WorldWideScience

Sample records for beaver creek watershed

  1. Ground-Water-Quality Data for Selected Wells in the Beaver Creek Watershed, West Tennessee

    National Research Council Canada - National Science Library

    Williams, Shannon D

    1996-01-01

    In 1993 the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation, began an investigation of the quality of ground water in the Beaver Creek watershed in West Tennessee...

  2. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  3. 33 CFR 117.705 - Beaver Dam Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  4. Parameterization of the ACRU model for estimating biophysical and climatological change impacts, Beaver Creek, Alberta

    Science.gov (United States)

    Forbes, K. A.; Kienzle, S. W.; Coburn, C. A.; Byrne, J. M.

    2006-12-01

    Multiple threats, including intensification of agricultural production, non-renewable resource extraction and climate change, are threatening Southern Alberta's water supply. The objective of this research is to calibrate/evaluate the Agricultural Catchments Research Unit (ACRU) agrohydrological model; with the end goal of forecasting the impacts of a changing environment on water quantity. The strength of this model is the intensive multi-layered soil water budgeting routine that integrates water movement between the surface and atmosphere. The ACRU model was parameterized using data from Environment Canada's climate database for a twenty year period (1984-2004) and was used to simulate streamflow for Beaver Creek. The simulated streamflow was compared to Environment Canada's historical streamflow database to validate the model output. The Beaver Creek Watershed, located in the Porcupine Hills southwestern Alberta, Canada contains a heterogeneous cover of deciduous, coniferous, native prairie grasslands and forage crops. In a catchment with highly diversified land cover, canopy architecture cannot be overlooked in rainfall interception parameterization. Preliminary testing of ACRU suggests that streamflows were sensitive to varied levels of leaf area index (LAI), a representative fraction of canopy foliage. Further testing using remotely sensed LAI's will provide a more accurate representation of canopy foliage and ultimately best represent this important element of the hydrological cycle and the associated processes which govern the natural hydrology of the Beaver Creek watershed.

  5. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Science.gov (United States)

    2010-07-13

    ... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek...-managed public land on Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and... Proposed Land Use Alternative) identified in the final environmental impact statement (FEIS). Under the...

  6. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...

  7. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2011-03-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... Impact Statement for the Beaver Creek Landscape Management Project was published in the Federal Register... Responsible Official for the Beaver Creek Landscape Management Project. DATES: The Final Environmental Impact...

  8. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Science.gov (United States)

    2010-12-14

    ... and/or affected individuals, organizations and governmental agencies will be used to identify resource... upcoming 2015 World Alpine Championships. In order for Beaver Creek to continue to host international... located at Beaver Creek. Hosting the 2015 International Skiing Federation (FIS) World Alpine Ski...

  9. Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA

    Science.gov (United States)

    Levine, Rebekah; Meyer, Grant A.

    2014-01-01

    Beaver dams in streams are generally considered to increase bed elevation through in-channel sediment storage, thus, reintroductions of beaver are increasingly employed as a restoration tool to repair incised stream channels. Here we consider hydrologic and geomorphic characteristics of the study stream in relation to in-channel sediment storage promoted by beaver dams. We also document the persistence of sediment in the channel following breaching of dams. Nine reaches, containing 46 cross-sections, were investigated on Odell Creek at Red Rock Lakes National Wildlife Refuge, Centennial Valley, Montana. Odell Creek has a snowmelt-dominated hydrograph and peak flows between 2 and 10 m3 s- 1. Odell Creek flows down a fluvial fan with a decreasing gradient (0.018-0.004), but is confined between terraces along most of its length, and displays a mostly single-thread, variably sinuous channel. The study reaches represent the overall downstream decrease in gradient and sediment size, and include three stages of beaver damming: (1) active; (2) built and breached in the last decade; and (3) undammed. In-channel sediment characteristics and storage were investigated using pebble counts, fine-sediment depth measurements, sediment mapping and surveys of dam breaches. Upstream of dams, deposition of fine (≤ 2 mm) sediment is promoted by reduced water surface slope, shear stress and velocity, with volumes ranging from 48 to 182 m3. High flows, however, can readily transport suspended sediment over active dams. Variations in bed-sediment texture and channel morphology associated with active dams create substantial discontinuities in downstream trends and add to overall channel heterogeneity. Observations of abandoned dam sites and dam breaches revealed that most sediment stored above beaver dams is quickly evacuated following a breach. Nonetheless, dam remnants trap some sediment, promote meandering and facilitate floodplain development. Persistence of beaver dam sediment

  10. Reconnaissance investigation of high-calcium marble in the Beaver Creek area, St. Lawrence County, New York

    Science.gov (United States)

    Brown, C. Ervin

    1978-01-01

    Three belts of marble of the Grenville Series were mapped in the Beaver Creek drainage basin, St. Lawrence County, N.Y. One of these, on the west side of Beaver Creek, consists of coarsely crystalline pure calcitic marble that occurs in a zone at least 10 by 0.8 km in extent. Samples of marble show CaCO3 content to be greater than 93 percent, and some samples contain greater than 96 percent, and only small amounts of MgO and Fe203 are present. Marble in two other belts to the east of Beaver Creek are variable in composition, but locally have high content of calcium carbonate material. The marble deposit west of Beaver Creek has a chemical composition favorable for specialized chemical, industrial, and metallurgical uses. Another favorable aspect of the deposit is its proximity to inexpensive water transportation on the St. Lawrence Seaway only 27.5 km away by road, at Ogdensburg, N.Y.

  11. Beaver Ponds: Resurgent Nitrogen Sinks for Rural Watersheds in the Northeastern United States.

    Science.gov (United States)

    Lazar, Julia G; Addy, Kelly; Gold, Arthur J; Groffman, Peter M; McKinney, Richard A; Kellogg, Dorothy Q

    2015-09-01

    Beaver-created ponds and dams, on the rise in the northeastern United States, reshape headwater stream networks from extensive, free-flowing reaches to complexes of ponds, wetlands, and connecting streams. We examined seasonal and annual rates of nitrate transformations in three beaver ponds in Rhode Island under enriched nitrate-nitrogen (N) conditions through the use of N mass balance techniques on soil core mesocosm incubations. We recovered approximately 93% of the nitrate N from our mesocosm incubations. Of the added nitrate N, 22 to 39% was transformed during the course of the incubation. Denitrification had the highest rates of transformation (97-236 mg N m d), followed by assimilation into the organic soil N pool (41-93 mg N m d) and ammonium generation (11-14 mg N m d). Our denitrification rates exceeded those in several studies of freshwater ponds and wetlands; however, rates in those ecosystems may have been limited by low concentrations of nitrate. Assuming a density of 0.7 beaver ponds km of catchment area, we estimated that in nitrate-enriched watersheds, beaver pond denitrification can remove approximately 50 to 450 kg nitrate N km catchment area. In rural watersheds of southern New England with high N loading (i.e., 1000 kg km), denitrification from beaver ponds may remove 5 to 45% of watershed nitrate N loading. Beaver ponds represent a relatively new and substantial sink for watershed N if current beaver populations persist. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Hydrology and hydrochemistry for the Rice Creek watershed of the Whiteshell Research Area, 1986--1990

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, G. A.; Laporte, J. M.; Clarke, D.

    1992-12-01

    This report presents data and results of a hydrometeorological study carried out in the Rice Creek Watershed of the Whiteshell Research Area during 1986-90. Major water budget components, such as precipitation, runoff, groundwater, storage and evaporation, are evaluated and discussed. men annual precipitation was 544 mm, mean runoff was 101 mm, with evapo-transpiration as the residual being 443 mm. The steady-state groundwater component of the runoff is estimated to be less than 2 mm/unit area, or less than 2% of men annual basin yield. Water chemistry data for precipitation,l surface waters, and groundwaters are presented and the relative concentrations compared to provide information about sources of streamflow. Data on a major storm event that provided precipitation with an estimated return period of over 100 a are presented. Also discussed are the effects of beaver dams on the hydrology of a major tributary of the Rice Creek watershed. (auth)

  13. Tom Beaver, Creek Television Reporter. With Teacher's Guide. Native Americans of the Twentieth Century.

    Science.gov (United States)

    Minneapolis Public Schools, MN.

    A biography for elementary school students presents an account of an American Indian television reporter, Tom Beaver (Creek), and includes a map of Oklahoma showing the location of Indian tribes. A teacher's guide following the biography contains information about the Creek tribe and the history of television, learning objectives and directions…

  14. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  15. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  16. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  17. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    Science.gov (United States)

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville

  18. The coal deposits of the Alkali Butte, the Big Sand Draw, and the Beaver Creek fields, Fremont County, Wyoming

    Science.gov (United States)

    Thompson, Raymond M.; White, Vincent L.

    1952-01-01

    Large coal reserves are present in three areas located between 12 and 20 miles southeast of Riverton, Fremont County, central Wyoming. Coal in two of these areas, the Alkali Butte coal field and the Big Sand Draw coal field, is exposed on the surface and has been developed to some extent by underground mining. The Beaver Creek coal field is known only from drill cuttings and cores from wells drilled for oil and gas in the Beaver Creek oil and gas field.These three coal areas can be reached most readily from Riverton, Wyo. State Route 320 crosses Wind River about 1 mile south of Riverton. A few hundred yards south of the river a graveled road branches off the highway and extends south across the Popo Agie River toward Sand Draw oil and gas field. About 8 miles south of the highway along the Sand Draw road, a dirt road bears east and along this road it is about 12 miles to the Bell coal mine in the Alkali Butte coal field. Three miles southeast of the Alkali Butte turn-off, 3 miles of oiled road extends southwest into the Beaver Creek oil and gas field. About 6 miles southeast of the Beaver Creek turn-off, in the valley of Little Sand Draw Creek, a dirt road extends east 1. mile and then southeast 1 mile to the Downey mine in the Big Sand Draw coal field. Location of these coal fields is shown on figure 1 with their relationship to the Wind River basin and other coal fields, place localities, and wells mentioned in this report. The coal in the Alkali Butte coal field is exposed partly on the Wind River Indian Reservation in Tps. 1 and 2 S., R. 6 E., and partly on public land. Coal in the Beaver Creek and Big Sand Draw coal fields is mainly on public land. The region has a semiarid climate with rainfall averaging less than 10 in. per year. When rain does fall the sandy-bottomed stream channels fill rapidly and are frequently impassable for a few hours. Beaver Creek, Big Sand Draw, Little Sand Draw, and Kirby Draw and their smaller tributaries drain the area and flow

  19. The role of beaver in shaping steelhead trout (Oncorhynchus mykiss) habitat complexity and thermal refugia in a central Oregon stream

    Science.gov (United States)

    Consolati, F.; Wheaton, J. M.; Neilson, B. T.; Bouwes, N.; Pollock, M. M.

    2012-12-01

    The incised and degraded habitat of Bridge Creek, tributary to the John Day River in central Oregon, is thought to be limiting the local population of ESA-listed steelhead trout (Oncorhynchus mykiss). Restoration efforts for this watershed are aimed to improve their habitat through reconnecting the channel with portions of its former floodplain (now terraces) to increase stream habitat complexity and the extent of riparian vegetation. This is being done via the installation of over a hundred beaver dam support (BDS) structures that are designed to either mimic beaver dams or support existing beaver dams. The overall objective of this study is to determine if the BDS structures have had an effect on stream channel habitat complexity and thermal refugia in selected sections of Bridge Creek. Analysis of stream temperature data in restoration treatment and control areas will show the effects of beaver dams on stream temperature. Analysis of aerial imagery and high resolution topographic data will exhibit how the number and types of geomorphic units have changed after the construction of beaver dams. Combined, the results of this research are aimed to increase our understanding of how beaver dams impact fish habitat and stream temperature.

  20. Hydrogen sulfide concentration in Beaver Dam Creek

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1979-01-01

    Concentration-time profiles calculated with LODIPS for various hypothetical releases of hydrogen sulfide from the heavy water extraction facility predict lethal conditions for swamp fish from releases as small as 568 kg discharged over a period of 30 minutes or from releases of 1818 kg discharged over a period of 6 hours or less. The necessary volatilization and oxidation coefficients for LODIPS were derived from field measurements following planned releases of H 2 S. Upsets in the operation of the wastewater strippers in the Girdler-Sulfide (GS) heavy water extraction facility in D Area have released significant amounts of dissolved H 2 S to Beaver Dam Creek. Because H 2 S is toxic to fish in concentrations as low as 1 mg/liter, the downstream environmental impact of H 2 S releases from D Area was evaluated

  1. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  2. Surface-water and ground-water quality in the Powell Creek and Armstrong Creek Watersheds, Dauphin County, Pennsylvania, July-September 2001

    Science.gov (United States)

    Galeone, Daniel G.; Low, Dennis J.

    2003-01-01

    Powell Creek and Armstrong Creek Watersheds are in Dauphin County, north of Harrisburg, Pa. The completion of the Dauphin Bypass Transportation Project in 2001 helped to alleviate traffic congestion from these watersheds to Harrisburg. However, increased development in Powell Creek and Armstrong Creek Watersheds is expected. The purpose of this study was to establish a baseline for future projects in the watersheds so that the effects of land-use changes on water quality can be documented. The Pennsylvania Department of Environmental Protection (PADEP) (2002) indicates that surface water generally is good in the 71 perennial stream miles in the watersheds. PADEP lists 11.1 stream miles within the Armstrong Creek and 3.2 stream miles within the Powell Creek Watersheds as impaired or not meeting water-quality standards. Siltation from agricultural sources and removal of vegetation along stream channels are cited by PADEP as likely factors causing this impairment.

  3. Water quality trends in the Blackwater River watershed, West Virginia

    Science.gov (United States)

    Smith, Jessica; Welsh, Stuart A.; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  4. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  5. Stream-sediment geochemistry in mining-impacted streams: Prichard, Eagle, and Beaver creeks, northern Coeur d'Alene Mining District, northern Idaho

    Science.gov (United States)

    Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    This report presents the results of one aspect of an integrated watershed-characterization study that was undertaken to assess the impacts of historical mining and milling of silver-lead-zinc ores on water and sediment composition and on aquatic biota in streams draining the northern part of the Coeur d?Alene Mining District in northern Idaho. We present the results of chemical analyses of 62 samples of streambed sediment, 19 samples of suspended sediment, 23 samples of streambank soil, and 29 samples of mine- and mill-related artificial- fill material collected from the drainages of Prichard, Eagle, and Beaver Creeks, all tributaries to the North Fork of the Coeur d?Alene River. All samples were sieved into three grain-size fractions (Beaver Creek drainages has resulted in enrichments of lead, zinc, mercury, arsenic, cadmium, silver, copper, cobalt, and, to a lesser extent, iron and manganese in streambed sediment. Using samples collected from the relatively unimpacted West Fork of Eagle Creek as representative of background compositions, streambed sediment in the vicinity of the mines and millsites has Pb and Zn contents of 20 to 100 times background values, decreasing to 2 to 5 times background values at the mouth of the each stream, 15 to 20 km downstream. Lesser enrichments (<10 times background values) of mercury and arsenic also are generally associated with, and decrease downstream from, historical silver-lead-zinc mining in the drainages. However, enrichments of arsenic and, to a lesser extent, mercury also are areally associated with the lode gold deposits along Prichard Creek near Murray, which were not studied here. Metal contents in samples of unfractionated suspended sediment collected during a high-flow event in April 2000 are generally similar to, but slightly higher than, those in the fine (<0.063- mm grain size) fraction of streambed sediment from the same sampling site. Although metal enrichment in streambed sediment typically begins adjacent to

  6. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    Science.gov (United States)

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  7. Storm Runoff and Seasonal Dissolved Carbon Flow Dynamics Across Watershed Scales in the Discontinuous Permafrost Zone, Alaska

    Science.gov (United States)

    Dornblaser, M.; Koch, J. C.; Striegl, R. G.

    2017-12-01

    Storm events are important contributors to annual carbon (C) loads from terrestrial to aquatic environments. We investigated the hysteretic trends in dissolved inorganic and organic C transport from a headwater stream and its receiving intermediate-sized river in a watershed underlain by discontinuous permafrost. Using high-frequency sensor data, we observed similar counterclockwise hysteretic trends in dissolved organic matter (DOM) transport at Beaver Creek (3rd order tributary of the Yukon River) and its tributary West Twin Creek (1st order) in boreal Alaska. The counterclockwise hysteresis suggests that suprapermafrost soil water is a more important source of DOM than either groundwater or storm event water in a three-component mixing model. A seasonal decrease in the positive slope of fluorescent dissolved organic matter / discharge (fDOM/Q) during storm events at both locations suggests an early season flushing of near surface DOM. This is followed by deeper flow path routing into mineral layers with an increased proportion of dissolved inorganic carbon (DIC):DOM export as the active layer depth increases. Specific conductance (SC, a proxy for DIC) exhibits clockwise hysteresis, suggesting that groundwater is the more prominent DIC source. While an upward trend in the negative slope of SC/Q during storm events at Beaver Creek was observed, indicating the increased contribution of DIC as summer progresses, SC/Q slopes at West Twin Creek do not increase. This perhaps suggests limited connectivity with the underlying aquifer in the upper watershed where permafrost is more continuous. Our results highlight similarities in DOM export at both scales in response to storm inputs during the thawed season, but different patterns of DIC export related to increased mixing from other sources downstream at Beaver Creek. The seasonal progression in storm C responses between watersheds of different size and position within the same surface water network shed light on

  8. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  9. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans

    Science.gov (United States)

    2011-10-11

    ... environmental analyses for proposed mining Plans in the portions of the Granite Creek Watershed under their... Granite Creek Watershed Mining Plans analysis area that meets the Purpose of and Need for Action. It is... Granite Creek Watershed Mining Plans AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an...

  10. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    Science.gov (United States)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  11. Road construction on Caspar Creek watersheds --- 10-year report on impact

    Science.gov (United States)

    J. S. Krammes; David M. Burns

    1973-01-01

    In 1960, Federal and State agencies jointly started a long-term study of the effects of logging and road building on streamflow, sedimentation, aquatic habitat, and fish populations on two watersheds of Caspar Creek, in northern California. The experimental watersheds are the North and South Forks of the Creek. The data being collected consist of continuous streamflow...

  12. Collection of Short Papers on the Beaver Creek Watershed Study in West Tennessee, 1989-94

    National Research Council Canada - National Science Library

    Doyle, Jr., W. H; Baker, Eva G

    1995-01-01

    In 1989, the U.S. Geological Survey began a long-term research project to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver...

  13. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John

    2002-08-01

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  14. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  15. A baseline and watershed assessment in the Lynx Creek, Brenot Creek, and Portage Creek watersheds near Hudson's Hope, BC : summary report

    International Nuclear Information System (INIS)

    Matscha, G.; Sutherland, D.

    2005-06-01

    This report summarized a baseline monitoring program for the Lynx Creek, Brenot Creek, and Portage Creek watersheds located near Hudson's Hope, British Columbia (BC). The monitoring program was designed to more accurately determine the effects of potential coalbed gas developments in the region, as well as to assess levels of agricultural and forest harvesting, and the impacts of current land use activities on water quantity and quality. Water quality was sampled at 18 sites during 5 different flow regimes, including summer and fall low flows; ice cover; spring run-off; and high flows after a heavy summer rain event. Sample sites were located up and downstream of both forest and agricultural activities. The water samples were analyzed for 70 contaminants including ions, nutrients, metals, hydrocarbons, and hydrocarbon fractions. Results showed that while many analyzed parameters met current BC water quality guidelines, total organic carbon, manganese, cadmium, E. coli, fecal coliforms, and fecal streptococci often exceeded recommended guidelines. Aluminum and cobalt values exceeded drinking water guidelines. The samples also had a slightly alkaline pH and showed high conductance. A multiple barrier approach was recommended to reduce potential risks of contamination from the watersheds. It was concluded that a more refined bacteria source tracking method is needed to determine whether fecal pollution has emanated from human, livestock or wildlife sources. 1 tab., 9 figs

  16. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  17. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  18. Asotin Creek model watershed plan: Asotin County, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    The Northwest Power Planning Council completed its ''Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ''four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ''Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity

  19. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  20. Large woody debris budgets in the Caspar Creek Experimental Watersheds

    Science.gov (United States)

    Sue Hilton

    2012-01-01

    Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...

  1. Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed

    Directory of Open Access Journals (Sweden)

    Miroslaw-Swiatek Dorota

    2017-09-01

    Full Text Available Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed. In this study effects of cypress knees as vegetation resistance factor on Turkey Creek watershed discharge calculation were analyzed. The Turkey Creek watershed is a 3rd order stream system draining an approximate area of 5,240 ha. It is located at 33°08' N latitude and 79°47' W longitude, approximately 60 km north-west of City of Charleston in South Carolina (USA. Turkey Creek (WS 78 is typical of other watersheds in the south Atlantic coastal plain. In the case of Turkey Creek watershed, one of the main channels and riparian floodplain vegetation contains cypress trees. Cypress trees live in moist or swampy regions along the Atlantic coastal plain. The cypress trees are characterized by the unique root system called knees that appear just above the water line, up to 1.2 m above water surface. This study is conducted to examine the effects of roughness of cypress knee as related to its shape (diameter and height on discharge estimates of the Turkey Creek watershed. Hydraulic characteristics of the cypress knees were determined by field inventory in selected cross-section along the main stream channel. The Pasche method was used to calculate the total Darcy–Weisbach friction factor in discharge capacity calculation of the study watershed. The results of this study show that the effect of vegetation shape in the Pasche approach is significant. If the variability of vegetation stem diameter is taken into consideration in the calculations, an increase by 10–32% in the values of friction coefficients occurs.

  2. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    Science.gov (United States)

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  3. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  4. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  5. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  6. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Science.gov (United States)

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  7. Pine Creek Ranch, FY 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  8. Water-quality assessment of the Cypress Creek watershed, Warrick County, Indiana

    Science.gov (United States)

    Bobo, Linda L.; Peters, Charles A.

    1980-01-01

    The U.S. Soil Conservation Service needs chemical, biological, microbiological, and hydrological data to prepare an environmental evaluation of the water quality in the Cypress Creek watershed, Warrick County, Ind., before plans can be devised to (1) improve water quality, (2) minimize flooding, (3) reduce sedimentation, and (4) provide adequate outlets for drainage in the watershed. The U.S. Geological Survey obtained these data for the Soil Conservation Service in a water-quality survey of the watershed from March to August 1979. Past and present surface coal mining is the factor having the greatest impact on water quality in the watershed. The upper reaches of Cypress Creek receive acid-mine drainage from a coal-mine waste slurry during periods of intense rainfall. All the remaining tributaries, except Summer Pecka ditch, drain mined or reclaimed lands. The general water type of Cypress Creek and most of its tributaries is calcium and magnesium sulfate. In contrast, the water type at background site 21 on Summer Pecka ditch is calcium sulfate. Specific conductance ranged from 470 to 4,730 micromhos per centimeter at 25 degrees Celsius, and pH ranged from 1.2 to 8.8. Specific conductance, hardness, and concentrations of major ions and dissolved solids were highest in tributaries affected by mining. The pH was lowest in the same tributaries. Concentrations of iron, manganese, and sulfate in water samples and chlordane, DDT, and PCB 's in streambed samples exceeded water-quality limits set by the U.S. Environmental Protection Agency. (USGS)

  9. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  10. Pine Creek Ranch, FY 2001 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Berry, Mark E.

    2001-01-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring

  11. Design to monitor trend in abundance and presence of American beaver (Castor canadensis) at the national forest scale.

    Science.gov (United States)

    Beck, Jeffrey L; Dauwalter, Daniel C; Gerow, Kenneth G; Hayward, Gregory D

    2010-05-01

    Wildlife conservationists design monitoring programs to assess population dynamics, project future population states, and evaluate the impacts of management actions on populations. Because agency mandates and conservation laws call for monitoring data to elicit management responses, it is imperative to design programs that match the administrative scale for which management decisions are made. We describe a program to monitor population trends in American beaver (Castor canadensis) on the US Department of Agriculture, Black Hills National Forest (BHNF) in southwestern South Dakota and northeastern Wyoming, USA. Beaver have been designated as a management indicator species on the BHNF because of their association with riparian and aquatic habitats and its status as a keystone species. We designed our program to monitor the density of beaver food caches (abundance) within sampling units with beaver and the proportion of sampling units with beavers present at the scale of a national forest. We designated watersheds as sampling units in a stratified random sampling design that we developed based on habitat modeling results. Habitat modeling indicated that the most suitable beaver habitat was near perennial water, near aspen (Populus tremuloides) and willow (Salix spp.), and in low gradient streams at lower elevations. Results from the initial monitoring period in October 2007 allowed us to assess costs and logistical considerations, validate our habitat model, and conduct power analyses to assess whether our sampling design could detect the level of declines in beaver stated in the monitoring objectives. Beaver food caches were located in 20 of 52 sampled watersheds. Monitoring 20 to 25 watersheds with beaver should provide sufficient power to detect 15-40% declines in the beaver food cache index as well as a twofold decline in the odds of beaver being present in watersheds. Indices of abundance, such as the beaver food cache index, provide a practical measure of

  12. Assessment of conservation easements, total phosphorus, and total suspended solids in West Fork Beaver Creek, Minnesota, 1999-2012

    Science.gov (United States)

    Christensen, Victoria G.; Kieta, Kristen A.

    2014-01-01

    This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids

  13. A Review of Techniques for Minimizing Beaver and White-Tailed Deer Damage in Southern Hardwoods

    Science.gov (United States)

    Edward P. Hill; Douglas N. Lasher; R. Blake. Roper

    1978-01-01

    Methods of reducing beaver and deer damage to hardwood forest resources are reviewed. Beaver controls considered were poisons, chemosterilants, predators, and trapping. Population reduction through trapping with 330 conibear traps for two weeks during two successive years effectively eliminates beaver from small watersheds and shows greater promise for control than...

  14. Beaver Activity, Holocene Climate and Riparian Landscape Change Across Stream Scales in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Levine, R.; Meyer, G. A.

    2013-12-01

    Beaver (Castor canadensis) have been part of the fluvial and riparian landscape across much of North America since the Pleistocene, increasing channel habitat complexity and expanding riparian landscapes. The fur trade, however, decimated beaver populations by the 1840s, and other human activities have limited beaver in many areas, including parts of the Greater Yellowstone Ecosystem (GYE). Understanding fluctuations in beaver occupation through the Holocene will aid in understanding the natural range of variability in beaver activity as well as climatic and anthropogenic impacts to fluvial systems. We are developing a detailed chronology of beaver-assisted sedimentation and overall fluvial activity for Odell and Red Rock Creeks (basin areas 83 and 99 km2) in Centennial Valley (CV), Montana, to augment related studies on the long-term effects of beaver on smaller GYE fluvial systems (basin areas 0.1-50 km2). In developing the CV chronology, we use the presence of concentrations of beaver-chewed sticks as a proxy for beaver occupancy. Beaver-stick deposits are found in paleochannel and fluvial terrace exposures. The relative ages of exposures were determined by elevation data from airborne LiDAR and ground surveys. Numerical ages were obtained from 36 14C ages (~30 more are pending) of beaver-stick wood collected during investigation of the stratigraphy. Most beaver-stick deposits are associated with ~ 1 meter of fine-grained sediment, interpreted as overbank deposits, commonly overlying gravelly sand or pebble gravel channel deposits which is consistent with enhanced overbank sedimentation associated with active beaver dams in CV streams. The CV deposits differ from those on smaller GYE streams where beaver-stick deposits are associated with abandoned dams (berms), infilled ponds and laminated sediments. The lack of pond-related deposition associated with CV beaver-stick deposits is consistent with frequent dam breaching (≤ 5 years) in the modern channel of Odell

  15. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  16. Integrating local research watersheds into hydrologic education: Lessons from the Dry Creek Experimental Watershed

    Science.gov (United States)

    McNamara, J. P.; Aishlin, P. S.; Flores, A. N.; Benner, S. G.; Marshall, H. P.; Pierce, J. L.

    2014-12-01

    While a proliferation of instrumented research watersheds and new data sharing technologies has transformed hydrologic research in recent decades, similar advances have not been realized in hydrologic education. Long-standing problems in hydrologic education include discontinuity of hydrologic topics from introductory to advanced courses, inconsistency of content across academic departments, and difficulties in development of laboratory and homework assignments utilizing large time series and spatial data sets. Hydrologic problems are typically not amenable to "back-of-the-chapter" examples. Local, long-term research watersheds offer solutions to these problems. Here, we describe our integration of research and monitoring programs in the Dry Creek Experimental Watershed into undergraduate and graduate hydrology programs at Boise State University. We developed a suite of watershed-based exercises into courses and curriculums using real, tangible datasets from the watershed to teach concepts not amenable to traditional textbook and lecture methods. The aggregation of exercises throughout a course or degree allows for scaffolding of concepts with progressive exposure of advanced concepts throughout a course or degree. The need for exercises of this type is growing as traditional lecture-based classes (passive learning from a local authoritative source) are being replaced with active learning courses that integrate many sources of information through situational factors.

  17. Channel aggradation by beaver dams on a small agricultural stream in Eastern Nebraska

    Science.gov (United States)

    M.C. McCullough; J.L. Harper; D.E. Eisenhauer; M.G. Dosskey

    2004-01-01

    We assessed the effect of beaver dams on channel gradation of an incised stream in an agricultural area of eastern Nebraska. A topographic survey was conducted of a reach of Little Muddy Creek where beaver are known to have been building dams for twelve years. Results indicating that over this time period the thalweg elevation has aggraded an average of 0.65 m by...

  18. Flood Frequency Analysis of Future Climate Projections in the Cache Creek Watershed

    Science.gov (United States)

    Fischer, I.; Trihn, T.; Ishida, K.; Jang, S.; Kavvas, E.; Kavvas, M. L.

    2014-12-01

    Effects of climate change on hydrologic flow regimes, particularly extreme events, necessitate modeling of future flows to best inform water resources management. Future flow projections may be modeled through the joint use of carbon emission scenarios, general circulation models and watershed models. This research effort ran 13 simulations for carbon emission scenarios (taken from the A1, A2 and B1 families) over the 21st century (2001-2100) for the Cache Creek watershed in Northern California. Atmospheric data from general circulation models, CCSM3 and ECHAM5, were dynamically downscaled to a 9 km resolution using MM5, a regional mesoscale model, before being input into the physically based watershed environmental hydrology (WEHY) model. Ensemble mean and standard deviation of simulated flows describe the expected hydrologic system response. Frequency histograms and cumulative distribution functions characterize the range of hydrologic responses that may occur. The modeled flow results comprise a dataset suitable for time series and frequency analysis allowing for more robust system characterization, including indices such as the 100 year flood return period. These results are significant for water quality management as the Cache Creek watershed is severely impacted by mercury pollution from historic mining activities. Extreme flow events control mercury fate and transport affecting the downstream water bodies of the Sacramento River and Sacramento- San Joaquin Delta which provide drinking water to over 25 million people.

  19. Surface-water quality in the Lycoming Creek watershed, north-central Pennsylvania, August 1–3, 2011

    Science.gov (United States)

    Risser, Dennis W.; Conlon, Matthew D.

    2018-05-17

    This report presents the methodology and results for a study of surface-water quality of the Lycoming Creek watershed in north-central Pennsylvania during August 1–3, 2011. The study was done in cooperation with the Williamsport Municipal Water Authority and the Pennsylvania Department of Environmental Protection. Samples of stream water were collected from 31 sites in an area of exploration and production of natural gas from the Marcellus Shale – 5 sites on the main stem of Lycoming Creek and 26 sites on tributary streams. The samples provide a snapshot of the base-flow water-quality conditions, which helps document the spatial variability in water-quality and could be useful for assessing future changes.The 272-square mile Lycoming Creek watershed is located within Lycoming, Tioga, and Sullivan Counties in north-central Pennsylvania. Lycoming Creek flows 37.5 miles to its confluence with the West Branch Susquehanna River in the city of Williamsport. A well field that supplies water for Williamsport captures some water that has infiltrated the streambed of Lycoming Creek. Because the stream provides a source of water to the well field, this study focused on the stream-water quality as it relates to drinking-water standards as opposed to aquatic life.Surface-water samples collected at 20 sites by the U.S. Geological Survey and 11 sites by the Pennsylvania Department of Environmental Protection were analyzed by each agency for a suite of constituents that included major ions, trace metals, nutrients, and radiochemicals. None of the analytical results failed to meet standards set by the U.S. Environmental Protection Agency as maximum contaminant levels for drinking water.Results of the sampling show the substantial spatial variability in base-flow water quality within the Lycoming Creek watershed caused by the interrelated effects of physiography, geology and land use. Dissolved-solids concentrations ranged from less than the laboratory reporting level of 12

  20. BPA riparian fencing and alternative water development projects completed within Asotin Creek Watershed ; 2000 and 2001 Asotin Creek fencing final report of accomplishments

    International Nuclear Information System (INIS)

    Johnson, B.J.Bradley J.

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84

  1. Benthic macroinvertebrate assemblages and sediment toxicity testing in the Ely Creek watershed restoration project

    International Nuclear Information System (INIS)

    Soucek, D.J.; Currie, R.J.; Cherry, D.S.; Latimer, H.A.

    1998-01-01

    The Ely Creek watershed in Lee County, Virginia, contains an abundance of abandoned mined land (AML) seeps that contaminate the majority of the creek and its confluence into Big Stone Creek. Contaminated sediments had high concentrations of iron (∼10,000 mg/kg), aluminum (∼1,500 mg/kg), magnesium (∼400 mg/kg) and manganese (∼150 mg/kg). Copper and zinc generally ranged from 3 to 20 mg/kg. Benthic macroinvertebrates surveys at six of 20 sites sampled in the watershed yielded no macroinvertebrates, while eight others had total abundances of 1 to 9 organisms. Four reference sites contained ≥100 organisms and at least 14 different taxa. Laboratory, 10-day survival/impairment sediments tests with Daphnia magna did not support the field data. Mortality of 92 to 100% for D. magna occurred in samples collected from six cities. Daphnid reproduction was more sensitive than laboratory test organism survivorship; however, neither daphnid survivorship nor reproduction were good predictors of taxa richness. Laboratory test concerns included the use of a reference diluent water rather than site specific diluent water

  2. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

  3. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Thackston, J.W.; Mangarella, P.A.; Preslo, L.M.

    1986-05-01

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies

  4. Evaluation of protected, threatened, and endangered fish species in Upper Bear Creek watershed

    International Nuclear Information System (INIS)

    Ryon, M.G.

    1998-07-01

    The East Bear Creek Site for the proposed centralized waste facility on the US Department of Energy's Oak Ridge Reservation was evaluated for potential rare, threatened or endangered (T and E) fish species in the six primary tributaries and the main stem of Bear Creek that are within or adjacent to the facility footprint. These tributaries and portion of Bear Creek comprise the upper Bear Creek watershed. One T and E fish species, the Tennessee dace (Phoxinus tennesseensis), was located in these streams. The Tennessee dace is listed by the State of Tennessee as being in need of management, and as such its habitat is afforded some protection. Surveys indicated that Tennessee dace occupy the northern tributaries NT-1, NT-4, and NT-5, as well as Bear Creek. Several specimens of the dace were gravid females, indicating that the streams may function as reproductive habitat for the species. The implications of impacts on the species are discussed and mitigation objectives are included

  5. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Science.gov (United States)

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  6. Evaluation of water quality and best management practices (BMPs) in the Black Creek Watershed using SWAT model

    Science.gov (United States)

    Nonpoint sources of runoff from agricultural lands are believed to be responsible for elevated nutrient and sediment levels in the Black Creek Watershed (BCW). This watershed located in Shelby County in Northeast Missouri covers an area of 140 km2. The purpose of this project was to quantify sedimen...

  7. Watershed analysis

    Science.gov (United States)

    Alan Gallegos

    2002-01-01

    Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...

  8. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  9. Hydrology and hydraulics of Cypress Creek watershed, Texas during Hurricane Harvey and Impact of Potential Mitigation Measures.

    Science.gov (United States)

    El Hassan, A.; Fares, A.; Risch, E.

    2017-12-01

    Rain resulting from Hurricane Harvey stated to spread into Harris County late in August 25 and continued until August 31 2017. This high intensity rainfall caused catastrophic flooding across the Greater Houston Area and south Texas. The objectives of this study are to use the USACE Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) to: i) simulate the hydrology and hydraulics of Cypress Creek watershed and quantify the impact of hurricane Harvey on it; and ii) test potential mitigation measures, e.g., construction of a third surface reservoir on the flooding and hydrology of this watershed. Cypress Creek watershed area is 733 km2. Simulations were conducted using precipitation from two sources a) the Multisensory Precipitation Estimator radar products (MPE) and Multi-Radar Multi-Sensor (MRMS) system. Streamflow was downloaded from the USGS gauge at the outlet of the watershed. The models performance using both precipitation data was very reasonable. The construction of an 8 m high embankment at the south central part of the watershed resulted in over 22% reduction of the peak flow of the stream and also reduction of the depth of inundation across the east part of the watershed. These and other mitigation scenarios will be further discussed in details during the presentation.

  10. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  11. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    Science.gov (United States)

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  12. Watershed restoration through remining in the Tangascootack Creek Watershed, Clinton County, Pennsylvania

    International Nuclear Information System (INIS)

    Skema, V.W.; Smith, M.W.; Bisko, D.C.; Dimatteo, M.

    1998-01-01

    The Pennsylvania Department of Environmental Protection and the Pennsylvania Geologic Survey are working together to remediate the effects of acid mine drainage. Remining of previously mined areas is a key component of a comprehensive strategy of improving water quality in polluted watersheds. In this new approach sites will be carefully selected on the basis of remaining coal reserves and overburden characteristics. One of the first watersheds targeted was the Tangascootack Creek watershed located in Clinton County near Lock Haven. The Geologic Survey agreed to provide geologic and coal resource maps for this previously unmapped area. This involved conducting field work examining rock exposures. Five cored holes were drilled, and core was examined to develop a geologic framework. Coals from these holes and from highwalls were chemically tested. Strata overlying the coal seams were analyzed using acid base accounting to determine their potential for generating acidity as well as alkalinity. Additional drill hole data and chemical analyses were collected from cooperating mining companies. This information was used to produce a geologic map showing coal crop lines and structure, coal thickness maps, mined-out area maps, overburden thickness maps, overburden geochemistry maps, strip ratio maps, and to estimate the extent of remaining coal reserves. Several significant geologic features were found in the course of mapping the watershed. One is the extreme variability in coal thickness and character of overburden rock. Another is the degree of relief found to be present on the Mississippian-Pennsylvanian unconformity. It is believed that this feature plays an important role in coal and high aluminum flint clay distribution regionally. And finally is the thick occurrence of Loyalhanna Formation calcareous sandstone which is providing a natural source of carbonate for the neutralization of acid mine drainage

  13. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  14. Simulation of streamflow in the McTier Creek watershed, South Carolina

    Science.gov (United States)

    Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.

    2010-01-01

    The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient

  15. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  16. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    International Nuclear Information System (INIS)

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy's Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings

  17. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Science.gov (United States)

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  18. Assessment of a new Bacteroidales marker targeting North American beaver (Castor canadensis) fecal pollution by real-time PCR.

    Science.gov (United States)

    Marti, Romain; Zhang, Yun; Tien, Yuan-Ching; Lapen, David R; Topp, Edward

    2013-11-01

    In many settings wildlife can be a significant source of fecal pathogen input into surface water. The North American beaver (Castor canadensis) is a zoonotic reservoir for several human pathogens including Cryptosporidium spp. and Giardia spp. In order to specifically detect fecal pollution by beavers, we have developed and validated a beaver-specific Bacteroidales marker, designated Beapol01, based on the 16S rRNA gene. The marker is suitable for quantifying pollution using real-time PCR. The specificity and sensitivity of the marker was excellent, Beaver signal was detected in water of a mixed-activity watershed harbouring this rodent. Overall, Beapol01 will be useful for a better understanding of fecal source inputs in drainage basins inhabited by the beaver. © 2013.

  19. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    International Nuclear Information System (INIS)

    1996-11-01

    This document contains Appendixes A ''Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed'' and B ''Human Health Risk Assessment for White Oak Creek / Melton Valley Area'' for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites

  20. Hydrologic and water quality monitoring on Turkey Creek watershed, Francis Marion National Forest, SC

    Science.gov (United States)

    D.M. Amatya; T.J. Callahan; A. Radecki-Pawlik; P. Drewes; C. Trettin; W.F. Hansen

    2008-01-01

    The re-initiation of a 7,260 ha forested watershed study on Turkey Creek, a 3rd order stream, within the Francis Marion National forest in South Carolina, completes the development of a multi-scale hydrology and ecosystem monitoring framework in the Atlantic Coastal Plain. Hydrology and water quality monitoring began on the Santee Experimental...

  1. Association of radionuclides with streambed sediments in White Oak Creek watershed

    International Nuclear Information System (INIS)

    Spalding, B.P.; Cerling, T.E.

    1979-09-01

    Radionuclides are found in much higher concentrations on streambed sediment than in the water of White Oak Creek. Selective extraction of sediments demonstrates that 60 Co is immobilized in a nonexchangeable form in the ferromanganese hydrous oxide coatings on the sediments; 90 Sr occurs predominantly in an exchangeable form on clay, iron oxides, and ferromanganese hydrous oxides; 137 Cs occurs in a nonexchangeable and strongly bound form on clays which compose the dominant rock (Conasauga shale) in the watershed. The fine-gravel to coarse-sand size fraction of streambed sediments is the most suitable fraction for radionuclide analysis because of its abundance in the sediment and its high concentration of radionuclides compared to larger and smaller size fractions. A preliminary survey of all major tributes in White Oak Creek shows that radionuclide analysis of streambed sediments is a very useful technique to locate sources of radioactive contamination

  2. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients.

    Science.gov (United States)

    Roy, Virginie; Amyot, Marc; Carignan, Richard

    2009-08-01

    Beaver impoundments flood forested areas and may be important production sites for methylmercury (MeHg) because of the resulting enhanced microbial activity and oxygen depletion. The influence of 17 beaver impoundments on streamwater chemistry (total mercury (THg), MeHg, nutrients, cations, and anions)] was investigated by sampling sites located along vegetation and pond-age gradients in southwestern Quebec (Canada). Recently inundated beaver ponds (beaver ponds as suggested by depletions of dissolved oxygen, sulfate and nitrite-nitrate concentrations, and increases in nutrients (e.g., dissolved organic carbon, total phosphorus, and total nitrogen) in outlets compared to inlets. Acidic waters at coniferous sites may have stimulated more MeHg production than in mixed woodland regions. Lower methylation efficiencies in older ponds (> 20 years old) may be due to the degradation of less labile organic matter as ponds age. Beavers actively alter watersheds by building impoundments, and our findings indicate that this landscape disturbance may be a significant source of MeHg to downstream water bodies.

  3. White Oak Creek Watershed topographic map and related materials

    International Nuclear Information System (INIS)

    Farrow, N.D.

    1981-04-01

    On March 22, 1978 a contract was let to Accu-Air Surveys, Inc., of Seymour, Indiana, to produce a topographic map of the White Oak Creek Watershed. Working from photography and ground control surveys, Accu-Air produced a map to ORNL's specifications. The map is in four sections (N.W., N.E., S.W., S.E.) at a scale of 1:2400. Contour intervals are 5 ft (1.5 m) with accented delineations every 25 ft (7.6 m). The scribe method was used for the finished map. Planimetric features, roads, major fence lines, drainage features, and tree lines are included. The ORNL grid is the primary coordinate system which is superimposed on the state plain coordinates

  4. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    Science.gov (United States)

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and

  5. Landsat time series analysis documents beaver migration into permafrost landscapes of arctic Alaska

    Science.gov (United States)

    Jones, B. M.; Tape, K. D.; Nitze, I.; Arp, C. D.; Grosse, G.; Zimmerman, C. E.

    2017-12-01

    Landscape-scale impacts of climate change in the Arctic include increases in growing season length, shrubby vegetation, winter river discharge, snowfall, summer and winter water temperatures, and decreases in river and lake ice thickness. Combined, these changes may have created conditions that are suitable for beaver colonization of low Arctic tundra regions. We developed a semi-automated workflow that analyzes Landsat imagery time series to determine the extent to which beavers may have colonized permafrost landscapes in arctic Alaska since 1999. We tested this approach on the Lower Noatak, Wulik, and Kivalina river watersheds in northwest Alaska and identified 83 locations representing potential beaver activity. Seventy locations indicated wetting trends and 13 indicated drying trends. Verification of each site using high-resolution satellite imagery showed that 80 % of the wetting locations represented beaver activity (damming and pond formation), 11 % were unrelated to beavers, and 9 % could not readily be distinguished as being beaver related or not. For the drying locations, 31 % represented beaver activity (pond drying due to dam abandonment), 62 % were unrelated to beavers, and 7 % were undetermined. Comparison of the beaver activity database with historic aerial photography from ca. 1950 and ca. 1980 indicates that beavers have recently colonized or recolonized riparian corridors in northwest Alaska. Remote sensing time series observations associated with the migration of beavers in permafrost landscapes in arctic Alaska include thermokarst lake expansion and drainage, thaw slump initiation, ice wedge degradation, thermokarst shore fen development, and possibly development of lake and river taliks. Additionally, beaver colonization in the Arctic may alter channel courses, thermal regimes, hyporheic flow, riparian vegetation, and winter ice regimes that could impact ecosystem structure and function in this region. In particular, the combination of beaver

  6. Simulated effects of existing and proposed surface-water impoundments and gas-well pads on streamflow and suspended sediment in the Cypress Creek watershed, Arkansas

    Science.gov (United States)

    Hart, Rheannon M.

    2014-01-01

    Cypress Creek is located in central Arkansas and is the main tributary to Brewer Lake, which serves as the primary water supply for Conway, Arkansas, and the surrounding areas. A model of the Cypress Creek watershed was developed and calibrated in cooperation with Southwestern Energy Company using detailed precipitation, streamflow, and discrete suspended-sediment data collected from 2009 through 2012. These data were used with a Hydrologic Simulation Program—FORTRAN model to address different potential gas-extraction activities within the watershed.

  7. 1998 BPA habitat projects completed within the Asotin Creek Watershed, WA; Ridge-Top to Ridge-Top Habitat Projects; 1998 BPA Completion Report - November 1999

    International Nuclear Information System (INIS)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed

  8. Influence of Beaver-Induced Complexity on Storage of Organic Carbon and Sediment in Colorado Mountain Streams

    Science.gov (United States)

    Laurel, D.; Wohl, E.

    2016-12-01

    Beaver meadows (complexes of multiple different aged beaver dams and ponds) influence the storage of water, sediment, and nutrients. Although beaver meadows compose only a small fraction of catchment area, they provide a potentially large role in retaining these fluxes in mountain watersheds. Multiple dams and ponds in beaver meadows increase overbank flows leading to an anastomosing stream channel planform, and deposition of fine sediment along with particulate organic carbon. An earlier study estimated a range of cumulative carbon stored in 27 beaver meadows east of the continental divide in Rocky Mountain National Park. Storage ranged from 735,800 to 2.8 x 106 Mg carbon, with the high value estimating storage if all the meadows had active beaver (historic conditions pre-European settlement) and the lower value estimating current conditions where many of the meadows are abandoned. We combined geomorphic surveys, soil depth probing by rebar, and soil cores analyzed for carbon content to investigate the influence of beaver activity, meadow size, and meadow placement within the drainage on catchment-scale fluxes of fine sediment and organic carbon. We found carbon storage in floodplain soils to be highly variable across both active and abandoned meadows; however, active beaver meadows store more carbon on average than abandoned meadows. In addition, active meadows with high levels of beaver activity (multiple colonies) stored greater volumes of fine sediment behind dams and in ponds. These results have implications for the restoration potential of abandoned beaver meadows in mountain environments to store greater volumes of sediment and more organic carbon if beaver are successfully reintroduced.

  9. Toward an Understanding of Beaver Management as Human and Beaver Densities Increase

    OpenAIRE

    Siemer, William F.; Jonker, Sandra A.; Decker, Daniel J.; Organ, John F.

    2013-01-01

    Estimates of beaver (Castor canadensis) density play an important role in wildlife managers’ decisions about beaver population management, because managers anticipate higher incidence of problem complaints when a beaver population increases. To manage the impacts of beavers in an urbanizing landscape, managers need better information on changes in stakeholder beliefs and attitudes as beaver and human densities reach high levels. We conducted additional analysis of data collected in 2002 throu...

  10. Ecosystem experiment reveals benefits of natural and simulated beaver dams to a threatened population of steelhead (Oncorhynchus mykiss)

    Science.gov (United States)

    Bouwes, Nicolaas; Weber, Nicholas; Jordan, Chris E.; Saunders, W. Carl; Tattam, Ian A.; Volk, Carol; Wheaton, Joseph M.; Pollock, Michael M.

    2016-01-01

    Beaver have been referred to as ecosystem engineers because of the large impacts their dam building activities have on the landscape; however, the benefits they may provide to fluvial fish species has been debated. We conducted a watershed-scale experiment to test how increasing beaver dam and colony persistence in a highly degraded incised stream affects the freshwater production of steelhead (Oncorhynchus mykiss). Following the installation of beaver dam analogs (BDAs), we observed significant increases in the density, survival, and production of juvenile steelhead without impacting upstream and downstream migrations. The steelhead response occurred as the quantity and complexity of their habitat increased. This study is the first large-scale experiment to quantify the benefits of beavers and BDAs to a fish population and its habitat. Beaver mediated restoration may be a viable and efficient strategy to recover ecosystem function of previously incised streams and to increase the production of imperiled fish populations. PMID:27373190

  11. Sacaton riparian grasslands of the Sky Islands: Mapping distribution and ecological condition using state-and-transition models in Upper Cienega Creek Watershed

    Science.gov (United States)

    Ron Tiller; Melissa Hughes; Gita Bodner

    2013-01-01

    Riparian grasslands dominated by Sporobolus wrightii (big sacaton) were once widely distributed in the intermountain basins of the Madrean Archipelago. These alluvial grasslands are still recognized as key resources for watershed function, livestock, and wildlife. The upper Cienega Creek watershed in SE Arizona is thought to harbor some of the region’s most extensive...

  12. Geology of the Cane Branch and Helton Branch watershed areas, McCreary County, Kentucky

    Science.gov (United States)

    Lyons, Erwin J.

    1957-01-01

    Cane Branch and Helton Branch in McCreary County, Kentucky, are about 1.4 miles apart (fig. 1). Can Branch, which is about 2.1 miles long, emptied into Hughes Fork of Beaver Creek. Its watershed area of about 1.5 square miles lies largely in the Wiborf 7 1/2-minute quadrangle (SW/4 Cumberland Falls 15-minute quadrangle), but the downstream part of the area extends northward into the Hail 7 1/2-minute quadrangle (NW/4 Cumberland Falls 15-minute quadrangle). Helton Branch, which is about 1.1 miles long, has two tributaries and empties into Little Hurricane Fork of Beaver Creek. It drains an area of about 0.8 square mile of while about 0.5 square mile is in the Hail quadrangle and the remainder in the Wilborg quadrangle. The total relief in the Can Branch area is about 500 feet and in the Helton Branch area about 400 feet. Narrow, steep-sided to canyon-like valley and winding ridges, typical of the Pottsville escarpment region, are characteristic of both areas. Thick woods and dense undergrowth cover much of the two areas. Field mapping was done on U.S. Geological Survey 7 1/2-minute maps having a scale of 1:24,000 and a contour interval of 20 feet. Elevations of lithologic contacts were determined with a barometer and a hand level. Aerial photographs were used principally to trace the cliffs formed by sandstone and conglomerate ledges. Exposures, except for those of the cliff- and ledge-forming sandstone and conglomerates, are not abundant. The most complete stratigraphic sections (secs. 3 and 4, fig. 2) in the two areas are exposed in cuts of newly completed Forest Service roads, but the rick in the upper parts of the exposures is weathered. To supplement these sections, additional sections were measured in cuts along the railroad and main highways in nor near the watersheds.

  13. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  14. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    Science.gov (United States)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  15. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  16. Using occupancy models to accommodate uncertainty in the interpretation of aerial photograph data: status of beaver in Central Oregon, USA

    Science.gov (United States)

    Pearl, Christopher A.; Adams, Michael J.; Haggerty, Patricia K.; Urban, Leslie

    2015-01-01

    Beavers (Castor canadensis) influence habitat for many species and pose challenges in developed landscapes. They are increasingly viewed as a cost-efficient means of riparian habitat restoration and water storage. Still, information on their status is rare, particularly in western North America. We used aerial photography to evaluate changes in beaver occupancy between 1942–1968 and 2009 in upper portions of 2 large watersheds in Oregon, USA. We used multiple observers and occupancy modeling to account for bias related to photo quality, observers, and imperfect detection of beaver impoundments. Our analysis suggested a slightly higher rate of beaver occupancy in the upper Deschutes than the upper Klamath basin. We found weak evidence for beaver increases in the west and declines in eastern parts of the study area. Our study presents a method for dealing with observer variation in photo interpretation and provides the first assessment of the extent of beaver influence in 2 basins with major water-use challenges. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  17. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-10-25

    ...] Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor Creek, and... Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit renewal, and by this... in the Federal Register. ADDRESSES: Copies of the Jump Creek, Succor Creek and Cow Creek Watersheds...

  18. Seventh International Beaver Symposium

    OpenAIRE

    Yuri A. Gorshkov

    2016-01-01

    The paper presents data on the seventh international Beaver Symposium. Brief historical background about previous Beaver Symposia beaver is shown. Data on the sections of symposium, number of participants and reports are presented.

  19. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-05-03

    ...] Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor Creek, and... the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal and by this notice is... receive written comments on the Draft EIS for the Jump Creek, Succor Creek, and Cow Creek Watersheds...

  20. Water Quality and Fecal-Indicator Detection in Response to an Impaired Urban Watershed: Turkey Creek "Gulf of Mexico Initiative Focus"; and a "Making a Visible Difference" Program

    Science.gov (United States)

    The historical communities of Turkey Creek originated in 1866, when a group of emancipated African-Americans purchased land in Harrison County, MS, along the Turkey Creek watershed. Many of the current members of this community are descendants from the original settlers. This wa...

  1. Seventh International Beaver Symposium

    Directory of Open Access Journals (Sweden)

    Yuri A. Gorshkov

    2016-05-01

    Full Text Available The paper presents data on the seventh international Beaver Symposium. Brief historical background about previous Beaver Symposia beaver is shown. Data on the sections of symposium, number of participants and reports are presented.

  2. Occurrence of Organic Wastewater Compounds in the Tinkers Creek Watershed and Two Other Tributaries to the Cuyahoga River, Northeast Ohio

    Science.gov (United States)

    Tertuliani, J.S.; Alvarez, D.A.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Koltun, G.F.

    2008-01-01

    The U.S. Geological Survey - in cooperation with the Ohio Water Development Authority; National Park Service; Cities of Aurora, Bedford, Bedford Heights, Solon, and Twinsburg; and Portage and Summit Counties - and in collaboration with the Ohio Environmental Protection Agency, did a study to determine the occurrence and distribution of organic wastewater compounds (OWCs) in the Tinkers Creek watershed in northeastern Ohio. In the context of this report, OWCs refer to a wide range of compounds such as antibiotics, prescription and nonprescription pharmaceuticals, personal-care products, household and industrial compounds (for example, antimicrobials, fragrances, surfactants, fire retardants, and so forth) and a variety of other chemicals. Canisters containing polar organic integrative sampler (POCIS) and semipermeable membrane device (SPMD) media were deployed instream for a 28-day period in Mayand June 2006 at locations upstream and downstream from seven wastewater-treatment-plant (WWTP) outfalls in the Tinkers Creek watershed, at a site on Tinkers Creek downstream from all WWTP discharges, and at one reference site each in two nearby watersheds (Yellow Creek and Furnace Run) that drain to the Cuyahoga River. Streambed-sediment samples also were collected at each site when the canisters were retrieved. POCIS and SPMDs are referred to as 'passive samplers' because they sample compounds that they are exposed to without use of mechanical or moving parts. OWCs detected in POCIS and SPMD extracts are referred to in this report as 'detections in water' because both POCIS and SPMDs provided time-weighted measures of concentration in the stream over the exposure period. Streambed sediments also reflect exposure to OWCs in the stream over a long period of time and provide another OWC exposure pathway for aquatic organisms. Four separate laboratory methods were used to analyze for 32 antibiotic, 20 pharmaceutical, 57 to 66 wastewater, and 33 hydrophobic compounds. POCIS and

  3. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  4. Water quality analysis of a highly acidic watershed in southeast Ohio

    International Nuclear Information System (INIS)

    Eberhart, R.J.; Edwards, K.B.; Stuart, B.J.

    1998-01-01

    Due to acid mine drainage from abandoned coal mines, the 301 square mile Moxahala Creek watershed in southeast Ohio is one of the most acidic watersheds in the state. A watershed evaluation plan is being developed so that the most influential tributaries can be identified for restoration. Moxahala Creek has an upstream pH of 6.0 and a downstream of pH of 4.0. Forty monthly sampling and flowrate measurements for 12 months are being taken. The samples are taken where each major tributary enters Moxahala Creek, and the creek itself is sampled in selected locations. The goal of this watershed study is to determine which tributaries have the most adverse effect on Moxahala Creek's water quality. By analyzing the chemical loads and other characteristics of the tributaries, those of poorest quality and most influence on Moxahala Creek will be determined. Eventually, a geographic information system for the watershed will be developed to provide the capability to visually examine the impact of each tributary on Moxahala Creek. Three tributaries that have the greatest adverse impact on Moxahala Creek have been identified using the collected data. These three tributaries may be the targets of future reclamation strategies

  5. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    Science.gov (United States)

    Dittbrenner, Benjamin J.; Pollack, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17

  6. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation.

    Science.gov (United States)

    Dittbrenner, Benjamin J; Pollock, Michael M; Schilling, Jason W; Olden, Julian D; Lawler, Joshua J; Torgersen, Christian E

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors-information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are

  7. Beaver herbivory on aquatic plants.

    Science.gov (United States)

    Parker, John D; Caudill, Christopher C; Hay, Mark E

    2007-04-01

    Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard's tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard's tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard's tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard's tail leaves within 2 weeks. In contrast, leaf abundance increased by 73-93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard's tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and

  8. Recovery, restoration, and development of an enhancement plan for the Leading Creek watershed after dewatering of the Meigs number-sign 31 coal mine in Ohio

    International Nuclear Information System (INIS)

    Cherry, D.S.; Hassel, J.H. Van; Yeager, M.M.; Babendreier, J.E.; Currie, R.J.; Astin, L.E.; Lynde, S.R.

    1995-01-01

    Following the flooding of the Meigs number-sign 31 deep coal mine in Meigs County, Ohio, a proactive plan was developed to evaluate effects of initial dewatering, recovery, and development of a watershed enhancement plan. Approximately half of the 31-mile Leading Creek mainstem received coal mine discharge of high conductivity, low pH, high metals and total suspended solids loading. Most forms of aquatic life were depleted in the impacted areas of the creek. After three years since the incident, many forms of benthic macroinvertebrates and fish have returned to the creek, and sediments have been purged of metal loading by storm water events. The enhancement plan involves a reconnaissance of the creek and tributaries pinpointing areas of agricultural sedimentation and abandoned mined land (AML) influences in the lower half. Research activities involved sampling water and sediment in 10 stations of the creek and 17 major tributaries. The tributaries were addressed as point source discharges with water/sediment toxicity testing conducted. In-situ testing included growth impairment evaluation of Asian clams at 27 stations in the watershed. Several tributaries were intermittently toxic depending upon rainfall and the degree of AML input. Benthic macroinvertebrate assembles in most tributaries were stressed and comprised 0--3 taxa. Erosion/sedimentation loading was being addressed by hydrological modeling of the creek, land use management/habitat assessment, and data management by geographic information systems

  9. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.

    Science.gov (United States)

    Larose, M; Heathman, G C; Norton, L D; Engel, B

    2007-01-01

    One of the major factors contributing to surface water contamination in agricultural areas is the use of pesticides. The Soil and Water Assessment Tool (SWAT) is a hydrologic model capable of simulating the fate and transport of pesticides in an agricultural watershed. The SWAT model was used in this study to estimate stream flow and atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) losses to surface water in the Cedar Creek Watershed (CCW) within the St. Joseph River Basin in northeastern Indiana. Model calibration and validation periods consisted of five and two year periods, respectively. The National Agricultural Statistics Survey (NASS) 2001 land cover classification and the Soil Survey Geographic (SSURGO) database were used as model input data layers. Data from the St. Joseph River Watershed Initiative and the Soil and Water Conservation Districts of Allen, Dekalb, and Noble counties were used to represent agricultural practices in the watershed which included the type of crops grown, tillage practices, fertilizer, and pesticide application rates. Model results were evaluated based on efficiency coefficient values, standard statistical measures, and visual inspection of the measured and simulated hydrographs. The Nash and Sutcliffe model efficiency coefficients (E(NS)) for monthly and daily stream flow calibration and validation ranged from 0.51 to 0.66. The E(NS) values for atrazine calibration and validation ranged from 0.43 to 0.59. All E(NS) values were within the range of acceptable model performance standards. The results of this study indicate that the model is an effective tool in capturing the dynamics of stream flow and atrazine concentrations on a large-scale agricultural watershed in the midwestern USA.

  10. Escherichia coli Concentrations in the Mill Creek Watershed, Cleveland, Ohio, 2001-2004

    Science.gov (United States)

    Brady, Amie M.G.

    2007-01-01

    Mill Creek in Cleveland, Ohio, receives discharges from combined-sewer overflows (CSOs) and other sanitary-sewage inputs. These discharges affect the water quality of the creek and that of its receiving stream, the Cuyahoga River. In an effort to mitigate this problem, the Northeast Ohio Regional Sewer District implemented a project to eliminate or control (by reducing the number of overflows) all of the CSOs in the Mill Creek watershed. This study focused on monitoring the microbiological water quality of the creek before and during sewage-collection system modifications. Routine samples were collected semimonthly from August 2001 through September 2004 at a site near a U.S. Geological Survey stream gage near the mouth of Mill Creek. In addition, event samples were collected September 19 and 22, 2003, when rainfall accumulations were 0.5 inches (in.) or greater. Concentrations of Escherichia coli (E. coli) were determined and instantaneous discharges were calculated. Streamflow and water-quality characteristics were measured at the time of sampling, and precipitation data measured at a nearby precipitation gage were obtained from the National Oceanic and Atmospheric Administration. Concentrations of E. coli were greater than Ohio's single-sample maximum for primary-contact recreation (298 colony-forming units per 100 milliliters (CFU/100 mL)) in 84 percent of the routine samples collected. In all but one routine sample E. coli concentrations in samples collected when instantaneous streamflows were greater than 20 cubic feet per second (ft3/s) were greater than Ohio's single-sample maximum. When precipitation occurred in the 24-hour period before routine sample collection, concentrations were greater than the maximum in 89 percent of the samples as compared to 73 percent when rainfall was absent during the 24 hours prior to routine sample collection. Before modifications to the sewage-collection system in the watershed began, E. coli concentrations in Mill Creek

  11. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on

  12. Beaver assisted river valley formation

    Science.gov (United States)

    Westbrook, Cherie J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  13. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2013-07-01

    Full Text Available In this paper, we use the Hydrologic Modeling System (HEC-HMS to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW, which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  14. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle A.; Raymond, Peter A.; Butler, Kenna D.; Dornblaser, Mark M.; Heckman, Katherine

    2014-11-01

    Recent warming at high latitudes has accelerated permafrost thaw, which can modify soil carbon dynamics and watershed hydrology. The flux and composition of dissolved organic matter (DOM) from soils to rivers are sensitive to permafrost configuration and its impact on subsurface hydrology and groundwater discharge. Here, we evaluate the utility of DOM composition and age as a tool for detecting permafrost thaw in three rivers (Beaver, Birch, and Hess Creeks) within the discontinuous permafrost zone of interior Alaska. We observed strong temporal controls on Δ14C content of hydrophobic acid isolates (Δ14C-HPOA) across all rivers, with the most enriched values occurring during spring snowmelt (75 ± 8‰) and most depleted during winter flow (-21 ± 8‰). Radiocarbon ages of winter flow samples ranged from 35 to 445 yr BP, closely tracking estimated median base flow travel times for this region (335 years). During spring snowmelt, young DOM was composed of highly aromatic, high molecular-weight compounds, whereas older DOM of winter flow had lower aromaticity and molecular weight. We observed a significant correlation between Δ14C-HPOA and UV absorbance coefficient at 254 nm (α254) across all study rivers. Using α254 as an optical indicator for Δ14C-HPOA, we also observed a long-term decline in α254 during maximum annual thaw depth over the last decade at the Hess Creek study site. These findings suggest a shift in watershed hydrology associated with increasing active layer thickness. Further development of DOM optical indicators may serve as a novel and inexpensive tool for detecting permafrost degradation in northern watersheds.

  15. Recovery and enhancement plan development for the Leading Creek watershed, Meigs County, Ohio

    International Nuclear Information System (INIS)

    Currie, R.J.; Cherry, D.S.; Latimer, H.A.; Babendreier, J.E.; Van Hassel, J.H.

    1998-01-01

    Following the flooding of the Meigs No. 31 coal mine in Meigs County, Ohio, a proactive plan was developed to evaluate initial dewatering effects, recovery and development of a watershed enhancement plan. Approximately half of the 31-mile Leading Creek mainstem received ∼one billion gallons of coal mine discharge, including sludge and slurry. Damage to the stream system resulted from high conductivity (∼6,000 micromhos/cm), low pH (2.5--3.5), high metals (aluminum, cadmium, copper, iron and iron floc, lead, manganese, nickel and zinc) and total suspended solids. Most forms of aquatic life were depleted in the impacted areas. Four years after the incident, many forms of benthic macroinvertebrates and fish have recovered in the creek, with sediments purged of metals by stormwater events. The enhancement plan involves a reconnaissance of the creek and tributaries pinpointing areas of agricultural sedimentation and abandoned minedland discharges (AMD). Seventeen tributary and ten mainstem stations were addressed as point source discharges with water/sediment toxicity and in-situ testing of Asian clams. One-third of the stations were intermittently toxic from rainfall runoff and the degree of AMD input. Benthic macroinvertebrates in many tributaries were stressed and comprised 1--5 taxa. Erosion/sedimentation was addressed by the USEPA 1-Dimensional Hydrologic Simulation Program Fortran (HSPF) model, as well as incorporating land use management/habitat assessment, and data management by Geographical Information Systems

  16. Classification of the alterations of beaver dams to headwater streams in northeastern Connecticut, U.S.A.

    Science.gov (United States)

    Burchsted, Denise; Daniels, Melinda D.

    2014-01-01

    Of the many types of barriers to water flow, beaver dams are among the smallest, typically lasting less than a decade and rarely exceeding 1.5 m in height. They are also among the most frequent and common obstructions in rivers, with a density often exceeding ten dams per km, a frequency of construction within a given network on a time scale of years, and a historic extent covering most of North America. Past quantification of the geomorphologic impact of beaver dams has primarily been limited to local impacts within individual impoundments and is of limited geographic scope. To assess the impact of beaver dams at larger scales, this study examines channel shape and sediment distribution in thirty river reaches in northeastern Connecticut, U.S.A. The study reaches fall within the broader categories of impounded and free-flowing segments, leaving a third segment class of beaver meadows requiring additional study. Each of the study reaches were classified at the reach scale as free-flowing, valley-wide beaver pond, in-channel beaver pond, and downstream of beaver dam. The bankfull channel width to depth ratios and channel widths normalized by watershed area vary significantly across the study reach classes. Additionally, reaches modified by beaver dams have finer sediment distributions. This paper provides the first quantitative geomorphic descriptions of the in-channel beaver pond and reaches downstream of beaver dams. Given the different channel shapes and sediment distributions, we infer that geomorphic processes are longitudinally decoupled by these frequent barriers that control local base level. These barriers generate heterogeneity within a river network by greatly increasing the range of channel morphology and by generating patches controlled by different processes. Therefore, in spite of the small size of individual beaver dams, the cumulative effect of multiple dams has the potential to modify processes at larger spatial scales. To improve assessment of the

  17. Areal distribution of 60Co, 137Cs, and 90Sr in streambed gravels of White Oak Creek Watershed, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Cerling, T.E.; Spalding, B.P.

    1981-01-01

    The concentrations of 90 Sr, 60 Co, and 137 Cs in streambed gravels from contaminated drainages in White Oak Creek Watershed were determined. Methods to determine the relative contributions of various sources to the total discharge from the watershed were developed. Principal sources of 90 Sr were: ORNL plant effluents (50%), leaching from solid waste disposal area (SWDA) 4 (30%), and leaching from SWDA 5 (10%). Minor sources included SWDA 3, the Molten Salt Reactor Facility, and intermediate-level liquid waste pit 1 with each representing 4% or less of the total basin discharge. The cooling water effluent from the High-Flux Isotope Reactor was the dominant source of 60 Co contamination in the watershed. ORNL plant effluents accounted for almost all the 137 Cs discharge from White Oak Creek basin. Downstream radionuclide concentrations were constant until significant dilution by other tributaries occurred. Any future activities giving rise to additional contamination can now be identified. Distribution coefficients between streambed gravels and streamwater for 85 Sr, 60 Co, and 137 Cs were 50, 560, and 8460 ml/g, respectively. An abridged radiochemical fractionation developed for 90 Sr was found to be as accurate and precise for these samples as the standard 90 Sr method above levels of 2 dpm/g

  18. Can Viral Videos Help Beaver Restore Streams?

    Science.gov (United States)

    Castro, J. M.; Pollock, M. M.; Lewallen, G.; Jordan, C.; Woodruff, K.

    2015-12-01

    Have you watched YouTube lately? Did you notice the plethora of cute animal videos? Researchers, including members of our Beaver Restoration Research team, have been studying the restoration potential of beaver for decades, yet in the past few years, beaver have gained broad acclaim and some much deserved credit for restoration of aquatic systems in North America. Is it because people can now see these charismatic critters in action from the comfort of their laptops? While the newly released Beaver Restoration Guidebook attempts to answer many questions, sadly, this is not one of them. We do, however, address the use of beaver (Castor canadensis) in stream, wetland, and floodplain restoration and discuss the many positive effects of beaver on fluvial ecosystems. Our team, composed of researchers from NOAA National Marine Fisheries Service, US Fish and Wildlife Service, US Forest Service, and Portland State University, has developed a scientifically rigorous, yet accessible, practitioner's guide that provides a synthesis of the best available science for using beaver to improve ecosystem functions. Divided into two broad sections -- Beaver Ecology and Beaver Restoration and Management -- the guidebook focuses on the many ways in which beaver improve habitat, primarily through the construction of dams that impound water and retain sediment. In Beaver Ecology, we open with a discussion of the general effects that beaver dams have on physical and biological processes, and we close with "Frequently Asked Questions" and "Myth Busters". In Restoration and Management, we discuss common emerging restoration techniques and methods for mitigating unwanted beaver effects, followed by case studies from pioneering practitioners who have used many of these beaver restoration techniques in the field. The lessons they have learned will help guide future restoration efforts. We have also included a comprehensive beaver ecology library of over 1400 references from scientific journals

  19. The Reynolds Creek Experimental Watershed: A Hydro-Geo-Climatic Observatory for the 21^{st} Century

    Science.gov (United States)

    Marks, D.; Seyfried, M.; Flerchinger, G.

    2006-12-01

    Long-term hydro-climatic data on a watershed scale are critical to improving our understanding of basic hydrologic and ecologic processes because they provide a context to assess inter-annual variability and allow us to document longer-term trends. In addition, a scientific infrastructure that captures the spatial variations within a watershed are required to identify recharge areas, describe the amount and timing of streamflow generation and understand the variability of vegetation. These basic data, combined with soil microclimate information, are required to describe the milieu for geochemical weathering and soil formation. Data from watersheds that include significant human activities, such as grazing, farming, irrigation, and urbanization, represent conditions typical to most watersheds and are critical for determining the signature of human induced changes on hydrologic processes and the water cycle. The Reynolds Creek Experimental Watershed (RCEW), a 239 km2 drainage in the Owyhee Mountains near Boise, Idaho, was added to the USDA Agricultural Research Service watershed program in 1960. The vision for RCEW as an outdoor laboratory to support watershed research was described 1965 in the first volume of Water Resources Research [Robins et al., 1965]. The RCEW has supported a sustained data collection network for over 45 years. The first 35 years of data were presented in a series of papers in 2001 [Marks, 2001]. More recently, there has been an effort to better describe spatial variations within the watershed, and research is currently supported by 9 weirs, 32 primary and 5 secondary meteorological measurement stations, 26 precipitation stations, 8 snow course and 5 snow study sites, and 5 eddy covariance systems. In addition, soil microclimate (moisture and temperature) profile data are collected eight sites with surface data collected at an additional 19 sites. These support a wide range of experimental investigations including snow hydrology and physics

  20. Coupled stream and population dynamics: Modeling the role beaver (Castor canadensis) play in generating juvenile steelhead (Oncorhynchus mykiss) habitat

    Science.gov (United States)

    Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.

    2013-12-01

    Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly

  1. Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho

    Science.gov (United States)

    Skinner, Kenneth D.

    2013-01-01

    A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range

  2. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    International Nuclear Information System (INIS)

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions

  3. Turbidity Responses from Timber Harvesting, Wildfire, and Post-Fire Logging in the Battle Creek Watershed, Northern California.

    Science.gov (United States)

    Lewis, Jack; Rhodes, Jonathan J; Bradley, Curtis

    2018-04-11

    The Battle Creek watershed in northern California was historically important for its Chinook salmon populations, now at remnant levels due to land and water uses. Privately owned portions of the watershed are managed primarily for timber production, which has intensified since 1998, when clearcutting became widespread. Turbidity has been monitored by citizen volunteers at 13 locations in the watershed. Approximately 2000 grab samples were collected in the 5-year analysis period as harvesting progressed, a severe wildfire burned 11,200 ha, and most of the burned area was salvage logged. The data reveal strong associations of turbidity with the proportion of area harvested in watersheds draining to the measurement sites. Turbidity increased significantly over the measurement period in 10 watersheds and decreased at one. Some of these increases may be due to the influence of wildfire, logging roads and haul roads. However, turbidity continued trending upwards in six burned watersheds that were logged after the fire, while decreasing or remaining the same in two that escaped the fire and post-fire logging. Unusually high turbidity measurements (more than seven times the average value for a given flow condition) were very rare (0.0% of measurements) before the fire but began to appear in the first year after the fire (5.0% of measurements) and were most frequent (11.6% of measurements) in the first 9 months after salvage logging. Results suggest that harvesting contributes to road erosion and that current management practices do not fully protect water quality.

  4. Flood-inundation and flood-mitigation modeling of the West Branch Wapsinonoc Creek Watershed in West Branch, Iowa

    Science.gov (United States)

    Cigrand, Charles V.

    2018-03-26

    The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the

  5. Summary and Synthesis of Mercury Studies in the Cache Creek Watershed, California, 2000-01

    Science.gov (United States)

    Domagalski, Joseph L.; Slotton, Darell G.; Alpers, Charles N.; Suchanek, Thomas H.; Churchill, Ronald; Bloom, Nicolas; Ayers, Shaun M.; Clinkenbeard, John

    2004-01-01

    This report summarizes the principal findings of the Cache Creek, California, components of a project funded by the CALFED Bay?Delta Program entitled 'An Assessment of Ecological and Human Health Impacts of Mercury in the Bay?Delta Watershed.' A companion report summarizes the key findings of other components of the project based in the San Francisco Bay and the Delta of the Sacramento and San Joaquin Rivers. These summary documents present the more important findings of the various studies in a format intended for a wide audience. For more in-depth, scientific presentation and discussion of the research, a series of detailed technical reports of the integrated mercury studies is available at the following website: .

  6. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    Science.gov (United States)

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium

  7. Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA

    Science.gov (United States)

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.; Bencala, K.E.

    2002-01-01

    Watersheds in mineralized zones may contain many mines, each of which can contribute to acidity and the metal load of a stream. In this study the authors delineate hydrogeologic characteristics determining the transport of metals from the watershed to the stream in the watershed of Cement Creek, Colorado. Combining the injection of a chemical tracer, to determine a discharge, with synoptic sampling, to obtain chemistry of major ions and metals, spatially detailed load profiles are quantified. Using the discharge and load profiles, the authors (1) identified sampled inflow sources which emanate from undisturbed as well as previously mined areas; (2) demonstrate, based on simple hydrologic balance, that unsampled, likely dispersed subsurface, inflows are significant; and (3) estimate attenuation. For example, along the 12-km study reach, 108 kg per day of Zn were added to Cement Creek. Almost half of this load came from 10 well-defined areas that included both mined and non-mined parts of the watershed. However, the combined effect of many smaller inflows also contributed a substantial load that could limit the effectiveness of remediation. Of the total Zn load, 58.3 kg/day came from stream segments with no visible inflow, indicating the importance of contributions from dispersed subsurface inflow. The subsurface inflow mostly occurred in areas with substantial fracturing of the bedrock or in areas downstream from tributaries with large alluvial fans. Despite a pH generally less than 4.5, there was 58.4 kg/day of Zn attenuation that occurred in mixing zones downstream from inflows with high pH. Mixing zones can have local areas of pH that are high enough for sorption and precipitation reactions to have an effect. Principal component analysis classified inflows into 7 groups with distinct chemical signatures that represent water-rock interaction with different mineral-alteration suites in the watershed. The present approach provides a detailed snapshot of metal load

  8. 226Ra and other radionuclides in water, vegetation, and tissues of beavers (Castor canadensis) from a watershed containing U tailings neat Elliot Lake, Canada

    International Nuclear Information System (INIS)

    Clulow, F.V.; Mirka, M.A.; Dave, N.K.; Lim, T.P.

    1991-01-01

    Radionuclide levels were measured in tissues, gut contents, diet items, and water at site of capture, of adult beavers from the Serpent River drainage basin which contains U tailings at Elliot Lake, Ontario, and from nearby control sites. Levels of 226 Ra in beaver bone, muscle and kidney were highest in animals from locations close to U tailing; liver levels did not vary by site. Environmental 226 Ra levels were within ranges previously reported at these or similar locations elsewhere; levels in beaver gut contents reflected levels in diet items. Concentration ratios exceeded unity only between some vegetation items and beaver bone at the Elliot Lake site and were less than 0.19 between vegetation and other tissues. In two beavers with tissue levels of 226 Ra higher than others sampled, neither 232 Th nor 230 Th were detected in bone, muscle or liver tissues. U-238 was measurable in bone, muscle and liver; 228 Th in bone, 210 Po bone, muscle and liver; and 210 Pb was measurable only in bone. Estimated yearly intakes of radionuclides by people eating beavers were calculated to be below current allowable levels set by the Canadian regulatory authorities. (author)

  9. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    Science.gov (United States)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture

  10. Technical review of managed underground storage of water study of the upper Catherine Creek watershed, Union County, northeastern Oregon

    Science.gov (United States)

    Snyder, Daniel T.

    2014-01-01

    Because of water diversions during summer, flow in Catherine Creek, a tributary to the Grande Ronde River in northeastern Oregon, is insufficient to sustain several aquatic species for which the stream is listed as critical habitat. A feasibility study for managed underground storage (MUS) in the upper Catherine Creek watershed in Union County, Oregon, was undertaken by Anderson Perry and Associates, Inc., to address the issue of low flows in summer. The results of the study were released as a report titled “Upper Catherine Creek Storage Feasibility Study for Grande Ronde Model Watershed,” which evaluated the possibility of diverting Catherine Creek streamflow during winter (when stream discharge is high), storing the water by infiltration or injection into an aquifer adjacent to the stream, and discharging the water back to the stream in summer to augment low flows. The method of MUS would be accomplished using either (1) aquifer storage and recovery (ASR) that allows for the injection of water that meets drinking-water-quality standards into an aquifer for later recovery and use, or (2) artificial recharge (AR) that involves the intentional addition of water diverted from another source to a groundwater reservoir. Concerns by resource managers that the actions taken to improve water availability for upper Catherine Creek be effective, cost-efficient, long-term, and based on sound analysis led the National Fish and Wildlife Foundation to request that the U.S. Geological Survey conduct an independent review and evaluation of the feasibility study. This report contains the results of that review. The primary objectives of the Anderson Perry and Associates study reviewed here included (1) identifying potentially fatal flaws with the concept of using AR and (or) ASR to augment the streamflow of Catherine Creek, (2) identifying potentially favorable locations for augmenting streamflow, (3) developing and evaluating alternatives for implementing AR and (or) ASR, and

  11. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    Science.gov (United States)

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted

  12. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  13. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    Science.gov (United States)

    Gassman, Philip W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment

  14. Estimates of natural streamflow at two streamgages on the Esopus Creek, New York, water years 1932 to 2012

    Science.gov (United States)

    Burns, Douglas A.; Gazoorian, Christopher L.

    2015-01-01

    Streamflow in the Esopus Creek watershed is altered by two major watershed management activities carried out by the New York City Department of Environmental Protection as part of its responsibility to maintain a water supply for New York City: (1) diversion of water from the Schoharie Creek watershed to the Esopus Creek through the Shandaken Tunnel, and (2) impoundment of the Esopus Creek by a dam that forms the Ashokan Reservoir and subsequent release through the Catskill Aqueduct. Stakeholders in the Catskill region are interested and concerned about the extent to which these watershed management activities have altered streamflow, especially low and high flows, in the Esopus Creek. To address these concerns, natural (in the absence of diversion and impoundment) daily discharge from October 1, 1931, to September 30, 2012, was estimated for the U.S. Geological Survey streamgages at Coldbrook (station number 01362500), downstream of the Shandaken Tunnel discharge, and at Mount Marion (01364500), downstream of the Ashokan Reservoir.

  15. Selenium Speciation in the Fountain Creek Watershed (Colorado, USA Correlates with Water Hardness, Ca and Mg Levels

    Directory of Open Access Journals (Sweden)

    James S. Carsella

    2017-04-01

    Full Text Available The environmental levels of selenium (Se are regulated and strictly enforced by the Environmental Protection Agency (EPA because of the toxicity that Se can exert at high levels. However, speciation plays an important role in the overall toxicity of Se, and only when speciation analysis has been conducted will a detailed understanding of the system be possible. In the following, we carried out the speciation analysis of the creek waters in three of the main tributaries—Upper Fountain Creek, Monument Creek and Lower Fountain Creek—located in the Fountain Creek Watershed (Colorado, USA. There are statistically significant differences between the Se, Ca and Mg, levels in each of the tributaries and seasonal swings in Se, Ca and Mg levels have been observed. There are also statistically significant differences between the Se levels when grouped by Pierre Shale type. These factors are considered when determining the forms of Se present and analyzing their chemistry using the reported thermodynamic relationships considering Ca2+, Mg2+, SeO42−, SeO32− and carbonates. This analysis demonstrated that the correlation between Se and water hardness can be explained in terms of formation of soluble CaSeO4. The speciation analysis demonstrated that for the Fountain Creek waters, the Ca2+ ion may be mainly responsible for the observed correlation with the Se level. Considering that the Mg2+ level is also correlating linearly with the Se levels it is important to recognize that without Mg2+ the Ca2+ would be significantly reduced. The major role of Mg2+ is thus to raise the Ca2+ levels despite the equilibria with carbonate and other anions that would otherwise decrease Ca2+ levels.

  16. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    Science.gov (United States)

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  17. Flood Scenario Simulation and Disaster Estimation of Ba-Ma Creek Watershed in Nantou County, Taiwan

    Science.gov (United States)

    Peng, S. H.; Hsu, Y. K.

    2018-04-01

    The present study proposed several scenario simulations of flood disaster according to the historical flood event and planning requirement in Ba-Ma Creek Watershed located in Nantou County, Taiwan. The simulations were made using the FLO-2D model, a numerical model which can compute the velocity and depth of flood on a two-dimensional terrain. Meanwhile, the calculated data were utilized to estimate the possible damage incurred by the flood disaster. The results thus obtained can serve as references for disaster prevention. Moreover, the simulated results could be employed for flood disaster estimation using the method suggested by the Water Resources Agency of Taiwan. Finally, the conclusions and perspectives are presented.

  18. Busy beavers gone wild

    Directory of Open Access Journals (Sweden)

    Grégory Lafitte

    2009-06-01

    Full Text Available We show some incompleteness results a la Chaitin using the busy beaver functions. Then, with the help of ordinal logics, we show how to obtain a theory in which the values of the busy beaver functions can be provably established and use this to reveal a structure on the provability of the values of these functions.

  19. Impact of Coastal Development and Marsh Width Variability on Groundwater Quality in Estuarine Tidal Creeks

    Science.gov (United States)

    Shanahan, M.; Wilson, A. M.; Smith, E. M.

    2017-12-01

    Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.

  20. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08

    Science.gov (United States)

    Ockerman, Darwin J.; Fernandez, Carlos J.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  1. Trends in precipitation and streamflow and changes in stream morphology in the Fountain Creek watershed, Colorado, 1939-99

    Science.gov (United States)

    Stogner, Sr., Robert W.

    2000-01-01

    The Fountain Creek watershed, located in and along the eastern slope of the Front Range section of the southern Rocky Mountains, drains approximately 930 square miles of parts of Teller, El Paso, and Pueblo Counties in eastern Colorado. Streamflow in the watershed is dominated by spring snowmelt runoff and storm runoff during the summer monsoon season. Flooding during the 1990?s has resulted in increased streambank erosion. Property loss and damage associated with flooding and bank erosion has cost area residents, businesses, utilities, municipalities, and State and Federal agencies millions of dollars. Precipitation (4 stations) and streamflow (6 stations) data, aerial photographs, and channel reconnaissance were used to evaluate trends in precipitation and streamflow and changes in channel morphology. Trends were evaluated for pre-1977, post-1976, and period-of-record time periods. Analysis revealed the lack of trend in total annual and seasonal precipitation during the pre-1977 time period. In general, the analysis also revealed the lack of trend in seasonal precipitation for all except the spring season during the post-1976 time period. Trend analysis revealed a significant upward trend in long-term (period of record) total annual and spring precipitation data, apparently due to a change in total annual precipitation throughout the Fountain Creek watershed. During the pre-1977 time period, precipitation was generally below average; during the post- 1976 time period, total annual precipitation was generally above average. During the post- 1976 time period, an upward trend in total annual and spring precipitation was indicated at two stations. Because two of four stations evaluated had upward trends for the post-1976 period and storms that produce the most precipitation are isolated convection storms, it is plausible that other parts of the watershed had upward precipitation trends that could affect trends in streamflow. Also, because of the isolated nature of

  2. Measuring the Erosion of River Channel Widths Impacted by Watershed Urbanization Using Historic Aerial Photographs and Modern Surveys

    Science.gov (United States)

    Galster, J. C.; Pazzaglia, F. J.; Germanoski, D.

    2007-12-01

    Land use in a watershed exerts a strong influence on trunk channel form and process. Land use changes act over human time scales which is short enough to measure their effects directly using historic aerial photographs. We show that high-resolution topographic surveys comparing channel form for paired watersheds in the Lehigh Valley, PA are indistinguishable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in all respects except they have different amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data suggest that the increase in urban areas that subsequently increases peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river aesthetics.

  3. Hydrogeological constraints on riparian buffers for reduction of diffuse pollution: examples from the Bear Creek watershed in Iowa, USA.

    Science.gov (United States)

    Simpkins, W W; Wineland, T R; Andress, R J; Johnston, D A; Caron, G C; Isenhart, T M; Schultz, R C

    2002-01-01

    Riparian Management Systems (RiMS) have been proposed to minimize the impacts of agricultural production and improve water quality in Iowa in the Midwestern USA. As part of RiMS, multispecies riparian buffers have been shown to decrease nutrient, pesticide, and sediment concentrations in runoff from adjacent crop fields. However, their effect on nutrients and pesticides moving in groundwater beneath buffers has been discussed only in limited and idealized hydrogeologic settings. Studies in the Bear Creek watershed of central Iowa show the variability inherent in hydrogeologic systems at the watershed scale, some of which may be favorable or unfavorable to future implementation of buffers. Buffers may be optimized by choosing hydrogeologic systems where a shallow groundwater flow system channels water directly through the riparian buffer at velocities that allow for processes such as denitrification to occur.

  4. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California

    Energy Technology Data Exchange (ETDEWEB)

    Domagalski, Joseph L.; Alpers, Charles N.; Slotton, Darell G.; Suchanek, Thomas H.; Ayers, Shaun M

    2004-07-05

    Concentrations and loads of total mercury and methylmercury were measured in streams draining abandoned mercury mines and in the proximity of geothermal discharge in the Cache Creek watershed of California during a 17-month period from January 2000 through May 2001. Rainfall and runoff were lower than long-term averages during the study period. The greatest loading of mercury and methylmercury from upstream sources to downstream receiving waters, such as San Francisco Bay, generally occurred during or after winter rainfall events. During the study period, loads of mercury and methylmercury from geothermal sources tended to be greater than those from abandoned mining areas, a pattern attributable to the lack of large precipitation events capable of mobilizing significant amounts of either mercury-laden sediment or dissolved mercury and methylmercury from mine waste. Streambed sediments of Cache Creek are a significant source of mercury and methylmercury to downstream receiving bodies of water. Much of the mercury in these sediments is the result of deposition over the last 100-150 years by either storm-water runoff, from abandoned mines, or continuous discharges from geothermal areas. Several geochemical constituents were useful as natural tracers for mining and geothermal areas, including the aqueous concentrations of boron, chloride, lithium and sulfate, and the stable isotopes of hydrogen and oxygen in water. Stable isotopes of water in areas draining geothermal discharges showed a distinct trend toward enrichment of {sup 18}O compared with meteoric waters, whereas much of the runoff from abandoned mines indicated a stable isotopic pattern more consistent with local meteoric water.

  5. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California

    International Nuclear Information System (INIS)

    Domagalski, Joseph L.; Alpers, Charles N.; Slotton, Darell G.; Suchanek, Thomas H.; Ayers, Shaun M.

    2004-01-01

    Concentrations and loads of total mercury and methylmercury were measured in streams draining abandoned mercury mines and in the proximity of geothermal discharge in the Cache Creek watershed of California during a 17-month period from January 2000 through May 2001. Rainfall and runoff were lower than long-term averages during the study period. The greatest loading of mercury and methylmercury from upstream sources to downstream receiving waters, such as San Francisco Bay, generally occurred during or after winter rainfall events. During the study period, loads of mercury and methylmercury from geothermal sources tended to be greater than those from abandoned mining areas, a pattern attributable to the lack of large precipitation events capable of mobilizing significant amounts of either mercury-laden sediment or dissolved mercury and methylmercury from mine waste. Streambed sediments of Cache Creek are a significant source of mercury and methylmercury to downstream receiving bodies of water. Much of the mercury in these sediments is the result of deposition over the last 100-150 years by either storm-water runoff, from abandoned mines, or continuous discharges from geothermal areas. Several geochemical constituents were useful as natural tracers for mining and geothermal areas, including the aqueous concentrations of boron, chloride, lithium and sulfate, and the stable isotopes of hydrogen and oxygen in water. Stable isotopes of water in areas draining geothermal discharges showed a distinct trend toward enrichment of 18 O compared with meteoric waters, whereas much of the runoff from abandoned mines indicated a stable isotopic pattern more consistent with local meteoric water

  6. Fluvial responses to land-use changes and climatic variations within the Drury Creek watershed, southern Illinois

    Science.gov (United States)

    Miller, Suzanne Orbock; Ritter, Dale F.; Kochel, R. Craig; Miller, Jerry R.

    1993-04-01

    Fluvial responses to climatic variation and Anglo-American settlement were documented for the Drury Creek watershed, southern Illinois by examining stratigraphic, geomorphic, climatic, and historical data. Regional analyses of long-term precipitation records document a period of decreasing mean annual precipitation from 1904 to about 1945, and an increasing trend in annual precipitation from 1952 to the present. The period between 1945 and 1951 experienced a large number of intense storms that resulted in high annual precipitation totals. Statistical relationships illustrate that changes in precipitation totals are transferred to the hydrologic system as fluctuations in stream discharge. Historical records of southern Illinois show that a maximum period of settlement and deforestation occurred between the 1860s and 1920s. This era ended in the 1940s when large tracts of land were revegetated in an attempt to curtail erosion which had caused extensive upland degradation. In response to hillslope erosion at least two meters of fine-grained sediments were deposited on valley floors. Average sedimentation rates, determined using decdrochronologic techniques, are estimated to be 2.11 cm/yr for the period between 1890 and 1988; rates that are 1 to 2 orders of magnitude greater than pre-settlement values calculated for other areas of the midwest. However, botanical data suggest that aggradation was episodic, possibly occurring during three periods characterized by greater annual precipitation. Since the 1940s, sedimentation rates have declined. Reduced rates of sedimentation are related to an episode of channel entrenchment that reduced overbank flooding. Entrenchment coincided with a period of: (1) reduced sediment yields associated with watershed revegetation and the introduction of soil conservation practices, and (2) intense storm activity that resulted in long periods of high discharge. As a result of channel incision and hillslope erosion, newly exposed bedrock in

  7. Beaver management in Norway : a model for continental Europe?

    OpenAIRE

    Parker, Howard; Rosell, Frank

    2003-01-01

    While Norway has been managing beaver (Castor fiber) for more than 150 years, most central European countries have little experience and none are presently harvesting beaver, despite rapidly growing populations and conflicts. Here we present the Norwegian beaver management model as an example. The main goals are to enhance biodiversity, produce a harvestable surplus, and reduce beaver-human conflicts. Beaver management should maximize recreational opportunities and allow landowners to profit ...

  8. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  9. Hydrographs Showing Groundwater Level Changes for Selected Wells in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    Science.gov (United States)

    Justin, G.B.; Julich, R.; Payne, K.L.

    2009-01-01

    Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.

  10. Methow River Studies, Washington: abundance estimates from Beaver Creek and the Chewuch River screw trap, methodology testing in the Whitefish Island side channel, and survival and detection estimates from hatchery fish releases, 2013

    Science.gov (United States)

    Martens, Kyle D.; Fish, Teresa M.; Watson, Grace A.; Connolly, Patrick J.

    2014-01-01

    Salmon and steelhead populations have been severely depleted in the Columbia River from factors such as the presence of tributary dams, unscreened irrigation diversions, and habitat degradation from logging, mining, grazing, and others (Raymond, 1988). The U.S. Geological Survey (USGS) has been funded by the Bureau of Reclamation (Reclamation) to provide evaluation of on-going Reclamation funded efforts to recover Endangered Species Act (ESA) listed anadromous salmonid populations in the Methow River watershed, a watershed of the Columbia River in the Upper Columbia River Basin, in north-central Washington State (fig. 1). This monitoring and evaluation program was funded to document Reclamation’s effort to partially fulfill the 2008 Federal Columbia River Power System Biological Opinion (BiOp) (National Oceanographic and Atmospheric Administration, Fisheries Division 2003). This Biological Opinion includes Reasonable and Prudent Alternatives (RPA) to protect listed salmon and steelhead across their life cycle. Species of concern in the Methow River include Upper Columbia River (UCR) spring Chinook salmon (Oncorhynchus tshawytscha), UCR summer steelhead (O. mykiss), and bull trout (Salvelinus confluentus), which are all listed as threatened or endangered under the ESA. The work done by the USGS since 2004 has encompassed three phases of work. The first phase started in 2004 and continued through 2012. This first phase involved the evaluation of stream colonization and fish production in Beaver Creek following the modification of several water diversions (2000–2006) that were acting as barriers to upstream fish movement. Products to date from this work include: Ruttenburg (2007), Connolly and others (2008), Martens and Connolly (2008), Connolly (2010), Connolly and others (2010), Martens and Connolly (2010), Benjamin and others (2012), Romine and others (2013a), Weigel and others (2013a, 2013b, 2013c), and Martens and others (2014). The second phase, initiated in

  11. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  12. 75 FR 29268 - Proposed Flood Elevation Determinations

    Science.gov (United States)

    2010-05-25

    ... impact assessment has not been prepared. Regulatory Flexibility Act. As flood elevation determinations.... Approximately 1.7 mile None +714 upstream of Due West Highway. Beaver Creek At the confluence with None +571... confluence with Beaver Creek Tributary 15. Beaver Creek Tributary 1 At the confluence with None +572...

  13. Geology, Surficial, Little Contentnea Creek Watershed Geomorphology - DRG �Äö?Ñ?¨ Watershed-scale project in Middle Coastal Plain characterize geomorphology, surficial geology, shallow aquifers and confining units; shape file with geomorphic map units interpreted from, Published in 2006, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2006. Little Contentnea Creek Watershed Geomorphology - DRG �Äö?Ñ?¨ Watershed-scale project in Middle Coastal Plain...

  14. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Science.gov (United States)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  15. Competition favors elk over beaver in a riparian willow ecosystem

    Science.gov (United States)

    Baker, B.W.; Peinetti, H.R.; Coughenour, M.C.; Johnson, T.L.

    2012-01-01

    Beaver (Castor spp.) conservation requires an understanding of their complex interactions with competing herbivores. Simulation modeling offers a controlled environment to examine long-term dynamics in ecosystems driven by uncontrollable variables. We used a new version of the SAVANNA ecosystem model to investigate beaver (C. Canadensis) and elk (Cervus elapses) competition for willow (Salix spp.). We initialized the model with field data from Rocky Mountain National Park, Colorado, USA, to simulate a 4-ha riparian ecosystem containing beaver, elk, and willow. We found beaver persisted indefinitely when elk density was or = 30 elk km_2. The loss of tall willow preceded rapid beaver declines, thus willow condition may predict beaver population trajectory in natural environments. Beaver were able to persist with slightly higher elk densities if beaver alternated their use of foraging sites in a rest-rotation pattern rather than maintained continuous use. Thus, we found asymmetrical competition for willow strongly favored elk over beaver in a simulated montane ecosystem. Finally, we discuss application of the SAVANNA model and mechanisms of competition relative to beaver persistence as metapopulations, ecological resistance and alternative state models, and ecosystem regulation.

  16. Protection of Levees against Beavers

    Science.gov (United States)

    Kozłowski, Wojciech; Balawejder, Adam

    2017-10-01

    Beavers are a protected species, so the levees must be properly protected so as not to harm the beavers and protect the levees from the destruction caused by these animals. This protection requires the use of bentonite mats as shaft seals, and wire mesh. Recently, such new protection structures began to be used successfully.

  17. The Buried Town of Beaver.

    Science.gov (United States)

    Jostad, Karen

    Local history as source material for environmental education is uniquely portrayed in this resource kit. Utilizing a Winona County Historical Society publication, "The Beaver Story" and accompanied by a teacher's guide, "The Buried Town of Beaver," and other teaching aids, a case study of the area can be developed. Based on the reminiscences of…

  18. Beaver damming, fluvial geomorphology, and climate in Yellowstone National Park, Wyoming

    Science.gov (United States)

    Persico, L.; Meyer, G.

    2008-12-01

    Beaver habitation is an important component of many fluvial landscapes that can impact a variety of hydrologic, geomorphic, and ecologic processes. Beaver damming, via long term valley aggradation, is thought to be important to the postglacial geomorphic evolution of many smaller mountain stream networks in the western United States. Loss of beaver dams can also cause rapid channel incision. Although several studies have documented rapid short-term aggradation of channels behind single beaver dams, there is little actual data on the long-term cumulative effect of beaver damming. In Yellowstone''s Northern Range, field surveys and stratigraphic section along six streams in the Northern Range reveal net thickness of mostly beaver-pond deposits. We estimate that reaches with clear morphologic and stratigraphic evidence for beaver-related aggradation constitute about 19% of the total stream network length. Reaches with probable and possible beaver-related aggradation make up an additional 8% and 2% of the network, respectively. The remaining 71% of the network has no clear evidence for beaver-related aggradation. Thirty-nine radiocarbon ages on beaver-pond deposits in northern Yellowstone fall primarily within the last 4000 yr, but gaps in dated beaver occupation from 2200-1800 and 950-750 cal yr BP correspond with severe and persistent droughts that likely caused low to ephemeral discharges in smaller streams. In the last two decades, severe drought has also caused streams that were occupied by beaver in the 1920s to become ephemeral. Beaver have been largely absent from the Northern Range since the mid-20th century, probably due to multiple ecological and climatic factors. This loss of beaver is thought to have led to widespread degradation of stream and riparian habitat via channel incision. Although 20th-century beaver loss has caused significant channel incision at some former dam sites, downcutting elsewhere in northern Yellowstone is unrelated to beaver dams or

  19. Environmental data for the White Oak Creek/White Oak Lake watershed: Environmental Sciences Division publication No. 2779

    International Nuclear Information System (INIS)

    Sherwood, C.B.; Loar, J.M.

    1987-01-01

    Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek (WOC) watershed, which drains approximately 16.8 km 2 (6.5 mile 2 ). The waters of WOC are impounded by White Oak Dam at WOC's intersection with White Wing Road (State Route 95), 1.0 km (0.6 mile) upstream from the Clinch River. The resulting White Oak Lake (WOL) is a small, shallow impoundment, whose water level is controlled by a vertical sluice gate that remains in a fixed position during normal operations. White Oak Creek has been utilized for the discharge of treated and untreated wastes from routine operations since the Laboratory's inception. In addition, most of the more recent (1954 to date) liquid and solid low-level-waste disposal operations have been located in the drainage area of WOC. As a federally owned facility, ORNL is required to comply with all existing federal, state, and local environmental regulations regarding waste management. On July 15, 1985, the US Environmental Protection Agency published final rules to incorporate changes in the Resource Conservation and Recovery Act of 1976 that resulted from the passage of the Hazardous and Solid Waste Amendments of 1984. As a part of the rule changes, a new Sect. 3004(u) was added. The new section requires that any facility permit issued after November 8, 1984, include planned corrective actions for all continuing releases of hazardous waste or constituents from any disposal unit at the facility, regardless of when the waste was placed at the disposal unit. This report was prepared to compile existing information on the content and quantity of hazardous substances (both radioactive and nonradioactive) in the WOC/WOL watershed and to provide background information on the geology, hydrology, and ecology of the site for use in planning future remedial actions. 109 refs., 45 figs., 33 tabs

  20. Environmental data for the White Oak Creek/White Oak Lake watershed: Environmental Sciences Division publication No. 2779

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, C.B.; Loar, J.M.

    1987-01-01

    Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek (WOC) watershed, which drains approximately 16.8 km/sup 2/ (6.5 mile/sup 2/). The waters of WOC are impounded by White Oak Dam at WOC's intersection with White Wing Road (State Route 95), 1.0 km (0.6 mile) upstream from the Clinch River. The resulting White Oak Lake (WOL) is a small, shallow impoundment, whose water level is controlled by a vertical sluice gate that remains in a fixed position during normal operations. White Oak Creek has been utilized for the discharge of treated and untreated wastes from routine operations since the Laboratory's inception. In addition, most of the more recent (1954 to date) liquid and solid low-level-waste disposal operations have been located in the drainage area of WOC. As a federally owned facility, ORNL is required to comply with all existing federal, state, and local environmental regulations regarding waste management. On July 15, 1985, the US Environmental Protection Agency published final rules to incorporate changes in the Resource Conservation and Recovery Act of 1976 that resulted from the passage of the Hazardous and Solid Waste Amendments of 1984. As a part of the rule changes, a new Sect. 3004(u) was added. The new section requires that any facility permit issued after November 8, 1984, include planned corrective actions for all continuing releases of hazardous waste or constituents from any disposal unit at the facility, regardless of when the waste was placed at the disposal unit. This report was prepared to compile existing information on the content and quantity of hazardous substances (both radioactive and nonradioactive) in the WOC/WOL watershed and to provide background information on the geology, hydrology, and ecology of the site for use in planning future remedial actions. 109 refs., 45 figs., 33 tabs.

  1. Where and How Wolves (Canis lupus Kill Beavers (Castor canadensis.

    Directory of Open Access Journals (Sweden)

    Thomas D Gable

    Full Text Available Beavers (Castor canadensis can be a significant prey item for wolves (Canis lupus in boreal ecosystems due to their abundance and vulnerability on land. How wolves hunt beavers in these systems is largely unknown, however, because observing predation is challenging. We inferred how wolves hunt beavers by identifying kill sites using clusters of locations from GPS-collared wolves in Voyageurs National Park, Minnesota. We identified 22 sites where wolves from 4 different packs killed beavers. We classified these kill sites into 8 categories based on the beaver-habitat type near which each kill occurred. Seasonal variation existed in types of kill sites as 7 of 12 (58% kills in the spring occurred at sites below dams and on shorelines, and 8 of 10 (80% kills in the fall occurred near feeding trails and canals. From these kill sites we deduced that the typical hunting strategy has 3 components: 1 waiting near areas of high beaver use (e.g., feeding trails until a beaver comes near shore or ashore, 2 using vegetation, the dam, or other habitat features for concealment, and 3 immediately attacking the beaver, or ambushing the beaver by cutting off access to water. By identifying kill sites and inferring hunting behavior we have provided the most complete description available of how and where wolves hunt and kill beavers.

  2. Alteration of stream temperature by natural and artificial beaver dams.

    Science.gov (United States)

    Weber, Nicholas; Bouwes, Nicolaas; Pollock, Michael M; Volk, Carol; Wheaton, Joseph M; Wathen, Gus; Wirtz, Jacob; Jordan, Chris E

    2017-01-01

    Beaver are an integral component of hydrologic, geomorphic, and biotic processes within North American stream systems, and their propensity to build dams alters stream and riparian structure and function to the benefit of many aquatic and terrestrial species. Recognizing this, beaver relocation efforts and/or application of structures designed to mimic the function of beaver dams are increasingly being utilized as effective and cost-efficient stream and riparian restoration approaches. Despite these verities, the notion that beaver dams negatively impact stream habitat remains common, specifically the assumption that beaver dams increase stream temperatures during summer to the detriment of sensitive biota such as salmonids. In this study, we tracked beaver dam distributions and monitored water temperature throughout 34 km of stream for an eight-year period between 2007 and 2014. During this time the number of natural beaver dams within the study area increased by an order of magnitude, and an additional 4 km of stream were subject to a restoration manipulation that included installing a high-density of Beaver Dam Analog (BDA) structures designed to mimic the function of natural beaver dams. Our observations reveal several mechanisms by which beaver dam development may influence stream temperature regimes; including longitudinal buffering of diel summer temperature extrema at the reach scale due to increased surface water storage, and creation of cool-water channel scale temperature refugia through enhanced groundwater-surface water connectivity. Our results suggest that creation of natural and/or artificial beaver dams could be used to mitigate the impact of human induced thermal degradation that may threaten sensitive species.

  3. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  4. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  5. Restricted cross-scale habitat selection by American beavers.

    Science.gov (United States)

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  6. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    International Nuclear Information System (INIS)

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities

  7. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L. [ed.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J. [and others

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  8. Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek.

    Science.gov (United States)

    Unc, Adrian; Zurek, Ludek; Peterson, Greg; Narayanan, Sanjeev; Springthorpe, Susan V; Sattar, Syed A

    2012-01-01

    Potential risks associated with impaired surface water quality have commonly been evaluated by indirect description of potential sources using various fecal microbial indicators and derived source-tracking methods. These approaches are valuable for assessing and monitoring the impacts of land-use changes and changes in management practices at the source of contamination. A more detailed evaluation of putative etiologically significant genetic determinants can add value to these assessments. We evaluated the utility of using a microarray that integrates virulence genes with antibiotic and heavy metal resistance genes to describe and discriminate among spatially and seasonally distinct water samples from an agricultural watershed creek in Eastern Ontario. Because microarray signals may be analyzed as binomial distributions, the significance of ambiguous signals can be easily evaluated by using available off-the-shelf software. The FAMD software was used to evaluate uncertainties in the signal data. Analysis of multilocus fingerprinting data sets containing missing data has shown that, for the tested system, any variability in microarray signals had a marginal effect on data interpretation. For the tested watershed, results suggest that in general the wet fall season increased the downstream detection of virulence and resistance genes. Thus, the tested microarray technique has the potential to rapidly describe the quality of surface waters and thus to provide a qualitative tool to augment quantitative microbial risk assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. 78 FR 20613 - Ochoco National Forest, Paulina Ranger District; Oregon; Wolf Creek Vegetation and Fuels...

    Science.gov (United States)

    2013-04-05

    ... 2012 and documented in the Wolf Creek Watershed Analysis. The watershed analysis determined that... includes National Forest system lands within the Lower Beavercreek watershed. The alternatives that will be... analysis and decision making process so interested and affected people may participate and contribute to...

  10. Quantifying the multiple, environmental benefits of reintroducing the Eurasian Beaver

    Science.gov (United States)

    Brazier, Richard; Puttock, Alan; Graham, Hugh; Anderson, Karen; Cunliffe, Andrew; Elliott, Mark

    2016-04-01

    Beavers are ecological engineers with an ability to modify the structure and flow of fluvial systems and create complex wetland environments with dams, ponds and canals. Consequently, beaver activity has potential for river restoration, management and the provision of multiple environmental ecosystem services including biodiversity, flood risk mitigation, water quality and sustainable drinking water provision. With the current debate surrounding the reintroduction of beavers into the United Kingdom, it is critical to monitor the impact of beavers upon the environment. We have developed and implemented a monitoring strategy to quantify the impact of reintroducing the Eurasian Beaver on multiple environmental ecosystem services and river systems at a range of scales. First, the experimental design and preliminary results will be presented from the Mid-Devon Beaver Trial, where a family of beavers has been introduced to a 3 ha enclosure situated upon a first order tributary of the River Tamar. The site was instrumented to monitor the flow rate and quality of water entering and leaving the site. Additionally, the impacts of beavers upon riparian vegetation structure, water/carbon storage were investigated. Preliminary results indicate that beaver activity, particularly the building of ponds and dams, increases water storage within the landscape and moderates the river response to rainfall. Baseflow is enhanced during dry periods and storm flow is attenuated, potentially reducing the risk of flooding downstream. Initial analysis of water quality indicates that water entering the site (running off intensively managed grasslands upslope), has higher suspended sediment loads and nitrate levels, than that leaving the site, after moving through the series of beaver ponds. These results suggest beaver activity may also act as a means by which the negative impact of diffuse water pollution from agriculture can be mitigated thus providing cleaner water in rivers downstream

  11. Hydrologic data summary for the White Oak Creek Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1992

    International Nuclear Information System (INIS)

    Borders, D.M.; Watts, J.A.; Clapp, R.B.; Frederick, B.J.; Gregory, S.M.; Moore, T.D.

    1993-06-01

    This report summarizes, for the 12-month period (January through December 1992), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: characterize the quantity and quality of water in the flow system; assist with the planning and assessment of remedial action activities; and provide long-term availability of data and quality assurance

  12. Manipulating beaver (Castor canadensis) feeding responses to invasive tamarisk (Tamarix spp.).

    Science.gov (United States)

    Kimball, Bruce A; Perry, Kelly R

    2008-08-01

    To evaluate methods for promoting consumption of tamarisk plants by beavers (Castor canadensis), we determined the feeding responses by captive beavers to diets that contained tannins and sodium chloride (hereafter referred to as tamarisk diet). In two-choice tests, beavers consumed equivalent quantities of tamarisk diet and control diet. Treatment with polyethylene glycol and fructose did not increase beaver preferences for the tamarisk diet. When offered the choice of control diet and casein hydrolysate-treated control diet, beavers strongly avoided the latter, showing feeding deterring activity of casein hydrolysate. However, when tamarisk diet was the alternative to the deterrent treatment, beavers consumed similar quantities of the two diets. Finally, beaver foraging preferences for actual plant cuttings were assessed. Casein hydrolysate application to cuttings of black poplar (Populus nigra) and Scouler's willow (Salix scouleriana) reduced browsing of these highly preferred species and promoted a marked increase in browsing of tamarisk (Tamarix ramosissima). These results suggest that casein hydrolysate treatment of desirable riparian plant species such as Salix and Populus may promote beaver foraging of invasive tamarisk.

  13. An approach to study the effect of harvest and wildfire on watershed hydrology and sediment yield in a coast redwood forest

    Science.gov (United States)

    Christopher G. Surfleet; Arne Skaugset; Brian Dietterick

    2012-01-01

    The Little Creek watershed, within California State Polytechnic University’s Swanton Pacific Ranch, is the location of a paired and nested watershed study to investigate the watershed effects of coast redwood forest management. Streamflow, suspended sediment, and stream turbidity have been collected during storms at two locations on the North Fork Little Creek and at...

  14. Simulation of water quality for Salt Creek in northeastern Illinois

    Science.gov (United States)

    Melching, Charles S.; Chang, T.J.

    1996-01-01

    Water-quality processes in the Salt Creek watershed in northeastern Illinois were simulated with a computer model. Selected waste-load scenarios for 7-day, 10-year low-flow conditions were simulated in the stream system. The model development involved the calibration of the U.S. Environmental Protection Agency QUAL2E model to water-quality constituent concentration data collected by the Illinois Environmental Protection Agency (IEPA) for a diel survey on August 29-30, 1995, and the verification of this model with water-quality constituent concentration data collected by the IEPA for a diel survey on June 27-28, 1995. In-stream measurements of sediment oxygen demand rates and carbonaceous biochemical oxygen demand (CBOD) decay rates by the IEPA and traveltime and reaeration-rate coefficients by the U.S. Geological Survey facilitated the development of a model for simulation of water quality in the Salt Creek watershed. In general, the verification of the calibrated model increased confidence in the utility of the model for water-quality planning in the Salt Creek watershed. However, the model was adjusted to better simulate constituent concentrations measured during the June 27-28, 1995, diel survey. Two versions of the QUAL2E model were utilized to simulate dissolved oxygen (DO) concentrations in the Salt Creek watershed for selected effluent discharge and concentration scenarios for water-quality planning: (1) the QUAL2E model calibrated to the August 29-30, 1995, diel survey, and (2) the QUAL2E model adjusted to the June 27-28, 1995, diel survey. The results of these simulations indicated that the QUAL2E model adjusted to the June 27-28, 1995, diel survey simulates reliable information for water-quality planning. The results of these simulations also indicated that to maintain DO concentrations greater than 5 milligrams per liter (mg/L) throughout most of Salt Creek for 7-day, 10-year low-flow conditions, the sewage-treatment plants (STP's) must discharge

  15. Evaluating the Least Cost Selection of Agricultural Management Practices in the Five Mile Creek area of Fort Cobb Watershed, Oklahoma, USA

    Science.gov (United States)

    Rasoulzadeh Gharibdousti, S.; Stoecker, A.; Storm, D.

    2017-12-01

    One of the main causes of water quality impairment in the United States is human induced Non-Point Source (NPS) pollution through intensive agriculture. The Fort Cobb Reservoir (FCR) watershed located in west-central Oklahoma, United States is a rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, nutrients, and pesticides. Recently, several Best Management Practices (BMPs) have been implemented in the watershed (such as no-tillage and cropland to grassland conversion) to improve water quality. The objective in this study is to estimate the most cost effective selection and placement of BMPs on farmlands to mitigate soil erosion and the delivery of sediment and nutrient loads to the FCR from Five Mile Creek (FMC) area of the FCR watershed. We employed the Soil and Water Assessment Tool (SWAT) to develop the hydrological model of the study area. The watershed was delineated using the 10 m National Elevation Dataset and divided into 43 sub-basins with an average area of 8 km2. Through a combination of Soil Survey Geographic Database- SSURGO soil data, the US Department of Agriculture crop layer and the slope information, the watershed was further divided into 15,217 hydrologic response units (HRUs). The historical climate pattern in the watershed was represented by two different weather stations. The model was calibrated for the 1991 - 2000 period and validated over the 2001 - 2010 period against the monthly USGS observations of streamflow and suspended sediment concentration recorded at the watershed outlet. Model parametrization resulted in satisfactory values for the R2 (0.64, 0.35) and NS (0.61, 0.34) in calibration period and an excellent model performance (R2 = 0.79, 0.38; NS = 0.75, 0.43) in validation period for streamflow and sediment concentration respectively. We have selected 20 BMPs to estimate their efficacy in terms of water, sediment, and crop yields. Linear Programming (LP) was used to determine the

  16. Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 ? 2013

    OpenAIRE

    Ribic, Christine A.; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony locat...

  17. Characterizing Storm Event Dynamics of a Forested Watershed in the Lower Atlantic Coastal Plain, South Carolina USA

    Science.gov (United States)

    Latorre Torres, I. B.; Amatya, D. M.; Callahan, T. J.; Levine, N. S.

    2007-12-01

    Hydrology research in the Southeast U.S. has primarily focused on upland mountainous areas; however, much less is known about hydrological processes in Lower Coastal Plain (LCP) watersheds. Such watersheds are difficult to characterize due to shallow water table conditions, low topographic gradient, complex surface- subsurface water interaction, and lack of detailed soil information. Although opportunities to conduct long term monitoring in relatively undeveloped watersheds are often limited, stream flow and rainfall in the Turkey Creek watershed (third-order watershed, about 7200 ha in the Francis Marion National Forest near Charleston, SC) have been monitored since 1964. In this study, event runoff-rainfall ratios have been determined for 51 storm events using historical data from 1964-1973. One of our objectives was to characterize relationships between seasonal event rainfall and storm outflow in this watershed. To this end, observed storm event data were compared with values predicted by established hydrological methods such as the Soil Conservation Service runoff curve number (SCS-CN) and the rational method integrated within a Geographical Information System (GIS), to estimate total event runoff and peak discharge, respectively. Available 1:15000 scale aerial images were digitized to obtain land uses, which were used with the SCS soil hydrologic groups to obtain the runoff coefficients (C) for the rational method and the CN values for the SCS-CN method. These methods are being tested with historical storm event responses in the Turkey Creek watershed scale, and then will be used to predict event runoff in Quinby Creek, an ungauged third-order watershed (8700 ha) adjacent to Turkey Creek. Successful testing with refinement of parameters in the rational method and SCS-CN method, both designed for small urban and agricultural dominated watersheds, may allow widespread application of these methods for studying the event rainfall-runoff dynamics for similar

  18. 77 FR 76916 - Final Flood Elevation Determinations

    Science.gov (United States)

    2012-12-31

    ... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact... upstream of State Route 166. Beaver Creek At the Sweetwater Creek +871 Unincorporated Areas of confluence. Douglas County. Approximately 500 feet +1006 upstream of Patty Court. Beaver Creek Tributary A At the...

  19. Modeling the capacity of riverscapes to support beaver dams

    Science.gov (United States)

    Macfarlane, William W.; Wheaton, Joseph M.; Bouwes, Nicolaas; Jensen, Martha L.; Gilbert, Jordan T.; Hough-Snee, Nate; Shivik, John A.

    2017-01-01

    The construction of beaver dams facilitates a suite of hydrologic, hydraulic, geomorphic, and ecological feedbacks that increase stream complexity and channel-floodplain connectivity that benefit aquatic and terrestrial biota. Depending on where beaver build dams within a drainage network, they impact lateral and longitudinal connectivity by introducing roughness elements that fundamentally change the timing, delivery, and storage of water, sediment, nutrients, and organic matter. While the local effects of beaver dams on streams are well understood, broader coverage network models that predict where beaver dams can be built and highlight their impacts on connectivity across diverse drainage networks are lacking. Here we present a capacity model to assess the limits of riverscapes to support dam-building activities by beaver across physiographically diverse landscapes. We estimated dam capacity with freely and nationally-available inputs to evaluate seven lines of evidence: (1) reliable water source, (2) riparian vegetation conducive to foraging and dam building, (3) vegetation within 100 m of edge of stream to support expansion of dam complexes and maintain large colonies, (4) likelihood that channel-spanning dams could be built during low flows, (5) the likelihood that a beaver dam is likely to withstand typical floods, (6) a suitable stream gradient that is neither too low to limit dam density nor too high to preclude the building or persistence of dams, and (7) a suitable river that is not too large to restrict dam building or persistence. Fuzzy inference systems were used to combine these controlling factors in a framework that explicitly also accounts for model uncertainty. The model was run for 40,561 km of streams in Utah, USA, and portions of surrounding states, predicting an overall network capacity of 356,294 dams at an average capacity of 8.8 dams/km. We validated model performance using 2852 observed dams across 1947 km of streams. The model showed

  20. The genetic legacy of multiple beaver reintroductions in Central Europe.

    Science.gov (United States)

    Frosch, Christiane; Kraus, Robert H S; Angst, Christof; Allgöwer, Rainer; Michaux, Johan; Teubner, Jana; Nowak, Carsten

    2014-01-01

    The comeback of the Eurasian beaver (Castor fiber) throughout western and central Europe is considered a major conservation success. Traditionally, several subspecies are recognised by morphology and mitochondrial haplotype, each linked to a relict population. During various reintroduction programs in the 20th century, beavers from multiple source localities were released and now form viable populations. These programs differed in their reintroduction strategies, i.e., using pure subspecies vs. mixed source populations. This inhomogeneity in management actions generated ongoing debates regarding the origin of present beaver populations and appropriate management plans for the future. By sequencing of the mitochondrial control region and microsatellite genotyping of 235 beaver individuals from five selected regions in Germany, Switzerland, Luxembourg, and Belgium we show that beavers from at least four source origins currently form admixed, genetically diverse populations that spread across the study region. While regional occurrences of invasive North American beavers (n = 20) were found, all but one C. fiber bore the mitochondrial haplotype of the autochthonous western Evolutionary Significant Unit (ESU). Considering this, as well as the viability of admixed populations and the fact that the fusion of different lineages is already progressing in all studied regions, we argue that admixture between different beaver source populations should be generally accepted.

  1. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  2. Ecological effects of contaminants and remedial actions in Bear Creek

    International Nuclear Information System (INIS)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J.; Burris, J.A.

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report

  3. The Effect of Landuse and Other External Factors on Water Quality Within two Creeks in Northern Kentucky

    Science.gov (United States)

    Boateng, S.

    2006-05-01

    The purpose of this study was to monitor the water quality in two creeks in Northern Kentucky. These are the Banklick Creek in Kenton County and the Woolper Creek in Boone County, Kentucky. The objective was to evaluate the effect of landuse and other external factors on surface water quality. Landuse within the Banklick watershed is industrial, forest and residential (urban) whereas that of Woolper Creek is agricultural and residential (rural). Two testing sites were selected along the Banklick Creek; one site was upstream the confluence with an overflow stream from an adjacent lake; the second site was downstream the confluence. Most of the drainage into the lake is over a near-by industrial park and the urban residential areas of the cities of Elsmere and Erlanger, Kentucky. Four sampling locations were selected within the Woolper Creek watershed to evaluate the effect of channelization and subsequent sedimentation on the health of the creek. Water quality parameters tested for include dissolved oxygen, phosphates, chlorophyll, total suspended sediments (TSS), pH, oxidation reduction potential (ORP), nitrates, and electrical conductivity. Sampling and testing were conducted weekly and also immediately after storm events that occurred before the regular sampling dates. Sampling and testing proceeded over a period of 29 weeks. Biological impact was determined, only in Woolper Creek watershed, by sampling benthic macroinvertebrates once every four weeks. The results showed significant differences in the water quality between the two sites within the Banklick Creek. The water quality may be affected by the stream overflow from the dammed lake. Also, channelization in the Woolper Creek seemed to have adverse effects on the water quality. A retention pond, constructed to prevent sediments from flowing into the Woolper Creek, did not seem to be effective. This is because the water quality downstream of the retention pond was significantly worse than that of the

  4. Prioritizing Road Treatments using the Geomorphic Roads Analysis and Inventory Package (GRAIP) to Improve Watershed Conditions in the Wall Creek Watershed, Oregon

    Science.gov (United States)

    Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.

    2010-12-01

    Wall Creek, tributary to the North Fork John Day River in eastern Oregon, was identified as a priority watershed by the Umatilla National Forest for restoration in 2002. Most streams in this 518 km2 multi-ownership watershed are designated critical habitat for threatened steelhead. Eight streams are listed on the Oregon 303(d) list for elevated temperatures and excess sedimentation. Over 1000 km of public and private roads in the watershed present a major source of potential water quality and habitat impairment. We conducted a watershed-wide inventory of roads using the Geomorphic Roads Analysis and Inventory Package (GRAIP) in 2009 to quantify sediment contributions from roads to streams. GRAIP is a field and GIS-based model developed by the Forest Service Rocky Mountain Research Station and Utah State University that georeferences and quantifies road hydrologic connectivity, sediment production and delivery, mass wasting, and risk of diversion and plugging at stream crossings. Field survey and modeling produced data for 6,473 drainage locations on 726 km of road (most of the publically owned roads) quantifying the location and mass of sediment produced and delivered to streams. Findings indicate a relatively small subset of roads deliver the majority of road-produced fine sediment; 12 percent of the road length delivers 90 percent of the total fine sediment to streams. Overall fine sediment production in the watershed is relatively low (with an estimated background erosion rate of 518,000 kg/yr for the watershed) and sediment produced and delivered from the road system appears to be a modest addition. Road surfaces produce approximately 81,455 kg of fine sediment per year, with 20,976 kg/year delivered to the stream network. Fifty-nine gullies were observed, 41 of which received road runoff. Sixteen road-related landslides were also observed. The excavated volume of these features totals 3,922,000 kg which is equivalent to 175 years of fine sediment delivery at

  5. From Mountains to Plains: The Hydrogeochemistry of the Boulder Creek Watershed, Colorado during High- and Low-Flow Conditions 2000

    Science.gov (United States)

    Verplanck, P. L.; Murphy, S. F.; McCleskey, R. B.; Barber, L. B.; Roth, D. A.

    2002-05-01

    A hydrogeochemical study of the Boulder Creek watershed was undertaken to evaluate natural and anthropogenic sources of solutes and the geochemical processes that affect stream chemistry. The Boulder Creek watershed, 1160 km{2}, is in the Front Range of the Rocky Mountains in Colorado and can be delineated into five physiographic/land use regions: the headwater region (elev. 4100 to 2600 m, tundra to pine/fir forest, Precambrian and Tertiary gneisses and plutons, sparse habitation), the mountain corridor (elev. 2600 to 1750 m, ponderosa pine, Precambrian and Tertiary gneisses and plutons, small mountain communities), the urban region (elev. 1750 to 1560 m, grassland, Mesozoic sedimentary units, City of Boulder), the wastewater-dominated reach (elev. 1560 to 1540 m, grassland, Mesozoic sedimentary units, sewage treatment plant effluent), and the agriculture region (elev. 1540 to 1480 m, grassland, Mesozoic sedimentary units, mixed urban and agricultural). Potential anthropogenic sources of solutes include: mining (hardrock and aggregate), septic systems, highway runoff, urban wastewater, and agricultural practices. A 70 km reach of Boulder Creek (16 sites) and its major inflows (13 sites) were sampled during high- and low-flow conditions in 2000. At all sites, discharge was measured or estimated, and water samples were analyzed for major and trace elements and organic carbon. At selected sites, analyses also included a suite of pesticides, pharmaceuticals, and wastewater-derived organic compounds and the strontium isotopic composition. Stream water in the headwater region is a dilute Ca-Mg-HCO3-SO4- water, and in the mountain corridor a slight increase in solutes was observed. Within the urban reach solute concentrations increased, with the most dramatic increase below the sewage treatment plant. Many constituents continue to increase in concentration through the urban/agriculture region. Similar trends were observed during high- and low-flow conditions with

  6. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  7. Effect of detention basin release rates on flood flows - Application of a model to the Blackberry Creek Watershed in Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.

    2009-01-01

    The effects of stormwater detention basins with specified release rates are examined on the watershed scale with a Hydrological Simulation Program - FORTRAN (HSPF) continuous-simulation model. Modeling procedures for specifying release rates from detention basins with orifice and weir discharge configurations are discussed in this report. To facilitate future detention modeling as a tool for watershed management, a chart relating watershed impervious area to detention volume is presented. The report also presents a case study of the Blackberry Creek watershed in Kane County, Ill., a rapidly urbanizing area seeking to avoid future flood damages from increased urbanization, to illustrate the effects of various detention basin release rates on flood peaks and volumes and flood frequencies. The case study compares flows simulated with a 1996 land-use HSPF model to those simulated with four different 2020 projected land-use HSPF model scenarios - no detention, and detention basins with release rates of 0.08, 0.10, and 0.12 cubic feet per second per acre (ft3/s-acre), respectively. Results of the simulations for 15 locations, which included the downstream ends of all tributaries and various locations along the main stem, showed that a release rate of 0.10 ft3/s-acre, in general, can maintain postdevelopment 100-year peak-flood discharge at a similar magnitude to that of 1996 land-use conditions. Although the release rate is designed to reduce the 100-year peak flow, reduction of the 2-year peak flow is also achieved for a smaller proportion of the peak. Results also showed that the 0.10 ft3/s-acre release rate was less effective in watersheds with relatively high percentages of preexisting (1996) development than in watersheds with less preexisting development.

  8. Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R.; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  9. Survey of beaver-related restoration practices in rangeland streams of the western USA

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  10. Hydrologic conditions and quality of rainfall and storm runoff for two agricultural areas of the Oso Creek Watershed, Nueces County, Texas, 2005-07

    Science.gov (United States)

    Ockerman, Darwin J.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and quality of rainfall and storm runoff of two (primarily) agricultural areas (subwatersheds) of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is 5,145 acres. The other area, a subwatershed drained by an unnamed Oso Creek tributary (hereinafter, Oso Creek tributary), is 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during October 2005-September 2007. Fourteen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Nineteen composite runoff samples (10 West Oso Creek, nine Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-two discrete suspended-sediment samples (10 West Oso Creek, 12 Oso Creek tributary) and 13 bacteria samples (eight West Oso Creek, five Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the study subwatersheds. Quantities of fertilizers and pesticides applied in the subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff at both subwatershed outlet sites occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 10.83 inches compared with 7.28 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 2-year study period averaged 2.61 pounds

  11. Radionuclide uptake by beaver and ruffed grouse in the Serpent River basin

    International Nuclear Information System (INIS)

    Clulow, F.V.

    1988-12-01

    Radionuclide levels were measured in tissues, gut contents, and diet items of adult beaver and ruffed grouse from the Serpent River drainage basin (which contains the city of Elliot Lake) and control sites in Ontario, and in beaver and muskrat fetuses from females taken in the same basin. Levels of radium 226 in beaver bone, muscle and kidney were highest in animals from locations close to uranium tailings; liver levels did not vary by site. Grouse taken near Elliot Lake has higher bone levels of radium 226 than distant controls; levels in other tissues did not vary by site. Environmental radium 226 levels were within ranges previously reported at these or similar locations elsewhere; levels in beaver and grouse gut contents reflected levels in diet items. Fetal beaver tissues had higher radium 226 levels than maternal tissues; fetal liver tissue carried higher levels than other body tissues in general; fetal levels varied with maternal levels but also inversely with fetal size (and thus age). Although muskrat fetal liver had more radium 226 than other tissues, levels were lower than maternal bone levels. In two grouse and two beaver, selected for their higher tissue levels of radium 226, neither thorium 232 nor thorium 230 were detected in bone, muscle, or liver samples, however other radionuclides were measured: uranium 238 in beaver and grouse bone, muscle and liver; thorium 228 in beaver bone and grouse muscle; polonium 210 was found in bone, muscle, and liver of both beaver and grouse sampled (except in one grouse muscle sample); lead 210 was measurable only in beaver bone and in one grouse liver sample. Concentration ratios exceeded unity only between some vegetation items and beaver bone at the Elliot Lake site; between vegetation and other beaver tissues values were never more than 0.19. In grouse, the concentration ratios from trembling aspen leaves to bone was 1.04; from other diet items and to other tissues the values were less than unity. Estimated

  12. Distributed Hydrologic Modeling of Semiarid Basins in Arizona: A Platform for Land Cover and Climate Change Assessments

    Science.gov (United States)

    Hawkins, G. A.; Vivoni, E. R.

    2011-12-01

    Watershed management is challenged by rising concerns over climate change and its potential to interact with land cover alterations to impact regional water supplies and hydrologic processes. The inability to conduct experimental manipulations that address climate and land cover change at watershed scales limits the capacity of water managers to make decisions to protect future supplies. As a result, spatially-explicit, physically-based models possess value for predicting the possible consequences on watershed hydrology. In this study, we apply a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, soils distribution and availability of hydrologic data in forested regions of northern Arizona. As such, it can serve as a demonstration study in the broader region to illustrate the utility of distributed models for change assessment studies. Through a model application to summertime conditions, we compare the hydrologic response from three sources of meteorological input: (1) an available network of ground-based stations, (2) weather radar rainfall estimates, and (3) the North American Land Data Assimilation System (NLDAS). Comparisons focus on analysis of spatiotemporal distributions of precipitation, soil moisture, runoff generation, evapotranspiration and recharge from the root zone at high resolution for an assessment of sustainable water supplies for agricultural and domestic purposes. We also present a preliminary analysis of the impact of vegetation change arising from historical treatments in the Beaver Creek to inform the hydrologic consequences in the form of soil moisture and evapotranspiration patterns with differing degrees of proposed forest thinning. Our results are discussed in the context of improved hydrologic predictions for sustainability and decision

  13. Analysis of infrequent hydrologic events with regard to existing streamflow monitoring capabilities in White Oak Creek watershed

    International Nuclear Information System (INIS)

    Edgar, D.E.

    1978-10-01

    The quantity and concentration of radionuclides released to the environment by ORNL must be monitored continuously and accurately in order to ensure compliance with legal requirements established by Federal and state guidelines. Of the five streamflow monitoring stations located within White Oak Creek watershed, stations 3, 4, and 5 are of primary importance in quantifying the flux of water, sediment, and radionuclides through the drainage basin. Currently, the maximum measurable discharge at these three stations is 1.42 m 3 /sec (50 cfs), 0.54 m 3 /sec (19 cfs), and 4.25 m 3 /sec (150 cfs), respectively. Estimates of flood magnitude and frequency indicate that even small floods which are expected to recur often are significantly larger than the existing monitoring system can measure. Several independent studies have shown that most of the sediment transported from a watershed is carried by larger, less frequent streamflows which occur only a small percentage of the time. It also has been shown that certain radionuclides are transported in association with fluvial sediment. Thus, the flux of radionuclides, both in solution and associated with sediment, increases significantly during flood conditions. Estimates of peak discharges resulting from recent storms indicate that the drainage system has experienced variable flood conditions during the past few years for which no accurate and reliable records exist

  14. Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.

    Science.gov (United States)

    Ribic, Christine A; Donner, Deahn M; Beck, Albert J; Rugg, David J; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.

  15. Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.

    Directory of Open Access Journals (Sweden)

    Christine A Ribic

    Full Text Available The North American beaver (Castor canadensis is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin and 1997-2013 (Chequamegon, northwest Wisconsin to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams. Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.

  16. Beaver ponds' impact on fluvial processes (Beskid Niski Mts., SE Poland).

    Science.gov (United States)

    Giriat, Dorota; Gorczyca, Elżbieta; Sobucki, Mateusz

    2016-02-15

    Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisłoka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisłoka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisłoka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisłoka fluvial system development. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  18. A subsurface model of the beaver meadow complex

    Science.gov (United States)

    Nash, C.; Grant, G.; Flinchum, B. A.; Lancaster, J.; Holbrook, W. S.; Davis, L. G.; Lewis, S.

    2015-12-01

    Wet meadows are a vital component of arid and semi-arid environments. These valley spanning, seasonally inundated wetlands provide critical habitat and refugia for wildlife, and may potentially mediate catchment-scale hydrology in otherwise "water challenged" landscapes. In the last 150 years, these meadows have begun incising rapidly, causing the wetlands to drain and much of the ecological benefit to be lost. The mechanisms driving this incision are poorly understood, with proposed means ranging from cattle grazing to climate change, to the removal of beaver. There is considerable interest in identifying cost-effective strategies to restore the hydrologic and ecological conditions of these meadows at a meaningful scale, but effective process based restoration first requires a thorough understanding of the constructional history of these ubiquitous features. There is emerging evidence to suggest that the North American beaver may have had a considerable role in shaping this landscape through the building of dams. This "beaver meadow complex hypothesis" posits that as beaver dams filled with fine-grained sediments, they became large wet meadows on which new dams, and new complexes, were formed, thereby aggrading valley bottoms. A pioneering study done in Yellowstone indicated that 32-50% of the alluvial sediment was deposited in ponded environments. The observed aggradation rates were highly heterogeneous, suggesting spatial variability in the depositional process - all consistent with the beaver meadow complex hypothesis (Polvi and Wohl, 2012). To expand on this initial work, we have probed deeper into these meadow complexes using a combination of geophysical techniques, coring methods and numerical modeling to create a 3-dimensional representation of the subsurface environments. This imaging has given us a unique view into the patterns and processes responsible for the landforms, and may shed further light on the role of beaver in shaping these landscapes.

  19. Geochemical investigations and interim recommendations for priority abandoned mine sites on U.S.D.A. Forest Service lands, Mineral Creek watershed, San Juan County, Colorado

    Science.gov (United States)

    Nash, J.T.

    1999-01-01

    Field observations, sampling of mine dumps and mine drainage waters, and laboratory studies of dump materials have been made at mining areas deemed to be on public lands administered by the USDA Forest Service in the Mineral Creek watershed. Results of chemical analyses of dump materials, leachates of those materials, and of surface waters draining mines or dumps provide indications of where acid is generated or consumed, and what metals are mobilized below mines or dumps. Information on 25 sites is reviewed and reclamation priorities are ranked into four classes (high, medium, low priority, or no work required). The western side of the upper Animas watershed (the Mineral Creek watershed) has a history of mining and prospecting for about 130 years. The intensity of miningrelated disturbance is higher than in most parts of the San Juan Mountains region, but actually is much less than the eastern half of the watershed (US BLM lands) and none of the mines moved millions of tons of rock and ore as in some of the eastern mines. The majority of the roughly one thousand mining sites on the USFS lands are very small (less than 100 tons or 70 cubic yards of dump material), are more than 2 miles from a major stream, or are so inaccessible as to prohibit reclamation. Twenty five sites have been considered by others to have significant size and potential for significant environmental degradation. These most significant mining areas were evaluated by multiple criteria, including tendency to generate acid or liberate toxic metals, observed acidic pH or dead vegetation (?kill zones?) below dumps or adits, potential mobility of metals, and likelihood of transport into streams of the watershed. In the author?s opinion, no single measurable parameter, such as metal concentration, is reliable for ranking significance or feasibility of reclamation. Rather, subjective estimates are required to evaluate combinations of, or interactions among, several parameters. The most subjective

  20. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  1. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    Science.gov (United States)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream

  2. Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2015-08-01

    Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.

  3. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Kim, Joon Ha; Kim, Jung-Woo; Park, Mi-Hyun

    2012-10-01

    This study assessed fecal coliform contamination in the Wachusett Reservoir Watershed in Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are one of the major water quality parameters of concern. The bacteria subroutine in SWAT, considering in-stream bacteria die-off only, was modified in this study to include solar radiation-associated die-off and the contribution of wildlife. The result of sensitivity analysis demonstrates that solar radiation is one of the most significant fate factors of fecal coliform. A water temperature-associated function to represent the contribution of beaver activity in the watershed to fecal contamination improved prediction accuracy. The modified SWAT model provides an improved estimate of bacteria from the watershed. Our approach will be useful for simulating bacterial concentrations to provide predictive and reliable information of fecal contamination thus facilitating the implementation of effective watershed management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma Panhandle, USA

    Science.gov (United States)

    Bement, Leland C.; Madden, Andrew S.; Carter, Brian J.; Simms, Alexander R.; Swindle, Andrew L.; Alexander, Hanna M.; Fine, Scott; Benamara, Mourad

    2014-02-01

    High levels of nanodiamonds (nds) have been used to support the transformative hypothesis that an extraterrestrial (ET) event (comet explosion) triggered Younger Dryas changes in temperature, flora and fauna assemblages, and human adaptations [Firestone RB, et al. (2007) Proc Natl Acad Sci USA 104(41):16016-16021]. We evaluate this hypothesis by establishing the distribution of nds within the Bull Creek drainage of the Beaver River basin in the Oklahoma panhandle. The earlier report of an abundance spike of nds in the Bull Creek I Younger Dryas boundary soil is confirmed, although no pure cubic diamonds were identified. The lack of hexagonal nds suggests Bull Creek I is not near any impact site. Potential hexagonal nds at Bull Creek were found to be more consistent with graphene/graphane. An additional nd spike is found in deposits of late Holocene through the modern age, indicating nds are not unique to the Younger Dryas boundary. Nd distributions do not correlate with depositional environment, pedogenesis, climate perturbations, periods of surface stability, or cultural activity.

  5. Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma panhandle, USA.

    Science.gov (United States)

    Bement, Leland C; Madden, Andrew S; Carter, Brian J; Simms, Alexander R; Swindle, Andrew L; Alexander, Hanna M; Fine, Scott; Benamara, Mourad

    2014-02-04

    High levels of nanodiamonds (nds) have been used to support the transformative hypothesis that an extraterrestrial (ET) event (comet explosion) triggered Younger Dryas changes in temperature, flora and fauna assemblages, and human adaptations [Firestone RB, et al. (2007) Proc Natl Acad Sci USA 104(41):16016-16021]. We evaluate this hypothesis by establishing the distribution of nds within the Bull Creek drainage of the Beaver River basin in the Oklahoma panhandle. The earlier report of an abundance spike of nds in the Bull Creek I Younger Dryas boundary soil is confirmed, although no pure cubic diamonds were identified. The lack of hexagonal nds suggests Bull Creek I is not near any impact site. Potential hexagonal nds at Bull Creek were found to be more consistent with graphene/graphane. An additional nd spike is found in deposits of late Holocene through the modern age, indicating nds are not unique to the Younger Dryas boundary. Nd distributions do not correlate with depositional environment, pedogenesis, climate perturbations, periods of surface stability, or cultural activity.

  6. Beaver colony density trends on the Chequamegon-Nicolet National Forest, 1987 – 2013

    Science.gov (United States)

    Ribic, Christine; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.

  7. Environmental Impact of the Helen, Research, and Chicago Mercury Mines on Water, Sediment, and Biota in the Upper Dry Creek Watershed, Lake County, California

    Science.gov (United States)

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel; Brussee, Brianne E.

    2009-01-01

    The Helen, Research, and Chicago mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the southwestern part of the Clear Lake volcanic field in Lake County, California. The mine workings and tailings are located in the headwaters of Dry Creek. The Helen Hg mine is the largest mine in the watershed having produced about 7,600 flasks of Hg. The Chicago and Research Hg mines produced only a small amount of Hg, less than 30 flasks. Waste rock and tailings have eroded from the mines, and mine drainage from the Helen and Research mines contributes Hg-enriched mine wastes to the headwaters of Dry Creek and contaminate the creek further downstream. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and geochemical constituents in tailings, sediment, water, and biota at the Helen, Research, and Chicago mines and in Dry Creek. This report is made in response to the USBLM request to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Helen, Research, and Chicago mines as a means of reducing Hg transport to Dry Creek. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Helen, Research, and Chicago mines on April 19, 2001, during a storm event. Further sampling of water, sediment, and biota at the Helen mine area and the upper part of Dry Creek was completed on July 15, 2003, during low-flow conditions. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in the water, sediment, and biota that are impacted by historic mining.

  8. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    International Nuclear Information System (INIS)

    Watson, David B.; Brooks, Scott C.; Mathews, Teresa J.; Bevelhimer, Mark S.; DeRolph, Chris; Brandt, Craig C.; Peterson, Mark J.; Ketelle, Richard

    2016-01-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats' surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  9. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States)

    2016-06-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  10. Springwater geochemistry at Honey Creek State Natural Area, central Texas: Implications for surface water and groundwater interaction in a karst aquifer

    Science.gov (United States)

    Musgrove, M.; Stern, L. A.; Banner, J. L.

    2010-06-01

    SummaryA two and a half year study of two adjacent watersheds at the Honey Creek State Natural Area (HCSNA) in central Texas was undertaken to evaluate spatial and temporal variations in springwater geochemistry, geochemical evolution processes, and potential effects of brush control on karst watershed hydrology. The watersheds are geologically and geomorphologically similar, and each has springs discharging into Honey Creek, a tributary to the Guadalupe River. Springwater geochemistry is considered in a regional context of aquifer components including soil water, cave dripwater, springwater, and phreatic groundwater. Isotopic and trace element variability allows us to identify both vadose and phreatic groundwater contributions to surface water in Honey Creek. Spatial and temporal geochemical data for six springs reveal systematic differences between the two watersheds. Springwater Sr isotope values lie between values for the limestone bedrock and soils at HCSNA, reflecting a balance between these two primary sources of Sr. Sr isotope values for springs within each watershed are consistent with differences between soil compositions. At some of the springs, consistent temporal variability in springwater geochemistry (Sr isotopes, Mg/Ca, and Sr/Ca values) appears to reflect changes in climatic and hydrologic parameters (rainfall/recharge) that affect watershed processes. Springwater geochemistry was unaffected by brush removal at the scale of the HCSNA study. Results of this study build on previous regional studies to provide insight into watershed hydrology and regional hydrologic processes, including connections between surface water, vadose groundwater, and phreatic groundwater.

  11. Colonial Era Impoundment of the Northeastern United States: Beaver Trapping and Low- head Dam Construction

    Science.gov (United States)

    Salant, N.; Bain, D.; Brandt, S.

    2008-12-01

    Hydrologic systems of the northeastern United States were transformed by European settler activities. The colonial economy shifted engineered water structures from beaver dams to human dams built for power generation. While the geomorphic effects of human-constructed dams have recently garnered considerable attention, few studies have investigated how intensive trapping for the fur trade, the near extermination of the Northeast beaver population, and the consequent loss of beaver ponds altered the regional water balance. Although reconstructions of colonial beaver populations have been made, none link the decline in beavers to its hydrologic impact. Beaver population models based on pre-colonial population estimates, historic harvest rates, and current-day population dynamics were used to simulate the corresponding decrease in pond numbers over time. Beaver populations declined dramatically during the seventeenth century, with harvest rates estimated at 2,000-10,000 beavers per year, resulting in expatriation in some sub-regions by the early 1700s. Using contemporary estimates of beaver pond volumes, the calculated loss in pond storage between 1600 and 1840 was approximately 17 million cubic meters of water and sediment, considerably larger than estimated storage gains from dam construction in the same period, suggesting that beaver eradication was a major driver of hydrologic change during the colonial era.

  12. Minnehaha Creek Watershed SWMM5 Model Data Analysis and Future Recommendations

    Science.gov (United States)

    2013-07-01

    Water Bodies Organization 1 SWMM5 LMCW EPA 1 HEC - RAS Minnehaha Creek and Lake Minnetonka system HEC 2 CE-QUAL-W2 Lake Minnetonka system ERDC...and adjusted as needed to adequately address project goals and priorities. SWMM5 and HEC - RAS are the recommended Tier 1 models. The current SWMM5...model is an appropriate modeling platform for modeling subbasins in the LMCW. HEC - RAS should be used to model Minnehaha Creek and the Lake Minnetonka

  13. 78 FR 28780 - Proposed Flood Elevation Determinations for Beaver County, Pennsylvania (All Jurisdictions)

    Science.gov (United States)

    2013-05-16

    ...-2013-0002; Internal Agency Docket No. FEMA-B-1147] Proposed Flood Elevation Determinations for Beaver... proposed rule concerning proposed flood elevation determinations for Beaver County, Pennsylvania (All... Beaver County, Pennsylvania. Because FEMA has or will be issuing a Revised Preliminary Flood Insurance...

  14. [Assimilation of biological nitrogen by European beaver].

    Science.gov (United States)

    Vecherskiĭ, M V; Naumova, E I; Kostina, N V; Umarov, M M

    2009-01-01

    Nitrogenase activity, the abundance of diazotrophic bacteria, the structure and functional characteristics of the complex of microorganisms, and the content of nitrogen and carbon were determined in the contents of the gastrointestinal tract of the European beaver. A high nitrogen-fixing activity in the large intestine correlated with an increase in nitrogen content in the chyme upon its transfer over the gastrointestinal tract. It is assumed that microbial nitrogen fixation plays a major role in nitrogen nutrition of the European beaver.

  15. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data.

    Science.gov (United States)

    Hoque, Yamen M; Tripathi, Shivam; Hantush, Mohamed M; Govindaraju, Rao S

    2012-10-30

    A method for assessment of watershed health is developed by employing measures of reliability, resilience and vulnerability (R-R-V) using stream water quality data. Observed water quality data are usually sparse, so that a water quality time-series is often reconstructed using surrogate variables (streamflow). A Bayesian algorithm based on relevance vector machine (RVM) was employed to quantify the error in the reconstructed series, and a probabilistic assessment of watershed status was conducted based on established thresholds for various constituents. As an application example, observed water quality data for several constituents at different monitoring points within the Cedar Creek watershed in north-east Indiana (USA) were utilized. Considering uncertainty in the data for the period 2002-2007, the R-R-V analysis revealed that the Cedar Creek watershed tends to be in compliance with respect to selected pesticides, ammonia and total phosphorus. However, the watershed was found to be prone to violations of sediment standards. Ignoring uncertainty in the water quality time-series led to misleading results especially in the case of sediments. Results indicate that the methods presented in this study may be used for assessing the effects of different stressors over a watershed. The method shows promise as a management tool for assessing watershed health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Haematology and Serum Biochemistry Parameters and Variations in the Eurasian Beaver (Castor fiber).

    Science.gov (United States)

    Girling, Simon J; Campbell-Palmer, Roisin; Pizzi, Romain; Fraser, Mary A; Cracknell, Jonathan; Arnemo, Jon; Rosell, Frank

    2015-01-01

    Haematology parameters (N = 24) and serum biochemistry parameters (N = 35) were determined for wild Eurasian beavers (Castor fiber), between 6 months - 12 years old. Of the population tested in this study, N = 18 Eurasian beavers were from Norway and N = 17 originating from Bavaria but now living extensively in a reserve in England. All blood samples were collected from beavers via the ventral tail vein. All beavers were chemically restrained using inhalant isoflurane in 100% oxygen prior to blood sampling. Results were determined for haematological and serum biochemical parameters for the species and were compared between the two different populations with differences in means estimated and significant differences being noted. Standard blood parameters for the Eurasian beaver were determined and their ranges characterised using percentiles. Whilst the majority of blood parameters between the two populations showed no significant variation, haemoglobin, packed cell volume, mean cell haemoglobin and white blood cell counts showed significantly greater values (pbeavers or between sexually immature (beavers in the animals sampled. With Eurasian beaver reintroduction encouraged by legislation throughout Europe, knowledge of baseline blood values for the species and any variations therein is essential when assessing their health and welfare and the success or failure of any reintroduction program. This is the first study to produce base-line blood values and their variations for the Eurasian beaver.

  17. Mandibular incisor apicoectomy in a Canadian Beaver.

    Science.gov (United States)

    Steenkamp, Gerhard; Venter, Leon; Crossley, David; Buss, Peter

    2009-01-01

    A 52-month-old Canadian beaver was presented for treatment of lip trauma resulting from overgrowth of the right mandibular incisor tooth following earlier loss of the right maxillary incisor tooth. Extraction of the affected tooth was considered, but rejected due to the length of the embedded portion of rodent mandibular incisor teeth. The lip injury was managed by crown reduction (odontoplasty) of the overgrowing incisor tooth pending a more permanent treatment plan. A 2-cm apicoectomy of the right mandibular incisor tooth was performed to arrest growth of the tooth when the beaver was 82-months-old. The remainder of the tooth continued to erupt and was completely expelled during a 9-month period with one additional odontoplasty being required. The beaver continued to feed normally with just the left maxillary and mandibular incisor teeth until its death at 118-months, with odontoplasty performed twice on the remaining incisor teeth during the 30-months following exfoliation.

  18. 78 FR 4377 - Idaho Panhandle National Forests, Coeur d'Alene River Ranger District, Shoshone County, ID...

    Science.gov (United States)

    2013-01-22

    ... Ranger District, Shoshone County, ID; Beaver Creek Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The Forest Service will prepare an Environmental Impact Statement (EIS) on a proposal to accomplish vegetation management in the Beaver Creek...

  19. 76 FR 68107 - Final Flood Elevation Determinations

    Science.gov (United States)

    2011-11-03

    ... environmental impact assessment has not been prepared. Regulatory Flexibility Act. As flood elevation..., Illinois, and Incorporated Areas Docket No.: FEMA-B-1134 Beaver Creek Approximately 1.58 miles +366... of Main Street extended (River Mile 887). Unnamed Tributary to Beaver Creek Approximately 1,500 feet...

  20. Shifting cultivation effects on creek water quality around Barkal Upazila in Chittagong Hill Tracts, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Shyamal Karmakar; S.M.Sirajul Haque; M.Mozaffar Hossain; Sohag Miah

    2012-01-01

    We report the effects of shifting cultivation on water quality in 16 creeks investigated once in 2007 and twice in 2008 in 16 apparently similar small neighboring watersheds,each of 3 to 5 ha,at four locations around Barkal sub-district under Rangamati District of Chittagong Hill Tracts in Bangladesh.Concentrations of SO42-and K+,and pH in creek water were lower,and NO3-N and Na+ concentrations were higher in shifting-cultivation land compared to land with either plantation or natural forest or a combination of these cover types.Shifting cultivation effects on some water quality parameters were not significant due to change in land cover of the watershed between two sampling periods either through introduction of planted tree species or naturally regenerated vegetation.Conductivity and concentrations of HCO3-.PO43-,Ca2+ and Mg2+ in creek water showed no definite trend between shifting cultivation and the other land cover types.At one area near the Forest Range Office of Barkal,creek water pH was 5.8 under land cover with a combination of shifting cultivation and plantation.At this area Na+ concentration in shifting-cultivation land ranged from 32.33 to 33.00 mg·L-1 and in vegetated area from 25.00 to 30.50 mg·L-1 in 2007.At another area,Chaliatali Chara,SO42-concentration in a shifting-cultivation watershed ranged from 4.46 to 10.51 mg·L-1,lower than in a vegetated watershed that ranged from 11.69 to 19.98 mg·L-1 in 2007.SO42-concentration in this shifting-cultivation area ranged from 1.28 to 1.37 mg·L-1 and in the vegetated area from 1.37 to 3.50 mg·L-1 in 2008.

  1. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    Science.gov (United States)

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  2. Estimating natural recharge in San Gorgonio Pass watersheds, California, 1913–2012

    Science.gov (United States)

    Hevesi, Joseph A.; Christensen, Allen H.

    2015-12-21

    A daily precipitation-runoff model was developed to estimate spatially and temporally distributed recharge for groundwater basins in the San Gorgonio Pass area, southern California. The recharge estimates are needed to define transient boundary conditions for a groundwater-flow model being developed to evaluate the effects of pumping and climate on the long-term availability of groundwater. The area defined for estimating recharge is referred to as the San Gorgonio Pass watershed model (SGPWM) and includes three watersheds: San Timoteo Creek, Potrero Creek, and San Gorgonio River. The SGPWM was developed by using the U.S. Geological Survey INFILtration version 3.0 (INFILv3) model code used in previous studies of recharge in the southern California region, including the San Gorgonio Pass area. The SGPWM uses a 150-meter gridded discretization of the area of interest in order to account for spatial variability in climate and watershed characteristics. The high degree of spatial variability in climate and watershed characteristics in the San Gorgonio Pass area is caused, in part, by the high relief and rugged topography of the area.

  3. Diets of three species of anurans from the cache creek watershed, California, USA

    Science.gov (United States)

    Hothem, R.L.; Meckstroth, A.M.; Wegner, K.E.; Jennings, M.R.; Crayon, J.J.

    2009-01-01

    We evaluated the diets of three sympatric anuran species, the native Northern Pacific Treefrog, Pseudacris regilla, and Foothill Yellow-Legged Frog, Rana boylii, and the introduced American Bullfrog, Lithobates catesbeianus, based on stomach contents of frogs collected at 36 sites in 1997 and 1998. This investigation was part of a study of mercury bioaccumulation in the biota of the Cache Creek Watershed in north-central California, an area affected by mercury contamination from natural sources and abandoned mercury mines. We collected R. boylii at 22 sites, L. catesbeianus at 21 sites, and P. regilla at 13 sites. We collected both L. catesbeianus and R. boylii at nine sites and all three species at five sites. Pseudacris regilla had the least aquatic diet (100% of the samples had terrestrial prey vs. 5% with aquatic prey), followed by R. boylii (98% terrestrial, 28% aquatic), and L. catesbeianus, which had similar percentages of terrestrial (81%) and aquatic prey (74%). Observed predation by L. catesbeianus on R. boylii may indicate that interaction between these two species is significant. Based on their widespread abundance and their preference for aquatic foods, we suggest that, where present, L. catesbeianus should be the species of choice for all lethal biomonitoring of mercury in amphibians. Copyright ?? 2009 Society for the Study of Amphibians and Reptiles.

  4. Pulmonary adiaspiromycosis in the Eurasian beaver (Castor fiber) inhabiting Poland.

    Science.gov (United States)

    Dolka, I; Giżejewska, A; Giżejewski, Z; Kołodziejska-Lesisz, J; Kluciński, W

    2017-09-26

    Adiaspiromycosis is a rare fungal infection caused by saprophytic fungi Emmonsia spp. (type Ascomycota) occurring especially in small free-living mammals. The aim of this study was to evaluate the occurrence of histopathological lesions asscociated with adiaspiromycosis in the Eurasian beaver inhabiting Poland. In order to evaluate the presence of natural adiaspiromycosis we systematically investigated beaver populations from north-eastern Poland for adiaspores in the lungs. This study reveals for the first time the presence of pulmonary adiaspiromycosis of Eurasian beaver in Poland. As far as we know, there is no published data regarding pulmonary adiaspiromycosis in human patients in Poland.

  5. Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

    2009-06-09

    During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

  6. A Model of Beaver Meadow Complex Evolution in the Silvies River Basin, Oregon.

    Science.gov (United States)

    Nash, C.; Grant, G.; Campbell, S. D.

    2014-12-01

    There is increasing evidence to suggest that the pervasive incision seen in the American West is due, in part, to the removal of beaver (Castor canadensis) in the first half of the 19th century. New restoration strategies for these systems focus on the reintroduction of beaver and construction of beaver dam analogs. Such dams locally raise streams beds and water tables, reconnect incised channels to their former floodplains, trap sediment, increase hydraulic diversity, and promote riparian vegetation. However, the geomorphic and hydrologic impacts of both the original beaver dams and their analogs are poorly understood. Observations in the Silvies River basin in Oregon, USA - an upland, semi-arid catchment with extremely high historic beaver populations and a presently recovering population, inform a conceptual model for valley floor evolution with beaver dams. The evolution of the beaver dam complex is characterized by eight stages of morphologic adjustment: water impoundment, sediment deposition, pond filling, multi-thread meadow creation, dam breaching, channel incision, channel widening, and floodplain development. Well-constructed beaver dams, given sufficient time and sediment flux, will evolve from a series of ponds to a multi-threaded channel flowing through a wet meadow complex. If a dam in the system fails, due to overtopping, undercutting, lack of maintenance, or abandonment, the upstream channel will concentrate into a single channel and incise, followed over time by widening once critical bank heights are exceeded. From stratigraphic, dendrochronologic, and geomorphic measurements, we are constraining average timescales associated with each stage's duration and transitional period. Measured sedimentation rates behind modern beaver dam analogs on five stream systems permit calculation of sediment flux over recent time periods, and aid in developing regional rates of sediment deposition over a range of drainage areas and gradients. Stratigraphic and

  7. Chemistry and age of groundwater in bedrock aquifers of the Piceance and Yellow Creek watersheds, Rio Blanco County, Colorado, 2010-12

    Science.gov (United States)

    McMahon, P.B.; Thomas, J.C.; Hunt, A.G.

    2013-01-01

    Fourteen monitoring wells completed in the Uinta and Green River Formations in the Piceance Creek and Yellow Creek watersheds in Rio Blanco County, Colorado, were sampled for chemical, isotopic, and groundwater-age tracers to provide information on the overall groundwater quality, the occurrence and distribution of chemicals that could be related to the development of underlying natural-gas reservoirs, and to better understand groundwater residence times in the flow system. Methane concentrations in groundwater ranged from less than 0.0005 to 387 milligrams per liter. The methane was predominantly biogenic in origin, although the biogenic methane was mixed with thermogenic methane in water from seven wells. Three BTEX compounds (benzene, toluene, and ethylbenzene) were detected in water from six of the wells, but none of the concentrations exceeded Federal drinking-water standards. The presence of thermogenic methane in the aquifers indicates a connection and vulnerability to chemicals in deeper geologic units. Helium-4 data indicate that groundwater had ages ranging from less than 1,000 years to greater than 50,000 years. The presence of old groundwater in parts of the aquifers indicates that these aquifers may not be useful for large-scale water supply because of low recharge rates.

  8. Factors affecting scent-marking behaviour in Eurasion beaver (Castor fiber)

    NARCIS (Netherlands)

    Rosell, F.; Nolet, B.A.

    1997-01-01

    We tested the hypothesis that a main function of territory marking in Eurasian beaver (Castor fiber) is defense of the territory. The results showed that: (1) beaver colonies with close neighbors scent-mark more often than isolated ones; (2) the number of scent markings increased significantly with

  9. New finding of Trichinella britovi in a European beaver (Castor fiber) in Latvia.

    Science.gov (United States)

    Segliņa, Zanda; Bakasejevs, Eduards; Deksne, Gunita; Spuņģis, Voldemārs; Kurjušina, Muza

    2015-08-01

    We report the first finding of Trichinella britovi in a European beaver. In Latvia, beaver is a common game animal and frequently used in human diet. A high prevalence of Trichinella infections in Latvia is present in the most common hosts-carnivores and omnivores. In total, 182 European beaver muscle samples were tested for Trichinella larvae accordingly to the reference method of European Communities Commission Regulation (EC) No. 2075/2005 (2005). Trichinella britovi larvae were detected in one animal (prevalence 0.5%; intensity 5.92 larvae per gram of muscle). This finding suggests that the consumption of European beaver meat can be a risk to human health. Further studies are needed in order to determine if the present observation represents an isolated individual case or low prevalence of Trichinella infection in beavers.

  10. Impact of urbanization on flood of Shigu creek in Dongguan city

    Science.gov (United States)

    Pan, Luying; Chen, Yangbo; Zhang, Tao

    2018-06-01

    Shigu creek is a highly urbanized small watershed in Dongguan City. Due to rapid urbanization, quick flood response has been observed, which posted great threat to the flood security of Dongguan City. To evaluate the impact of urbanization on the flood changes of Shigu creek is very important for the flood mitigation of Shigu creek, which will provide insight for flood planners and managers for if to build a larger flood mitigation system. In this paper, the Land cover/use changes of Shigu creek from 1987-2015 induced by urbanization was first extracted from a local database, then, the Liuxihe model, a physically based distributed hydrological model, is employed to simulate the flood processes impacted by urbanization. Precipitation of 3 storms was used for flood processes simulation. The results show that the runoff coefficient and peak flow have increased sharply.

  11. Haematology and Serum Biochemistry Parameters and Variations in the Eurasian Beaver (Castor fiber.

    Directory of Open Access Journals (Sweden)

    Simon J Girling

    Full Text Available Haematology parameters (N = 24 and serum biochemistry parameters (N = 35 were determined for wild Eurasian beavers (Castor fiber, between 6 months - 12 years old. Of the population tested in this study, N = 18 Eurasian beavers were from Norway and N = 17 originating from Bavaria but now living extensively in a reserve in England. All blood samples were collected from beavers via the ventral tail vein. All beavers were chemically restrained using inhalant isoflurane in 100% oxygen prior to blood sampling. Results were determined for haematological and serum biochemical parameters for the species and were compared between the two different populations with differences in means estimated and significant differences being noted. Standard blood parameters for the Eurasian beaver were determined and their ranges characterised using percentiles. Whilst the majority of blood parameters between the two populations showed no significant variation, haemoglobin, packed cell volume, mean cell haemoglobin and white blood cell counts showed significantly greater values (p<0.01 in the Bavarian origin population than the Norwegian; neutrophil counts, alpha 2 globulins, cholesterol, sodium: potassium ratios and phosphorus levels showed significantly (p<0.05 greater values in Bavarian versus Norwegian; and potassium, bile acids, gamma globulins, urea, creatinine and total calcium values levels showed significantly (p<0.05 greater values in Norwegian versus Bavarian relict populations. No significant differences were noted between male and female beavers or between sexually immature (<3 years old and sexually mature (≥3 years old beavers in the animals sampled. With Eurasian beaver reintroduction encouraged by legislation throughout Europe, knowledge of baseline blood values for the species and any variations therein is essential when assessing their health and welfare and the success or failure of any reintroduction program. This is the first study to produce

  12. 77 FR 34297 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Pittsburgh-Beaver...

    Science.gov (United States)

    2012-06-11

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Pittsburgh-Beaver Valley Nonattainment Area... Pittsburgh-Beaver Valley fine particulate matter (PM 2.5 ) nonattainment area (hereafter referred to as ``the... designations process. The Pittsburgh Area is comprised of the counties of Beaver, Butler, Washington, and...

  13. Yersinia pseudotuberculosis septicemia in a beaver from Washington State.

    Science.gov (United States)

    Gaydos, Joseph K; Zabek, Erin; Raverty, Stephen

    2009-10-01

    An emaciated, free-ranging, sub-adult, male beaver (Castor canadensis) was found dead and was necropsied. Microscopically, the beaver had acute necrotizing hepatitis and splenitis with florid lobulated colonies of extracellular coccobacilli. Intravascular septic emboli were identified in lung, small intestine, and kidney, and discrete ulcers with scattered superficial extracellular accumulation of coccobacilli were noted on tail margins and plantar surfaces of the hind feet. Yersinia pseudotuberculosis was cultured on Columbia blood and MacConkey agar and identified by API 20E. Based on the pathology and acute mortality described in this case, as well as historical reports of Y. pseudotuberculosis related mortality in other beavers, this species could serve as a public health sentinel for localized occurrences of this bacterium.

  14. Evaluation of the consequences of thermal isolation on biota of upper Steel Creek

    International Nuclear Information System (INIS)

    Gladden, J.B.

    1984-04-01

    The objective of this report is to summarize and evaluate existing data concerning the upper reaches of Steel Creek on the Savannah River Plant (SRP) near Aiken, South Carolina. This report addresses the current ecological status of this stream section and the need and/or desirability of maintaining an ambient water temperature zone of passage with lower Steel Creek or the nearby Meyers Branch, an undisturbed watershed that is a major tributary to Steel Creek. The specific case evaluated involves the construction of an 800 to 1000 acre cooling reservoir on Steel Creek upstream of the confluence of Steel Creek and Meyers Branch. Water temperatures exiting this reservoir are assumed to never exceed 90 0 F. Studies were conducted in connection with the proposed restart of the L-Reactor at SRP. 8 references, 3 figures, 2 tables

  15. A GIS-based disaggregate spatial watershed analysis using RADAR data

    International Nuclear Information System (INIS)

    Al-Hamdan, M.

    2002-01-01

    Hydrology is the study of water in all its forms, origins, and destinations on the earth.This paper develops a novel modeling technique using a geographic information system (GIS) to facilitate watershed hydrological routing using RADAR data. The RADAR rainfall data, segmented to 4 km by 4 km blocks, divides the watershed into several sub basins which are modeled independently. A case study for the GIS-based disaggregate spatial watershed analysis using RADAR data is provided for South Fork Cowikee Creek near Batesville, Alabama. All the data necessary to complete the analysis is maintained in the ArcView GIS software. This paper concludes that the GIS-Based disaggregate spatial watershed analysis using RADAR data is a viable method to calculate hydrological routing for large watersheds. (author)

  16. Ancient mitochondrial DNA and the genetic history of Eurasian beaver (Castor fiber) in Europe.

    Science.gov (United States)

    Horn, Susanne; Prost, Stefan; Stiller, Mathias; Makowiecki, Daniel; Kuznetsova, Tatiana; Benecke, Norbert; Pucher, Erich; Hufthammer, Anne K; Schouwenburg, Charles; Shapiro, Beth; Hofreiter, Michael

    2014-04-01

    After centuries of human hunting, the Eurasian beaver Castor fiber had disappeared from most of its original range by the end of the 19th century. The surviving relict populations are characterized by both low genetic diversity and strong phylogeographical structure. However, it remains unclear whether these attributes are the result of a human-induced, late Holocene bottleneck or already existed prior to this reduction in range. To investigate genetic diversity in Eurasian beaver populations during the Holocene, we obtained mitochondrial control region DNA sequences from 48 ancient beaver samples and added 152 modern sequences from GenBank. Phylogeographical analyses of the data indicate a differentiation of European beaver populations into three mitochondrial clades. The two main clades occur in western and eastern Europe, respectively, with an early Holocene contact zone in eastern Europe near a present-day contact zone. A divergent and previously unknown clade of beavers from the Danube Basin survived until at least 6000 years ago, but went extinct during the transition to modern times. Finally, we identify a recent decline in effective population size of Eurasian beavers, with a stronger bottleneck signal in the western than in the eastern clade. Our results suggest that the low genetic diversity and the strong phylogeographical structure in recent beavers are artefacts of human hunting-associated population reductions. While beaver populations have been growing rapidly since the late 19th century, genetic diversity within modern beaver populations remains considerably reduced compared to what was present prior to the period of human hunting and habitat reduction.

  17. The Beaver: A Marine Education Infusion Unit. Northern New England Marine Education Project.

    Science.gov (United States)

    Maine Univ., Orono. Coll. of Education.

    This interdisciplinary unit is intended for use with third grade classes. It examines the history and economics of man's relationships to the beaver. It investigates the natural history of the beaver, its anatomy, range, food sources, and the skills it employs to modify its environment by building dams. The structure of beaver dams is examined.…

  18. 77 FR 62147 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Pittsburgh-Beaver...

    Science.gov (United States)

    2012-10-12

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Pittsburgh-Beaver Valley Nonattainment Area... (EPA). ACTION: Final rule. SUMMARY: EPA is making two determinations regarding the Pittsburgh- Beaver... 12.7 Collocated Armstrong 42-005-0001 Kittaning......... 11.0 13.2 12.1 12.1 Incomplete \\2\\ Beaver 42...

  19. Spatial and temporal variation of stream chemistry associated with contrasting geology and land-use patterns in the Chesapeake Bay watershed—Summary of results from Smith Creek, Virginia; Upper Chester River, Maryland; Conewago Creek, Pennsylvania; and Difficult Run, Virginia, 2010–2013

    Science.gov (United States)

    Hyer, Kenneth E.; Denver, Judith M.; Langland, Michael J.; Webber, James S.; Böhlke, J.K.; Hively, W. Dean; Clune, John W.

    2016-11-17

    Despite widespread and ongoing implementation of conservation practices throughout the Chesapeake Bay watershed, water quality continues to be degraded by excess sediment and nutrient inputs. While the Chesapeake Bay Program has developed and maintains a large-scale and long-term monitoring network to detect improvements in water quality throughout the watershed, fewer resources have been allocated for monitoring smaller watersheds, even though water-quality improvements that may result from the implementation of conservation practices are likely to be first detected at smaller watershed scales.In 2010, the U.S. Geological Survey partnered with the U.S. Environmental Protection Agency and the U.S. Department of Agriculture to initiate water-quality monitoring in four selected small watersheds that were targeted for increased implementation of conservation practices. Smith Creek watershed is an agricultural watershed in the Shenandoah Valley of Virginia that is dominated by cattle and poultry production, and the Upper Chester River watershed is an agricultural watershed on the Eastern Shore of Maryland that is dominated by row-cropping activities. The Conewago Creek watershed is an agricultural watershed in southeastern Pennsylvania that is characterized by mixed agricultural activities. The fourth watershed, Difficult Run, is a suburban watershed in northern Virginia that is dominated by medium density residential development. The objective of this study was to investigate spatial and temporal variations in water chemistry and suspended sediment in these four relatively small watersheds that represent a range of land-use patterns and underlying geology to (1) characterize current water-quality conditions in these watersheds, and (2) identify the dominant sources, sinks, and transport processes in each watershed.The general study design involved two components. The first included intensive routine water-quality monitoring at an existing streamgage within each study

  20. Fire effects on the Point Reyes Mountain Beaver at Point Reyes National Seashore, California

    Science.gov (United States)

    Fellers, Gary M.; Pratt, David; Griffin, Jennifer L.

    2004-01-01

    In October 1995, a wildlands fire burned 5,000 ha on the Point Reyes peninsula, California, USA. In most of the nonforested areas, the fire effectively cleared the ground of litter and vegetation and revealed thousands of Point Reyes mountain beaver (Aplodontia rufa phaea) burrow openings. In the first 6 months after the fire, we surveyed burned coastal scrub and riparian habitat to (1) count the number of burrow openings that existed at the time of the fire, and (2) evaluate whether signs of post-fire mountain beaver activity were evident. We estimated that only 0.4–1.7% of mountain beavers within the burn area survived the fire and immediate post-fire period. We monitored mountain beaver activity for 5 years at 8 sites where mountain beavers survived, and found little or no recovery. We estimate that the mountain beaver population will take 15–20 years post-fire to recover.

  1. Sedimentology of a surficial uranium deposit on North Flodelle Creek, Stevens County, Washington

    International Nuclear Information System (INIS)

    Macke, D.L.; Johnson, S.Y.; Otton, J.K.

    1985-01-01

    Surficial accumulations of uranium (up to 0.2 wt. % U/sub 3/O/sub 8/, dry basis) are currently forming in organic-rich, poorly drained sediments deposited in fluvial-lacustrine environments. Known occurrences are in northeastern Washington, northern Idaho, the Sierra Nevada, the Colorado Front Range, New Hampshire, and several areas in Canada. The first accumulation of this type to be mined is in postglacial sediments of a 10-acre boggy meadow along North Flodelle Creek in Stevens County, Washington. The meadow is flanked by hills of fine- to medium-grained two-mica quartz monzonite that are mantled by glacial drift of late Wisconsin age (about 18,000 to 11,500 yr B.P.). Relatively thick, hummocky deposits of this same glacial drift impede drainage at the lower end of the meadow. Following ice retreat, glacial sediments on the meadow floor were reworked by fluvial processes, and patches of organic-rich sediment may have formed in ice-melt depressions. About 6700 yr B.P., a blanket of Mazama ash from the Crater Lake eruption was deposited in the meadow. Shortly thereafter, a beaver dam across the lower end of the meadow further restricted drainage, and peat and organic mud accumulated in the pond behind the dam. The dam is preserved in the stratigraphic record as a sheet-like body of woody peat (with beaver-gnawed sticks) about 100m wide and 60 cm thick. After the gradual influx of sand and coarse silt had filled the pond, and the beavers had abandoned the site, fluvial deposition was reestablished

  2. Dam busy: beavers and their influence on the structure and function of river systems

    Science.gov (United States)

    Larsen, J.; Larsen, A.; Lane, S. N.

    2017-12-01

    Beavers (Castor fiber, Castor canadensis) are the most influential mammalian ecosystem engineer, heavily modifying rivers and floodplains and influencing the hydrology, geomorphology, carbon and nutrient cycling, and ecology. They do this by constructing dams, digging canals and burrows, felling trees and introducing wood into streams, which in turn impounds water, raises shallow water tables, and alters the partitioning of the water balance, sediment transport and channel patters, biogeochemical cycling, and aquatic and terrestrial habitats. However, largely in the absence of predators, beaver numbers have been rapidly increasing throughout Europe since the 1980s, but also in parts of the US and South America, prompting a need to comprehensively review the current state of knowledge on how beavers influence the structure and function of river systems. Here, we synthesize the overall impacts on hydrology, geomorphology, biogeochemistry, and aquatic and terrestrial ecosystems. We then examine the key feedbacks and overlaps between these changes induced by beavers, finding that modifications to the longitudinal connectivity drive many key process feedbacks. However, the magnitude of these feedbacks is also heavily dependent on the landscape and climatic context, with the ability to promote lateral connectivity determining the extent of beaver impacts as stream order increases. Crucially, beavers shape a river corridor, introducing distinct processes and feedbacks that would have existed prior to the historical collapse of beaver populations. There is thus a need to adapt current river management and restoration practices such that they can accommodate and enhance the ecosystem engineering services provided by beavers. We summarize key knowledge gaps that remain in our understanding of beaver impacts, which help map an interdisciplinary future research agenda.

  3. The hydrological modeling in terms of determining the potential European beaver effect

    Science.gov (United States)

    Szostak, Marta; Jagodzińska, Jadwiga

    2017-06-01

    The objective of the paper was the hydrological analysis, in terms of categorizing main watercourses (based on coupled catchments) and marking areas covered by potential impact of the occurrence and activities of the European beaver Castor fiber. At the analysed area - the Forest District Głogów Małopolski there is a population of about 200 beavers in that Forest District. Damage inflicted by beavers was detected on 33.0 ha of the Forest District, while in the area of 13.9 ha the damage was small (below 10%). The monitoring of the beavers' behaviour and the analysis of their influence on hydrology of the area became an important element of using geoinformationtools in the management of forest areas. ArcHydro ArcGIS Esri module was applied, as an integrated set of tools for hydrographical analysis and modelling. Further steps of the procedure are hydrologic analyses such as: marking river networks on the DTM, filling holes, making maps of the flow direction, making the map of the accumulation flow, defining and segmentation of streams, marking elementary basins, marking coupled basins, making dams in the places, where beavers occur and localization of the area with a visible impact of damming. The result of the study includes maps prepared for the Forest District: the map of main rivers and their basins, categories of watercourses and compartments particularly threatened by beaver's foraging.

  4. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    water under wet conditions than under dry conditions. The apparent age of water from wells, springs, and other ground-water discharge points in the four targeted watersheds was modern to 60 years, which was similar to the apparent ages from the spring study. In the Pocomoke River Watershed in the Coastal Plain Uplands HGMR, the apparent age of ground-water samples ranged from 0 to 60 years; the ages in the vicinity of the streams ranged from 0 to 23 years.The apparent ages of ground water in the Polecat Creek Watershed in the Piedmont crystalline HGMR ranged from 2 to 30 years. The apparent ages of water from wells in the Muddy Creek Watershed in the Valley and Ridge carbonate HGMR ranged from 10 to 20 years (except for a single sample that was 45 years). The ages in the East Mahantango Creek Watershed in the Valley and Ridge siliciclastic HGMR ranged from 0 to 50 years. The distribution in apparent age of water from wells in the targeted watersheds, however, generally is older than that for water from the springs. The median age of water from wells in the Muddy Creek Watershed, for example, was 15 years, compared to 11 years for the water from the springs in that watershed, and less than 10 years for water from all springs in the spring study. The similarity in the ranges in apparent age of water from the wells and from the springs shows that the samples from the targeted watersheds and springs have bracketed the range of apparent ages that would be expected in the shallow ground-water-flow systems throughout the Chesapeake Bay Watershed.The apparent age of water from individual wells does not necessarily represent the entire distribution of ages of the discharging ground water, and it is this distribution of ages that affects the response of nutrient concentrations in stream base flow. Nutrient-reduction scenarios were modeled for two watersheds for which the distribution of apparent ground-water ages was available, the East Mahantango Creek Watershed in the Valley

  5. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  6. NITRATE REDUCTION PROGRAM AT THE LINE CREEK OPERATION

    OpenAIRE

    Jeff W Hawley

    2015-01-01

    Blasting activities at the Line Creek operation are releasing oxides of nitrogen and arecontributing to chemical changes in the surrounding watersheds. Through analysis of themechanisms of nitrogen release, history of explosive usage, historical nitrate release, changingregulatory requirements, strategy analysis and social impacts associated with the release ofnitrates a nitrate reduction plan will be established.The paper develops the framework for engineering groups, operations groups andma...

  7. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    Science.gov (United States)

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Methodology and application of combined watershed and ground-water models in Kansas

    Science.gov (United States)

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling

  9. Red fox, Vulpes vulpes, kills a European beaver, Castor fiber, kit

    OpenAIRE

    Kile, Nils B.; Nakken, Petter J.; Rosell, Frank; Espeland, Sigurd

    1996-01-01

    We observed an adult Red Fox (Vulpes vulpes) attack, kill and partially consume a 2-month-old female kit European Beaver (Castor fiber) near its lodge in Norway. The inner organs were consumed first. One adult beaver apparently attempted to frighten the fox away by tail-slapping.

  10. Habitat and conservation status of the beaver in the Sierra San Luis Sonora, Mexico

    Science.gov (United States)

    Karla Pelz Serrano; Eduardo Ponce Guevara; Carlos A. Lopez Gonzalez

    2005-01-01

    The status of beaver (Castor canadensis) in northeastern Sonora, Mexico, is uncertain. We surveyed the Cajon Bonito River to assess the beaver’s status and habitat and found five colonies. Limiting factors appear to be pollution due to animal waste, deforestation of riparian trees, and human exploitation. Beavers did not appear to require habitat...

  11. Scrub-shrub bird habitat associations at multiple spatial scales in beaver meadows in Massachusetts

    Science.gov (United States)

    Chandler, R.B.; King, D.I.; DeStefano, S.

    2009-01-01

    Most scrub-shrub bird species are declining in the northeastern United States, and these declines are largely attributed to regional declines in habitat availability. American Beaver (Castor canadensis; hereafter “beaver”) populations have been increasing in the Northeast in recent decades, and beavers create scrub-shrub habitat through their dam-building and foraging activities. Few systematic studies have been conducted on the value of beaver-modified habitats for scrub-shrub birds, and these data are important for understanding habitat selection of scrub-shrub birds as well as for assessing regional habitat availability for these species. We conducted surveys in 37 beaver meadows in a 2,800-km2 study area in western Massachusetts during 2005 and 2006 to determine the extent to which these beaver-modified habitats are used by scrub-shrub birds, as well as the characteristics of beaver meadows most closely related to bird use. We modeled bird abundance in relation to microhabitat-, patch-, and landscape-context variables while adjusting for survey-specific covariates affecting detectability using N-mixture models. We found that scrub-shrub birds of regional conservation concern occupied these sites and that birds responded differently to microhabitat, patch, and landscape characteristics of beaver meadows. Generally, scrub-shrub birds increased in abundance along a gradient of increasing vegetation complexity, and three species were positively related to patch size. We conclude that these habitats can potentially play an important role in regional conservation of scrub-shrub birds and recommend that conservation priority be given to larger beaver meadows with diverse vegetation structure and composition.

  12. Reconstruction of the MSRs in-situ at Beaver Valley

    International Nuclear Information System (INIS)

    Yarden, A.; Tam, C.W.; Deahna, S.T.; McFeaters, C.V.

    1992-01-01

    The Moisture Separator Reheaters (MSRs) have been problem components at Beaver Valley 1 pressurized water reactor since the plant started up 16 years ago, many of the problems encountered being widespread in the nuclear industry. In 1991, Duquesne Light rebuilt the Beaver Valley 1 MSRs and in 1992 did the same at unit 2. The reconstruction projects have proved cost effective with short payback times and significant improvements in station performance. (Author)

  13. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    Science.gov (United States)

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure

  14. Agreement Between Community College of Beaver County and Community College of Beaver County Society of the Faculty (PSEA/NEA). September 1, 1972 to August 31, 1974.

    Science.gov (United States)

    Beaver County Community Coll., Monaca, PA.

    This document contains the agreement between the Community College of Beaver County and the Community College of Beaver County Society of the Faculty for the period from September 1, 1972 through August 31, 1974. Contained in the articles of the agreement are sections covering academic freedom, grievance procedures, rights of faculty, use of…

  15. Fine sediment sources in coastal watersheds with uplifted marine terraces in northwest Humboldt County, California

    Science.gov (United States)

    Stephen Sungnome Madrone; Andrew P. Stubblefield

    2012-01-01

    Erosion in the Mill and Luffenholtz Creek watersheds in Humboldt County, California, with their extensive clay soils, can lead to high turbidity levels in receiving bodies of water, increasing the costs of treating water for domestic water supplies. Detailed road and erosion surveys and monitoring of suspended sediment, discharge, and turbidity levels in Mill Creek (3....

  16. 75 FR 61377 - Proposed Flood Elevation Determinations

    Science.gov (United States)

    2010-10-05

    ..., Environmental Consideration. An environmental impact assessment has not been prepared. Regulatory Flexibility..., OK 73075. Beaver County, Pennsylvania (All Jurisdictions) Beaver River Approximately 50 feet None... upstream of Angela Drive. North Fork Little Beaver Creek...... At the confluence with None +911 Township of...

  17. Radon-hazard potential the Beaver basin, Utah

    International Nuclear Information System (INIS)

    Bishop, C.E.

    1995-01-01

    Indoor-radon levels in the Beaver basin of southwestern Utah are the highest recorded to date in Utah, ranging from 17.5 to 495 picocuries per liter (pCi/L). Because the U.S. Environment Protection Agency considers indoor-radon levels above 4 pCi/L to represent a risk of lung cancer from long-term exposure, the Utah Geological Survey is preparing a radon-hazard-potential map for the area to help prioritize indoor testing and evaluate the need for radon-resistant construction. Radon is a chemically inert radioactive gas derived from the decay of uranium-238, which is commonly found in rocks and soils. Soil permeability, depth to ground water, and uranium/thorium content of source materials control the mobility and concentration of radon in the soil. Once formed, radon diffuses into the pore space of the soil and then to the atmosphere or into buildings by pressure-driven flow of air or additional diffusion. The Beaver basin has been a topographic and structural depression since late Miocene time. Paleocene to Miocene volcanic and igneous rocks border the basin. Uraniferous alluvial-fan, piedmont-slope, flood-plain, and lacustrine sediments derived from the surrounding volcanic rocks fill the basin. A soil-gas radon and ground radioactivity survey in the Beaver basin shows that soils have high levels of radon gas. In this survey, uranium concentrations range from 3 to 13 parts per million (ppm) and thorium concentrations range from 10 to 48 ppm. Radon concentrations in the soil gas ranged from 85 to 3,500 pCi/L. The highest concentrations of uranium, thorium, and radon gas and the highest radon-hazard-potential are in the well-drained permeable soils in the lower flood- plain deposits that underlie the city of Beaver

  18. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    Science.gov (United States)

    Madej, Mary Ann; Bundros, Greg; Klein, Randy

    2011-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal California. We compute land use statistics, analyze suspended sediment discharge rating curves, and compare sediment yields in Panther Creek to a control (unlogged) stream, Little Lost Man Creek. From 1978 to 2008, 8.2 km2 (over half the watershed) was clearcut and other timber management activities (thinning, selection cuts, and so forth) affected an additional 5.9 km2. Since 1984, 40.7 km of streams in harvest units received riparian buffer strip protection. Between 2000 and 2009, 22 km of roads were upgraded and 9.7 km were decommissioned, reducing potential sediment production by an estimated 40,000 m3. Road density is currently 3.1 km/km2. Sediment rating curves from 2005 to 2010 indicate a decrease in suspended sediment concentrations when compared to the pre-1996 period, although Panther Creek still has a higher sediment yield on a per unit area basis than the control stream.

  19. Meta-analysis of environmental effects of beaver in relation to artificial dams

    Science.gov (United States)

    Ecke, Frauke; Levanoni, Oded; Audet, Joachim; Carlson, Peter; Eklöf, Karin; Hartman, Göran; McKie, Brendan; Ledesma, José; Segersten, Joel; Truchy, Amélie; Futter, Martyn

    2017-11-01

    Globally, artificial river impoundment, nutrient enrichment and biodiversity loss impair freshwater ecosystem integrity. Concurrently, beavers, ecosystem engineers recognized for their ability to construct dams and create ponds, are colonizing sites across the Holarctic after widespread extirpation in the 19th century, including areas outside their historical range. This has the potential to profoundly alter hydrology, hydrochemistry and aquatic ecology in both newly colonized and recolonized areas. To further our knowledge of the effects of beaver dams on aquatic environments, we extracted 1366 effect sizes from 89 studies on the impoundment of streams and lakes. Effects were assessed for 16 factors related to hydrogeomorphology, biogeochemistry, ecosystem functioning and biodiversity. Beaver dams affected concentrations of organic carbon in water, mercury in water and biota, sediment conditions and hydrological properties. There were no overall adverse effects caused by beaver dams or ponds on salmonid fish. Age was an important determinant of effect magnitude. While young ponds were a source of phosphorus, there was a tendency for phosphorus retention in older systems. Young ponds were a source methylmercury in water, but old ponds were not. To provide additional context, we also evaluated similarities and differences between environmental effects of beaver-constructed and artificial dams (767 effect sizes from 75 studies). Both are comparable in terms of effects on, for example, biodiversity, but have contrasting effects on nutrient retention and mercury. These results are important for assessing the role of beavers in enhancing and/or degrading ecological integrity in changing Holarctic freshwater systems.

  20. Spatial and Temporal Variability of Channel Retention in a Lowland Temperate Forest Stream Settled by European Beaver (Castor fiber

    Directory of Open Access Journals (Sweden)

    Mateusz Grygoruk

    2014-09-01

    Full Text Available Beaver ponds remain a challenge for forest management in those countries where expansion of beaver (Castor fiber is observed. Despite undoubted economic losses generated in forests by beaver, their influence on hydrology of forest streams especially in terms of increasing channel retention (amount of water stored in the river channel, is considered a positive aspect of their activity. In our study, we compared water storage capacities of a lowland forest stream settled by beaver in order to unravel the possible temporal variability of beaver’s influence on channel retention. We compared distribution, total damming height, volumes and areas of beaver ponds in the valley of Krzemianka (Northeast Poland in the years 2006 (when a high construction activity of beaver was observed and in 2013 (when the activity of beaver decreased significantly. The study revealed a significant decrease of channel retention of beaver ponds from over 15,000 m3 in 2006 to 7000 m3 in 2013. The total damming height of the cascade of beaver ponds decreased from 6.6 to 5.6 m. Abandoned beaver ponds that transferred into wetlands, where lost channel retention was replaced by soil and groundwater retention, were more constant over time and less vulnerable to the external disturbance means of water storage than channel retention. We concluded that abandoned beaver ponds played an active role in increasing channel retention of the river analyzed for approximately 5 years. We also concluded that if the construction activity of beaver was used as a tool (ecosystem service in increasing channel retention of the river valley, the permanent presence of beaver in the riparian zone of forest streams should have been assured.

  1. The Use of Numerical Modeling to Address Surface and Subsurface Water Contamination due to Fracwater Spills in Larry's Creek, Pennsylvania

    Science.gov (United States)

    Simon, C. A.; Arjmand, S.; Abad, J. D.

    2012-12-01

    Because of its relatively low carbon dioxide emissions, natural gas is considered to be more efficient and environmentally friendly than other non-renewable fuels. As a result of this, among other factors, in recent years natural gas has become one of the world's primary energy sources. In the United States, drilling to extract natural gas has substantially increased over the past few years. In the Marcellus Shale, unconventional gas is currently extracted by using two new techniques: horizontal drilling and hydraulic fracturing. Today, fracking fluids which have been applied as part of the hydraulic fracturing process to fracture the shale rock and release the gas, pose a major environmental concern. These fluids are highly contaminated with radionuclides and toxic metals and any exposure of this highly polluted water to surface water or soil could heavily contaminate the media. The area selected for the current study is the Larry's Creek, located in Lycoming County in Pennsylvania. Larry's Creek Watershed was adversely affected by coal and iron mines activities in the 19th century. Though, the water quality in this creek was considered to be good as of 2006. Recently, oil and gas drilling activities have raised concerns about the creek's water quality again. A major environmental hazard is the freshwater contamination by frac/flowback water. Drilling companies are using impoundments on site to keep fracwater, and to store and evaporate flowback water. However, these ponds may fail or leak due to construction problems and/or accidents. Close to Saladasburg, Larry's Creek's stream was observed running rich with clay in October 19, 2011. Historical measurements show very high turbidity during this period which has raised questions about water contamination by the gas industry activities in the upper stream of the watershed. An interstate watershed agency has reported spills in Wolf Run in different drilling sites in the Larry's Creek basin. The focus of this study

  2. FECAL SOURCE TRACKING BY ANTIBIOTIC RESISTANCE ANALYSIS ON A RURAL WATERSHED

    Science.gov (United States)

    The Turkey Creek watershed located in northwestern Oklahoma, sustains approximately 40000 head of livestock. In addition, the stream receives partially-treated municipal waste from various towns. E. coli was enumerated quarterly and counts beyond EPA limit were found in spring an...

  3. Use of linear and areal habitat models to establish and distribute beaver Castor fiber harvest quotas in Norway

    Directory of Open Access Journals (Sweden)

    Howard Parker

    2013-12-01

    Full Text Available In Norway the Eurasian beaver Castor fiber harvest is quota-regulated. Once the annual quota for each municipality has been determined it is distributed to landowner-organized beaver management units. Municipal wildlife managers can choose between two distributional models: the traditional “areal model” whereby each management unit receives its portion of the municipal quota based on the relative area of beaver habitat within the township that it contains, or the more recently developed “linear model” based on the relative length of beaver-utilized shoreline it contains. The linear model was developed in an attempt to increase the precision of the quota distribution process and is based on the fact that beaver occupy landscapes in a linear fashion along strips of shoreline rather than exploiting extensive areas. The assumption was that the linear model would provide a more precise and just method of distributing the municipal quota among landowners. Here we test the hypothesis that the length of beaverutilized shoreline is a better predictor of beaver colony density than the area of beaver habitat on 13 beaver management units of typical size (794 – 2200 hectares in Bø Township, Norway, during 2 years. As hypothesized, the number of beaver occupied sites on management units correlated significantly (p≤ 0.001 with the length of beaver-utilized shoreline, but not with the area of beaver habitat. Therefore municipalities should employ the linear model when a precise distribution of quotas is necessary. The density of Eurasian beaver colonies at the landscape scale (>100 km2 in south-central Scandinavia averages approximately 1 occupied site per 4 km2. This figure can be employed by municipal wildlife managers to estimate the colony density in their townships, and to calculate municipal quotas, when more precise census information is lacking.

  4. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  5. Simulation modeling to understand how selective foraging by beaver can drive the structure and function of a willow community

    Science.gov (United States)

    Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.

    2009-01-01

    Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.

  6. Sediment sources in an urbanizing, mixed land-use watershed

    Science.gov (United States)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  7. Trends in Rocky Mountain amphibians and the role of beaver as a keystone species

    Science.gov (United States)

    Hossack, Blake R.; Gould, William R.; Patla, Debra A.; Muths, Erin L.; Daley, Rob; Legg, Kristin; Corn, P. Stephen

    2015-01-01

    Despite prevalent awareness of global amphibian declines, there is still little information on trends for many widespread species. To inform land managers of trends on protected landscapes and identify potential conservation strategies, we collected occurrence data for five wetland-breeding amphibian species in four national parks in the U.S. Rocky Mountains during 2002–2011. We used explicit dynamics models to estimate variation in annual occupancy, extinction, and colonization of wetlands according to summer drought and several biophysical characteristics (e.g., wetland size, elevation), including the influence of North American beaver (Castor canadensis). We found more declines in occupancy than increases, especially in Yellowstone and Grand Teton national parks (NP), where three of four species declined since 2002. However, most species in Rocky Mountain NP were too rare to include in our analysis, which likely reflects significant historical declines. Although beaver were uncommon, their creation or modification of wetlands was associated with higher colonization rates for 4 of 5 amphibian species, producing a 34% increase in occupancy in beaver-influenced wetlands compared to wetlands without beaver influence. Also, colonization rates and occupancy of boreal toads (Anaxyrus boreas) and Columbia spotted frogs (Rana luteiventris) were ⩾2 times higher in beaver-influenced wetlands. These strong relationships suggest management for beaver that fosters amphibian recovery could counter declines in some areas. Our data reinforce reports of widespread declines of formerly and currently common species, even in areas assumed to be protected from most forms of human disturbance, and demonstrate the close ecological association between beaver and wetland-dependent species.

  8. 76 FR 51469 - CSX Transportation, Inc.-Abandonment Exemption-in Beaver County, PA

    Science.gov (United States)

    2011-08-18

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 55 (Sub-No. 708X)] CSX Transportation, Inc.--Abandonment Exemption--in Beaver County, PA CSX Transportation, Inc. (CSXT) has filed a... milepost PLK 2.39, in Koppel, Beaver County, Pa. The line traverses United States Postal Service Zip Code...

  9. Impacts of beaver ponds on dissolved organic matter cycling in small temperate streams.

    Science.gov (United States)

    Larsen, J.; Lambert, T.; Larsen, A.; Lane, S.

    2017-12-01

    Beavers are engineers that modify the structure of river reaches and their hydrological functioning. By building dams, they modify the travel time of running waters and can lead to the flooding of surrounding soils and terrestrial vegetation, with potentially significant impact on biogeochemical cycles. Contradictory effects of beaver ponds on dissolved organic matter (DOM) concentration and composition have however been reported, and the underlying reasons are still unclear. In this study, we aimed to investigate the role of the landscape morphology as an important driver determining how a beaver population can affect stream DOM cycling. Four streams localized in Switzerland and Germany were visited during different seasons (spring, summer, winter) and monitored at upstream and downstream locations of beaver ponds across a hydrological cycle. The sites differed in terms of river channel morphology, presence or absence of floodplain, and vegetation cover. DOM composition was investigated through absorbance and fluorescence measurements coupled with parallel factor analysis (PARAFAC) along with stream water quality (nutrients, pH, dissolved oxygen and water temperature). The results show that the effects of beaver dams were variable, and emphasizes the importance of the geomorphological context.

  10. Predicting the spatial distribution of Lonicera japonica, based on species occurrence data from two watersheds in Western Kentucky and Tennessee

    Science.gov (United States)

    Dongjiao Liu; Hao Jiang; Robin Zhang; Kate S. He

    2011-01-01

    The spatial distribution of most invasive plants is poorly documented and studied. This project examined and compared the spatial distribution of a successful invasive plant, Japanese honeysuckle (Lonicera japonica), in two similar-sized but ecologically distinct watersheds in western Kentucky (Ledbetter Creek) and western Tennessee (Panther Creek)....

  11. Annual evapotranspiration of a forested wetland watershed, SC

    Science.gov (United States)

    Devendra M. Amatya; Carl Trettin

    2007-01-01

    In this study, hydro-meteorological data collected from 1 964 to 1 9 76 on an approximately 5, 000 ha predominantly forested coastal watershed (Turkey Creek) at the Francis Marion National Forest near Charleston, SC were analyzed to estimate annual evapotranspiration (E T) using four different empirical methods. The first one, reported by Zhang et a/. (2001), that...

  12. Fallot's tetralogy in a European beaver (Castor fiber).

    Science.gov (United States)

    Wenger, Sandra; Gull, Jessica; Glaus, Tony; Blumer, Serafin; Wimmershoff, Julia; Kranjc, Asja; Steinmetz, Hanspeter; Hatt, Jean-Michel

    2010-06-01

    A 20-mo-old, female, 9-kg European beaver (Castor fiber) presented with apathy, reduced appetite of 3-day duration and a grade 5/6 systolic heart murmur. Thoracic radiographs revealed a diffuse broncho-interstitial pattern suspicious for bronchopneumonia. The echocardiographic findings of a hypertrophied right ventricle, ventricular septal defect with overriding aorta, and infundibular pulmonic stenosis were consistent with Fallot's tetralogy. Even though the bronchopneumonia rather than the congenital cardiac defect was considered of primary importance for the presenting clinical signs, the latter was relevant for the decision not to continue any medical treatment. Both disease processes were confirmed on necropsy. Fallot's tetralogy, European beaver, Castor fiber, heart murmur, ultrasound.

  13. The seasonal fluctuations and accumulation of iodine-129 in relation to the hydrogeochemistry of the Wolf Creek Research Basin, a discontinuous permafrost watershed

    Energy Technology Data Exchange (ETDEWEB)

    Herod, Matthew N., E-mail: mattherod@gmail.com [André Lalonde AMS Lab, Department of Earth and Environmental Science, University of Ottawa, 25 Templeton St., Ottawa, ON K1N 6N5 (Canada); Li, Tianjiao [André Lalonde AMS Lab, Department of Earth and Environmental Science, University of Ottawa, 25 Templeton St., Ottawa, ON K1N 6N5 (Canada); Pellerin, André [Center for Geomicrobiology, Department of Bioscience, Aarhus University, Ny Munkegade 116, 8000 Aarhus C (Denmark); Kieser, William E.; Clark, Ian D. [André Lalonde AMS Lab, Department of Earth and Environmental Science, University of Ottawa, 25 Templeton St., Ottawa, ON K1N 6N5 (Canada)

    2016-11-01

    The long lived radioisotope {sup 129}I is a uranium fission product, and an environmental contaminant of the nuclear age. Consequently, it can trace anthropogenic releases of {sup 129}I in watersheds, and has been identified as a potential means to distinguish water sources in discharge (Nimz, 1998). The purpose of this work was to identify the sources and mass input of {sup 129}I and trace the transport, partitioning and mass balance of {sup 129}I over time in a remote watershed. We monitored {sup 129}I and other geochemical and isotope tracers (e.g. δ{sup 14}C{sub DIC}, δ{sup 13}C{sub DIC}, δ{sup 2}H, δ{sup 18}O, etc.) in precipitation and discharge from the Wolf Creek Research Basin (WCRB), a discontinuous permafrost watershed in the Yukon Territory, Canada, and evaluated the use of {sup 129}I as a water end-member tracer. Radiocarbon and geochemical tracers of weathering show that discharge is comprised of (i) groundwater baseflow that has recharged under open system conditions, (ii) spring freshet meltwater that has derived solutes through closed-system interaction with saturated soils, and (iii) active layer drainage. The abundance of {sup 129}I and the {sup 129}I/{sup 127}I ratio correlated with geochemical tracers suggests varying contributions of these three water end-members to discharge. The {sup 129}I concentration was highest at the onset of freshet, reaching 17.4 × 10{sup 6} atoms/L, and likely reflects the lack of interaction between meltwater and organic matter at that time. This peak in {sup 129}I was followed by a decline over the summer to its lowest value. Mass balance calculations of the {sup 129}I budget show that the input to the watershed via precipitation is nearly one order of magnitude higher than the output suggesting that such arctic watersheds accumulate nearly 90% of the annual input, primarily in soil organic matter. Temporal variations in discharge {sup 129}I concentrations correlated with changes in discharge water sources

  14. Ten years of real-time streamflow gaging of turkey creek - where we have been and where we are going

    Science.gov (United States)

    Paul Conrads; Devendra Amatya

    2016-01-01

    The Turkey Creek watershed is a third-order coastal plain stream system draining an area of approximately 5,240 hectares of the Francis Marion National Forest and located about 37 miles northwest of Charleston near Huger, South Carolina. The U.S. Department of Agriculture (USDA) Forest Service maintained a streamflow gaging station on Turkey Creek from 1964 to 1981....

  15. Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile.

    Science.gov (United States)

    Anderson, Christopher B; Rosemond, Amy D

    2007-11-01

    Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of

  16. Hydrology, phosphorus, and suspended solids in five agricultural streams in the Lower Fox River and Green Bay Watersheds, Wisconsin, Water Years 2004-06

    Science.gov (United States)

    Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.

    2011-01-01

    A 3-year study was conducted by the U.S. Geological Survey and the University of Wisconsin-Green Bay to characterize water quality in agricultural streams in the Fox/Wolf watershed in northeastern Wisconsin and provide information to assist in the calibration of a watershed model for the area. Streamflow, phosphorus, and suspended solids data were collected between October 1, 2003, and September 30, 2006, in five streams, including Apple Creek, Ashwaubenon Creek, Baird Creek, Duck Creek, and the East River. During this study, total annual precipitation was close to the 30-year normal of 29.12 inches. The 3-year mean streamflow was highest in the East River (113 ft3/s), followed by Duck Creek (58.2 ft3/s), Apple Creek (26.9 ft3/s), Baird Creek (12.8 ft3/s), and Ashwaubenon Creek (9.1 ft3/s). On a yield basis, during these three years, the East River had the highest flow (0.78 ft3/s/mi2), followed by Baird Creek (0.61 ft3/s/mi2), Apple Creek (0.59 ft3/s/mi2), Duck Creek (0.54 ft3/s/mi2), and Ashwaubenon Creek (0.46 ft3/s/mi2). The overall median total suspended solids (TSS) concentration was highest in Baird Creek (73.5 mg/L), followed by Apple and Ashwaubenon Creeks (65 mg/L), East River (40 mg/L), and Duck Creek (30 mg/L). The median total phosphorus (TP) concentration was highest in Ashwaubenon Creek (0.60 mg/L), followed by Baird Creek (0.47 mg/L), Apple Creek (0.37 mg/L), East River (0.26 mg/L), and Duck Creek (0.22 mg/L).

  17. Impact of beaver ponds on river discharge and sediment deposition along the Chevral River, Ardennes, Belgium

    Science.gov (United States)

    Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo

    2013-04-01

    With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.

  18. The impact of small irrigation diversion dams on the recent migration rates of steelhead and redband trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Weigel, Dana E.; Connolly, Patrick J.; Powell, Madison S.

    2013-01-01

    Barriers to migration are numerous in stream environments and can occur from anthropogenic activities (such as dams and culverts) or natural processes (such as log jams or dams constructed by beaver (Castor canadensis)). Identification of barriers can be difficult when obstructions are temporary or incomplete providing passage periodically. We examine the effect of several small irrigation diversion dams on the recent migration rates of steelhead (Oncorhynchus mykiss) in three tributaries to the Methow River, Washington. The three basins had different recent migration patterns: Beaver Creek did not have any recent migration between sites, Libby Creek had two-way migration between sites and Gold Creek had downstream migration between sites. Sites with migration were significantly different from sites without migration in distance, number of obstructions, obstruction height to depth ratio and maximum stream gradient. When comparing the sites without migration in Beaver Creek to the sites with migration in Libby and Gold creeks, the number of obstructions was the only significant variable. Multinomial logistic regression identified obstruction height to depth ratio and maximum stream gradient as the best fitting model to predict the level of migration among sites. Small irrigation diversion dams were limiting population interactions in Beaver Creek and collectively blocking steelhead migration into the stream. Variables related to stream resistance (gradient, obstruction number and obstruction height to depth ratio) were better predictors of recent migration rates than distance, and can provide important insight into migration and population demographic processes in lotic species.

  19. Electrofishing method improves evaluation of amphibian larvae abundance: a case of "beaver rivers".

    Science.gov (United States)

    Dgebuadze, Yury Y; Bashinskiy, Ivan V

    2017-07-01

    There are many locations in Russia where Eurasian beaver (Castor fiber) populations have been restored. As a keystone species, beavers provide wide-ranging direct and indirect impacts on aquatic ecosystems. In particular, beaver-created ponds are sites for spawning and nursery places for tadpoles of the brown frogs (genus Rana). Because of such impacts, study techniques for assessing aquatic organism abundance are being developed. We compared two methods for estimating tadpole abundance: traditional catches by dipnet and electrofishing. Our results show that the dipnet catch data for the shallower ponds with larger water surface area were five times lower than that obtained by electrofishing. Therefore, we conclude that dipnet catches are not suitable for comparing the relative abundance of tadpoles in the two beaver ponds that were studied. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  20. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  1. Channel incision and suspended sediment delivery at Caspar Creek, Mendocino County, California

    Science.gov (United States)

    Nicholas J. Dewey; Thomas E. Lisle; Leslie M. Reid

    2003-01-01

    Tributary and headwater valleys in the Caspar Creek watershed,in coastal Mendocino County, California,show signs of incision along much of their lengths.An episode of incision followed initial-entry logging which took place between 1860 and 1906. Another episode of incision cut into skid-trails created for second-entry logging in the 1970's.

  2. McKenzie River Focus Watershed Coordination: Year-End Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thrailkil, Jim

    2000-01-01

    This report summarizes accomplishments of the McKenzie River Focus Watershed Council (MWC) in the areas of coordination and administration during Fiscal Year 2000. Coordination and administration consist of prioritization and planning for projects; project management and implementation; procurement of funding for long-term support of the Council; and watershed education/outreach program for residents and local schools. Key accomplishments in the area of project planning include coordinating: monthly Council and executive committee meetings; staffing the Upper Willamette Spring Chinook Working Group; staffing the water quality technical committee; and guiding education and stewardship projects. Key accomplishments in the area of project management include the completion of the McKenzie-Willamette Confluence Assessment; securing funds for project planning in the confluence area; near completion of the BPA funded McKenzie sub-basin assessment; development of a framework for a McKenzie Watershed Conservation Strategy; an evaluation of Council's monitoring programs - ambient water quality, storm-event water quality, Tier III water quality, and macroinvertebrate monitoring. The Council, in cooperation with the McKenzie River Cooperative, completed habitat enhancements in the Gate Creek and Deer Creek sub-watersheds. This partnership recently submitted Bring Back the Natives grant for initiation of projects in other McKenzie tributaries. The Council will also be working with a local business to develop a river-side riparian enhancement and native landscaping project on the lodge grounds. This will serve as a demonstration project for blending fish and wildlife habitat concerns with maintaining grounds for business opportunities. Accomplishments in the area of procurement of funding included developing the FY2000 Scope of Work and budget for approval by the Council and BPA; providing quarterly budget and work program progress reports to the Council; and securing

  3. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed

    Directory of Open Access Journals (Sweden)

    Ratajczak Mehdy

    2010-08-01

    Full Text Available Abstract Background Escherichia coli is a commensal bacterium of the gastro-intestinal tract of human and vertebrate animals, although the aquatic environment could be a secondary habitat. The aim of this study was to investigate the effect of hydrological conditions on the structure of the E. coli population in the water of a creek on a small rural watershed in France composed of pasture and with human occupation. Results It became apparent, after studying the distribution in the four main E. coli phylo-groups (A, B1, B2, D, the presence of the hly (hemolysin gene and the antibiotic resistance pattern, that the E. coli population structure was modified not only by the hydrological conditions (dry versus wet periods, rainfall events, but also by how the watershed was used (presence or absence of cattle. Isolates of the B1 phylo-group devoid of hly and sensitive to antibiotics were particularly abundant during the dry period. During the wet period and the rainfall events, contamination from human sources was predominantly characterized by strains of the A phylo-group, whereas contamination by cattle mainly involved B1 phylo-group strains resistant to antibiotics and exhibiting hly. As E. coli B1 was the main phylo-group isolated in water, the diversity of 112 E. coli B1 isolates was further investigated by studying uidA alleles (beta-D-glucuronidase, the presence of hly, the O-type, and antibiotic resistance. Among the forty epidemiolgical types (ETs identified, five E. coli B1 ETs were more abundant in slightly contaminated water. Conclusions The structure of an E. coli population in water is not stable, but depends on the hydrological conditions and on current use of the land on the watershed. In our study it was the ratio of A to B1 phylo-groups that changed. However, a set of B1 phylo-group isolates seems to be persistent in water, strengthening the hypothesis that they may correspond to specifically adapted strains.

  4. Optimal implementation of green infrastructure practices to minimize influences of land use change and climate change on hydrology and water quality: Case study in Spy Run Creek watershed, Indiana.

    Science.gov (United States)

    Liu, Yaoze; Engel, Bernard A; Collingsworth, Paris D; Pijanowski, Bryan C

    2017-12-01

    Nutrient loading from the Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. The nutrient loading from urban areas needs to be reduced with the installation of green infrastructure (GI) practices. The Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model was used to explore the influences of land use (LU) and climate change on water quantity and quality in Spy Run Creek watershed (SRCW) (part of Maumee River watershed), decide whether and where excess phosphorus loading existed, identify critical areas to understand where the greatest amount of runoff/pollutants originated, and optimally implement GI practices to obtain maximum environmental benefits with the lowest costs. Both LU/climate changes increased runoff/pollutants generated from the watershed. Areas with the highest runoff/pollutant amount per area, or critical areas, differed for various environmental concerns, land uses (LUs), and climates. Compared to optimization considering all areas, optimization conducted only in critical areas can provide similar cost-effective results with decreased computational time for low levels of runoff/pollutant reductions, but critical area optimization results were not as cost-effective for higher levels of runoff/pollutant reductions. Runoff/pollutants for 2011/2050 LUs/climates could be reduced to amounts of 2001 LU/climate by installation of GI practices with annual expenditures of $0.34 to $2.05 million. The optimization scenarios that were able to obtain the 2001 runoff level in 2011/2050, can also reduce all pollutants to 2001 levels in this watershed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification of Watershed-scale Critical Source Areas Using Bayesian Maximum Entropy Spatiotemporal Analysis

    Science.gov (United States)

    Roostaee, M.; Deng, Z.

    2017-12-01

    The states' environmental agencies are required by The Clean Water Act to assess all waterbodies and evaluate potential sources of impairments. Spatial and temporal distributions of water quality parameters are critical in identifying Critical Source Areas (CSAs). However, due to limitations in monetary resources and a large number of waterbodies, available monitoring stations are typically sparse with intermittent periods of data collection. Hence, scarcity of water quality data is a major obstacle in addressing sources of pollution through management strategies. In this study spatiotemporal Bayesian Maximum Entropy method (BME) is employed to model the inherent temporal and spatial variability of measured water quality indicators such as Dissolved Oxygen (DO) concentration for Turkey Creek Watershed. Turkey Creek is located in northern Louisiana and has been listed in 303(d) list for DO impairment since 2014 in Louisiana Water Quality Inventory Reports due to agricultural practices. BME method is proved to provide more accurate estimates than the methods of purely spatial analysis by incorporating space/time distribution and uncertainty in available measured soft and hard data. This model would be used to estimate DO concentration at unmonitored locations and times and subsequently identifying CSAs. The USDA's crop-specific land cover data layers of the watershed were then used to determine those practices/changes that led to low DO concentration in identified CSAs. Primary results revealed that cultivation of corn and soybean as well as urban runoff are main contributing sources in low dissolved oxygen in Turkey Creek Watershed.

  6. CARBON TRACE GASES IN LAKE AND BEAVER POND ICE NEAR THOMPSON, MANITOBA, CANADA

    Science.gov (United States)

    Concentrations of CO2, CO, and CH4 were measured in beaver pond and lake ice in April 1996 near Thompson, Manitoba to derive information on possible impacts of ice melting on corresponding atmospheric trace gas concentrations. CH4 concentrations in beaver pond and lake ice ranged...

  7. Development and viability of a translocated beaver Castor fiber population in the Netherlands

    NARCIS (Netherlands)

    Nolet, B.A.; Baveco, J.M.

    1996-01-01

    We monitored survival, reproduction and emigration of a translocated beaver Castor fiber population in the Netherlands for five years and used a stochastic model to assess its viability. Between 1988 and 1991, 42 beavers were released in the Biesbosch National Park. The mortality was initially high

  8. Predicting runoff induced mass loads in urban watersheds: Linking land use and pyrethroid contamination.

    Science.gov (United States)

    Chinen, Kazue; Lau, Sim-Lin; Nonezyan, Michael; McElroy, Elizabeth; Wolfe, Becky; Suffet, Irwin H; Stenstrom, Michael K

    2016-10-01

    Pyrethroid pesticide mass loadings in the Ballona Creek Watershed were calculated using the volume-concentration method with a Geographic Information Systems (GIS) to explore potential relationships between urban land use, impervious surfaces, and pyrethroid runoff flowing into an urban stream. A calibration of the GIS volume-concentration model was performed using 2013 and 2014 wet-weather sampling data. Permethrin and lambda-cyhalothrin were detected as the highest concentrations; deltamethrin, lambda-cyhalothrin, permethrin and cyfluthrin were the most frequently detected synthetic pyrethroids. Eight neighborhoods within the watershed were highlighted as target areas based on a Weighted Overlay Analysis (WOA) in GIS. Water phase concentration of synthetic pyrethroids (SPs) were calculated from the reported usage. The need for stricter BMP and consumer product controls was identified as a possible way of reducing the detections of pyrethroids in Ballona Creek. This model has significant implications for determining mass loadings due to land use influence, and offers a flexible method to extrapolate data for a limited amount of samplings for a larger watershed, particularly for chemicals that are not subject to environmental monitoring. Offered as a simple approach to watershed management, the GIS-volume concentration model has the potential to be applied to other target pesticides and is useful for simulating different watershed scenarios. Further research is needed to compare results against other similar urban watersheds situated in mediterranean climates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-06-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  10. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Effors; US Geological Survey Reports, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Munz, Carrie S. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-02-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the third year of at least a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  11. Water quality of the Canchim?s creek watershed in São Carlos, SP, Brazil, occupied by beef and dairy cattle activities

    Directory of Open Access Journals (Sweden)

    Primavesi Odo

    2002-01-01

    Full Text Available The Canchim?s creek watershed in São Carlos, SP, Brazil, was chosen to evaluate water quality affected by dairy and beef cattle production systems based on tropical pasture. The water samples were collected monthly, during three years, at six sampling points: spring in a tropical forest, spring in an intensive dairy production system, two dam springs, and stream water upward and at the delta. Results showed differences (P<0.01 among sampling points for the mean parameters. True color, hardness, turbidity, electric conductivity, alkalinity, pH, chemical oxygen demand and consumed oxygen explained well differences among sampling points. According to current legislation standards, water quality fitted with most of the established parameters for class 2, with exception of phosphate and iron. The high levels of total phosphorus, except in the forest spring, classified this water in an eutrophic class, even where soil and water conservation practices were considered adequate.

  12. Survey of beaver-related restoration practices in rangeland streams of the western USA

    Science.gov (United States)

    David S. Pilliod; Ashley T. Rohde; Susan Charnley; Rachael R. Davee; Jason B. Dunham; Hannah Gosnell; Gordon E. Grant; Mark B. Hausner; Justin L. Huntington; Caroline Nash

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the...

  13. Resurgent beaver ponds in the northeastern United States: implications for greenhouse gas emissions.

    Science.gov (United States)

    Lazar, Julia G; Addy, Kelly; Welsh, Molly K; Gold, Arthur J; Groffman, Peter M

    2014-11-01

    Beaver ponds, a wetland type of increasing density in the northeastern United States, vary spatially and temporally, creating high uncertainty in their impact to greenhouse gas (GHG) emissions. We used floating static gas chambers to assess diffusive fluxes of methane (CH), carbon dioxide (CO), and nitrous oxide (NO) from the air-water interface of three beaver ponds (0.05-8 ha) in Rhode Island from fall 2012 to summer 2013. Gas flux was based on linear changes of gas concentrations in chambers over 1 h. Our results show that these beaver ponds generated considerable CH and CO emissions. Methane flux (18-556 mg m d) showed no significant seasonal differences, but the shallowest pond generated significantly higher CH flux than the other ponds. Carbon dioxide flux (0.5-22.0 g m d) was not significantly different between sites, but it was significantly higher in the fall, possibly due to the degradation of fresh leaves. Nitrous oxide flux was low (0-2.4 mg m d). Overall, CH and CO comprised most of the global warming potential, 61 and 38%, respectively. The shallowness of the beaver ponds may have limited the time needed for CH oxidation to CO before CH escaped to the atmosphere. Beaver dams also increase the aerial extent of hydric soils, which may transform riparian areas from upland GHG sinks to wetland GHG sources thereby changing the net global warming potential. Further studies tracking the pattern and conditions of beaver pond creation and abandonment will be essential to understanding their role as GHG sources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Pesticides in groundwater in the Anacostia River and Rock Creek watersheds in Washington, D.C., 2005 and 2008

    Science.gov (United States)

    Koterba, Michael T.; Dieter, Cheryl A.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the District Department of the Environment, conducted a groundwater-quality investigation to (a) determine the presence, concentrations, and distribution of selected pesticides in groundwater, and (b) assess the presence of pesticides in groundwater in relation to selected landscape, hydrogeologic, and groundwater-quality characteristics in the shallow groundwater underlying the Anacostia River and Rock Creek watersheds in Washington, D.C. With one exception, well depths were 100 feet or less below land surface. The USGS obtained or compiled ancillary data and information on land use (2001), subsurface sediments, and groundwater samples from 17 wells in the lower Anacostia River watershed from September through December 2005, and from 14 wells in the lower Anacostia River and lower Rock Creek watersheds from August through September 2008. Twenty-seven pesticide compounds, reflecting at least 19 different types of pesticides, were detected in the groundwater samples obtained in 2005 and 2008. No fungicides were detected. In relation to the pesticides detected, degradate compounds were as or more likely to be detected than applied (parent) compounds. The detected pesticides chiefly reflected herbicides commonly used in urban settings for non-specific weed control or insecticides used for nonspecific haustellate insects (insects with specialized mouthparts for sucking liquid) or termite-specific control. Detected pesticides included a combination of pesticides currently (2008) in use, banned or under highly restricted use, and some that had replaced the banned or restricted-use pesticides. The presence of banned and restricted-use pesticides illustrates their continued persistence and resistance to complete degradation in the environment. The presence of the replacement pesticides indicates the susceptibility of the surficial aquifer to contamination irrespective of the changes in the pesticides used. A

  15. The hydrological modeling in terms of determining the potential European beaver effect

    Directory of Open Access Journals (Sweden)

    Szostak Marta

    2017-06-01

    Full Text Available The objective of the paper was the hydrological analysis, in terms of categorizing main watercourses (based on coupled catchments and marking areas covered by potential impact of the occurrence and activities of the European beaver Castor fiber. At the analysed area – the Forest District Głogów Małopolski there is a population of about 200 beavers in that Forest District. Damage inflicted by beavers was detected on 33.0 ha of the Forest District, while in the area of 13.9 ha the damage was small (below 10%. The monitoring of the beavers’ behaviour and the analysis of their influence on hydrology of the area became an important element of using geoinformationtools in the management of forest areas.

  16. Increasing a Community's Knowledge about Drought, Watershed Ecosystems, and Water Quality Through Educational Activities Added to Coastal Cleanup Day Events

    Science.gov (United States)

    Brinker, R.; Allen, L.; Cole, P.; Rho, C.

    2016-12-01

    International Coastal Cleanup Day, held each September, is an effective campaign to bring volunteers together to clean trash from beaches and waterways and document results. Over 500,000 participants cleared over 9 million pounds of trash in 2015. To build on the enthusiasm for this event, the city of Livermore, California's Water Resource Department, the Livermore Valley Joint Unified School District, Livermore Area Recreation and Parks Department created a water education program to embed within the city's Coastal Cleanup Day events. Goals of the education program are to increase awareness of the local watershed and its geographic reach, impacts of climate change and drought on local water supplies, pollution sources and impacts of local pollution on the ocean, positive impacts of a recent plastic bag ban, water quality assessment, and action steps citizens can take to support a healthy watershed. Volunteers collect and test water samples (when water is in the creek) using modified GLOBE and World Water Monitoring Day protocols. Test results are uploaded to the World Water Monitoring Day site and documented on the program web site. Volunteers report that they did not know about watersheds, impacts of local pollution, and water quality components before the education program. Volunteers are encouraged to adopt a creek spot for one year, and continue to collect and document trash. High school and middle school science classes added the water quality testing into curriculum, and regularly visit creek sites to clean the spots and monitor habitats. Each year for the past five years, about 300 volunteers have worked on creek clean-up events, 20 have adopted creek sites, and collected over 4,000 gallons of trash annually. As a result of these efforts, sites have been downgraded from a trash hot spot of concern. Strategies will be shared to expand an established (or start a new) Coastal Cleanup Day event into a successful watershed and climate awareness citizen science

  17. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    Science.gov (United States)

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total

  18. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    Science.gov (United States)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  19. SELECTIVE FORAGING ON WOODY SPECIES BY THE BEAVER CASTOR FIBER, AND ITS IMPACT ON A RIPARIAN WILLOW FOREST

    NARCIS (Netherlands)

    NOLET, BA; HOEKSTRA, A; OTTENHEIM, MM

    1994-01-01

    Beavers were re-introduced in the Biesbosch, The Netherlands, a wood dominated by willows Salix spp. Conservationists expected that herbivory by beavers would enhance succession to a mixed broad-leaved forest. Willows formed the staple food of the beavers, but they removed only 1.4% of the standing

  20. Wetland influence on mercury fate and transport in a temperate forested watershed

    International Nuclear Information System (INIS)

    Selvendiran, Pranesh; Driscoll, Charles T.; Bushey, Joseph T.; Montesdeoca, Mario R.

    2008-01-01

    The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27 ng/L) than values during the non-growing season (0.10 ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092 μg/m 2 -year respectively. - Wetlands are sources of THg and MeHg; the production of MeHg is seasonally dependent and driven by sulfate reduction in wetlands

  1. Wetland influence on mercury fate and transport in a temperate forested watershed

    Energy Technology Data Exchange (ETDEWEB)

    Selvendiran, Pranesh [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: pselvend@syr.edu; Driscoll, Charles T. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: ctdrisco@syr.edu; Bushey, Joseph T. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: jtbushey@syr.edu; Montesdeoca, Mario R. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: mmontesd@syr.edu

    2008-07-15

    The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27 ng/L) than values during the non-growing season (0.10 ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092 {mu}g/m{sup 2}-year respectively. - Wetlands are sources of THg and MeHg; the production of MeHg is seasonally dependent and driven by sulfate reduction in wetlands.

  2. Variations in tropical cyclone-related discharge in four watersheds near Houston, Texas

    Directory of Open Access Journals (Sweden)

    Laiyin Zhu

    2015-01-01

    Full Text Available We examined a 60-year record of daily precipitation and river discharge related to tropical cyclones (TCs in four watersheds undergoing land use and land cover change near Houston, Texas. Results show that TCs are responsible for ∼20% of the annual maximum discharge events in the four selected watersheds. Although there are no trends in TC precipitation, increasing trends were observed in daily extreme discharge and TC-related discharge. The more developed watersheds (Whiteoak Bayou and Brays Bayou, tend to have higher extreme discharge and steeper trends in extreme discharge than the less developed watersheds (Cypress Creek. Increases in TC-related extreme discharges correspond with increases in developed land and decreases in vegetated land between 1980 and 2006. Therefore, changes in land cover/use in watersheds near Houston are a major cause of the increased flooding risk in recent years.

  3. Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands.

    Science.gov (United States)

    Law, Alan; Gaywood, Martin J; Jones, Kevin C; Ramsay, Paul; Willby, Nigel J

    2017-12-15

    Potential for habitat restoration is increasingly used as an argument for reintroducing ecosystem engineers. Beaver have well known effects on hydromorphology through dam construction, but their scope to restore wetland biodiversity in areas degraded by agriculture is largely inferred. Our study presents the first formal monitoring of a planned beaver-assisted restoration, focussing on changes in vegetation over 12years within an agriculturally-degraded fen following beaver release, based on repeated sampling of fixed plots. Effects are compared to ungrazed exclosures which allowed the wider influence of waterlogging to be separated from disturbance through tree felling and herbivory. After 12years of beaver presence mean plant species richness had increased on average by 46% per plot, whilst the cumulative number of species recorded increased on average by 148%. Heterogeneity, measured by dissimilarity of plot composition, increased on average by 71%. Plants associated with high moisture and light conditions increased significantly in coverage, whereas species indicative of high nitrogen decreased. Areas exposed to both grazing and waterlogging generally showed the most pronounced change in composition, with effects of grazing seemingly additive, but secondary, to those of waterlogging. Our study illustrates that a well-known ecosystem engineer, the beaver, can with time transform agricultural land into a comparatively species-rich and heterogeneous wetland environment, thus meeting common restoration objectives. This offers a passive but innovative solution to the problems of wetland habitat loss that complements the value of beavers for water or sediment storage and flow attenuation. The role of larger herbivores has been significantly overlooked in our understanding of freshwater ecosystem function; the use of such species may yet emerge as the missing ingredient in successful restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights

  4. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    International Nuclear Information System (INIS)

    Borders, D.M.; Frederick, B.J.; Watts, J.A.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs

  5. WATER QUALITY ANALYSIS OF AGRICULTURALLY IMPACTED TIDAL BLACKBIRD CREEK, DELAWARE

    Directory of Open Access Journals (Sweden)

    Matthew Stone

    2016-11-01

    Full Text Available Blackbird Creek, Delaware is a small watershed in northern Delaware that has a significant proportion of land designated for agricultural land use. The Blackbird Creek water monitoring program was initiated in 2012 to assess the condition of the watershed’s habitats using multiple measures of water quality. Habitats were identified based on percent adjacent agricultural land use. Study sites varying from five to fourteen were sampled biweekly during April and November, 2012-2015. Data were analyzed using principal component analysis and generalized linear modeling. Results from these first four years of data documented no significant differences in water quality parameters (dissolved oxygen, pH, temperature, salinity, inorganic nitrate, nitrite, ammonia, orthophosphate, alkalinity, and turbidity between the two habitats, although both orthophosphate and turbidity were elevated beyond EPA-recommended values. There were statistically significant differences for all of the parameters between agriculture seasons. The lack of notable differences between habitats suggests that, while the watershed is generally impacted by agricultural land use practices, there appears to be no impact on the surface water chemistry. Because there were no differences between habitats, it was concluded that seasonal differences were likely due to basic seasonal variation and were not a function of agricultural land use practices.

  6. Non-Fluvial Controls of Erosion, Sediment Transport and Fluvial Morphology in a mid-Atlantic Piedmont Watershed, White Clay Creek, Pennsylvania, U.S.A.

    Science.gov (United States)

    McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.

    2017-12-01

    Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.

  7. Comeback of the beaver Castor fiber: An overview of old and new conservation problems

    NARCIS (Netherlands)

    Nolet, B.A.; Rosell, F.

    1998-01-01

    Due to over-hunting c. 1200 Eurasian beavers Castor fiber survived in eight relict populations in Europe and Asia at the beginning of the 20th century. Following hunting restrictions and translocation programmes in IS countries, the Eurasian beaver became re-established over much of its former

  8. Toxicity of chloride under winter low-flow conditions in an urban watershed in central Missouri, USA

    Science.gov (United States)

    Allert, Ann L.; Cole-Neal, Cavelle L.; Fairchild, James F.

    2012-01-01

    Deicers such as sodium chloride and calcium chloride are used to treat snow and ice on road surfaces and have been identified as potential stressors on aquatic life. Hinkson Creek is an urban stream on the Missouri 303(d) list of impaired waters and is classified as impaired due to urban non-point source pollution. A 7-day toxicity test using Ceriodaphnia dubia was conducted to assess the toxicity of stream water during snowmelt at seven sites within the Hinkson Creek watershed. Chloride concentrations at two sites (Site 6, 1252 mg Cl/L; Site 4, 301 mg Cl/L) exceeded the U.S. Environmental Protection Agency chronic criterion (230 mg Cl/L). Survival (30 %) and total reproduction (6.9 young/adult) of C. dubia at Site 6 was significantly lower than survival (100 %) and total reproduction (30.4 young/adult) at Site 1 (reference site). Results indicate that chloride concentrations are elevated above water-quality criteria and that chloride may be a significant chemical stressor for macroinvertebrate communities during winter low-flow conditions in the Hinkson Creek watershed.

  9. Beaver-mediated methane emission: The effects of population growth in Eurasia and the Americas.

    Science.gov (United States)

    Whitfield, Colin J; Baulch, Helen M; Chun, Kwok P; Westbrook, Cherie J

    2015-02-01

    Globally, greenhouse gas budgets are dominated by natural sources, and aquatic ecosystems are a prominent source of methane (CH(4)) to the atmosphere. Beaver (Castor canadensis and Castor fiber) populations have experienced human-driven change, and CH(4) emissions associated with their habitat remain uncertain. This study reports the effect of near extinction and recovery of beavers globally on aquatic CH4 emissions and habitat. Resurgence of native beaver populations and their introduction in other regions accounts for emission of 0.18-0.80 Tg CH(4) year(-1) (year 2000). This flux is approximately 200 times larger than emissions from the same systems (ponds and flowing waters that became ponds) circa 1900. Beaver population recovery was estimated to have led to the creation of 9500-42 000 km(2) of ponded water, and increased riparian interface length of >200 000 km. Continued range expansion and population growth in South America and Europe could further increase CH(4) emissions.

  10. Travel time analysis for a subsurface drained sub-watershed in Upper Big Walnut Creek Watershed, Ohio

    Science.gov (United States)

    Runoff travel time, which is a function of watershed and storm characteristics, is an important parameter affecting the prediction accuracy of hydrologic models. Although, time of concentration (tc) is a most widely used time parameter, it has multiple conceptual and computational definitions. Most ...

  11. Potential effects of climate change on streamflow for seven watersheds in eastern and central Montana

    Directory of Open Access Journals (Sweden)

    Katherine J. Chase

    2016-09-01

    New hydrological insights for the region: Projected changes in mean annual and mean monthly streamflow vary by the RegCM3 model selected, by watershed, and by future period. Mean annual streamflows for all future periods are projected to increase (11–21% for two of the four central Montana watersheds: Middle Musselshell River and Cottonwood Creek. Mean annual streamflows for all future periods are projected to decrease (changes of −24 to −75% for Redwater River watershed in eastern Montana. Mean annual streamflows are projected to increase slightly (2–15% for the 2030 period and decrease (changes of −16 to −44% for the 2080 period for the four remaining watersheds.

  12. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  13. Applying the SWAT hydrologic model on a watershed containing forested karst.

    Science.gov (United States)

    Devendra M. Amatya; Amy E. Edwards

    2009-01-01

    The US Forest Service Center for Forested Wetlands Research is working on a South Carolina Department of Health and Environmental Control (SC DHEC)'s Section 319 Grant Program funded Total Maximum Daily Load (TMDL) project for the watershed of Chapel Branch Creek (CBC) draining to Lake Marion in Santee, South Carolina (Fig. 1)....

  14. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    Science.gov (United States)

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Sr., Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC

  15. De Novo Genome and Transcriptome Assembly of the Canadian Beaver (Castor canadensis

    Directory of Open Access Journals (Sweden)

    Si Lok

    2017-02-01

    Full Text Available The Canadian beaver (Castor canadensis is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 × long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 × and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon–gene models derived from 9805 full-length open reading frames (FL-ORFs constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.

  16. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Science.gov (United States)

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  17. Effects of mountain beaver management and thinning on 15-year-old Douglas fir growth and survival.

    Science.gov (United States)

    Campbell, Dan L; Engeman, Richard M; Farley, James P

    2015-07-01

    We examined 4-year growth of 15-year-old damaged and undamaged Douglas fir (Pseudotsuga menzesii) after integrating temporary population reductions of mountain beaver (Aplodontia rufa) with thinning in a pre-commercial hand-planted plantation in western Washington. Five treatment combinations were considered: (1) trapping mountain beavers in an unthinned area, (2) trapping before thinning to 65 trees/ha (160 trees/ac), (3) no trapping and thinning to 65 trees/ha, (4) no trapping and thinning to 146 trees/ha (360 trees/ac), and (5) no trapping and no thinning. Removal of ≥ 90 % of mountain beavers temporarily reduced mountain beaver activity whether the stand was unthinned or thinned. Diameter growth at breast height (dbh) was greater for undamaged trees than for damaged trees in thinned areas. Tree height growth was greatest in trapped areas whether thinned or not. No differences were detected in 4-year survival between trees damaged aboveground and those without aboveground damage, which may be related to undetected root damage to trees without aboveground damage. Basal diameter growth and dbh growth were greatest for areas thinned to 65 trees/ha. Seventy-eight percent of stomachs from mountain beaver trapped in winter contained Douglas fir root or stem materials. Overall, short-term removal of mountain beavers integrated with pre-commercial thinning promoted growth of crop trees.

  18. Impact of beaver dams on abundance and distribution of anadromous salmonids in two lowland streams in Lithuania.

    Science.gov (United States)

    Virbickas, Tomas; Stakėnas, Saulius; Steponėnas, Andrius

    2015-01-01

    European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction.

  19. Impact of beaver dams on abundance and distribution of anadromous salmonids in two lowland streams in Lithuania.

    Directory of Open Access Journals (Sweden)

    Tomas Virbickas

    Full Text Available European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction.

  20. Habitat characteristics at den sites of the Point Arena mountain beaver (Aplodontia rufa nigra)

    Science.gov (United States)

    William J. Zielinski; John E. Hunter; Robin Hamlin; Keith M. Slauson; M. J. Mazurek

    2010-01-01

    The Point Arena mountain beaver (Aplodontia rufa nigra) is a federally listed endangered species, but has been the subject of few studies. Mountain beavers use burrows that include a single subterranean den. Foremost among the information needs for this subspecies is a description of the above-ground habitat features associated with dens. Using...

  1. Morphological Analyses and Simulated Flood Elevations in a Watershed with Dredged and Leveed Stream Channels, Wheeling Creek, Eastern Ohio

    Science.gov (United States)

    Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.

    2008-01-01

    The USGS, in cooperation with the Ohio Emergency Management Agency, conducted a study in the Wheeling Creek Basin to (1) evaluate and contrast land-cover characteristics from 2001 with characteristics from 1979 and 1992; (2) compare current streambed elevation, slope, and geometry with conditions present in the late 1980s; (3) look for evidence of channel filling and over widening in selected undredged reaches; (4) estimate flood elevations for existing conditions in both undredged and previously dredged reaches; (5) evaluate the height of the levees required to contain floods with selected recurrence intervals in previously dredged reaches; and (6) estimate flood elevations for several hypothetical dredging and streambed aggradation scenarios in undredged reaches. The amount of barren land in the Wheeling Creek watershed has decreased from 20 to 1 percent of the basin area based on land-cover characteristics from 1979 and 2001. Barren lands appear to have been converted primarily to pasture, presumably as a result of surface-mine reclamation. Croplands also decreased from 13 to 8 percent of the basin area. The combined decrease in barren lands and croplands is approximately offset by the increase in pasture. Stream-channel surveys conducted in 1987 and again in 2006 at 21 sites in four previously dredged reaches of Wheeling Creek indicate little change in the elevation, slope, and geometry of the channel at most sites. The mean change in width-averaged bed and thalweg elevations for the 21 cross sections was 0.1 feet. Bankfull widths, mean depths, and cross-sectional areas measured at 12 sites in undredged reaches were compared to estimates determined from regional equations. The mean percentage difference between measured and estimated bankfull widths was -0.2 percent, suggesting that bankfull widths in the Wheeling Creek Basin are generally about the same as regional averages for undisturbed basins of identical drainage area. For bankfull mean depth and cross

  2. Managed flood effects on beaver pond habitat in a desert riverine ecosystem, bill williams river, Arizona USA

    Science.gov (United States)

    Andersen, D.C.; Shafroth, P.B.; Pritekel, C.M.; O'Neill, M. W.

    2011-01-01

    The ecological effects of beaver in warm-desert streams are poorly documented, but potentially significant. For example, stream water and sediment budgets may be affected by increased evaporative losses and sediment retention in beaver ponds. We measured physical attributes of beaver pond and adjacent lotic habitats on a regulated Sonoran Desert stream, the Bill Williams River, after ???11 flood-free months in Spring 2007 and Spring 2008. Neither a predicted warming of surface water as it passed through a pond nor a reduction in dissolved oxygen in ponds was consistently observed, but bed sediment sorted to finest in ponds as expected. We observed a river segment-scale downstream rise in daily minimum stream temperature that may have been influenced by the series of ??100 beaver ponds present. Channel cross-sections surveyed before and after an experimental flood (peak flow 65 m3/s) showed net aggradation on nine of 13 cross-sections through ponds and three of seven through lotic reaches. Our results indicate that beaver affect riverine processes in warm deserts much as they do in other biomes. However, effects may be magnified in deserts through the potential for beaver to alter the stream thermal regime and water budget. ?? Society of Wetland Scientists 2011.

  3. Detecting change in water quality from implementation of limestone treatment systems in a coal-minded watershed

    Science.gov (United States)

    Cravotta,, Charles A.; Weitzel, Jeffrey B.

    2000-01-01

    During 1996-97, a variety of limestone-based treatment systems were implemented to neutralize acidic mine drainage and reduce the transport of dissolved metals in the northern part of the Swatara Creek watershed, which drains a 43-mi2 (112-km2) area in the Southern Anthracite Field upstream from Ravine, Pa. Since 1996, the current project has monitored water quality upstream and downstream of each treatment and at integrator sites on lower reaches of Swatara Creek. Continuous measurements of pH and specific conductance and periodic sampling for alkalinity, acidity, sulfate, and metals upstream and downstream of each treatment system show that (1) open limestone channels and limestone-sand dosing generally had negligible effects on water quality and (2) limestone diversion wells and limestone drains generally were effective at producing near-neutral pH and attenuating dissolved metals during baseflow but were less effective during stormflow conditions. Storm runoff in this area commonly is acidic, and, as streamflow volume increases during stormflow conditions, a smaller fraction of total flow is treated and (or) residence time in the treatment system is reduced. Monitoring on the mainstem of Swatara Creek indicates watershed-scale effects owing primarily to changes in mining practices and secondarily to watershed-wide implementation of treatment systems. Most underground mines in the Swatara Creek Basin were abandoned before 1960 and are presently flooded. Drainage from these mines contributes substantially to baseflow in Swatara Creek. For Swatara Creek at Ravine, Pa., which is immediately downstream of the mined area, long-term data collected since 1959 indicate sulfate concentration declined from about 150 mg/L in 1959 to 75 mg/L in 1999; pH increased sharply from 3.5-4.4 (median ~4) to 4.6-7.0 (median ~6) after 1975. These trends resulted from a decline in pyrite oxidation and the onset of carbonate buffering. Because these long-term attenuation processes have

  4. Long-Term Hydrological Reconstruction From a Beaver Meadow Using Testate Amoebae

    Science.gov (United States)

    Von Ness, K.; Loisel, J.; Karran, D. J.; Westbrook, C.; Kohlmeyer, C.

    2016-12-01

    Beaver ponds contribute up to 0.8 Tg/yr of atmospheric methane (CH4) globally (Whitfield et al., 2014) and were found to be the largest CH4 emitters among all the wetland types in boreal environments (Roulet et al., 1992). However, the sources and underlying mechanisms of carbon emission and sequestration in beaver ponds requires further elucidation. Here we present the historical development of a beaver meadow located in the Sibbald Research Wetland in the Rocky Mountains of Kananaskis Provincial Park, Alberta, Canada. We use a combination of testate amoebae, plant macrofossils, and other geochemical proxies to provide high-resolution reconstructions along three peat cores extracted in hydrologically distinct portions of the meadow. To our knowledge, this is the first attempt at reconstructing long-term hydrological conditions in these systems. Testate amoebae (Protozoa: Rhizopoda) are single-celled organisms that inhabit moist substrates and produce a decay-resistant test. As each taxon generally occupies a discrete ecological niche related to soil moisture and pH, testate amoebae are good indicators of past and ongoing hydrological change. Preliminary analysis of testate amoebae assemblages downcore suggests that this proxy is suitable to reconstruct hydrological changes in meadows, with wetter and drier communities being in good agreement with wetter and drier plant macrofossil assemblages. The nitrogen isotopic signature of peat samples (ongoing) will be used as a proxy for changes in nutrient input; it could become a proxy for past beaver activity.

  5. The Eurasian beaver (Castor fiber) is apparently not a host to blood parasites in Norway.

    Science.gov (United States)

    Cross, Hannah B; Campbell-Palmer, Róisín; Girling, Simon; Rosell, Frank

    2012-11-23

    Parasites can alter the physiology and behaviour of host species and negatively impact on their fitness thus affecting population densities. This is the first investigation into the presence of blood parasites in the Eurasian beaver (Castor fiber); a species that has been the subject of many translocation and reintroduction programmes. Two hundred and seventy blood slides prepared from the blood of 27 beavers from southern Norway were microscopically analysed for the presence of blood parasites. This study reports an absence of blood parasites in the Norwegian Eurasian beavers sampled. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Stichorchis subtriquetrus (Digenea: Paramphistomatidae) from Eurasian beaver (Castor fiber) in the Czech Republic.

    Science.gov (United States)

    Máca, Ondřej; Pavlásek, Ivan; Vorel, Aleš

    2015-08-01

    Between March 2012 and April 2014, we performed post-mortem parasitological examinations of 11 Eurasian beavers (Castor fiber Linnaeus, 1758) from the basins of four main rivers (Dyje, Labe, Morava, Vltava) in the Czech Republic. The cause of death of five adult animals was unknown, three adult animals died after being hit by cars, while one young and one adult as a result of serious injuries and one juvenile male drowned. The trematode Stichorchis subtriquetrus (Rudolphi, 1814) Lühe, 1909 was only found in the caecum body and caecum apex of nine beavers (82%), with no significant differences in parasite intensity among beavers. The highest number of trematodes (271) occurred in an adult female in July 2013; while a range of 1-57 individuals were found in other positive beavers. S. subtriquetrus size in both parts of the caecum was 11.0-17.0 × 5.5-8.0 mm (mean 14.3 × 6.9 mm). Results demonstrated that for the optimal detection of eggs, it was necessary to examine at least 10 g of faeces with a new modified method of sedimentation. The size range of 30 eggs was 157.1-182.5 × 99.3-109.8 μm (mean 168.0 × 104.4 μm). There were no differences in prevalence and seasonal occurrence of S. subtriquetrus between male and female beavers. We did not find any other intestinal endoparasites or tissue parasites (Sarcocystis spp., Trichinella spp.).

  7. Algoflora of oxbow ponds transformed with beavers' activity

    OpenAIRE

    Макаревич, Т. А.; Белоус, В. В.; Гурчунова, Т. А.

    2016-01-01

    Algoflora of oxbow ponds transformed with beaver activity is characterized by high species richness and taxonomic diversity, high periphyton importance in the formation of algoflora compared with phytoplankton, prevalence of periphytic and benthic algae over typically planktonic forms

  8. Report on the Watershed Monitoring Program at the Paducah Site January-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Southworth, G.R.

    1999-03-01

    Watershed Monitoring of Big Bayou and Little Bayou creeks has been conducted since 1987. The monitoring was conducted by the University of Kentucky between 1987 and 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of monitoring are to (1) demonstrate that the effluent limitations established for DOE protect and maintain the use of Little Bayour and Big Bayou creeks for frowth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream biota. The watershed (biological) monitoring discussed in this report was conducted under DOE Order 5400.1, General Environmental Protection Program. Future monitoring will be conducted as required by the Kentucky Pollutant Discharge Elimination System (KPDES) permit issued to the Department of Energy (DOE) in March 1998. A draft Watershed Monitoring Program plan was approved by the Kentucky Division of Water and will be finalized in 1999. The DOE permit also requires toxicity monitoring of one continuous outfall and of three intermittent outfalls on a quarterly basis. The Watershed Monitoring Program for the Paducah Site during calendar year 1998 consisted of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of fish communities. This report focuses on ESD activities occurring from january 1998 to December 1998, although activities conducted outside this time period are included as appropriate.

  9. Selenium in the Blackfoot, Salt, and Bear River Watersheds

    Science.gov (United States)

    Hamilton, S.J.; Buhl, K.J.

    2005-01-01

    Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 μ g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 μ g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.

  10. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis.

    Directory of Open Access Journals (Sweden)

    Robert J Gruninger

    Full Text Available The North American Beaver (Castor canadensis is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2% and Firmicutes (47.6%. The feaces was also dominated by OTUs from Bacteroidetes (36.8% and Firmicutes (58.9%. The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver.

  11. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis).

    Science.gov (United States)

    Gruninger, Robert J; McAllister, Tim A; Forster, Robert J

    2016-01-01

    The North American Beaver (Castor canadensis) is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2%) and Firmicutes (47.6%). The feaces was also dominated by OTUs from Bacteroidetes (36.8%) and Firmicutes (58.9%). The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver.

  12. Mercury in the soil of two contrasting watersheds in the eastern United States

    Science.gov (United States)

    Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.

    2014-01-01

    Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p2 = 0.13; phighly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.

  13. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.

    Science.gov (United States)

    Luo, Yuzhou; Zhang, Minghua

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed.

  14. Mercury bioaccumulation in fish in a region affected by historic gold mining; the South Yuba River, Deer Creek, and Bear River watersheds, California, 1999

    Science.gov (United States)

    May, Jason T.; Hothem, Roger L.; Alpers, Charles N.; Law, Matthew A.

    2000-01-01

    Mercury that was used historically for gold recovery in mining areas of the Sierra Nevada continues to enter local and downstream water bodies, including the Sacramento Delta and the San Francisco Bay of northern California. Methylmercury is of particular concern because it is the most prevalent form of mercury in fish and is a potent neurotoxin that bioaccumulates at successive trophic levels within food webs. In April 1999, the U.S. Geological Survey, in cooperation with several other agencies the Forest Service (U.S. Department of Agriculture), the Bureau of Land Management, the U.S. Environmental Protection Agency, the California State Water Resources Control Board, and the Nevada County Resource Conservation District began a pilot investigation to characterize the occurrence and distribution of mercury in water, sediment, and biota in the South Yuba River, Deer Creek, and Bear River watersheds of California. Biological samples consisted of semi-aquatic and aquatic insects, amphibians, bird eggs, and fish. Fish were collected from 5 reservoirs and 14 stream sites during August through October 1999 to assess the distribution of mercury in these watersheds. Fish that were collected from reservoirs included top trophic level predators (black basses, Micropterus spp.) intermediate trophic level predators [sunfish (blue gill, Lepomis macrochirus; green sunfish, Lepomis cyanellus; and black crappie, Poxomis nigromaculatus)] and benthic omnivores (channel catfish, Ictularus punctatus). At stream sites, the species collected were upper trophic level salmonids (brown trout, Salmo trutta) and upper-to-intermediate trophic level salmonids (rainbow trout, Oncorhynchus mykiss). Boneless and skinless fillet portions from 161 fish were analyzed for total mercury; 131 samples were individual fish, and the remaining 30 fish were combined into 10 composite samples of three fish each of the same species and size class. Mercury concentrations in samples of black basses

  15. 75 FR 5758 - Bridger-Teton National Forest, Big Piney Ranger District, WY; Piney Creeks Vegetation Treatment

    Science.gov (United States)

    2010-02-04

    ... analysis area is approximately 20,000 acres within this watershed and includes the creeks of South, Middle... and for further site specific analysis of effects. It is approximately 25 miles west of Big Piney, Wyoming in the Green River drainage, on the east slope of the Wyoming range. All lands within the analysis...

  16. Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium

    Science.gov (United States)

    Nyssen, J.; Pontzeele, J.; Billi, P.

    2011-05-01

    SummaryThe European beaver ( Castor fiber) was recently reintroduced to Belgium, after an absence of more than 150 years; around 120 beaver dam systems have been established. In Europe, few studies consider the hydrological effects of those dams, and the spatial scale larger than that of one beaver pond system has not been addressed at all. This research focuses on the hydrological effects of a series of six beaver dams on the Chevral R., a second order tributary of the Ourthe Orientale R. in a forested area of the Ardennes. Thereby, also the Ourthe Orientale sub-basin itself was taken into account, being the area with probably the highest density of beaver dams in Belgium. The main research questions regarded: (1) the extent to which discharge peaks are reduced at the very location and well downstream of beaver dams and (2) the impact of the beaver dams on low flows. The first approach consisted of a temporal analysis of the Ourthe Orientale discharge and precipitation data for the periods 1978-2003 (before) and 2004-2009 (after the establishment of beaver dams in the sub-basin). The second study determined the in situ impact of the beaver dams: discharges were measured (September 2009-March 2010) upstream as well as downstream of the 0.52 ha beaver dam system on the Chevral river, and changes in water level within the system of six dams were monitored. Our findings indicate that there is a significant lowering of discharge peaks in the downstream river reaches due to the effect of the beaver dams. The temporal analysis of the Ourthe Orientale sub-basin shows an increase in the recurrence interval for major floods; for instance, the recurrence interval of a reference flood of 60 m 3 s -1 increased from 3.4 years to 5.6 years since the establishment of the beaver dams. At the scale of the Chevral beaver dams' site, we measured that the dams top off the peak flows, in addition delaying them by approximately 1 day. There are also increased low flows: Q355 (i.e. the

  17. Annual compilation and analysis of hydrologic data for Escondido Creek, San Antonio River basin, Texas

    Science.gov (United States)

    Reddy, D.R.

    1971-01-01

    IntroductionHistory of Small Watershed Projects in TexasThe U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of the "Flood Control Act of 1936 and 1944" and "Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater-retarding structures to be physically and economically feasible in Texas. As of September 30, 1970, 1,439 of these structures had been built.This watershed-development program will have varying but important effects on the surface and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data under natural and developed conditions are needed to appraise the effects of the structures on the yield and mode of occurrence of runoff.Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 12 study areas (fig. 1). These investigations are being made in cooperation with the Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 12 study areas were chosen to sample watershed having different rainfall, topography, geology, and soils. In five of the study areas, (North, Little Elm, Mukewater, little Pond-North Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses of the conditions "before and after" development. A summary of the development of the floodwater-retarding structures in each study areas of September 30, 1970, is shown in table 1.Objectives of the Texas Small Watersheds ProjectThe purpose of these investigations is to collect sufficient data to meeting the

  18. Stream Nitrate Concentrations Diverge at Baseflow and Converge During Storms in Watersheds with Contrasting Urbanization

    Science.gov (United States)

    Carey, R. O.; Wollheim, W. M.; Mulukutla, G. K.; Cook, C. S.

    2013-12-01

    Management of non-point sources is challenging because it requires adequate quantification of non-point fluxes that are highly dynamic over time. Most fluxes occur during storms and are difficult to characterize with grab samples alone in flashy, urban watersheds. Accurate and relatively precise measurements using in situ sensor technology can quantify fluxes continuously, avoiding the uncertainties in extrapolation of infrequently collected grab samples. In situ nitrate (NO3-N) sensors were deployed simultaneously from April to December 2013 in two streams with contrasting urban land uses in an urbanizing New Hampshire watershed (80 km2). Nitrogen non-point fluxes and temporal patterns were evaluated in Beards Creek (forested: 50%; residential: 24%; commercial/institutional/transportation: 7%; agricultural: 6%) and College Brook (forested: 35%; residential: 11%; commercial/institutional/transportation: 20%; agricultural: 17%). Preliminary data indicated NO3-N concentrations in Beards Creek (mean: 0.37 mg/L) were lower than College Brook (mean: 0.60 mg/L), but both streams exhibited rapid increases in NO3-N during the beginning of storms followed by overall dilution. While baseflow NO3-N was greater in College Brook than Beards Creek, NO3-N at the two sites consistently converged during storms. This suggests that standard grab sampling may overestimate fluxes in urban streams, since short-term dilution occurred during periods of highest flow. Analyzing NO3-N flux patterns in smaller urban streams that are directly impacted by watershed activities could help to inform management decisions regarding N source controls, ultimately allowing an assessment of the interactions of climate variability and management actions.

  19. Beyond formal groups: neighboring acts and watershed protection in Appalachia

    Directory of Open Access Journals (Sweden)

    Heather Lukacs

    2016-09-01

    Full Text Available This paper explores how watershed organizations in Appalachia have persisted in addressing water quality issues in areas with a history of coal mining. We identified two watershed groups that have taken responsibility for restoring local creeks that were previously highly degraded and sporadically managed. These watershed groups represent cases of self-organized commons governance in resource-rich, economically poor Appalachian communities. We describe the extent and characteristics of links between watershed group volunteers and watershed residents who are not group members. Through surveys, participant observation, and key-informant consultation, we found that neighbors – group members as well as non-group-members – supported the group's function through informal neighboring acts. Past research has shown that local commons governance institutions benefit from being nested in supportive external structures. We found that the persistence and success of community watershed organizations depends on the informal participation of local residents, affirming the necessity of looking beyond formal, organized groups to understand the resources, expertise, and information needed to address complex water pollution at the watershed level. Our findings augment the concept of nestedness in commons governance to include that of a formal organization acting as a neighbor that exchanges informal neighboring acts with local residents. In this way, we extend the concept of neighboring to include interactions between individuals and a group operating in the same geographic area.

  20. BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds

    Science.gov (United States)

    Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.

  1. Beaver dams, hydrological thresholds, and controlled floods as a management tool in a desert riverine ecosystem, Bill Williams River, Arizona

    Science.gov (United States)

    Andersen, D.C.; Shafroth, P.B.

    2010-01-01

    Beaver convert lotic stream habitat to lentic through dam construction, and the process is reversed when a flood or other event causes dam failure. We investigated both processes on a regulated Sonoran Desert stream, using the criterion that average current velocity is distribution and repeated censuses of dams along the 58-km river. The ratio fell from 19:1 when no beaver dams were present to probability of major damage at low (attenuated) flood magnitude. We conclude that environmental flows prescribed to sustain desert riparian forest will also reduce beaver-created lentic habitat in a non-linear manner determined by both beaver dam and flood attributes. Consideration of both desirable and undesirable consequences of ecological engineering by beaver is important when optimizing environmental flows to meet ecological and socioeconomic goals. ?? 2010 John Wiley & Sons, Ltd.

  2. 77 FR 71189 - AES Beaver Valley, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-442-000] AES Beaver Valley, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of AES Beaver...

  3. 76 FR 13600 - Payette National Forest, Idaho, Golden Hand #3 and #4 Lode Mining Claims, Plan of Operations

    Science.gov (United States)

    2011-03-14

    ...: The USDA Forest Service is withdrawing the Environmental Impact Statement (EIS) for The Golden Hand No... Beaver Creek, which flows into Big Creek, a tributary of the Salmon River. The Record of Decision will...

  4. Modeling the Environmental Fate of Graphene Oxide and Its Phototransformation Products in Brier Creek Watershed Using the Water Quality Analysis Simulation Program 8 (WASP8)

    Science.gov (United States)

    Han, Y.; Bouchard, D.; Chang, X.; Hsieh, H. S.; Knightes, C. D.; Spear, J.; Zepp, R. G.

    2017-12-01

    The production of graphene-family nanoparticles (GFNs) appreciably increased in recent years. Among GFNs, graphene oxide (GO) is one of the most highly studied members due to its inexpensive synthesis cost compared to graphene, its stability in aqueous media and its broad application. However, GO also has been found to be the most toxic among GFNs. Lab studies showed that GO undergoes phototransformation in surface waters, resulting in products that include reduced GO (rGO) and polycyclic aromatic hydrocarbons (PAHs). Due to technical and analytical limitations, it is still difficult to conduct in-situ measurement of GO and rGO concentrations released in the environment, and it is of utmost importance to establish a model that can predict their environmental exposure concentrations in the environment. In this study, we develop a fate and transport model to predict time-dependent environmental exposure concentrations of GO for the Brier Creek Watershed in the GA coastal plain. We investigate the influence of sunlight radiation on the distribution of GO and its phototransformation products in the watershed over a 20-year period using the most updated Water Quality Analysis Simulation Program (WASP8). Flow rate, sediment transport data and sunlight radiation data are input into WASP8, and WASP8 is used to internally calculate a GO phototransformation rate and productions of rGO and PAHs. Heteroaggregation coefficients of GO and rGO with suspended solids were measured in an EPA laboratory, and then input into WASP8. GO and rGO concentrations in the watershed are calculated by WASP8. Mass fraction results show that GO is the predominant species among GO derived species, which account for 99% of the mass throughout the whole watershed of interest, while rGO species, including free rGO and rGO heteroaggregated to suspended solids, only account for 1%. We also found that almost all free GO and rGO are present in water column due to their extremely low settling velocity. r

  5. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    Science.gov (United States)

    Mary Ann Madej; Greg Bundros; Randy Klein

    2012-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal...

  6. Forecasting contaminant concentrations: Spills in the White Oak Creek Basin

    International Nuclear Information System (INIS)

    Borders, D.M.; Hyndman, D.W.; Huff, D.D.

    1987-01-01

    The Streamflow Synthesis and Reservoir Regulation (SSARR) model has been installed and sufficiently calibrated for use in managing accidental release of contaminants in surface waters of the White Oak Creek (WOC) watershed at ORNL. The model employs existing watershed conditions, hydrologic parameters representing basin response to precipitation, and a Quantitative Precipitation Forecast (QPF) to predict variable flow conditions throughout the basin. Natural runoff from each of the hydrologically distinct subbasins is simulated and added to specified plant and process water discharges. The resulting flows are then routed through stream reaches and eventually to White Oak Lake (WOL), which is the outlet from the WOC drainage basin. In addition, the SSARR model is being used to simulate change in storage volumes and pool levels in WOL, and most recently, routing characteristics of contaminant spills through WOC and WOL. 10 figs

  7. Impact of the keystone species, the Eurasian beaver (Castor fiber), on habitat structure and its significance to mammals

    OpenAIRE

    Samas, Arūnas

    2016-01-01

    Eurasian beaver (Castor fiber), the representative of the family Castoridae, which includes two living species of the genus Castor. Beavers are the keystone species, also deservedly known as the ecosystem engineer for the ability to create new habitats and to change the existing landscape. Biology of the Eurasian beaver is well studied, but still, there is a lack of knowledge about the ecology of the species - the relationship with the surrounding environment and biota. These studies were car...

  8. Summary of the Skookumchuck Creek bull trout enumeration project 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Baxter, James S.; Baxter, Jeremy

    2002-01-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing

  9. Streamflow predictions under climate scenarios in the Boulder Creek Watershed at Orodell

    Science.gov (United States)

    Zhang, Q.; Williams, M. W.; Livneh, B.

    2016-12-01

    Mountainous areas have complex geological features and climatic variability, which limit our ability to simulate and predict hydrologic processes, especially in face to a changing climate. Hydrologic models can improve our understanding of land surface water and energy budgets in these regions. In this study, a distributed physically-based hydrologic model is applied to the Boulder Creek Watershed, USA to study streamflow conditions under future climatic scenarios. Model parameters were adjusted using observed streamflow data at 1/16th degree resolution, with a NSE value of 0.69. The results from CMIP5 models can give a general range of streamflow conditions under different climatic scenarios. Two scenarios are being applied, including the RCP 4.5 and 8.5 scenarios. RCP 8.5 has higher emission concentrations than RCP 4.5, but not very significant in the period of study. Using pair t-test and Mann-Whitney test at specific grid cells to compare modeled and observed climate data, four CMIP5 models were chosen to predict streamflow from 2010 to 2025. Of the four models, two models predicted increased precipitation, while the other two models predicted decreased precipitation, and the four models predicted increased minimum and maximum temperature in RCP 4.5. Average streamflow decreased by 2% 14%, while maximum SWE varies from -7% to +210% from 2010 to 2025, relative to 2006 to 2010. In RCP 8.5, three models predicted increased precipitation, while the other one model predicted decreased precipitation, and the four models predicted increased maximum and minimum temperature. Besides one model, the other three models predicted increased average streamflow by 3.5% 32%, which results from the higher increasing magnitude in precipitation. Maximum SWE varies by 6% 55% higher than that from 2006 to 2010. This study shows that average daily maximum and minimum temperature will increase toward 2025 from different climate models, while average streamflow will decrease in RCP 4

  10. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    International Nuclear Information System (INIS)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ''Whiteoak'' Creek)

  11. A landscape plan based on historical fire regimes for a managed forest ecosystem: the Augusta Creek study.

    Science.gov (United States)

    John H. Cissel; Frederick J. Swanson; Gordon E. Grant; Deanna H. Olson; Gregory V. Stanley; Steven L. Garman; Linda R. Ashkenas; Matthew G. Hunter; Jane A. Kertis; James H. Mayo; Michelle D. McSwain; Sam G. Swetland; Keith A. Swindle; David O. Wallin

    1998-01-01

    The Augusta Creek project was initiated to establish and integrate landscape and watershed objectives into a landscape plan to guide management activities within a 7600-hectare (19,000-acre) planning area in western Oregon. Primary objectives included the maintenance of native species, ecosystem processes and structures, and long-term ecosystem productivity in a...

  12. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Minghua

    2009-01-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  13. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  14. Radwaste challenge at Beaver Valley

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Duquesne Light Company met the problem of accumulating low-level radioactive waste at its Beaver Valley nuclear plant with an aggressive program to reduce the quantity of contaminated material and demonstrate that the plant was improving its radiological protection. There was also an economic incentive to reduce low-level wastes. The imaginative campaign involved workers in the reduction effort through training and the adoption of practical approaches to reducing the amount of material exposed to radiation that include sorting trash by radiation level and a compacting system. 4 figures

  15. Plasma-Glucocorticoids and ACTH Levels During Different Periods of Activity in the European Beaver (Castor fiber L.).

    Science.gov (United States)

    Czerwińska, Joanna; Chojnowska, Katarzyna; Kamiński, Tadeusz; Bogacka, Iwona; Panasiewicz, Grzegorz; Smolińska, Nina; Kamińska, Barbara

    2015-01-01

    Glucocorticoids (GCs) and adrenocorticotropic hormone (ACTH) are major components of the classic endocrine stress response. Free-living vertebrates are characterized by circannual changes in the baseline and/or stress-induced secretion of GCs and ACTH. In mammalian species, GC and ACTH levels vary seasonally but there is no consensus to the season in which animals have elevated GC and ACTH levels. The aim of our study was to determine, for the first time, the type and amount of glucocorticoids produced in free-living beaver (Castor fiber L.)--the largest rodent in Eurasia, and to find out whether stress-induced plasma GC and ACTH levels show seasonal variations. Blood samples were obtained from animals under general anesthesia in April (pregnancy in females), July (offspring rearing) and November (preparing for the winter). The adrenals of beavers produce both cortisol and corticosterone, and plasma cortisol levels were higher than corticosterone. In the current experiment, plasma cortisol concentrations in beavers were affected by the season. The highest stress-associated cortisol levels were noted in males in July during offspring rearing. Corticosterone and ACTH concentrations in beavers remained generally constant, regardless of the season and sex. In conclusion, seasonal changes were observed only in relation to stress-induced plasma cortisol levels in the beaver.

  16. Monitoring and research at Walnut Creek National Wildlife Refuge

    Science.gov (United States)

    Roelle, James E.; Hamilton, David B.

    1993-01-01

    Walnut Creek National Wildlife Refuge-Prairie Learning Center (Walnut Creek or the Refuge) is one of the newest additions to the National Wildlife Refuge System, which consists of over 480 units throughout the United States operated by the U.S. Department of the Interior, Fish and Wildlife Service (the Service). Located about 20 miles east of Des Moines, Iowa, the Refuge has an approved acquisition boundary containing 8,654 acres (Figure 1). Acquisition is from willing sellers only, and to date the Service has purchased approximately 5,000 acres. The acquisition boundary encompasses about 43% of the watershed of Walnut Creek, which bisects the Refuge and drains into the Des Moines River to the southeast. Approximately 25%-30% of the Walnut Creek watershed is downstream of the Refuge. As authorized by Congress in 1990, the purposes of the Refuge are to (U.S. Fish and Wildlife Service 1992): • restore native tallgrass pairie, wetland, and woodland habitats for breeding and migratory waterfowl and resident wildlife; • serve as a major environmental education center providing opportunities for study; • provide outdoor recreation benefits to the public; and • provide assistance to local landowners to improve their lands for wildlife habitat. To implement these purposes authorized by Congress, the Refuge has established the goal of recreating as nearly as possible the natural communities that existed at the time of settlement by Euro-Americans (circa 1840). Current land use is largely agricultural, including 69% cropland, 17% grazed pasture, and 7.5% grassland (dominantly brome) enrolled in the Conservation Reserve Program). About 1,395 acres of relict native communities also exist on the Refuge, including prairie (725 acres), oak savanna and woodland (450 acres), and riparian or wetland areas (220 acres). Some of these relicts are highly restorable; others contain only a few prairie plants in a matrix of brome and will be more difficult to restore. When the

  17. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  18. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  19. Beaver dams, hydrological thresholds, and controlled floods as a management tool in a desert riverine ecosystem, Bill Williams River, Arizona

    Science.gov (United States)

    Andersen, D.C.; Shafroth, P.B.

    2010-01-01

    Beaver convert lotic stream habitat to lentic through dam construction, and the process is reversed when a flood or other event causes dam failure. We investigated both processes on a regulated Sonoran Desert stream, using the criterion that average current velocity is beaver pond length (determined by the upstream lentic-lotic boundary position) to dam size, and coupling that to the dam-size frequency distribution and repeated censuses of dams along the 58-km river. The ratio fell from 19:1 when no beaver dams were present to beaver. We investigated the dam failure-flood intensity relationship in three independent trials (experimental floods) featuring peak discharge ranging from 37 to 65 m3 s-1. Major damage (breach ??? 3-m wide) occurred at ??? 20% of monitored dams (n = 7-86) and a similar or higher proportion was moderately damaged. We detected neither a relationship between dam size and damage level nor a flood discharge threshold for initiating major damage. Dam constituent materials appeared to control the probability of major damage at low (attenuated) flood magnitude. We conclude that environmental flows prescribed to sustain desert riparian forest will also reduce beaver-created lentic habitat in a non-linear manner determined by both beaver dam and flood attributes. Consideration of both desirable and undesirable consequences of ecological engineering by beaver is important when optimizing environmental flows to meet ecological and socioeconomic goals. ?? 2010 John Wiley & Sons, Ltd.

  20. Biogeochemical and Hydrological Controls on Mercury and Methylmercury in First Order Coastal Plain Watersheds of the Chesapeake Bay

    Science.gov (United States)

    Heyes, A.; Gilmour, C. C.; Bell, J. T.; Butera, D.; McBurney, A. W.

    2015-12-01

    Over the past 7 years we made use of the long-term research site at the Smithsonian Environmental Research Center (SERC) in central Maryland to study the fluxes of mercury (Hg) and methylmercury (MeHg) in three small first-order mid-Atlantic coastal plain watersheds. One watershed is entirely forested, one watershed is primarily agriculture with a forested stream buffer, and one watershed is mixed land use but contains a beaver produced wetland pond. Our initial goals were to assess watershed Hg yields in the mid-Atlantic and to establish a baseline prior to implementation of Hg emissions controls. All three studied watersheds produced relatively high yields of Hg, with the greatest yield coming from the forested watershed. Our initial evaluation of three watersheds showed that MeHg production and flux could also be high, but varied dramatically among watersheds and across years and seasons. During each year we observed episodic MeHg production in the spring and sometimes during prolonged high-flow storm events in the fall. The observed spring maxima of MeHg release coincided with development of anoxia in riparian groundwater. MeHg accumulation in riparian groundwater began once nitrate was depleted and either iron accumulation or sulfate depletion of groundwater began. We propose the presence of nitrate was modulating MeHg production through the suppression of sulfate and iron reducers and perhaps methanogens. As sulfate is not limiting in any of the watersheds owing to the sediments marine origin, we hypothesize the depletion of nitrate allows sulfate reducing bacteria to now utilize available carbon. Although wetlands are generally thought of as the primary zones of MeHg production in watersheds, shallow riparian groundwaters very close to the stream appear to play that role in SERC Coastal Plain watersheds. We hypothesize that the balance between nitrate, sulfate and other microbial electron acceptors in watersheds is a major control on MeHg production. Land

  1. Beaver Evidence - Historical Range of Beaver in the State of California, with an emphasis on areas within the range of coho salmon and steelhead trout

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project examines historical, archaeological, and geological evidence to re-evaluate the existing management paradigm that beaver are non-native to most of...

  2. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  3. Beaver Valley Power Station and Shippingport Atomic Power Station. 1984 Annual environmental report, radiological. Volume 2

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes the Radiological Environmental Monitoring Program conducted during 1984 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station. The Radiological Environmental Program consists of on-site sampling of water and gaseous effluents and off-site monitoring of water, air, river sediments, soils, food pathway samples, and radiation levels in the vicinity of the site. This report discusses the results of this monitoring during 1984. The environmental program outlined in the Beaver Valley Power Station Technical Specifications was followed throughout 1984. The results of this environmental monitoring program show that Shippingport Atomic Power Station and Beaver Valley Power Station operations have not adversely affected the surrounding environment. 23 figs., 18 tabs

  4. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  5. Sediment budget for Murder Creek, Georgia, USA, from Pu239+240 - determined soil erosion rates

    Science.gov (United States)

    Stubblefield, A. P.; Matissoff, G.; Ketterer, M. E.; Whiting, P. J.

    2005-12-01

    Soil inventories of the radionuclides Cs137 and Pb210 have been used in a variety of environments as indicators for erosion and depositional processes. Development of sediment budgets for entire watersheds from radionuclide data has been somewhat constrained because limited sample numbers may not adequately characterize the wide range of geomorphic conditions and land uses found in heterogeneous environments. The measurement of Pu239+240 shows great potential for developing quantitative watershed sediment budgets. With inductively-coupled plasma mass spectrometry, hundreds of samples may be processed in dramatically shorter times than the gamma spectrometry method used for Cs137 or alpha spectrometry method used for Pb210. We collected surface soil samples from Murder Creek in the Piedmont region of Georgia, USA, to compare Pu239+240 inventories with Cs137 and Pb210 inventories for a range of land uses in a predominantly forested watershed. Excellent correlations were found for radionuclide inventories (r2 =0.88, n = 38) and high resolution (4 mm) depth profiles. The second objective was to generate a sediment budget using the full Pu239+240 dataset (n = 309). Average Pu239+240 inventories were 70.0 Bq/m2 for hardwood forest, 60.0 Bq/m2 for pine plantation, 65.1 Bq/m2 for pine forest, 66.7 Bq/m2 for row crop agriculture and 67.9 Bq/m2 for pasture. The sediment budget will be constructed by converting inventories into site-specific erosion rates. Erosion rates will be scaled up to the watershed scale using GIS coverages of land use, soil, slope, and slope position. Results will be compared with Murder Creek sediment budgets in the scientific literature generated from RUSLE erosion modeling, USGS monitoring networks and reservoir sedimentation.

  6. In-situ reconstruction of the MSRs at the Beaver Valley Nuclear Power Station

    International Nuclear Information System (INIS)

    Deahna, S.T.; Yarden, A.L.; Tam, C.W.

    1992-01-01

    Moisture Separator Reheaters (MSRs) have been problem components at Beaver Valley Unit 1 since the initial plant start-up in 1976. Their performance had been ineffective and reheater tube reliability was becoming a limiting factor in MSR operation. Many of the problems encountered were common to the nuclear industry. In 1991, Duquesne Light performed a major overhaul of the Beaver Valley Unit 1 MSRs in an attempt to restore them to an acceptable level of performance. This paper summarizes the operating history, engineering redesign, field reconstruction, and subsequent performance of these MSRs

  7. Using Seismic Refraction and Ground Penetrating Radar (GPR) to Characterize the Valley Fill in Beaver Meadows, Rocky Mountain National Park

    Science.gov (United States)

    Kramer, N.; Harry, D. L.; Wohl, E. E.

    2010-12-01

    This study is one of the first to use near surface geophysical techniques to characterize the subsurface stratigraphy in a high alpine, low gradient valley with a past glacial history and to obtain a preliminary grasp on the impact of Holocene beaver activity. Approximately 1 km of seismic refraction data and 5 km of GPR data were collected in Beaver Meadows, Rocky Mountain National Park. An asymmetric wedge of sediment ranging in depth from 0-20 m transverse to the valley profile was identified using seismic refraction. Complementary analysis of the GPR data suggests that the valley fill can be subdivided into till deposited during the Pleistocene glaciations and alluvium deposited during the Holocene. Two main facies were identified in the GPR profiles through pattern recognition. Facie Fd, which consists of chaotic discontinuous reflectors with an abundance of diffractions, is interpreted to be glacial till. Facie Fc, which is a combination of packages of complex slightly continuous reflectors interfingered with continuous horizontal to subhorizontal reflectors, is interpreted to be post-glacial alluvium and includes overbank, pond and in-channel deposits. Fc consistently overlies Fd throughout the study area and is no more than 7 m thick in the middle of the valley. The thickness of Holocene sedimentation (beaver dams, a high abundance of fine sediment including silts and clays, historical records of beavers, and the name "Beaver Meadows" all suggest that Holocene beaver activity played a large role in sediment accumulation at this site, despite the lack of surficial relict beaver dams containing wood.

  8. Floodplain trapping and cycling compared to streambank erosion of sediment and nutrients in an agricultural watershed

    Science.gov (United States)

    Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.

    2018-01-01

    Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.

  9. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    Science.gov (United States)

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per

  10. Application of risk-based multiple criteria decision analysis for selection of the best agricultural scenario for effective watershed management.

    Science.gov (United States)

    Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz

    2016-03-01

    Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Late Holocene Environmental History of the Los Osos Watershed, Morro Bay, CA

    Science.gov (United States)

    Broadman, E.; Reidy, L. M.; Wahl, D.

    2014-12-01

    A comprehensive understanding of past changes in wetland ecosystems is integral for creating policies for modern land use practices. The Morro Bay salt marsh is home to a large wetland that has experienced significant environmental impacts in the last few centuries. In this study, sediment cores from the Morro Bay salt marsh were analyzed to discern changes in environment since the time of European contact, which occurred in 1772. The marsh is fed by two creeks (Chorro and Los Osos) and their associated watersheds. Sediment cores taken from a portion of the marsh fed by Los Osos creek were analyzed and the results compared to those from previous studies on cores taken from the Chorro and Los Osos portions of the marsh. Magnetic susceptibility, loss on ignition, pollen, radiocarbon, and X-ray fluorescence (XRF) analyses were conducted. An age-depth model was established for the Los Osos cores using two radiocarbon dates, as well as Erodium cicutarium as a chronological marker. Preliminary pollen analysis from Chorro marsh cores indicates vegetation shifts at the time of contact, when the salt marsh formed. Magnetic susceptibility and XRF data indicate dramatically increased rates of erosion from the time of contact consistently until the present. Influx of non-carbonate inorganic material also indicates a rapid increase in sedimentation in the marsh starting at the time of contact. Comparison of sedimentation rates between the two creeks suggests that differences in watershed geomorphology and land use practices have had pronounced impacts on erosional processes. Over the last decade, the Morro Bay National Estuary Program (MBNEP) has taken more measures to reduce erosion and sedimentation rates in the Chorro watershed, as is reflected by reduced sedimentation rates in MBNEP data collected within the last few years. Our study helps to elucidate the impacts of anthropogenic land use change on wetland systems, and provides much needed data to policy makers seeking to

  12. Concentrations of metals and trace elements in aquatic biota associated with abandoned mine lands in the Whiskeytown National Recreation Area and nearby Clear Creek watershed, Shasta County, northwestern California, 2002-2003

    Science.gov (United States)

    Hothem, Roger L.; May, Jason T.; Gibson, Jennifer K.; Brussee, Brianne E.

    2015-01-01

    Park management of the Whiskeytown National Recreation Area, in northwestern California, identified a critical need to determine if mercury (Hg) or other elements originating from abandoned mines within the Upper Clear Creek watershed were present at concentrations that might adversely affect aquatic biota living within the park. During 2002–03, the U.S. Geological Survey, in cooperation with the National Park Service, collected aquatic invertebrates, amphibians, and fish, and analyzed them for Hg, cadmium, zinc, copper, and other metals and trace elements. The data from the biota, in conjunction with data from concurrent community bioassessments, habitat analyses, water quality, and concentrations of metals and trace elements in water and sediment, were used to identify contamination “hot spots.”

  13. Quantifying Hillslope to Watershed Erosional Response Following Wildfire

    Science.gov (United States)

    Vega, S.; Pierson, F. B.; Williams, C. J.; Brooks, E. S.; Strand, E. K.; Seyfried, M. S.; Murdock, M.; Pierce, J. L.; Roehner, C.; Lindsay, K.; Robichaud, P. R.; Brown, R. E.

    2017-12-01

    Across the western US, wildfires in sagebrush vegetation are occurring at a more frequent rate and higher severity. This has resulted in a decline of sagebrush rangeland. The changing fire regime can be attributed to invasive plant species and warming climate conditions. As the result of wildfire, protective vegetation cover is removed leaving the soil bare and exposed to erosion. Erosion following wildfire is a main concern among land managers due to the threat it poses to resources, infrastructure, and human health. Numerous studies have used artificial rainfall to assess post-fire runoff and erosion and rehabilitation treatment effectiveness. These results have found that high intensity rain events typical of summer convective storms drive post-fire erosion. The purpose of this study is to improve scientific understanding of how site-specific physical and biological attributes affect hillslope to watershed scale sediment yield on a mountainous burned sagebrush landscape. This study uses natural rainfall and a network of silt fences to quantify hillslope to watershed scale erosion response. The erosional drivers over various spatial scales were evaluated in context with vegetation recovery for a 2 year post-fire period. A network of silt fences was installed over long and short hillslope distances and in swales within the 130 ha Murphy Creek catchment in the Reynolds Creek Experimental Watershed in southwestern Idaho. We evaluated: 1) vegetation, soils, and sediment delivery across multiple spatial scales associated with 30 silt fences spanning north and south facing aspects, 2) precipitation input at two meteorological stations, and 3) watershed streamflow and sediment discharge from an existing weir. During the first and second year post-fire, the swales on both aspects produced more sediment than the short and long hillslopes. The results suggest that significant amounts of sediment and organic matter were deposited in the swales creating drifts. Sediment

  14. Applying High-Resolution Imagery to Evaluate Restoration-Induced Changes in Stream Condition, Missouri River Headwaters Basin, Montana

    Directory of Open Access Journals (Sweden)

    Melanie K. Vanderhoof

    2018-06-01

    Full Text Available Degradation of streams and associated riparian habitat across the Missouri River Headwaters Basin has motivated several stream restoration projects across the watershed. Many of these projects install a series of beaver dam analogues (BDAs to aggrade incised streams, elevate local water tables, and create natural surface water storage by reconnecting streams with their floodplains. Satellite imagery can provide a spatially continuous mechanism to monitor the effects of these in-stream structures on stream surface area. However, remote sensing-based approaches to map narrow (e.g., <5 m wide linear features such as streams have been under-developed relative to efforts to map other types of aquatic systems, such as wetlands or lakes. We mapped pre- and post-restoration (one to three years post-restoration stream surface area and riparian greenness at four stream restoration sites using Worldview-2 and 3 images as well as a QuickBird-2 image. We found that panchromatic brightness and eCognition-based outputs (0.5 m resolution provided high-accuracy maps of stream surface area (overall accuracy ranged from 91% to 99% for streams as narrow as 1.5 m wide. Using image pairs, we were able to document increases in stream surface area immediately upstream of BDAs as well as increases in stream surface area along the restoration reach at Robb Creek, Alkali Creek and Long Creek (South. Although Long Creek (North did not show a net increase in stream surface area along the restoration reach, we did observe an increase in riparian greenness, suggesting increased water retention adjacent to the stream. As high-resolution imagery becomes more widely collected and available, improvements in our ability to provide spatially continuous monitoring of stream systems can effectively complement more traditional field-based and gage-based datasets to inform watershed management.

  15. Fire effects on the Point Reyes Mountain Beaver (Aplodontia rufa phaea) at Point Reyes National Seashore, 10 years after the Vision Fire

    Science.gov (United States)

    Fellers, Gary M.; Osbourn, Michael

    2009-01-01

    The 1995 Vision Fire burned 5000 ha and destroyed 40% of the habitat of the Point Reyes Mountain Beaver (Aplodontia rufa phaea). Surveys immediately post-fire and in 2000 showed that only 0.4 to 1.7% of Mountain Beavers within the burn area survived. In 2000, dense, ground-hugging Blue-blossom Ceanothus (Ceanothus thrysiflorus) appeared to make coastal scrub thickets much less suitable for Mountain Beavers even though the number of burrows at our 11 study sites had returned to 88% of pre-fire numbers. In 2005 (10 y post-fire), the habitat appeared to be better for Mountain Beavers; Blue-blossom Ceanothus had diminished and vegetation more typical of northern coastal scrub, such as Coyote Brush (Baccharis pilularis) overstory with a lower layer of herbaceous vegetation, had greatly increased; but the number of Mountain Beaver burrows had declined to 52% of pre-fire numbers and there was little change in the number of sites occupied between our 2000 and 2005 surveys. With the expected successional changes in thicket structure, Mountain Beaver populations are likely to recover further, but there will probably be considerable variation in how each population stabilizes.

  16. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    OpenAIRE

    Kathleen Feiner; Christopher S. Lowry

    2015-01-01

    Study Focus: This research examines a wetland environment before and after the construction of a beaver dam to determine the hydrologic impacts on regional groundwater flow and quantify changes to the capture zone of a wetland pond. Increased hydraulic head behind a newly built beaver dam can cause shifts in the capture zone of a wetland pond. Changes in groundwater flux, and the extent of both the capture and discharge zones of this wetland were examined with the use of a groundwater flow mo...

  17. Considerations regarding the occurence of the Eurasian Beaver (Castor fiber Linnaeus 1758 in the Danube Delta (Romania

    Directory of Open Access Journals (Sweden)

    ALEXE Vasile

    2012-09-01

    Full Text Available On its original Romanian name - breb, the Eurasian Beaver (Castor fiber extinct at us for almost two centuries and reintroduced in some areas of the country, at present is better known under the name of his North American relative, beaver. In the last decades, this specie has been reintroduced within in its old habitats from where itwas extinct, especially under the effect of human pressure. Since 1998, reinsertion actions took place in Romania, in many areas, the closest one to Danube Delta area being the lower part of Ialomita river. By 2011 epigraphic or paleozoology evidences about the presence of this mammalian into the actual Delta have not been found, except the Lower Danube, up to Isaccea, but also near Dobrogea Plateau in Murighiol area. Its last Paleontology evidences come from early medieval period. Until now, the actual delta was considered a territory inappropriate for the Eurasian Beaver, due to high fluctuations of the water levels. But, in April 2011, the spontaneous appearance of the European beaver near Maliuc area was proved, a copy killed by poachers. In July 2011, a Beaver injured after the collision with a boat was found and scientifically investigated. The future observations will have to document if this mammal extends its habitat up here or remains an erratic appearance. In case of success of spontaneous colonization, its consequences and effects on the environment in general and on biodiversity inparticular are required to be monitored.

  18. Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, Sediment, Water, and Biota, 2003-2004

    Science.gov (United States)

    Slowey, Aaron J.; Rytuba, James J.; Hothem, Roger L.; May, Jason T.

    2007-01-01

    Executive Summary The Oat Hill Extension (OHE) Mine is one of several mercury mines located in the James Creek/Pope Creek watershed that produced mercury from the 1870's until 1944 (U.S. Bureau of Mines, 1965). The OHE Mine developed veins and mineralized fault zones hosted in sandstone that extended eastward from the Oat Hill Mine. Waste material from the Oat Hill Mine was reprocessed at the OHE Mine using gravity separation methods to obtain cinnabar concentrates that were processed in a retort. The U.S. Bureau of Land Management requested that the U.S. Geological Survey measure and characterize mercury and other chemical constituents that are potentially relevant to ecological impairment of biota in tailings, sediment, and water at the OHE Mine and in the tributaries of James Creek that drain the mine area (termed Drainage A and B) (Figs. 1 and 2). This report summarizes such data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed. The mine tailings are unusual in that they have not been roasted and contain relatively high concentrations of mercury (400 to 1200 ppm) compared to unroasted waste rock at other mines. These tailings have contaminated a tributary to James Creek with mercury primarily by erosion, on the basis of higher concentration of mercury (780 ng/L) measured in unfiltered (total mercury, HgT) spring water flowing from the OHE to James Creek compared to 5 to 14 ng/L HgT measured in James Creek itself. Tailing piles (presumably from past Oat Hill mine dumping) near the USBLM property boundary and upstream of the main OHE mine drainage channel (Drainage A; Fig. 2) also likely emit mercury, on the basis of their mercury composition (930 to 1200 ppm). The OHE spring water is likely an

  19. Predicting Volume and Biomass Change from Multi-Temporal Lidar Sampling and Remeasured Field Inventory Data in Panther Creek Watershed, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Krishna P. Poudel

    2018-01-01

    Full Text Available Using lidar for large-scale forest management can improve operational and management decisions. Using multi-temporal lidar sampling and remeasured field inventory data collected from 78 plots in the Panther Creek Watershed, Oregon, USA, we evaluated the performance of different fixed and mixed models in estimating change in aboveground biomass ( ∆ AGB and cubic volume including top and stump ( ∆ CVTS over a five-year period. Actual values of CVTS and AGB were obtained using newly fitted volume and biomass equations or the equations used by the Pacific Northwest unit of the Forest Inventory and Analysis program. Estimates of change based on fixed and mixed-effect linear models were more accurate than change estimates based on differences in LIDAR-based estimates. This may have been due to the compounding of errors in LIDAR-based estimates over the two time periods. Models used to predict volume and biomass at a given time were, however, more precise than the models used to predict change. Models used to estimate ∆ CVTS were not as accurate as the models employed to estimate ∆ AGB . Final models had cross-validation root mean squared errors as low as 40.90% for ∆ AGB and 54.36% for ∆ CVTS .

  20. Water quality and benthic macroinvertebrate bioassessment of Gallinas Creek, San Miguel County, New Mexico, 1987-90

    Science.gov (United States)

    Garn, H.S.; Jacobi, G.Z.

    1996-01-01

    Upper Gallinas Creek in north-central New Mexico serves as the public water supply for the City of Las Vegas. The majority of this 84-square-mile watershed is within national forest lands managed by the U.S. Forest Service. In 1985, the Forest Service planned to conduct timber harvesting in the headwaters of Gallinas Creek. The City of Las Vegas was concerned about possible effects from logging on water quality and on water-supply treatment costs. The U.S. Geological Survey began a cooperative study in 1987 to (1) assess the baseline water-quality characteristics of Gallinas Creek upstream from the Las Vegas water-supply diversion, (2) relate water quality to State water- quality standards, and (3) determine possible causes for spatial differences in quality. During 1987-90, water-quality constituents and aquatic benthic macroinvertebrates were collected and analyzed at five sampling sites in the watershed. Specific conductance, pH, total hardness, total alkalinity, and calcium concentrations increased in a downstream direction, probably in response to differences in geology in the watershed. The water-quality standard for temperature was exceeded at the two most downstream sites probably due to a lack of riparian vegetation and low streamflow conditions. The standards for pH and turbidity were exceeded at all sites except the most upstream one. Concentrations of nitrogen species and phosphorus generally were small at all sites. The maximum total nitrogen concentration of 2.1 milligrams per liter was at the mouth of Porvenir Canyon; only one sample at this site exceeded the water-quality standard for total inorganic nitrogen. At each of the sites, 10 to 15 percent of the samples exceeded the total phosphorus standard of less than 0.1 milligram per liter. Except for aluminum and iron, almost all samples tested for trace elements contained concentrations less than the laboratory detection limit. No trace-element concentrations exceeded the State standard for domestic

  1. 75 FR 25876 - Notice of Intent To Prepare Resource Management Plans for the Beaver Dam Wash and Red Cliffs...

    Science.gov (United States)

    2010-05-10

    ... Intent To Prepare Resource Management Plans for the Beaver Dam Wash and Red Cliffs National Conservation... Environmental Impact Statement, Utah AGENCY: Bureau of Land Management, Interior. ACTION: Notice of intent..., intends to prepare Resource Management Plans (RMP) for the Beaver Dam Wash and the Red Cliffs National...

  2. Collection of Short Papers on the Beaver Creek Watershed Study in West Tennessee, 1989-94

    Science.gov (United States)

    1995-01-01

    Emersent acuatic plants ves no no yes We were unsusccessful at locating a nonchannelized reference site with a similar hydrologic regime (flowing water...402-408. Cummin, K.W., 1973. Trophic Relations of Aquatic Insects . Ann. Review of Entomology 18:183-206. Elder, J.F. and D.J. Cairns, 1982

  3. Determination of perfluorinated sulfonate and perfluorinated acids in tissues of free-living European beaver (castor fiber L.) by d-SPE/ micro-UHPLC-MS/MS.

    Science.gov (United States)

    Surma, Magdalena; Giżejewski, Zygmunt; Zieliński, Henryk

    2015-10-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the main representatives of an rising class of persistent organic pollutants (POPs), perfluorochemicals (PFCs). In this study, determination of selected PFCs concentration in liver, brain, tail, adipose and peritoneum tissues of free-living European beaver (Castor fiber L.) was addressed. Tissue samples, collected from beavers living in Masurian Lakeland (NE Poland), were analyzed by dispersive Solid Phase Extraction (d-SPE) with micro-UHPLC-MS/MS system. In a group of ten selected pefrluorinated compounds only two perfluorinated acids (PFOA and PFNA) and one perfluorinated sulfonate (PFOS) were quantified. PFOA was detected in all analysed tissue samples in both female and male beavers in a range from 0.55 to 0.98ngg(-1) ww whereas PFOS was identified in all analyzed female beaver tissues and only in liver, subcutaneous adipose and peritoneum tissues of male beavers at the concentration level from 0.86 to 5.08ngg(-1) ww. PFNA was only identified in female beaver tissues (liver, subcutaneous adipose and peritoneum) in a range from 1.50 to 6.61ngg(-1) ww. This study demonstrated the bioaccumulation of PFCs in tissue samples collected from beavers living in area known as green lungs of Poland. The results provided in this study indicate for the increasing risk of PFCs occurrence in the environment and the level of PFCs in tissue of free-living European beavers may serve as bioindicator of environmental pollution by these compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Stable isotope and hydrogeochemical studies of Beaver Lake and Lake Radok, MacRobertson Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Hermichen, W.D.; Hoefling, R.; Muehle, K.

    1987-01-01

    Beaver Lake and Lake Radok, the largest known epishelf and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ 2 H, δ 18 O) and hydrogeochemically studied. Lake Radok is an isothermal and non-stratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater. (author)

  5. Stable isotope and hydrogeochemical studies of Beaver Lake and Radok Lake, MacRobertson Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Hermichen, W.D.

    1988-01-01

    Beaver Lake and Radok Lake, the largest known epishelf lake and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ 2 H, δ 18 O) and hydrogeochemically studied. Radok Lake is an isothermal and nonstratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater. (author)

  6. Identifying linkages between land use, geomorphology, and aquatic habitat in a mixed-use watershed.

    Science.gov (United States)

    McIlroy, Susan K; Montagne, Cliff; Jones, Clain A; McGlynn, Brian L

    2008-11-01

    The potential impacts of land use on large woody debris (LWD) were examined in Sourdough Creek Watershed, a rapidly growing area encompassing Bozeman, Montana, USA. We identified six land classes within a 250 m buffer extending on either side of Sourdough Creek and assessed aquatic habitat and geomorphologic variables within each class. All LWD pieces were counted, and we examined 14 other variables, including undercut bank, sinuosity, and substrate composition. LWD numbers were generally low and ranged from 0 to 8.2 pieces per 50 m of stream. Linear regression showed that LWD increased with distance from headwaters, riparian forest width, and sinuosity in four of the six land classes. Statistically significant differences between land classes for many aquatic habitat and geomorphologic variables indicated the impacts of different land uses on stream structure. We also found that practices such as active wood removal played a key role in LWD abundance. This finding suggests that managers should prioritize public education and outreach concerning the importance of in-stream wood, especially in mixed-use watersheds where wood is removed for either aesthetic reasons or to prevent stream flooding.

  7. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Drost, Charles A.; Halvorson, William Lee

    2006-01-01

    Executive Summary We summarize past inventory efforts for vascular plants and vertebrates at Montezuma Castle National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 784 species recorded at Montezuma Castle NM, of which 85 (11%) are non-native. In each taxon-specific chapter we highlight areas of resources that contributed to species richness or unique species for the monument. Of particular importance are Montezuma Well and Beaver and Wet Beaver creeks and the surrounding riparian vegetation, which are responsible for the monument having one of the highest numbers of bird species in the Sonoran Desert Network of park units. Beaver Creek is also home to populations of federally-listed fish species of concern. Other important resources include the cliffs along the creeks and around Montezuma Well (for cliff and cave roosting bats). Based on the review of past studies, we believe the inventory for most taxa is nearly complete, though some rare or elusive species will be added with additional survey effort. We recommend additional inventory, monitoring and research studies.

  8. Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: A holistic watershed approach

    Science.gov (United States)

    Barber, L.B.; Murphy, S.F.; Verplanck, P.L.; Sandstrom, M.W.; Taylor, Howard E.; Furlong, E.T.

    2006-01-01

    Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.

  9. Description of the physical environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds

    International Nuclear Information System (INIS)

    Martin, J.D.; Crawford, C.G.; Duwelius, R.F.; Renn, D.E.

    1990-01-01

    West-central Indiana is underlain by coal-bearing Pennsylvanian rocks. Nearly all of the area has been glaciated at least once and is characterized by wide flood plains and broad, flat uplands. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has > 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. More than 50,000 acres in west-central Indiana were disturbed by surface coal mining from 1941 through 1980. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and the unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Approximately one-half of the Pond Creek watershed is unmined,agricultural land. Soils are very well drained shaly silty loams that have formed on steeply sloping spoil banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation

  10. Modeling the Effects of Onsite Wastewater Treatment Systems on Nitrate Loads Using SWAT in an Urban Watershed of Metropolitan Atlanta.

    Science.gov (United States)

    Hoghooghi, Nahal; Radcliffe, David E; Habteselassie, Mussie Y; Jeong, Jaehak

    2017-05-01

    Onsite wastewater treatment systems (OWTSs) can be a source of nitrogen (N) pollution in both surface and ground waters. In metropolitan Atlanta, GA, >26% of homes are on OWTSs. In a previous article, we used the Soil Water Assessment Tool to model the effect of OWTSs on stream flow in the Big Haynes Creek Watershed in metropolitan Atlanta. The objective of this study was to estimate the effect of OWTSs, including failing systems, on nitrate as N (NO-N) load in the same watershed. Big Haynes Creek has a drainage area of 44 km with mainly urban land use (67%), and most of the homes use OWTSs. A USGS gauge station where stream flow was measured daily and NO-N concentrations were measured monthly was used as the outlet. The model was simulated for 12 yr. Overall, the model showed satisfactory daily stream flow and NO-N loads with Nash-Sutcliffe coefficients of 0.62 and 0.58 for the calibration period and 0.67 and 0.33 for the validation period at the outlet of the Big Haynes Watershed. Onsite wastewater treatment systems caused an average increase in NO-N load of 23% at the watershed scale and 29% at the outlet of a subbasin with the highest density of OWTSs. Failing OWTSs were estimated to be 1% of the total systems and did not have a large impact on stream flow or NO-N load. The NO-N load was 74% of the total N load in the watershed, indicating the important effect of OWTSs on stream loads in this urban watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Hydrogeochemical and stream sediment reconnaissance basic data for Beaver Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 642 water samples from the Beaver Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were done by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  12. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Maurakis, Eugene G

    2010-10-01

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  13. Dry creek long-term watershed study: buffer zone performance as viable amphibian habitat

    Science.gov (United States)

    Brooke L. Talley; Thomas L. Crisman

    2006-01-01

    As bioindicators, amphibians typically require both terrestrial and aquatic habitats to complete their life cycles. Pre- timber-harvest monitoring (December 2002 through September 2003) of salamander and frog (Hylidae) populations was conducted in four watersheds of Decatur County, GA. Post- timber-harvest monitoring (December 2003 through September...

  14. Beaver Valley Power Station and Shippingport Atomic Power Station. 1977 annual environmental report: radiological. Volume 2

    International Nuclear Information System (INIS)

    1978-01-01

    The environmental monitoring conducted during 1977 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station is described. The environmental monitoring program consists of onsite sampling of water, gaseous, and air effluents, as well as offsite monitoring of water, air, river sediments, and radiation levels in the vicinity of the site. The report discusses releases of small quantities of radioactivity to the Ohio River from the Beaver Valley Power Station and Shippingport Atomic Power Station during 1977

  15. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  16. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site

  17. Contributions of systematic tile drainage to watershed-scale phosphorus transport.

    Science.gov (United States)

    King, Kevin W; Williams, Mark R; Fausey, Norman R

    2015-03-01

    Phosphorus (P) transport from agricultural fields continues to be a focal point for addressing harmful algal blooms and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. However, research on the contributions of tile drainage to watershed-scale P losses is limited. The objective of this study was to evaluate long-term P movement through tile drainage and its manifestation at the watershed outlet. Discharge data and associated P concentrations were collected for 8 yr (2005-2012) from six tile drains and from the watershed outlet of a headwater watershed within the Upper Big Walnut Creek watershed in central Ohio. Results showed that tile drainage accounted for 47% of the discharge, 48% of the dissolved P, and 40% of the total P exported from the watershed. Average annual total P loss from the watershed was 0.98 kg ha, and annual total P loss from the six tile drains was 0.48 kg ha. Phosphorus loads in tile and watershed discharge tended to be greater in the winter, spring, and fall, whereas P concentrations were greatest in the summer. Over the 8-yr study, P transported in tile drains represented 90% of all measured concentrations exceeded recommended levels (0.03 mg L) for minimizing harmful algal blooms and nuisance algae. Thus, the results of this study show that in systematically tile-drained headwater watersheds, the amount of P delivered to surface waters via tile drains cannot be dismissed. Given the amount of P loss relative to typical application rates, development and implementation of best management practices (BMPs) must jointly consider economic and environmental benefits. Specifically, implementation of BMPs should focus on late fall, winter, and early spring seasons when most P loading occurs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Measuring taste impairment in epidemiologic studies: the Beaver Dam Offspring Study.

    Science.gov (United States)

    Cruickshanks, K J; Schubert, C R; Snyder, D J; Bartoshuk, L M; Huang, G H; Klein, B E K; Klein, R; Nieto, F J; Pankow, J S; Tweed, T S; Krantz, E M; Moy, G S

    2009-07-01

    Taste or gustatory function may play an important role in determining diet and nutritional status and therefore indirectly impact health. Yet there have been few attempts to study the spectrum of taste function and dysfunction in human populations. Epidemiologic studies are needed to understand the impact of taste function and dysfunction on public health, to identify modifiable risk factors, and to develop and test strategies to prevent clinically significant dysfunction. However, measuring taste function in epidemiologic studies is challenging and requires repeatable, efficient methods that can measure change over time. Insights gained from translating laboratory-based methods to a population-based study, the Beaver Dam Offspring Study (BOSS) will be shared. In this study, a generalized labeled magnitude scale (gLMS) method was used to measure taste intensity of filter paper disks saturated with salt, sucrose, citric acid, quinine, or 6-n-propylthiouracil, and a gLMS measure of taste preferences was administered. In addition, a portable, inexpensive camera system to capture digital images of fungiform papillae and a masked grading system to measure the density of fungiform papillae were developed. Adult children of participants in the population-based Epidemiology of Hearing Loss Study in Beaver Dam, Wisconsin, are eligible for this ongoing study. The parents were residents of Beaver Dam and 43-84 years of age in 1987-1988; offspring ranged in age from 21-84 years in 2005-2008. Methods will be described in detail and preliminary results about the distributions of taste function in the BOSS cohort will be presented.

  19. A linear programming model of diet choice of free-living beavers

    NARCIS (Netherlands)

    Nolet, BA; VanderVeer, PJ; Evers, EGJ; Ottenheim, MM

    1995-01-01

    Linear programming has been remarkably successful in predicting the diet choice of generalist herbivores. We used this technique to test the diet choice of free-living beavers (Castor fiber) in the Biesbosch (The Netherlands) under different Foraging goals, i.e. maximization of intake of energy,

  20. Compliance of the Savannah River Site D-Area cooling system with environmental regulations

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wike, L.D.; Wilde, E.W. (eds.)

    1990-08-01

    This document presents information relating to a demonstration under Section 316(a) of the Clean Water Act for the 400-D Area cooling system at the Savannah River Site (SRS) near Aiken, South Carolina. The demonstration was mandated because the National Pollution Discharge Elimination System (NPDES) permit for SRS (SC0000175), granted on January 1, 1984, specified in-stream temperature limits in SRS streams of 32.2{degree}C and a {Delta}T limit of 2.8{degree}C above ambient. To achieve compliance with in-stream temperature limits, the Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC) entered into a Consent Order (84-4-W) which temporarily superseded the temperature requirements and identified a process for attaining compliance. The preferred option for achieving thermal compliance in Beaver Dam Creek consisted of increased flow, with mixing of the raw water basin overflow with the cooling water discharge during the summer months. Although this action can achieve instream temperatures of less than 32.2{degree}C, {Delta}T's still exceed 2.8{degree}C. Therefore, a 316 (a) Demonstration was initiated to determine whether a balanced indigenous biological community can be supported in the receiving stream with {Delta}T's in excess of 2.8{degree}C. A Biological Monitoring Program for Beaver Dam Creek was approved by SCDHEC in June 1988 and implemented in September 1988. The program monitored the water quality, habitat formers, zooplankton, macroinvertebrates, fish, other vertebrate wildlife and threatened and endangered species in Beaver Dam Creek for an 18-month period (September 1988-February 1990). This document summarizes information collected during the monitoring program and evaluates the data to determine whether Beaver Dam Creek presently supports a balanced indigenous biological community. 97 refs., 32 figs., 51 tabs.

  1. Mercury Contributions from Flint Creek and other Tributaries to the Upper Clark Fork River in Northwestern Montana

    Science.gov (United States)

    Langner, H.; Young, M.; Staats, M. F.

    2013-12-01

    Methylmercury contamination in biota is a major factor diminishing the environmental quality of the Upper Clark Fork River (CFR), e.g. by triggering human consumption limits of fish. The CFR is subject to one of the largest Superfund cleanup projects in the US, but remediation and restoration is currently focused exclusively on other mining-related contaminants (As, Cu, Zn, Pb, Cd), which may be counterproductive with respect to the bio-availability of mercury, for example by creation of wetlands along mercury-contaminated reaches of the river. The identification and elimination of Hg sources is an essential step toward reducing the methylmercury exposure in the biota of the CFR watershed because a strong correlation exists between total mercury levels in river sediment and methylmercury levels in aquatic life. We analyzed duplicate samples from the top sediment layer of the main stem and significant tributaries to the Clark Fork River along a 240 km reach between Butte, MT and downstream of the Missoula Valley. Mercury concentrations were 1.3 × 1.6 (mean × SD, n = 35) in the main stem. Concentrations in tributaries varied widely (0.02 to 85 mg/kg) and seemed only loosely related to the number of historic precious metal mines in the watershed. In the upper reach of the CFR, elevated Hg levels are likely caused by residual contaminated sediments in the flood plain. Levels tend to decrease downstream until Drummond, MT, where Flint Creek contributes a significant amount of mercury, causing Hg levels in the main stem CFR to increase from 0.7 to 4 mg/kg. Levels continue to decrease downstream. Flint Creek is the single largest contributor of Hg to the CFR. Detailed sampling of the main stem Flint Creek and tributaries (26 sites) showed extremely high levels in two tributaries (22 to 85 mg/kg) where historic milling operations were located. Elimination of these point sources may be accomplished comparatively economically and may significantly reduce mercury levels in

  2. The Impact of Long-Term Climate Change on Nitrogen Runoff at the Watershed Scale.

    Science.gov (United States)

    Dorley, J.; Duffy, C.; Arenas Amado, A.

    2017-12-01

    The impact of agricultural runoff is a major concern for water quality of mid-western streams. This concern is largely due to excessive use of agricultural fertilizer, a major source of nutrients in many Midwestern watersheds. In order to improve water quality in these watersheds, understanding the long-term trends in nutrient concentration and discharge is an important water quality problem. This study attempts to analyze the role of long-term temperature and precipitation on nitrate runoff in an agriculturally dominated watershed in Iowa. The approach attempts to establish the concentration-discharge (C-Q) signature for the watershed using time series analysis, frequency analysis and model simulation. The climate data is from the Intergovernmental Panel on Climate Change (IPCC), model GFDL-CM3 (Geophysical Fluid Dynamic Laboratory Coupled Model 3). The historical water quality data was made available by the IIHR-Hydroscience & Engineering at the University of Iowa for the clear creek watershed (CCW). The CCW is located in east-central Iowa. The CCW is representative of many Midwestern watersheds with humid-continental climate with predominantly agricultural land use. The study shows how long-term climate changes in temperature and precipitation affects the C-Q dynamics and how a relatively simple approach to data analysis and model projections can be applied to best management practices at the site.

  3. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data.

    Science.gov (United States)

    Arenas Amado, A; Schilling, K E; Jones, C S; Thomas, N; Weber, L J

    2017-09-01

    Nitrogen losses from artificially drained watersheds degrade water quality at local and regional scales. In this study, we used an end-member mixing analysis (EMMA) together with high temporal resolution water quality and streamflow data collected in the 122 km 2 Otter Creek watershed located in northeast Iowa. We estimated the contribution of three end-members (groundwater, tile drainage, and quick flow) to streamflow and nitrogen loads and tested several combinations of possible nitrate concentrations for the end-members. Results indicated that subsurface tile drainage is responsible for at least 50% of the watershed nitrogen load between April 15 and November 1, 2015. Tiles delivered up to 80% of the stream N load while providing only 15-43% of the streamflow, whereas quick flows only marginally contributed to N loading. Data collected offer guidance about areas of the watershed that should be targeted for nitrogen export mitigation strategies.

  4. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  5. Habitat Evaluation Procedures (HEP) Report : West Beaver Lake, 2004-2005 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 103.08 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 7.17 HUs for mallard and muskrat. Conifer forest habitat provides 95.91 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  6. A wireless partially glaciated watershed in a virtual globe: Integrating data, models, and visualization to increase climate change understanding

    Science.gov (United States)

    Jones, J.; Hood, E.; Fatland, D. R.; Berner, L.; Heavner, M.; Connor, C.; O'Brien, W.

    2008-12-01

    SEAMONSTER, a NASA funded sensor web project, is the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education and Research. SEAMONSTER is operating in the partially glaciated Mendenhall and Lemon Creek Watersheds, in the Juneau area, on the margins of the Juneau Icefield. These watersheds are studied for both 1. long term monitoring of changes, and 2. detection and analysis of transient events (such as glacier lake outburst floods). The diverse sensors (meteorological, dual frequency GPS, water quality, lake level, etc), power and bandwidth constraints, and competing time scales of interest require autonomous reactivity of the sensor web. The sensors are deployed throughout two partially glaciated watersheds and facilitated data acquisition in temperate rain forest, alpine, lacustrine, and glacial environments. Understanding these environments is important for public understanding of climate change. These environments are geographically isolated, limiting public access to, and understanding of, such locales. In an effort to inform the general public and primary educators about the basic processes occurring in these unique natural systems, we have developed an interactive website. This web portal supplements and enhances environmental science primary education by providing educators and students with interactive access to basic information from the glaciological, hydrological, and meteorological systems we are studying. In addition, we have developed an interactive virtual tour of the Lemon Glacier and its watershed. The focus of this presentation is using the data gathered by the SEAMONSTER sensor web, coupled with a temperature-indexed glacial melt model, to educate students and the public on topics ranging from modeling responses due to environmental changes to glacial hydrology. The interactive SEAMONSTER web site is the primary source for visualizing the data, while Google Earth can be used to visualize the isolated Lemon Creek watershed

  7. Remedial investigation work plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.; Clapp, R.B.; Dearstone, K.; Dreier, R.B.; Early, T.O.; Herbes, S.E.; Loar, J.M.; Parr, P.D.; Southworth, G.R.

    1991-07-01

    As part of its response to Resource Conservation and Recovery Act (RCRA), the US Department of Energy had agreed to further investigate contamination of Bear Creek and its floodplain resulting from releases of hazardous waste or hazardous constituents from the Y-12 Plant solid waste management units (SWMU) located in the Bear Creek watershed. That proposed RCRA Facility Investigation has been modified to incorporate the requirements of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) into a Remedial Investigation (RI) Plan for Bear Creek. This document is the RI Plan for Bear Creek and its flood-of-record floodplain. The following assumptions were made in the preparation of this RI Plan: (1) That source-area groundwater monitoring will be conducted as a part of the comprehensive groundwater monitoring plan for the Bear Creek Hydrogeologic Regime; and (2) that postclosure activities associated with each SWMU do not explicitly include a comprehensive assessment of surface water, sediment, and floodplain soil contamination in Bear Creek and its tributaries. The RI Plan is thus intended to provide a more comprehensive evaluation of Bear Creek and its floodplain than that provided by the investigative monitoring and risk assessment activities associated with the ten individual SWMUs. RI activities will be carefully coordinated with other monitoring and assessment activities to avoid redundancy and to maximize the utility of data gathered during the investigation. 121 refs., 61 figs., 46 tabs

  8. Hydrologic analysis for ecological risk assessment of watersheds with abandoned mine lands

    International Nuclear Information System (INIS)

    Gallagher, D.; Babendreier, J.; Cherry, D.

    1999-01-01

    As part of on-going study of acid mine drainage (AMD), a comprehensive ecological risk assessment was conducted in the Leading Creek Watershed in southeast Ohio. The watershed is influenced by agriculture and active and abandoned coal-mining operations. This work presents a broad overview of several quantitative measures of hydrology and hydraulic watershed properties available for in risk assessment and evaluates their relation to metrics of ecology. Data analysis included statistical comparisons of metrics of ecology, ecotoxicology, water quality, and physically based parameters describing land use, geomorphology, flow, velocity, and particle size. A multiple regression analysis indicated that abandoned mining operations dominated impacts upon aquatic ecology. It also indicated low flow velocity measurements and a ratio of maximum velocity to average velocity at low flow where helpful in describing variation in macroinvertebrate Total Taxa scores. Other key parameters also identified strong impact relationships with biodiversity trends and included pH, simple knowledge of any mining upstream, calculated % of the subshed covered by strip mines, and the measured depth of streambed sediments from site to site

  9. Development of a reliable method for determining sex for a primitive rodent, the Point Arena mountain beaver (Aplodontia rufa nigra)

    Science.gov (United States)

    Kristine L. Pilgrim; William J. Zielinski; Fredrick V. Schlexer; Michael K. Schwartz

    2012-01-01

    The mountain beaver (Aplodontia rufa) is a primitive species of rodent, often considered a living fossil. The Point Arena mountain beaver (Aplodontia rufa nigra) is an endangered subspecies that occurs in a very restricted range in northern California. Efforts to recover this taxon have been limited by the lack of knowledge on their demography, particularly sex and age...

  10. Using the weight-of-evidence approach for ecological risk assessment at a DOE facility

    International Nuclear Information System (INIS)

    Hull, R.N.; Suter, G.W.

    1994-01-01

    The Portsmouth Gaseous Diffusion Plant (PORTS), an uranium enrichment plant, has released various contaminants into the environment. An ecological risk assessment is underway for the site, which includes an evaluation of Little Beaver Creek, which flows along the eastern and northern sides of PORTS. For this assessment, the creek was divided into reaches which were defined in terms of contaminant sources. This creek receives contaminants from permitted outfalls, groundwater discharge, non-point sources, and accidental releases. Metal contamination is the major concern at the site. Receptors include the fish and benthic communities in the creek, and soil invertebrates and plants in the floodplain. A weight-of-evidence approach was used to evaluate risks to those receptors, based on chemical analyses, toxicity tests and field surveys. The fish and benthic communities are impacted on Little Beaver Creek in a reach near a permitted discharge, with improvements seen downstream of this location. Ambient water, sediment and soil samples were not toxic to laboratory organisms. Either these toxicity tests were not sufficiently sensitive to detect toxicity, or the observed changes in the aquatic communities did not result from toxicity. Because conditions improved downstream from the permitted discharge, it was concluded that this is the major source of toxicity in the creek

  11. Characterisation of Beaver Habitat Parameters That Promote the Use of Culverts as Dam Construction Sites: Can We Limit the Damage to Forest Roads?

    Directory of Open Access Journals (Sweden)

    Geneviève Tremblay

    2017-12-01

    Full Text Available The use of forest roads as foundations for dam construction by beavers is a recurrent problem in the management of forest road networks. In order to limit the damage to forest roads, our goal was to calculate the probability of beaver dam installation on culverts, according to surrounding habitat parameters, which could allow for improvement in the spatial design of new roads that minimise conflicts with beavers. Comparisons of culverts with (n = 77 and without (n = 51 dams in northwestern Quebec showed that catchment surface, cumulate length of all local streams within a 2-km radius, and road embankment height had a negative effect on the probability of dam construction on culverts, while flow level and culvert diameter ratio had a positive effect. Nevertheless, predicted probabilities of dam construction on culverts generally exceeded 50%, even on sites that were less favourable to beavers. We suggest that it would be more reasonable to take their probable subsequent presence into account at the earliest steps of road conception. Installing mitigation measures such as pre-dams during road construction would probably reduce the occurrence of conflicts with beavers and thus reduce the maintenance costs of forest roads.

  12. The impacts of Phalaris arundinacea (reed canary grass) invasion on wetland plant richness in the Oregon Coast Range, USA, depend on beavers

    Science.gov (United States)

    Perkins, T.; Wilson, M.

    2005-01-01

    Invasive plants can threaten diversity and ecosystem function. We examined the relationship between the invasive Phalaris arundinacea (reed canarygrass) and species richness in beaver wetlands in Oregon, USA. Four basins (drainages) were chosen and three sites each of beaver impoundments, unimpounded areas and areas upstream of debris jams were randomly chosen in each basin for further study (n = 36). Analysis of covariance (ANCOVA) showed that the relationship between Phalaris and species richness differed significantly (p = 0.01) by site type. Dam sites (beaver impoundments) exhibited a strong inverse relationship between Phalaris and species richness (bD = a??0.15), with one species lost for each 7% increase in Phalaris cover. In contrast, there was essentially no relationship between Phalaris cover and species richness in jam sites (debris jam impoundments formed by flooding; bJ = +0.01) and unimpounded sites (bU = a??0.03). The cycle of beaver impoundment and abandonment both disrupts the native community and provides an ideal environment for Phalaris, which once established tends to exclude development of herbaceous communities and limits species richness. Because beaver wetlands are a dominant wetland type in the Coast Range, Phalaris invasion presents a real threat to landscape heterogeneity and ecosystem function in the region.

  13. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  14. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV

  15. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

  16. A watershed's response to logging and roads: South Fork of Caspar Creek, California, 1967-1976

    Science.gov (United States)

    Raymond M. Rice; Forest B. Tilley; Patricia A. Datzman

    1979-01-01

    The effect of logging and roadbuilding on erosion and sedimentation are analyzed by comparing the North Fork and South Fork of Caspar Creek, in northern California. Increased sediment production during the 4 years after road construction, was 326 cu yd/sq mi/yr—80 percent greater than that predicted by the predisturbance regression analysis. The average...

  17. Establishment of a health surveillance program for reintroduction of the Eurasian beaver (Castor fiber) into Scotland.

    Science.gov (United States)

    Goodman, Gidona; Girling, Simon; Pizzi, Romain; Meredith, Anna; Rosell, Frank; Campbell-Palmer, Roisin

    2012-10-01

    In 2009 and 2010 16 Norwegian Eurasian beavers (Castor fiber) were reintroduced to Knapdale, Scotland as part of a 5-yr reintroduction trial (Scottish Beaver Trial). Despite numerous reintroduction programs throughout Europe there is no published information concerning recommended health surveillance during beaver reintroduction and only one publication describing causes of mortality. We describe the establishment of a health surveillance program based on International Union of Conservation of Nature (IUCN) and governmental guidelines, and report preliminary results based on the fecal and blood samples following the completion of the first stage of reintroduction. Animals underwent at least one general anesthetic to allow collection of fecal and blood samples and a thorough clinical examination. No bacterial enteric pathogens such as Salmonella spp., Campylobacter spp., or Yersinia pseudotuberculosis were isolated, nor were Giardia spp. or Cryptosporidium spp. However, numerous helminths including Travassosius rufus and Stichorchis subtriquetrus were detected. Five animals were positive for Leptospira antibodies. This included Leptospira saxkoebing, Leptospira canicola, Leptospira copenhageni, Leptospira icterohaemorrhagiae, Leptospira autumnalis, and Leptospira javanica. The highest loss of animals (20%) was during the statutory 6-mo rabies quarantine period. No common cause of death was determined. The rabies quarantine conditions were waived for four remaining animals, three of which were introduced to the wild successfully. The authors recommend the shortest possible quarantine period when introducing beavers, but allowing for the minimum recommended IUCN 35 days to allow for implementation of the initial stage of the health surveillance program, examination of animals, sample collection, and processing.

  18. Predicting Bacteria Removal by Enhanced Stormwater Control Measures (SCMs) at the Watershed Scale

    Science.gov (United States)

    Wolfand, J.; Bell, C. D.; Boehm, A. B.; Hogue, T. S.; Luthy, R. G.

    2017-12-01

    Urban stormwater is a major cause of water quality impairment, resulting in surface waters that fail to meet water quality standards and support their designated uses. Fecal indicator bacteria are present in high concentrations in stormwater and are strictly regulated in receiving waters; yet, their fate and transport in urban stormwater is poorly understood. Stormwater control measures (SCMs) are often used to treat, infiltrate, and release urban runoff, but field measurements show that the removal of bacteria by these structural solutions is limited (median log removal = 0.24, n = 370). Researchers have therefore looked to improve bacterial removal by enhancing SCMs through alterations in flow regimes or adding geomedia such as biochar. The present research seeks to develop a model to predict removal of fecal indicator bacteria by enhanced SCMs at the watershed scale in a semi-arid climate. Using the highly developed Ballona Creek watershed (290 km2) located in Los Angeles County as a case study, a hydrologic model is coupled with a stochastic water quality model to predict E. coli concentration near the outfall of the Ballona Creek, Santa Monica Bay. A hydrologic model was developed using EPA SWMM, calibrated for flow from water year 1998-2006 (NSE = 0.94; R2 = 0.94), and validated from water year 2007-2015 (NSE = 0.90; R2 = 0.93). This bacterial loading model was then linked to EPA SUSTAIN and a SCM bacterial removal script to simulate log removal of bacteria by various SCMs and predict bacterial concentrations in Ballona Creek. Preliminary results suggest small enhancements to SCMs that improve bacterial removal (<0.5 log removal) may offer large benefits to surface water quality and enable communities such as Los Angeles to meet their regulatory requirements.

  19. Description of the physical environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds

    Science.gov (United States)

    Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, R.F.; Renn, D.E.

    1987-01-01

    Information on the geology, geomorphology, soils, climate, hydrology, water use, land use, population, and coal mining history of Clay, Owen, Sullivan, and Vigo Counties in Indiana is summarized. Site-specific information is given on the morphology , geology, soils, land use, coal mining history, and hydrologic instrumentation of the six watersheds which are each less than 3 sq mi in area. The Wabash, White, and Eel Rivers are the major drainages in west-central Indiana. Average annual precipitation is about 39.5 in/yr and average annual runoff is about 13 in/yr. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has more than 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. Almost half of Indiana 's surface reserves are in Clay, Owen, Sullivan, and Vigo Counties. More than 50,000 acres in west-central Indiana have been disturbed by surface coal mining from 1941 through 1980. Big Slough and Hooker Creek are streams that drain unmined, agricultural watersheds. Row-crop corn and soybeans are the principal crops. Soils are moderately well drained silt loams, and the watersheds well developed dendritic drainage systems. Unnamed tributaries drain mined and reclaimed watersheds. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and an unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Soils are very well drained shaly silty loams that have formed on steeply sloping banks. Both watersheds contain numerous

  20. Habitat Evaluation Procedures (HEP) Report; West Beaver Lake Project, Technical Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 82.69 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 8.80 HUs for mallard, muskrat, and Canada goose. Conifer forest habitat provides 70.33 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Open water provides 3.30 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  1. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  2. SWAT Model Prediction of Phosphorus Loading in a South Carolina Karst Watershed with a Downstream Embayment

    Science.gov (United States)

    Devendra M. Amatya; Manoj K. Jha; Thomas M. Williams; Amy E. Edwards; Daniel R.. Hitchcock

    2013-01-01

    The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data...

  3. Application of a calibrated/validated Agricultural Policy/Environmental eXtender model to assess sediment and nutrient delivery from the Wildcat Creek Mississippi River Basin Initiative – Cooperative Conservation Partnership

    Science.gov (United States)

    The Wildcat Creek, a tributary to the Wabash River was identified by the USDA Natural Resources Conservation Service (NRCS) as a priority watershed for its high sediment and nutrient loading contributions to the Mississippi River. As part of the Mississippi River Basin Initiative (MRBI), the incorpo...

  4. Final Environmental Statement related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1985-09-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with Beaver Valley Power Station Unit 2 pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental benefits and costs, and concludes that the action called for is the issuance of an operating license for Beaver Valley Unit 2

  5. Vegetation - Pine Creek WA and Fitzhugh Creek WA [ds484

    Data.gov (United States)

    California Natural Resource Agency — This fine-scale vegetation classification and map of the Pine Creek and Fitzhugh Creek Wildlife Areas, Modoc County, California was created following FGDC and...

  6. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  7. Coastal Fog Sustains Summer Baseflow in Northern Californian Watershed

    Science.gov (United States)

    Chung, M.; Dufour, A.; Leonardson, R.; Thompson, S. E.; Dawson, T. E.

    2015-12-01

    The Mediterranean climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. During summer, frequently the only water inputs occur as occult precipitation, in the form of fog and dew. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems and a widespread phenomenon associated with deep marine upwelling in west coast, arid, and Mediterranean climates worldwide. We monitored fog occurrence and intensity, throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables, and made visual observations of the spatial extent of fog using time-lapse imagery in Upper Pilarcitos Creek Watershed (managed by San Francisco Public Utilities Commission as part of the San Francisco area water supply). We adopted a stratified sampling design that captured the watershed's elevation gradient, forest-edge versus interior locations, and different vegetation cover. The point-scale observations of throughfall inputs and transpiration suppression, estimated from the Penman equation, were upscaled using such watershed features and the observed fog "footprint" identified from the time-lapse images. When throughfall input and fog-induced transpiration suppression were incorporated into the operational watershed model, they improved estimates of summer baseflow, which remained persistently higher than could be explained without the fog effects. Fog, although providing relatively small volumetric inputs to the water balance, appears to offer significant relief of water stress throughout the terrestrial and aquatic components of the coastal Californian ecosystem and thus should be accounted for when assessing water stress availability in dry ecosystems.

  8. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    International Nuclear Information System (INIS)

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring

  9. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

    Energy Technology Data Exchange (ETDEWEB)

    Shanley, James B. [US Geological Survey, PO Box 628, Montpelier, VT 05601 (United States)], E-mail: jshanley@usgs.gov; Alisa Mast, M. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: mamast@usgs.gov; Campbell, Donald H. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: dhcampbe@usgs.gov; Aiken, George R. [US Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303 (United States)], E-mail: graiken@usgs.gov; Krabbenhoft, David P. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: dpkrabbe@usgs.gov; Hunt, Randall J. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: rjhunt@usgs.gov; Walker, John F. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: jfwalker@usgs.gov; Schuster, Paul F. [US Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303 (United States)], E-mail: pschuste@usgs.gov; Chalmers, Ann [US Geological Survey, PO Box 628, Montpelier, VT 05601 (United States)], E-mail: chalmers@usgs.gov; Aulenbach, Brent T. [US Geological Survey, 3039 Amwiler Road, Suite 130, Atlanta, GA 30360 (United States)], E-mail: btaulenb@usgs.gov; Peters, Norman E. [US Geological Survey, 3039 Amwiler Road, Suite 130, Atlanta, GA 30360 (United States)], E-mail: nepeters@usgs.gov; Marvin-DiPasquale, Mark [US Geological Survey, 345 Middlefield Rd., MS 480, Menlo Park, CA 94025 (United States)], E-mail: mmarvin@usgs.gov; Clow, David W. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: dwclow@usgs.gov; Shafer, Martin M. [Environmental Chemistry and Technology and Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: mmshafer@wisc.edu

    2008-07-15

    The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L{sup -1} and MeHg was less than 0.2 ng L{sup -1}. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L{sup -1} at Sleepers River, Vermont; 112 (0.75) ng L{sup -1} at Rio Icacos, Puerto Rico; and 55 (0.80) ng L{sup -1} at Panola Mt., Georgia. Filtered (<0.7 {mu}m) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5 ng L{sup -1} at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. - High-flow sampling reveals strong contrasts in total

  10. Simulating low-flow conditions in an arctic watershed using WaSiM

    Science.gov (United States)

    Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.

    2017-12-01

    The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water

  11. A novel papillomavirus isolated from proliferative skin lesions of a wild American beaver (Castor canadensis).

    Science.gov (United States)

    Rogovskyy, Artem S; Baszler, Timothy V; Bradway, Daniel S; Bruning, Darren L; Davitt, Christine M; Evermann, James F; Burk, Robert D; Chen, Zigui; Mansfield, Kristin G; Haldorson, Gary J

    2012-07-01

    Cutaneous papillomatosis was diagnosed in an adult American beaver (Castor canadensis). Gross lesions included numerous exophytic, roughly circular, lightly pigmented lesions on hairless areas of fore and hind feet and the nose. The most significant histopathologic findings were multifocal papilliform hyperplasia of the superficial stratified squamous epithelium, with multifocal koilocytes, and multiple cells with large, darkly basophilic intranuclear inclusion bodies. A virus with properties consistent with papillomavirus (PV) was recovered by virus isolation of skin lesions, utilizing rabbit and feline kidney cell lines. The presence of the virus was confirmed by PV-specific polymerase chain reaction. The partial sequences of E1 and L1 genes did not closely match those of any PVs in GenBank, suggesting that this might be a new type of PV. Partial E1 and L1 nucleotide sequences of the beaver papillomavirus (hereafter, ARbeaver-PV1) were used to create a phylogenetic tree employing the complete E1 and L1 open reading frame nucleotide sequences of 68 PVs. The phylogenetic tree placed the ARbeaver-PV1 in a clade that included the Mupapillomavirus (HPV1 and HPV63) and Kappapapillomavirus (OcPV1 and SfPV1) genera. The present article confirms the papillomaviral etiology of cutaneous exophytic lesions in the beaver.

  12. Reference-free SNP discovery for the Eurasian beaver from restriction site-associated DNA paired-end data.

    Science.gov (United States)

    Senn, Helen; Ogden, Rob; Cezard, Timothee; Gharbi, Karim; Iqbal, Zamin; Johnson, Eric; Kamps-Hughes, Nick; Rosell, Frank; McEwing, Ross

    2013-06-01

    In this study, we used restriction site-associated DNA (RAD) sequencing to discover SNP markers suitable for population genetic and parentage analysis with the aim of using them for monitoring the reintroduction of the Eurasian beaver (Castor fibre) to Scotland. In the absence of a reference genome for beaver, we built contigs and discovered SNPs within them using paired-end RAD data, so as to have sufficient flanking region around the SNPs to conduct marker design. To do this, we used a simple pipeline which catalogued the Read 1 data in stacks and then used the assembler cortex_var to conduct de novo assembly and genotyping of multiple samples using the Read 2 data. The analysis of around 1.1 billion short reads of sequence data was reduced to a set of 2579 high-quality candidate SNP markers that were polymorphic in Norwegian and Bavarian beaver. Both laboratory validation of a subset of eight of the SNPs (1.3% error) and internal validation by confirming patterns of Mendelian inheritance in a family group (0.9% error) confirmed the success of this approach. © 2013 John Wiley & Sons Ltd.

  13. Reproductive characteristics of the Point Arena mountain beaver (Aplodontia rufa nigra)

    Science.gov (United States)

    William Zielinski; M. J. Mazurek

    2016-01-01

    Little is known about the ecology and life history of the federally endangered Point Arena mountain beaver (Aplodontia rufa nigra). The distribution of this primitive burrowing rodent is disjunct from the balance of the species’ range and occurs in a unique maritime environment of coastal grasslands and forests. Fundamental to protecting this taxon...

  14. Seasonal Variation in Water Chemistry Parameters in the Clayburn - Willband Watershed, Abbotsford, British Columbia.

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Faculty and students from the University of the Fraser Valley (UFV) have conducted time series sampling of the Fraser River at Fort Langley and six Fraser Valley tributaries as a member of the Global Rivers Observatory (GRO, www.globalrivers.org) coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. The Clayburn - Willband - Stoney watershed has become a focus of the sampling being conducted by faculty and students from the Geography and Biology Departments at UFV. Water chemistry data (water temperature, dissolved oxygen, conductivity, pH and turbidity) and samples (nutrients, major ions and bacteria) have been collected weekly from sites on these creeks. These watersheds are threatened by increasing urban development, increasing idustrial activity, and expansion of agricultural landuse within the watershed. Documenting the seasonal changes in the water chemistry as measured during the onset of the heavy fall and winter precipitation events, the wet and cool winters and springs, and the hot and dry summers will assist in attempts to protect these important salmon spawning streams from anthropogenic activity.

  15. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  16. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs

  17. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  18. The Effect of Beaver Activity on the Ammonium Uptake and Water Residence Time Characteristics of a Third-Order Stream Reach

    Science.gov (United States)

    Briggs, M.; Gooseff, M. N.; Wollheim, W. M.; Peterson, B. J.; Morkeski, K.

    2009-12-01

    Increasing beaver populations within low gradient basins in the northeastern United States are fundamentally changing the way water and dissolved nutrients are exported through these stream networks to the coast. Beaver dams can increase water residence time and contact with organic material, promote anoxic conditions and enhance both surface and hyporheic transient storage; all of these may have an impact on biogeochemical reactivity and nutrient retention. To quantitatively assess some of these effects we co-injected NaCl and NH4+ into the same 3rd-order stream reach in Massachusetts, USA under pre- and post-dam conditions. These experiments were done at similar discharge rates to isolate the impacts of a large natural beaver dam (7 m X 1.3 m) on the low-gradient (0.002) system where variable discharge also imparts a strong control on residence time. During the post-dam experiment there was an estimated 2300 m3 of water impounded behind the structure, which influenced more than 300 m of the 650 m stream reach. Our results showed that median transport time through the reach increased by 160% after dam construction. Additionally the tracer tailing time normalized to the corresponding median transport time increased from 1.08 to 1.51, indicating a pronounced tailing of the tracer signal in the post-dam condition. Data collected within the beaver pond just upstream of the dam indicated poor mixing and the presence of preferential flow paths through the generally stagnant zone. The uptake length (Sw) for NH4+ was 1250 m under the pre-dam condition, and may have changed for the post-dam reach in part because of the observed changes in residence time. As beaver population growth continues within these basins the consequences may be a smoothing of the outlet hydrograph and increased nutrient and organic matter removal and storage along the stream network.

  19. Seasonal occurrence of antibiotics and a beta agonist in an agriculturally-intensive watershed

    International Nuclear Information System (INIS)

    Jaimes-Correa, Juan C.; Snow, Daniel D.; Bartelt-Hunt, Shannon L.

    2015-01-01

    We evaluated the occurrence of 12 veterinary antibiotics and a beta agonist over spatial and temporal scales in Shell Creek, an intensively agricultural watershed in Nebraska, using Polar Organic Chemical Integrative Samplers (POCIS). Twelve pharmaceuticals were detected with concentrations ranging from 0.0003 ng/L to 68 ng/L. The antibiotics measured at the highest time-weighted average concentrations were lincomycin (68 ng/L) and monensin (49 ng/L), and both compounds were detected at increased concentrations in summer months. Analysis of variance indicates that mean concentrations of detected pharmaceuticals have no significant (p > 0.01) spatial variation. However, significant temporal differences (p < 0.01) were observed. This study demonstrates the utility of passive samplers such as POCIS for monitoring ambient levels of pharmaceuticals in surface waters. - Highlights: • Passive samplers were used to evaluate veterinary pharmaceuticals in an agricultural watershed. • Monensin and lincomycin were detected at the highest TWA concentrations. • Significantly higher concentrations were detected in summer months. • Pulses of antibiotics correspond with rainfall-runoff events. - The spatial and temporal differences in the occurrence of thirteen veterinary pharmaceuticals was evaluated in an intensively agricultural watershed

  20. WATERSHED SELECTION FOR ENVIRONMENTAL REHABILITATION USING MULTICRITERIA ANALYSIS

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo da Silva Francisco

    2009-10-01

    Full Text Available The Anhumas creek watershed, in the region of Campinas, São Paulo State, Brazil, is degraded also as a result of unplanned land use of its riparian zones, considered Permanent Preservation Areas (APP. Therefore, river flow is unstable, promoting frequent flood damages, besides the lack of several environmental functions of its APPs. Environmental recovery of a degraded area requires a comprehensive effort, often multidisciplinary. Multicriterial analysis is a tool which allows gathering a diversity of attributes of the studied subject, weighing and valuating them, helping in the decision making effort. This work aims to apply two methods of multicriteria analysis to optimize the selection of a watershed for an environmental recovery study of APPs in the Anhumas watershed. The Anhumas watershed was divided in 7 sub-basins aiming the selection of one of those to implement an environmental planning study and to establish and rank areas that should be prioritized for recovery. Thirteen environmental criteria were selected for application of multicriteria analysis using the methods of Compromise Programming (PC and Cooperative Game Theory (CGT. Relevance of each criterion to the analysis was given by a questionnaire answered by specialists. Basin selection results showed no difference neither between PC and CGT nor between mean or mode used to standardize weights given by specialists. Multicriteria analysis was effective, but allowed enough flexibility for the decision maker (DM to adjust undesired analysis distortions. After DM adjustments, the priority basins were ranked as basins 4 > 7 > 5 > 6 > 2 > 3 > 1. Important procedures when carrying out such an analysis were to avoid conceptual overlapping among different criteria, to implement appropriate value judgment for each criterion and to use decision maker expertise to supplement weights obtained with specialists.

  1. Remedial investigation work plan for the Upper East Fork Poplar Creek characterization area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishment of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ''site,'' data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.

  2. Seasonal differences in the testicular transcriptome profile of free-living European beavers (Castor fiber L. determined by the RNA-Seq method.

    Directory of Open Access Journals (Sweden)

    Iwona Bogacka

    Full Text Available The European beaver (Castor fiber L. is an important free-living rodent that inhabits Eurasian temperate forests. Beavers are often referred to as ecosystem engineers because they create or change existing habitats, enhance biodiversity and prepare the environment for diverse plant and animal species. Beavers are protected in most European Union countries, but their genomic background remains unknown. In this study, gene expression patterns in beaver testes and the variations in genetic expression in breeding and non-breeding seasons were determined by high-throughput transcriptome sequencing. Paired-end sequencing in the Illumina HiSeq 2000 sequencer produced a total of 373.06 million of high-quality reads. De novo assembly of contigs yielded 130,741 unigenes with an average length of 1,369.3 nt, N50 value of 1,734, and average GC content of 46.51%. A comprehensive analysis of the testicular transcriptome revealed more than 26,000 highly expressed unigenes which exhibited the highest homology with Rattus norvegicus and Ictidomys tridecemlineatus genomes. More than 8,000 highly expressed genes were found to be involved in fundamental biological processes, cellular components or molecular pathways. The study also revealed 42 genes whose regulation differed between breeding and non-breeding seasons. During the non-breeding period, the expression of 37 genes was up-regulated, and the expression of 5 genes was down-regulated relative to the breeding season. The identified genes encode molecules which are involved in signaling transduction, DNA repair, stress responses, inflammatory processes, metabolism and steroidogenesis. Our results pave the way for further research into season-dependent variations in beaver testes.

  3. Mercury issues related to NPDES and the CERCLA watershed project at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this document is to present the current understanding of the issues and options surrounding compliance with the current National Pollutant Discharge Elimination System (NPDES) permit conditions. This is a complicated issue that directly impacts, and will be directly impacted by, ongoing CERCLA activities in Lower East Fork Poplar Creek and the Clinch River/Poplar Creek. It may be necessary to reconstitute the whole and combine actions and decisions regarding the entire creek (origin to confluence with the Clinch River) to develop a viable long-term strategy that meets regulatory goals and requirements as well as those of DOE's 10-Year Plan and the new watershed management permitting approach. This document presents background information on the Reduction of Mercury in Plant Effluents (RMPE) and NPDES programs insofar as it is needed to understand the issues and options. A tremendous amount of data has been collected to support the NPDES/RMPE and CERCLA programs. These data are not presented, although they may be referenced and conclusions based on them may be presented, as necessary, to support discussion of the options

  4. National Biological Service Research Supports Watershed Planning

    Science.gov (United States)

    Snyder, Craig D.

    1996-01-01

    The National Biological Service's Leetown Science Center is investigating how human impacts on watershed, riparian, and in-stream habitats affect fish communities. The research will provide the basis for a Ridge and Valley model that will allow resource managers to accurately predict and effectively mitigate human impacts on water quality. The study takes place in the Opequon Creek drainage basin of West Virginia. A fourth-order tributary of the Potomac, the basin falls within the Ridge and Valley. The study will identify biological components sensitive to land use patterns and the condition of the riparian zone; the effect of stream size, location, and other characteristics on fish communities; the extent to which remote sensing can reliable measure the riparian zone; and the relationship between the rate of landscape change and the structure of fish communities.

  5. Safety Evaluation Report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1985-10-01

    This Safety Evaluation Report on the application filed by Duquesne Light Company, as applicant and agent for the owners, for a license to operate the Beaver Valley Power Station Unit 2 (Docket No. 50-412) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Shippingport Borough, Beaver County, Pennsylvania, on the south bank of the Ohio River. Subject to the favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  6. Effects of Environmental and Anthropogenic Factors on Water Quality in the Rock Creek Watershed

    Science.gov (United States)

    2016-04-08

    affecting health. With the development of public health informatics, public health professionals are realizing the benefits of applying GIS to...as hiking , boating, and year-round fishing. This portion of the watershed is densely forested, comprising of approximately 5,000 acres, with about...Beach Drive, whose sections through RCNP are closed to vehicles on the weekends. Other activities in the park include hiking , horseback riding

  7. Evaluating the Performance of Wavelet-based Data-driven Models for Multistep-ahead Flood Forecasting in an Urbanized Watershed

    Science.gov (United States)

    Kasaee Roodsari, B.; Chandler, D. G.

    2015-12-01

    A real-time flood forecast system is presented to provide emergency management authorities sufficient lead time to execute plans for evacuation and asset protection in urban watersheds. This study investigates the performance of two hybrid models for real-time flood forecasting at different subcatchments of Ley Creek watershed, a heavily urbanized watershed in the vicinity of Syracuse, New York. Hybrid models include Wavelet-Based Artificial Neural Network (WANN) and Wavelet-Based Adaptive Neuro-Fuzzy Inference System (WANFIS). Both models are developed on the basis of real time stream network sensing. The wavelet approach is applied to decompose the collected water depth timeseries to Approximation and Detail components. The Approximation component is then used as an input to ANN and ANFIS models to forecast water level at lead times of 1 to 10 hours. The performance of WANN and WANFIS models are compared to ANN and ANFIS models for different lead times. Initial results demonstrated greater predictive power of hybrid models.

  8. The effects of green infrastructure on exceedance of critical shear stress in Blunn Creek watershed

    Science.gov (United States)

    Shannak, Sa'd.

    2017-10-01

    Green infrastructure (GI) has attracted city planners and watershed management professional as a new approach to control urban stormwater runoff. Several regulatory enforcements of GI implementation created an urgent need for quantitative information on GI practice effectiveness, namely for sediment and stream erosion. This study aims at investigating the capability and performance of GI in reducing stream bank erosion in the Blackland Prairie ecosystem. To achieve the goal of this study, we developed a methodology to represent two types of GI (bioretention and permeable pavement) into the Soil Water Assessment Tool, we also evaluated the shear stress and excess shear stress for stream flows in conjunction with different levels of adoption of GI, and estimated potential stream bank erosion for different median soil particle sizes using real and design storms. The results provided various configurations of GI schemes in reducing the negative impact of urban stormwater runoff on stream banks. Results showed that combining permeable pavement and bioretention resulted in the greatest reduction in runoff volumes, peak flows, and excess shear stress under both real and design storms. Bioretention as a stand-alone resulted in the second greatest reduction, while the installation of detention pond only had the least reduction percentages. Lastly, results showed that the soil particle with median diameter equals to 64 mm (small cobbles) had the least excess shear stress across all design storms, while 0.5 mm (medium sand) soil particle size had the largest magnitude of excess shear stress. The current study provides several insights into a watershed scale for GI planning and watershed management to effectively reduce the negative impact of urban stormwater runoff and control streambank erosion.

  9. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  10. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  11. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  12. Quarterly Progress Report - Biological Monitoring Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Christensen, S.W.; Greeley, M.S.jr; Hill, W.R.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-10-18

    (6) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18 and 19), located off the ORR and below an area of intensive commercial and light industrial development; EFK 13.8 (also EFK 14), located upstream from the Oak Ridge Wastewater Treatment Facility (ORWTF); and EFK 6.3 located approximately 1.4 km below the ORR boundary (Fig. 1.1). Brushy Fork (BF) at kilometer (BFK) 7.6 is used as a reference stream in most tasks of the BMAP. Additional sites off the ORR are also occasionally used for reference, including Beaver Creek, Bull Run, Hinds Creek, Paint Rock Creek, and the Emory River in Watts Bar Reservoir (Fig. 1.2).

  13. Quarterly Progress Report - Biological Monitoring Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S. M.; Christensen, S. W.; Greeley, M.S. jr; McCracken, M.K.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth G. R.; Stewart, A. J.

    2001-01-19

    adjacent floodplain, (5) appropriate habitat distribution, and (6) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18 and 19), located off the ORR and below an area of intensive commercial and light industrial development; EFK 13.8 (also EFK 14), located upstream from the Oak Ridge Wastewater Treatment Facility (ORWTF); and EFK 6.3 located approximately 1.4 km below the ORR boundary (Fig. 1.1). Brushy Fork (BF) at kilometer (BFK) 7.6 is used as a reference stream in most tasks of the BMAP. Additional sites off the ORR are also occasionally used for reference, including Beaver Creek, Bull Run, Hinds Creek, Paint Rock Creek, and the Emory River in Watts Bar Reservoir (Fig. 1.2).

  14. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems

  15. Revision of Hemiquedius Casey (Staphylinidae, Staphylininae and a review of beetles dependent on beavers and muskrats in North America

    Directory of Open Access Journals (Sweden)

    Adam Brunke

    2017-09-01

    Full Text Available Based on newly discovered characters on the male genitalia, external morphology and an accumulation of ecological data, we revise the single member of the genus Hemiquedius. Two new species, H. infinitus Brunke & Smetana, sp. n. and H. castoris Brunke & Smetana, sp. n., from eastern North America are described, and H. ferox (LeConte, restricted to peninsular Florida, is re-described. Hemiquedius castoris is strongly associated with the microhabitats provided by nest materials of the North American beaver and muskrat. A key to the three species of Hemiquedius is provided and diagnostic characters are illustrated. We also review the beetles known to be obligate associates of beavers and muskrats, and discuss the potential role of these keystone vertebrates in beetle evolution and distribution. Based on nest-associated beetles and their closest living relatives, beaver and muskrat lodges may extend distributions northward by moderating winters, promote sympatric speciation and act as refugia against extinction of lineages on a broader timescale. Further research into these potential impacts by ecologists and evolutionary biologists is encouraged.

  16. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  17. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    International Nuclear Information System (INIS)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio; Malek-Mohammadi, Siamak

    2013-01-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  18. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  19. Compilation of hydrologic data, Little Elm Creek, Trinity River basin, Texas, 1968

    Science.gov (United States)

    ,

    1972-01-01

    The U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of "The Flood Control Act ot 1936 and 1944" and ''Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. In June 1968, the Soil Conservation Service estimated approximately 3,500 structures to be physically and economically feasible for installation in Texas. As of September 30, 1968, 1,271 of these structures had been built. This watershed-development program will have varying but important effects on the surface- and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data are needed to appraise the effects of the structures on water yield and the mode of occurrence of runoff. Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 11 areas (fig. 1). These studies are being made in cooperation with t he Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 11 study areas were choson to sample watersheds having different rainfall, topography, geology, and soils. In four of the study areas (Mukewater, North, Little Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses to the conditions before and after" development. Structures have now been built in three of these study areas. A summary of the development of the floodwater-retarding structures on each study area as of September 30, 1968, is shown in table 1.

  20. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  1. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Science.gov (United States)

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  2. Stream sediment sampling and analysis. Final report

    International Nuclear Information System (INIS)

    Means, J.L.; Voris, P.V.; Headington, G.L.

    1986-04-01

    The objectives were to sample and analyze sediments from upstream and downstream locations (relative to the Goodyear Atomic plant site) of three streams for selected pollutants. The three streams sampled were the Scioto River, Big Beaver Creek, and Big Run Creek. Sediment samples were analyzed for EPA's 129 priority pollutants (Clean Water Act) as well as isotopic uranium ( 234 U, 235 U, and 238 U) and technetium-99

  3. Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September-October 2001

    Science.gov (United States)

    Walton-Day, Katherine; Flynn, Jennifer L.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    load to the stream were the parts of the study reach containing inflow from the tribu-taries Halfmoon Creek (calcium) and Willow Creek (sulfate). The Arkansas River and its tributaries upstream from Lake Fork Creek were the source of most of the calcium (70 percent), sulfate (82 percent), manganese (77 percent), lead (78 percent), and zinc (95 percent) loads in the Arkansas River downstream from the Lake Fork confluence. In contrast, Lake Fork Creek was the major source of aluminum (68 percent), copper (65 percent), and iron (87 percent) loads to the Arkansas River downstream from the confluence. Attenuation was not important for calcium, sulfate, or iron. However, other metals loads were reduced up to 81 percent over the study reach (aluminum, 25 percent; copper, 20 percent; manganese, 81 percent; lead, 30 percent; zinc, 72 percent). Metal attenuation in the stream occurred primarily in three locations (1) the irrigation diversion ditch; (2) the beaver pond complex extending from upstream from the Colorado Gulch inflow to just downstream from that inflow; and (3) the stream reach that included the inflow from Willow Creek. The most likely attenuation mechanism is precipitation of metal oxides and hydroxides (primarily manganese), and sorption or coprecipitation of trace elements with the precipitating phase. A mass-balance calculation indicated that the wetland between the Dinero Tunnel and Lake Fork Creek removed iron, had little effect on zinc mass load, and was a source for, or was releasing, aluminum and manganese. In contrast, the wetland that occurred between the Siwatch Tunnel and Lake Fork Creek removed aluminum, iron, manganese, and zinc from the tunnel drainage before it entered the creek. Inflow from the National Fish Hatchery increased dissolved organic carbon concentrations in Lake Fork Creek and slightly changed the composition of the dissolved organic carbon. However, dissolved organic carbon loads increased in the stream reach downs

  4. Practical aspects of registration the transformation of a river valley by beavers using terrestrial laser scanning

    Science.gov (United States)

    Tyszkowski, Sebastian; Błaszkiewicz, Mirosław; Brykała, Dariusz; Gierszewski, Piotr; Kaczmarek, Halina; Kordowski, Jarosław; Słowiński, Michał

    2016-04-01

    Activity of beavers (Castor fiber) often significantly affects the environment in which they life. The most commonly observed effect of their being in environment is construction of beaver dams and formation a pond upstream. However, in case of a sudden break of a dam and beaver pond drainage, the valley below the dam may also undergo remodelling. The nature and magnitude of these changes depends on the quantity of water and its energy as well as on the geological structure of the valley. The effects of such events can be riverbank erosion, and the deposition of the displaced of erosion products in the form of sandbars or fans. The material can also be accumulated in local depressions or delivered to water bodies. Such events may occur multiple times in the same area. To assess their impact on the environment it is important to quantify the displaced material. The study of such transformations was performed within a small valley of the river of Struga Czechowska (Tuchola Pinewood Forest, Poland). The valley is mainly cut in sands and gravels. Its steep banks are overgrown with bushes and trees. The assessment of changes in morphology were based on the event of the beaver pond drainage of 2015. The study uses the measurements from the terrestrial laser scanning (scanner Riegl VZ-4000). The measurements were performed before and after the event. Each of the two models obtained for comparison was made up of more than 20 measurement stations. Point clouds were joined by Multi-Station Adjustment without placing in the terrain any objects of reference. During measurements attention was paid to the changes in morphology of both riverbed and valley surrounding. The paper presents the example of the recorded changes as well as the measurement procedure. Moreover, the aspects of fieldwork and issues related to post-processing, such as merging, filtering of point clouds and detection of changes, are also presented. This study is a contribution to the Virtual Institute of

  5. H2S transport data for an aquatic system

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1978-01-01

    Upsets in the operation of the wastewater strippers in the heavy water extraction facility of the 400 Area at the Savannah River Plant (SRP) have released significant amounts of dissolved hydrogen sulfide to Beaver Dam Creek. Concern exists about the impact of these releases to the environs downstream of the 400 Area. The Beaver Dam Creek model of stream transport processed by the computer code LODIPS (LOngitudinal DIspersion of a Pollutant in a Natural Stream) grossly overpredicted the downstream concentrations based on some known facts about the releases. A literature survey revealed volatilization and oxidation as the significant hydrogen sulfide loss mechanisms. LODIPS has no option to account for some sink-source effects in a stream. Coefficients of volatilization and oxidation must be developed to use the option. Some field data are necessary to determine the coefficients

  6. Use of isotopologues as natural tracers of ground water application to Engenho Nogueira watershed, UFMG campus, Brazil

    International Nuclear Information System (INIS)

    Aguiar, Raquel Pazzini Scarpelli de

    2015-01-01

    Isotope Ratio Mass Spectrometry is the ideal method to determine with high precision the ratio of stable isotopes of light elements. Due to this fact, it is used in environmental research, especially in hydrological studies, avoiding the need of injection. This work implanted a method for analysis of water isotopes ( 18 O and 2 H) and validated the method for the measurement of δ 18 O, in the Laboratory of Isotope Ratio Mass Spectrometry of the Center for Development of Nuclear Technology. The performance of the method was evaluated according to the following criteria: stability, linearity, precision, accuracy and robustness. This method was applied to studies of groundwater in the watershed of the Engenho Nogueira Creek, located at the Federal University of Minas Gerais (UFMG) campus, in the northern region of the city of Belo Horizonte, Brazil. The watershed of the Engenho Nogueira Creek has been studied in several occasions in recent years for different purposes; however, the use of natural isotopes of water had never been applied to these studies. This technique can expand the diversity of data on the local aquifer, helping to fill gaps in its understanding, besides, it can confirm data previously obtained. The expansion of the academic and administrative units of the UFMG campus since 2000 implies in an incremented importance of the management of the local since the demand for water grows each year. (author)

  7. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  8. Forest disturbance by an ecosystem engineer: beaver in boreal forest landscapes

    OpenAIRE

    Nummi, Petri; Kuuluvainen, Timo

    2013-01-01

    Natural disturbances are important for forest ecosystem dynamics and maintenance of biodiversity. In the boreal forest, large-scale disturbances such as wildfires and windstorms have been emphasized, while disturbance agents acting at smaller scales have received less attention. Especially in Europe beavers have long been neglected as forest disturbance agents because they were extirpated from most of their range centuries ago. However, now they are returning to many parts of their former dis...

  9. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987

  10. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  11. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  12. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years' data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143

  13. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale

    Directory of Open Access Journals (Sweden)

    Santosh R. Ghimire

    2017-03-01

    Full Text Available We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S. using life cycle assessment (LCA and life cycle cost assessment. Life cycle impact assessment (LCIA categories included energy demand, fossil fuel, metals, ozone depletion, global warming, acidification, smog, blue and green water use, ecotoxicity, eutrophication, and human health effects. Building upon previous LCAs of near-optimal domestic and agricultural RWH systems in the region, we scaled functional unit LCIA scores for adoption rates of 25%, 50%, 75%, and 100% and compared these to conventional municipal water and well water systems. In addition to investigating watershed-scale impacts of RWH adoption, which few studies have addressed, potential life cycle cost savings due to reduced cumulative energy demand were scaled in each watershed for a more comprehensive analysis. The importance of managing the holistic water balance, including blue water (surface/ground water, green water (rainwater use, and annual precipitation and their relationship to RWH are also addressed. RWH contributes to water resource sustainability by offsetting surface and ground water consumption and by reducing environmental and human health impacts compared to conventional sources. A watershed-wide RWH adoption rate of 25% has a number of ecological and human health benefits including blue water use reduction ranging from 2–39 Mm3, cumulative energy savings of 12–210 TJ, and reduced global warming potential of 600–10,100 Mg CO2 eq. Potential maximum lifetime energy cost savings were estimated at $5M and $24M corresponding to domestic RWH in Greens Mill and agricultural RWH in Back Creek watersheds.

  14. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, James S.; Baxter, Jeremy

    2002-03-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing.

  15. WHIPJET progress on piping restraint elimination at Beaver Valley - 2

    International Nuclear Information System (INIS)

    Server, W.L.; Szy Slow Ski, J.J.; Goldstein, N.A.

    1986-01-01

    Fracture mechanics technology has advanced to the point that an engineering approach using the concept of leak-before-break in lieu of postulating double-ended pipe rupture is now possible. An approach based upon this fracture mechanics technology, termed WHIPJET, is currently being applied to Beaver Valley Power Station, Unit 2 for Duquesne Light Company. The WHIPJET philosophy is simple, conservative, and provides defense-in-depth arguments for high energy piping throughout the balance-of-plant. Progress being made in applying WHIPJET to several lines is presented

  16. Environmental restoration of mercury contamination of East Fork Poplar Creek at the Department of Energy's Oak Ridge, Tennessee, reservation

    International Nuclear Information System (INIS)

    Page, D.G.

    1995-01-01

    During the open-quotes Cold Warclose quotes era, approximately 239,000 pounds of mercury were released from the Y-12 Nuclear Weapons Plant to the East Fork Poplar Creek watershed. As a result, approximately 75 tons of the contaminant resides within the floodplain soils beyond the confines of the DOE reservation, a Federal Superfund Site. The EFPC watershed encompasses multiple land uses whose ownership varies from private citizens, municipal government, and federal government. DOE, in cooperation with the State of Tennessee and EPA, proposes to clean up the contamination to a risk based standard of 400 ppm. This level has been determined to be protective of human health and the environment. The remedial process and development of the remedial alternative are the result of close interagency cooperation between the State, EPA, U.S. Fish ampersand Wildlife Service, and the Army Corps of Engineers. This case study outlines that process

  17. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    Science.gov (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  18. Joint Action Group: public opinion poll: final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Joint Action Group (JAG) for Environmental Cleanup of the Muggah Creek Watershed in Cape Breton, Nova Scotia is a new community-driven process in which a group of individuals have cooperated in one of the largest remediation projects in Canada. The group plays an advisory role to the government in identifying what should be done to remediate the Muggah Creek watershed and the Sydney Tar Ponds. The Muggah Creek watershed area includes a municipal landfill site, the coke ovens site and the Muggah Creek estuary (Sydney Tar Ponds). This report contains an analysis of the responses of a sample of 600 households in industrial Cape Breton to a telephone survey designed to measure community awareness and knowledge of JAG, its working groups, and the Muggah Creek Watershed Cleanup process, and identify community concerns regarding the process. tabs.

  19. Joint Action Group: public opinion poll: final report

    International Nuclear Information System (INIS)

    1998-01-01

    The Joint Action Group (JAG) for Environmental Cleanup of the Muggah Creek Watershed in Cape Breton, Nova Scotia is a new community-driven process in which a group of individuals have cooperated in one of the largest remediation projects in Canada. The group plays an advisory role to the government in identifying what should be done to remediate the Muggah Creek watershed and the Sydney Tar Ponds. The Muggah Creek watershed area includes a municipal landfill site, the coke ovens site and the Muggah Creek estuary (Sydney Tar Ponds). This report contains an analysis of the responses of a sample of 600 households in industrial Cape Breton to a telephone survey designed to measure community awareness and knowledge of JAG, its working groups, and the Muggah Creek Watershed Cleanup process, and identify community concerns regarding the process. tabs

  20. Hydrologic Change during the Colonial Era of the United States: Beavers and the Energy Cost of Impoundments (Invited)

    Science.gov (United States)

    Green, M. B.; Bain, D. J.; Arrigo, J. S.; Duncan, J. M.; Kumar, S.; Parolari, A.; Salant, N.; Vorosmarty, C. J.; Aloysius, N. R.; Bray, E. N.; Ruffing, C. M.; Witherell, B. B.

    2009-12-01

    Europeans colonized North America in the early 17th century with intentions ranging between long-term inhabitation and quick extraction of resources for economic gain in Europe. Whatever the intentions, the colonists relied on the landscape for resources resulting in dramatic change to the forest and fur-bearing mammal population. We demonstrate that initial exploitation of North American forest and furs caused a substantial decrease in mean water residence time (τ) between 1600 and 1800 A.D. That loss, which regionally changed from 51 to 41 days, contrasts with conventional wisdom that humans tend to diminish variability in water resources by increasing storage capacity and thus increasing τ. The loss of τ resulted from over-hunted beaver for the hat market in Europe. Analysis suggests that colonial era demographics and economics did not allow human resource allocation to impoundment construction on a level matching the historic beaver effort. However, the τ appears to have regionally increased during the 19th century, suggesting that humans eventually began replacing the water storage lost with the beaver. The analysis highlights the energy cost of impounding water, which is likely to continue to be an important factor given the increasing need for stable water resources and finite energy resources.

  1. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Science.gov (United States)

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  2. Rainfall-runoff modeling of the Chapel Branch Creek Watershed using GIS-based rational and SCS-CN methods

    Science.gov (United States)

    Elizabeth N. Mihalik; Norm S. Levine; Devendra M. Amatya

    2008-01-01

    Chapel Branch Creek (CBC), located within the Town of Santee adjacent to Lake Marion in Orangeburg County, SC, is listed on the SC 2004 303(d) list of impaired waterbodies due to elevated levels of nitrogen (N), phosphorus (P), chlorophyll-a, and pH. In this study, using a GIS-based approach, two runoff modeling methods, the Rational and SCS-CN methods, have been...

  3. Evaluating the impacts of logging activities on erosion and suspended sediment transport in the Caspar Creek watersheds

    Science.gov (United States)

    Jack Lewis

    1998-01-01

    Suspended sediment has been sampled at both the North and South Fork weirs of Caspar Creek in northwestern California since 1963, and at 13 tributary locations in the North Fork since 1986. The North Fork gaging station (NFC) was used as a control to evaluate the effects of logging in the South Fork, in the 1970's, on annual sediment loads. In the most...

  4. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  5. A comparison of pre- and post-remediation water quality, Mineral Creek, Colorado

    Science.gov (United States)

    Runkel, R.L.; Bencala, K.E.; Kimball, B.A.; Walton-Day, K.; Verplanck, P.L.

    2009-01-01

    Pre- and post-remediation data sets are used herein to assess the effectiveness of remedial measures implemented in the headwaters of the Mineral Creek watershed, where contamination from hard rock mining has led to elevated metal concentrations and acidic pH. Collection of pre- and post-remediation data sets generally followed the synoptic mass balance approach, in which numerous stream and inflow locations are sampled for the constituents of interest and estimates of streamflow are determined by tracer dilution. The comparison of pre- and post-remediation data sets is confounded by hydrologic effects and the effects of temporal variation. Hydrologic effects arise due to the relatively wet conditions that preceded the collection of pre-remediation data, and the relatively dry conditions associated with the post-remediation data set. This difference leads to a dilution effect in the upper part of the study reach, where pre-remediation concentrations were diluted by rainfall, and a source area effect in the lower part of the study reach, where a smaller portion of the watershed may have been contributing constituent mass during the drier post-remediation period. A second confounding factor, temporal variability, violates the steady-state assumption that underlies the synoptic mass balance approach, leading to false identification of constituent sources and sinks. Despite these complications, remedial actions completed in the Mineral Creek headwaters appear to have led to improvements in stream water quality, as post-remediation profiles of instream load are consistently lower than the pre-remediation profiles over the entire study reach for six of the eight constituents considered (aluminium, arsenic, cadmium, copper, iron, and zinc). Concentrations of aluminium, cadmium, copper, lead, and zinc remain above chronic aquatic-life standards, however, and additional remedial actions may be needed. Future implementations of the synoptic mass balance approach should be

  6. A landscape perspective of the stream corridor invasion and habitat characteristics of an exotic (Dioscorea oppositifolia) in a pristine watershed in Illinois

    Science.gov (United States)

    Thomas, J.R.; Middleton, B.; Gibson, D.J.

    2006-01-01

    The spatial distribution of exotics across riparian landscapes is not uniform, and research elaborating the environmental constraints and dispersal behavior that underlie these patterns of distribution is warranted. This study examined the spatial distribution, growth patterns, and habitat constraints of populations of the invasive Dioscorea oppositifolia in a forested stream corridor of a tributary of Drury Creek in Giant City State Park, IL. The distribution of D. oppositifolia was determined at the watershed scale mainly by floodplain structure and connectivity. Populations of D. oppositifolia were confined to the floodplain, with overbank flooding from the stream. Dioscorea oppositifolia probably originates in disturbed areas upstream of natural corridors, and subsequently, the species disperses downstream into pristine canyons or ravines via bulbils dispersing in the water. In Giant City State Park, populations of D. oppositifolia were distributed on the floodplain across broad gradients of soil texture, light, slope, and potential radiation. The study also examined the longevity of bulbils in various micro-environments to illuminate strategies for the management of the species in invaded watersheds. After 1 year, the highest percentages of bulbils were viable under leaves, and much lower percentages were viable over leaves, in soil, and in the creek (76.0??6.8, 21.2??9.6, 21.6??3.6, and 5.2??5.2%), respectively. This study suggests that management procedures that reduce leaf litter on the forest floor (e.g., prescribed burning) could reduce the number of bulbils of D. oppositifolia stored in the watershed. ?? Springer 2006.

  7. Estimating greenhouse gas emissions at the soil-atmosphere interface in forested watersheds of the US Northeast.

    Science.gov (United States)

    Gomez, Joshua; Vidon, Philippe; Gross, Jordan; Beier, Colin; Caputo, Jesse; Mitchell, Myron

    2016-05-01

    Although anthropogenic emissions of greenhouse gases (GHG: CO2, CH4, N2O) are unequivocally tied to climate change, natural systems such as forests have the potential to affect GHG concentration in the atmosphere. Our study reports GHG emissions as CO2, CH4, N2O, and CO2eq fluxes across a range of landscape hydrogeomorphic classes (wetlands, riparian areas, lower hillslopes, upper hillslopes) in a forested watershed of the Northeastern USA and assesses the usability of the topographic wetness index (TWI) as a tool to identify distinct landscape geomorphic classes to aid in the development of GHG budgets at the soil atmosphere interface at the watershed scale. Wetlands were hot spots of GHG production (in CO2eq) in the landscape owing to large CH4 emission. However, on an areal basis, the lower hillslope class had the greatest influence on the net watershed CO2eq efflux, mainly because it encompassed the largest proportion of the study watershed (54 %) and had high CO2 fluxes relative to other land classes. On an annual basis, summer, fall, winter, and spring accounted for 40, 27, 9, and 24 % of total CO2eq emissions, respectively. When compared to other approaches (e.g., random or systematic sampling design), the TWI landscape classification method was successful in identifying dominant landscape hydrogeomorphic classes and offered the possibility of systematically accounting for small areas of the watershed (e.g., wetlands) that have a disproportionate effect on total GHG emissions. Overall, results indicate that soil CO2eq efflux in the Archer Creek Watershed may exceed C uptake by live trees under current conditions.

  8. Proximate weather patterns and spring green-up phenology effect Eurasian beaver (Castor fiber) body mass and reproductive success: the implications of climate change and topography.

    Science.gov (United States)

    Campbell, Ruairidh D; Newman, Chris; Macdonald, David W; Rosell, Frank

    2013-04-01

    Low spring temperatures have been found to benefit mobile herbivores by reducing the rate of spring-flush, whereas high rainfall increases forage availability. Cold winters prove detrimental, by increasing herbivore thermoregulatory burdens. Here we examine the effects of temperature and rainfall variability on a temperate sedentary herbivore, the Eurasian beaver, Castor fiber, in terms of inter-annual variation in mean body weight and per territory offspring production. Data pertain to 198 individuals, over 11 years, using capture-mark-recapture. We use plant growth (tree cores) and fAPAR (a satellite-derived plant productivity index) to examine potential mechanisms through which weather conditions affect the availability and the seasonal phenology of beaver forage. Juvenile body weights were lighter after colder winters, whereas warmer spring temperatures were associated with lighter adult body weights, mediated by enhanced green-up phenology rates. Counter-intuitively, we observed a negative association between rainfall and body weight in juveniles and adults, and also with reproductive success. Alder, Alnus incana, (n = 68) growth rings (principal beaver food in the study area) exhibited a positive relationship with rainfall for trees growing at elevations >2 m above water level, but a negative relationship for trees growing beavers at the landscape scale via effects on spring green-up phenology and winter thermoregulation. Rainfall influences beavers at finer spatial scales through topographical interactions with plant growth, where trees near water level, prone to water logging, producing poorer forage in wetter years. Unlike most other herbivores, beavers are an obligate aquatic species that utilize a restricted 'central-place' foraging range, limiting their ability to take advantage of better forage growth further from water during wetter years. With respect to anthropogenic climate change, interactions between weather variables, plant phenology and

  9. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D. [and others

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  10. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge

  11. Comparison of mineral weathering and biomass nutrient uptake in two small forested watersheds underlain by quartzite bedrock, Catoctin Mountain, Maryland, USA

    Science.gov (United States)

    Rice, Karen; Price, Jason R.

    2014-01-01

    To quantify chemical weathering and biological uptake, mass-balance calculations were performed on two small forested watersheds located in the Blue Ridge Physiographic Province in north-central Maryland, USA. Both watersheds, Bear Branch (BB) and Fishing Creek Tributary (FCT), are underlain by relatively unreactive quartzite bedrock. Such unreactive bedrock and associated low chemical-weathering rates offer the opportunity to quantify biological processes operating within the watershed. Hydrologic and stream-water chemistry data were collected from the two watersheds for the 9-year period from June 1, 1990 to May 31, 1999. Of the two watersheds, FCT exhibited both higher chemical-weathering rates and biomass nutrient uptake rates, suggesting that forest biomass aggradation was limited by the rate of chemical weathering of the bedrock. Although the chemical-weathering rate in the FCT watershed was low relative to the global average, it masked the influence of biomass base-cation uptake on stream-water chemistry. Any differences in bedrock mineralogy between the two watersheds did not exert a significant influence on the overall weathering stoichiometry. The difference in chemical-weathering rates between the two watersheds is best explained by a larger proportion of reactive phyllitic layers within the bedrock of the FCT watershed. Although the stream gradient of BB is about two-times greater than that of FCT, its influence on chemical weathering appears to be negligible. The findings of this study support the biomass nutrient uptake stoichiometry of K1.0Mg1.1Ca0.97 previously determined for the study site. Investigations of the chemical weathering of relatively unreactive quartzite bedrock may provide insight into critical zone processes.

  12. 75 FR 63469 - Environmental Impacts Statements; Notice of Availability

    Science.gov (United States)

    2010-10-15

    ... ENVIRONMENTAL PROTECTION AGENCY [ER-FRL-8993-2] Environmental Impacts Statements; Notice of....epa.gov/compliance/nepa/ . Weekly receipt of Environmental Impact Statements Filed 10/4/2010 through.../2010, Contact: David Arrasmith, 530-478- 6220. EIS No. 20100405, Draft EIS, USFS, MT, Beaver Creek...

  13. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  14. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast

    Directory of Open Access Journals (Sweden)

    Donizete dos Reis Pereira

    2014-08-01

    Full Text Available The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1, assuming the preservation of PPAs (permanent preservation areas; an optimistic scenario (C2, which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3, in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0 with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.

  15. Presence of Antibodies to Leptospira spp. in Black-tailed Prairie Dogs ( Cynomys ludovicianus ) and Beavers ( Castor canadensis ) in Northwestern Mexico.

    Science.gov (United States)

    López-Pérez, Andrés M; Carreón-Arroyo, Gerardo; Atilano, Daniel; Vigueras-Galván, Ana L; Valdez, Carlos; Toyos, Daniel; Mendizabal, Daniel; López-Islas, Jonathan; Suzán, Gerardo

    2017-10-01

    Leptospires are widespread spirochete bacteria that infect mammals, including rodents and humans. We investigated the presence of Leptospira antibodies in two species of rodents from San Pedro River Basin (SPRB) in northwestern Mexico as part of the black-tailed prairie dog ( Cynomys ludovicianus ) monitoring plan and the North American beaver ( Castor canadensis ) reintroduction program. We sampled a total of 26 black-tailed prairie dogs and three beavers during October-November 2015. We detected antibodies against Leptospira spp. by microagglutination test in 12 (46%) prairie dogs and in two (67%) beavers. The antibody titers for seropositive rodents varied from 1:100 to 1:200, but none of the animals showed clinical signs of disease. We found seven Leptospira spp. serogroups (Autumnalis, Australis, Bataviae, Canicola, Celledoni, Grippotyphosa, and Sejroe) circulating in rodent species in SPRB. We did not find any differences between sex and age concerning Leptospira-positive rodents. Our findings suggest the presence of endemic cycles and potential risks of Leptospira infection in both species from SPRB. Although the impact of this infection on threatened species remains unclear, human activities and environmental stress might facilitate the emergence or reemergence of leptospirosis disease as has been reported elsewhere.

  16. 33 CFR 117.331 - Snake Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  17. Identifying agricultural land management successes and water quality improvements at the sub-watershed scale: A case study in south-central Minnesota

    Science.gov (United States)

    Perry, M.; Triplett, L.; Smith, C.; Westfield, J.; Clause, C.

    2017-12-01

    In agricultural regions with highly-impacted water quality, it can be challenging to generate local motivation for water improvement efforts. Although the problem is daunting, and the magnitude of each individual's efforts may be indistinguishable in a mainstem stream, we may be able to detect incremental improvements earlier within a sub-watershed. In Seven Mile Creek, a small watershed in south-central Minnesota, we monitored at the sub-watershed scale to search for evidence of intermediate improvements during a years-long effort to reduce nutrient and sediment loads. The watershed is 9300 hectares with approximately 95% committed to corn and soybeans. Subwatershed 1 (SW1) is 4030 hectares and subwatershed 2 (SW2) is 3690 hectares (43% and 40% of the watershed area, respectively). In both subwatersheds, ubiquitous subsurface drain tile quickly drains water from the land, shunting it into tributaries and the mainstem which then have flashy storm responses. In 2016-2017, the two subwatersheds differed in water quality and storm response, despite nearly identical size, topography, climate, and geology. For example, during large storm events in 2016, total suspended sediment (TSS) concentrations were measured as high as 113 mg L-1 in subwatershed 1 and 79 mg L-1 in subwatershed 2. However, the annual average TSS concentration was 2 mg L-1 in SW1 and 3 mg L-1 in SW2, resulting in a higher loading from SW2. In contrast, the annual average nitrate concentration was higher in SW1 than SW2 (28 mg L-1 and 20 mg L-1, respectively). We determined that the difference is likely due to differences in soil type, cropping practices, or recent best management practice (BMP) implementation. While a few landowners have taken substantial actions to implement BMPs, others remain skeptical about the sources of and potential solutions for pollution in this creek. In SW1 there has been more effective management of water flow and sediment mobilization, while in SW2 nitrate is the success

  18. Henretta Creek reclamation project

    International Nuclear Information System (INIS)

    Pumphrey, J.F.

    2009-01-01

    Teck Coal Ltd. operates 6 open-pit coal mines, of which 5 are located in the Elk Valley in southeastern British Columbia. The Fording River Operations (FRO) began in 1971 in mining areas in Eagle Mountain, Turnbull Mountain and Henretta Valley. The recovery of approximately 5 million tons of coal from the Henretta Creek Valley posed significant challenges to mine planners, hydrologists and environmental experts because the coal had to be recovered from the valley flanks and also from under the main valley floor, on which the fish-bearing Henretta Creek runs. The Henretta Dragline Mining project was described along with the water control structures and fisheries management efforts for the cutthroat trout. A detailed Environmental Impact Assessment and Stage 1 mining report for the Henretta Valley area was completed in December 1990. FRO was granted a mining and reclamation permit in 1991. A temporary relocation of 1,270 metres was required in in April 1997 in order to enable mining on both sides and below the creek bed. Among the innovative construction techniques was a diversion of Henretta Creek through large diameter steel culverts and a specialized crossing of the creek to allow fish passage. The first water flowed through the reclaimed Henretta Creek channel in late 1998 and the first high flow occurred in the spring of 2000. Teck coal FRO then launched an annual fish and fish habitat monitoring program which focused on the Henretta Creek Reclaimed Channel and Henretta Lake. This document presented the results from the final year, 2006, and a summary of the 7 year aquatic monitoring program. It was concluded that from mining through to reclamation, the Henretta project shows the commitment and success of mining and reclamation practices at Teck Coal. Indicators of the project's success include riparian zone vegetation, fisheries re-establishment, aquatic communities and habitat utilization by terrestrial and avian species. 33 refs., 1 fig.

  19. 75 FR 8107 - Bond Swamp National Wildlife Refuge, Bibb and Twiggs Counties, GA

    Science.gov (United States)

    2010-02-23

    ... impact. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), announce the availability of our final comprehensive Conservation Plan (CCP) and finding of no significant impact (FONSI) for the environmental..., including upland mixed pine/hardwood, bottomland hardwood, and tupelo gum swamp forests. Creeks, beaver...

  20. A Feasibility Study for Consolidating and/or Coordinating Technical Procedures in Beaver County Pennsylvania Libraries.

    Science.gov (United States)

    Fry, James W.

    In 1977 the Public Library Commission, in conjunction with the State Library of Pennsylvania, received a Library Services and Construction Act, Title III Grant to conduct a feasibility study of technical service operations in various types of libraries within Beaver County. Its objectives were to: (1) analyze existing library materials purchasing…