men with MMD (38-44 yr), and three men with LGD (30-36 yr), before and during treatment with 0.532 U/kg body wt ((3/4)/d) of hGH. Daily balances of N, P, and K were also monitored. In the normal subjects, hGH did not influence elemental balances or serum and urine polyamines. In MMD, hGH caused significant retention of N, P, and K (P muscular dystrophy, age 8-13, did not differ from those in five age-matched normal boys. Skeletal muscle polyamines were measured in five men (31-40 yr) without muscle disease and in three men with LGD (30-38 yr). Average concentrations of Pu, Sd, Sm, and Cd were 46, 306, 548, and 61 nmol/g wet wt in LGD and 1, 121, 245, and 14 in the normal subjects, respectively (P muscular dystrophy and in age- and sex-matched normal controls. Pu, Sd, Sm, and Cd levels were two to three times higher than normal in muscle, but did not differ in liver, kidney, and brain. Similar findings were made in male hamsters with hereditary dystrophy and in their controls. The abnormality in hamster muscle polyamines appeared between 1 and 6 wk of age and persisted or intensified until 30 wk. These data reveal abnormalities of polyamine metabolism in men with MMD, in men with LGD, and in mice or hamsters with hereditary muscular dystrophy. The polyamine disorder could be related to dystrophic patients' hyperresponsiveness to hGH.

  6. Limb-girdle muscular dystrophy 1F is caused by a microdeletion in the transportin 3 gene.

    Science.gov (United States)

    Melià, Maria J; Kubota, Akatsuki; Ortolano, Saida; Vílchez, Juan J; Gámez, Josep; Tanji, Kurenai; Bonilla, Eduardo; Palenzuela, Lluís; Fernández-Cadenas, Israel; Pristoupilová, Anna; García-Arumí, Elena; Andreu, Antoni L; Navarro, Carmen; Hirano, Michio; Martí, Ramon

    2013-05-01

    In 2001, we reported linkage of an autosomal dominant form of limb-girdle muscular dystrophy, limb-girdle muscular dystrophy 1F, to chromosome 7q32.1-32.2, but the identity of the mutant gene was elusive. Here, using a whole genome sequencing strategy, we identified the causative mutation of limb-girdle muscular dystrophy 1F, a heterozygous single nucleotide deletion (c.2771del) in the termination codon of transportin 3 (TNPO3). This gene is situated within the chromosomal region linked to the disease and encodes a nuclear membrane protein belonging to the importin beta family. TNPO3 transports serine/arginine-rich proteins into the nucleus, and has been identified as a key factor in the HIV-import process into the nucleus. The mutation is predicted to generate a 15-amino acid extension of the C-terminus of the protein, segregates with the clinical phenotype, and is absent in genomic sequence databases and a set of >200 control alleles. In skeletal muscle of affected individuals, expression of the mutant messenger RNA and histological abnormalities of nuclei and TNPO3 indicate altered TNPO3 function. Our results demonstrate that the TNPO3 mutation is the cause of limb-girdle muscular dystrophy 1F, expand our knowledge of the molecular basis of muscular dystrophies and bolster the importance of defects of nuclear envelope proteins as causes of inherited myopathies.

  7. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    Science.gov (United States)

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D.

  8. Preliminary diffusion tensor imaging studies in limb-girdle muscular dystrophies

    Science.gov (United States)

    Hidalgo-Tobon, S.; Hernandez-Salazar, G.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodriguez, A. O.; Delgado-Hernandez, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. This type of dystrophy involves the shoulder and pelvic girdles, distinct phenotypic or clinical characteristics are recognized. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee. USA), using a combination of two eight-channel coil array. Diffusion Tensor Imaging (DTI) data were acquired using a SE-EPI sequence, diffusion weighted gradients were applied along 30 non-collinear directions with a b-value=550 s/mm2. The connective tissue content does not appear to have a significant effect on the directionality of the diffusion, as assessed by fractional anisotropy. The fibers of the Sartorius muscle and gracilis showed decreased number of tracts, secondary to fatty infiltration and replacement of connective tissue and muscle mass loss characteristic of the underlying pathology. Our results demonstrated the utility of non-invasive MRI techniques to characterize the muscle pathology, through quantitative and qualitative methods such as the FA values and tractrography.

  9. A new mutation of the fukutin gene causing late-onset limb girdle muscular dystrophy.

    Science.gov (United States)

    Riisager, M; Duno, M; Hansen, F Juul; Krag, T O; Vissing, C R; Vissing, J

    2013-07-01

    Defects in glycosylations of α-dystroglycan are associated with mutations in several genes, including the fukutin gene (FKTN). Hypoglycosylation of α-dystroglycan results in several forms of muscular dystrophy with variable phenotype. Outside Japan, the prevalence of muscular dystrophies related to aberrations of FKTN is rare, with only eight reported cases of limb girdle phenotype (LGMD2M). We describe the mildest affected patient outside Japan with genetically confirmed LGMD2M and onset of symptoms at age 14. She was brought to medical attention at age 12, not because of muscle weakness, but due to episodes of tachycardia caused by Wolff-Parkinson-White syndrome. On examination, she had rigid spine syndrome, a typical limb girdle dystrophy pattern of muscle weakness, cardiomyopathy, and serum CK levels >2000 IU/L (normal G; p.Y306C mutation in the FKTN gene was found. The case confirms FKTN mutations as a cause of LGMD2M without mental retardation and expands the phenotypic spectrum for LGMD2M to include cardiomyopathy and rigid spine syndrome in the mildest affected non-Japanese patient reported so far.

  10. The nitric oxide-donor molsidomine modulates the innate inflammatory response in a mouse model of muscular dystrophy.

    Science.gov (United States)

    Zordan, Paola; Sciorati, Clara; Campana, Lara; Cottone, Lucia; Clementi, Emilio; Querini, Patrizia-Rovere; Brunelli, Silvia

    2013-09-05

    Inflammation plays a crucial role in muscle remodeling and repair after acute and chronic damage, in particular in muscular dystrophies, a heterogeneous group of genetic diseases leading to muscular degeneration. Defect of nitric oxide (NO) generation is a key pathogenic event in muscular dystrophies, thus NO donors have been explored as new therapeutics for this disease. We have investigated the immune-modulating effect of one of such drugs, molsidomine, able to slow the progression of muscular dystrophy in the α-Sarcoglican-null mice, a model for the limb girdle muscular dystrophy 2D, sharing several hallmarks of muscle degeneration with other muscular dystrophies. α-Sarcoglican-null mice were treated with molsidomine and drug effects on the inflammatory infiltrates and on muscle repair were assessed at selected time points. We found that molsidomine treatment modulates effectively the characteristics of the inflammatory infiltrate within dystrophic muscles, enhancing its healing function. Initially molsidomine amplified macrophage recruitment, promoting a more efficient clearance of cell debris and effective tissue regeneration. At a later stage molsidomine decreased significantly the extent of the inflammatory infiltrate, whose persistence exacerbates muscle damage: most of the remaining macrophages displayed characteristics of the transitional population, associated with reduced fibrosis and increased preservation of the muscle tissue. The dual action of molsidomine, the already known NO donation and the immunomodulatory function we now identified, suggests that it has a unique potential in tissue healing during chronic muscle damage. This, alongside its already approved use in human, makes molsidomine a drug with a significant therapeutic potential in muscular dystrophies.

  11. Tratamento da distrofia muscular progressiva com lactato de sódio Treatment of progressive muscular dystrophy with sodium lactate

    Directory of Open Access Journals (Sweden)

    José Antonio Levy

    1969-12-01

    Full Text Available Com base em trabalhos anteriores, 13 casos de distrofia muscular progressiva foram tratados com lactato de sódio 1/6 molar associado a ATP e complexo B. O exame da força muscular, realizado antes e após o tratamento — salvo em dois casos nos quais ocorreram melhoras muito discretas — não mostrou qualquer efeito favorável da medicação. Os autores sugerem a verificação de possíveis alterações enzimáticas provocadas pelo lactato de sódio, o que serviria para melhor avaliação do efeito terapêutico.Thirteen cases of progressive muscular dystrophy were treated with 1/6 M. sodium lactate plus ATP and B complex. Examinations of muscle strength, before and after the treatment, did not show any favourable effects, except in two of the cases which showed slight improvement. The authors suggest that possible enzimatic alterations caused by the sodium lactate be checked up on, since this checking could be employed in the evaluation of the therapeutic effects.

  12. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Thibaut Larcher

    Full Text Available A few animal models of Duchenne muscular dystrophy (DMD are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  13. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  14. Muscle Quantitative MR Imaging and Clustering Analysis in Patients with Facioscapulohumeral Muscular Dystrophy Type 1.

    Directory of Open Access Journals (Sweden)

    Emilie Lareau-Trudel

    Full Text Available Facioscapulohumeral muscular dystrophy type 1 (FSHD1 is the third most common inherited muscular dystrophy. Considering the highly variable clinical expression and the slow disease progression, sensitive outcome measures would be of interest.Using muscle MRI, we assessed muscular fatty infiltration in the lower limbs of 35 FSHD1 patients and 22 healthy volunteers by two methods: a quantitative imaging (qMRI combined with a dedicated automated segmentation method performed on both thighs and a standard T1-weighted four-point visual scale (visual score on thighs and legs. Each patient had a clinical evaluation including manual muscular testing, Clinical Severity Score (CSS scale and MFM scale. The intramuscular fat fraction measured using qMRI in the thighs was significantly higher in patients (21.9 ± 20.4% than in volunteers (3.6 ± 2.8% (p<0.001. In patients, the intramuscular fat fraction was significantly correlated with the muscular fatty infiltration in the thighs evaluated by the mean visual score (p<0.001. However, we observed a ceiling effect of the visual score for patients with a severe fatty infiltration clearly indicating the larger accuracy of the qMRI approach. Mean intramuscular fat fraction was significantly correlated with CSS scale (p ≤ 0.01 and was inversely correlated with MMT score, MFM subscore D1 (p ≤ 0.01 further illustrating the sensitivity of the qMRI approach. Overall, a clustering analysis disclosed three different imaging patterns of muscle involvement for the thighs and the legs which could be related to different stages of the disease and put forth muscles which could be of interest for a subtle investigation of the disease progression and/or the efficiency of any therapeutic strategy.The qMRI provides a sensitive measurement of fat fraction which should also be of high interest to assess disease progression and any therapeutic strategy in FSHD1 patients.

  15. Beneficial effects of anti-growth hormone antiserum in avian muscular dystrophy.

    Science.gov (United States)

    Kurtenbach, E; Moraes, S S; Trocado, M T; Lôbo, G F; Nascimento, P S; Verjovski-Almeida, S

    1989-08-01

    Human subjects and mice have been found to have a milder progression of muscular dystrophy when the disease is associated with genotypically determined dwarfism. In this paper we describe an experimental test for reducing growth hormone in dystrophic chickens that uses rabbit anti-chicken growth hormone anti-serum (anti-cGH). Antiserum was injected daily into dystrophic (line 413) male chickens from day 1 to day 8 after hatching. Dystrophic chickens injected with anti-cGH maintained a significantly higher score in the standardized test for righting ability (P less than 0.001-0.051) from 3 to 9 1/2 wk after hatching when compared with dystrophic controls. The observed prolongation of the functional ability of injected dystrophic animals suggests that growth hormone plays a role in potentiating the symptoms of dystrophy in chickens.

  16. Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy.

    Science.gov (United States)

    Blaauw, Bert; Agatea, Lisa; Toniolo, Luana; Canato, Marta; Quarta, Marco; Dyar, Kenneth A; Danieli-Betto, Daniela; Betto, Romeo; Schiaffino, Stefano; Reggiani, Carlo

    2010-01-01

    It is commonly accepted that skeletal muscles from dystrophin-deficient mdx mice are more susceptible than those from wild-type mice to damage from eccentric contractions. However, the downstream mechanisms involved in this enhanced force drop remain controversial. We studied the reduction of contractile force induced by eccentric contractions elicited in vivo in the gastrocnemius muscle of wild-type mice and three distinct models of muscle dystrophy: mdx, alpha-sarcoglycan (Sgca)-null, and collagen 6A1 (Col6a1)-null mice. In mdx and Sgca-null mice, force decreased 35% compared with 14% in wild-type mice. Drop of force in Col6a1-null mice was comparable to that in wild-type mice. To identify the determinants of the force drop, we measured force generation in permeabilized fibers dissected from gastrocnemius muscle that had been exposed in vivo to eccentric contractions and from the contralateral unstimulated muscle. A force loss in skinned fibers after in vivo eccentric contractions was detectable in fibers from mdx and Sgca-null, but not wild-type and Col6a1-null, mice. The enhanced force reduction in mdx and Sgca-null mice was observed only when eccentric contractions were elicited in vivo, since eccentric contractions elicited in vitro had identical effects in wild-type and dystrophic skinned fibers. These results suggest that 1) the enhanced force loss is due to a myofibrillar impairment that is present in all fibers, and not to individual fiber degeneration, and 2) the mechanism causing the enhanced force reduction is active in vivo and is lost after fiber permeabilization.

  17. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy.

    Science.gov (United States)

    Reyes, Nicholas L; Banks, Glen B; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H Denny; Hirenallur-S, Dinesh K; Hockenbery, David M; Raftery, Daniel; Iritani, Brian M

    2015-01-13

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.

  18. Muscular dystrophy-related quantitative and chemical changes in adenohypophysis GH-cells in golden retrievers.

    Science.gov (United States)

    de Lima, A R; Nyengaard, J R; Jorge, A A L; Balieiro, J C C; Peixoto, C; Fioretto, E T; Ambrósio, C E; Miglino, M A; Zatz, M; Ribeiro, A A C M

    2007-12-01

    Duchenne muscular dystrophy (DMD) is a recessive X-linked lethal condition which affects a boy in every 3300 births. It is caused by the absence of dystrophin, a protein occurring especially within the musculoskeletal system and in neurons in specific regions of the central nervous system (CNS). Growth hormone (GH) inhibition is believed to decrease the severity of DMD and could perhaps be used in its treatment. However, the underlying pathological mechanism is not known. The golden retriever muscular dystrophy dog (GRMD) represents an animal model in the study of DMD. In this paper we investigated the morphological aspects of the adenohypophysis as well as the total number and size of GH-granulated cells using design-based stereological methods in a limited number of dystrophic and healthy golden retrievers. GH-cells were larger (32.4%) in dystrophic dogs than in healthy animals (p=0.01) and they occupied a larger portion (62.5%) of the adenohypophysis volume (p=0.01) without changes in either adenohypophysis volume (p=0.893) or total number of GH-granulated cells (p=0.869). With regard to ultrastructure, granulated cells possessed double-layer electron-dense granules which were evenly distributed in the cytosol. Furthermore, these granules in dystrophic animals occupied a larger proportion of GH-granulated cell volume (66.9%; p=0.008) as well as of all GH-cells in the whole pars distalis of adenohypophysis (77.3%; p=0.035), albeit IGF-1 serum concentration was lower in severe cases. This suggests difficulties in the GH secretion that might possibly be associated to dystrophin absence. In contrast to earlier reports, our data suggest that a lower IGF-1 concentration may be more related to a severe, as opposed to a benign, clinical form of muscular dystrophy.

  19. Reduced expression of sarcospan in muscles of Fukuyama congenital muscular dystrophy.

    Science.gov (United States)

    Wakayama, Yoshihiro; Inoue, Masahiko; Kojima, Hiroko; Yamashita, Sumimasa; Shibuya, Seiji; Jimi, Takahiro; Hara, Hajime; Matsuzaki, Yoko; Oniki, Hiroaki; Kanagawa, Motoi; Kobayashi, Kazuhiro; Toda, Tatsushi

    2008-12-01

    Expression profiles of sarcospan in muscles with muscular dystrophies are scarcely reported. To examine this, we studied five Fukuyama congenital muscular dystrophy (FCMD) muscles, five Duchenne muscular dystrophy (DMD) muscles, five disease control and five normal control muscles. Immunoblot showed reactions of sarcospan markedly decreased in FCMD and DMD muscle extracts. Immunohistochemistry of FCMD muscles showed that most large diameter myofibers expressed sarcospan discontinuously at their surface membranes. Immature small diameter FCMD myofibers usually did not express sarcospan. Immunoreactivity of sarcospan in DMD muscles was similarly reduced. With regard to dystroglycans and sarcoglycans, immunohistochemistry of FCMD muscles showed selective deficiency of glycosylated alpha-dystroglycan, together with reduced expression of beta-dystroglycan and alpha-, beta-, gamma-, delta-sarcoglycans. Although the expression of glycosylated alpha-dystroglycan was lost, scattered FCMD myofibers showed positive immunoreaction with an antibody against the core protein of alpha-dystroglycan. The group mean ratios of sarcospan mRNA copy number versus GAPDH mRNA copy number by real-time RT-PCR showed that the ratios between FCMD and normal control groups were not significantly different (P>0.1 by the two-tailed t test). This study implied either O-linked glycosylation defects of alpha-dystroglycan in the Golgi apparatus of FCMD muscles may lead to decreased expression of sarcoglycan and sarcospan molecules, or selective deficiency of glycosylated alpha-dystroglycan due to impaired glycosylation in FCMD muscles may affect the molecular integrity of the basal lamina of myofibers. This, in turn, leads to decreased expression of sarcoglycans, and finally of sarcospan at the FCMD myofiber surfaces.

  20. Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles.

    Directory of Open Access Journals (Sweden)

    Giorgio Tasca

    Full Text Available BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD is one of the most common muscular dystrophies and is characterized by a non-conventional genetic mechanism activated by pathogenic D4Z4 repeat contractions. By muscle Magnetic Resonance Imaging (MRI we observed that T2-short tau inversion recovery (T2-STIR sequences identify two different conditions in which each muscle can be found before the irreversible dystrophic alteration, marked as T1-weighted sequence hyperintensity, takes place. We studied these conditions in order to obtain further information on the molecular mechanisms involved in the selective wasting of single muscles or muscle groups in this disease. METHODS: Histopathology, gene expression profiling and real time PCR were performed on biopsies from FSHD muscles with different MRI pattern (T1-weighted normal/T2-STIR normal and T1-weighted normal/T2-STIR hyperintense. Data were compared with those from inflammatory myopathies, dysferlinopathies and normal controls. In order to validate obtained results, two additional FSHD samples with different MRI pattern were analyzed. RESULTS: Myopathic and inflammatory changes characterized T2-STIR hyperintense FSHD muscles, at variance with T2-STIR normal muscles. These two states could be easily distinguished from each other by their transcriptional profile. The comparison between T2-STIR hyperintense FSHD muscles and inflammatory myopathy muscles showed peculiar changes, although many alterations were shared among these conditions. CONCLUSIONS: At the single muscle level, different stages of the disease correspond to the two MRI patterns. T2-STIR hyperintense FSHD muscles are more similar to inflammatory myopathies than to T2-STIR normal FSHD muscles or other muscular dystrophies, and share with them upregulation of genes involved in innate and adaptive immunity. Our data suggest that selective inflammation, together with perturbation in biological processes such as neoangiogenesis

  1. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy

    OpenAIRE

    Nelson, Christopher E.; Hakim, Chady H.; Ousterout, David G.; Thakore, Pratiksha I.; Moreb, Eirik A.; Rivera, Ruth M. Castellanos; Madhavan, Sarina; Pan, Xiufang; Ran, F. Ann; Yan, Winston X.; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the CRISPR/Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery...

  2. Progressive dysphagia in limb-girdle muscular dystrophy type 2B.

    LENUS (Irish Health Repository)

    Walsh, Richard

    2012-02-01

    Dysphagia has not been reported in genetically confirmed limb-girdle muscular dystrophy type 2B (LGMD2B). A 40-year-old woman reported exercise-induced calf pain at age 34, followed by progressive lower and upper limb weakness. At age 38, progressive dysphagia for solids, and subsequently liquids, ensued. Endoscopic and videofluoroscopic-radiological findings indicated a myopathic swallowing disorder. Molecular genetic analysis confirmed two dysferlin gene mutations consistent with a compound heterozygote state. Progressive dysphagia should be considered as part of the expanding dysferlinopathy phenotype.

  3. Histone deacetylase inhibitors: a potential epigenetic treatment for Duchenne muscular dystrophy.

    Science.gov (United States)

    Consalvi, Silvia; Saccone, Valentina; Mozzetta, Chiara

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a life-threatening genetic disease that currently has no available cure. A number of pharmacological strategies that aim to target events downstream of the genetic defect are currently under clinical investigation, and some of these are outlined in this report. In particular, we focus on the ability of histone deacetylase inhibitors to promote muscle regeneration and prevent the fibro-adipogenic degeneration of dystrophic mice. We describe the rationale behind the translation of histone deacetylase inhibitors into a clinical approach, which inspired the first clinical trial with an epigenetic drug as a potential therapeutic option for DMD patients.

  4. Muscle involvement in limb-girdle muscular dystrophy with GMPPB deficiency (LGMD2T)

    DEFF Research Database (Denmark)

    Østergaard, Sofie Thurø; Stojkovic, T; Dahlqvist, J R

    2016-01-01

    OBJECTIVE: In this study, muscle involvement assessed by MRI and levels of GMPPB and glycosylation of α-dystroglycan expression in muscle were examined in patients with limb-girdle muscular dystrophy (LGMD) type 2T. METHODS: Six new patients with genetically verified mutations in GMPPB were studied....... T1-weighted magnetic resonance images were obtained in 4 participants. Muscle strength and potential involvement of extramuscular organs were examined. Glycosylation of α-dystroglycan in muscle was studied, and GMPPB and α-dystroglycan expression was analyzed by Western blotting. Prevalence of LGMD2...

  5. Detection of the mutation may guide treatment of heart and muscle in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Finsterer J

    2016-03-01

    Full Text Available Josef Finsterer,1 Sinda Zarrouk-Mahjoub21Krankenanstalt Rudolfstiftung, Vienna, Austria; 2Genomics Platform, Pasteur Institute of Tunis, Tunis, Tunisia We read with great interest the article, by Kono et al, about a 32-year-old male with Duchenne muscular dystrophy (DMD, who was admitted for dilated cardiomyopathy manifesting as heart failure, left bundle branch block, Mobitz-II block, bradycardia, and arterial hypotension. He profited from implantation of a cardiac resynchronization therapy-D system with a defibrillator and beta-blocker treatment. View original article by Kono et al.  

  6. Propofol-induced violent coughing in a patient with Becker′s muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Amit Jain

    2011-01-01

    Full Text Available Propofol anesthesia is often associated with decreased incidence of gagging, coughing or laryngospasm, and provides intense suppression on airway reflex during tracheal intubation and laryngeal mask airway insertion. Propofol pretreatment is also effective in reducing the occurrence of opioid-induced coughing. These benefits are often attributed to bronchodilator and sedative effects of propofol. However, severe coughing following sedative doses of 1% propofol has not been reported so far. We report a rare case of violent coughing following low-dose propofol infusion in a patient with Becker′s muscular dystrophy.

  7. Comparative analysis of phenotypes features in two common genetic variants of limb-girdle muscular dystrophy

    Directory of Open Access Journals (Sweden)

    I. V. Sharkova

    2015-01-01

    Full Text Available The algorithm of differential diagnosis of the two most common genetic variants the limb-girdle muscular dystrophy (LGMD2A and DMD, developed on the basis of a comprehensive survey of 85 patients with a diagnosis specification using techniques of DNA analysis. It is shown that the accurate diagnosis of LGMD genetic types should be based on the results of the clinical and genealogical, biochemical and molecular genetic analysis. The proposed algorithm will significantly reduces the economic and time costs with expensive DNA testing.

  8. A heterozygous 21-bp deletion in CAPN3 causes dominantly inherited limb girdle muscular dystrophy.

    Science.gov (United States)

    Vissing, John; Barresi, Rita; Witting, Nanna; Van Ghelue, Marijke; Gammelgaard, Lise; Bindoff, Laurence A; Straub, Volker; Lochmüller, Hanns; Hudson, Judith; Wahl, Christoph M; Arnardottir, Snjolaug; Dahlbom, Kathe; Jonsrud, Christoffer; Duno, Morten

    2016-08-01

    Limb girdle muscular dystrophy type 2A is the most common limb girdle muscular dystrophy form worldwide. Although strict recessive inheritance is assumed, patients carrying a single mutation in the calpain 3 gene (CAPN3) are reported. Such findings are commonly attributed to incomplete mutation screening. In this investigation, we report 37 individuals (age range: 21-85 years, 21 females and 16 males) from 10 families in whom only one mutation in CAPN3 could be identified; a 21-bp, in-frame deletion (c.643_663del21). This mutation co-segregated with evidence of muscle disease and autosomal dominant transmission in several generations. Evidence of muscle disease was indicated by muscle pain, muscle weakness and wasting, significant fat replacement of muscles on imaging, myopathic changes on muscle biopsy and loss of calpain 3 protein on western blotting. Thirty-one of 34 patients had elevated creatine kinase or myoglobin. Muscle weakness was generally milder than observed in limb girdle muscular dystrophy type 2A, but affected the same muscle groups (proximal leg, lumbar paraspinal and medial gastrocnemius muscles). In some cases, the weakness was severely disabling. The 21-bp deletion did not affect mRNA maturation. Calpain 3 expression in muscle, assessed by western blot, was below 15% of normal levels in the nine mutation carriers in whom this could be tested. Haplotype analysis in four families from three different countries suggests that the 21-bp deletion is a founder mutation. This study provides strong evidence that heterozygosity for the c.643_663del21 deletion in CAPN3 results in a dominantly inherited muscle disease. The normal expression of mutated mRNA and the severe loss of calpain 3 on western blotting, suggest a dominant negative effect with a loss-of-function mechanism affecting the calpain 3 homodimer. This renders patients deficient in calpain 3 as in limb girdle muscular dystrophy type 2A, albeit in a milder form in most cases. Based on findings

  9. Trendelenburg-Like Gait, Instability and Altered Step Patterns in a Mouse Model for Limb Girdle Muscular Dystrophy 2i

    OpenAIRE

    Maricelli, Joseph W.; Lu, Qi L.; Lin, David C.; Rodgers, Buel D.

    2016-01-01

    Limb-girdle muscular dystrophy type 2i (LGMD2i) affects thousands of lives with shortened life expectancy mainly due to cardiac and respiratory problems and difficulty with ambulation significantly compromising quality of life. Limited studies have noted impaired gait in patients and animal models of different muscular dystrophies, but not in animal models of LGMD2i. Our goal, therefore, was to quantify gait metrics in the fukutin-related protein P448L mutant (P448L) mouse, a recently develop...

  10. Inflammation and cardiac dysfunction during sepsis, muscular dystrophy, and myocarditis

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-12-01

    Full Text Available Inflammation plays an important role in cardiac dysfunction under different situations. Acute systemic inflammation occurring in patients with severe burns, trauma, and inflammatory diseases causes cardiac dysfunction, which is one of the leading causes of mortality in these patients. Acute sepsis decreases cardiac contractility and impairs myocardial compliance. Chronic inflammation such as that occurring in Duchenne muscular dystropshy and myocarditis may cause adverse cardiac remodeling including myocyte hypertrophy and death, fibrosis, and altered myocyte function. However, the underlying cellular and molecular mechanisms for inflammatory cardiomyopathy are still controversial probably due to multiple factors involved. Potential mechanisms include the change in circulating blood volume; a direct inhibition of myocyte contractility by cytokines (tumor necrosis factor (TNF-a, interleukin (IL-1b; abnormal nitric oxide and reactive oxygen species (ROS signaling; mitochondrial dysfunction; abnormal excitation-contraction coupling; and reduced calcium sensitivity at the myofibrillar level and blunted b-adrenergic signaling. This review will summarize recent advances in diagnostic technology, mechanisms, and potential therapeutic strategies for inflammation-induced cardiac dysfunction.

  11. Treatable renal failure found in non-ambulatory Duchenne muscular dystrophy patients.

    Science.gov (United States)

    Motoki, Takahiro; Shimizu-Motohashi, Yuko; Komaki, Hirofumi; Mori-Yoshimura, Madoka; Oya, Yasushi; Takeshita, Eri; Ishiyama, Akihiko; Saito, Takashi; Nakagawa, Eiji; Sugai, Kenji; Murata, Miho; Sasaki, Masayuki

    2015-10-01

    Duchenne muscular dystrophy (DMD) is a progressive muscular disorder in which respiratory and heart failures are the main causes of death. Intensive intervention in respiratory and cardiac function has dramatically improved the prognosis; however, dysfunction in other multiple organs may emerge in the later stages of the disease. We report the case of four non-ambulatory DMD patients who presented with renal failure. Common findings included decreased fluid intake, use of diuretics, and presence of chronic heart failure. The levels of serum cystatin C (CysC), a marker of kidney function unaffected by reduced muscle mass, were elevated in all four patients. In two patients, renal failure improved by increasing fluid intake, and discontinuing or reducing the dose of diuretics. The findings suggest that non-ambulatory DMD patients are at a risk of reduced kidney perfusion, which potentially leads to prerenal failure. Therefore, in DMD patients, dehydration signs and CysC levels should be monitored.

  12. Research progress of motor function assessments and their clinical applications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Wei SHI

    2015-07-01

    Full Text Available Duchenne muscular dystrophy (DMD, clinically featured as progressive skeletal muscle atrophy with gradual loss of muscle strength and activity abilities, is the most common genetic muscular disease in children throughout the world. The core and continuous characteristic of DMD is motor dysfunction. Motor function assessments of DMD are now focusing on muscle strength, walking ability, range of motion and ability of activities, still without unified standards. Confirming the comprehensive, scientific, reasonable and accurate evaluation tools for DMD assessment is the premise of research in motor developmental rules of DMD, which will help to better understand the motor progress of DMD and to supply evidences for choosing treatment methods, confirming timing of intervention, assessing effect of treatments and designing rehabilitation plans. DOI: 10.3969/j.issn.1672-6731.2015.06.002

  13. Air stacking: effects on pulmonary function in patients with spinal muscular atrophy and in patients with congenital muscular dystrophy*,**

    Science.gov (United States)

    Marques, Tanyse Bahia Carvalho; Neves, Juliana de Carvalho; Portes, Leslie Andrews; Salge, João Marcos; Zanoteli, Edmar; Reed, Umbertina Conti

    2014-01-01

    OBJECTIVE: Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD). The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA) and in patients with congenital muscular dystrophy (CMD), as well as to identify associations between spinal deformities and the effects of the maneuvers. METHODS: Eighteen NMD patients (ten with CMD and eight with SMA) were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC); and assisted and unassisted peak cough flow (APCF and UPCF, respectively) with insufflations. RESULTS: After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. CONCLUSIONS: Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis. PMID:25410841

  14. Air stacking: effects on pulmonary function in patients with spinal muscular atrophy and in patients with congenital muscular dystrophy,

    Directory of Open Access Journals (Sweden)

    Tanyse Bahia Carvalho Marques

    2014-10-01

    Full Text Available OBJECTIVE: Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD. The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA and in patients with congenital muscular dystrophy (CMD, as well as to identify associations between spinal deformities and the effects of the maneuvers. METHODS: Eighteen NMD patients (ten with CMD and eight with SMA were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC; and assisted and unassisted peak cough flow (APCF and UPCF, respectively with insufflations. RESULTS: After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. CONCLUSIONS: Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis.

  15. [Limb-girdle muscular dystrophy: clinical, hereditary and histological features: study of a family (author's transl)].

    Science.gov (United States)

    Pennisi, G; Russo, S; Ammatuna, A; Falsaperla, A

    1982-01-01

    The family of an "affected" subject with limb girdle dystrophy has been studied in order to assess the clinical-hereditary characteristics of the disease and to contribute to its definite genetic features (phenotypical expressiveness of the pathologic gene). The diagnosis of certitude was based on the anamnestic-clinical criteria and instrumental investigations, supported by histological and histochemical studies of the muscles. The clinical, electromyographic and biochemical data made it possible to distinguish the "affected" from the "subclinical" and the healthy subjects. The subjects that, without noticeable symptoms of neuromuscular disorders, showed a slight clinical expressiveness which didn't alter the normal social and working activities, have been defined "subclinical". The modalities of hereditary transmission of this form of muscular dystrophy are considered in the light of the genetics most present trends that are tending to overcome the dominant-recessive dualism. The possibility of a modality of transmission definable as "intermediate inheritance" is proposed. In the case of the examined family the hypothesis that a pathologic recessive autosomic gene gives rise to a clinical expressiveness in heterozygote subjects seems tenable. This situation definable as "incomplete recessive" is rarely found in the limb girdle dystrophy.

  16. Morphological and ultrastructural evaluation of the golden retriever muscular dystrophy trachea, lungs, and diaphragm muscle.

    Science.gov (United States)

    Lessa, Thais Borges; de Abreu, Dilayla Kelly; Rodrigues, Márcio Nogueira; Brólio, Marina Pandolphi; Miglino, Maria Angélica; Ambrósio, Carlos Eduardo

    2014-11-01

    Duchenne muscular dystrophy (DMD) is a genetic disease, characterized by atrophy and muscle weakness. The respiratory failure is a common cause of early death in patients with DMD. Golden retriever muscular dystrophy (GRMD) is a canine model which has been extensively used for many advances in therapeutics applications. As the patients with DMD, the GRMD frequently died from cardiac and respiratory failure. Observing the respiratory failure in DMD is one of the major causes of mortality we aimed to describe the morphological and ultrastructural data of trachea, lungs (conductive and respiratory portion of the system), and diaphragm muscle using histological and ultrastructural analysis. The diaphragm muscle showed discontinuous fibers architecture, with different diameter; a robust perimysium inflammatory infiltrate and some muscle cells displayed central nuclei. GRMD trachea and lungs presented collagen fibers and in addition, the GRMD lungs showed higher of levels collagen fibers that could limit the alveolar ducts and alveoli distension. Therefore, the most features observed were the collagen areas and fibrosis. We suggested in this study that the collagen remodeling in the trachea, lungs, and diaphragm muscle may increase fibrosis and affect the trachea, lungs, and diaphragm muscle function that can be a major cause of respiratory failure that occur in patients with DMD.

  17. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Negroni, Elisa; Henault, Emilie; Chevalier, Fabien; Gilbert-Sirieix, Marie; Van Kuppevelt, Toin H; Papy-Garcia, Dulce; Uzan, Georges; Albanese, Patricia

    2014-08-01

    Widespread skeletal muscle degeneration and impaired regeneration lead to progressive muscle weakness and premature death in patients with Duchenne muscular dystrophy (DMD). Dystrophic muscles are progressively replaced by nonfunctional tissue because of exhaustion of muscle precursor cells and excessive accumulation of extracellular matrix (ECM). Sulfated glycosaminoglycans (GAGs) are components of the ECM and are increasingly implicated in the regulation of biologic processes, but their possible role in the progression of DMD pathology is not understood. In the present study, we performed immunohistochemical and biochemical analyses of endogenous GAGs in skeletal muscle biopsies of 10 DMD patients and 11 healthy individuals (controls). Immunostaining targeted to specific GAG species showed greater deposition of chondroitin sulfate (CS)/dermatan (DS) sulfate in DMD patient biopsies versus control biopsies. The selective accumulation of CS/DS in DMD biopsies was confirmed by biochemical quantification assay. In addition, high-performance liquid chromatography analysis demonstrated a modification of the sulfation pattern of CS/DS disaccharide units in DMD muscles. In conclusion, our data open up a new path of investigation and suggest that GAGs could represent a new and original therapeutic target for improving the success of gene or cell therapy for the treatment of muscular dystrophies.

  18. Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients.

    Science.gov (United States)

    Gidaro, Teresa; Negroni, Elisa; Perié, Sophie; Mirabella, Massimiliano; Lainé, Jeanne; Lacau St Guily, Jean; Butler-Browne, Gillian; Mouly, Vincent; Trollet, Capucine

    2013-03-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant inherited dystrophy caused by an abnormal trinucleotide repeat expansion in the poly(A)-binding-protein-nuclear 1 (PABPN1) gene. Primary muscular targets of OPMD are the eyelid elevator and pharyngeal muscles, including the cricopharyngeal muscle (CPM), the progressive involution of which leads to ptosis and dysphagia, respectively. To understand the consequences of PABPN1 polyalanine expansion in OPMD, we studied muscle biopsies from 14 OPMD patients, 3 inclusion body myositis patients, and 9 healthy controls. In OPMD patient CPM (n = 6), there were typical dystrophic features with extensive endomysial fibrosis and marked atrophy of myosin heavy-chain IIa fibers. There were more PAX7-positive cells in all CPM versus other muscles (n = 5, control; n = 3, inclusion body myositis), and they were more numerous in OPMD CPM versus control normal CPM without any sign of muscle regeneration. Intranuclear inclusions were present in all OPMD muscles but unaffected OPMD patient muscles (i.e. sternocleidomastoid, quadriceps, or deltoid; n = 14) did not show evidence of fibrosis, atrophy, or increased PAX7-positive cell numbers. These results suggest that the specific involvement of CPM in OPMD might be caused by failure of the regenerative response with dysfunction of PAX7-positive cells and exacerbated fibrosis that does not correlate with the presence of PABPN1 inclusions.

  19. Developmental Changes in the ECG of a Hamster Model of Muscular Dystrophy and Heart Failure.

    Science.gov (United States)

    Hampton, Thomas G; Kale, Ajit; McCue, Scott; Bhagavan, Hemmi N; Vandongen, Case

    2012-01-01

    Aberrant autonomic signaling is being increasingly recognized as an important symptom in neuromuscular disorders. The δ-sarcoglycan-deficient BIO TO-2 hamster is recognized as a good model for studying mechanistic pathways and sequelae in muscular dystrophy and heart failure, including autonomic nervous system (ANS) dysfunction. Recent studies using the TO-2 hamster model have provided promising preclinical results demonstrating the efficacy of gene therapy to treat skeletal muscle weakness and heart failure. Methods to accelerate preclinical testing of gene therapy and new drugs for neuromuscular diseases are urgently needed. The purpose of this investigation was to demonstrate a rapid non-invasive screen for characterizing the ANS imbalance in dystrophic TO-2 hamsters. Electrocardiograms were recorded non-invasively in conscious ∼9-month old TO-2 hamsters (n = 10) and non-myopathic F1B control hamsters (n = 10). Heart rate was higher in TO-2 hamsters than controls (453 ± 12 bpm vs. 311 ± 25 bpm, P imbalance with increased sympathetic tone and decreased parasympathetic tone in dystrophic TO-2 hamsters. Similar observations in newborn hamsters indicate autonomic nervous dysfunction may occur quite early in life in neuromuscular diseases. Our findings of autonomic abnormalities in newborn hamsters with a mutation in the δ-sarcoglycan gene suggest approaches to correct modulation of the heart rate as prevention or therapy for muscular dystrophies.

  20. Dystrophic changes in masticatory muscles related chewing problems and malocclusions in Duchenne muscular dystrophy.

    Science.gov (United States)

    van den Engel-Hoek, L; de Groot, I J M; Sie, L T; van Bruggen, H W; de Groot, S A F; Erasmus, C E; van Alfen, N

    2016-06-01

    Dysphagia in Duchenne muscular dystrophy (DMD) worsens with age, with increasingly effortful mastication. The aims of this study were to describe mastication problems in consecutive stages in a group of patients with DMD and to determine related pathophysiological aspects of masticatory muscle structure, tongue thickness, bite force and dental characteristics. Data from 72 patients with DMD (4.3 to 28.0 years), divided into four clinical stages, were collected in a cross sectional study. Problems with mastication and the need for food adaptations, in combination with increased echogenicity of the masseter muscle, were already found in the early stages of the disease. A high percentage of open bites and cross bites were found, especially in the later stages. Tongue hypertrophy also increased over time. Increased dysfunction, reflected by increasingly abnormal echogenicity, of the masseter muscle and reduced occlusal contacts (anterior and posterior open bites) were mainly responsible for the hampered chewing. In all, this study shows the increasing involvement of various elements of the masticatory system in progressive Duchenne muscular dystrophy. To prevent choking and also nutritional deficiency, early detection of chewing problems by asking about feeding and mastication problems, as well as asking about food adaptations made, is essential and can lead to timely intervention.

  1. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy.

    Science.gov (United States)

    Kim, Jong-Hee; Kwak, Hyo-Bum; Thompson, LaDora V; Lawler, John M

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

  2. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy.

    Science.gov (United States)

    Bobadilla, Míriam; Sáinz, Neira; Rodriguez, José Antonio; Abizanda, Gloria; Orbe, Josune; de Martino, Alba; García Verdugo, José Manuel; Páramo, José A; Prósper, Felipe; Pérez-Ruiz, Ana

    2014-02-01

    Matrix metalloproteinases (MMPs), a family of endopeptidases that are involved in the degradation of extracellular matrix components, have been implicated in skeletal muscle regeneration. Among the MMPs, MMP-2 and MMP-9 are upregulated in Duchenne muscular dystrophy (DMD), a fatal X-linked muscle disorder. However, inhibition or overexpression of specific MMPs in a mouse model of DMD (mdx) has yielded mixed results regarding disease progression, depending on the MMP studied. Here, we have examined the role of MMP-10 in muscle regeneration during injury and muscular dystrophy. We found that skeletal muscle increases MMP-10 protein expression in response to damage (notexin) or disease (mdx mice), suggesting its role in muscle regeneration. In addition, we found that MMP-10-deficient muscles displayed impaired recruitment of endothelial cells, reduced levels of extracellular matrix proteins, diminished collagen deposition, and decreased fiber size, which collectively contributed to delayed muscle regeneration after injury. Also, MMP-10 knockout in mdx mice led to a deteriorated dystrophic phenotype. Moreover, MMP-10 mRNA silencing in injured muscles (wild-type and mdx) reduced muscle regeneration, while addition of recombinant human MMP-10 accelerated muscle repair, suggesting that MMP-10 is required for efficient muscle regeneration. Furthermore, our data suggest that MMP-10-mediated muscle repair is associated with VEGF/Akt signaling. Thus, our findings indicate that MMP-10 is critical for skeletal muscle maintenance and regeneration during injury and disease.

  3. Role of contraction-induced injury in the mechanisms of muscle damage in muscular dystrophy.

    Science.gov (United States)

    Lynch, Gordon S

    2004-08-01

    1. Duchenne muscular dystrophy (DMD) is a severe disease of skeletal muscle, characterized by an X-linked recessive inheritance and a lack of dystrophin in muscle fibres. It is associated with progressive and severe wasting and weakness of nearly all muscles and premature death by cardiorespiratory failure. 2. Studies investigating the susceptibility of dystrophic skeletal muscles to contraction-mediated damage, especially after lengthening actions where activated muscles are stretched forcibly, have concluded that dystrophin may confer protection to muscle fibres by providing a mechanical link between the contractile apparatus and the plasma membrane. In the absence of dystrophin, there is disruption to normal force transmission and greater stress placed upon myofibrillar and membrane proteins, leading to muscle damage. 3. Contraction protocols (involving activation and stretch of isolated muscles or muscle fibres) have been developed to assess the relative susceptibility of dystrophic (and otherwise healthy) muscles to contraction-induced injury. These protocols have been used successfully to determine the relative efficacy of different (gene, cell or pharmacological) interventions designed to ameliorate or cure the dystrophic pathology. More research is needed to develop specific 'contraction assays' that will assist in the evaluation of the clinical significance of different therapeutic strategies for muscular dystrophy.

  4. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming.

    Science.gov (United States)

    Matsakas, Antonios; Yadav, Vikas; Lorca, Sabina; Narkar, Vihang

    2013-10-01

    Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ (ERRγ), and its metabolic and angiogenic targets are down-regulated (50-85%) in skeletal muscles of mdx mice (DMD model) vs. wild-type mice. Corelatively, oxidative myofibers, muscle vasculature, and exercise tolerance (33%) are decreased in mdx vs. wild-type mice. Overexpressing ERRγ selectively in the dystrophic muscles of the mdx mice restored metabolic and angiogenic gene expression compared with control mdx mice. Further, ERRγ enhanced muscle oxidative myofibers, vasculature, and blood flow (by 33-66%) and improved exercise tolerance (by 75%) in the dystrophic mice. Restoring muscle ERRγ pathway ameliorated muscle damage and also prevented DMD hallmarks of postexercise muscle damage, hypoxia, and fatigue in mdx mice. Notably, ERRγ did not restore sarcolemmal DAG complex, which is thus dispensable for antidystrophic effects of ERRγ. In summary, ERRγ-dependent metabolic and angiogenic gene program is defective in DMD, and we demonstrate that its restoration is a potential strategy for treating muscular dystrophy.

  5. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study

    Science.gov (United States)

    Rutkove, S. B.; Darras, B. T.

    2013-04-01

    Electrical impedance myography (EIM) provides a non-invasive approach for quantifying the severity of neuromuscular disease. Here we determine how well EIM data correlates to functional and ultrasound (US) measures of disease in children with Duchenne muscular dystrophy (DMD) and healthy subjects. Thirteen healthy boys, aged 2-12 years and 14 boys with DMD aged 4-12 years underwent both EIM and US measurements of deltoid, biceps, wrist flexors, quadriceps, tibialis anterior, and medial gastrocnemius. EIM measurements were performed with a custom-designed probe using a commercial multifrequency bioimpedance device. US luminosity data were quantified using a gray-scale analysis approach. Children also underwent the 6-minute walk test, timed tests and strength measurements. EIM and US data were combined across muscles. EIM 50 kHz phase was able to discriminate DMD children from healthy subjects with 98% accuracy. In the DMD patients, average EIM phase measurements also correlated well with standard functional measures. For example the 50 kHz phase correlated with the Northstar Ambulatory Assessment test (R = 0.83, p = 0.02). EIM 50 kHz phase and US correlated as well, with R = -0.79 (p muscular dystrophy severity.

  6. Building the French Muscular Dystrophy Association: the role of doctor/patient interactions.

    Science.gov (United States)

    Bach, M A

    1998-08-01

    The process of creating the French Muscular Dystrophy Association (AFM) is analysed through the interactions between the medico-scientific community on the one hand, and patients and their families on the other, from the 1950s to 1986. Each stage of its development was characterized by a particular mode of co-operation between lay people and doctors. Starting in 1958, the Association built a close relationship with a single partner, Jean Demos, a paediatrician and biochemist who developed a new vasodilation therapy based on his controversial vascular theory of muscular dystrophy. Around 1966, some AFM members, disappointed by Demos' treatment, decided to collaborate with other specialists, primarily neurologists, but channelled most of their resources in social action. Two other organizations were then created around Dr. Demos: the first (Union de Myopathes de France (UMF) acted as a "grass-roots organization" for maintaining "therapeutic orthodoxy" among patients and supporting his research through political lobbying; the other, composed of a handful of wealthy individuals, raised private funds for his laboratory. In the late 1970s, some UMF members questioned Demos' approach. They united with AFM to form a single association and created a Scientific Council representing all French groups interested in neuromuscular diseases. The co-operation established between these two collective partners proved to be most fruitful for both parties.

  7. Ringo: discordance between the molecular and clinical manifestation in a golden retriever muscular dystrophy dog.

    Science.gov (United States)

    Zucconi, Eder; Valadares, Marcos Costa; Vieira, Natássia M; Bueno, Carlos R; Secco, Mariane; Jazedje, Tatiana; da Silva, Helga Cristina Almeida; Vainzof, Mariz; Zatz, Mayana

    2010-01-01

    Of the various genetic homologues to Duchenne Muscular Dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog, which presents a variable but usually severe and progressive muscle weakness, has the closest relevance to DMD in both clinical severity and histopathological change. Among 77 GRMD dogs born in our colony in Brazil, we have identified a very mildly affected dog, Ringo, born July 2003. Among his descendants, at least one male, Suflair, is also showing a mild course. In an attempt to better characterize these two dogs, we studied the pattern of muscle proteins expression in Ringo and Suflair, as compared to severely affected and normal control dogs. Dystrophin was absent in both and utrophin was overexpressed in a pattern similar to the observed in severely affected dogs. Understanding the mechanism that is protecting Ringo and Suflair from the deleterious effect of the dystrophin gene mutation is of utmost interest. In addition it points out that the clinical impact of therapeutic trials should be interpreted with caution.

  8. Growth hormone treatment in boys with Duchenne muscular dystrophy and glucocorticoid-induced growth failure.

    Science.gov (United States)

    Rutter, Meilan M; Collins, James; Rose, Susan R; Woo, Jessica G; Sucharew, Heidi; Sawnani, Hemant; Hor, Kan N; Cripe, Linda H; Wong, Brenda L

    2012-12-01

    This study evaluated efficacy and safety of growth hormone treatment in Duchenne muscular dystrophy boys with glucocorticoid-induced growth failure. We reviewed 39 consecutive boys (average age 11.5 years; 32 ambulatory) treated with growth hormone for 1 year during a four-year period. Boys were on long-term daily deflazacort or prednisone (mean duration 5 ± 2.2 years; dosing regimen prednisone 0.75 mg/kg/day equivalent). Primary outcomes were growth velocity and height-for-age z-scores (height SD) at 1 year. Height velocity increased from 1.3 ± 0.2 to 5.2 ± 0.4 cm/year on growth hormone (pgrowth hormone decline in height SD (-0.5 ± 0.2SD/year) stabilized at height SD -2.9 ± 0.2 on growth hormone (pgrowth hormone and 2.6 ± 0.7 kg/year at 1 year. Motor function decline was similar pre-growth hormone and at 1 year. Cardiopulmonary function was unchanged. Three experienced side effects. In this first comprehensive report of growth hormone in Duchenne muscular dystrophy, growth hormone improved growth at 1 year, without detrimental effects observed on neuromuscular and cardiopulmonary function.

  9. Limb-girdle muscular dystrophy type 2I is not rare in Taiwan.

    Science.gov (United States)

    Liang, Wen-Chen; Hayashi, Yukiko K; Ogawa, Megumu; Wang, Chien-Hua; Huang, Wan-Ting; Nishino, Ichizo; Jong, Yuh-Jyh

    2013-08-01

    Alpha-dystroglycanopathy is caused by the glycosylation defects of α-dystroglycan (α-DG). The clinical spectrum ranges from severe congenital muscular dystrophy (CMD) to later-onset limb girdle muscular dystrophy (LGMD). Among all α-dystroglycanopathies, LGMD type 2I caused by FKRP mutations is most commonly seen in Europe but appears to be rare in Asia. We screened uncategorized 40 LGMD and 10 CMD patients by immunohistochemistry for α-DG and found 7 with reduced α-DG immunostaining. Immunoblotting with laminin overlay assay confirmed the impaired glycosylation of α-DG. Among them, five LGMD patients harbored FKRP mutations leading to the diagnosis of LGMD2I. One common mutation, c.948delC, was identified and cardiomyopathy was found to be very common in our cohort. Muscle images showed severe involvement of gluteal muscles and posterior compartment at both thigh and calf levels, which is helpful for the differential diagnosis. Due to the higher frequency of LGMD2I with cardiomyopathy in our series, the early introduction of mutation analysis of FKRP in undiagnosed Taiwanese LGMD patients is highly recommended.

  10. Exome analysis of two limb-girdle muscular dystrophy families: mutations identified and challenges encountered.

    Directory of Open Access Journals (Sweden)

    Kristin K McDonald

    Full Text Available The molecular diagnosis of muscle disorders is challenging: genetic heterogeneity (>100 causal genes for skeletal and cardiac muscle disease precludes exhaustive clinical testing, prioritizing sequencing of specific genes is difficult due to the similarity of clinical presentation, and the number of variants returned through exome sequencing can make the identification of the disease-causing variant difficult. We have filtered variants found through exome sequencing by prioritizing variants in genes known to be involved in muscle disease while examining the quality and depth of coverage of those genes. We ascertained two families with autosomal dominant limb-girdle muscular dystrophy of unknown etiology. To identify the causal mutations in these families, we performed exome sequencing on five affected individuals using the Agilent SureSelect Human All Exon 50 Mb kit and the Illumina HiSeq 2000 (2×100 bp. We identified causative mutations in desmin (IVS3+3A>G and filamin C (p.W2710X, and augmented the phenotype data for individuals with muscular dystrophy due to these mutations. We also discuss challenges encountered due to depth of coverage variability at specific sites and the annotation of a functionally proven splice site variant as an intronic variant.

  11. Where do we stand in trial readiness for autosomal recessive limb girdle muscular dystrophies?

    Science.gov (United States)

    Straub, Volker; Bertoli, Marta

    2016-02-01

    Autosomal recessive limb girdle muscular dystrophies (LGMD2) are a group of genetically heterogeneous diseases that are typically characterised by progressive weakness and wasting of the shoulder and pelvic girdle muscles. Many of the more than 20 different conditions show overlapping clinical features with other forms of muscular dystrophy, congenital, myofibrillar or even distal myopathies and also with acquired muscle diseases. Although individually extremely rare, all types of LGMD2 together form an important differential diagnostic group among neuromuscular diseases. Despite improved diagnostics and pathomechanistic insight, a curative therapy is currently lacking for any of these diseases. Medical care consists of the symptomatic treatment of complications, aiming to improve life expectancy and quality of life. Besides well characterised pre-clinical tools like animal models and cell culture assays, the determinants of successful drug development programmes for rare diseases include a good understanding of the phenotype and natural history of the disease, the existence of clinically relevant outcome measures, guidance on care standards, up to date patient registries, and, ideally, biomarkers that can help assess disease severity or drug response. Strong patient organisations driving research and successful partnerships between academia, advocacy, industry and regulatory authorities can also help accelerate the elaboration of clinical trials. All these determinants constitute aspects of translational research efforts and influence patient access to therapies. Here we review the current status of determinants of successful drug development programmes for LGMD2, and the challenges of translating promising therapeutic strategies into effective and accessible treatments for patients.

  12. Cardiac resynchronization therapy in a young patient with Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Kono T

    2015-08-01

    Full Text Available Tamami Kono,1 Akiyoshi Ogimoto,1 Kazuhisa Nishimura,1 Toshihiro Yorozuya,2 Takafumi Okura,1 Jitsuo Higaki1 1Department of Cardiology, Pulmonology, Hypertension and Nephrology, 2Department of Anesthesiology and Resuscitology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan Abstract: A 32-year-old man with Duchenne muscular dystrophy (DMD was admitted to the hospital because of worsening dyspnea and general fatigue. He had received medication therapy for cardiomyopathy with heart failure and home mechanical ventilation for respiratory failure. An electrocardiogram on admission showed intermittent third-degree atrioventricular block. Echocardiography showed global mild left ventricular systolic dysfunction with dyssynchrony (ejection fraction: 45%. He underwent implantation of a cardiac resynchronization therapy–defibrillator. His B-type natriuretic peptide level was improved after cardiac resynchronization therapy–defibrillator implantation, and he remains asymptomatic. The incidence of cardiomyopathy increases with age. By adulthood, 100% of patients have cardiac involvement. Keywords: cardiac resynchronization therapy, Duchenne muscular dystrophy, progression of cardiomyopathy, heart failure, arrhythmia

  13. Exacerbation of pathology by oxidative stress in respiratory and locomotor muscles with Duchenne muscular dystrophy.

    Science.gov (United States)

    Lawler, John M

    2011-05-01

    Duchenne muscular dystrophy (DMD) is the most devastating type of muscular dystrophy, leading to progressive weakness of respiratory (e.g. diaphragm) and locomotor muscles (e.g. gastrocnemius). DMD is caused by X-linked defects in the gene that encodes for dystrophin, a key scaffolding protein of the dystroglycan complex (DCG) within the sarcolemmal cytoskeleton. As a result of a compromised dystroglycan complex, mechanical integrity is impaired and important signalling proteins (e.g. nNOS, caveolin-3) and pathways are disrupted. Disruption of the dystroglycan complex leads to high susceptibility to injury with repeated, eccentric contractions as well as inflammation, resulting in significant damage and necrosis. Chronic damage and repair cycling leads to fibrosis and weakness. While the link between inflammation with damage and weakness in the DMD diaphragm is unresolved, elevated oxidative stress may contribute to damage, weakness and possibly fibrosis. While utilization of non-specific antioxidant interventions has yielded inconsistent results, recent data suggest that NAD(P)H oxidase could play a pivotal role in elevating oxidative stress via integrated changes in caveolin-3 and stretch-activated channels (SACs). Oxidative stress may act as an amplifier, exacerbating disruption of the dystroglycan complex, upregulation of the inflammatory transcription factor NF-B, and thus functional impairment of force-generating capacity.

  14. Soleus muscle in glycosylation-deficient muscular dystrophy is protected from contraction-induced injury.

    Science.gov (United States)

    Gumerson, Jessica D; Kabaeva, Zhyldyz T; Davis, Carol S; Faulkner, John A; Michele, Daniel E

    2010-12-01

    The glycosylation of dystroglycan is required for its function as a high-affinity laminin receptor, and loss of dystroglycan glycosylation results in congenital muscular dystrophy. The purpose of this study was to investigate the functional defects in slow- and fast-twitch muscles of glycosylation-deficient Large(myd) mice. While a partial alteration in glycosylation of dystroglycan in heterozygous Large(myd/+) mice was not sufficient to alter muscle function, homozygous Large(myd/myd) mice demonstrated a marked reduction in specific force in both soleus and extensor digitorum longus (EDL) muscles. Although EDL muscles from Large(myd/myd) mice were highly susceptible to lengthening contraction-induced injury, Large(myd/myd) soleus muscles surprisingly showed no greater force deficit compared with wild-type soleus muscles even after five lengthening contractions. Despite no increased susceptibility to injury, Large(myd/myd) soleus muscles showed loss of dystroglycan glycosylation and laminin binding activity and dystrophic pathology. Interestingly, we show that soleus muscles have a markedly higher sarcolemma expression of β(1)-containing integrins compared with EDL and gastrocnemius muscles. Therefore, we conclude that β(1)-containing integrins play an important role as matrix receptors in protecting muscles containing slow-twitch fibers from contraction-induced injury in the absence of dystroglycan function, and that contraction-induced injury appears to be a separable phenotype from the dystrophic pathology of muscular dystrophy.

  15. Rcpititative magnetic stimulation of gastrocnemius muscle evokes cerebral potentials in Duchcnnc muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Cui Liying; Guan Yuzhou; Tang Xiaofu; Li Benhong

    2000-01-01

    OBJECTIVE: To study the function and mechanism of the ccrebral evoked potentials by repititative stimulation of calf muscle in Duchcnne mucular dystrophy (DMD) patients with obvious muscular dystrophy and pseudohyocrtrophy. METHODS: Wc measured cerebral cvoked potcntials by stimulation of calf muscles and SEP by stimulation of posterior tibial nerves at ankle in ten patients with DMD and ten normal controls matched with sex and age. The intensity of the magnetic stimulation was at 30% of maximal output (2.1 Tcsla) and the trcquency was I Hz. The low intensity of magnetic stimulation was just sufficient to produce a contraction of the muscle belly underncath the coil. Recording electrode was placed at 2 cm posterior to the Cz. referencc to Fpz. Thc latencics of N33. P38, N48 and P55 and amplitude (P38-N48) were recorded. SEP was recorded by routine methods. RESULTS: in normal subjects. thc amplitude of magnetic stimulation of calf muscle was 40% lower. and the latency of P38 was 2.9±2.1 ms longer compared with electrical stimulation of the posterior tibial nerves at ankle. In 6 patients. P38 latency from magnetic stimulation was remarkable prolonged (P<0.01). and in 4 patients. there no any response was found. SElP from electrical stimulation was normal in all patients. CONCLUSTION: DMD is an available model for the study of meclhanism of cerebral evoked potentials by magnetic stimulating muscles. Wc can coneludc that thc responses were produced by muscle input. The abnormal responses in patients may relate to decreased input of muscle by muscular dystrophy and pscudohypcrtrophy.

  16. [Guideline on the use of corticosteroids in Duchenne muscular dystrophy from paediatric neurologists, neurologists and rehabilitation physicians

    NARCIS (Netherlands)

    Groot, I.J.M. de

    2006-01-01

    A guideline on the treatment of boys with muscular dystrophy with corticosteroids has been written and is available from the Dutch patients' organization. The guideline has been approved by the Dutch Societies of Neurology, Rehabilitation and Paediatrics. Based on the available literature the advice

  17. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish.

    Directory of Open Access Journals (Sweden)

    Vandana A Gupta

    Full Text Available Congenital muscular dystrophy (CMD is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2. Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.

  18. Slender Spring Systems, for a close-to-body dynamic arm support for people with Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Dunning, A.G.

    2016-01-01

    The goal of this dissertation is to develop a wearable, passive, dynamic arm support that provides users with Duchenne muscular dystrophy (DMD) with support to perform activities of daily living. The arm support needs to be inconspicuous and not stigmatizing, to encourage the users to participate in

  19. Fatty liver disease and hypertransaminasemia hiding the association of clinically silent Duchenne muscular dystrophy and hereditary fructose intolerance.

    Science.gov (United States)

    Paolella, Giulia; Pisano, Pasquale; Albano, Raffaele; Cannaviello, Lucio; Mauro, Carolina; Esposito, Gabriella; Vajro, Pietro

    2012-10-31

    We report a case with the association of well self-compensated hereditary fructose intolerance and still poorly symptomatic Duchenne type muscular dystrophy. This case illustrates the problems of a correct diagnosis in sub-clinical patients presenting with "cryptogenic" hypertransaminasemia.

  20. Fatty liver disease and hypertransaminasemia hiding the association of clinically silent Duchenne muscular dystrophy and hereditary fructose intolerance

    Directory of Open Access Journals (Sweden)

    Paolella Giulia

    2012-10-01

    Full Text Available Abstract We report a case with the association of well self-compensated hereditary fructose intolerance and still poorly symptomatic Duchenne type muscular dystrophy. This case illustrates the problems of a correct diagnosis in sub-clinical patients presenting with “cryptogenic” hypertransaminasemia.

  1. Contractions of D4Z4 on 4qB subtelomeres do not cause facioscapulohumeral muscular dystrophy.

    NARCIS (Netherlands)

    Lemmers, R.J.L.F.; Wohlgemuth, M.; Frants, R.R.; Padberg, G.W.A.M.; Morava, E.; Maarel, S.M. van der

    2004-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is associated with contractions of the D4Z4 repeat in the subtelomere of chromosome 4q. Two allelic variants of chromosome 4q (4qA and 4qB) exist in the region distal to D4Z4. Although both variants are almost equally frequent in the population, FSHD is

  2. Efficient and fast functional screening of microdystrophin constructs in vivo and in vitro for therapy of duchenne muscular dystrophy

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Larochelle, Nancy; Orlopp, Kristian

    2009-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, lethal genetic disorder affecting the skeletal muscle compartment, and is caused by mutation(s) in the dystrophin gene. Gene delivery of microdystrophin constructs using adeno-associated virus (AAV) and antisense-mediated exon skipping restoring...

  3. Mechanism and timing of mitotic rearrangements in the subtelomeric D4Z4 repeat involved in facioscapulohumeral muscular dystrophy.

    NARCIS (Netherlands)

    Lemmers, R.J.L.F.; Overveld, P.G; Sandkuijl, L.A.; Vrieling, H.; Padberg, G.W.A.M.; Frants, R.R.; Maarel, S.M. van der

    2004-01-01

    Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD1A) is associated with contractions of the polymorphic D4Z4 repeat on chromosome 4qter. Almost half of new FSHD mutations occur postfertilization, resulting in somatic mosaicism for D4Z4. Detailed D4Z4 analysis of 11 mosaic individuals w

  4. Skeletal muscle homeostasis in Duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy

    Directory of Open Access Journals (Sweden)

    Clara eDe Palma

    2014-07-01

    Full Text Available Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterised by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD, the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity and chronic local inflammation leading to substitution of myofibres by connective and adipose tissue. DMD patients suffer of continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. The autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels it can be detrimental and contribute to muscle wasting; at low levels it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular levels, the Akt axis is one of the key disregulated pathways, although the molecular events are not completely understood.The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signalling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.

  5. Modifier locus of the skeletal muscle involvement in Emery-Dreifuss muscular dystrophy.

    Science.gov (United States)

    Granger, B; Gueneau, L; Drouin-Garraud, V; Pedergnana, V; Gagnon, F; Ben Yaou, R; Tezenas du Montcel, S; Bonne, G

    2011-02-01

    Autosomal dominant Emery-Dreifuss muscular dystrophy is caused by mutations in LMNA gene encoding lamins A and C. The disease is characterized by early onset joint contractures during childhood associated with humero-peroneal muscular wasting and weakness, and by the development of a cardiac disease in adulthood. Important intra-familial variability characterized by a wide range of age at onset of myopathic symptoms (AOMS) has been recurrently reported, suggesting the contribution of a modifier gene. Our objective was to identify a modifier locus of AOMS in relation with the LMNA mutation. To map the modifier locus, we genotyped 291 microsatellite markers in 59 individuals of a large French family, where 19 patients carrying the same LMNA mutation, exhibited wide range of AOMS. We performed Bayesian Markov Chain Monte Carlo-based joint segregation and linkage methods implemented in the Loki software, and detected a strong linkage signal on chromosome 2 between markers D2S143 and D2S2244 (211 cM) with a Bayes factor of 28.7 (empirical p value = 0.0032). The linked region harbours two main candidate genes, DES and MYL1 encoding desmin and light chain of myosin. Importantly, the impact of the genotype on the phenotype for this locus showed an overdominant effect with AOMS 2 years earlier for the homozygotes of the rare allele and 37 years earlier for the heterozygotes than the homozygotes for the common allele. These results provide important highlights for the natural history and for the physiopathology of Emery-Dreifuss muscular dystrophy.

  6. Gene expression profiling in limb-girdle muscular dystrophy 2A.

    Directory of Open Access Journals (Sweden)

    Amets Sáenz

    Full Text Available Limb-girdle muscular dystrophy type 2A (LGMD2A is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3. Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens, cell adhesion (fibronectin, muscle development (myosins and melusin and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB is upregulated in LGMD2A muscle samples, it could be hypothesized that beta-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1. Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.

  7. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K., E-mail: mcloo001@tc.umn.edu

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  8. Sparing of extraocular muscle in aging and muscular dystrophies: a myogenic precursor cell hypothesis.

    Science.gov (United States)

    Kallestad, Kristen M; Hebert, Sadie L; McDonald, Abby A; Daniel, Mark L; Cu, Sharon R; McLoon, Linda K

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin(-/-) (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation

  9. Muscular dystrophy

    Science.gov (United States)

    ... muscle strength and function. Leg braces and a wheelchair can improve mobility and self-care. In some ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 609. ...

  10. Muscular Dystrophy

    Science.gov (United States)

    ... Bushby KM, Appleton R, Anderson LV, Welch JL, Kelly P, Gardner-Medwin D. Deletion status and intellectual ... under-diagnosed disorder? Swiss Med. Wkly. Oct 1 2005;135(39-40):574-586. 4. Bouchard JP, ...

  11. Muscular Dystrophy

    Science.gov (United States)

    ... body move. People with MD have incorrect or missing information in their genes, which prevents them from ... some people with MD may need help getting books out during class or rides to and from ...

  12. Limb-girdle muscular dystrophy in Brazilian children: clinical, histological and molecular characterization

    Directory of Open Access Journals (Sweden)

    Marco A. Veloso Albuquerque

    2014-06-01

    Full Text Available Limb-girdle muscular dystrophies (LGMD are a heterogeneous group of genetic muscular dystrophies, involving 16 autosomal recessive subtypes and eight autosomal dominant subtypes. Autosomal recessive dystrophy is far more common than autosomal dominant dystrophy, particularly in children. The clinical course in this group is characterized by progressive proximal weakness, initially in pelvic and after in shoulder-girdle musculature, varying from very mild to severe degree. Significant overlap of clinical phenotypes, with genetic and clinical heterogeneity, constitutes the rule for this group of diseases. Muscle biopsies are useful for histopathologic and immunolabeling studies, and DNA analysis is the gold standard to establish the specific form of muscular dystrophy. Objectives: The aim of this study was to characterize the clinical, histological and molecular aspects in children with LGMD who attend a big public neuromuscular centre in our country to determine the frequency of different forms. Method: Thirty seven patients were classified as LGMD and included in this analysis. The study period extended from 2009-2012. The female to male ratio was 3:1. The age of onset ranged from two to 13 years, mean 7,5 years. Onset in the first decade was seen in 90%. Results: The initial clinical signs included: frequent falls (22 cases, difficulty in climbing stairs (13 cases, walk on tip toes (2 cases, difficulty in rising from the floor (2 cases and difficulty on walking (1 case. The serum CK levels were high in all cases. Among the 37 patients, 15 (40,5% were classified as sarcoglycanopathies (LGMD2C-F, five (13,5% as dysferlinopathy (LGMD2B, five (13,5% as calpainopathy (LGMD2A. Mutations in LMNA gene (LGMD1B, FKRP gene (LGMDI and caveolin gene (LGMD 1C were identified in two (5,5%, two (5,5% and one patient (2,5%, respectively. In seven of 37 cases (19% it was impossible to determine specific diagnosis. Calf hypertrophy, scapular winging and scoliosis

  13. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Nelson, Christopher E; Hakim, Chady H; Ousterout, David G; Thakore, Pratiksha I; Moreb, Eirik A; Castellanos Rivera, Ruth M; Madhavan, Sarina; Pan, Xiufang; Ran, F Ann; Yan, Winston X; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A

    2016-01-22

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.

  14. A novel early onset phenotype in a zebrafish model of merosin deficient congenital muscular dystrophy

    Science.gov (United States)

    Smith, Sarah J.; Wang, Jeffrey C.; Gupta, Vandana A.; Dowling, James J.

    2017-01-01

    Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling disease. The zebrafish has emerged as a powerful model system for the identification of novel therapies. However, drug discovery in the zebrafish is largely dependent on the identification of phenotypes suitable for chemical screening. Our goal in this study was to elucidate novel, early onset abnormalities in the candyfloss (caf) zebrafish, a model of MDC1A. We uncovered and characterize abnormalities in spontaneous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change specific to caf mutants that is ideal for future drug testing. PMID:28241031

  15. Changes of laminin beta 2 chain expression in congenital muscular dystrophy

    DEFF Research Database (Denmark)

    Cohn, R D; Herrmann, R; Wewer, U M;

    1997-01-01

    We studied the distribution of laminin beta 2 chain in the skeletal muscle basement membrane of 16 patients with congenital muscular dystrophy (CMD) by immunohistochemistry. A dramatic reduction in the laminin beta 2 staining was observed in four patients with classical merosin-negative CMD....... A moderate reduction of laminin beta 2 labelling was observed in four patients with partial merosin deficiency and two patients with merosin-positive CMD. Two patients with merosin-positive CMD had no apparent changes in the expression of laminin beta 2. In three patients and one fetus diagnosed as Walker......-Warburg syndrome (WWS) the laminin beta 2 pattern was similar to normal controls. We conclude that a primary deficiency in the laminin alpha 2 chain may lead to a vast or moderate reduction in the laminin beta 2 chain in the skeletal muscle membrane....

  16. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W;

    2003-01-01

    Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...... models may be valuable for such genotype-phenotype analysis and for determining mechanism of disease as well as function of laminin. Here, we have analyzed protein expression in three lines of mice with mutations in the laminin alpha2 chain gene and in two lines of transgenic mice overexpressing...... the human laminin alpha2 chain gene in skeletal muscle. The dy(3K)/dy(3K) experimental mutant mice are completely deficient in laminin alpha2; the dy/dy spontaneous mutant mice have small amounts of apparently normal laminin; and the dy(W)/dy(W) mice express even smaller amounts of a truncated laminin alpha...

  17. The Growing Family of Limb-Girdle Muscular Dystrophies: Old and Newly Identified Members.

    Science.gov (United States)

    Bastian, Alexandra; Mageriu, V; Micu, Gianina; Manole, Emilia

    2015-01-01

    Limb-girdle muscular dystrophies (LGMD) are an extremely heterogeneous and rapidly expanding group of diseases characterized by progressive weakness of pelvic, scapular and trunk muscles with sparing of facial and distal musculature in most of the subtypes, onset in childhood or in adults of both sexes, very variable clinical severity ranging from mild to severe phenotypes, some associated with cardio-pulmonary and extraskeletal impairment and high serum creatine-kinase (CK) levels. In the past years, huge advances have been recorded in the various identification methods and new distinct entities were discovered. However, it is not yet clear why some muscle groups are affected and others spared in a specific subtype of LGMD, why similar clinical pictures are associated with different genes and mutations, while the same gene or mutation may present with very various clinical phenotypes. In this review we summarize the main aspects of positive and differential diagnosis in LGMD.

  18. From "glycosyltransferase" to "congenital muscular dystrophy": integrating knowledge from NCBI Entrez Gene and the Gene Ontology.

    Science.gov (United States)

    Sahoo, Satya S; Zeng, Kelly; Bodenreider, Olivier; Sheth, Amit

    2007-01-01

    Entrez Gene (EG), Online Mendelian Inheritance in Man (OMIM) and the Gene Ontology (GO) are three complementary knowledge resources that can be used to correlate genomic data with disease information. However, bridging between genotype and phenotype through these resources currently requires manual effort or the development of customized software. In this paper, we argue that integrating EG and GO provides a robust and flexible solution to this problem. We demonstrate how the Resource Description Framework (RDF) developed for the Semantic Web can be used to represent and integrate these resources and enable seamless access to them as a unified resource. We illustrate the effectiveness of our approach by answering a real-world biomedical query linking a specific molecular function, glycosyltransferase, to the disorder congenital muscular dystrophy.

  19. Initial pulmonary respiration causes massive diaphragm damage and hyper-CKemia in Duchenne muscular dystrophy dog.

    Science.gov (United States)

    Nakamura, Akinori; Kobayashi, Masanori; Kuraoka, Mutsuki; Yuasa, Katsutoshi; Yugeta, Naoko; Okada, Takashi; Takeda, Shin'ichi

    2013-01-01

    The molecular mechanism of muscle degeneration in a lethal muscle disorder Duchene muscular dystrophy (DMD) has not been fully elucidated. The dystrophic dog, a model of DMD, shows a high mortality rate with a marked increase in serum creatine kinase (CK) levels in the neonatal period. By measuring serum CK levels in cord and venous blood, we found initial pulmonary respiration resulted in massive diaphragm damage in the neonates and thereby lead to the high serum CK levels. Furthermore, molecular biological techniques revealed that osteopontin was prominently upregulated in the dystrophic diaphragm prior to the respiration, and that immediate-early genes (c-fos and egr-1) and inflammation/immune response genes (IL-6, IL-8, COX-2, and selectin E) were distinctly overexpressed after the damage by the respiration. Hence, we segregated dystrophic phases at the molecular level before and after mechanical damage. These molecules could be biomarkers of muscle damage and potential targets in pharmaceutical therapies.

  20. Emery–Dreifuss muscular dystrophy: a test case for precision medicine

    Directory of Open Access Journals (Sweden)

    Pillers DAM

    2016-02-01

    Full Text Available De-Ann M Pillers,1 Nicholas H Von Bergen21Division of Neonatology and Newborn Medicine, 2Division of Cardiology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USAAbstract: Emery–Dreifuss muscular dystrophy (EDMD is characterized by the clinical triad of scapulohumeroperoneal muscle weakness, joint contractures, and cardiac defects that include arrhythmias and dilated cardiomyopathy. Although there is a defining group of clinical findings, the proteins responsible and their underlying gene defects leading to EDMD are varied. A common aspect of the gene defects is their involvement in, or with, the nuclear envelope. Treatment approaches are largely based on clinical symptoms. The genetic diversity of EDMD predicts that a cure will ultimately depend upon the individual's defect at the gene level, making this an ideal candidate for a precision medicine approach.Keywords: emerin, FHL1, lamins A/C, nuclear envelope

  1. Peripartum cardiomyopathy in a previously asymptomatic carrier of Duchenne muscular dystrophy.

    Science.gov (United States)

    Cheng, Victoria E; Prior, David L

    2013-08-01

    A 40 year-old woman presented to hospital with 12h of progressive shortness of breath. She was 11 days postpartum, having delivered a full-term male infant. She was discharged on antibiotics for presumed pneumonia, but represented two days later with NYHA class IV symptoms and in acute decompensated heart failure confirmed on clinical examination and chest X-ray. Echocardiography showed a left ventricular ejection fraction (LVEF) of 20%. She was treated for peripartum cardiomyopathy (PPCM) with angiotensin converting enzyme inhibitors (ACEi), beta-blockers and diuretics with normalisation of her cardiac function within six months. Four years later, her son was diagnosed with Duchenne muscular dystrophy (DMD) and she tested positive as a carrier of the mutant gene. It is unclear whether the DMD carrier state alone is associated with increased susceptibility to PPCM or if this is merely the first expression of cardiomyopathy in a previously asymptomatic carrier.

  2. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy.

    Science.gov (United States)

    Bione, S; Maestrini, E; Rivella, S; Mancini, M; Regis, S; Romeo, G; Toniolo, D

    1994-12-01

    Emery-Dreifuss muscular dystrophy (EDMD) is an X-linked recessive disorder characterized by slowly progressing contractures, wasting of skeletal muscle and cardiomyopathy. Heart block is a frequent cause of death. The disease gene has been mapped to distal Xq28. Among many genes in this region, we selected eight transcripts expressed at high levels in skeletal muscle, heart and/or brain as the best candidates for the disease. We now report, in all five patients studied, unique mutations in one of the genes, STA: these mutations result in the loss of all or part of the protein. The EDMD gene encodes a novel serine-rich protein termed emerin, which contains a 20 amino acid hydrophobic domain at the C terminus, similar to that described for many membrane proteins of the secretory pathway involved in vesicular transport.

  3. Rapid DNA haplotyping using a multiplex heteroduplex approach: application to Duchenne muscular dystrophy carrier testing.

    Science.gov (United States)

    Prior, T W; Wenger, G D; Papp, A C; Snyder, P J; Sedra, M S; Bartolo, C; Moore, J W; Highsmith, W E

    1995-01-01

    A new strategy has been developed for rapid haplotype analysis based on an initial multiplex amplification of several polymorphic sites, followed by heteroduplex detection. Heteroduplexes formed between two different alleles are detected because they migrate differently than the corresponding homoduplexes in Hydrolink-MDE gel. This simple, rapid method does not depend on specific sequences such as restriction enzyme sites or CA boxes and does not require the use of isotope. This approach has been tested using commonly occurring polymorphisms spanning the dystrophin gene as a model. We describe the use of the method to assign the carrier status of females in Duchenne muscular dystrophy (DMD) pedigrees. The method may be used for other genetic diseases when mutations are unknown or there are few dinucleotide markers in the gene proximity, and for the identification of haplotype backgrounds of mutant alleles.

  4. Dystrophin expression in a Duchenne muscular dystrophy patient with a frame shift deletion.

    Science.gov (United States)

    Prior, T W; Bartolo, C; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Kissel, J T; Luquette, M H; Tsao, C Y; Mendell, J R

    1997-02-01

    The exon 45 deletion is a common dystrophin gene deletion. Although this is an out-of-frame deletion, which should not allow for protein synthesis, it has been observed in mildly affected patients. We describe a patient with an exon 45 deletion who produced protein, but still had a severe Duchenne muscular dystrophy phenotype. RT-PCR analysis and cDNA sequencing from the muscle biopsy sample revealed that the exon 45 deletion induced exon skipping of exon 44, which resulted in an in-frame deletion and the production of dystrophin. A conformational change in dystrophin induced by the deletion is proposed as being responsible for the severe phenotype in the patient. We feel that the variable clinical phenotype observed in patients with the exon 45 deletion is not due to exon splicing but may be the result of other environmental or genetic factors, or both.

  5. A missense mutation in the dystrophin gene in a Duchenne muscular dystrophy patient.

    Science.gov (United States)

    Prior, T W; Papp, A C; Snyder, P J; Burghes, A H; Bartolo, C; Sedra, M S; Western, L M; Mendell, J R

    1993-08-01

    About two thirds of Duchenne muscular dystrophy (DMD) patients have either gene deletions or duplications. The other DMD cases are most likely the result of point mutations that cannot be easily identified by current strategies. Utilizing a heteroduplex technique and direct sequencing of amplified products, we screened our nondeletion/duplication DMD population for point mutations. We now describe what we believe to be the first dystrophin missense mutation in a DMD patient. The mutation results in the substitution of an evolutionarily conserved leucine to arginine in the actin-binding domain. The patient makes a dystrophin protein which is properly localized and is present at a higher level than is observed in DMD patients. This suggests that an intact actin-binding domain is necessary for protein stability and essential for function.

  6. Alpha-hydroxybutyrate dehydrogenase activity in sex-linked muscular dystrophy.

    Science.gov (United States)

    Johnston, H A; Wilkinson, J H; Withycombe, W A; Raymond, S

    1966-05-01

    In two families with severe sex-linked muscular dystrophy, high levels of alpha-hydroxybutyrate dehydrogenase (HBD), lactate dehydrogenase (LD), aspartate transaminase (AspT), aldolase, and creatine phosphokinase (CPK) were found in the sera of three young affected males. In both families the mother had a raised level of HBD activity. Four sisters of the three affected boys had raised serum enzyme levels, and they are regarded as presumptive carriers of the disease. Biopsy specimens of dystrophic muscle had LD and HBD contents which were significantly lower than those of control specimens, while the HBD/LD ratios were markedly greater. Muscle from two unaffected members of the same family also exhibited high ratios, indicating the presence of the electrophoretically fast LD isoenzymes, and this was confirmed by acrylamide-gel electrophoresis.

  7. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program

    DEFF Research Database (Denmark)

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han;

    2015-01-01

    in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription...... factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although...... glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic...

  8. Effect of mazindol on growth hormone levels in patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Zatz, M; Rapaport, D; Vainzof, M; Pavanello, R de C; Rocha, J M; Betti, R T; Otto, P A

    1988-12-01

    Human growth hormone (HGH) inhibition may be beneficial in Duchenne muscular dystrophy (DMD) and slow down the rate of progression of the disease. The purposes of the present investigation were: 1) to assess, through pharmacological stimuli (L-dopa test), the HGH response in untreated DMD patients, and 2) to evaluate the inhibitory effect of mazindol on HGH levels as a potential treatment for DMD. In 55 DMD patients, HGH levels were measured through the L-dopa test, and 40 received mazindol. After 1 year, there was wide variability in the individual response to mazindol. An apparent diminution in the mean HGH level was observed in the whole group of patients; this was statistically significant after 3 and 6 months but not after 9 and 12 months of treatment. The results suggest that this drug is not effective for arresting growth or inhibiting HGH secretion for a prolonged period of time.

  9. Late-onset Pompe disease with phenotype of the limb-girdle muscular dystrophy

    Directory of Open Access Journals (Sweden)

    S. A. Kurbatov

    2015-01-01

    Full Text Available Pompe disease, also known as type II glycogenosis, is a rare autosomal recessive disease. Two main types include early-onset Pompe disease – severe, rapidly progressive multisystem deficency, manifestating on the first year of life, and late-onset Pompe disease (LOPD, with the age of onset ranging from the first year till late adulthood. Both types are caused by the deficiency of lysosomal acid-α-glucosidase due to the mutations in GAA gene, leading to an excessive storage of glycogen in body cells. LOPD is a slowly progressive disease with a primary lesion of a skeletal, respiratory and cardiac muscles, affected in different grade, and moderately elevated сreatine kinase. It is often difficult to perform differential diagnosis with a large group of hereditary and non-hereditary myopathies. We present a case report of LOPD with signs of limb-girdle muscular dystrophy.

  10. Psychological aspects in children affected by Duchenne de Boulogne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Michele Roccella

    2012-01-01

    Full Text Available Impairment of intelligence in Duchenne muscular dystrophy (DMD patients was described by Duchenne de Boulogne himself in 1868. Further studies report intelligence disorders with mayor impairment of memory. The aim of the present study was to assess the presence of affective and personality disorders in a group of children affected by DMD. Twenty six male DMD patients, mean age eleven and four months years old, were assessed for their affective and personality disorder. Only eight subjects had a total IQ below average with major difficulties in verbal and visual-spatial memory, comprehension, arithmetic and vocabulary. All the subjects presented some disorders: tendency to marginalization and isolation, self-depreciation, sense of insecurity, hypochondriac thoughts and marked state of anxiety. These disorders are often a dynamic prolongation of a psychological process which starts when the diagnosis is made and continues, in a slow and latent fashion, throughout the evolution of the disease.

  11. Relationship between muscle strength and motor function in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Milene F. Nunes

    2016-07-01

    Full Text Available ABSTRACT Measuring muscle strength and motor function is part of Duchenne muscular dystrophy (DMD assessment. However, the relationship between these variables is controversial. Objective To investigate the relationship between muscle strength and motor function and between these variables and age. Method Muscle strength was measured by Medical Research Council (MRC scale and motor function, by Motor Function Measure (MFM, in 40 non-ambulatory patients. Spearman tests investigated the relationships between muscle strength, motor function and age. Results Total MRC and MFM scores were strongly related to each other (r = 0.94; p 0.05. Strong and moderate relationships between partial muscle strength and motor function scores were found. Higher correlation coefficients were found between total scores and Dimensions 2 (axial/ proximal control and 3 (distal control of MFM. Conclusion Muscle strength and motor function are strongly correlated and seem to decrease proportionally in DMD.

  12. Musculoskeletal simulation can help explain selective muscle degeneration in Duchenne muscular dystrophy.

    Science.gov (United States)

    Hu, Xiao; Blemker, Silvia S

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a genetic disease that occurs due to the deficiency of the dystrophin protein. Although dystrophin is deficient in all muscles, it is unclear why degeneration progresses differently across muscles in DMD. We hypothesized that each muscle undergoes a different degree of eccentric contraction during gait, which could contribute to the selective degeneration in lower limb muscle, as indicated by various amounts of fatty infiltration. By comparing eccentric contractions quantified from a previous multibody dynamic musculoskeletal gait simulation and fat fractions quantified in a recent imaging study, our preliminary analyses show a strong correlation between eccentric contractions during gait and lower limb muscle fat fractions, supporting our hypothesis. This knowledge is critical for developing safe exercise regimens for the DMD population. This study also provides supportive evidence for using multiscale modeling and simulation of the musculoskeletal system in future DMD research.

  13. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM. This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  14. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    Science.gov (United States)

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  15. Influência da fisioterapia na função motora e histopatologia da fibra muscular esquelética no modelo Golden Retriever Muscular Dystrophy (GRMD)

    OpenAIRE

    Thaís Peixoto Gaiad

    2006-01-01

    Esta pesquisa teve como objetivo investigar a influência da Fisioterapia como coadjuvante no tratamento da Distrofia Muscular de Duchenne. Utilizou-se um protocolo de atividades físicas direcionadas para as alterações músculo-esqueléticas características da patologia, no modelo Golden Retriever Muscular Dystrophy (GRMD), através de uma analogia entre as duas espécies. Foram selecionados seis animais machos e distróficos, do grupo do Canil GRMD / USP. A confirmação da patologia foi realizada p...

  16. Comparison of left ventricular function assessment between echocardiography and MRI in Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Buddhe, Sujatha; Lewin, Mark; Olson, Aaron; Soriano, Brian D. [University of Washington School of Medicine and Seattle Children' s Hospital, Division of Cardiology, Department of Pediatrics, Seattle, WA (United States); Ferguson, Mark [University of Washington School of Medicine and Seattle Children' s Hospital, Department of Radiology, Seattle, WA (United States)

    2016-09-15

    Cardiomyopathy in Duchenne muscular dystrophy (DMD) is associated with death in approximately 40% of patients. Echocardiography is routinely used to assess left ventricular (LV) function; however, it has limitations in these patients. We compared echocardiographic measures of cardiac function assessment to cardiac MRI. We included children and young adults with DMD who had MRI performed between January 2010 and July 2015. We measured echocardiographic and MRI parameters of function assessment, including strain. Presence of late gadolinium enhancement (LGE) was assessed by MRI. Subjects were divided into two groups based on MRI left ventricular ejection fraction (LVEF): group I, LVEF ≥55% and group II, LVEF <55%. We included 41 studies in 33 subjects, with 25 in group I and 16 in group II. Mean age of subjects was 13.6 ± 2.8 years and mean duration between echocardiogram and MRI was 7.6 ± 4.1 months. Only 8 of 16 (50%) patients in group II had diminished function on echocardiogram. Echocardiographic images were suboptimal in 16 subjects (39%). Overall, echocardiographic parameters had weak correlation with MRI-derived ejection fraction percentage. MRI-derived myocardial strain assessment has better correlation with MRI ejection fraction as compared to echocardiography-derived strain parameters. Echocardiography-based ventricular functional assessment has weak correlation with MRI parameters in children and young adults with Duchenne muscular dystrophy. While this correlation improves in the subset of subjects with adequate echocardiographic image quality, it remains modest and potentially suboptimal for clinical management. Accordingly, we conclude that MRI should be performed routinely and early in children with DMD, not only for LGE imaging but also for functional assessment. (orig.)

  17. In vivo MRI characterization of progressive cardiac dysfunction in the mdx mouse model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Daniel J Stuckey

    Full Text Available AIMS: The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice. METHODS AND RESULTS: Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV and right ventricular (RV systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy. CONCLUSIONS: MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.

  18. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells

    Directory of Open Access Journals (Sweden)

    Carmen eBertoni

    2014-04-01

    Full Text Available The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion.The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD, the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology.

  19. Developmental Changes in the ECG of a Hamster Model of Muscular Dystrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Thomas Gerard Hampton

    2012-05-01

    Full Text Available Aberrant autonomic signaling is being increasingly recognized as an important symptom in neuromuscular disorders. The delta-sarcoglycan-deficient BIO TO-2 hamster is recognized as a good model for studying mechanistic pathways and sequelae in muscular dystrophy and heart failure, including autonomic nervous system dysfunction. Recent studies using the TO-2 hamster model have provided promising preclinical results demonstrating the efficacy of gene therapy to treat skeletal muscle weakness and heart failure. Methods to accelerate preclinical testing of gene therapy and new drugs for neuromuscular diseases are urgently needed. The purpose of this investigation was to demonstrate a rapid non-invasive screen for characterizing the autonomic nervous system imbalance in dystrophic TO-2 hamsters. Electrocardiograms were recorded non-invasively in conscious ~9-month old TO-2 hamsters (n=10 and non-myopathic F1B control hamsters (n=10. Heart rate was higher in TO-2 hamsters than controls (453 ± 12 bpm vs. 311 ± 25 bpm, P<0.01. Time domain heart rate variability, an index of parasympathetic tone, was lower in TO-2 hamsters (12.2 ± 3.7 bpm vs. 38.2 ± 6.8, P<0.05, as was the coefficient of variance of the RR interval (2.8 ± 0.9 % vs. 16.2 ± 3.4 %, P<0.05 compared to control hamsters. Power spectral analysis demonstrated reduced high frequency and low frequency contributions, indicating autonomic imbalance with increased sympathetic tone and decreased parasympathetic tone in dystrophic TO-2 hamsters. Similar observations in newborn hamsters indicate autonomic nervous dysfunction may occur quite early in life in neuromuscular diseases. Our findings of autonomic abnormalities in newborn hamsters with a mutation in the delta-sarcoglycan gene suggest approaches to correct modulation of the heart rate as prevention or therapy for muscular dystrophies.

  20. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy.

    Science.gov (United States)

    Abou-Khalil, Rana; Yang, Frank; Mortreux, Marie; Lieu, Shirley; Yu, Yan-Yiu; Wurmser, Maud; Pereira, Catia; Relaix, Frédéric; Miclau, Theodore; Marcucio, Ralph S; Colnot, Céline

    2014-02-01

    Duchenne muscular dystrophy (DMD) patients exhibit skeletal muscle weakness with continuous cycles of muscle fiber degeneration/regeneration, chronic inflammation, low bone mineral density, and increased risks of fracture. Fragility fractures and associated complications are considered as a consequence of the osteoporotic condition in these patients. Here, we aimed to establish the relationship between muscular dystrophy and fracture healing by assessing bone regeneration in mdx mice, a model of DMD with absence of osteoporosis. Our results illustrate that muscle defects in mdx mice impact the process of bone regeneration at various levels. In mdx fracture calluses, both cartilage and bone deposition were delayed followed by a delay in cartilage and bone remodeling. Vascularization of mdx fracture calluses was also decreased during the early stages of repair. Dystrophic muscles are known to contain elevated numbers of macrophages contributing to muscle degeneration. Accordingly, we observed increased macrophage recruitment in the mdx fracture calluses and abnormal macrophage accumulation throughout the process of bone regeneration. These changes in the inflammatory environment subsequently had an impact on the recruitment of osteoclasts and the remodeling phase of repair. Further damage to the mdx muscles, using a novel model of muscle trauma, amplified both the chronic inflammatory response and the delay in bone regeneration. In addition, PLX3397 treatment of mdx mice, a cFMS (colony stimulating factor receptor 1) inhibitor in monocytes, partially rescued the bone repair defect through increasing cartilage deposition and decreasing the number of macrophages. In conclusion, chronic inflammation in mdx mice contributes to the fracture healing delay and is associated with a decrease in angiogenesis and a transient delay in osteoclast recruitment. By revealing the role of dystrophic muscle in regulating the inflammatory response during bone repair, our results

  1. Oxidative damage in muscular dystrophy correlates with the severity of the pathology: role of glutathione metabolism.

    Science.gov (United States)

    Renjini, R; Gayathri, N; Nalini, A; Srinivas Bharath, M M

    2012-04-01

    Muscular dystrophies (MDs) such as Duchenne muscular dystrophy (DMD), sarcoglycanopathy (Sgpy) and dysferlinopathy (Dysfy) are recessive genetic neuromuscular diseases that display muscle degeneration. Although these MDs have comparable endpoints of muscle pathology, the onset, severity and the course of these diseases are diverse. Different mechanisms downstream of genetic mutations might underlie the disparity in these pathologies. We surmised that oxidative damage and altered antioxidant function might contribute to these differences. The oxidant and antioxidant markers in the muscle biopsies from patients with DMD (n = 15), Sgpy (n = 15) and Dysfy (n = 15) were compared to controls (n = 10). Protein oxidation and lipid peroxidation was evident in all MDs and correlated with the severity of pathology, with DMD, the most severe dystrophic condition showing maximum damage, followed by Sgpy and Dysfy. Oxidative damage in DMD and Sgpy was attributed to the depletion of glutathione (GSH) and lowered antioxidant activities while loss of GSH peroxidase and GSH-S-transferase activities was observed in Dysfy. Lower GSH level in DMD was due to lowered activity of gamma-glutamyl cysteine ligase, the rate limiting enzyme in GSH synthesis. Similar analysis in cardiotoxin (CTX) mouse model of MD showed that the dystrophic muscle pathology correlated with GSH depletion and lipid peroxidation. Depletion of GSH prior to CTX exposure in C2C12 myoblasts exacerbated oxidative damage and myotoxicity. We deduce that the pro and anti-oxidant mechanisms could be correlated to the severity of MD and might influence the dystrophic pathology to a different extent in various MDs. On a therapeutic note, this could help in evolving novel therapies that offer myoprotection in MD.

  2. A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy.

    Science.gov (United States)

    Whitehead, Nicholas P; Kim, Min Jeong; Bible, Kenneth L; Adams, Marvin E; Froehner, Stanley C

    2015-10-13

    Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease with no effective treatment. DMD muscle pathogenesis is characterized by chronic inflammation, oxidative stress, and fibrosis. Statins, cholesterol-lowering drugs, inhibit these deleterious processes in ischemic diseases affecting skeletal muscle, and therefore have potential to improve DMD. However, statins have not been considered for DMD, or other muscular dystrophies, principally because skeletal-muscle-related symptoms are rare, but widely publicized, side effects of these drugs. Here we show positive effects of statins in dystrophic skeletal muscle. Simvastatin dramatically reduced damage and enhanced muscle function in dystrophic (mdx) mice. Long-term simvastatin treatment vastly improved overall muscle health in mdx mice, reducing plasma creatine kinase activity, an established measure of muscle damage, to near-normal levels. This reduction was accompanied by reduced inflammation, more oxidative muscle fibers, and improved strength of the weak diaphragm muscle. Shorter-term treatment protected against muscle fatigue and increased mdx hindlimb muscle force by 40%, a value comparable to current dystrophin gene-based therapies. Increased force correlated with reduced NADPH Oxidase 2 protein expression, the major source of oxidative stress in dystrophic muscle. Finally, in old mdx mice with severe muscle degeneration, simvastatin enhanced diaphragm force and halved fibrosis, a major cause of functional decline in DMD. These improvements were accompanied by autophagy activation, a recent therapeutic target for DMD, and less oxidative stress. Together, our findings highlight that simvastatin substantially improves the overall health and function of dystrophic skeletal muscles and may provide an unexpected, novel therapy for DMD and related neuromuscular diseases.

  3. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.

    Science.gov (United States)

    Gehrig, Stefan M; van der Poel, Chris; Sayer, Timothy A; Schertzer, Jonathan D; Henstridge, Darren C; Church, Jarrod E; Lamon, Severine; Russell, Aaron P; Davies, Kay E; Febbraio, Mark A; Lynch, Gordon S

    2012-04-04

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.

  4. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    Science.gov (United States)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  5. The role of proteases in excitation-contraction coupling failure in muscular dystrophy.

    Science.gov (United States)

    Mázala, Davi A G; Grange, Robert W; Chin, Eva R

    2015-01-01

    Duchenne muscular dystrophy (DMD) is one of the most frequent types of muscular dystrophy. Alterations in intracellular calcium (Ca(2+)) handling are thought to contribute to the disease severity in DMD, possibly due to the activation of Ca(2+)-activated proteases. The purpose of this study was twofold: 1) to determine whether prolonged excitation-contraction (E-C) coupling disruption following repeated contractions is greater in animals lacking both dystrophin and utrophin (mdx/Utr(-/-)) compared with mice lacking only dystrophin (mdx); and 2) to assess whether protease inhibition can prevent E-C coupling failure following repeated tetani in these dystrophic mouse models. Excitation-contraction coupling was assessed using Fura-2 ratio, as an index of intracellular free Ca(2+) concentration, in response to electrical stimulation of single muscle fibers from the flexor digitorum brevis muscle. Resting Fura-2 ratio was higher in dystrophic compared with control (Con) fibers, but peak Fura-2 ratios during stimulation were similar in dystrophic and Con fibers. One hour after a series of repeated tetani, peak Fura-2 ratios were reduced by 30 ± 5.6%, 23 ± 2%, and 36 ± 3.1% in mdx, mdx/Utr(+/-), and mdx/Utr(-/-), respectively, with the greatest reduction in mdx/Utr(-/-) fibers (P contractions is greatest in fibers lacking both dystrophin and utrophin and that prevention of protease activation can mitigate the prolonged E-C coupling impairment. These data further suggest that acute protease inhibition may be useful in reducing muscle weakness in DMD.

  6. THE MECHANISM OF CEREBRAL EVOKED POTENTIALS BYREPETITIVE MAGNETIC STIMULATION OF GASTROCNEMIUS MUSCLE IN DUCHENNE MUSCULAR DYSTROPHY

    Institute of Scientific and Technical Information of China (English)

    管宇宙; 崔丽英; 汤晓芙; 李本红; 杜华

    2001-01-01

    Objective. To study the features and mechanism of the cerebral evoked potentials by repetitive stimulation of calf muscle in Duchenne muscular dystrophy (DMD) patients with obvious muscular dystrophy and psuedohypertrophy. Methods. Cerebral evoked potentials by stimulation of calf muscles and somatusensory evoked potentials(SEPs) by the stimulation of posterior tibial nerves at ankle were measured in 10 patients with DMD and 10 norreal controls matched with gender and age. The intensity of the magnetic stimulation was at 30% of maximal output (2. 1 Tesla, MagPro magnetic stimulator, Dantec) and the frequency was 1 Hz. The low intensity of magnet-ic stimulation was just sufficient to produce a contraction of the muscle belly underneath the coil. Recording electrode was placed at 2 cm posterior to the Cz, reference to Fpz. The latencies of N33, P38, N48 and P55 and ampli-tude (P38 - N48) were recorded. SEPs were recorded by routine methods. Results. In normal subjects, the amphtudes of cerebral evoked potentials by magnetic stimulation of calf mus-cle was 40% lower than that by electrical stimulation of the posterior tibial nerves at ankle. The latency of P38 was 2. 9 ± 2. 1 ms longer compared with electrical stimulation of the posterior tibial nerves at ankle. In 6 patients, P38 latency from magnetic stimulation was remarkably prolonged ( P < 0. 01), and in 4 patients, there was no remarkable response. SEPs evoked by electrical stimulation were normal in all of the patients. Conclusion. DMD is an available model for the study of mechanism of cerebral evoked potentials by magnetic stimulating muscle. We can conclude that the responses from magnetic stimulation were produced by muscle input. The abnormal responses in patients may relate to decreased input of muscle by stimulating dystrophic and psedohypertrophic muscle.

  7. Adaptations to exercise training and contraction-induced muscle injury in animal models of muscular dystrophy.

    Science.gov (United States)

    Carter, Gregory T; Abresch, R Ted; Fowler, William M

    2002-11-01

    This article reviews the current status of exercise training and contraction-induced muscle-injury investigations in animal models of muscular dystrophy. Most exercise-training studies have compared the adaptations of normal and dystrophic muscles with exercise. Adaptation of diseased muscle to exercise occurs at many levels, starting with the extracellular matrix, but also involves cytoskeletal architecture, muscle contractility, repair mechanisms, and gene regulation. The majority of exercise-injury investigations have attempted to determine the susceptibility of dystrophin-deficient muscles to contraction-induced injury. There is some evidence in animal models that diseased muscle can adapt and respond to mechanical stress. However, exercise-injury studies show that dystrophic muscles have an increased susceptibility to high mechanical forces. Most of the studies involving exercise training have shown that muscle adaptations in dystrophic animals were qualitatively similar to the adaptations observed in control muscle. Deleterious effects of the dystrophy usually occur only in older animals with advanced muscle fiber degeneration or after high-resistive eccentric training. The main limitations in applying these conclusions to humans are the differences in phenotypic expression between humans and genetically homologous animal models and in the significant biomechanical differences between humans and these animal models.

  8. The involvement of collagen triple helix repeat containing 1 in muscular dystrophies.

    Science.gov (United States)

    Spector, Itai; Zilberstein, Yael; Lavy, Adi; Genin, Olga; Barzilai-Tutsch, Hila; Bodanovsky, Ana; Halevy, Orna; Pines, Mark

    2013-03-01

    Fibrosis is the main complication of muscular dystrophies. We identified collagen triple helix repeat containing 1 (Cthrc1) in skeletal and cardiac muscles of mice, representing Duchenne and congenital muscle dystrophies (DMD and CMD, respectively), and dysferlinopathy. In all of the mice, Cthrc1 was associated with high collagen type I levels; no Cthrc1 or collagen was observed in muscles of control mice. High levels of Cthrc1 were also observed in biopsy specimens from patients with DMD, in whom they were reversibly correlated with that of β-dystroglycan, whereas collagen type I levels were elevated in all patients with DMD. At the muscle sites where collagen and Cthrc1 were adjacent, collagen fibers appeared smaller, suggesting involvement of Cthrc1 in collagen turnover. Halofuginone, an inhibitor of Smad3 phosphorylation downstream of the transforming growth factor-β signaling, reduced Cthrc1 levels in skeletal and cardiac muscles of mice, representing DMD, CMD, and dysferlinopathy. The myofibroblasts infiltrating the dystrophic muscles of the murine models of DMD, CMD, and dysferlinopathy were the source of Cthrc1. Transforming growth factor-β did not affect Cthrc1 levels in the mdx fibroblasts but decreased them in the control fibroblasts, in association with increased migration of mdx fibroblasts and dystrophic muscle invasion by myofibroblasts. To our knowledge, this is the first demonstration of Cthrc1 as a marker of the severity of the disease progression in the dystrophic muscles, and as a possible target for therapy.

  9. Carrier detection of Duchenne muscular dystrophy in Colombian families by microsatellite analysis.

    Directory of Open Access Journals (Sweden)

    Dora Fonseca

    2009-11-01

    Full Text Available Introducción: Las distrofias musculares de Duchenne y Becker son enfermedades recesivas ligadas al cromosoma X; la identificación de portadoras se puede hacer por métodos directos cuando se ha identificado la mutación, o por indirectos como el análisis de haplotipos. Objetivo: Se busca establecer mediante análisis de STRs y construcción de haplotipos el estado de portadora o no portadora en 37 familias con afectados por DMD/DMB. Metodología: Se estudiaron 174 personas mediante el análisis de 10 STRs intra y extragénicos del gen de la distrofina y la construcción de haplotipos para la identificación del ligado a la mutación. Resultados: Con la metodología mencionada se logró determinar el estado de portadora en 89.2% de las mujeres participantes, de las cuales 65.7% eran portadoras y 23.5% no portadoras. Conclusiones: El análisis indirecto mediante construcción de haplotipos permitió establecer el estado de portadora en una gran proporción de la población analizada de mujeres y permitió brindar un adecuado asesoramiento genético.

  10. Distrofia muscular congênita e deficiência de merosina Congenital muscular dystrophy and merosin deficiency

    Directory of Open Access Journals (Sweden)

    Lineu Cesar Werneck

    1997-01-01

    Full Text Available Uma proporção variável de pacientes com distrofia muscular congênita (DMC da forma clássica ou ocidental apresenta deficiência da cadeia α2 da merosina, uma proteína da matriz extracelular. Foi realizado estudo das características clínicas, laboratoriais e histopatológicas de 18 pacientes com DMC, relacionadas com o padrão de merosina encontrado na biópsia muscular. Estudo imuno-histoquímico demonstrou que 11 pacientes eram merosina-deficiente (MD e sete pacientes eram merosina-positiva (MP. Nenhum dos nove pacientes MD com idade suficiente para serem avaliados alcançaram a capacidade de deambulação, enquanto quatro dos sete pacientes MP atingiram deambulação sem auxílio. Os níveis de creatinoquinase estavam mais aumentados nos pacientes MD, mas a diferença entre os dois grupos não foi estatisticamente significativa. Estudo da condução nervosa motora foi realizado em 12 pacientes. Todos os quatro pacientes MP apresentaram exames normais, enquanto dois de oito pacientes MD apresentaram diminuição da velocidade de condução nervosa motora. Entre 69 parâmetros de biópsia muscular avaliados, não foi encontrada diferença estatisticamente significativa entre os grupos MP e MD. Esses resultados sugerem que a diferenciação entre os casos MP e MD serve para fins de prognóstico, pois os pacientes MP chegam a deambular. Além disso, este estudo indica que não existe relação entre a ausência de merosina e as alterações histológicas encontradas na biópsia muscular.Merosin α2 chain, an extracellular matrix protein, is deficient in a proportion of patients with classical congenital muscular dystrophy (CMD. A study of clinical, laboratory and histopathological features of 18 patients with CMD was performed in relation to the merosin expression in muscle biopsy. Immunohistochemistry study showed that merosin was deficient in 11 patients and present in 7. None of the 9 merosin-deficient patient: evaluated achieved

  11. Myocardial Contractile Dysfunction Is Present without Histopathology in a Mouse Model of Limb-Girdle Muscular Dystrophy-2F and Is Prevented after Claudin-5 Virotherapy

    Science.gov (United States)

    Milani-Nejad, Nima; Schultz, Eric J.; Slabaugh, Jessica L.; Janssen, Paul M. L.; Rafael-Fortney, Jill A.

    2016-01-01

    Mutations in several members of the dystrophin glycoprotein complex lead to skeletal and cardiomyopathies. Cardiac care for these muscular dystrophies consists of management of symptoms with standard heart medications after detection of reduced whole heart function. Recent evidence from both Duchenne muscular dystrophy patients and animal models suggests that myocardial dysfunction is present before myocardial damage or deficiencies in whole heart function, and that treatment prior to heart failure symptoms may be beneficial. To determine whether this same early myocardial dysfunction is present in other muscular dystrophy cardiomyopathies, we conducted a physiological assessment of cardiac function at the tissue level in the δ-sarcoglycan null mouse model (Sgcd−/−) of Limb-girdle muscular dystrophy type 2F. Baseline cardiac contractile force measurements using ex vivo intact linear muscle preparations, were severely depressed in these mice without the presence of histopathology. Virotherapy withclaudin-5 prevents the onset of cardiomyopathy in another muscular dystrophy model. After virotherapy with claudin-5, the cardiac contractile force deficits in Sgcd−/− mice are no longer significant. These studies suggest that screening Limb-girdle muscular dystrophy patients using methods that detect earlier functional changes may provide a longer therapeutic window for cardiac care. PMID:27999547

  12. Myocardial Contractile Dysfunction is Present Without Histopathology in a Mouse Model of Limb-Girdle Muscular Dystrophy-2F and is Prevented after Claudin-5 Virotherapy

    Directory of Open Access Journals (Sweden)

    Nima Milani-Nejad

    2016-12-01

    Full Text Available AbstractMutations in several members of the dystrophin glycoprotein complex lead to skeletal and cardiomyopathies. Cardiac care for these muscular dystrophies consists of management of symptoms with standard heart medications after detection of reduced whole heart function. Recent evidence from both Duchenne muscular dystrophy patients and animal models suggests that myocardial dysfunction is present before myocardial damage or deficiencies in whole heart function, and that treatment prior to heart failure symptoms may be beneficial. To determine whether this same early myocardial dysfunction is present in other muscular dystrophy cardiomyopathies, we conducted a physiological assessment of cardiac function at the tissue level in the δ-sarcoglycan null mouse model (Sgcd-/- of Limb-girdle muscular dystrophy type 2F. Baseline cardiac contractile force measurements using ex vivo intact linear muscle preparations, were severely depressed in these mice without the presence of histopathology. Virotherapy with claudin-5 prevents the onset of cardiomyopathy in another muscular dystrophy model. After virotherapy with claudin-5, the cardiac contractile force deficits in Sgcd-/- mice are no longer significant. These studies suggest that screening Limb-girdle muscular dystrophy patients using methods that detect earlier functional changes may provide a longer therapeutic window for cardiac care.

  13. Isometric and eccentric force generation assessment of skeletal muscles isolated from murine models of muscular dystrophies.

    Science.gov (United States)

    Moorwood, Catherine; Liu, Min; Tian, Zuozhen; Barton, Elisabeth R

    2013-01-31

    Critical to the evaluation of potential therapeutics for muscular disease are sensitive and reproducible physiological assessments of muscle function. Because many pre-clinical trials rely on mouse models for these diseases, isolated muscle function has become one of the standards for Go/NoGo decisions in moving drug candidates forward into patients. We will demonstrate the preparation of the extensor digitorum longus (EDL) and diaphragm muscles for functional testing, which are the predominant muscles utilized for these studies. The EDL muscle geometry is ideal for isolated muscle preparations, with two easily accessible tendons, and a small size that can be supported by superfusion in a bath. The diaphragm exhibits profound progressive pathology in dystrophic animals, and can serve as a platform for evaluating many potential therapies countering fibrosis, and promoting myofiber stability. Protocols for routine testing, including isometric and eccentric contractions, will be shown. Isometric force provides assessment of strength, and eccentric contractions help to evaluate sarcolemma stability, which is disrupted in many types of muscular dystrophies. Comparisons of the expected results between muscles from wildtype and dystrophic muscles will also be provided. These measures can complement morphological and biochemical measurements of tissue homeostasis, as well as whole animal assessments of muscle function.

  14. Non-surgical prevention and management of scoliosis for children with Duchenne muscular dystrophy: what is the evidence?

    Science.gov (United States)

    Harvey, Adrienne; Baker, Louise; Williams, Katrina

    2014-10-01

    A review was performed to examine the evidence for non-surgical interventions for preventing scoliosis and the need for scoliosis surgery in children with Duchenne muscular dystrophy. Medline and Embase databases and reference lists from key articles were searched. After the inclusion and exclusion criteria were applied, 13 studies were critically appraised independently by two reviewers. The included studies examined spinal orthoses and steroid therapy. There were no studies with high levels of evidence (randomised or other controlled trials). The studies with the highest level of evidence were non-randomised experimental trials. There is some evidence that children with Duchenne muscular dystrophy who receive steroid therapy might have delayed onset of scoliosis, but more evidence is required about the long-term risks versus benefits of this intervention. There is weak evidence that spinal orthoses do not prevent and only minimally delay the onset of scoliosis.

  15. Immunity and AAV-Mediated Gene Therapy for Muscular Dystrophies in Large Animal Models and Human Trials.

    Science.gov (United States)

    Wang, Zejing; Tapscott, Stephen J; Chamberlain, Jeffrey S; Storb, Rainer

    2011-01-01

    Adeno-associated viral (AAV) vector-mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery specific to muscles for treating muscular dystrophies and non-muscle diseases in large animal models and human trials, factors that influence the intensity of the immune responses, and immune modulatory strategies to prevent unwanted immune responses and induce tolerance to the vector and therapeutic gene for a successful gene therapy.

  16. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophy via paracrine signaling

    Directory of Open Access Journals (Sweden)

    Ji-qing Cao

    2016-01-01

    Full Text Available Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 10 6 were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR, eIF-4E binding protein 1 and S6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the regeneration and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.

  17. Breaches of the pial basement membrane are associated with defective dentate gyrus development in mouse models of congenital muscular dystrophies.

    Science.gov (United States)

    Li, Jing; Yu, Miao; Feng, Gang; Hu, Huaiyu; Li, Xiaofeng

    2011-11-07

    A subset of congenital muscular dystrophies (CMDs) has central nervous system manifestations. There are good mouse models for these CMDs that include POMGnT1 knockout, POMT2 knockout and Large(myd) mice with all exhibiting defects in dentate gyrus. It is not known how the abnormal dentate gyrus is formed during the development. In this study, we conducted a detailed morphological examination of the dentate gyrus in adult and newborn POMGnT1 knockout, POMT2 knockout, and Large(myd) mice by immunofluorescence staining and electron microscopic analyses. We observed that the pial basement membrane overlying the dentate gyrus was disrupted and there was ectopia of granule cell precursors through the breached pial basement membrane. Besides these, the knockout dentate gyrus exhibited reactive gliosis in these mouse models. Thus, breaches in the pial basement membrane are associated with defective dentate gyrus development in mouse models of congenital muscular dystrophies.

  18. Growth hormone inhibition causes increased selenium levels in Duchenne muscular dystrophy: a possible new approach to therapy.

    Science.gov (United States)

    Collipp, P J; Kelemen, J; Chen, S Y; Castro-Magana, M; Angulo, M; Derenoncourt, A

    1984-08-01

    Nine children with Duchenne muscular dystrophy were given Sanorex (mazindol), a growth hormone inhibitor, daily for 6 months. There was no significant change in their muscle function, but there was a significant reduction in weight gain and in levels of growth hormone, somatomedin C, hair zinc, serum zinc, and serum LDH. Selenium and glutathione peroxidase in the serum increased significantly. Thirteen other children with growth hormone deficiency had a significant reduction in hair selenium following growth hormone administration. These results show a significant relationship between growth hormone and selenium nutritional status and confirm our previous reports indicating an effect of growth hormone on zinc nutritional status. It is possible that prolonged therapy with a growth hormone inhibitor would attenuate the course and improve the longevity of patients with muscular dystrophy.

  19. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography

    Science.gov (United States)

    Klyen, Blake R.; Shavlakadze, Thea; Radley-Crabb, Hannah G.; Grounds, Miranda D.; Sampson, David D.

    2011-07-01

    Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

  20. Entire CAPN3 gene deletion in a patient with limb-girdle muscular dystrophy type 2A.

    Science.gov (United States)

    Jaka, Oihane; Azpitarte, Margarita; Paisán-Ruiz, Coro; Zulaika, Miren; Casas-Fraile, Leire; Sanz, Raúl; Trevisiol, Nathalie; Levy, Nicolas; Bartoli, Marc; Krahn, Martin; López de Munain, Adolfo; Sáenz, Amets

    2014-09-01

    Limb-girdle muscular dystrophy type 2A (LGMD2A) due to mutations in the CAPN3 gene is one of the most common of autosomal recessive limb-girdle muscular dystrophies. We describe a patient who had a typical LGMD2A phenotype and posterior compartment involvement on MRI. Different genetic analyses were performed, including microarray analysis. There was an apparently homozygous mutation in exon 24, c.2465G>T, p.(*822Leuext62*), and a lack of correlation in the disease segregation analyses. This suggested the presence of a genomic rearrangement. In fact, a heterozygous deletion of the entire CAPN3 gene was found. This novel deletion comprised the terminal region of the GANC gene and the entire CAPN3 gene. This finding points out the need to reconsider and adapt our current strategy of molecular diagnosis in order to detect these types of genomic rearrangements that escape standard mutation screening procedures.