WorldWideScience

Sample records for beam water radiolysis

  1. Primary processes during water radiolysis

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1980-01-01

    Briefly reviewed are investigations of primary process mechanism taking place during radiolysis of water and similar systems, executed by direct and indirect methods. A conclusion is made on the important role of the water structure during radiolysis of aqueous solutions of some substances. A necessity to take account of this factor during consideration of radiolysis theoretical models is pointed out

  2. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  3. Yields of water radiolysis products from proton irradiated water

    International Nuclear Information System (INIS)

    Sims, H.E.; Ashmore, C.B.; Tait, P.K.; Walters, W.S.

    1998-01-01

    The yields of aqueous radiolysis products under the high temperature and pressure regimes relevant to Light Water Reactors are important parameters in the use of chemical models to simulate reactor circuits, as high temperature corrosion requires the oxidising products of water radiolysis in order to sustain the process. The main species of interest are the oxidising radical, OH·, and the molecular product H 2 O 2 . The yields of these species from radiolysis of water at temperatures below 100degC have been extensively measured. However these measurements have proved difficult at elevated temperatures and pressures because of the requirements to contain the water safely at high temperature and pressure and yet permit entry of a radiation beam. A major source of radiation in the core of the reactor primary circuit is the neutron flux. However, when neutrons interact with water molecules the dominant process for energy loss is with protons by elastic scattering and the formation of energetic recoil protons which then interact further with the surrounding water molecules by electrostatic interaction. Therefore the neutron radiolysis of water can be well simulated by using protons as the incident radiation. Protons are conveniently produced using a Van de Graaff accelerator and in this work the Harwell Tandem accelerator has been used to produce protons with energies up to 12 MeV. (J.P.N.)

  4. Gamma-radiolysis of organic compounds and alpha-radiolysis of water

    International Nuclear Information System (INIS)

    Christensen, H.

    1978-09-01

    This KBS-report is a collection of five technical reports. Various radiolytic problems in connection with the disposal of high-active waste are dealt with. The English titles of the five reports are: 1) Radiolysis of fulvic acids; 2) Radiolysis of organic compounds in bentonite; 3) α-radiolysis of water during the disposal of fuel without reprocessing; 4) Radiolysis of water during the disposal of unreprocessed spent fuel. Oxidation by hydrogen peroxide; 5) Formation and decomposition of hydrogen peroxide by α-radiolysis. These reports (in Swedish) are attached as Appendices A-E. (author)

  5. Mathematical modelling of water radiolysis kinetics under reactor conditions

    International Nuclear Information System (INIS)

    Khodulev, L.B.; Shapova, E.A.

    1989-01-01

    Experimental data on coolant radiolysis (RBMK-1000 reactor) were used to construct mathematical model of water radiolysis kinetics under reactor conditions. Good agreement of calculation results with the experiment is noted

  6. Fundamental Aspects of Water Coolant Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Hilbert [Studsvik Nuclear AB, Nykoeping (Sweden)

    2006-04-15

    The current state of knowledge of radiolysis in Light Water Reactors (LWR) is presented in this report. High-temperature data for rate constants and primary radiolysis yields have been collected and are shown in tables. Data from different sources have been compared and based on this recommended values have been selected. There is generally a good agreement between g-values for gamma-radiation at ambient temperature from different sources. There are larger discrepancies between results for primary yields from fast neutrons and also for g-values at reactor temperatures. Complete reaction mechanisms, including rate constants at reactor temperatures, from different sources are discussed and shown in tables. Experimentally determined activation energies are also shown, including the temperature range within which they have been determined. In normal cases rate constants at high temperature have been calculated from the rate constant at ambient temperature and the activation energy. Exceptions from this rule are shown and uncertainties have been discussed. The results of a number of radiolysis calculations, carried out for reactor temperatures, are also shown. The results of some sensitivity analyses are discussed. It has been shown that results from radiolysis calculations are rather sensitive to the rate constant ratio k(OH + H{sub 2})/(k(OH + H{sub 2}O{sub 2}). The first reaction leads to recombination, whereas the last reaction leads to decomposition. In some cases reactions which are unimportant at ambient temperature may play a role at reactor temperatures. This may be the case for reactions with a low rate constant at ambient temperature in combination with a high activation energy.

  7. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam

    International Nuclear Information System (INIS)

    Gonzalez Vanderhaghen, D.E.

    1998-01-01

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 μA). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water

  8. Radiolysis of water in 'Sarcophagus'

    International Nuclear Information System (INIS)

    Azarov, S.I.; Vilenska, L.M.; Korchevna, O.V.

    1998-01-01

    Different structure modifications of radiolytic hydrogen sources are discussed. Basic radionuclides, being in the 'Sarcophagus' premises - α-, β-, and γ-irradiations, are taken into account. It is shown, that the β-irradiators (Cs-137 and Sr-90) bring in generating of hydrogen the cardinal contribution. In dependence of nuclear spent material dispersity, soluble forms of radionuclides concentrations, moisture saturation degree of fuel containing materials and water quality the account of hydrogen yield rate is presented. The estimations of the safe content of radiolytic hydrogen in the 'Sarcophagus' premises air in hermeticity and interchange of air degree are offered. 20 refs., 6 tab., 3 figs

  9. E-beam radiolysis for oil spill clean up

    International Nuclear Information System (INIS)

    Patterson, E.L.; Jackson, N.B.; Thornberg, S.M.; Samlin, G.E.

    1992-12-01

    This paper describes preliminary experiments to investigate electron-beam radiolysis of model compounds appropriate for crude oil spills on water or soil. Since no previous work in this area is known to exist, the rate of destruction of such concentrated organic materials in aqueous media is not known. The experiments conducted here were designed to provide preliminary estimates of the destruction rate and the estimated costs. Samples of model compounds were irradiated to dose levels up to 700 Mrad (H 2 0) and the change in chemical composition was determined by mass spectrometry/gas chromatography and Fourier transform infrared spectroscopy. It was found that a dose of 700 Mrads reduced the liquid volume of the model compound by 60% and that the major effect of irradiation was the formation of long chain alkanes and dimethyl and ethyl benzenes. Under certain conditions a solid polymer was found to form. When alcohol was present in the model compound, additional products included small quantities of ethane diodic acid, butanol, butanediol, and various other alcohols. Further research is recommended to obtain a better analysis of the products, better values for the destruction rates, and better understanding of dose rate effects

  10. Hydrogen peroxide kinetics in water radiolysis

    Science.gov (United States)

    Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.

    2018-04-01

    The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.

  11. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  12. Study of the radiolysis of water in porous media

    International Nuclear Information System (INIS)

    Rotureau, P.

    2004-01-01

    The understanding of the production of H 2 in the radiolysis of water confined into pores of concrete is important for the disposal of radioactive waste. In order to describe the mechanisms of water radiolysis in such heterogeneous porous systems we have studied the behaviour under gamma radiation of water confined in porous silica glasses with pores going from 8 to 300 nm of diameter and meso-porous molecular sieves (MCM-41). The radiolytic yields of hydroxyl radicals, hydrated electron and dihydrogen, have been determined with respect to the pore size of materials. The increase of these radiolytic yields compared to those of free water allowed us to show a charge transfer from silica to confined water. On the other hand the kinetics of hydrated electron reactions measured by pulse radiolysis are not modified. (author) [fr

  13. Modelling the radiolysis of RSG-GAS primary cooling water

    Science.gov (United States)

    Butarbutar, S. L.; Kusumastuti, R.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Water chemistry control for light water coolant reactor required a reliable understanding of radiolysis effect in mitigating corrosion and degradation of reactor structure material. It is known that oxidator products can promote the corrosion, cracking and hydrogen pickup both in the core and in the associated piping components of the reactor. The objective of this work is to provide the radiolysis model of RSG GAS cooling water and further more to predict the oxidator concentration which can lead to corrosion of reactor material. Direct observations or measurements of the chemistry in and around the high-flux core region of a nuclear reactor are difficult due to the extreme conditions of high temperature, pressure, and mixed radiation fields. For this reason, chemical models and computer simulations of the radiolysis of water under these conditions are an important route of investigation. FACSIMILE were used to calculate the concentration of O2 formed at relatively long-time by the pure water γ and neutron irradiation (pH=7) at temperature between 25 and 50 °C. This simulation method is based on a complex chemical reaction kinetic. In this present work, 300 MeV-proton were used to mimic γ-rays radiolysis and 2 MeV fast neutrons. Concentration of O2 were calculated at 10-6 - 106 s time scale.

  14. Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    2000-07-01

    Literature data on the effect of water radiolysis products on spent-fuel oxidation and dissolution are reviewed. Effects of gamma radiolysis, alpha radiolysis, and dissolved O 2 or H 2 O 2 in unirradiated solutions are discussed separately. Also, the effect of carbonate in gamma-irradiated solutions and radiolysis effects on leaching of spent fuel are reviewed. In addition, a kinetic model for calculating the corrosion rates of UO 2 in solutions undergoing radiolysis is discussed. The model gives good agreement between calculated and measured corrosion rates in the case of gamma radiolysis and in unirradiated solutions containing dissolved oxygen or hydrogen peroxide. However, the model fails to predict the results of alpha radiolysis. In a recent study , it was shown that the model gave good agreement with measured corrosion rates of spent fuel exposed in deionized water. The applications of radiolysis studies for geologic disposal of used nuclear fuel are discussed. (author)

  15. The effect of dissolved oxygen on water radiolysis behaviour

    International Nuclear Information System (INIS)

    Yakabuskie, P.A.; Joseph, J.M.; Wren, J.C.; Stuart, C.R.

    2012-09-01

    A quantitative understanding of the chemical or redox environments generated in water by ionizing radiation is important for material selection, development of maintenance programs, and safety assessments for water-cooled nuclear power reactors. The highly reactive radicals (·OH, ·H, ·e aq - , ·HO 2 , and ·O 2 - ) and molecular species (H 2 and H 2 O 2 ) generated by water radiolysis can compete in reactions with other dissolved compounds and impose changes to the system chemistry by altering the steady-state concentrations of water radiolysis products, which could impact the degradation of materials in contact with the aqueous phase. Understanding in detail how a given chemical additive changes the long-term radiolysis kinetics can help us to determine what chemistry control steps may be required to return the system to an optimal redox condition, and in turn, enhance the lifetime of reactor components. This study outlines the effect of dissolved oxygen gas, which could be introduced due to air ingress, on long-term water radiolysis behaviour. The effects of solution pH and initial dissolved O 2 concentration on the radiolytic production of molecular H 2 and H 2 O 2 have been investigated by performing experiments with three different O 2 concentrations at pH 6.0 and 10.6 under steady-state radiolysis conditions. The aqueous and gas phase analyses were performed using UV-Vis spectrophotometry and gas-chromatography equipped with electron capture and thermal conductivity detectors. The experimental results were compared with kinetic model calculations of steady-state radiolysis and were found to be in good agreement. The concentrations of water radiolysis products, H 2 O 2 and H 2 , were found to increase in the presence of dissolved oxygen, but the degree of increase was shown to depend on the solution pH. Furthermore, the steady-state concentration of H 2 did not increase as greatly as that of H 2 O 2 at either pH studied. The kinetic analyses have shown

  16. Mathematical modeling of water radiolysis in the Syrian MNSR reactor

    International Nuclear Information System (INIS)

    Soukieh, M.

    2009-11-01

    Because it is difficult to measure the concentration of the radiolytic species in reactors under operating conduction, they must be estimated by computer simulation techniques. This study discusses the mathematical modeling of water radiolysis modeling of the MNSR nuclear reactor cooling water. The mathematical model comprising of 13 differential equations describe 55 chemical reactions of radiolytic species e - a q H + , OH - , H, H 2 , OH, HO 2 , O 2 , HO - 2 , O - , O - 2 , O - 3 . The mathematical model have been tested and it shows a good agreement of the computed values in this work with the results cited in references [1,18] in case of only γray irradiation of pure water with dose rate of 1.18x10 19 eV/L s. The neutron fluxes and dose rates at the interface of cladding-water for the different fuel rings in the MNSR core are determined using MCNP-4C code. In addition, the time dependent of the radiolytic specie concentrations were estimated for max. and min. dose rates and at temperature of 20 degree centigrade in the MNSR. The radiolytic specie concentrations reach the steady sate after about 200-400 s. The radiolytic specie concentrations order of H 2 , O 2 , H 2 O 2 were about ppb. Also this study shows the possibility of suppressed the water radiolysis reactions by adding hydrogen to the MNSR reactor cooling water. (author)

  17. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam; Radiolisis de benceno, tolueno y fenol en solucion acuosa utilizando haces de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Vanderhaghen, D.E

    1998-12-31

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 {mu}A). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water

  18. Water Sorption and Gamma Radiolysis Studies for Uranium Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2002-02-27

    During the development of a standard for the safe, long-term storage of {sup 233}U-containing materials, several areas were identified that needed additional experimental studies. These studies were related to the perceived potential for the radiolytic generation of large pressures or explosive concentrations of gases in storage containers. This report documents the results of studies on the sorption of water by various uranium oxides and on the gamma radiolysis of uranium oxides containing various amounts of sorbed moisture. In all of the experiments, {sup 238}U was used as a surrogate for the {sup 233}U. For the water sorption experiments, uranium oxide samples were prepared and exposed to known levels of humidity to establish the water uptake rate. Subsequently, the amount of water removed was studied by heating samples in a oven at fixed temperatures and by thermogravimetric analysis (TGA)/differential thermal analysis (DTA). It was demonstrated that heating at 650 C adequately removes all moisture from the samples. Uranium-238 oxides were irradiated in a {sup 60}Co source and in the high-gamma-radiation fields provided by spent nuclear fuel elements of the High Flux Isotope Reactor. For hydrated samples of UO{sub 3}, H{sub 2} was the primary gas produced; but the total gas pressure increase reached steady value of about 10 psi. This production appears to be a function of the dose and the amount of water present. Oxygen in the hydrated UO{sub 3} sample atmosphere was typically depleted, and no significant pressure rise was observed. Heat treatment of the UO{sub 3} {center_dot} xH{sub 2}O at 650 C would result in conversion to U{sub 3}O{sub 8} and eliminate the H{sub 2} production. For all of the U{sub 3}O{sub 8} samples loaded in air and irradiated with gamma radiation, a pressure decrease was seen and little, if any, H{sub 2} was produced--even for samples with up to 9 wt % moisture content. Hence, these results demonstrated that the efforts to remove trace

  19. Interaction of radicals from water radiolysis with melanin

    Energy Technology Data Exchange (ETDEWEB)

    Sarna, T.; Pilas, B.; Land, E.J.; Truscott, T.G.

    1986-08-06

    Melanins are considered to be natural photoprotectors in the melanocytes and keratinocytes of the skin. These pigments have also been suggested to play an important role in protection of melanin-containing cells against ionising radiation. Various mechanisms have been proposed to explain the protective role of melanin which invoke the radical scavenging properties of the polymer. In the present work the reactions of melanins with radicals generated in aqueous media by pulse radiolysis have been studied. Time-resolved changes in absorbance of the melanin or the radical species were recorded at selected wavelengths. Experiments were carried out on synthetic dopa- and 5-S-cysteinyldopa-melanins and a natural melanin in phosphate buffer (pH 7.4). Under the conditions employed, melanin reacted predominantly with either oxidising (OH., N3.) or reducing (eaq-, CO2-) species. We were also able to monitor the interaction of melanin with superoxide radical, which was reducing in this case. Detailed analysis of transient changes in melanin absorbance, detected at different wavelengths, was demonstrated to be a convenient method for studying redox processes of this substance, as shown by model experiments using ferricyanide and dithionite as oxidising and reducing agents, respectively. Among the radicals studied, OH. exhibited the strongest reactivity with melanins. Apparent rate constants for the reactions of radicals with autoxidative dopa-melanin (1.5 X 10(9) M-1 X s-1, 2.6 X 10(8) M-1 X s-1, 1.8 X 10(8) M-1 X s-1, 5 X 10(5) M-1 X s-1, 10(6)-10(7) M-1 X s-1 for OH., eaq-, N.3. O2- and CO2-, respectively) are reported. The reactivity of melanins with radicals from water radiolysis and their effect on pigment properties are discussed in terms of the structure and possible biological role of the pigments.

  20. Radiolysis of water confined in zeolites 4A: application to tritiated water storage

    International Nuclear Information System (INIS)

    Frances, Laetitia

    2014-01-01

    Self-radiolysis of tritiated water (HTO) adsorbed in zeolites 4A shows differences compared to free-bulk water radiolysis. We studied the roles of zeolites on that. We took special care with the influence of water loading ratio. We first exposed zeolites to external irradiations, reproducing selectively the dose or the dose rate measured in the case of tritiated water storage. This strategy enables the characterising of the samples after their irradiation since they are not contaminated by tritium. Those experiments revealed the high stability of zeolites 4A. We used a second approach which consisted in studying the precise case of self-radiolysis of tritiated water, in order to obtain radiolytic yields representative of HTO storage. The comparison between the quantities of gas released when zeolites are exposed to the three different sources that we used (electrons accelerated at 10 MeV, γ released by radioactive decay of 137 Cs and β - released by radioactive decay of tritium) revealed the strong influence of the dose rate. Moreover, whatever the irradiation source, zeolites 4A first favour hydrogen release and secondarily oxygen release too. On the contrary, zeolites favour next a recombination between those radiolytic products, with a dependence on their water loading ratio. Several processes are discussed to explain such a phenomena, not noticed during the free-bulk water radiolysis. (author) [fr

  1. Pulse radiolysis of water by energetic heavy ion

    International Nuclear Information System (INIS)

    Taguchi, M.; Sugo, Y.; Iwamatsu, K.; Yamaguchi, M.; Katsumura, Y.

    2011-01-01

    Complete text of publication follows. Water radiolysis is a fundamental process governing radiation effects in various aspects. Degree of water molecule decomposition depends on the type and LET (Linear Energy Transfer) value of radiations. However, the degradation of water molecules by α-particle has not been clearly understood. In this study, we aimed to clarify the reaction behavior of the groundwater induced by of α-particles from high-level radioactive waste (HLW) in the geological disposal environment. α-radiolysis of water was investigated by use of high energy helium ions accelerated by the AVF cyclotron in TIARA facility, JAEA/Takasaki. The pulsed He ion irradiation technique and online time resolved absorbance measurement system was investigated for direct observation of chemical reactions of transient species produced by irradiations. Hydroxyl (OH) radical is the most important species for reactions in aqueous samples because of its high reactivity and formation yield. NaCl was selected as a probe reagent for the OH radical produced by the irradiation with He ion, and dissolved in pure water. Because 50 MeV He ion has the penetration range at 1.5 mm in water, the sample cell has the thickness of 2 mm, and 50 μm glass windows on the top and bottom for preventing energy loss of the incident ions and measuring the absorbance. The transient absorbance was recorded for the aqueous NaCl solutions using semiconductor LASER diode at 375 nm as a probe light source. ClOH - was formed by the reaction of the OH radical with Cl - . The absorbance of ClOH - increased within the irradiation pulse width, and then decreased gradually. The formation yield of ClOH - which was estimated from the peak absorbance value, increased with the solute concentration. Precise analyses of chemical reactions occurred in track will be discussed at the presentation. This study is a part of the project on geological disposal funded by the Ministry of Economy, Trade and Industry, Japan

  2. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Sophie Le Caër

    2011-02-01

    Full Text Available The radiolysis of water due to ionizing radiation results in the production of electrons, H· atoms, ·OH radicals, H3O+ ions and molecules (dihydrogen H2 and hydrogen peroxide H2O2. A brief history of the development of the understanding of water radiolysis is presented, with a focus on the H2 production. This H2 production is strongly modified at oxide surfaces. Different parameters accounting for this behavior are presented.

  3. Effect of water α radiolysis on the spent nuclear fuel UO2 matrix alteration

    International Nuclear Information System (INIS)

    Lucchini, J.F.

    2001-01-01

    In the option of long term storage or direct disposal of nuclear spent fuel, it is essential to study the long-term behaviour of the spent fuel matrix (UO 2 ) in water, in presence of ionizing radiations. This work gives some knowledge elements about the impact of aerated water alpha radiolysis on UO 2 alteration. An original experiment method was used in this study. UO 2 /water interfaces were irradiated by an external He 2+ ions beam. The sequential batch dissolution tests on UO 2 samples were performed in aerated deionized water, before, during and after a-irradiation under high fluxes. A corrosion product, identified as hydrated uranium peroxide, was formed on the UO 2 surface. The uranium release was 3 to 4 orders of magnitude higher under irradiation than out of irradiation. The concentrations of the radiolysis products H 2 O 2 and H 3 O + were affected by the uranium oxide surface. They could not only explain the whole uranium release reached during irradiation in water. Leaching experiments on UO X spent fuel samples (with or without the Zircaloy clad) were also performed, in hot cells. The uranium release was relatively small, and H 2 O 2 was not detected in solution. The rates of uranium release in aerated water during one hour were calculated. They were about mg -1 .m -2 .d -1 for spent fuel and for UO 2 , and about g -1 .m -2 .d -1 for UO 2 irradiated by He 2+ ions. The comparison of the results between the two kinds of experiment shows a difference of the behaviour in water between UO 2 irradiated by He 2+ ions and spent fuel. Some hypothesis are given to explain this difference. (author)

  4. Sub-picosecond pulse radiolysis and ion beam induced nanowire formation for nanolithography and nanotechnology

    International Nuclear Information System (INIS)

    Seiichi Tagawa; Takahiro Kozawa; Shu Seki

    2002-01-01

    For an innovation in the future nano-lithographic technique, we clarify crucial factors determining spatial resolutions of the technique by using sub-picosecond pulse radiolysis system bearing, the world highest time resolution at present. The initial separation distance between positive and negative charges (∼ 10 nm at a few tens ps) will be a grave issue for the fabrication of nanoscale patterns in the near future. The pulse radiolysis system is one of the most powerful tools for the understanding of electron beam and X-ray patterning. As a candidate for the real nano-fabrication system using radiations, we report the formation of nanowires that have cylindrical structure of cross-linked polymers by the high-energy ion beam irradiation to thin films of Si backbone polymers. The spatial distribution and size of the isolated nanowires can be fairly controlled by this technique unlike those for producing carbon nanotubes or wires. The radius of the wire varies from a few nm to 15 nm, and is precisely controlled by simply changing the parameters of incident ion beam or molecular sizes of the target polymer. The thickness of the target film determines the length of each wire, which is also under control by the present technique. We introduce some hints of radiations for future technologies in the present paper. (Author)

  5. Risk analysis for a radiolysis gas detonation in an in-pile loop with supercritical water

    International Nuclear Information System (INIS)

    Zeiger, T.; Raque, M.; Kuznetsov, M.; Redlinger, R.; Schulenberg, T.

    2012-01-01

    The SCWR (supercritical water reactor) -FQT project is a cooperation between European and Chinese partners aimed to test the fuel SCWR elements under reactor conditions. In the frame of this work the risk of radiolysis gas production in the active range of the test track was assessed. The radiolysis gas could accumulate in an emergency cooling system with stagnating coolant. The ignition of this radiolysis gas could cause pressure peaks that are able to damage the primary coolant circuit. Pressure increase and deformations in case of ignition of accumulated gas were investigated. As piping material the Ti stabilized austenitic steel 08Ch18N10T was assumed, the simulation was performed using the ANSYS code. The results show that pipes without significant wall thickness enhancement cannot withstand the radiolysis gas detonation.

  6. Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010

    International Nuclear Information System (INIS)

    Pimblott, S.M.

    2000-01-01

    OAK B188 Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. The aim of this project is to develop an experiment-and-theory based model for the radiolysis of nonstandard aqueous systems like those that will be encountered in the Advance Light Water reactor. Three aspects of the radiation chemistry of aqueous systems at elevated temperatures are considered in the project: the radiation-induced reaction within the primary track and with additives, the homogeneous production of H 2 O 2 at high radiation doses, and the heterogeneous reaction of the radiation-induced species escaping the track. The goals outlined for Phase 1 of the program were: the compilation of information on the radiation chemistry of water at elevated temperatures, the simulation of existing experimental data on the escape yields of e aq - , OH, H 2 and H 2 O 2 in γ radiolysis at elevated temperatures, the measurement of low LET and high LET production of H 2 O 2 at room temperature, the compilation of information on the radiation chemistry of water-(metal) oxide interfaces, and the synthesis and characterization the heterogeneous water-oxide systems of interest

  7. Determination of primary yields in the alpha radiolysis of alkaline water

    International Nuclear Information System (INIS)

    Auclair, Guy

    2001-01-01

    This work presents a fundamental study of the radiolysis of water within the framework of the management of nuclear waste. During their storage, the packages of cemented radioactive waste are likely to release molecular hydrogen. Indeed, interstitial water undergoes decomposition under irradiation. This phenomenon is called radiolysis. In order to envisage the impact of H 2 de-gasification on the security of the installations, it is necessary to determine the primary radiolytic yields in the cementing medium (characterised by a pH ranging between 12 and 14), which provides a basic simulations thus allowing us to obtain both the quantities of gas and the pressure in the pore. Such data is currently not available in the literature. Studies were undertaken with a beam of accelerated helium ions in order to reproduce the conditions of irradiation on solutions at pH = 13 in order to determine a first complete series of radiolytic yields.A more complete study was undertaken on the effects of LET and pH on the yield of molecular hydrogen. The results seem to show that the yield of this primary product is little influenced by pH. Such results were in good agreement with those obtained by Monte-Carlo simulations. These studies have shown that, contrary to γ irradiations, the irradiations with α-particles do not lead to the same characteristic times. The extrapolation of this data with respect to the problem of the packaging of nuclear waste is delicate due to the limited amount of results in the literature and also the chemical and physical complexity of the concretes. (author) [fr

  8. Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis

    International Nuclear Information System (INIS)

    Pimblott, S.M.; Mozumder, A.

    1991-01-01

    A procedure for the calculation of entity-specific ionization and excitation probabilities for water radiolysis at low linear energy transfer (LET) has been developed. The technique pays due attention to the effects of the ionization threshold and the energy dependence of the ionization efficiency. The numbers of primary ionizations and excitations are not directly proportional to the spur energy. At a given spur energy, ionization follows a binomial distribution subject to an energetically possible maximum. The excitation distribution for a spur of given energy and with a given number of ionizations is given by a geometric series. The occurrence probabilities depend upon the cross sections of ionization, excitation, and other inferior processes. Following the low-LET radiolysis of liquid water the most probable spurs contain one ionization, two ionizations, or one ionization and one excitation, while in water vapor they contain either one ionization or one excitation. In liquid water the most probable outcomes for spurs corresponding to the most probable energy loss (22 eV) and to the mean energy loss (38 eV) are one ionization and one excitation, and two ionizations and one excitation, respectively. In the vapor, the most probable energy loss is 14 eV which results in one ionization or one excitation and the mean energy loss is 34 eV for which the spur of maximum probability contains one ionization and two excitations. The total calculated primary yields for low-LET radiolysis are in approximate agreement with experiment in both phases

  9. Conditions for critical effects in the mass action kinetics equations for water radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wittman, Richard S.; Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Smith, Frances N.; Soderquist, Chuck Z.

    2014-12-26

    We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics has been studied extensively in the past, it is only in recent years that high speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature – specifically, “jumps” in predicted concentrations, and inconsistencies between predictions and experiments have been reported for alpha radiolysis. We computationally map-out a critical concentration behavior for alpha radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique – both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists, from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported alpha radiolysis data and that no such behavior should occur for gamma radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for alpha radiolysis and could place more restrictive ranges on G-values from derived relationships between them.

  10. Geterogeneous radiolysis of water vapors in the pressure of catalyst containung zeolute

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Bugaenko, L.T.; Kurbanov, M.A.; Kerimov, V.K.; Mamedov, S.G.; Zul'fugarov, Eh.I.

    1981-01-01

    Effects of the dose and temperature (irradiation temperature is 140-400 deg C) upon radiolysis of water vapours in the presence of zeolite-containing catalyst are studied. Evaluation of the value of energy absorbed by water molecules at the expense of delta-electrons knocked out with γ-quanta out of solid matrix is carried out. The reaction mechanism is discussed

  11. Measurement of the hydrogen yield in the radiolysis of water by dissolved fission products

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.; Hart, E.J.; Flynn, K.F.; Gindler, J.E.

    1976-04-01

    Hydrogen from the radiolysis of water by dissolved fission products is stripped from the solution and collected by bubbling CO 2 through the solution. Quantitative measurements of the G value for hydrogen show that the yield is essentially the same as would be obtained by external gamma radiolysis of nonradioactive solutions of the same chemical composition. The hydrogen yield can be enhanced by addition of a hydrogen-atom donor, such as formic acid, to the solution. The yield of hydrogen from fission-waste solutions is discussed with respect to the question of whether it represents a significant energy source

  12. Application of chemiluminescence to the study of alpha, beta and gamma radiolysis of water

    International Nuclear Information System (INIS)

    Broudic, V.; Muzeau, B.; Jegou, C.; Bonnal, M.; Gavazzi, A.; Marques, C.

    2004-01-01

    In the frame of the French research program on the long-term behavior of spent nuclear fuel, experiments are conducted in ATALANTE to develop and validate models of spent fuel evolution in contact with an aqueous phase. One of the mechanisms that may govern intermediate or long-term alteration of the spent fuel matrix in a repository is the oxidizing dissolution by radiolysis products of water. Leaching experiments in de-aerated media requires the analysis of hydrogen peroxide, as a major product of water radiolysis, down to 10 -8 mol.L -1 . This work presents the results obtained using the chemiluminescence reaction of iso-luminol with H 2 O 2 , catalyzed by micro-peroxidase. Depending on the samples used, different types of radiolytic processes were studied: α radiolysis of water when leaching UO 2 pellets doped with alpha emitters, or γ radiolysis of water when leaching the same samples or spent fuel in a gamma field. Influences of operating conditions on the analytical results are discussed. (authors)

  13. The formation of hydrogen in the radiolysis of water in closed volumes

    International Nuclear Information System (INIS)

    Kabakchi, S.A.; Lebedeva, I.E.

    1984-01-01

    By applying the sum total of the elementary reactions involving short-lived particles it is possible to fairly accurately calculate the kinetics of hydrogen formation and of its separation from water, and also to calculate the accumulation of hydrogen peroxide and oxygen during radiolysis of pure water and water solutions at room temperature. This paper describes a semi-empirical method to calculate the kinetics of hydrogen formation for certain cases encountered in nuclear power production. (author)

  14. Alpha Radiolysis of Sorbed Water on Uranium Oxides and Uranium Oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2003-09-10

    The radiolysis of sorbed water and other impurities contained in actinide oxides has been the focus of a number of studies related to the establishment of criteria for the safe storage and transport of these materials. Gamma radiolysis studies have previously been performed on uranium oxides and oxyfluorides (UO{sub 3}, U{sub 3}O{sub 8}, and UO{sub 2}F{sub 2}) to evaluate the long-term storage characteristics of {sup 233}U. This report describes a similar study for alpha radiolysis. Uranium oxides and oxyfluorides (with {sup 238}U as the surrogate for {sup 233}U) were subjected to relatively high alpha radiation doses (235 to 634 MGy) by doping with {sup 244}Cm. The typical irradiation time for these samples was about 1.5 years, which would be equivalent to more than 50 years irradiation by a {sup 233}U sample. Both dry and wet (up to 10 wt % water) samples were examined in an effort to identify the gas pressure and composition changes that occurred as a result of radiolysis. This study shows that several competing reactions occur during radiolysis, with the net effect that only very low pressures of hydrogen, nitrogen, and carbon dioxide are generated from the water, nitrate, and carbon impurities, respectively, associated with the oxides. In the absence of nitrate impurities, no pressures greater than 1000 torr are generated. Usually, however, the oxygen in the air atmosphere over the oxides is consumed with the corresponding oxidation of the uranium oxide. In the presence of up to 10 wt % water, the oxides first show a small pressure rise followed by a net decrease due to the oxygen consumption and the attainment of a steady-state pressure where the rate of generation of gaseous components is balanced by their recombination and/or consumption in the oxide phase. These results clearly demonstrate that alpha radiolysis of either wet or dry {sup 233}U oxides will not produce deleterious pressures or gaseous components that could compromise the long-term storage of

  15. Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU

    Science.gov (United States)

    Tian, Zhen; Jiang, Steve B.; Jia, Xun

    2017-04-01

    The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2.

  16. Water/polyethylene system radiolysis: application to the tritiated water storage in polyethylene bottle

    International Nuclear Information System (INIS)

    Billamboz, N.

    2007-04-01

    This study deals with the validation and the search of the limitations for the storage of tritiated water (HTO) in polyethylene (PE) containers. The hydroxyl radical (HO . ), produced during the radiolysis of water, is known for its reactivity toward alkanes in water. Our competition experiments (with SCN - or coumarin) by pulse radiolysis shows the reactivity of HO . with PE, which gives rise to chemical modifications of PE. Some FTIR analysis of PE, irradiated in the presence of water, show that the amounts of C=C, C-O, and C=O functions are more important when the production of HO . is favoured. Moreover the reactivity of e aq - in the presence of PE has also been highlighted by time resolved spectroscopy. The study of permeability of the HTO/PE system shows that the volumetric activity within PE is 10 4 fold lower than the water activity after a one year immersion in 1853 Ci.L -1 HTO. The MCNP simulation of the irradiation by the β - of the tritium points out that 200 kGy is deposited within the first 250 nanometers of the PE. In spite of an early diffusion these results show a very weak solubility. Furthermore the value of the diffusion decreases following the modifications induced by the β - at the surface. Crosslinking is a parameter that directly acts on the diffusion of molecules through the polymer. We have adapted and used the thermo-poro-metry technique in order to assess the crosslinking of PE. Using this investigation we have characterized the cross linking as a function of the dose, especially with respect to the mesh size distribution. We have also established a relationship allowing the determination of the crosslinking density in a swelled PE sample by p-xylene by DSC analysis. (author)

  17. Pulse radiolysis studies of liquid heavy water at temperatures up to 250 degrees C

    International Nuclear Information System (INIS)

    Stuart, C.R.; Ouellette, D.C.; Elliot, A.J.

    2002-09-01

    This report documents the rate constants and associated activation energies for the reactions of the primary radical species, e aq - , ·OD and ·D, which are formed during the radiolysis of heavy water within the temperature range 20 to 250 o C. These heavy-water data have been compared with the corresponding information for light water. These kinetic data form part of the database that is required to model the aqueous radiation chemistry that occurs within the core of the heavy water cooled and moderated CANDU reactor. (author)

  18. Effects of seawater components on radiolysis of water at elevated temperature

    International Nuclear Information System (INIS)

    Wada, Yoichi; Tachibana, Masahiko; Ishida, Kazushige; Ota, Nobuyuki; Shigenaka, Naoto; Inagaki, Hiromitsu; Noda, Hiroshi

    2014-01-01

    Effects of seawater components on radiolysis of water at elevated temperature have been studied with a radiolysis model in order to evaluate influence on integrity of materials used in an ABWR. In 2011, seawater flowed into a wide part of the nuclear power plant system of the Hamaoka Nuclear Power Station Reactor No. 5 owned by Chubu Electric Power Co., Inc. after condenser tubes broke during the plant shutdown operation. The reactor water temperature was 250°C and its maximum Cl − concentration was ca. 450 ppm when seawater was mixed with reactor water. In order to clarify effects of the sea water components on radiolysis of water at elevated temperature, a radiolysis model calculation was conducted with Hitachi's radiolysis analysis code 'SIMFONY'. For the calculation, the temperature range was set from 50 to 250°C with 50°C increments and the gamma dose rate was set at 60 Gys −1 to see the effect of gamma irradiation from fuels under shutdown conditions. Concentrations of radiolytic species were calculated for 10 5 s. Dilution ratio of seawater was changed to see the effects of concentration of seawater components. Reaction rate constants of the Cl − , Br − , HCO 3 − , and SO 4 2− systems were considered. The main radiolytic species were predicted to be hydrogen and oxygen. Hydrogen peroxide of low concentration was produced in seawater-mixed water at elevated temperatures. Compared with these main products, concentrations of radiolytic products originating from chloride ion and other seawater components were found to be rather low. The dominant product among them was ClO 3 − and its concentration was found to be below 0.01ppm at 10 5 s. Then, during the plant shutdown operation, the harmful influence from radiolytic species originating from seawater components on integrity of fuel materials must be smaller than that of chloride ion which is the main ionic species in seawater. (author)

  19. Radiolysis of water at elevated temperatures with γ-rays and fast neutrons

    International Nuclear Information System (INIS)

    Katsumura, Y.; Sunaryo, G.R.; Hiroishi, D.; Ishigure, K.

    1995-01-01

    Determination of G-values of water decomposition products in neutral water produced by irradiation with gamma-rays and fast neutrons at elevated temperatures up to 250degC was carried out by a combination of NaNO 2 , acetone + methanol, and HClO 4 + methanol solutions. In the gamma-radiolysis, the G-values obtained in the present experiment are in good agreement with recently reported ones except G OH and G H2O2 . In the fast neutron radiolysis, although a similar change of the G-values with temperature was observed, the higher molecular yields of G H2 and G H2O2 and lower radical ones of G H and, especially, G e-aq were determined. It was made clear that the LET effect still remains even at elevated temperatures. It suggests that the spur size would expand at higher temperatures and the fraction of the intraspur reactions decreases. Furthermore, in order to clarify the characteristics of the determined G-values, computer simulations under the simplified conditions in nuclear reactors have been carried out. The G-values for fast neutron radiolysis give a significant influence to the result. It was pointed out by the simulations that reverse reactions for H 2 + OH → H + H 2 O and e - aq + H + → H, which can be neglected at room temperature, become important at higher temperatures. (author)

  20. Study of water radiolysis in relation with the primary cooling circuit of pressurized water reactors

    International Nuclear Information System (INIS)

    Pastina, B.

    1997-07-01

    This memorandum shows a fundamental study on the water radiolysis in relation with the cooling primary circuit of PWR type reactors. The water of the primary circuit contains boric acid a soluble neutronic poison and also hydrogen that has for role to inhibit the water decomposition under radiation effect. In the aim to better understand the mechanism of dissolved hydrogen action and to evaluate the impact of several parameters on this mechanism, aqueous solutions with boric acid and hydrogen have been irradiated in a experimental nuclear reactor, at 30, 100 and 200 Celsius degrees. It has been found that, with hydrogen, the water decomposition under irradiation is a threshold phenomenon in function of the ratio between the radiation flux '1' B(n, )'7 Li and the gamma flux. When this ratio become too high, the number of radicals is not sufficient to participate at the chain reaction, and then water is decomposed in O 2 and H 2 O 2 in a irreversible way. The temperature has a beneficial part on this mechanism. The iron ion and the copper ion favour the water decomposition. (N.C.)

  1. A pulse radiolysis study of oil/water microemulsions

    International Nuclear Information System (INIS)

    Wu, Guozhong; Katsumura, Yosuke; Chitose, Norihisa; Zuo, Zhihua

    2000-01-01

    The spectrum and yield of e aq - in quaternary benzene/water and dodecane/water microemulsions were found to be identical with those in pure water. This indicates probably the scavenging of excess electrons produced in the oil by water. To the contrary, the yield of OH radicals, determined after scavenging and conversion into (SCN) 2 -· , was proportional to water content of the microemulsion. The e aq - decay and the total yield of peroxides in aerated microemulsion were determined and the characteristics of oxidation in microemulsion was discussed. (author)

  2. Antioxidant activity of hydrated carboxylated nanodiamonds and its influence on water γ-radiolysis

    Science.gov (United States)

    Santacruz-Gomez, Karla; Sarabia-Sainz, A.; Acosta-Elias, M.; Sarabia-Sainz, M.; Janetanakit, Woraphong; Khosla, Nathan; Melendrez, R.; Pedroza Montero, Martin; Lal, Ratnesh

    2018-03-01

    Water radiolysis involves chemical decomposition of the water molecule into free radicals after exposure to ionizing radiation. These free radicals have deleterious effects on normal cell physiology. Carboxylated nanodiamonds (cNDs) appear to modulate the deleterious effects of γ-irradiation on the pathophysiology of red blood cells (RBCs). In the present work, the antioxidant activity of hydrated cNDs (h-cNDs) on limiting oxidative damage (the water radiolysis effect) by γ-irradiation was confirmed. Our results show that h-cNDs have remarkable free radical scavenging ability and preserve the enzymatic activity of catalase after γ-irradiation. The underlying mechanism through which nanodiamonds exhibit antioxidant activity appears to depend on their colloidal stability. This property of detonation synthesized nanodiamonds is improved after carboxylation, which in turn influences changes in the hydrogen bond strength in water. The observed stability of h-cNDs in water and their antioxidant activity correlates with their protective effect on RBCs against γ-irradiation.

  3. Alternative Energy: Production of H{sub 2} by Radiolysis of Water in the Rocky Cores of Icy Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Bouquet, Alexis; Waite, J. Hunter [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); Glein, Christopher R.; Wyrick, Danielle [Southwest Research Institute, Space Science and Engineering Division, San Antonio, TX (United States)

    2017-05-01

    We applied a model of radiolysis in earthly rock–water mixtures to several known or suspected ocean worlds: Enceladus, Ceres, Europa, Titania, Oberon, Pluto, and Charon. In this model, radiation emitted by the long-lived radionuclides ({sup 40}K, {sup 232}Th, {sup 235}U, and {sup 238}U) contained in the ordinary chondrite-like rocks is partly absorbed by the water permeating the material of each body’s core. The physical and chemical processes that follow release molecular hydrogen (H{sub 2}), which is a molecule of astrobiological interest. We compared the calculated production of H{sub 2} by radiolysis in each body’s core to published estimates of production by serpentinization. This study presents production calculations over 4.5 Gyr for several values of rock porosity. We found that radiolysis can produce H{sub 2} quantities equivalent to a few percent of what is estimated from serpentinization. Higher porosity, which is unlikely at the scale of a body’s entire core but possible just under the seafloor, can increase radiolytic production by almost an order of magnitude. The products of water radiolysis also include several oxidants, allowing for production of life-sustaining sulfates. Though previously unrecognized in this capacity, radiolysis in an ocean world’s outer core could be a fundamental agent in generating the chemical energy that could support life.

  4. State of knowledge on the water radiolysis in cemented wasteforms and its approach by simulation

    International Nuclear Information System (INIS)

    Bouniol, P.

    2004-01-01

    The decomposition of water under radiation within the cementitious matrix is at the origin of a potential source of harmful effects in the wasteform and their environment (pressurization and emanation of di-hydrogen) which can have an impact on the safety. In the aim of a better evaluation of the 'H 2 ' risk induced by such a complex and heterogeneous system, this document is an analysis of the elements necessary for a global understanding of the radiolysis in the cemented wasteform to be achieved: - summary of the basic knowledge on water radiolysis with transposition to the cementitious medium, - critical review of the various phenomenologies at work in a wasteform (radioactive source-term, gas transport, mineral equilibria); description of their mutual couplings and of their feedback on radiolytic chemistry; identification of the determining parameters, - presentation of a selection of experimental facts putting in light some theoretical points, - presentation of an outline of operational model deriving from the global vision; presentation of an adapted tool for simulation (CHEMSIMUL) and study of the influence of the principal parameters, starting from a reference case. The main result of this work is that it is shown, in the case of a βγ source term, that the control of the pore fluid composition by calcium octo-hydrate peroxide constitutes an efficient regulating mechanism for the radiolysis and H 2 production. Not likely possible in the case of an α source term, this suggests a separate management of the wasteform according to their radiological contents. The gaps and limits of the model which are also evoked are promising of a lot of research prospects, primarily of a fundamental nature (impact of the porous medium). (author)

  5. LC-MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution: Structure elucidation and formation mechanism of radiolytic products

    Energy Technology Data Exchange (ETDEWEB)

    Slegers, Catherine [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium)]. E-mail: catherine.slegers@skynet.be; Maquille, Aubert [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium); Deridder, Veronique [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium); Sonveaux, Etienne [Unite de Chimie Pharmaceutique et de Radiopharmacie, Universite Catholique de Louvain, Brussels (Belgium); Habib Jiwan, Jean-Louis [Laboratoire de Spectrometrie de Masse, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Tilquin, Bernard [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium)

    2006-09-15

    E-beam and gamma products from the radiolysis of aqueous solutions of ({+-})-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of ({+-})-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed.

  6. Radiolysis of kaempferol in water/methanol mixtures. Evaluation of antioxidant activity of kaempferol and products formed.

    Science.gov (United States)

    Marfak, Abdelghafour; Trouillas, Patrick; Allais, Daovy-Paulette; Champavier, Yves; Calliste, Claude-Alain; Duroux, Jean-Luc

    2003-02-26

    Oxidative reaction between hydroxymethyl radical ((*)CH(2)OH) and kaempferol, in methanol and methanol/water mixtures, was studied by gamma-radiolysis using a (60)Co source. Radiolysis was performed with concentrations and doses ranging from 5 x 10(-)(5) M to 5 x 10(-)(3) M and from 0.5 kGy to 14 kGy, respectively. Kaempferol degradation was followed by HPLC. Results showed that (*)CH(2)OH reacts with kaempferol at the 3-OH group and produces two depsides (K1 and K2) and other products including K3. K1, K2, and K3 were identified by NMR, LC-MS, and HRMS. The kaempferol degradation pathway leading to the K1, K2, and K3 formation is proposed. It was observed that the more water concentration in the irradiation medium increases, the more K2 concentration increases. Comprehension of food preservation is not clear because many phenomena occurring during irradiation are not established. Radiolysis of kaempferol in water/methanol mixtures helps to elucidate the phenomenon and it is possible that during the treatment of nutriments by gamma-irradiation, a series of products such as depside K2 could be formed. Antioxidant properties of kaempferol radiolysis products were evaluated according to their capacity to decrease the EPR DPPH (1,1-diphenyl-2-picrylhydrazil) signal and to inhibit superoxide radicals formed by the enzyme reaction "xanthine + xanthine oxidase".

  7. Interaction study of water radiolysis products with Crotalus durissus terrificus miotoxin

    International Nuclear Information System (INIS)

    Silva, Murilo Casare da

    2008-01-01

    Ionizing radiation has been satisfactorily employed for venoms detoxification. In this report, the radiation was employed to verify the effects caused by the radiolysis products of water on the Crotamine, toxin purified from Crotalus durissus terrificus venom. These effects were analyzed using some substances called 'scavengers', those substances competes for specific reactive species hindering them to act on the toxins molecules. In order to study the possible structural damages caused on the toxins, circular dichroism, fluorescence, nuclear magnetic resonance, amino acids analysis and intravital microscopy were employed. Our results indicate that ionizing radiation caused structure alterations, mainly, in secondary and tertiary structure of crotamine. In the irradiated crotamine, was not possible to determine tridimensional structure. And the crotamine toxic effect was removed by ionizing radiation. (author)

  8. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  9. Synchronization of femtosecond UV-IR laser with electron beam for pulse radiolysis studies

    International Nuclear Information System (INIS)

    Saeki, Akinori; Kozawa, Takahiro; Kashiwagi, Shigeru; Okamoto, Kazumasa; Isoyama, Goro; Yoshida, Yoichi; Tagawa, Seiichi

    2005-01-01

    A picosecond stroboscopic pulse radiolysis system which consists of a femtosecond laser and a picosecond L-band linear accelerator (linac) is demonstrated. A newly installed femtosecond laser system operated at 960 Hz can cover a wide region of wavelength ranging from <300 nm to 10 μm, although the upper limit is 1.7 μm to date because of the sensitivity of photodetectors. In order to achieve a high accuracy of synchronization between the laser and the linac, a new timing and synchronization circuit was developed. A double pulse detection method was applied for the new system, resulting in doubling of the improvement in signal-to-noise ratio. The time resolution and time jitter were estimated from the rise time of hydrated electrons at 600 nm, and the transient absorption kinetics of electrons in n-dodecane was measured at 1300 nm

  10. Computer modeling of inhibition of α-radiolysis of water by H2 addition (9. International Workshop on Radiolysis, Electrochemistry and Materials Performance)

    International Nuclear Information System (INIS)

    Lertnaisat, Phantira; Katsumura, Yosuke; Mukai, Satoru; Umehara, Ryuji; Shimizu, Yuichi; Suzuki, Masaru

    2012-09-01

    It is known that α-radiolysis of water produces H 2 gas continuously. The addition of H 2 to water inhibits the water decomposition; H 2 evolution. In order to suppress the water decomposition, 25 cc H 2 STP/kg-H 2 O is added to the coolant water in PWR. However, the exact inhibition mechanism is still not made clear yet. In this project, the chemical kinetic simulation program, so called FASCIMILE, was used to reproduce the suppression of α-radiolysis of water by H 2 addition. By using three important factors; the decomposition (G-value), the reaction set and rate constants, and the dose rate, it is found that without hydrogen addition, the simulation shows the almost linear increase of molecular products; H 2 , H 2 O 2 , and O 2 . Nevertheless, as the additional hydrogen is added to the system, this behaviour of linear increase is shifted to longer time period. And up to certain concentration, the linear increase behaviour is completely suppressed and the molecular products reach the steady state condition at early time period and much lower concentration. The minimum concentration of H 2 which could completely suppress the decomposition of water is called Critical Hydrogen Concentration (CHC) and it is dose rate dependent value. The CHC is found to be dependent on the reaction set and rate constants. The simulation results show that the CHC at room temperature and dose rate of 1 kGy/s of the simulation done by using reaction set and rate constants obtained from Ershov et al. and AECL report 2009 are 165μM and 146 μM, respectively. From the change of the behaviour of molecular products after reaching the CHC, the possible mechanism is proposed. First, the OH radical are formed via the reaction of H + H 2 O 2 → OH + H 2 O and e - aq + H 2 O 2 → OH+OH - . Then OH, which normally will react with H 2 O 2 to produced HO 2 , will react with the additional H 2 , which produce H to continue the chain reaction. The relation of chain reaction to the suppression of

  11. Formation and reactions of free radicals in the radiolysis of organic materials by ion beams

    International Nuclear Information System (INIS)

    Koizumi, H.

    2000-01-01

    High-energy heavy ions deposit energy along ion tracks with high density. Chemical effects of the heavy ions may hence differ from that of γ-rays and fast electrons. We can utilize these effects for material modification and fabrication of microstructure. It is necessary to know the dependence of the effects on ion beams and the variation of the effects on materials for developing new application of ion beams. We then studied radical formation in organic solids of alanine and of adipic acid by ion beams irradiation. (author)

  12. Formation and reactions of free radicals in the radiolysis of organic materials by ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H. [Hokkaido Univ., Division of Molecular Chemistry, Sapporo, Hokkaido (Japan)

    2000-03-01

    High-energy heavy ions deposit energy along ion tracks with high density. Chemical effects of the heavy ions may hence differ from that of {gamma}-rays and fast electrons. We can utilize these effects for material modification and fabrication of microstructure. It is necessary to know the dependence of the effects on ion beams and the variation of the effects on materials for developing new application of ion beams. We then studied radical formation in organic solids of alanine and of adipic acid by ion beams irradiation. (author)

  13. Simulation of ion-induced water radiolysis in different conditions of oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Colliaux, Anthony [Université de Lyon, F-69622 Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, UMR 5822, Institut de Physique Nucléaire de Lyon (France); Gervais, Benoit [Centre de Recherche sur les Ions, les Matériaux et la Photonique – 6 boulevard du Maréchal Juin, 14050 Caen (France); Rodriguez-Lafrasse, Claire [Université de Lyon, Université Lyon 1, Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR 3738, Faculté de Médecine Lyon-Sud, Oullins F-69921 (France); Beuve, Michaël, E-mail: m.beuve@ipnl.in2p3.fr [Université de Lyon, F-69622 Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, UMR 5822, Institut de Physique Nucléaire de Lyon (France)

    2015-12-15

    We have investigated the production of free radicals induced by swift ions during the radiolysis of oxygenated water and analyzed the underlying mechanisms in detail. To this aim, we simulated, by Monte-Carlo, the irradiation of water by projectiles with LET values ranging from 1 to 300 keV/μm for a partial pressure of oxygen in air from 0 to 750 mmHg, and for times up to 10 μs after ion impact. For low-LET radiation, we observed an increase in production of (HO{sub 2}{sup ·} + O{sub 2}{sup ·−}) with oxygen pressure and a saturation. At 1 μs, the saturation occurred at a pressure of 20–30 mmHg and the maximal yield amounted to 0.3 μmol L{sup −1} per Gray. For the same conditions, we observed similar trends for high-LET ions, but we observed a significant reduction in the yield values and an attenuation of the saturation behavior. By underlining similarities between the yield of (HO{sub 2}{sup ·} + O{sub 2}{sup ·−}) and the oxygen effect observed in radiobiology, we discuss the role of (HO{sub 2}{sup ·} + O{sub 2}{sup ·−}) in oxygen effect and suggest a general mechanism for this phenomenon.

  14. Simulation of the radiolysis of water using Green's functions of the diffusion equation

    International Nuclear Information System (INIS)

    Plante, I.; Cucinotta, F.A.

    2015-01-01

    Radiation chemistry is of fundamental importance in the understanding of the effects of ionising radiation, notably with regard to DNA damage by indirect effect (e.g. damage by .OH radicals created by the radiolysis of water). In the recent years, Green's functions of the diffusion equation (GFDEs) have been used extensively in biochemistry, notably to simulate biochemical networks in time and space. In the present work, an approach based on the GFDE will be used to refine existing models on the indirect effect of ionising radiation on DNA. As a starting point, the code RITRACKS (relativistic ion tracks) will be used to simulate the radiation track structure and calculate the position of all radiolytic species formed during irradiation. The chemical reactions between these radiolytic species and with DNA will be done by using an efficient Monte Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state that has been developed recently. These simulations should help the understanding of the contribution of the indirect effect in the formation of DNA damage, particularly with regards to the formation of double-strand breaks. (authors)

  15. Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates

    International Nuclear Information System (INIS)

    Staehelin, J.; Buehler, R.E.; Hoigne, J.

    1984-01-01

    Ozone decomposition in pure water involves a chain mechanism, initiated by the reaction OH - +O 3 and propogated by O 2 - and OH. In the present studies this chain is initiated by pulse radiolysis of aqueous solutions of ozone. The chain propogation steps were studied in two parts. By computer simulation of the rate curves, it is shown that from OH + O 3 and intermediate HO 4 must be formed, most likely a charge-transfer complex (HO.O 3 ), which eventually decays into HO 2 . The derived rate constants for the formation of the various species are included. The spectrum of HO 4 is derived. It is similar to the one of ozone, but the absorption coefficients are about 50% larger. In the presence of high ozone concentration, the dominant chain termination reactions are HO 4 + HO 4 and HO 4 + HO 3 . The effect on chain length, dose, overall rate, and pH and of added scavengers is described. The implications for the natural ozone decay mechanism are discussed

  16. Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water

    Science.gov (United States)

    Sterniczuk, Marcin; Yakabuskie, Pamela A.; Wren, J. Clara; Jacob, Jasmine A.; Bartels, David M.

    2016-04-01

    Low Linear Energy Transfer (LET) radiolysis escape yields (G values) are reported for the sum (G(radH)+G(e-)aq) and for G(H2) in subcritical water up to 350 °C. The scavenger system 1-10 mM acetate/0.001 M hydroxide/0.00048 M N2O was used with simultaneous mass spectroscopic detection of H2 and N2 product. Temperature-dependent measurements were carried out with 2.5 MeV electrons from a van de Graaff accelerator, while room temperature calibration measurements were done with a 60Co gamma source. The concentrations and dose range were carefully chosen so that initial spur chemistry is not perturbed and the N2 product yield corresponds to those reducing radicals that escape recombination in pure water. In comparison with a recent review recommendation of Elliot and Bartels (AECL report 153-127160-450-001, 2009), the measured reducing radical yield is seven percent smaller at room temperature but in fairly good agreement above 150 °C. The H2 escape yield is in good agreement throughout the temperature range with several previous studies that used much larger radical scavenging rates. Previous analysis of earlier high temperature measurements of Gesc(radOH) is shown to be flawed, although the actual G values may be nearly correct. The methodology used in the present report greatly reduces the range of possible error and puts the high temperature escape yields for low-LET radiation on a much firmer quantitative foundation than was previously available.

  17. Modelling 'steady-state' water radiolysis in nuclear reactors: status of the reaction set, rate constants and g-Values for 20o - 350oC

    International Nuclear Information System (INIS)

    Elliot, J.

    2010-01-01

    This paper gives a review of water radiolysis in reactor circuits. The discussion is illustrated with experimental results from the radiolysis of water under high temperature, high dose conditions in a re-circulating water loop in a reactor. It also gives the status of the database for modeling radiation chemistry under power reactor conditions.

  18. Study of the effect of water radiolysis on zirconolite dissolution; Etude de l'effet de la radiolyse de l'eau sur la livixation de la zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Tribet, M

    2007-09-15

    Zirconolite is one of the matrices foreseen for the confinement of minor actinides in case of deep geological disposal. Indeed, zirconolite (general formula: CaZr{sub x}Ti{sub 3-x}O{sub 7} (0.8 {<=} x {<=} 1.37)) is able to incorporate rare earth elements and actinides by substitution in calcium and zirconium sites and, moreover, its chemical durability into water is well known. However, in case of deep geological disposal, after a long period, water can reach the confinement matrix and can be radiolysed at the moment of the radionuclide alpha decays. In this work we have thus studied the effects of water radiolysis induced by charged particles (alphas or protons) on the dissolution of a synthetic sintered zirconolite. The formula of this zirconolite is Ca{sub 0,8}Nd{sub 0,2}ZrTi{sub 1,8}Al{sub 0,2}O{sub 7} where Nd simulates the presence of trivalent and tetravalent actinides. We performed the irradiations with external ion beams in two distinct geometries where the fluences ranged from 10{sup 15} to 10{sup 16} ions.cm{sup -2}. In the first geometry the beam stops into water before the surface/water interface. In the second one the beam gets through the sample before stopping at the surface/water interface. The use of these different configurations allows to study the respective influence of parameters such as sample irradiation, Linear Energy Transfer at the surface/water interface or total deposited energy. The irradiations were performed on both crystalline and amorphous zirconolites in pure water or with complexing species such as F{sup -}. The sample dissolution has been monitored through the release of cations. The radiolytic production of H{sub 2}O{sub 2} has also been measured. Our results show that the water radiolysis has an effect on the preferential release of Zr, Ti and Nd: for these elements, releases are one or two order of magnitude higher than releases out of radiolysis. Such preferential releases occur whatever the temperature (20 or 50 C), the

  19. Primary processes in the radiolysis of water at high temperature; Processus primaires de la radiolyse de l'eau a temperature elevee

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchino, G.; Vigneron, G.; Pommeret, S. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules (DSM/DRECAM/SCM), URA 331 CNRS, 91 - Gif sur Yvette (France); Waele, V. de; Monard, H.; Sorgues, S.; Gobert, F.; Larbre, J.P.; Marignier, J.L.; Mostafavi, M. [Paris-11 Univ., Lab. de Chimie Physique/Elyse, CNRS, 91 - Orsay (France)

    2006-03-15

    A sharp increase of temperature as it is expected in the proximity of radioactive wastes (150 to 200 Celsius degrees) can modify the yields and kinetics of products from water radiolysis. We have used an experimental device based on an optical flow cell coupled to an electron accelerator able to deliver 9 MeV electron on 15 ps long pulses. The radiolysis of water has been studied in the 23 - 350 Celsius degrees temperature range. It is shown that the yield of the hydrated electron increases with temperature and that its kinetics in the 100 ps - 3 ns range is all the slower as the temperature increases. (A.C.)

  20. Pulse radiolysis

    International Nuclear Information System (INIS)

    Greenshields, H.; Seddon, W.A.

    1982-03-01

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  1. In situ generation of ultrafast transient "acid spikes" in the 10B(n,α)7Li radiolysis of water

    Science.gov (United States)

    Islam, Muhammad Mainul; Kanike, Vanaja; Meesungnoen, Jintana; Lertnaisat, Phantira; Katsumura, Yosuke; Jay-Gerin, Jean-Paul

    2018-02-01

    Monte Carlo track chemistry simulations of the 10B(n,α)7Li radiolysis of water show that the in situ formation of H3O+ by the two He and Li recoiling ions renders the native track regions temporarily very acidic. For these irradiating ions, the pH remains near 0 at times less than ∼100 ps after which the system gradually returns to neutral pH at ∼0.1 ms. These 'acid spikes' have never been invoked in water or in a cellular environment exposed to densely ionizing radiations. The question of their implications in boron neutron capture therapy and, more generally, in hadrontherapy, is discussed briefly.

  2. Gamma-ray radiolysis of methyl iodide in air, in presence of water vapor

    International Nuclear Information System (INIS)

    Aubert, F.

    2002-03-01

    This work aims at modelling the processes involved in gamma-radiolysis of methyl iodide diluted in air in presence of steam. It is to determine quantitative and qualitative information, to quantify the importance of the organic iodides destruction in case of a nuclear reactor accident. The main data for radiochemistry and iodine compounds (I x O y and INO x ) formation were reviewed and analysed. Literature data about air products radiolysis reactivity towards I 2 and CH 3 I were used to develop a mechanistic model for methyl iodide destruction in the gas phase under gamma irradiation. An ab initio study was realised for a better understanding of atomic nitrogen ( 4 S and 2 D) reactivity towards CH 3 I. The model was tested on the available experimental data and constitute a way to investigate the main processus involved in methyl iodide destruction. For the low CH 3 I concentrations, about 10 -7 - 10 -8 mol.dm -3 , N and e - are mainly responsible for the destruction. I 2 O 4 (highest iodine oxide in the model) and IONO 2 are the main resulting iodinated' compounds. (author)

  3. Effects of Water Radiolysis in Water Cooled Reactors - Nuclear Energy Research Initiative (NERI) Program

    Energy Technology Data Exchange (ETDEWEB)

    S. M. Pimblott

    2000-10-01

    OAK B188 Quarterly Progress Report on NERI Proposal No.99-0010 for the Development of an Experiment and Calculation Based Model to Describe the Effects of Radiation on Non-standard Aqueous Systems Like Those Encountered in the Advanced Light Water Reactor

  4. Final product analysis in the e-beam and gamma radiolysis of aqueous solutions of metoprolol tartrate

    Energy Technology Data Exchange (ETDEWEB)

    Slegers, Catherine [Universite Catholique de Louvain, Unite d' Analyse Chimique et Physico-chimique des Medicaments, CHAM 72.30, Avenue E. Mounier, 72, B-1200 Brussels (Belgium)]. E-mail: catherine.slegers@cham.ucl.ac.be; Tilquin, Bernard [Universite Catholique de Louvain, Unite d' Analyse Chimique et Physico-chimique des Medicaments, CHAM 72.30, Avenue E. Mounier, 72, B-1200 Brussels (Belgium)

    2006-09-15

    The radiostability of metoprolol tartrate aqueous solutions and the influence of the absorbed dose (0-50 kGy), dose rate (e-beam (EB) vs. gamma ({gamma})) and radioprotectors (pharmaceutical excipients) are investigated by HPLC-UV analyses and through computer simulations. The use of radioprotecting excipients is more promising than an increase in the dose rate to lower the degradation of metoprolol tartrate aqueous solutions for applications such as radiosterilization. The decontamination of metoprolol tartrate from waste waters by EB processing appears highly feasible.

  5. Computer modeling of inhibition of α-radiolysis of water by H2 addition (NPC 2012 conference)

    International Nuclear Information System (INIS)

    Lertnaisat, Phantira; Katsumura, Yosuke; Mukai, Satoru; Umehara, Ryuji; Shimizu, Yuichi; Suzuki, Masaru

    2012-09-01

    It is known that α-radiolysis of water produces H 2 gas continuously. The addition of H 2 to water inhibits the water decomposition; H 2 evolution. In order to suppress the water decomposition, 25 cc H 2 STP/kg-H 2 O is added to the coolant water in PWR. However, the exact inhibition mechanism is still not made clear yet. In this project, the chemical kinetic simulation program, so called FASCIMILE, was used to reproduce the suppression of α-radiolysis of water by H 2 addition. By using three important factors; the decomposition (G-value), the reaction set and rate constants, and the dose rate, it is found that without hydrogen addition, the simulation shows the almost linear increase of molecular products; H 2 , H 2 O 2 , and O 2 . Nevertheless, as the additional hydrogen is added to the system, this behaviour of linear increase is shifted to longer time period. And up to certain concentration, the linear increase behaviour is completely suppressed and the molecular products reach the steady state condition at early time period and much lower concentration. The minimum concentration of H 2 which could completely suppress the decomposition of water is called Critical Hydrogen Concentration (CHC) and it is dose rate dependent value. The CHC is found to be dependent on the reaction set and rate constants. The simulation results show that the CHC at room temperature and dose rate of 1 kGy/s of the simulation done by using reaction set and rate constants obtained from Ershov et al. and AECL report 2009 are 165μM and 146μM, respectively. From the change of the behaviour of molecular products after reaching the CHC, the possible mechanism is proposed. First, the OH radical are formed via the reaction of H + H 2 O 2 → OH + H 2 O and e - aq + H 2 O 2 → OH+OH - . Then OH, which normally will react with H 2 O 2 to produced HO 2 , will react with the additional H 2 , which produce H to continue the chain reaction. The relation of chain reaction to the suppression of

  6. Radiolysis of starch

    International Nuclear Information System (INIS)

    Raffi, J.; Saint-Lebe, L.; Berger, G.

    1978-01-01

    In the first part of the paper the results of work on the identification and determination of the gamma ( 60 Co) radiolysis products of maize starch are brought together and, wherever possible, a balance drawn up by chemical class. The second part of the paper deals with the main parameters governing radiolysis: dose, irradiation temperature and atmosphere, water content and the conditions under which the irradiated starch is stored. The third part, devoted to the mechanisms believed to be involved, contains the following conclusions: (a) the formation of radiation-induced products with a carbon skeleton probably results from a breaking of the -C-O-C- chains with rearrangement of the radicals and/or a reaction involving the water and the oxygen - the oxygen has an activating effect which does not fundamentally modify the mechanism, whereas the effect of the water is more complex and varies according to the product; (b) the formation of hydrogen peroxide probably implies the addition of atmospheric oxygen to the radiation-induced hydrogen atoms in the water or to the organic radicals obtained by abstraction of a hydrogen from the starch. Lastly, the different methods envisaged for confirming or improving the mechanistic hypotheses are discussed. (author)

  7. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C., E-mail: christophe.jegou@cea.f [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Vercouter, T. [Commissariat a l' Energie Atomique (CEA), Saclay Reasearch Center, B.P. 11, F-91191 Gif-sur-Yvette Cedex (France); Roudil, D. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2 (registered) ) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 deg. C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO{sub 2} matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO{sub 2} grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH){sub 4(am)} phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  8. A model for radiolysis of water and aqueous solutions of H{sub 2}, H{sub 2}O{sub 2} and O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, B.G. [Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospect, 119991 Moscow (Russian Federation)], E-mail: ershov@ipc.rssi.ru; Gordeev, A.V. [Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospect, 119991 Moscow (Russian Federation)

    2008-08-15

    Kinetic model for the radiolysis of pure water describing the formation of H{sub 2}, H{sub 2}O{sub 2} and O{sub 2} and the radiation chemical transformations of aqueous solutions containing these compounds over a broad range of concentrations, pH, absorbed doses and dose rates is proposed and substantiated. The model includes a set of chemical reactions with optimized rate constants and the radiation chemical yields of radiolysis products. The model applicability to the description of the whole set of data on the radiation chemical transformations of water and aqueous solutions of H{sub 2}, H{sub 2}O{sub 2} and O{sub 2} is demonstrated.

  9. On the spur lifetime and its temperature dependence in the low linear energy transfer radiolysis of water.

    Science.gov (United States)

    Sanguanmith, Sunuchakan; Meesungnoen, Jintana; Muroya, Yusa; Lin, Mingzhang; Katsumura, Yosuke; Jay-Gerin, Jean-Paul

    2012-12-28

    In the spirit of the radiation chemical "spur model", the lifetime of a spur (τ(s)) is an important indicator of overlapping spurs and the establishment of homogeneity in the distribution of reactive species created by the action of low linear energy transfer (LET) radiation (such as fast electrons or γ irradiation). In fact, τ(s) gives the time required for the changeover from nonhomogeneous spur kinetics to homogeneous kinetics in the bulk solution, thus defining the so-called primary (or "escape") radical and molecular yields of radiolysis, which are obviously basic to the quantitative understanding of any irradiated chemical system. In this work, τ(s) and its temperature dependence have been determined for the low-LET radiolysis of deaerated 0.4 M aqueous solutions of H(2)SO(4) and pure liquid water up to 350 °C using a simple model of energy deposition initially in spurs, followed by random diffusion of the species of the spur during track expansion until spur overlap is complete. Unlike our previous τ(s) calculations, based on irradiated Fricke dosimeter simulations, the current model is free from any effects due to the presence of oxygen or the use of scavengers. In acidic solutions, the spur lifetime values thus obtained are in very good agreement with our previous calculations (after making appropriate corrections, however, to account for the possibility of competition between oxygen and Fe(2+) ions for H˙ atoms in the Fricke dosimeter, an effect which was not included in our original simulations). In this way, we confirm the validity of our previous approach. As expected, in the case of pure, oxygen-free water, our calculated times required to reach complete spur overlap are essentially the same (within uncertainty limits) as those found in acidic solutions. This explicitly reflects the fact that the diffusion coefficients for the hydrated electron and the H˙ atom that are involved in the overall calculation of the lifetime of spurs in neutral or

  10. Pulse radiolysis study of polystyrene-based polymers with added photoacid generators: Reaction mechanism of extreme-ultraviolet and electron-beam chemically amplified resist

    Science.gov (United States)

    Okamoto, Kazumasa; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo

    2015-02-01

    The reaction mechanism of chemically amplified resist (CAR) after irradiation with ionizing radiation is important for developing extreme-ultraviolet and electron-beam lithography. The acid generation after the ionization is an essential reaction in CAR. In this study, the intermediate of the proton source of acid (a radical cation of the base polymer) in the presence of a photoacid generator (PAG) was investigated by the pulse radiolysis method. The deprotonation kinetics of the radical cation of poly(4-hydroxystyrene) (PHS) in solutions with and without PAG shows only a small difference. However, the yield of radical cations of poly(4-methoxystyrene) (PMOS) as a model of the resist with a protecting (releasing) group increases upon adding PAG. The formation of the ion pair between the PMOS radical cation and the dissociated anion with a lifetime of approximately 30 to 40 µs is suggested. The lower acid yield in PMOS than in PHS film is also discussed in terms of the stability of the radical cation.

  11. Temperature Dependence of the Primary Species Yields of Liquid Water Radiolysis by 0.8-MeV Fast Neutrons

    Directory of Open Access Journals (Sweden)

    S.L. Butarbutar

    2016-04-01

    Full Text Available The yields of species such as e-aq, H•, •OH, H2 and H2O2, formed from the radiolysis of neutral liquid water by the incidence of 0.8-MeV neutrons at temperatures between 25 and 350°C, were calculated by using Monte Carlo simulations. The slowing down of these neutrons through elastic scattering produced recoil protons elastically of ~0.5057, 0.186, and 0.0684 MeV which had linear energy transfers (LETs of ~40, 67 and 76 keV/µm, respectively, at 25°C. The effects of neutron radiation can be predicted based on the contribution of those first three recoil protons by neglecting the radiation effects due to oxygen ion recoils. Then, the fast neutron yields could be estimated by summing the yields of contributing protons after corresponding weightings were used according to their energy. In this work, yields were calculated at 10-7 and 10-6 s after incidence of neutron radiation in water at the aforementioned temperature range. Overall, there is a reasonably good agreement between our calculated and existing experimental G-values for the entire temperature range. However, we proposed an hypothesis that the not very significant difference between experimental data and our calculated data is due to the different measuring time used in obtaining the experimental data as compared to the ones used in our calculation. Our computed yields for 0.8-MeV fast neutron radiation show an essentially similar temperature dependences over the range of temperature studied with 2-MeV fast neutron and low-LET radiation, but with lower values for yields of free radicals and higher values for molecular yields.

  12. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H.; Endo, M. [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  13. Gas phase pulse radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Andong Liu; Mulac, W.A.

    1987-01-01

    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab

  14. Radiolysis of ground water: influence of carbonate and chloride on the hydrogen peroxide production

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Ndalamba, P.; Bjergbakke, E.

    1988-12-01

    Small volumes of aqueous solutions have been subjected to α-radiation from a Am-241 source. The irradiated solution was separated from the bulk solution by a glass filter serving as a diffusion barrier. The H 2 O 2 concentration in the bulk solution was monitored by a chemiluminescence technique and the overall production of oxidizing species (H 2 O 2 /O 2 ) in irradiated ground water was studied by measuring the Fe 2+ -consumption in ground water initially containing 2 x 10 -6 mol x dm -3 Fe 2+ . H 2 O 2 yields calculated using the computer program CHEMSIMUL are in fair agreement with experimental yields for 'pure' water (pH 8) and aqueous methanol solutions (pH 5). Experimentally G(H 2 O 2 ) = 1.06 +- 0.1 was obtained in 'pure' water. In solutions containing 2 x 10 -3 mol x dm -3 HCO 3 - and in ground water G(H 2 O 2 ) decreased to 0.69 +- 0.03. A corresponding decrease in G(H 2 O 2 ) was not found in the calculations. The agreement between measured and calculated Fe 2+ consumption is fair when slow oxidative reactions in the bulk solutions are taken into account. (authors)

  15. Some mechanisms which may reduce radiolysis

    International Nuclear Information System (INIS)

    Neretnieks, I; Faghihi, M.

    1991-08-01

    In this report two mechanisms which may considerably decrease the rate of radiolysis are studied. The first main effect is that capillary forces in the very fine pores of the bentonite which surround the canisters do not permit the release of water if there is a gas over pressure inside the canister. As long as there is gas inside the canister the gap will partly be gas filled and the alpha-particles will have less water to radiolyze. Because some hydrogen will be dissolved and will escape by diffusion, a rate of radiolysis will be maintained which balances the rate of diffusion. This in turn will be influenced by the geometry of the diffusion path. The size of the hole in the copper canister seems to be one of the critical items which determine the escape of the hydrogen and thus the rate of radiolysis. The other main effect which will reduce the radiolysis is the accumulation of the corrosion products in the gap. This reduces the water content in the gap. Consequently there will be less water which can be radiolyzed. The presence of corrosion products which have a higher density than water will also consume the energy of the alpha-particles faster. Both effects seem to, independently, have a potential of reducing the rate of radiolysis by a few order of magnitude

  16. RADIOLYSIS OF NITROGEN AND WATER-ICE MIXTURE BY FAST IONS: IMPLICATIONS FOR KUIPER BELT OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Barros, A. L. F. de [Departamento de Física, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã 229, 20271-110 Rio de Janeiro, RJ (Brazil); Silveira, E. F da [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, 22453-900, Rio de Janeiro, RJ (Brazil); Bergantini, A. [Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911 Urbanova, São José do Campos, SP (Brazil); Rothard, H.; Boduch, P. [Centre de Recherche sur les Ions, les Matériaux et la Photonique CIMAP-GANIL (CEA-CNRS-ENSICAEN-UCBN), BP 5133, Boulevard Henri Becquerel, F-14070 Caen Cedex 05 (France)

    2015-09-10

    The participation of condensed nitrogen in the surface chemistry of some objects in the outer solar system, such as Pluto and Triton, is very important. The remote observation of this species using absorption spectroscopy is a difficult task because N{sub 2} is not IR active in the gas phase. Water is also among the most abundant molecules in the surface of these objects; chemical reactions between N{sub 2} and H{sub 2}O induced by cosmic rays are therefore expected. Although pure N{sub 2} ice is hardly identified by IR spectroscopy, the species produced through the processing of the surface ice by cosmic rays may give relevant clues indicating how abundant the N{sub 2} is in the outside layers of the surface of trans-Neptunian objects (TNOs). The objective of this work is to investigate the formation of nitrogenated species induced by cosmic-ray analogs in an ice mixture containing nitrogen and water. Experiments were performed in the GANIL Laboratory by bombarding N{sub 2}:H{sub 2}O (10:1) ice at 15 K with 40 MeV {sup 58}Ni{sup 11+} ions. Evolution of precursor and daughter species was monitored by Fourier transform infrared spectrometry. The main produced species are the nitrogen oxides NO{sub k} (k = 1–3), N{sub 2}O{sub j} (j = 1–5), N{sub 3}, and O{sub 3}. Among them, the N{sub 2}O and N{sub 3} are the most abundant, representing ∼61% of the total column density of the daughter molecules at 10{sup 13} ions cm{sup −2} fluence; the current results indicate that the yield of daughter species from this mixture is low, and this may be one of the reasons why N{sub i}O{sub j} molecules are not usually observed in TNOs.

  17. RADIOLYSIS OF NITROGEN AND WATER-ICE MIXTURE BY FAST IONS: IMPLICATIONS FOR KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Barros, A. L. F. de; Silveira, E. F da; Bergantini, A.; Rothard, H.; Boduch, P.

    2015-01-01

    The participation of condensed nitrogen in the surface chemistry of some objects in the outer solar system, such as Pluto and Triton, is very important. The remote observation of this species using absorption spectroscopy is a difficult task because N 2 is not IR active in the gas phase. Water is also among the most abundant molecules in the surface of these objects; chemical reactions between N 2 and H 2 O induced by cosmic rays are therefore expected. Although pure N 2 ice is hardly identified by IR spectroscopy, the species produced through the processing of the surface ice by cosmic rays may give relevant clues indicating how abundant the N 2 is in the outside layers of the surface of trans-Neptunian objects (TNOs). The objective of this work is to investigate the formation of nitrogenated species induced by cosmic-ray analogs in an ice mixture containing nitrogen and water. Experiments were performed in the GANIL Laboratory by bombarding N 2 :H 2 O (10:1) ice at 15 K with 40 MeV 58 Ni 11+ ions. Evolution of precursor and daughter species was monitored by Fourier transform infrared spectrometry. The main produced species are the nitrogen oxides NO k (k = 1–3), N 2 O j (j = 1–5), N 3 , and O 3 . Among them, the N 2 O and N 3 are the most abundant, representing ∼61% of the total column density of the daughter molecules at 10 13 ions cm −2 fluence; the current results indicate that the yield of daughter species from this mixture is low, and this may be one of the reasons why N i O j molecules are not usually observed in TNOs

  18. Femtosecond pulse radiolysis based on photocathode electron accelerator

    International Nuclear Information System (INIS)

    Yoshida, Y.; Yang, Jinfeng; Kondoh, T.; Kozawa, T.; Tagawa, S.

    2006-01-01

    of the electron bunch would be indispensable in EVS. To rotate the electron bunch, a magnetic bunch compressor, which was constructed with two 45 degree-bending magnets and four quadrupole magnets (two pairs) to provide a necessary path length dependence on energy, was used. The electron beam generated from the rf gun was accelerated by a linear accelerator up to 32 MeV with energy-phase correlation in the bunch. Finally, the necessary rotation of the electron bunch was achieved by passing the electron beam through the compressor and optimizing the magnetic fields of the quadrupole magnets. In the experiment, the transient absorption kinetics of hydrated electrons in water was measured in the cases with and without the rotation of the electron bunch. The rise time of hydrated electrons of 1.2 ps was improved by rotating the electron bunch in EVS. The experimental results indicate that EVS is a powerful tool to improve the time resolution of pulse radiolysis. Moreover, the optical density in EVS is independent on the optical path length. The higher optical density can be obtained at low-charge electron beam. (authors)

  19. SimulRad: a Java interface for a Monte-Carlo simulation code to visualize in 3D the early stages of water radiolysis

    International Nuclear Information System (INIS)

    Plante, Ianik L.; Filali-Mouhim, Abdelali; Jay-Gerin, Jean-Paul

    2005-01-01

    Using a Fortran step-by-step Monte-Carlo simulation code of liquid water radiolysis and the Java programming language, we have developed a Java interface software, called SimulRad. This interface enables a user, in a three-dimensional environment, to either visualize the spatial distribution of all reactive species present in the track of an ionizing particle at a chosen simulation time, or present an animation of the chemical development of the particle track over a chosen time interval (between ∼10 -12 and 10 -6 s). It also allows one to select a particular radiation-induced cluster of species to view, in fine detail, the chemical reactions that occur between these species

  20. Pulse radiolysis study of egg white

    International Nuclear Information System (INIS)

    Micic, O.I.; Josimovic, L.; Markovic, V.

    1978-01-01

    Radiolytic processes in egg white in intervals of 0.1μs to several seconds have been studied by the pulse radiolysis technique. The formation and decay of short-lived intermediates and their absorption spectra were observed under varied experimental conditions. The results show that intermediates are produced predominantly in reactions of radicals formed in water radiolysis with egg white proteins. The intermediates decay mainly in the first-order intermolecular processes, though the mechanism of transformations is very complex. (author)

  1. Current state of knowledge in radiolysis effects on spent fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    1998-09-01

    Literature data on the effect of water radiolysis products on spent fuel oxidation and dissolution have been reviewed. Effects of γ-radiolysis, α-radiolysis and dissolved O 2 or H 2 O 2 in unirradiated solutions have been discussed separately. Also the effect of carbonate in γ-irradiated solutions and radiolysis effects on leaching of spent fuels have been reviewed. In addition a radiolysis model for calculation of corrosion rates of UO 2 , presented previously, has been discussed. The model has been shown to give a good agreement between calculated and measured corrosion rates in the case of γ-radiolysis and in unirradiated solutions of dissolved oxygen or hydrogen peroxide. The model has failed to predict the results of α-radiolysis. In a recent study it was shown that the model gave a good agreement with measured corrosion rates of spent fuel exposed in deionized water

  2. Effects of Water Radiolysis in Water Cooled Reactors - Nuclear Energy Research Initiative (NERI) Program. Technical Progress Report

    International Nuclear Information System (INIS)

    Pimblott, S.M.

    2000-01-01

    OAK B188 Quarterly Progress Report on NERI Proposal No.99-0010 for the Development of an Experiment and Calculation Based Model to Describe the Effects of Radiation on Non-standard Aqueous Systems Like Those Encountered in the Advanced Light Water Reactor

  3. Contribution to the study of solvated electrons in water and alcohols and of radiolytic processes in organic carbonates by picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Torche, Faycal

    2012-01-01

    This work is part of the study area of the interaction of radiation with polar liquids. Using the picosecond electron accelerator ELYSE, studies were conducted using the techniques of pulse radiolysis combined with absorption spectrophotometry Time-resolved in the field of a picosecond. This work is divided into two separate chapters. The first study addresses the temporal variation of the radiolytic yield of solvated electron in water and simple alcohols. Due to original detection system mounted on the accelerator ELYSE, composed of a flash lamp specifically designed for the detection and a streak-camera used for the first time in absorption spectroscopy, it was possible to record the time-dependent radiolytic yields of the solvated electron from ten picoseconds to a few hundred nanoseconds. The scavenging of the electron solvated by methyl viologen, was utilized to reevaluate the molar extinction coefficient of the absorption spectrum of solvated electron in water and ethanol from isobestic points which corresponds to the intersection of the absorption spectra of solvated electron which disappears and methyl viologen which is formed during the reaction. The second chapter is devoted to the study of liquid organic carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC) and propylene carbonate (PC). This family of carbonate which compose the electrolytes lithium batteries, has never been investigated by pulse radiolysis. The studies were focused on the PC in the light of these physicochemical characteristics, including its very high dielectric constant and its strong dipole moment of 4.9 D. The first results were obtained on aqueous solutions containing propylene carbonate to observe the reactions of reduction and oxidation of PC by radiolytic species of water (solvated electron and OH radicals). Then, after the identification (spectral and kinetic) of the species formed by interaction with the OH radical as the PC* radical resulting from the

  4. Radiolysis effects on polyethylene terephtalate

    International Nuclear Information System (INIS)

    Zaharescu, Traian; Ciuprina, Florin

    2005-01-01

    The effects of high energy exposure of polyethylene terephtalate, the main electrical insulator for the conduction bars in alternative current generators, is presented. For comparison γ-irradiation was performed in distilled water and air at various doses, up to about 200 kGy. The dependencies of current on time for radiation processed PET sheets allow to depict the variation in the resistivity values as a measure of chemical changes in polyethylene terephtalate macromolecules. The comparison between the evolution of currents in irradiated specimens and spectral analysis bring about a light on the accumulation of radiolysis product in PET matrix. The high energy exposure of PET in air causes an increase of final value of current, while similar experiments in water produces a contrary effect. Some considerations of degradation mechanism are presented

  5. Pulse radiolysis of gases

    International Nuclear Information System (INIS)

    Nielsen, O.J.

    1984-04-01

    The pulse radiolysis equipment and technique are described and its relevance to atmospheric chemistry is discussed. Pulse radiolysis of a number of different chemical systems have been used to check the validity of the proposed mechanisms: 1) The hydrogen atom yield in the pulse radiolysis of H 2 was measured by four independent calibration techniques, using reactions of H with O 2 , C1NO, and HI. The H atom yield was compared with O 2 yields in pure O 2 and in O 2 /SF 6 mixtures which lead to a value G(H) = 17.6. The rate constants at room temperature of several reactions were determined. 2) OH radical reactions with tetraalkyllead at room temperature and with ethane, methane, and a series of C1- and F-substituted methanes at 300-400 K were studied. Arrhenius parameters, A and Esub(a), were determined for several reactions. The lifetime of Pb(CH 3 ) 4 and Pb(C 2 H 5 ) 4 in ambient air is estimated. CF 2 C1 2 was found to be a very efficient third body, M, in the reaction OH + OH + M arrow H 2 O 2 + M. 3) In the H 2 S systems the HS extinction coefficient at 3242 AA was determined to 9.5 x 10 2 cm -1 mol -1 . Four rate constants at room temperature were determined. (author)

  6. Radiolysis of solutions in anthraquinone derivatives

    International Nuclear Information System (INIS)

    Kriminskaya, Z.K.

    1996-01-01

    Stationary radiolysis of anthraquinones in solutions of ethanol, propanol-2 and water by gamma-radiation (dose rate of 1.6 Gy/s) is studied. It is shown that anthraquinones are reduced in the above solutions up to anthrahydroquinones, whereby all reduction particles participate in the reduction process. The reverse process of the post-radiation oxidation of anthrahydroquinones up to anthraquinones is a radical process

  7. Breaking time-resolution limits in pulse radiolysis

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Norizawa, Kimihiro; Yoshida, Yoichi; Tagawa, Seiichi

    2009-01-01

    Pulse radiolysis, which is a time-resolved stroboscopic method based on ultrashort electron pulse and ultrashort analyzing light, is widely used for the study of the chemical kinetics and radiation primary processes or reactions. Although it has become possible to use femtosecond-pulse electron beam and femtosecond laser light in pulse radiolysis, the resolution is limited by the difference in group velocities of the electrons and the light in sample. In this contribution, we introduce a concept of equivalent velocity spectroscopy (EVS) into pulse radiolysis and demonstrate the methodology experimentally. In EVS, both the electron and the analyzing light pulses precisely overlap at every point in the sample and throughout the propagation time by rotating the electron pulse. The advance allows us to overcome the resolution degradation due to the different group velocity. We also present a method for measuring the rotated angle of the electron pulse and a technique for rotating the electron pulse with a deflecting cavity.

  8. On the formation of a moving redox-front by α-radiolysis of compacted water saturated bentonite

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Ndalamba, P.

    1988-12-01

    The formation of an expanding volume containing the radiolytically formed oxidants H 2 O 2 and O 2 has been studied in α-irradiated compacted water saturated bentonite (ρ = 2.12 gxcm -3 ). The G-values (0.67±0.05), (0.64±0.07) for H 2 O 2 and O 2 respectively are in fair agreement with the corresponding G-values obtained in experiments with synthetic ground water. From the leaching of γ-irradiated bentonite it is concluded that only a fraction of the Fe 2+ content is easily accessible as scavenger for the radiolytically formed oxidants. (orig.)

  9. State of knowledge on the water radiolysis in cemented wasteforms and its approach by simulation; Etat des connaissances sur la radiolyse de l'eau dans les colis de dechets cimentes et son approche par simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bouniol, P

    2004-07-01

    The decomposition of water under radiation within the cementitious matrix is at the origin of a potential source of harmful effects in the wasteform and their environment (pressurization and emanation of di-hydrogen) which can have an impact on the safety. In the aim of a better evaluation of the 'H{sub 2}' risk induced by such a complex and heterogeneous system, this document is an analysis of the elements necessary for a global understanding of the radiolysis in the cemented wasteform to be achieved: - summary of the basic knowledge on water radiolysis with transposition to the cementitious medium, - critical review of the various phenomenologies at work in a wasteform (radioactive source-term, gas transport, mineral equilibria); description of their mutual couplings and of their feedback on radiolytic chemistry; identification of the determining parameters, - presentation of a selection of experimental facts putting in light some theoretical points, - presentation of an outline of operational model deriving from the global vision; presentation of an adapted tool for simulation (CHEMSIMUL) and study of the influence of the principal parameters, starting from a reference case. The main result of this work is that it is shown, in the case of a {beta}{gamma} source term, that the control of the pore fluid composition by calcium octo-hydrate peroxide constitutes an efficient regulating mechanism for the radiolysis and H{sub 2} production. Not likely possible in the case of an {alpha} source term, this suggests a separate management of the wasteform according to their radiological contents. The gaps and limits of the model which are also evoked are promising of a lot of research prospects, primarily of a fundamental nature (impact of the porous medium). (author)

  10. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    The use of electron beam to disinfect sewage water is gaining importance. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises of heterogeneous organic based chemicals as well as pathogens. EB (electron beam) ...

  11. Study of water radiolysis in relation with the primary cooling circuit of pressurized water reactors; Etude sur la radiolyse de l`eau en relation avec le circuit primaire de refroidissement des reacteurs nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Pastina, B

    1997-07-01

    This memorandum shows a fundamental study on the water radiolysis in relation with the cooling primary circuit of PWR type reactors. The water of the primary circuit contains boric acid a soluble neutronic poison and also hydrogen that has for role to inhibit the water decomposition under radiation effect. In the aim to better understand the mechanism of dissolved hydrogen action and to evaluate the impact of several parameters on this mechanism, aqueous solutions with boric acid and hydrogen have been irradiated in a experimental nuclear reactor, at 30, 100 and 200 Celsius degrees. It has been found that, with hydrogen, the water decomposition under irradiation is a threshold phenomenon in function of the ratio between the radiation flux `1` B(n, )`7 Li and the gamma flux. When this ratio become too high, the number of radicals is not sufficient to participate at the chain reaction, and then water is decomposed in O{sub 2} and H{sub 2}O{sub 2} in a irreversible way. The temperature has a beneficial part on this mechanism. The iron ion and the copper ion favour the water decomposition. (N.C.). 83 refs.

  12. Radiolysis of Aqueous Toluene Solutions

    International Nuclear Information System (INIS)

    Christensen, H.C.; Gustafson, R.

    1971-04-01

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N 2 O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N 2 O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H 2 ). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  13. Application of chemsimul for groundwater radiolysis

    DEFF Research Database (Denmark)

    Christensen, Hilbert; Bjergbakke, Erling

    1986-01-01

    The application of the radiation chemical computer program chemsimul, for the calculation of radiolysis in connection with the storage of high level waste has been studied. Methods have been developed for the diffusion of gases out of the irradiated system, for the continuous addition of Fe2+ to ...... a deviation of 20% was found. Even more complex systems, such as bentonite/water mixtures irradiated with γ- or β-radiaton, were simulated by computer calculations. Also in these cases the agreement between experiment and calculation was satisfactory....

  14. Interfacial radiolysis effects in tank waste speciation. 1997 annual progress report

    International Nuclear Information System (INIS)

    Orlando, T.M.

    1997-01-01

    'The purpose of this program is to deliver pertinent, fundamental information that can be used to make technically defensible decisions on safety issues and processing strategies associated with mixed chemical and radioactive waste cleanup. In particular, an understanding of radiolysis in mixed-phase systems typical of U. Department of Energy (DOE) heterogeneous, radioactive/chemical wastes will be established. This is an important scientific concern with respect to understanding tank waste chemistry issues; it has received relatively little attention. The importance of understanding solid-state radiolysis, secondary electron interactions, charge-transfer dynamics, and the general effect of heterogeneous solids (interface and particulate surface chemistry) on tank waste radiation processes will be demonstrated. In particular, the author will investigate (i) the role of solid-state and interfacial radiolysis in the generation of gases, (ii) the mechanisms of organic compound degradation, (iii) scientific issues underlying safe interim storage, and (iv) the effects of colloid surface-chemical properties on waste chemistry. Controlled radiolysis studies of NaNO 3 solids and SiO 2 particles were carried out using pulsed, low- (5--150 eV) and high- (3 MeV) energy electron-beams at Pacific Northwest National Laboratory (PNNL) and at Argonne National Laboratory (ANL), respectively. The pulsed, low-energy electron beams probe the inelastic scattering and secondary cascading effects produced by high-energy beta and gamma particles. Pulsed radiolysis allows time-resolved measurements of the high-energy processes induced by these particles. Using low-energy (10--75 eV) electron-beam irradiation of nominally dry NaNO 3 solution-grown and melt-grown single crystals, they observed H + , Na + , O + , NO + , NO, NO 2 , O 2 , and O( 3 P) desorption signals. The threshold measurements and yields indicate that the degradation proceeds mainly via destruction of the nitrate moiety. The

  15. Development of sub-picosecond pulse radiolysis and synchronization system

    International Nuclear Information System (INIS)

    Muroya, Y.; Watanabe, T.; Kobayashi, T.; Wu, W.; Ueda, T.; Yoshii, K.; Uesaka, M.; Katsumura, Y.

    2000-01-01

    A synchronization system for higher time-resolved pump and probe experiment has been developed at NERL (Nuclear Engineering Research Laboratory) 18 MeV S-band linac, the University of Tokyo. The precision of the synchronization between sub-picosecond electron beam and femtosecond Ti:Sapphire laser has been measured after the completion of the system. The pulse radiolysis experiment has followed the experiment to confirm the total time resolution. (author)

  16. A computerized pulse radiolysis system

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Lind, J.; Reitberger, T.

    1976-01-01

    A computer based pulse radiolysis system for gathering and handling of transient optical absorption and electric conductivity data is presented. The system has been developed around a Biomation 8100 transient recorder and a PDP 11/40 (Digital Equipment Corp) computer. (author)

  17. Interaction study of water radiolysis products with Crotalus durissus terrificus miotoxin; Estudo das interacoes dos produtos de radiolise da agua com a miotoxina do veneno de Crotalus durissus terrificus

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Murilo Casare da

    2008-07-01

    Ionizing radiation has been satisfactorily employed for venoms detoxification. In this report, the radiation was employed to verify the effects caused by the radiolysis products of water on the Crotamine, toxin purified from Crotalus durissus terrificus venom. These effects were analyzed using some substances called 'scavengers', those substances competes for specific reactive species hindering them to act on the toxins molecules. In order to study the possible structural damages caused on the toxins, circular dichroism, fluorescence, nuclear magnetic resonance, amino acids analysis and intravital microscopy were employed. Our results indicate that ionizing radiation caused structure alterations, mainly, in secondary and tertiary structure of crotamine. In the irradiated crotamine, was not possible to determine tridimensional structure. And the crotamine toxic effect was removed by ionizing radiation. (author)

  18. Radiolysis and radiosterilization of drugs

    International Nuclear Information System (INIS)

    Zeegers, F.; Crucq, A.S.; Gibella, M.; Tilquin, B.

    1993-01-01

    Can the absence of increased toxicological danger in irradiated foods be applied with confidence to drugs. The World Health Organization stated that up to 10 kGy there is no toxicological hazard. However, even if the irradiated drugs meet official standards, it would have to be established that any traces of radiolysis product formed are not toxic. All the tests from PHARMACOPEIA are not appropriate to detect the radiolysis and new physicochemical tests have to be used. Chromatographic detection of the radiosterilization of antibiotics may be advantageously used when the pharmaceuticals are not radio-resistant. The main obstacle to practical application is the low sensitivity of the detectors in liquid-liquid chromatography, a re-irradiation of the suspected samples will be necessary after preliminary chromatographic studies. 8 figs

  19. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    user

    sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation or in industry sector for cooling purpose or in both the sectors. Key words: Disinfection, electron beam accelerator, organic matter, sewage water ...

  20. Water imaging in living plant by nondestructive neutron beam analysis

    International Nuclear Information System (INIS)

    Nakanishi, M. Tomoko

    1998-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam. This technique provides the highest resolution for water in tissue yet obtainable. With high specificity to water, this neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. The resolution of the image attainable now is about 15um. We also describe how this new technique will allow new investigations in the field of plant research. (author)

  1. Corrosion of target and structural materials in water irradiated by an 800 MeV proton beam

    International Nuclear Information System (INIS)

    Butt, D.P.; Kanner, G.S.; Lillard, R.S.

    1996-01-01

    Radiation enhanced, aqueous corrosion of solid neutron-targets such as tungsten or tantalum, or target cladding or structural materials such as superalloys and stainless steels, is a significant concern in accelerator-driven transmutation technologies. In this paper we briefly describe our current methods for control and in situ monitoring of corrosion in accelerator cooling water loops. Using floating, electrochemical impedance spectroscopy (EIS), we have measured the corrosion rates of aluminum 6061, copper, Inconel 718, and 304L stainless steel in the flow loop of a water target irradiated by a μamp, 800 MeV proton beam. Impedance spectroscopy allows us to model the corrosion process of a material as an equivalent electrical circuit. Thus the polarization resistance, which is inversely proportional to the corrosion rate, can be extracted from the frequency response of a metal specimen. During a three month period, without the use of corrosion mitigation techniques, we observed increases of several orders of magnitude in the water conductivity and the corrosion rates. The increase in corrosion is at least partially attributed to a build up of peroxide in our pseudo-closed loop system. In this paper we also briefly describe our second generation experiments, scheduled to begin in late 1996. In these experiments we plan to measure the corrosion rates of tungsten, tantalum, Inconel 718, 316L and 304L stainless steel, HT-9 austenitic stainless steel, and aluminum 5053. Two or three electrode probes of each material are being placed directly in the proton beam, in a high neutron flux region, or a significant distance from the high radiation area. We will be measuring corrosion rates, changes in pH and conductivity, and we will be establishing parameters for filtration and mitigation of corrosion. We will also discuss our ideas for making in situ measurements of water radiolysis using optical and laser diagnostic techniques

  2. Power handling capability of water-cooled beam stops

    International Nuclear Information System (INIS)

    Tran-Ngoc, T.

    1992-01-01

    Doubling the beam power on the RFQ1-1250 linear accelerator at Chalk River and designing a 40 kW beam diagnostic system for Tokamak de Varennes required a detailed investigation into the power handling capabilities of beam stops. Different techniques for augmentation of the critical heat flux on the cooling channel surface of beam stops are reviewed. In the case of a beam stop with twisted tape inserts, the swirl flow condition yields a higher critical heat flux than that of a straight axial flow. Although a critical heat flux in the order of 10 kW/cm 2 could be obtained at high flow velocities such as 45 m/s, such flows are not always practical in the design of beam stop cooling systems. At a water velocity of 4 m/s, the highest beam power density is estimated to be 1.4 kW/cm 2 for a beam stop design that uses double rows of cooling tubes. A similar design, where cooling channels are machined on a common copper block, would handle a power density up to 2.6 kW/cm 2 . Some preliminary hydraulic test results, related to a third design where high flow turbulence is created by two rows of intersected-channels, are also reported. (Author) 5 refs., 4 figs

  3. Pulse radiolysis apparatus for monitoring at 2000 Å

    DEFF Research Database (Denmark)

    Christensen, H.C.; Nilsson, G.; Pagsberg, Palle Bjørn

    1969-01-01

    A pulse radiolysis apparatus with photometric monitoring has been built around an 11 MeV, 250 mA peak current, linac that delivers single 0.25 to 4 μsec pulses. The novel features of the apparatus include (1) a 450 W xenon lamp as the analyzing light source which in pulsed operation had a 25 times...... increased luminance; (2) a fast electronic switch that cut out the signal due to the Cerenkov radiation; (3) a secondary emission chamber that allowed the simultaneous measurement of the current and the direction of the pulsed electron beam; and (4) a system for remote controlled change of liquid samples...

  4. Subpicosecond pulse radiolysis in liquid methyl-substituted benzene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kazumasa [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)]. E-mail: kazu62@sanken.osaka-u.ac.jp; Kozawa, Takahiro [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Saeki, Akinori [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yoshida, Yoichi [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Tagawa, Seiichi [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)]. E-mail: tagawa@sanken.osaka-u.ac.jp

    2007-05-15

    The early processes of radiation chemistry in the picosecond time region in methyl-substituted benzene derivatives have been investigated using subpicosecond pulse radiolysis. In o-xylene, a fairly slow geminate ion recombination was observed within 50 ps after the electron beam irradiation; this is due to the smaller electron mobility. The kinetic traces were analyzed using the Smoluchowski equation with exponential and modified-Gaussian (YGP) functions as the distribution of thermalized electrons. Only exponential functions well reproduced the experimental data within 50 ps after the electron pulse.

  5. Subpicosecond pulse radiolysis in liquid methyl-substituted benzene derivatives

    International Nuclear Information System (INIS)

    Okamoto, Kazumasa; Kozawa, Takahiro; Saeki, Akinori; Yoshida, Yoichi; Tagawa, Seiichi

    2007-01-01

    The early processes of radiation chemistry in the picosecond time region in methyl-substituted benzene derivatives have been investigated using subpicosecond pulse radiolysis. In o-xylene, a fairly slow geminate ion recombination was observed within 50 ps after the electron beam irradiation; this is due to the smaller electron mobility. The kinetic traces were analyzed using the Smoluchowski equation with exponential and modified-Gaussian (YGP) functions as the distribution of thermalized electrons. Only exponential functions well reproduced the experimental data within 50 ps after the electron pulse

  6. Electron beam sterilization of water discharged from sewage

    International Nuclear Information System (INIS)

    Miyata, Teijiro; Arai, Hidehiko; Tokunaga, Okihiro; Machi, Sueo; Kondo, Masaki; Minemura, Takashi; Nakao, Akio; Seike, Yasuhiko.

    1989-01-01

    At present, the water treated at city sewerages is discharged to rivers after the chlorine sterilization, but it was clarified recently that this chlorine treatment produces carcinogenic organic chlorine compounds, and residual chlorine exerts harmful effect to aquatics, therefore, it is desirable to develop the sterilization techniques substituting for chlorine treatment. Already many reports elucidated that irradiation is effective for the sterilization of the water discharged from sewerage. However, as the technical subject for putting radiation process in practical use, the treatment of large quantity was a problem. Recently by the progress of the technology of manufacturing electron accelerators, the equipment with large power output which can treat in large quantity was developed, and it has become applicable also to sewage treatment. Therefore, the authors examined the practicality of electron beam process as the substitute technology for chlorine sterilizaiton. In the case of using electron beam, though the power output of accelerators is large, the flight range of electron beam in water is short. The comparison of the sterilization effect of electron beam with that of Co-60 gamma ray, the effects of water depth, discharged water quality and water velocity on the sterilization effect and so on were experimentally examined. (K.I.)

  7. Waste water treatment by ionizing radiations. Removal of biological and chemical risks by water and sludge treatment with electron beams. Orientation 10 July 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This report aims at analysing the reliability of the application of electron ionizing radiation in the treatment of waste waters and effluents, and at identifying possible fields of application and associated technological and economic implications. After some recalls on physics, electrochemistry, radiolysis, and water pollution, the report proposes an overview of the technique of irradiation of waters, with its scientific background (water radiolysis, chemical and biological effects), its process (recovery cycle and possible interventions, processed pollutants), the case of irradiation by electrons (power, rate, flexibility), an overview of benefits and drawbacks, and a brief history of this practice and an overview of current researches. After a recall of regulatory and political requirements, the report discusses possible fields of application: waste water treatment plants, domestic, agricultural and urban sewage wasters, hospital and medical wastes, liquid food industry products, industrial waters. The choice of accelerator parameters and components is then discussed

  8. gamma-radiolysis and pulse radiolysis of aqueous 4-chloroanisole

    DEFF Research Database (Denmark)

    Quint, R.M.; Park, H.R.; Krajnik, P.

    1996-01-01

    -radiolysis in dependence of dose (100-600 Gy) are given for N2O-, air-, oxygen- and argon saturated neutral aqueous solutions. In conditions favoring the OH radical oxidation 4-chlorophenol, 4-methoxyphenol, 5-chloro-2-methoxyphenol and 2-chloro-5-methoxyphenol were determined as final products. In the presence of Ar......, where about equal amounts of OH and e(aq)(-) are are present, additionally anisole could be detected. Under both reaction conditions the amount of identified products is about 20% of decomposed 4-CIAn. The reaction of e(eq)(-) leads to reductive dechlorination which corresponds quantitatively...... to the degradation of the substrate. In the presence of air or solutions saturated with pure oxygen predominantly hydroquinone. 4-chlorophenol and muconic acids are formed and the material balance is similar to 50%. The efficient dechlorination (similar to 66% of the decomposed 4-CIAn) as well as ring fragmentation...

  9. Nondestructive water imaging by neutron beam analysis in living plants

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Matsubayashi, M.

    1997-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam. This technique provides the highest resolution for water in tissue yet obtainable. With high specificity to water, this neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. The resolution of the image attainable now is about 15 μm. We also describe how this new technique will allow new investigations in the field of plant research. (author)

  10. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    user

    Application of electron beam technology in improving sewage water quality: An advance technique. Y. Avasn Maruthi1*, N. Lakshmana Das1, Kaizar Hossain1, K. S. S. Sarma2, K. P. Rawat2 and. S. Sabharwal2. 1GITAM Institute of Science, GITAM University, Visakhapatnam-530045, Andhra Pradesh, India. 2Radiation ...

  11. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    Heijman, M.G.J.

    1984-01-01

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  12. Radiolysis of anthraquinone dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Vysotskaya, N.A.; Bortun, L.N.; Ogurtsov, N.A.; Migdalovich, E.A.; Revina, A.A.; Volodko, V.V.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1986-01-01

    The commercial anthraquinone dyes (Dark Blue, Light Blue, Green) in aqueous solutions were shown to be decoloured and degrade under the action of ionizing radiation. The degree of decolouration and degradation of aromatic rings was found to increase in presence of oxygen. Hydroxyl radicals were shown to play the key role in the degradation of the dyes under irradiation. The radiolysis intermediate products were studied using the pulse radiolysis technique. (author)

  13. Study by γ radiolysis and pulsed radiolysis of the reactivity of the superoxide ion in the oxyhemoglobin-methemoglobin system

    International Nuclear Information System (INIS)

    Haristoy, Didier.

    1976-01-01

    γ radiolysis of aqueous solutions of methemoglobin (MetHb) in the presence of formate ions, shows that only 25% of the total protein is reduced in oxyhemoglobin (HbO 2 ) by superoxide ions O 2 - according to the reaction MetHb+O 2 - →HbO 2 . The result can be attributed neither to the reactions of O 2 - with HbO 2 , nor the oxidation of HbO 2 by H 2 O 2 produced in the radiolysis of water and by dismutation of O 2 - . Pulse radiolysis studies of this reaction strongly suggest the formation of a transient complex 'MetHbO 2 - ' during the reaction. In addition to the well known self-oxidation of HbO 2 , these results show the existence of an equilibrium between HbO 2 and MetHb+O 2 - . Such an equilibrium could give rise, 'in vivo' to a nearly steady concentration of superoxide ions which could initiate a reaction favoring oxidation by oxygen [fr

  14. Valine radiolysis by MeV ions

    Science.gov (United States)

    Da Silveira, Enio

    2016-07-01

    Valine, (CH3)2 CHCH (NH2) COOH, is a protein amino acid that has been identified in extraterrestrial environments and in the Murchison meteorite [1]. The knowledge of half-lives of small organic molecules under ionizing radiation is important for the setup of models describing the spread out of prebiotics across the Solar System or the Galaxy. We have investigated typical effects of MeV cosmic ray ions on prebiotic molecules in laboratory by impinging ions produced by the PUC-Rio Van de Graaff accelerator. Pure valine films, deposited by evaporation on KBr substrates, were irradiated by H ^{+}, He ^{+} and N ^{+} ion beams, from 0.5 to 1.5 MeV and up to a fluence of 10 ^{15} projectiles/cm ^{2}. The sample temperature was varied from 10 K to 300 K. The irradiation was interrupted several times for Mid-FTIR analysis of the sample. The main findings are: 1- The column density of the valine decreases exponentially with fluence. 2- In some cases, a second exponential appears in the beginning of irradiation; this feature has been attributed to sample compaction by the ion beam [2]. 3- Destruction cross sections of valine are in the 10 ^{-15} cm ^{2} range, while compaction cross sections are in the 10 ^{-14} cm ^{2} range. 4- Destruction cross section increases with the stopping power of the beam and also with the sample temperature. 5- Surprisingly, during the radiolysis of valine, just CO _{2} is seen by as a daughter molecule formed in the bulk. 6- After long beam fluence, also a CO peak appears in the infrared spectrum; this species is however interpreted as a fragment of the formed CO2 molecules. 7- Considering the flux ratio between laboratory experiments and actual galactic cosmic rays, half-life of valine is predicted for ISM conditions [3]. This work on pure valine is the first measurement of a series. New experiments are planned for determining cross sections of valine dissolved in H _{2}O or CO _{2}, inspired by the study performed for glycine [4]. [1] P

  15. Radiolysis of some aqueous solutions of neutron absorbers

    International Nuclear Information System (INIS)

    Rozenberg, J.

    1964-12-01

    The initial yield of molecular hydrogen formed by radiolytic decomposition of water in reactor and 60 Co gamma radiation is decreased by the presence of salts of polyvalent elements possessing only one stable valence, i.e cadmium, zinc, magnesium, gadolinium. This effect is favourable for the use of cadmium and gadolinium as soluble neutron absorber in heavy water reactors. Cations of these salts are not inert toward the primary products of water radiolysis. They have a high degree of reactivity toward the hydrated electron, which is the precursor of molecular hydrogen in neutral or alkaline aqueous media. The value of the rate constant for the reaction between cadmium ion and hydrated electron was shown to be (6.1 ± 1.8) 10 10 M -1 s -1 . Boric acid at low concentration has no effect on the radiation chemistry of water. An isotope effect has been found in the radiolysis of heavy water, corresponding to a lowering of initial yield [G 0 (D 2 ) 0 (H 2 )]. additionally it was necessary to determine the influence of organic impurities, remaining after the purification of water, on the mechanism of its radiolytic decomposition. (author) [fr

  16. Some evidence of radiolysis in a uranium ore body -- Quantification and interpretation

    International Nuclear Information System (INIS)

    Liu, J.; Neretnieks, I.

    1995-01-01

    Locally oxidizing conditions in the near-field of the Cigar Lake uranium deposit was observed. Ongoing processes of water radiolysis has also been predicted previously by the mass transport model. In the ore there was an enhanced concentration of helium, hydrogen and sulfate. Sulfate is the only oxidizing species of substantial amount in the groundwater samples, and is possibly indirectly produced by water radiolysis and oxidation of sulfides. The ongoing oxidant production rate has been calculated by the mass transport model. In this paper, the issue of water radiolysis is addressed from a more fundamental angle of approach. The maximum oxidant production rate is calculated based on the assumptions of geometric dispersion of the ore constituents, the estimate of the total radiation energy, the fraction of energy deposited into the pore water, and the G-values of water. The results show that only a few percent of the total radiation energy is deposited into the pore water to cause water radiolysis. If the recombination factor projected by other researchers are accounted for, the oxidant production rate thus calculated agrees with the present-day ongoing oxidant production rate predicted by the mass transport model

  17. Electron beam water calorimetry measurements to obtain beam quality conversion factors.

    Science.gov (United States)

    Muir, Bryan R; Cojocaru, Claudiu D; McEwen, Malcolm R; Ross, Carl K

    2017-10-01

    To provide results of water calorimetry and ion chamber measurements in high-energy electron beams carried out at the National Research Council Canada (NRC). There are three main aspects to this work: (a) investigation of the behavior of ionization chambers in electron beams of different energies with focus on long-term stability, (b) water calorimetry measurements to determine absorbed dose to water in high-energy beams for direct calibration of ion chambers, and (c) using measurements of chamber response relative to reference ion chambers, determination of beam quality conversion factors, k Q , for several ion chamber types. Measurements are made in electron beams with energies between 8 MeV and 22 MeV from the NRC Elekta Precise clinical linear accelerator. Ion chamber measurements are made as a function of depth for cylindrical and plane-parallel ion chambers over a period of five years to investigate the stability of ion chamber response and for indirect calibration. Water calorimetry measurements are made in 18 MeV and 22 MeV beams. An insulated enclosure with fine temperature control is used to maintain a constant temperature (drifts less than 0.1 mK/min) of the calorimeter phantom at 4°C to minimize effects from convection. Two vessels of different designs are used with calibrated thermistor probes to measure radiation induced temperature rise. The vessels are filled with high-purity water and saturated with H 2 or N 2 gas to minimize the effect of radiochemical reactions on the measured temperature rise. A set of secondary standard ion chambers are calibrated directly against the calorimeter. Finally, several other ion chambers are calibrated in the NRC 60 Co reference field and then cross-calibrated against the secondary standard chambers in electron beams to realize k Q factors. The long-term stability of the cylindrical ion chambers in electron beams is better (always <0.15%) than plane-parallel chambers (0.2% to 0.4%). Calorimetry measurements

  18. Radiolysis studies of aqueous kappa-carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Abad, L.V., E-mail: lvabad@pnri.dost.gov.p [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Kudo, H. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Saiki, S. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagasawa, N.; Tamada, M. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fu, H.; Muroya, Y. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Lin, M.; Katsumura, Y. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Relleve, L.S.; Aranilla, C.T.; DeLaRosa, A.M. [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines)

    2010-05-15

    The effects on N{sub 2}O and N{sub 2} gas on the radiation degradation yield of aqueous kappa (kappa-) carrageenan were investigated. The G{sub d} of solution saturated with N{sub 2}O solution was expectedly much higher than in air (1.7 and 1.2 x 10{sup -7} mol J{sup -1}). On the other hand, a lower G{sub d} of 1.1 x 10{sup -7} mol J{sup -1} was obtained from kappa-carrageenan solution saturated with N{sub 2}. The rate constant of reaction of OH radicals with sonicated and irradiated kappa-carrageenan were determined using e-beam pulse radiolysis. The rate constant of OH{sup c}entre dot interaction with sonicated kappa-carrageenan decreased with decreasing molecular weight. On the other hand, the OH{sup c}entre dot interaction with irradiated kappa-carrageenan decreased but did not vary significantly with decreasing molecular weight. Metal ion (Na{sup +}) induced conformational transition into helical form decreased the rate constant of OH{sup c}entre dot reaction with kappa-carrageenan. Likewise, the G{sub d} in aqueous form was affected by the conformational state of kappa-carrageenan. The helical conformation gave a lower G{sub d} (7 x 10{sup -8} mol J{sup -1}) than the coiled conformation (G{sub d} = 1.2 x 10{sup -7} mol J{sup -1}).

  19. Gas generation by self-radiolysis of tritiated waste materials

    International Nuclear Information System (INIS)

    Tadlock, W.E.; Abell, G.C.; Steinmeyer, R.H.

    1980-01-01

    Studies simulating the effect of self-radiolysis in disposal packages containing tritiated waste materials show hydrogen to be the dominant gas-phase product. Pressure buildup and gas composition over various tritiated octane and tritiated water samples are designed to give worst case results. One effect of tritium fixation agents is to reduce pressure buildup. The results show that development of explosive gas mixtures is unlikely and that maximum pressure buildup in typical Mound Facility waste packages can be expected to be <0.25 MPa

  20. Calculated LET spectrum from antiproton beams stopping in water

    CERN Document Server

    Bassler, Niels

    2009-01-01

    Antiprotons have been proposed as a potential modality for radiotherapy because the annihilation at the end of range leads to roughly a doubling of physical dose in the Bragg peak region. So far it has been anticipated that the radiobiology of antiproton beams is similar to that of protons in the entry region of the beam, but very different in the annihilation region, due to the expected high-LET components resulting from the annihilation. On closer inspection we find that calculations of dose averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity, which seems to warrant closer inspection of the radiobiology in this region. Materials and Methods. Monte Carlo simulations using FLUKA were performed for calculating the entire particle spectrum of a beam of 126 MeV antiprotons hitting a water phantom. Results and Discussion. In the plateau region of the simulated antiproton beam we observe a dose-averaged unrestrict...

  1. Gamma-radiolysis of aqueous solutions of methyl orange and chrysoidine

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.; Panchenkov, G.M.

    1980-01-01

    Radiation-chemical bleaching of azo dyes of methyl orange and chrysoidine in aqueous and aqueous-alcoholic solutions under the effect of γ-radiation of 60 Co is studied. The effect of different additions and pH value of medium upon radiolysis of azo dyes is investigated. Radiation-chemical yields of the bleaching are determined. Quantitative connection between the initial yields of water radiolysis products and radiation yields of the bleaching of azo dyes is established. On the basis of the results obtained the most probable mechanism of methyl orange and chrysoidine bleaching is suggested

  2. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons

    International Nuclear Information System (INIS)

    Flores de Jesus, I.

    2003-01-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  3. Radiolysis in nature: Evidence from the Oklo natural reactors

    International Nuclear Information System (INIS)

    Curtis, D.B.; Gancarz, A.J.

    1983-02-01

    An examination of the mineralogy of the reactor zones at Oklo shows that they have been significantly altered. The rocks immediately adjacent to these zones are also mineralogically modified with respect to normal uranium bearing rocks. The mineralogic changes appear to be the consequence of radiation damage, changes in the bulk chemistry of the system and increased temperatures. Chemical changes were the consequence of convectively circulating fluids that transported elements in and out of the rocks. There were also changes in the electrochemical conditions in the rocks. These changes can most reasonably be attributed to oxidizing and reducing species produced by the radiolysis of water. We have calculated radiation doses and examined the production of radiolysis products in the fluid phase which lead to the following conclusions: 1) There was a net reduction of iron, probably associated with a net increase in total iron in the rocks of the reactor zones. The reduction of iron was most likely the result of hydrogen produced by the radiolysis of water. 2) Commensurate with the iron reduction, there was an oxidation of uranium and multivalent fission products, resulting in their transport out of the reactor zone. 3) Approximately 10 percent of the uranium and various proportions of these fission products were removed and redeposited in rocks within a few meters of the reactor zones. 4) The calculated radiation doses from alpha radiation and the inferred hydrogen production suggest an effective radiation yield of 0.06 molecules of hydrogen per 100 eV of energy imparted to the fluid phase. Considering radiation from both alpha and beta sources, the G value for hydrogen production is reduced to 0.01 to 0.002 molecules H 2 /100 eV. (author)

  4. Influence of radiolysis and gas-liquid partition of I-131 in accumulated water on late phase source terms at Fukushima NPP accident

    International Nuclear Information System (INIS)

    Hidaka, Akihide

    2014-01-01

    In the process of core cooling at Fukushima Daiichi nuclear power plants accident, large amount of contaminated water was accumulated in the basements of the reactor buildings at Units 1 to 4. The present study estimated the quantities of I-131 and Cs-137 in the water as of late March based on the press-opened data. The estimated ratios of I-131 and Cs-137 quantities to the core inventories are 0.51%, 0.85% at Unit 1, 74%, 38% at Unit 2 and 26%, 18% at Unit 3, respectively. According to the Henry's law, certain fraction of iodine in water could be released to atmosphere due to gas-liquid partition and contribute to increase in the release to environment. A lot of evaluations for I-131 release have been performed so far by severe accident codes such as MELCOR or the reverse estimation with atmospheric dispersion code such as SPEEDI using the monitoring data. The SPEEDI reverse predicted significant release until March 26 while no prediction in MELCOR after March 17. The present study showed that iodine release from accumulated water due to radiolytic conversion from I - to I 2 and gas-liquid partition of I 2 may explain the release between March 17 and 26. This strongly suggests a need for improvement of current MELCOR approach which treats the release only from containment breaks for several days after the core melt. The study also indicates that the release of radioactive iodine from accumulated water in the basements of reactor buildings could become a great concern for the consequence of Fukushima accident. (author)

  5. Radiolysis of Aqueous Benzene Solutions

    International Nuclear Information System (INIS)

    Christensen, H.

    1964-05-01

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60 Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H 2 ) = 0.44 (0. 43) and G(H 2 O 2 ) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e - aq + H 2 O 2 ) >> k(H + H 2 O 2 ). Furthermore, the results indicate that a competition takes place between the reactions: 2 C 6 H 6 OH · -> dimer -> biphenyl. C 6 H 7 · + C 6 H 6 OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H 2 O 2 ) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C 6 H 6 )/k(H + O 2 ) was 1.4x10 -2 . The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe 2+ or Fe 3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  6. Effects of dissolved species on radiolysis of diluted seawater

    International Nuclear Information System (INIS)

    Hata, Kuniki; Hanawa, Satoshi; Kasahara, Shigeki; Motooka, Takafumi; Tsukada, Takashi; Muroya, Yusa; Yamashita, Shinichi; Katsumura, Yosuke

    2014-01-01

    Fukushima Daiichi Nuclear Power Plants (NPPs) experienced seawater injection into the cores and fuel pools as an emergent measure after the accident. After the accident, retained water has been continuously desalinized, and subsequently the concentration of chloride ion (Cl - ) has been kept at a lower level these days. These ions in seawater are known to affect water radiolysis, which causes the production of radiolytic products, such as hydrogen peroxide (H 2 O 2 ), molecular hydrogen (H 2 ) and molecular oxygen (O 2 ). However, the effects of dissolved ions relating seawater on the production of the stable radiolytic products are not well understood in the diluted seawater. To understand of the production behavior in diluted seawater under radiation, radiolysis calculations were carried out. Production of H 2 is effectively suppressed by diluting by up to vol10%. The concentrations of oxidants (H 2 O 2 and O 2 ) are also suppressed by dilution of dissolved species. The effect of oxidants on corrosion of materials is thought to be low when the seawater was diluted by less than 1 vol% by water. It is also shown that deaeration is one of the effective measure to suppress the concentrations of oxidants at a lower level for any dilution conditions. (author)

  7. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  8. Effect of electron beam irradiation on fisheries water

    International Nuclear Information System (INIS)

    Sarala Selambakkannu; Khomsaton Abu Bakar; Jamaliah Shariff; Suhairi Alimon

    2012-01-01

    This paper studies about water obtained from fish pond of fisheries research centre. Usual water quality parameters such as pH, COD, Turbidity and Ammonia content were analyzed before and after irradiation. Electron beam irradiation was used to irradiate the water with the dose 100 kGy, 200 kGy and 300 kGy. Only high dose was applied on this water as only a limited amount of samples was supplied. All the parameters indicated a slight increase after irradiation except for the ammonia content, which showed a gradual decrease as irradiation dose increases. Sample condition was changed before irradiation in order to obtain more effective results in the following batch. The water sample from fisheries was diluted with distilled water to the ratio of 1:1.This was followed with irradiation at 100 kGy, 200 kGy and 300 kGy. The results still showed an increase in all parameters after irradiation except for ammonia content. For the following irradiation batch, the pH of the sample was adjusted to pH 4 and pH 8 before irradiation. For this sample the irradiation dose selected was only 100 kGy. A higher value of ammonia was observed for the sample with pH 4 after irradiation. Other parameters were almost the same as the first two batches. (author)

  9. Contribution to radiolysis study of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Rimbaud, Michel.

    1978-01-01

    This work deals with radiolysis of liquid hydrocarbons. First, the radiochemical yields of various products are correlated with the theoretical bond energies, for some hydrocarbons. Several values of scavenging parameter αsub(S) are calculated and the methods for these determinations are criticized. In the last part, we present a new method for the calculation of electron scavenging rate constants [fr

  10. Pulse radiolysis of anthraquinone dye aqueous solution

    International Nuclear Information System (INIS)

    Perkowski, J.; Gebicki, J.L.; Lubis, R.; Mayer, J.

    1988-01-01

    Pulse radiolysis of argon flushed aqueous solutions of 10 -5 -10 -4 mol dm -3 anthraquinone dye (C.I. Acid Blue 62) gives rise to the transients originated from the reactions of e - aq , OH and H. The rate constants of these reactions are determined. (author)

  11. Surface Processing and Modification of Polymers by Water Cluster Ion Beam

    Science.gov (United States)

    Ryuto, H.; Takeuchi, M.; Ichihashi, G.; Sommani, P.; Takaoka, G. H.

    2011-01-01

    A water cluster ion beam was irradiated on a poly(methyl methacrylate) (PMMA) surface to examine the possibility of applying the water cluster ion beam technique to the surface processing and modification of polymers. The sputtering yields of PMMA substrates irradiated with water cluster ion beams increased with acceleration voltage and dose of the water cluster ion beam. The threshold acceleration voltage of sputtering was approximately 3 kV. The X-ray photoelectron spectroscopy (XPS) analysis of the PMMA surface irradiated with the water cluster ion beam suggested the degradation of the PMMA side chains. The XPS spectrum of the surface of the sputtered particle catcher at 45° backward direction showed approximately the same shape as the XPS spectrum of the PMMA surface irradiated with the water cluster ion beam.

  12. The reactivity of the electron formed in the radiolysis of aerated alkaline aqueous solutions containing tetracycline hydrochloride, at 77 Ksup(+)

    International Nuclear Information System (INIS)

    Guedes, S.M.L.; Vasconcellos, M.B.A.

    1986-01-01

    The radiolysis of tetracycline hydrochloride dissolved in aerated alkaline aqueous solutions containing 0.1, 0.5 and 1M NaOH at 77 K, followed by ESR is reported. The rate constants for the reactions between the electron and physical or chemical traps which are present in these solutions are calculated. The reactivity of electrons that are formed in the radiolysis of water decreases in the following proportions: physical traps: chemical traps: molecules of water (4.8x10sup(14) : 6.5x10sup(8) : 1.0). The electrons react preferentially with the solute instead of the solvent. (author)

  13. The radiolysis of lithium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tiliks, J.; Supe, A.; Kizane, G.; Tiliks, J. Jr. [Latvia Univ., Riga (Latvia). Dept. of Chemistry; Grishmanov, V.; Tanaka, S.

    1998-03-01

    The radiolysis of Li{sub 2}O ceramics exposed to accelerated electrons (5 MeV) at 380 K was studied in the range of high absorbed doses up to 250 MGy. The formation of radiation defects (RD) and radiolysis products (RP) was demonstrated to occur simultaneously in the regions of (1) the regular crystalline lattice and (2) an enhanced content of the intrinsic defects and impurities. The production of the electronic RD and RP is more efficient in the region of the defected lattice than that at the site of the regular crystalline lattice. However, the stability of RD and RP formed in the region of the intrinsic defects is far less than those produced at the crystalline lattice, since most of the first mentioned RD and RP disappears with irradiation dose due to the radiation stimulated recombination. By this means the enhanced quantity of RD and RP is localized in the Li{sub 2}O ceramics irradiated to absorbed dose of 40-50 MGy, and hence this can influence the tritium release parameters. As soon as the intrinsic defects have been consumed in the production of RD and RP and the recombination of unstable electronic RD and RP takes place (at dose of {approx}100 MGy), the radiolysis of Li{sub 2}O ceramics occurs only at the crystalline lattice. Furthermore, the concentration of RD and RP increases monotonically and tends to the steady-state level. (author)

  14. Structural analysis of radiolysis products of sennoside

    International Nuclear Information System (INIS)

    Song, Hyun Pa; Kim, Dong Ho

    2011-01-01

    The purpose of the present investigation was to analyze the structural changes of gamma irradiated sennoside B (prodrug) and to provide the possibility for application of irradiation to induce structural changes of the prodrugs for enhanced bioavailability. Sennoside B (200 ppm) in 70% methanol solution with or without the use of hydrogen peroxide or nitrous oxide gas was irradiated with 1, 3, 5, 10 and 20 kGy by gamma ray. The radiolysis products of gamma irradiated sennoside B solution were identified and determined by TLC, HPLC and LC-MS/MS. The sennoside B quantity decreased when irradiation dose increased and completely degraded at 10 kGy of irradiation. There was a linear relationship between the production of the radiolysis compounds and the absorbed dose of the gamma ray irradiated sennoside B. Radiolysis products yields increased on the addition of nitrous oxide gas into the sennoside B solution. No anthraquinone compounds were formed after irradiation of sennosie B. Scission of the O-glycoside bond and consequently formation of aglycone of sennoside B was observed

  15. Structural analysis of radiolysis products of sennoside

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun Pa; Kim, Dong Ho [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    The purpose of the present investigation was to analyze the structural changes of gamma irradiated sennoside B (prodrug) and to provide the possibility for application of irradiation to induce structural changes of the prodrugs for enhanced bioavailability. Sennoside B (200 ppm) in 70% methanol solution with or without the use of hydrogen peroxide or nitrous oxide gas was irradiated with 1, 3, 5, 10 and 20 kGy by gamma ray. The radiolysis products of gamma irradiated sennoside B solution were identified and determined by TLC, HPLC and LC-MS/MS. The sennoside B quantity decreased when irradiation dose increased and completely degraded at 10 kGy of irradiation. There was a linear relationship between the production of the radiolysis compounds and the absorbed dose of the gamma ray irradiated sennoside B. Radiolysis products yields increased on the addition of nitrous oxide gas into the sennoside B solution. No anthraquinone compounds were formed after irradiation of sennosie B. Scission of the O-glycoside bond and consequently formation of aglycone of sennoside B was observed

  16. Hole transfer in DNA studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Majima, T.; Kawai, K.; Takada, T.

    2003-01-01

    Attention has been paid to charge transfer in DNA with respect to oxidation damage of DNA and nano bio-devices such as DNA molecular wire. We report hole transfer in DNA during pulse radiolysis of molecule-conjugated DNA (M-DNA). Direct measurement of the charge transfer in DNA has never been reported due to the low extinction coefficient of nucleobase radical ions and to difficult definition of nucleobases. We have used M-DNA in which M radical cation has enough extinction coefficient and distinct absorption. Radical cation was generated in M-DNA during pulse radiolysis in water, and hole transfer through DNA was monitored by time-resolved transient absorption spectra of the radical cations. Hole was generated in Py-DNA by pulse radiolysis in water. Hole transfer to Py through DNA was monitored by transient absorption of Py'+ at 465 nm. The hole hopping rate (k) from G-region to Py was determined to be 104 s-1 which decreased with intervening A-T base-pairs between Py and G-region. We suppose that G(-H+)-radical and C(+H+) basepair can alive in DNA more than 100 us and that this long lifetime is responsible to the long-distance hole transfer. The dependence of k against the distance between the G-region and Py led to the slope of 0.3 Angstroms-1 which is due to multi-step k with the smaller distance dependence. On the other hand, beta = 0.6 Angstroms-1 was found for the single-step k in DNA. On the basis of pulse radiolytic studied on various molecule-conjugated DNA, we found that hole transfer between two chromophores (A and B)-conjugated DNA increased with decreasing the distance between A and B and was accelerated slightly with increasing the number of Gs of the bridge between A and B, and that k was modulated by the bridged base sequences. We also found that weak distance dependent hole transfer in DNA by adenine hopping mechanism

  17. Muon radiolysis affected by density inhomogeneity in near-critical fluids.

    Science.gov (United States)

    Cormier, P J; Alcorn, C; Legate, G; Ghandi, K

    2014-04-01

    In this article we show the significant tunability of radiation chemistry in supercritical ethane and to a lesser extent in near critical CO2. The information was obtained by studies of muonium (Mu = μ(+)e(-)), which is formed by the thermalization of positive muons in different materials. The studies of the proportions of three fractions of muon polarization, PMu, diamagnetic PD and lost fraction, PL provided the information on radiolysis processes involved in muon thermalization. Our studies include three different supercritical fluids, water, ethane and carbon dioxide. A combination of mobile electrons and other radiolysis products such as (•)C2H5 contribute to interesting behavior at densities ∼40% above the critical point in ethane. In carbon dioxide, an increase in electron mobility contributes to the lost fraction. The hydrated electron in water is responsible for the lost fraction and decreases the muonium fraction.

  18. Study on the gamma radiolysis of poly (vinyl chloride). Application to the study on degradation by irradiation and leaching of industrial PVC

    International Nuclear Information System (INIS)

    Colombani, J.

    2006-01-01

    The works presented in this memory enter in the context of the management of plastic nuclear waste. This study was carried out on pure PVC and industrial PVC (formulated polymer). The radiolysis at high doses (up to 4 MGy) of pure PVC in anaerobic condition involves the formation of polyenyl radicals, polyenic sequences, hydrogen chloride and reactions of crosslinking. In aerobic condition, the radiolysis at high doses of pure PVC generates the formation of peroxyl radicals, hydrogen chloride, acid water, carboxylic acids, saturated or conjugated ketones and phenomena of scission. The production of HCl generated by irradiation of industrial PVC was carried out up to 40 MGy. The HCl formed by radiolysis is completely trapped by the calcic loads contained in industrial PVC and by the water produced by these reactions of trapping. A qualitative study on the formation of the products of radiolysis highlighted that the mechanisms of radiolysis of industrial PVC are different from those of pure PVC. This difference is due to the presence of additives belonging to the formulation of industrial PVC. The irradiation of plasticizers such as phthalic esters could induce the formation of radicals being able to react, by reaction of grafting, with the macro-radicals of PVC or with the polyenic sequences formed by radiolysis of PVC macromolecules. The results of leaching experiments tend to confirm this type of mechanism. (author)

  19. Pulse radiolysis of 9,10-anthraquinone in methanol

    International Nuclear Information System (INIS)

    Mayer, J.; Krasiukianis, R.

    1990-01-01

    The reactions of anthraquinone with intermediates in methanol (e 2 - , . CH 2 O - , . CH 2 OH) were investigated using γ-radiolysis and pulse radiolysis method. The anthraquinone radical anions are reactive towards O 2 (ca 3 x 10 8 mol -1 dm 3 s -1 ) and can disproportionate giving corresponding dianion. (author)

  20. Radiolysis characterization of chloramphenicol in powder and in eye ointment

    International Nuclear Information System (INIS)

    Hong, L.; Altorfer, H.R.

    2005-01-01

    The effects of γ-radiation sterilization on chloramphenicol, in both pure powder state and petrolatum eye ointment, were investigated with high performance liquid chromatography. The content of chloramphenicol decreases by 1.0% in powder state and by 1.2% in eye ointment at the reference radiation dose of 25 kGy. The profile of chloramphenicol radiolysis products in powder state differs from that in eye ointment. It was found that microenvironment of chloramphenicol molecule is a key factor governing the radiolysis of chloramphenicol in powder state. Solvent residues in chloramphenicol powder could change the radiolysis behavior of chloramphenicol. The solvents, having good solubility for chloramphenicol, promote radiolytic hydrolysis of chloramphenicol, but the converses do not. Inert gas purging or diffusion by exposing in absorbent is efficient method to prevent chloramphenicol powder from radiolysis. The influence of the presence of oxygen was explored. Oxygen plays a role of scavenger and diminishes radiolysis of chloramphenicol. It was found that Nactyl-L-cysteine can protection chloramphenicol in eye ointment from radiolysis. Hydrophobic radiolysis products of chloramphenicol were observed in eye ointment part. Using scavengers and lower irradiation can be strategies to resist radiolysis of chloramphenicol in petrolatum eye ointment. (author)

  1. Picosecond pulse radiolysis studies to understand the primary processes in radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Lewis, M.A.

    1984-01-01

    The use of pulse radiolysis to learn about processes which occur before the beginning of chemical times is discussed. Two examples, the distance distribution of positive and negative ions in hydrocarbons, and the state of the dry electron are discussed in detail

  2. Picosecond pulse radiolysis studies to understand the primary processes in radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Jonah, C.D.; Lewis, M.A.

    1984-01-01

    The use of pulse radiolysis to learn about processes which occur before the beginning of chemical times is discussed. Two examples, the distance distribution of positive and negative ions in hydrocarbons, and the state of the dry electron are discussed in detail.

  3. The radiolysis of CMPO: effects of acid, metal complexation and alpha vs. gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce J. Mincher; Stephen P. Mezyk; Gary S. Groenewold

    2016-05-01

    Abstract The group actinide/lanthanide complexing agent octylphenylcarbamoylmethyl phosphine oxide (CMPO) has been examined for its radiation stability by measuring the kinetics of its reactions with free radicals in both the aqueous and organic phases for the free and metal-complexed ligand, identifying its degradation products for both alpha and gamma irradiation, measuring the effects on solvent extraction performance, and measuring the G-values for its degradation under various conditions. This includes the G-values for CMPO in the absence of, and in contact with the acidic aqueous phase, where it is shown that the acidic aqueous phase provides radio-protection for this ligand. It was found that both solvent and metal complexation affect the kinetics of the reaction of the •NO3 radical, a product of HNO3 radiolysis, with CMPO. For example, CMPO complexed with lanthanides has a rate constant for this reaction an order of magnitude higher than for the free ligand, and the reaction for the free ligand in the organic phase is about three times faster than in the aqueous phase. In steady state radiolysis kinetics it was determined that HNO3, although not NO3- anion, provides radio-protection to CMPO, with the G-value for its degradation decreasing with increasing acidity, until it was almost completely suppressed by irradiation in contact with 5 M HNO3. The same degradation products were produced by irradiation with alpha and gamma-sources, except that the relative abundances of these products varied. For example, the product of C-C bond scission was produced only in low amounts for gamma-radiolysis, but it was an important product for samples irradiated with a He ion beam. These results are compared to the new data appearing in the literature on DGA radiolysis, since CMPO and the DGAs both contain the amide functional group.

  4. A bibliographical review on the radiolysis of uranyl nitrate solutions in nitric acid medium

    International Nuclear Information System (INIS)

    Siri, Sandra; Mondino, Angel V.

    2004-01-01

    A bibliographical study on the effects of ionizing radiation on uranyl nitrate solutions in nitric acid medium was performed, and the state of knowledge on this subject is presented. The main experimental and theoretical results on water, nitric acid and uranium solutions radiolysis are reviewed and critically evaluated. This paper provides a collection of references as an aid to the development of practical applications, and to stimulate new research on fundamental processes in these systems. (author) [es

  5. Burnout experiment in subcooled forced-convection boiling of water for beam dumps of a high power neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kuriyama, Masaaki; Morita, Hiroaki

    1982-01-01

    Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m 2 . These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m 2 with a margin of a factor of 2 for burnout

  6. Pulse radiolysis of 6-aminophenalenone ethanolic solutions

    International Nuclear Information System (INIS)

    Semenova, G.V.; Kartasheva, L.I.; Ryl'kov, V.V.; Pikaev, A.K.

    1986-01-01

    Intermediates of 6-aminophenalenone radiolytic transformations in ethanol are investigated using pulse radiolysis method (5 and 8 MeV energy electrons, pulse duration is 2.3 μs and 15 ns respectively). Constants of reaction rate of e s and α-ethanolic radical with dye are measured (they are equal to (9.3±1.0)x10 9 and (1.1±0.2)x10 8 l/(molxs) respectively); optical and kinetic characteristics of products of their interaction are investigated. Mechanism of radiolytic transformations of this dye is proposed

  7. Studies on the transient species formed in the pulse radiolysis of benzotriazole

    International Nuclear Information System (INIS)

    Naik, D.B.; Moorthy, P.N.

    1995-01-01

    Rate constants for the reaction of benzotriazole (BTZ) with the primary species of water radiolysis (e.g. e aq - , OH, H and O - ) have been determined at different pHs using the pulse radiolysis technique. Absorption spectra of the transient intermediates formed have been recorded in the region 220-650 nm. Semireduced radicals formed by e aq - reaction with benzotriazole are found to be strongly reducing in nature and they transfer electrons to various acceptors such as thionine, methylene blue, paraquat with diffusion controlled rate constants. Only SO 4 - radicals were found to oxidize benzotriazole. Reactivity of BTZ towards e aq - and specific oxidants has been compared with that of indole. Evidence for characterization of both semireduced and semioxidized benzotriazole as three electron bonded species are given. (author)

  8. A review of the radiolysis of methane

    International Nuclear Information System (INIS)

    Norfolk, D.J.

    1975-08-01

    The review had three objectives: to determine the yields of the primary products and to describe the sequence of reactions in which they take part; to ascertain the effect on these reactions of changes in the physical state of the methane and the quantum energy of the radiation, and of the presence of chemically inert sensitisers; and to identify the situation most similar to the adsorbed phase radiolysis of methane on alumina, and so to predict the likely radiolytic reactions in this system. The main primary product yields in methane gas under γ-irradiation are estimated to be G(CH 4 +) approximately 1.75, G(CH 3 +) approximately 1.46, G(CH 3 ) approximately 1.4 and G(CH 2 ) approximately 1.0. The situation most similar to adsorbed phase radiolysis is inert gas sensitised photolysis at energies below 12.6eV. In this system the major primary process is homolytic dissociation of methane to CH 3 +H. (author)

  9. Radiolysis of cyanocobalamin (vitamin B12)

    International Nuclear Information System (INIS)

    Juanchi, X.; Albarran, G.; Negron-Mendoza, A.

    2000-01-01

    Research on the radiolysis of vitamins is of considerable interest since these compounds are important nutritional constituents in foods and in dietetic supplements. In spite of these considerations there are few data and very often difficult to compare for the radiolytic behavior of vitamins. In this work we focused our attention on to the study of the radiolysis of cyanocobalamin (vitamin B 12 ) in solid state and in aqueous solutions. The procedure was followed by HPLC and UV-spectroscopy. The results obtained in aqueous solutions showed a dependence of the decomposition as a linear function of the dose. The G of decomposition for a 1x10 -5 M solution was 3.3. In the solid state the vitamin was very stable towards the irradiation in the conditions used in this study with a G=2.1x10 -3 . A study made with Serratia marcescens as a microbiological contaminant showed that at the sterilization dose there is a destruction of the vitamin in aqueous solution. In the solid state the degree of decomposition was 7%. (author)

  10. Studies on radiolysis of amino acids, (3)

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1978-01-01

    For the purpose of investigating the radiolysis of amino acids and the safeness to radiation, the radiolytic mechanism and radio-sensitivity of sulfur-containing amino acids in aqueous solution in the presence of air or in the atmosphere of nitrogen were studied. Aqueous solutions of L-methionine, cysteine (both 1mM) and L-cystine (0.3mM) were irradiated with γ-ray of 60 Co at the dose of 4.2 - 2,640 x 10 3 rad. The amino acids and the radiolytic products were determined with an amino acid analyzer. The volatile sulfur compounds formed from γ-irradiated methionine were estimated by a flame photometric detector-gas chromatograph. From the results obtained, G values of the radiolysis of sulfur-containing amino acids and the products were calculated, and the radiolytic mechanisms of methionine, cysteine and cystine were proposed. The radio-sensitivity of sulfur-containing amino acids was shown as follows: cysteine (C3-SH) > methionine (C5, -SCH 3 ) > cystine (C 6 , -S-S-). Off-flavor development from γ-irradiated methionine when oxidizing agent was added was less than that when reducing agent was added. (Kobatake, H.)

  11. Calculated LET Spectrum from Antiproton Beams Stopping in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael

    2009-01-01

    Antiprotons have been proposed as a potential modality for radiotherapy because the annihilation at the end of range leads to roughly a doubling of physical dose in the Bragg peak region. So far it has been anticipated that the radiobiology of antiproton beams is similar to that of protons...... in the entry region of the beam, but very different in the annihilation region, due to the expected high-LET components resulting from the annihilation. On closer inspection we find that calculations of dose averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could...... antiproton beam we observe a dose-averaged unrestricted LET of about 4 keV/μm, which is very different from the expected 0.6 keV/μm of an equivalent primary proton beam. Even though the fluence of secondaries is a magnitude less than the fluence of primary particles, the increased stopping power...

  12. Imaging of water in living plant using neutron beam and positron emitting nuclides

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2001-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam as well as positron emitting nuclides. With high specificity to water, neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. To know real-time water movement, positron emitting nuclides, 18 F or 15 O was produced by a cyclotron. We present how water uptake activity was shown using these these nuclides. (author)

  13. Radiolysis studies on reactive intermediates

    International Nuclear Information System (INIS)

    Kevan, L.

    1977-11-01

    A more quantitative characterization of the structure and reaction mechanism of solvated electrons produced by high energy chemistry was developed. Neutral atoms may undergo solvation in polar media to cause significant geometrical rearrangement. The geometrical arrangement of six OH bond oriented water molecules around a localized electron is the preferred geometry in frozen aqueous systems even at low solute ion concentration. The energy level structure of electrons in polar aqueous and alcoholic glasses was systematized from a comparison of photoconductivity and optical spectra. Experimental and theoretical evidence on electron solvation was evaluated to suggest the dominance of first solvation shell orientation in the solvation process. A laser photolysis study as a function of temperature suggests that electron solvation in ethanol glass occurs by a hindered molecular reorientation mechanism. In mixed polar and nonpolar glassy matrices it was shown that the electron is first solvated in the nonpolar matrix and is later transformed to a more stable species surrounded by the polar molecules. It was found that the spin lattice relaxation of solvated electrons is dominated by a new mechanism characteristic of disordered matrices which involves relaxation by tunneling modes in the matrix. The noninteracting spin packet model of electron spin resonance lines was shown to apply to solvated electrons in deuterated matrices but not in protiated matrices. A new type of recombination fluorescence experiment was devised which allows easy distinction between tunnelling and diffusive recombination mechanisms between solvate electrons and cations. Several theoretical studies have helped to delimit the applicability of an electron tunneling mechanism to solvated electron reactions. Electron spin echospectrometry was used to demonstrate that silver atoms undergo dramatic solvation and desolvation changes in frozen aqueous systems

  14. Radiolysis in cement-based materials ; application to radioactive waste-forms

    International Nuclear Information System (INIS)

    Bouniol, P.

    2014-01-01

    Cement-based materials appear to be an original environment with respect to radiolysis, due to their intrinsic complexity (porous, multiphasic and evolutional medium) or their very specific physico-chemical conditions (hyper-alkaline medium with pH ≥ 13, high content in calcium) or by the fact of numerous couplings existing between different phenomenologies. At the level of a radioactive cemented wasteform, a high degree of complexity is reached, in particular if the system communicates with the atmosphere (open system allowing regulation of the pressures but also the admission of O 2 , strong reactive with regards to radiolysis). Then, the radiolysis description exceeds widely the only one aspect of the decomposition of alkaline water under irradiation and makes necessary a global phenomenological approach. In this context, some 'outlying' phenomena, highly coupled with radiation chemistry, have to be taken into account because they contribute to deeply modify the net result of the radiolysis: radioactive decay of multiple αβγ emitters with filiation, phase changes (for example H 2 aq → H 2 gas) within the pores, gas transport by convection (Darcy law) and by diffusion (Fick law), precipitation/dissolution of solid phases, effect of the ionic strength and the temperature, disturbances connected to the presence of some solutes with redox potentialities (iron, sulphur). The integration work carried out on the previous points leads to an operational model (DOREMI) allowing the estimate of H 2 amounts produced by radiolysis in different cemented radioactive waste-forms. As the final expression of the model, numerical simulations constitute a relevant tool of expertise and prospecting, contributing to accompany the thought on radiolysis in cement matrices in general and in cemented waste-forms in particular. Starting from different examples, simulations can be so used in order to test some hypotheses or illustrate the greatest influence of gas transport, dose

  15. Extension of filament propagation in water with Bessel-Gaussian beams

    International Nuclear Information System (INIS)

    Kaya, G.; Sayrac, M.; Boran, Y.; Kolomenskii, A. A.; Kaya, N.; Schuessler, H. A.; Strohaber, J.; Amani, M.

    2016-01-01

    We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.

  16. Three-dimensional dose distribution of proton beams derived from luminescence images of water

    Science.gov (United States)

    Yamamoto, S.; Watabe, H.; Toshito, T.; Komori, M.

    2017-05-01

    We recently found that luminescence was emitted from water during proton irradiation at lower energy than the Cerenkov-light threshold and imaging was possible by using a CCD camera. However, since the measured distributions were projection images of the luminescence, precise dose estimations from the images were not possible. If the 3 dimensional images can be formed from the projection images, more precise dose information could be obtained. For this purpose, we calculate the 3-dimensional distribution of the proton beams from the luminescence images and use them for beam width estimations. We assumed that the proton beams have circular shape and the transverse images were reconstructed from the projection images using the filtered backprojection (FBP) algorithm for positron emission tomography (PET). The reconstructed images were compared to estimate the proton-beam widths with those obtained from the projection images and simulation results. We obtained 3-dimensional distributions of the proton beams from the projection images and also the reconstructed sagittal, coronal, and transverse images as well as volume rendering images. The estimated beam widths from the reconstructed images, which were slightly smaller than those obtained from the projection images, were identical to those calculated with the simulation. The 3-dimensional distributions of the luminescence images of water of proton beams could be reconstructed from the projection images and showed improved accuracy in estimating the beam widths of the proton beams.

  17. Ground-water activation from the upcoming operation of MI40 beam absorber

    International Nuclear Information System (INIS)

    Bhat, C.M.; Read, A.L.

    1996-09-01

    During the course of normal operation, a particle accelerator can produce radionuclides in the adjacent soil and in the beam line elements through the interactions of accelerated particles and/or secondary particles produced in the beam absorbers, targets, and sometimes elsewhere through routine beam losses. The production and concentration of these radionuclides depends on the beam parameters such as energy, intensity, particle type, and target configuration. The radionuclides produced in the soil can potentially migrate to the ground water. Soil activation and migration to the ground water depends on the details of the local hydrogeology. Generally, very few places such as the beam stops, target stations, injection and extraction sectors can have high enough radiation fields to produce radionuclides in the soil outside the enclosures. During the design, construction, or an upgrade in the intensity of existing beams, measures are taken to minimize the production of activated soil. The only leachable radionuclides known to be produced in the Fermilab soil are 3 H, 7 Be , 22 Na, 45 Ca and 54 Mn and it has been determined that only 3 H, and 22 Na, because of their longer half lives and greater leachabilities, may significantly impact ground water resources.In the past, Fermilab has developed and used the Single Resident Well Model (SRWM) to estimate the ground water activation. Recently, the Concentration Model (CM), a more realistic method which depends on the site hydrogeology has been developed to decide the shielding requirements of the high radiation sites, and to calculate the ground water activation and its subsequent migration to the aquifer. In this report, the concentration of radionuclide released to the surface waters and the aquifer around the MI40 beam absorber are calculated. Subsequently, the ultimate limit on the primary proton beam intensity to be aborted on the Main Injector beam absorber is determined

  18. Gamma-radiolysis of dimethyl sulfoxide. II. Radiolysis yields and possible mechanisms

    International Nuclear Information System (INIS)

    Gutierrez, M. C.; Barrera, R.

    1978-01-01

    As result of quantitative studies on gamma-radiolysis of DMSO at a dose range of 90-850 Mrads, constant G values have been obtained for the following radiolysis compounds: G(-DMSO) - 6.7 ±0.2; G(dimethyl sulphide) - 3.4 ±0.3; G(methane) - 0,75 ± 0.04; G(dimethyl disulphide) -0.33 ±0,03; G(tri methylsulphonium methanesulphonate) - 0.26 ± 0,01; G(methyl methanethiosulphonate) - 0,25 ±0.02; G(dimethyl sulphona)-0.21±0.02; G(H 2 )-0.18±0.02; and G(propane)--0.0092±0.0007. Initial G values have been obtained for other identified compounds: Gi(ethane)-0,46; Gi(CO)-0.052; and Gi(CO 2 )-0.030. Possible mechanisms on the radiolysis process are proposed. (Author) 17 refs

  19. Study of the radiolysis of tetracycline hidrochloride in aerated aqueous solutions

    International Nuclear Information System (INIS)

    Guedes, S.M.L.; Vasconcellos, M.B.A.

    1983-01-01

    The radiolysis of tetracycline hydrochloride (TC) was studied in neutral, acid and alkaline aerated solutions, by electron spin resonance spectroscopy at 77K. The paramagnetic species observed are: H.; OH.; HO 2 .; e - trapped and impurity radical. The reaction mechanism shows that the solute reacts with the solvent before the radiolysis and produces H + ions, as a consequence of the ionization of tricarbonylmethane group. The H + ions react with the e - from the radiolysis of water and produce HO 2 in the presence of O 2 . The interaction of TC with the alkaline solvent favours the interaction between gamma rays and solute. The products formed in the interaction of solute with the solvent before the radiolysis, as a consenquence of the ionization of TC, according to the pH of the solution, are of fundamental importance in the interaction of gamma rays with the solute. A crude estimate of the average distance that the e - is able to travel through solvent molecules before its capture by the solute was obtained in these 0.1N, 0.5N and 1.0N NaOH aqueous solutions. Until [TC] - travels more in solutions that contain less [NaOH]. In higher [TC] the e - travels through 680 solvent molecules. In order to explain the selective capture of the e3- by solute molecules, a simple model is suggested based on the existence of channel walls of solvent molecules where the electrical atraction betwwed Na + and e - influences the collision frequency and the energy loss. (Author) [pt

  20. Radiolysis of cyclohexene/CO system

    International Nuclear Information System (INIS)

    Park, H.R.; Lugovoi, Yu.M.; Nikiforov, A.; Getoff, N.

    1991-01-01

    The radiolysis of cyclohexene in the presence of CO (1-10 x 10 5 Pa pressure) leads to the formation of: 2-cyclohexene-1-one; 2-cyclohexene -1-o1; bi-2-cyclohexane-1-yl; 3-cyclohexyl-cyclohexene; cyclohexanone; cyclohexanol; cyclohexane and bicyclohexyl; in addition to traces of formaldehyde; 2- and 3-cyclohexene-1-carboxaldehyde; cyclohexane-carboxaldehyde and dicyclohexylketone. The G i -value of each individual product was found to be a function of the CO concentration in the solution, e.g. G i (2-cyclohexane-1-one) = 1.05 at 1 x 10 5 Pa CO and 10.30 at 1 x 10 6 Pa CO, respectively (1 atm = 1.013 x 10 5 Pa). Experiments with deoxygenated cyclohexane were also carried out, and the final products were analysed for comparative purposes. Probable reaction mechanisms are presented as an explanation of the results obtained. (author)

  1. Pulse radiolysis of rhodamine dye solutions

    International Nuclear Information System (INIS)

    Kucherenko, E.A.; Kartasheva, L.I.; Pikaev, A.K.

    1982-01-01

    Applying the method of pulse radiolysis (5 MeV electrons) a study was made on intermediate products of rhodamine B radiolytic transformations in neutral aqueous and ethanol solutions. Rate constants of reactions of esub(aq) and OH with the dye (they are equal to (2.2+-0.3)x10 10 and (2.1+-0.3)x10 10 e/molxs, accordingly) as well as optical and kinetic characteristics of esub(aq), OH and H interaction products were measured. The nature of these products is concluded. It was found that in ethanol solutions the semirecovered form - electroneutral radical of rhodamine B - was the only intermediate product. It arises during the interaction of the dye with esub(s) (k=(9.2+-1.2)x10 9 e/molxs) and α-et hananol radical (k=(1.1+-0.1)x10 8 l/molxs). Properties of this product were investigated

  2. Gamma radiolysis of a heavy petroleum fraction

    International Nuclear Information System (INIS)

    Cataldo, F.

    2003-01-01

    A relatively heavy petroleum fraction called distillate aromatic extract (DAE) which has been proposed to be the carrier of the emission bands of certain astronomical objects like protoplanetary nebulae (PPNe) and the so-called unidentified infrared bands (UIBs), has been radiolyzed with γ-radiation to a total dose of 1 MGy. The stability of DAE toward radiation was assessed by FT-IR and electronic spectroscopy. The gases produced during radiolysis have been identified by GC. They were essentially H 2 and CH 4 . A certain degree of crosslinking has been verified on the radiation-processed material by measuring the hexane insoluble fraction of DAE, which increased dramatically after the radiation treatment. Further analyses were conducted using high performance liquid chromatography (HPLC) on the radiation processed sample in comparison to the pristine sample. (author)

  3. Studies on radiolysis of amino acids, 1

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1977-01-01

    In order to elucidate the radiolysis of amino acid, peptide, protein and enzyme, the radiolytic mechanisms of neutral amino acids (glycine, L-alanine, L-valine, L-leucine, L-isoleucine, L-serine, and L-threonine) and acidic amino acids (L-aspartic acid, L-glutamic acid and DL-amino-n-adipic acid) were studied in the presence of air or in the atmosphere nitrogen. An aqueous solution of 1 mM. of each amino acid was sealed in a glass ampoule under air or nitrogen. Irradiation of amino acid solutions was carried out with γ-rays of 60 Co at doses of 4.4-2,640x10 3 rads. The amino acids and the radiolytic products formed were determined by ion-exchange chromatography. From the results of determining amino acids and the radiolytic products formed and their G-values, the radiolytic mechanisms of the amino acids were discussed. (auth.)

  4. Tritium release reduction and radiolysis gas formation

    International Nuclear Information System (INIS)

    Batifol, G.; Douche, Ch.; Sejournant, Ch.

    2008-01-01

    At CEA Valduc, the usual tritiated waste container is the steel drum. It allows good release reduction performance for middle activity waste but in some cases tritium outgassing from the waste drums is too high. It was decided to over-package each drum in a tighter container called the over-drum. According to good safety practices it was also decided to measure gas composition evolution into the over-drum in order to defect hydrogen formation over time. After a few months, a significant release reduction was observed. Additionally there followed contamination reduction in the roof storage building rainwater. However hydrogen was also observed in some over-drums, in addition to other radiolysis products. Catalyst will be added to manage the hydrogen risk in the over-drums. (authors)

  5. Subpicosecond pulse radiolysis studies on spur reactions and nanotechnology

    International Nuclear Information System (INIS)

    Tagawa, S.

    2003-01-01

    Recently we developed a subpicosecond pulse radiolysis system, although the time resolution of pulse radiolysis had remained about 30 ps for these 30 years. Time resolution and S/N ratio have been improved dramatically. The subpicosecond pulse radiolysis is a very powerful method to detect and observe transient phenomena in radiation chemistry and physics within 30 ps. By using the subpicosecond pulse radiolysis, many researches have been carried out on ultrafast phenomena in radiation chemistry, physics, biology and applied fields such as material science.Especially the spur reaction, which is one of the most important reactions in radiation chemistry, physics and biology, has been studied in the very wide time range from subpicosecond to several hundred nanoseconds by very high S/N ratio. These experimental results were analyzed theoretically and applied to the basic data for nanofabrication, which are very important in both next generation lithography and nanotechnology

  6. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  7. Utilization of high energy electron beam in the treatment of drinking and waste water

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-08-01

    Samples of drinking water and waste water were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% tri halomethanes (THM) in drinking water (concentration from 2.7 μg/1 to 45μg/1, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid waste water. (author)

  8. Influence of radiolysis on UO2 fuel matrix dissolution under disposal conditions. Literature Study

    International Nuclear Information System (INIS)

    Ollila, K.

    2011-05-01

    The objective of this study was to examine the recent published literature on the influence of water radiolysis on UO 2 fuel matrix dissolution under the disposal conditions. The α radiation is considered to be dominating over the other types of radiations at times longer than 1000 years. The presence of the anaerobic corrosion products of iron, especially of hydrogen, has been observed to play an important role under radiolysis conditions. It is not possible to exclude gamma/beta radiolysis effects in the experiments with spent fuel, since there is not available a fuel over 100 years old. More direct measurements of α radiolysis effects have been conducted with α doped UO 2 materials. On the basis of the results of these experiments, a specific activity threshold to observe α radiolysis effects has been presented. The threshold is 1.8 x 10 7 to 3.3 x 10 7 Bq/g in anoxic 10 -3 M carbonate solution. It is dependent on the environmental conditions, such as the reducing buffer capacity of the conditions. The results of dissolution rate measurements at VTT with 233 U-doped UO 2 samples in 0.01 to 0.1 M NaCl solutions under anoxic conditions did not show any effect of α radiolysis with doping levels of 5 and 10% 233 U (3.2 x 10 7 and 6.3 x 10 7 Bq/g). Both Fe 2+ and hydrogen can act as reducing species and could react with oxidizing radiolytic species. Fe 2+ concentrations of the order of 10 -5 M can decrease the rate of H 2 O 2 production. Low dissolution rates, 2 x 10 -8 to 2 x 10 -7 /yr, have been measured in the presence of metallic Fe with 5 and 10% 233 U-doped UO 2 in 0.01 to 1 M NaCl solutions. The tests with isotope dilution method showed precipitation phenomena of U to occur during dissolution process. The concentrations of dissolved U were extremely low (≤ 8.4 x 10 -11 M). No effects of -radiolysis could be seen. It is difficult to distinguish the effects of metallic Fe, Fe 2+ or hydrogen in these tests. Hydrogen could also act as a reducing agent

  9. Radiolysis studies of uranyl nitrate solution in nitric acid medium

    International Nuclear Information System (INIS)

    Siri, Sandra; Mondino, Angel V.

    2005-01-01

    The radiolysis of acidic uranyl nitrate solutions was investigated using Co-60 gamma radiation. Hydrogen peroxide was determined as a function of increasing dose. The UV-vis absorption spectra of the irradiated solutions were measured and the spectral changes were analyzed. The increasing dose increases the absorbance intensities, possibly by an increment in nitrate concentration produced by radiolysis, which can originate the formation of different uranyl complexes in solution. (author)

  10. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ying, C K; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W A

    2017-01-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak. (paper)

  11. An Advantage of the Equivalent Velocity Spectroscopy for Femtsecond Pulse Radiolysis

    CERN Document Server

    Kondoh, Takafumi; Tagawa, Seiichi; Tomosada, Hiroshi; Yang Jin Feng; Yoshida, Yoichi

    2005-01-01

    For studies of electron beam induced ultra-fast reaction process, femtosecond(fs) pulse radiolysis is under construction. To realize fs time resolution, fs electron and analyzing light pulses and their jitter compensation system are needed. About a 100fs electron pulse was generated by a photocathode RF gun linac and a magnetic pulse compressor. Synchronized Ti: Sapphire laser have a puleswidth about 160fs. And, it is significant to avoid degradation of time resolution caused by velocity difference between electron and analyzing light in a sample. In the 'Equivalent velocity spectroscopy' method, incident analyzing light is slant toward electron beam with an angle associated with refractive index of sample. Then, to overlap light wave front and electron pulse shape, electron pulse shape is slanted toward the direction of travel. As a result of the equivalent velocity spectroscopy for hydrated electrons, using slanted electron pulse shape, optical absorption rise time was about 1.4ps faster than normal electro...

  12. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  13. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis

    Science.gov (United States)

    Clifford, Dustin M.; Castano, Carlos E.; Rojas, Jessika V.

    2018-03-01

    Advanced routes for the synthesis of nanomaterials, such as ferromagnetic nanoparticles, are being explored that are easy to perform using cost-effective and non-toxic precursors. Radiolytic syntheses based on the use of X-rays as ionizing radiation are promising towards this effort. X-rays were used to produce highly magnetic cobalt nanoparticles (NPs), stable in air up to 200 °C, from the radiolysis of water. Crystal structure analysis by XRD indicates a mixture of Cofcc, 63%, and Cohcp, 37%, phases. Magnetic analysis by VSM gave a saturation magnetization (Ms) 136 emu/g at 1 T and coercivity (Hc) = 325 Oe when the reaction solution was purged with N2 while an air-purged treatment resulted in Co NPs having 102 emu/g with a coercivity (Hc) 270 Oe. Overall, the reduction of Co2+ occurred in an aqueous reaction environment without addition of chemical reductants resulting in Co NPs with size distribution from 20 to 140 nm. This clean approach at ambient temperature produced highly magnetic Co NPs that may be used for switching devices (i.e. reed switches) or as additives for alloys that require high Curie points.

  14. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tang

    2001-05-03

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated.

  15. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    International Nuclear Information System (INIS)

    J.S. Tang

    2001-01-01

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated

  16. Nanosecond pulse radiolysis of ammoniacal solutions of silver salts

    International Nuclear Information System (INIS)

    Farhataziz; Cordier, P.; Perkey, L.M.

    1976-01-01

    In pulse radiolysis of silver salts in liquid ammonia at 23 0 C, the reaction of e/sub am/ - with Ag + produces Ag, and subsequently the reaction of Ag with Ag + produces Ag 2 + which probably disproportionates to Ag 2 . The maxima in absorption spectra at 435, 390, and 300 nm are ascribed to Ag, Ag 2 + , and Ag 2 , respectively. The measured specific rate of the reaction of e/sub am/ - with Ag + is 1.5 x 10 12 M -1 sec -1 at 23 0 C. The calculated specific rate with the Smoluchowski--Debye equation for a diffusion-controlled reaction of e/sub am/ - with Ag + is 1.4 x 10 12 M -1 sec -1 at 25 0 C. The specific rate for the reaction of Ag with Ag + is 1.3 x 10 10 M -1 sec -1 at 23 0 C. At the same temperature, the ratio of the specific rate for the disproportionation of Ag 2 + and extinction coefficient of Ag 2 + at the 390 nm is 10 6 cm sec -1 . A comparison of the spectra of various silver species dissolved in water with the spectra for same species dissolved in liquid ammonia shows that spectra in liquid ammonia are shifted toward longer wavelengths

  17. Pulse radiolysis studies in model lipid systems

    International Nuclear Information System (INIS)

    Patterson, L.K.; Hasegawa, K.

    1978-01-01

    The kinetic and spectral behavior of radicals formed by hydroxyl radical attack on linoleate anions has been studied by pulse radiolysis. Reactivity of OH toward this surfactant is an order of magnitude greater in monomeric form (kOH + linoleate = 8.0 x 10 9 M -1 sec -1 ) than in mecellar form (kOH + lin(micelle) = 1.0 x 10 9 M -1 sec -1 ). Abstraction of a hydrogen atom from the doubly allylic position gives rise to an intense absorption in the UV region (lambda max = 282-286 nm, epsilon approximately 3 x 10 4 M -1 cm -1 ) which may be used as a probe of radical activity at that site. This abstraction may occur, to a small extent, directly via OH attack. However, greater than 90% of initial attack occurs at other sites. Subsequent secondary abstraction of doubly allylic H atoms appears to occur predominantly by: (1) intramolecular processes in monomers, (2) intermolecular processes in micelles. Disappearance of radicals by secondary processes is slower in the micellar pseudo phase than in monomeric solution. (orig.) 891 HK 892 KR [de

  18. Pulse radiolysis study on several fluoroquinolones

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Peng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Yao Side [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li Haixia; Song Xiyu; Liu Yancheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Wang Wenfeng, E-mail: wangwenfeng@sinap.ac.c [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2011-04-15

    Reactions of several fluoroquinolones (FQs), including enoxacin, norfloxacin, and ciprofloxacin, with various reactive species such as e{sub aq}{sup -}, N{sup {center_dot}}{sub 3}, and {sup {center_dot}O}H are investigated by pulse radiolysis techniques. The FQ radical anions formed in the reactions of FQs with e{sub aq}{sup -} could either be protonated or deprotonated, and the absorption of FQ radical anions was located around 370 nm. The absorption of the neutral radicals produced in the protonation, and the radical dianions produced in the deprotonation of FQ radical anions were located in the 500-750 nm region. The FQ radical cations formed in the reactions of FQs with N{sub 3}{sup {center_dot}} showed an absorption band around 360 nm. Due to the strong bleaching below 350 nm, the absorption maxima ({lambda}{sub max}) of FQ radical anions, and the {lambda}{sub max} of FQ radical cations were not confirmed. The absorption of the FQ radical anions and cations was clearly pH dependent. Under neutral conditions, the reaction rate constants of FQs with e{sub aq}{sup -} and {sup {center_dot}O}H, which are diffusion controlled, were determined.

  19. Radical Cations and Acid Protection during Radiolysis

    International Nuclear Information System (INIS)

    Mincher, Bruce J.; Zarzana, Christopher A.; Mezyk, Stephen P.

    2016-01-01

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade in pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO 3 . It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.

  20. Radical Cations and Acid Protection during Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zarzana, Christopher A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stephen P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-09

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade in pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO3. It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.

  1. Combinations of Aromatic and Aliphatic Radiolysis.

    Science.gov (United States)

    LaVerne, Jay A; Dowling-Medley, Jennifer

    2015-10-08

    The production of H(2) in the radiolysis of benzene, methylbenzene (toluene), ethylbenzene, butylbenzene, and hexylbenzene with γ-rays, 2-10 MeV protons, 5-20 MeV helium ions, and 10-30 MeV carbon ions is used as a probe of the overall radiation sensitivity and to determine the relative contributions of aromatic and aliphatic entities in mixed hydrocarbons. The addition of an aliphatic side chain with progressively from one to six carbon lengths to benzene increases the H(2) yield with γ-rays, but the yield seems to reach a plateau far below that found from a simple aliphatic such as cyclohexane. There is a large increase in H(2) with LET (linear energy transfer) for all of the substituted benzenes, which indicates that the main process for H(2) formation is a second-order process and dominated by the aromatic entity. The addition of a small amount of benzene to cyclohexane can lower the H(2) yield from the value expected from a simple mixture law. A 50:50% volume mixture of benzene-cyclohexane has essentially the same H(2) yield as cyclohexylbenzene at a wide variation in LET, suggesting that intermolecular energy transfer is as efficient as intramolecular energy transfer.

  2. Evaluation of thermoluminescent dosimeters using water equivalent phantoms for application in clinical electrons beams dosimetry

    International Nuclear Information System (INIS)

    Bravim, Amanda

    2010-01-01

    The dosimetry in Radiotherapy provides the calibration of the radiation beam as well as the quality control of the dose in the clinical routine. Its main objective is to determine with greater accuracy the dose absorbed by the tumor. This study aimed to evaluate the behavior of three thermoluminescent dosimeters for the clinical electron beam dosimetry. The performance of the calcium sulfate detector doped with dysprosium (CaSO 4 : Dy) produced by IPEN was compared with two dosimeters commercially available by Harshaw. Both are named TLD-100, however they differ in their dimensions. The dosimeters were evaluated using water, solid water (RMI-457) and PMMA phantoms in different exposure fields for 4, 6, 9, 12 and 16 MeV electron beam energies. It was also performed measurements in photon beams of 6 and 15 MV (2 and 5 MeV) only for comparison. The dose-response curves were obtained for the 60 Co gamma radiation in air and under conditions of electronic equilibrium, both for clinical beam of photons and electrons in maximum dose depths. The sensitivity, reproducibility, intrinsic efficiency and energy dependence response of dosimeters were studied. The CaSO 4 : Dy showed the same behavior of TLD-100, demonstrating only an advantage in the sensitivity to the beams and radiation doses studied. Thus, the dosimeter produced by IPEN can be considered a new alternative for dosimetry in Radiotherapy departments. (author)

  3. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  4. Measurements of absorbed energy distributions in water from pulsed electron beams

    International Nuclear Information System (INIS)

    Devanney, J.A.

    1974-01-01

    An evaluation of the use of a holographic interferometer to measure the energy deposition as a function of depth in water from pulsed electron beams, together with a brief description of the interferometer and the technique of generating a hologram are presented. The holographic interferometer is used to measure the energy deposition as a function of depth in water from various pulsed beams of monoenergetic electrons in the energy range from 1.0 to 2.5 MeV. These results are compared to those computed by using a Monte Carlo radiation transport code, ETRAN-15, for the same electron energies. After the discrepancies between the measured and computed results are evaluated, reasonable agreement is found between the measured and computed absorbed energy distributions as a function of depth in water. An evalutation of the response of the interferometer as a function of electron intensities is performed. A comparison among four energy deposition curves that result from the irradiation of water with pulsed electron beams from a Febetron accelerator, model 705, is presented. These pulsed beams were produced by the same vacuum diode with the same charging voltage. The results indicate that the energy distribution of the electrons in the pulsed beam is not always constant. A comparison of the energy deposition curves that result from the irradiation of water with electron pulses from different vacuum diodes but the same charging voltage is presented. These results indicate again that the energy distribution of the electrons in the pulsed beam may vary between vacuum diodes. These differences would not be realized by using a totally absorbing metal calorimeter and Faraday Cup

  5. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range

    International Nuclear Information System (INIS)

    Draganic, Z.D.; Draganic, I.G.; Negron-Mendoza, A.; Navarro-Gonzales, R.; Albarran-Sanchez, M.G.; Sehested, K.

    1986-12-01

    0 2 -free aqueous solutions of 0.05 mol dm -3 ammonium bicarbonate were studied after receiving various doses of 60 Co gammas (0.001-170 Mrd) or krd pulses of 10 MeV electrons. Formate, oxalate, formaldehyde and an unidentified polymer (M w 14000-16000 daltons) were found to be the main radiolytic products. A large initial yield of formate in the γ-radiolysis, G(HCOO - ) = 2.2, is due to the reaction CO 2 - + HCO 3 - ↔ HC00 - + CO 3 - . The efficiency of organic synthesis within the large dose range studied is low and is explained by efficient pathways to the reformation of bicarbonate, where the reaction CO 2 - + CO 3 - is particurlarly significant. Computer fitting of the data obtained in the γ-radiolysis and by pulsed electron beam experiments gives k(CO 2 - + HCO 3 - ) = (2 ± 0.4)x10 3 dm 3 mol -1 s -1 , k(CO 2 - + CO 3 - ) = (5 ± 1)x10 7 dm 3 mol -1 s -1 , k(NH 2 + = HCO 3 - ) 4 dm 3 mol -1 s -1 and k(NH 2 + CO 3 - ) = (1.5 ± 0.5)x10 9 dm 3 mol -1 s -1 . (author)

  6. Gas phase collision dynamics by means of pulse-radiolysis methods

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    1989-01-01

    After a brief survey of recent advances in gas-phase collision dynamics studies using pulse radiolysis methods, the following two topics in our research programs are presented with emphasis on the superior advantages of the pulse radiolysis methods over the various methods of gas-phase collision dynamics, such as beam methods, swarm methods and flow methods. One of the topics is electron attachment to van der Waals molecules. The attachment rates of thermal electrons to O 2 and other molecules in dense gases have been measured in wide ranges of both gas temperatures and pressures, from which experimental evidence has been obtained for electron attachment to van der Waals molecules. The results have been compared with theories and discussed in terms of the effect of van der Waals interaction on the electron attachment resonance. The obtained conclusions have been related with investigations of electron attachment, solvation and localization in the condensed phase. The other is Penning ionization and its related processes. The rate constants for the de-excitation of He(2 1 P), He(2 3 S), Ne( 3 P 0 ), Ne( 3 P 1 ), Ne( 3 P 2 ), Ar( 1 P 1 ), Ar( 3 P 1 ), by atoms and molecules have been measured in the temperature range from 100 to 300 K, thus obtaining the collisional energy dependence of the de-excitation cross sections. The results are compared in detail with theories classified according to the excited rare gas atoms in the metastable and resonance states. (author)

  7. The water equivalence of solid materials used for dosimetry with small proton beams

    International Nuclear Information System (INIS)

    Schneider, Uwe; Pemler, Peter; Besserer, Juergen; Dellert, Matthias; Moosburger, Martin; Boer, Jorrit de; Pedroni, Eros; Boehringer, Terence

    2002-01-01

    Various solid materials are used instead of water for absolute dosimetry with small proton beams. This may result in a dose measurement different to that in water, even when the range of protons in the phantom material is considered correctly. This dose difference is caused by the diverse cross sections for inelastic nuclear scattering in water and in the phantom materials respectively. To estimate the magnitude of this effect, flux and dose measurements with a 177 MeV proton pencil beam having a width of 0.6 cm (FWHM) were performed. The proton flux and the deposited dose in the beam path were determined behind water, lucite, polyethylene, teflon, and aluminum of diverse thicknesses. The number of out-scattered protons due to inelastic nuclear scattering was determined for water and the different materials. The ratios of the number of scattered protons in the materials relative to that in water were found to be 1.20 for lucite, 1.16 for polyethylene, 1.22 for teflon, and 1.03 for aluminum. The difference between the deposited dose in water and in the phantom materials taken in the center of the proton pencil beam, was estimated from the flux measurements, always taking the different ranges of protons in the materials into account. The estimated dose difference relative to water in 15 cm water equivalent thickness was -2.3% for lucite, -1.7% for polyethylene, -2.5% for teflon, and -0.4% for aluminum. The dose deviation was verified by a measurement using an ionization chamber. It should be noted that the dose error is larger when the effective point of measurement in the material is deeper or when the energy is higher

  8. Comparison of the NPL water calorimeter with other dosimetric techniques for high energy photon beams

    International Nuclear Information System (INIS)

    Rosser, K.E.; Williams, A.J.

    1999-01-01

    At present, the primary standard of absorbed dose to water at NPL in high energy photon beams is a graphite calorimeter. However the quantity of interest in radiation dosimetry is absorbed dose to water. Therefore, a new absorbed dose to water standard based on water calorimetry is being developed at NPL. The calorimeter operates at 4 deg. C, with temperature control being provided by a combination of liquid and air cooling. The sealed glass inner vessel of the calorimeter has been designed to minimise the effect of non-water materials on the measurement of absorbed dose. Measurements of absorbed dose to water made in 6, 10 and 19 MV photon beams agreed within the measurement uncertainties with those determined using the primary standard graphite calorimeter. Also the absorbed dose to water measured using the water calorimeter agrees with that based on the air kerma standards for 60 Co γ-radiation within the uncertainties. The development of the water calorimeter will lead to a very robust dosimetry system at NPL, where the absorbed dose to water can be determined using three independent techniques. (author)

  9. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Directory of Open Access Journals (Sweden)

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  10. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth.

    Science.gov (United States)

    Mukherjee, Smita; Fauré, Marie-Claude; Goldmann, Michel; Fontaine, Philippe

    2015-01-01

    In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal-organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  11. The radiolysis of styrene methyl acrylate copolymers: An ESR study

    International Nuclear Information System (INIS)

    Kellman, R.; Hill, D.T.J.; O'Donnell, J.H.; Pomery, P.J.

    1990-01-01

    The authors have examined the degradation of poly(styrene-co-methyl acrylate) under high-energy radiation, and wish to report results of an ESR study on the formation and fate of radical species produced during radiolysis. Radical yields, G[R], for STY-co-MA polymers have been determined at both 77K and 300K. ESR spectral analysis has allowed structural determination and an examination of the behavior of radicals species produced on radiolysis. Aspects of the free radical chemistry responsible for polymer degradation are discussed

  12. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1985-01-01

    The purpose of this review is to bring together and to correlate the wide variety of experimental studies that provide information on the reaction products and reaction mechanisms involved in the radiolysis of peptides, polypeptides and proteins (including chromosomal proteins) in both aqueous and solid-state systems. The comparative radiation chemistry of these systems is developed in terms of specific reactions of the peptide main-chain and the aliphatic, aromatic-unsaturated and sulfur-containing side-chains. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis and ESR spectroscopy is included. 147 refs

  13. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W.M.

    1985-01-01

    The purpose of this review is to bring together and to correlate the wide variety of experimental studies that provide information on the reaction products and reaction mechanisms involved in the radiolysis of peptides, polypeptides and proteins (including chromosomal proteins) in both aqueous and solid-state systems. The comparative radiation chemistry of these systems is developed in terms of specific reactions of the peptide main-chain and the aliphatic, aromatic-unsaturated and sulfur-containing side-chains. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis and ESR spectroscopy is included. 147 refs.

  14. Formation and role of excited states in radiolysis - a foreword

    International Nuclear Information System (INIS)

    Singh, A.

    1976-01-01

    It is stated that the choice of contributions to the special issue of this Journal has been limited to those which bear on the details of the mechanisms of excited state formation and are likely to be useful to radiation chemists. Since more than half the energy deposited in radiolysis goes into excitation, studies on the fate of the excited species formed are very important. A brief reference is made to the subject matter of each of the fifteen contributions, and its significance to the development of the technique of radiolysis is outlined. (U.K.)

  15. Influence of irradiation and radiolysis on the corrosion rates and mechanisms of zirconium alloys

    International Nuclear Information System (INIS)

    Verlet, Romain

    2015-01-01

    The nuclear fuel of pressurized water reactors (PWR) in the form of uranium oxide UO 2 pellets (or MOX) is confined in a zirconium alloy cladding. This cladding is very important because it represents the first containment barrier against the release of fission products generated by the nuclear reaction to the external environment. Corrosion by the primary medium of zirconium alloys, particularly the Zircaloy-4, is one of the factors limiting the reactor residence time of the fuel rods (UO 2 pellets + cladding). To optimize core management and to extend the lifetime of the fuel rods in reactor, new alloys based on zirconium-niobium (M5) have been developed. However, the corrosion mechanisms of these are not completely understood because of the complexity of these materials, corrosion environment and the presence of radiation from the nuclear fuel. Therefore, this thesis specifically addresses the effects of radiolysis and defects induced by irradiation with ions in the matrix metal and the oxide layer on the corrosion rate of Zircaloy-4 and M5. The goal is to separate the influence of radiation damage to the metal, that relating to defects created in the oxide and that linked to radiolysis of the primary medium on the oxidation rate of zirconium alloys in reactor. 1) Regarding effect of irradiation of the metal on the oxidation rate: type dislocation loops appear and increase the oxidation rate of the two alloys. For M5, in addition to the first effect, a precipitation of fines needles of niobium reduced the solid solution of niobium concentration in the metal and ultimately in the oxide, which strongly reduces the oxidation rate of the alloy. 2) Regarding the effect of irradiation of the oxide layer on the oxidation rate: defects generated by the nuclear cascades in the oxide increase the oxidation rate of the two materials. For M5, germination of niobium enriched zones in irradiated oxide also causes a decrease of the niobium concentration in solid solution

  16. TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop: FY-2012 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Lonnie G. Olson; Richard D. Tillotson; Rocklan G. McDowell; Jack D. Law

    2012-09-01

    The INL radiolysis test loop has been used to evaluate the affect of radiolytic degradation upon the efficacy of the strip section of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  17. Summary of TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Lonnie G. Olson; Rocklan G. McDowell; Gracy Elias; Jack D. Law

    2012-03-01

    The INL radiolysis and hydrolysis test loop has been used to evaluate the effects of hydrolytic and radiolytic degradation upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. Repeated irradiation and subsequent re-conditioning cycles did result in a significant decrease in the concentration of the TBP and CMPO extractants in the TRUEX solvent and a corresponding decrease in americium and europium extraction distributions. However, the build-up of solvent degradation products upon {gamma}-irradiation, had little impact upon the efficiency of the stripping section of the TRUEX flowsheet. Operation of the TRUEX flowsheet would require careful monitoring to ensure extraction distributions are maintained at acceptable levels.

  18. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom

    International Nuclear Information System (INIS)

    Garcia-Garduno, Olivia A.; Larraga-Gutierrez, Jose M.; Rodriguez-Villafuerte, Mercedes; Martinez-Davalos, Arnulfo; Celis, Miguel A.

    2010-01-01

    This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis (registered) , BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.

  19. Comparison of the secondary electrons produced by proton and electron beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar [Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Hafez Avenue, Tehran (Iran, Islamic Republic of)

    2016-05-15

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  20. Effect of Gamma and Electron Beam Irradiation on Textile Waste Water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, T.M.

    2011-01-01

    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water was done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy, was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation. (author)

  1. Water calorimetry and ionization chamber dosimetry in an 85-MeV clinical proton beam.

    Science.gov (United States)

    Palmans, H; Seuntjens, J; Verhaegen, F; Denis, J M; Vynckier, S; Thierens, H

    1996-05-01

    In recent years, the increased use of proton beams for clinical purposes has enhanced the demand for accurate absolute dosimetry for protons. As calorimetry is the most direct way to establish the absorbed dose and because water has recently been accepted as standard material for this type of beam, the importance of water calorimetry is obvious. In this work we report water calorimeter operation in an 85-MeV proton beam and a comparison of the absorbed dose to water measured by ionometry with the dose resulting from water calorimetric measurements. To ensure a proper understanding of the heat defect for defined impurities in water for this type of radiation, a relative response study was first done in comparison with theoretical calculations of the heat defect. The results showed that pure hypoxic water and hydrogen-saturated water yielded the same response with practically zero heat defect, in agreement with the model calculations. The absorbed dose inferred from these measurements was then compared with the dose derived from ionometry by applying the European Charged Heavy Particle Dosimetry (ECHED) protocol. Restricting the comparison to chambers recommended in the protocol, the calorimeter dose was found to be 2.6% +/- 0.9% lower than the average ionometry dose. In order to estimate the significance of chamber-dependent effects in this deviation, measurements were performed using a set of ten ionization chambers of five different types. The maximum internal deviation in the ionometry results amounted to 1.1%. We detected no systematic chamber volume dependence, but observed a small but systematic effect of the chamber wall thickness. The observed deviation between calorimetry and ionometry can be attributed to a combination of the value of (Wair/e)p for protons, adopted in the ECHED protocol, the mass stopping power ratios of water to air for protons, and possibly small ionization chamber wall effects.

  2. Pulse radiolysis with (sub) nanosecond time resolution using a 3 MV electron accelerator

    International Nuclear Information System (INIS)

    Luthjens, L.H.

    1986-01-01

    In this thesis the development of equipment for pulse radiolysis is described and the application of the technique to time-resolved measurements of the fluorescence emission of excited states formed after irradiation of some alkanes is dealt with. A review is given of the development of the pulsed 3MV Van de Graaf electron accelerator for the generation of subnanosecond electron beam pulses and of the development of the equipment for optical detection as accomplished by the author. The initial stage of a further development for shorter pulses and higher time resolution is briefly discussed. A collection of papers on the development of apparatus and a collection of papers dealing with the results obtained from measurements of the fluorescence of excited states, formed by the recombination of electrons and ions in irradiated alkanes such as cyclohexane and the decalines, are included. (Auth.)

  3. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between 'conventional' disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (orig.) [de

  4. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between conventional disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (author)

  5. Pulse radiolysis study on aqueous solution of nicotine

    International Nuclear Information System (INIS)

    Wang Shilong; Mei Wang; Ni Yaming; Yao Side; Wang Wenfeng

    2004-01-01

    Nicotine has been studied for the first time by pulse radiolysis techniques. It has been found that hydrated electrons, hydrogen radicals and hydroxyl radicals can react with nicotine to produce anion radicals and neutral radicals, respectively, and the related rate constants have been determined. (authors)

  6. Pulse radiolysis of pyridine and methylpyridines in aqueous solutions

    DEFF Research Database (Denmark)

    Solar, S.; Getoff, N.; Sehested, K.

    1993-01-01

    The radicals formed from pyridine, 3-methylpyridine, 3,5-dimethylpyridine, 2,6-dimethylpyridine and 2,4,6-trimethylpyridine by attack of H, e(aq)-, OH and O.- in aqueous solutions were investigated by pulse radiolysis in the pH-range 1-13.8. The UV-vis. absorption spectra as well as the formation...

  7. Gamma radiolysis of aerated aqueous solution of cytosine. Pt. 3

    International Nuclear Information System (INIS)

    Polverelli, M.; Teoule, R.

    1976-01-01

    In gamma-irradiation of cytosine in aerated aqueous solution, two new radiolysis products were isolated and identified: 1-carbamoyl-5-hydroxyhydantoin and N-formyl-biuret. This formation involves ring cleavage between C4 and C5 and belongs to the nondeamination pathway. (orig.) [de

  8. The effect of temperature on radiolysis of iodide ion diluted aqueous solutions

    International Nuclear Information System (INIS)

    Gorbovitskaya, T.; Tiliks, J.

    1996-01-01

    In order to investigate the radiolysis of iodine containing aqueous solutions a flow type facility - Iodine Thermoradiation Facility (ITF) has been designed. It has a possibility to irradiate aqueous solutions in the steel vessel with 60 Co γ-rays and continuously (on line) to analyze the products of radiolysis both in liquid and in gaseous phases. By means of ITF the formation of I ox (I 2 + I 3 - + HOI), IO 3 - , H 2 O 2 was studied in 10 -5 - 10 -3 mol/dm 3 CsI aqueous solutions by their radiolysis at dose rate 4.5 kGv/h for six hours in region of temperatures from 313 to 404 K. Under similar conditions, some experiments in glass ampoules were also performed. The steady-state concentrations of I ox and IO 3 - decreased with increasing temperature as linear function of inverted temperature. The effect decreased with decreasing concentration of iodide ion. As the result, at high temperatures (T≥380 K) the steady-state concentration of I ox does not depend essentially on the iodide ion initial concentration. Molecular iodine (I 2 ) released from the solution was the main radiolysis product in gaseous phase. Its steady-state concentration increased with increasing temperature because of iodine solubility in the water and decreased at the same time because the radiolytic iodine concentrations decreased. Therefore the most volatility of irradiated 10 -3 and 10 -4 M CsI solutions was observed at the temperature about 350 K. The volatility of 10 -5 M solutions gradually decreased with increasing temperature. The experimental data were explained on the base of the hypothesis that the reaction between I 2 and radiolytic H 2 O 2 was the limit one determining the temperature dependence of I ox and IO 3 - steady-state concentrations. Its activation energy was estimated to be 27,5 kcal.mol -1 . The temperature dependence for reaction (IO - + H 2 O 2 ) was also estimated. (author) 8 figs., 1 tab., 17 refs

  9. Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) - concept, construction and first tests

    Science.gov (United States)

    Kadlubowski, S.; Sawicki, P.; Sowinski, S.; Rokita, B.; Bures, K. D.; Rosiak, J. M.; Ulanski, P.

    2018-01-01

    Time-resolved pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is an effective method for rapidly generating free radicals and other transient species in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. When used for polymer solutions, pulse radiolysis can be coupled with light-scattering detection, creating a powerful tool for kinetic and mechanistic analysis of processes like degradation or cross-linking of macromolecules. Changes in the light scattering intensity (LSI) of polymer solutions are indicative of alterations in the molecular weight and/or in the radius of gyration, i.e., the dimensions and shape of the macromolecules. In addition to other detection methods, LSI technique provides a convenient tool to study radiation-induced alterations in macromolecules as a function of time after the pulse. Pulse radiolysis systems employing this detection mode have been so far constructed to follow light scattered at a single angle (typically the right angle) to the incident light beam. Here we present an advanced pulse radiolysis & multi-angle light-scattering-intensity system (PR-MALLS) that has been built at IARC and is currently in the phase of optimization and testing. Idea of its design and operation is described and preliminary results for radiation-induced degradation of pullulan as well as polymerization and crosslinking of poly(ethylene glycol) diacrylate are presented. Implementation of the proposed system provides a novel research tool, which is expected to contribute to the expansion of knowledge on free-radical reactions in monomer- and polymer solutions, by delivering precise kinetic data on changes in molecular weight and size, and thus allowing to formulate or verify reaction mechanisms. The proposed method is

  10. Pre-feasibility study of electron beam irradiation of fresh water

    International Nuclear Information System (INIS)

    Finshi V, Silvia.

    1997-01-01

    A technical/economic evaluation of electron beam irradiation for the decontamination of liquids in the country is presented. Irradiation of fresh water is evaluated for the production of drinking water as a replacement for chlorine disinfection, which can lead to the formation of tri halo methanes. that are carcinogenic compounds. The technical literature states that the percentage of microorganisms removed by electro beam irradiation is high and similar to that found with chlorine disinfection. From an economic point of view, irradiation technology is not presently competitive as an alternative to conventional chlorination in terms of processing costs (US$0.23/m 3 ) instead of US$0.013/m 3 for conventional chlorination. Nevertheless, irradiation costs decreased sharply when unit costs for the accelerator machine are decreased with a resulting drop in capital costs

  11. Time-resolved radiation beam profiles in water obtained by ultrasonic tomography

    International Nuclear Information System (INIS)

    Malyarenko, E.V.; Heyman, J.S.; Heather Chen-Mayer, H.; Tosh, R.E.

    2010-01-01

    This paper presents a practical ultrasonic system for near real-time imaging of spatial temperature distributions in water caused by absorption of radiation. Initial testing with radiation from a highly attenuated infrared lamp demonstrates that the system is able to map sub-milli-kelvin temperature changes, thus making it suitable for characterizing dose profiles of therapy-level ionizing radiation beams. The system uses a fan-beam tomographic reconstruction algorithm to invert time-of-flight data derived from ultrasonic pulses produced and detected by a circular array of transducers immersed in water. Temperature dependence of the speed of sound in water permits the conversion of these measured two-dimensional velocity distributions into temperature distributions that indicate the absorbed radiation dose. The laboratory prototype, based on a 128-element transducer array, is used to acquire temperature maps of a 230 mm * 230 mm area every 4 s with sub-milli-kelvin resolution in temperature and about 5 mm resolution in space. Earlier measurements with a single-channel version of this prototype suggest refinements in signal-conditioning electronics and signal-processing algorithms that would allow the present instrument to resolve temperature changes as low as a few micro-kelvin. Possible applications include real-time intensity profiling of radiation beams and three-dimensional characterization of the absorbed dose. (authors)

  12. Radiation-induced reactions of Cl-, CO32-, and Br- in seawater, - Model calculation of gamma radiolysis of seawater

    International Nuclear Information System (INIS)

    Hata, Kuniki; Hanawa, Satoshi; Kasahara, Shigeki; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    Gamma-radiolysis of seawater has been simulated to estimate the concentrations of radiolysis products. Although gas products such as H 2 , O 2 and H 2 O 2 in irradiated pure water quickly attain the steady state with very low concentrations, the products in seawater monotonically increase with dose. It was found that H 2 is produced almost linearly with dose, and corresponding G-value was 4.4 x 10 -8 mol J -1 . As similar result was obtained from the calculation of 8 x 10 -4 mol dm -3 NaBr solution, the origin of the linear increase in seawater was attributable to be the reactions of Br - . According to the sensitivity analysis, three reactions, 1: Br - + ·OH → BrOH· - , 2: BrOH· - → Br - + ·OH, and 3: BrOH· - → Br· + OH - , determined the concentrations of the products. The presence of Cl - and HCO 3 - in seawater hardly affected the concentrations of the radiolysis products. Oxyanions derived from Cl - and Br - were not obtained at observable concentration. (authors)

  13. Inactivation of catalase by free radicals derived from oxygen via gamma radiolysis

    International Nuclear Information System (INIS)

    Malhaire, J.P.; Gardes-Albert, M.; Ferradini, C.; Sabourault, D.; Ribiere, C.

    1991-01-01

    The inactivation of catalase (10 -5 mol/l) by OH· or OH·/O 2 - · free radicals, at pH 7.4, has been investigated using γ radiolysis with doses up to 9000 Gy. Maxima initial G-values of catalase inactivation have been determined. These values are inferior to those of the free radicals OH· and O 2 - · produced by water radiolysis. Nevertheless, the presence of O 2 /O 2 - · enhances the inactivation due to OH· radicals. The general shape of the inactivation curves as a function of the radiation dose is biphasic: an initial rapid phase (from 0 to ∼ 500 Gy) followed by a slow phase (from ∼ 500 to 9000 Gy). The addition of H 2 O 2 at the beginning of irradiation decreases the inactivation yield by OH· radicals. This phenomenon could be due to the formation of compound-I (catalase-H 2 O 2 ) which would be less sensitive towards OH· radicals than catalase. In the presence of 0.1 mol/l ethanol, catalase (5 x 10 -6 mol/l) is not inactived by O 2 - · and RO 2 · (from ethanol) radicals for an irradiation dose of 2000 Gy, implying a complete protecting effect by ethanol [fr

  14. Redox reactions of tocopherol monoglucoside in aqueous solutions. A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, S.; Mukherjee, T.; Nair, C.K.K. [Bhabha Atomic Research Centre, Mumbai (India); Kagiya, Tsutomu V. [Health Research Foundation, Kyoto (Japan)

    2002-03-01

    The reactions between tocopherol monoglucoside (TMG), a water-soluble vitamin-E derivative, with Br{sub 2}{sup {center_dot}}{sup -}, N{sub 3}{sup {center_dot}}, (SCN){sub 2}{sup {center_dot}}{sup -}, NO{sub 2}{sup {center_dot}}, OH{sup {center_dot}} and various halogenated peroxyl radicals were examined using a pulse radiolysis technique. The results demonstrate that TMG forms a stable phenoxyl radical at pH>6.8. The thus-formed phenoxyl radical shows pH-dependent decay kinetics and is disproportionated by 2nd order kinetics at pH2.3. It was observed that the TMG reactivity towards a halogenated peroxyl radical increases with the number of halogen atoms at the carbon atom having a peroxyl group. The reaction between the TMG phenoxyl radical and ascorbic acid was also examined using a pulse radiolysis technique. The results indicate that the TMG phenoxyl radical is repaired by ascorbate. Kinetic studies indicate that TMG may act as an antioxidant to repair free-radical damage to some biologically importnat compounds. The one-electron reduction potential for TMG was found to be 0.522 V{+-}0.06 vs. NHE. (author)

  15. Effects of thermal conduction and convection on temperature profile in a water calorimeter for proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Gargioni, E.; Manfredotti, C. [Torino Univ. (Italy). Dipt. di Fisica; Laitano, R.F.; Guerra, A.S. [Ist. Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA, Roma (Italy)

    1997-09-01

    In water calorimetry, in addition to the temperature increase due to beam energy deposition in water, unwanted thermal effects occur during and after calorimeter irradiation. This should be accounted for by applying proper corrections to the experimental results. In order to determine such corrections heat flow calculations were performed using the `finite element` method. This method applies even to complex 3D geometries with not necessarily symmetric conditions. Some preliminary results of these calculations are presented together with a description of the analytical method for the evaluation of the correction factors that should be applied to the experimental results to account for the above thermal effects. (orig.)

  16. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Borrely, S.I.; Silva, B.L.

    1995-01-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV -25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m 3 /h was built. (author)

  17. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    Science.gov (United States)

    Sampa, M. H. O.; Borrely, S. I.; Silva, B. L.; Vieira, J. M.; Rela, P. R.; Calvo, W. A. P.; Nieto, R. C.; Duarte, C. L.; Perez, H. E. B.; Somessari, E. S.; Lugão, A. B.

    1995-09-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV-25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m3/h was built.

  18. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Borrely, S.I.; Silva, B.L.

    1995-01-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV - 25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m 3 /h was built. (author)

  19. Estimation of the optical errors on the luminescence imaging of water for proton beam

    Science.gov (United States)

    Yabe, Takuya; Komori, Masataka; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi

    2018-04-01

    Although luminescence imaging of water during proton-beam irradiation can be applied to range estimation, the height of the Bragg peak of the luminescence image was smaller than that measured with an ionization chamber. We hypothesized that the reasons of the difference were attributed to the optical phenomena; parallax errors of the optical system and the reflection of the luminescence from the water phantom. We estimated the errors cause by these optical phenomena affecting the luminescence image of water. To estimate the parallax error on the luminescence images, we measured the luminescence images during proton-beam irradiation using a cooled charge-coupled camera by changing the heights of the optical axis of the camera from those of the Bragg peak. When the heights of the optical axis matched to the depths of the Bragg peak, the Bragg peak heights in the depth profiles were the highest. The reflection of the luminescence of water with a black wall phantom was slightly smaller than that with a transparent phantom and changed the shapes of the depth profiles. We conclude that the parallax error significantly affects the heights of the Bragg peak and the reflection of the phantom affects the shapes of depth profiles of the luminescence images of water.

  20. Ozone/electron beam process for water treatment: design, limitations and economic considerations

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.

    1996-01-01

    Electron beam irradiation of water is the easiest way to generate OH free radicals but the efficiency of the irradiation process as advanced oxidation process (AOP) is deteriorated by reducing species formed simultaneously with the OH free radicals. Addition of ozone to the water before or during irradiation improves the efficiency essentially by converting the reducing species into OH free radicals and turning by that the irradiation process into a full AOP. The main reaction pathways of the primary species formed by the action of ionizing radiation on water in a natural groundwater with and without the presence of ozone are reviewed. Based on these data an explanation of both the dose rate effect and the ozone effect is attempted. New data is presented which illustrates the effect of alkalinity on the way in which ozone is introduced into the water, and the impact of both water matrix and chemical structure of the pollutants to the efficacy of the ozone/electron beam process. (author)

  1. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingguo, E-mail: qwang@qust.edu.cn [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042 (China); Zhou, Xue; Zeng, Jinxia; Wang, Jizeng [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the −C=O group at 1701 cm{sup −1}, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  2. The generation of absorbed dose profiles of proton beam in water using Geant4 code

    International Nuclear Information System (INIS)

    Christovao, Marilia T.; Campos, Tarcisio Passos R. de

    2007-01-01

    The present article approaches simulations on the proton beam radiation therapy, using an application based on the code GEANT4, with Open GL as a visualization drive and JAS3 (Java Analysis Studio) analysis data tools systems, implementing the AIDA interfaces. The proton radiotherapy is adapted to treat cancer or other benign tumors that are close to sensitive structures, since it allows precise irradiation of the target with high doses, while the health tissues adjacent to vital organs and tissues are preserved, due to physical property of dose profile. GEANT4 is a toolkit for simulating the transport of particles through matter, in complex geometries. Taking advantage of the object-oriented project features, the user can adapt or extend the tool in all domain, due to the flexibility of the code, providing a subroutine's group for materials definition, geometries and particles properties in agreement with the user's needs to generate the Monte Carlo simulation. In this paper, the parameters of beam line used in the simulation possess adjustment elements, such as: the range shifter, composition and dimension; the beam line, energy, intensity, length, according with physic processes applied. The simulation result is the depth dose profiles on water, dependent on the various incident beam energy. Starting from those profiles, one can define appropriate conditions for proton radiotherapy in ocular region. (author)

  3. Extreme-ultraviolet and electron beam lithography processing using water developable resist material

    Science.gov (United States)

    Takei, Satoshi

    2017-08-01

    In order to achieve the use of pure water in the developable process of extreme-ultraviolet and electron beam lithography, instead of conventionally used tetramethylammonium hydroxide and organic solvents, a water developable resist material was designed and developed. The water-developable resist material was derived from woody biomass with beta-linked disaccharide unit for environmental affair, safety, easiness of handling, and health of the working people. 80 nm dense line patterning images with exposure dose of 22 μC/cm2 and CF4 etching selectivity of 1.8 with hardmask layer were provided by specific process conditions. The approach of our water-developable resist material will be one of the most promising technologies ready to be investigated into production of medical device applications.

  4. Measurements of kQ beam quality correction factors for the NE2611A chamber in high-energy photon beams using the NMi water calorimeter

    International Nuclear Information System (INIS)

    Pieksma, M.; Prez, L.A. de; Dijk, E. van; Aalbers, A.H.L.

    2002-01-01

    Full text: Recently published protocols for clinical reference dosimetry in external high-energy photon and electron beam radiotherapy by the AAPM and the IAEA are no longer based on traditional air-kerma standards, but have instead adopted absorbed dose to water as the key quantity. The most direct way to determine the absorbed dose to water is by employing a sealed-water type calorimeter. A number of national standards laboratories, among which the NMi, are presently conducting effort towards developing water calorimeters as the new standard for absorbed dose to water. The design of the NMi water calorimeter has several unique features. It is portable and compact, has radiation windows for both vertical and horizontal beams, and has a built-in waterproof ionization chamber, which can be used to determine experimental correction factors for the calorimeter lid, walls, etc. Thermistor probes operable at 4 deg. C are mounted in a sealed high-purity water cell. A high-quality water purifying system has been installed and integrated into a filling station for the water cell, including a bubbling stage to saturate the water with different gasses to control the well-known heat defect. A forthcoming revision of the NCS (Netherlands Commission on Radiation Dosimetry) protocols for dosimetry of high-energy photon and electron beams has direct relevance for the NMi water calorimeter. In accordance with the new AAPM and IAEA protocols, these revised protocols will also no longer be based on air kerma, but on absorbed dose to water instead. The NCS subcommittee 'Uniformity Dosimetry Protocols' is currently drafting new Codes of Practice for determining the absorbed dose to water for high-energy photon and electron beams used in radiotherapy institutes in the Netherlands and Belgium. Part of the new protocols will be a table of experimentally determined k Q beam quality correction factors for photon beam qualities and dosimetric equipment (graphite ionization chambers and

  5. The primary processes by impact of ionizing radiations with water

    International Nuclear Information System (INIS)

    Znamirovschi, V.; Mastan, I.; Cozar, O.

    1976-01-01

    The problem concerning primary processes in radiolysis of water is discussed. The results on the excitation and ionization of water molecule, dissociation of the parent-molecular ion of water and dissociation of excited molecule of water are presented. (author)

  6. Relations between oxygen and hydrogen generated by radiolysis in the systems of a CANDU 600

    International Nuclear Information System (INIS)

    Romano, Christian; Chocron, Mauricio; Urrutia, Guillermo

    1999-01-01

    The water that constitutes the coolant of the primary heat transport system, the moderator and the liquid control zones, decomposed under radiation producing as stable products oxygen, hydrogen and hydrogen peroxide throughout a complex mechanisms of radiolysis that involves ions and free radicals. These compound formed in different proportions alters the chemical control established for each system which purpose is to minimize the corrosion of the structural materials. In the present paper have been presented results of the modelling of the mentioned processes and it has been found that in the absence of a vapor phase, a relatively low concentration of hydrogen added to the water would be sufficient to control the formation of oxygen and hydrogen peroxide. The last species however, would remain in relatively high values inside a coolant fuel channel in the reactor core. (author)

  7. Radiolysis aspects of the aqueous self-cooled blanket concept and the problem of tritium extraction

    International Nuclear Information System (INIS)

    Bruggeman, A.; Snykers, M.; DeRegge, P.; Embrechts, M.J.

    1988-01-01

    In the Aqueous Self-Cooled Blanket (ASCB) concept, an aqueous 6 Li solution in a metallic structure is used as a fusion reactor shielding-breeding blanket. Radiolysis effects could be very important for the design and the use of an ASCB. Although many aspects of the radiation chemistry of water and dilute aqueous solutions are now reasonably well understood, it is not possible to predict the radiochemical behaviour of the concentrated candidate ASCB solutions quantitatively. However, by means of a worst case calculation for a possible ASCB for the Next European Torus (NET) it is shown that even with an important rate of water decomposition the ASCB concept is still workable. Gas bubbles and explosive mixtures can be avoided by increasing the pressure in the neutron irradiated zone and by extracting and/or recombining the radiolytically produced hydrogen and oxygen. This could require an additional inert gas loop, which could also be used as part of the tritium extraction installation

  8. Water accumulation in the vicinity of a soybean root imbedded in soil revealed by neutron beam

    International Nuclear Information System (INIS)

    Okuni, Yoko; Furukawa, Jun; Nakanishi, Tomoko; Matsubayashi, Masahito

    2002-01-01

    We present nondestructive water movement near the root of a soybean plant imbedded in soil by neutron beam analysis. A soybean plant was grown in an aluminum container (35mm φ x 200mm) and was periodically irradiated with thermal neutrons. While irradiation the sample was rotated to get 180 projection images, through a cooled CCD camera, to construct CT images. Then a spatial image was prepared for the analysis by piling up CT images. The whiteness in the image was calibrated well to the water amount. Water holding capacity near the root was shifted downward with the root development, suggesting the movement of the active site in the root. Though there was a minimum in the water gradient near the root, about 1.0mm far from the root surface. Then from this point, the water amount was sharply increased toward the surface. The root surface was highly wet, more than 0.5mg/mm 3 of water. When Al (10 mM) was applied to soil, root development as well as water holding activity of a root was decreased. This is the first study to perform the direct measurement of water within 1.0mm from the root surface. (author)

  9. A water-cooled x-ray monochromator for using off-axis undulator beam

    International Nuclear Information System (INIS)

    Khounsary, A.; Maser, J.

    2000-01-01

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided

  10. Radiolysis of actinides and technetium in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H., Westinghouse Hanford

    1996-07-10

    The {gamma}-radiolysis of aerated alkaline aqueous solutions of Np(V), Np(VI), Pu(VI), Tc(IV), Tc(V), and TC(VII) was studied in the absence of additives and in the presence of CO{sub 3}{sup 2-}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, EDTA, formate, and other organic compounds. The radiolytic reduction of Np(V), Np(VI), Pu(VI), and TC(VII) under different experimental conditions was examined in detail. The addition of EDTA, formate, and alcohols was found to considerably increase the radiation-chemical reduction yields. The formation of the Np(V) peroxo complex was observed in the {gamma}-radiolysis of alkaline aqueous solutions of Np (VI) in the presence of nitrate.

  11. On the nuclear halo of a proton pencil beam stopping in water

    International Nuclear Information System (INIS)

    Gottschalk, Bernard; Cascio, Ethan W; Daartz, Juliane; Wagner, Miles S

    2015-01-01

    The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541–61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination.We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo.Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions.We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies.The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose energy

  12. On the nuclear halo of a proton pencil beam stopping in water

    Science.gov (United States)

    Gottschalk, Bernard; Cascio, Ethan W.; Daartz, Juliane; Wagner, Miles S.

    2015-07-01

    The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541-61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination. We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo. Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions. We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies. The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose

  13. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  14. Radiolysis: an efficient method of studying radicalar antioxidant mechanisms

    International Nuclear Information System (INIS)

    Gardes-Albert, M.; Jore, D.

    1998-01-01

    The use of the radiolysis method for studying radicalar antioxidant mechanisms offers the different following possibilities: 1- quantitative evaluation of antioxidant activity of molecules soluble in aqueous or non aqueous media (oxidation yields, molecular mechanisms, rate constants), 2- evaluation of the yield of prevention towards polyunsaturated fatty acids peroxidation, 3- evaluation of antioxidant activity towards biological systems such as liposomes or low density lipoproteins (LDL), 4- simple comparison in different model systems of drags effect versus natural antioxidants. (authors)

  15. Study on intermediate species of polystyrene by using pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K.; Saeki, A.; Kozawa, T.; Miyako, Miki; Tagawa, S. [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research

    2000-03-01

    The reaction mechanism of intermediates of polystyrene solutions in cyclohexane and chlorinated hydrocarbon solvents has been studied by using pulse radiolysis. Absorption peaks observed around 1250 {approx} 1350 nm in chlorinated hydrocarbon and cyclohexane solutions of polystyrene, were identified with the dimer cation radicals of polystyrene. The absorption intensities of polystyrene dimer cation radicals were enhanced with increasing of polarities of solvents. Because free ion yields of polystyrene cation radicals were increased with increasing of polarities. (author)

  16. Pulse-Radiolysis of Aqueous KBrO4 Solutions

    DEFF Research Database (Denmark)

    Olsen, K. J.; Sehested, Knud; Appelman, L.H.

    1973-01-01

    Pulse-radiolysis of aqueous KBrO4 solutions show that BrO−4 reacts with e−aq by the reaction BrO−4 + e−aq → BrO−3 + O−. keaq + BrO−4 = (7.0 ± 0.7) × 109 M−1 sec−1. The reactions between BrO−4 and H, OH and O− are slow. The rate constants for these reactions are less than 107 M−1 sec−1....

  17. Pulse Radiolysis of Methyl Viologen in Aqueous Solutions

    DEFF Research Database (Denmark)

    Solar, S.; Solar, W.; Getoff, N.

    1982-01-01

    Pulse radiolysis of air-free aqueous methyl viologen (MV2+) solutions was carried out at various pH. The attack of e–aq on MV2+, with k(e–aq+ MV2+)= 7.5 × 1010 dm3 mol–1 s–1, leads to the formation of the long-lived radical cation (MV˙+), which possesses two absorption maxima at 392.5 nm (ε392.5...

  18. γ-Irradiation-induced radiolysis of inulin in aqueous solutions

    International Nuclear Information System (INIS)

    Tsyba, I.A.; Revina, A.A.; Shostenko, A.G.

    1997-01-01

    Radiochemical transformations of inulin in aqueous solutions, in air, in the presence of inert gases, helium, nitrogen and in nitrous oxide exposed to various doses of 60 Co γ-irradiation were investigated. It was shown that interactions in inulin with OH radicals are principally responsible for radiolytic decomposition of inulin. The data on radiolysis of more simple model systems were used to make available decomposition spectra of γ-irradiated aerated aqueous solution of inulin. 9 refs., 6 figs

  19. Pulse radiolysis studies on radiation resistance of epoxy resin

    International Nuclear Information System (INIS)

    Tagawa, S.; Washio, M.; Hayashi, N.; Tabata, Y.

    1985-01-01

    The mechanisms of radiation damage in epoxy resin, especially the primary processes, have been studied by a time-resolved spectroscopic technique (pulse radiolysis). The difference between the radiation resistance of aromatic and aliphatic amine curing epoxy resin is explained by internal radiation protection effects due to energy and charge transfer on the basis of the time-resolved spectroscopic data of reactive intermediate (excited states and ions) in an irradiated epoxy resin. (orig.)

  20. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    Science.gov (United States)

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  1. Development of high-voltage pulse-slicer unit with variable pulse duration for pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, J.; Sharma, M. L.; Navathe, C. P. [Laser Electronic Support Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Toley, M. A.; Shinde, S. J.; Nadkarni, S. A.; Sarkar, S. K. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2012-02-15

    A high-voltage pulse-slicer unit with variable pulse duration has been developed and integrated with a 7 MeV linear electron accelerator (LINAC) for pulse radiolysis investigation. The pulse-slicer unit provides switching voltage from 1 kV to 10 kV with rise time better than 5 ns. Two MOSFET based 10 kV switches were configured in differential mode to get variable duration pulses. The high-voltage pulse has been applied to the deflecting plates of the LINAC for slicing of electron beam of 2 {mu}s duration. The duration of the electron beam has been varied from 30 ns to 2 {mu}s with the optimized pulse amplitude of 7 kV to get corresponding radiation doses from 6 Gy to 167 Gy.

  2. Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter

    Science.gov (United States)

    He, Shijun; Wang, Jianlong; Ye, Longfei; Zhang, Youxue; Yu, Jiang

    2014-12-01

    The degradation of DCF was investigated in aqueous solution by using electron beam (EB) technology. When the initial concentration was between 10 and 40 mg/L, almost 100% of the DCF was degraded at a dose of 0.5 kGy. However, only about 6.5% of DCF was mineralized even at 2 kGy according to total organic carbon (TOC) measurements. A combined process of EB and biological aerated filter (BAF) was therefore developed to enhance the treatment of DCF contaminated surface water. The effluent quality of combined process was substantially improved by EB pretreatment due to the degradation of DCF and related intermediates. Both irradiation and biological treatment reduced the toxicity of the treated water. The experimental results showed that EB is effective for removing DCF from artificial aqueous solution and real surface water.

  3. Pumping experiment of water on B and LaB6 films with electron beam evaporator

    International Nuclear Information System (INIS)

    Mori, Takahiro; Hanaoka, Yutaka; Akaishi, Kenya; Kubota, Yusuke; Motojima, Osamu; Mushiaki, Motoi; Funato, Yasuyuki.

    1992-10-01

    Pumping characteristics of water vapor on boron and lanthanum hexaboride films formed with an electron beam evaporator have been investigated in high vacuum of a pressure region between 10 -4 and 10 -3 Pa. Measured initial maximum pumping speeds of water for fresh B and LaB 6 films on substrates with a deposition amount from 2.3 x 10 21 to 6.7 x 10 21 molecules·m -2 are 3.2 ∼ 4.9 m 3 ·s -1 ·m -2 , and maximum saturation amounts of adsorbed water on these films are 2.9 x 10 20 ∼ 1.3 x 10 21 H 2 O molecules·m -2 . (author)

  4. Bonding capacity of the GFRP-S on strengthened RC beams after sea water immersion

    Science.gov (United States)

    Sultan, Mufti Amir; Djamaluddin, Rudy

    2017-11-01

    Construction of concrete structures that located in extreme environments are such as coastal areas will result in decreased strength or even the damage of the structures. As well know, chloride contained in sea water is responsible for strength reduction or structure fail were hence maintenance and repairs on concrete structure urgently needed. One popular method of structural improvements which under investigation is to use the material Glass Fibre Reinforced Polymer which has one of the advantages such as corrosion resistance. This research will be conducted experimental studies to investigate the bonding capacity behavior of reinforced concrete beams with reinforcement GFRP-S immersed in sea water using immersion time of one month, three months, six months and twelve months. Test specimen consists of 12 pieces of reinforced concrete beams with dimensions (150x200x3000) mm that had been reinforced with GFRP-S in the area of bending, the beam without immersion (B0), immersion one month (B1), three months (B3), six months (B6) and twelve months (B12). Test specimen were cured for 28 days before the application of the GFRP sheet. Test specimen B1, B3, B6 and B12 that have been immersed in sea water pool with a immersion time each 1, 3, 6 and 12 months. The test specimen without immersion test by providing a static load until it reaches the failure, to record data during the test strain gauge mounted on the surface of the specimen and the GFRP to collect the strain value. From the research it obvious that there is a decrease bonding capacity on specimens immersed for one month, three months, six months and twelve months against the test object without immersion of 8.85%; 8.89%; 9.33% and 11.04%.

  5. Primary processes in radiation chemistry. LET (Linear Energy Transfer) effect in water radiolysis; Processus primaires en chimie sous rayonnement. Influence du transfert d'energie lineique sur la radiolyse de l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Trupin-Wasselin, V

    2000-07-11

    The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e{sup -}{sub aq}, H{sup .}, OH{sup .}, H{sub 2}O{sub 2}, H{sub 2}). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H{sub 2}O{sub 2} yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H{sub 2}O{sub 2} yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H{sub 2}O{sub 2} formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O{sub 2}{sup .-} yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)

  6. Bowtie filter and water calibration in the improvement of cone beam CT image quality

    International Nuclear Information System (INIS)

    Li Minghui; Dai Jianrong; Zhang Ke

    2010-01-01

    Objective: To evaluate the improvement of cone beam CT (CBCT) image quality by using bewtie filter (F 1 ) and water calibration. Methods: First the multi-level gain calibration of the detector panel with the method of Cal 2 calibration was performed, and the CT images of CATPHAN503 with F 0 and bowtie filter were collected, respectively. Then the detector panel using water calibration kit was calibrated, and images were acquired again. Finally, the change of image quality after using F 1 and (or) water calibration method was observed. The observed indexes included low contrast visibility, spatial uniformity, ring artifact, spatial resolution and geometric accuracy. Results: Comparing with the traditional combination of F 0 filter and Cal 2 calibration, the combination of bowtie filter F 1 and water calibration improves low contrast visibility by 13.71%, and spatial uniformity by 54. 42%. Water calibration removes ring artifacts effectively. However, none of them improves spatial resolution and geometric accuracy. Conclusions: The combination of F 1 and water calibration improves CBCT image quality effectively. This improvement is aid to the registration of CBCT images and localization images. (authors)

  7. Influence of metallic silver and oxygen on the radiolysis of cesium iodide solutions

    International Nuclear Information System (INIS)

    Furrer, M.; Gloor, T.

    1988-01-01

    Silver iodide formation by radiolysis has been studied in the system water/cesium iodide/silver metal. In a number of scenarios for hypothetical core melt accidents, silver iodide has been considered as an effective scavenger for fission product iodine. The influence of dissolved oxygen and the consequences of a variable silver/cesium iodide ratio are shown in detail. Partial kinetic reaction constants for the different parameters are presented and it is shown that they can be simply added together to form an overall reaction rate constant. In a radiation field just short of 5 kGy/h, the influences of oxygen (air) and of the radiation are of the same order of magnitude. A linear relation is shown between specific metal surface and reaction rates. Data shown are compatible with earlier measurements made at Oak Ridge National Laboratory, US

  8. Production of oxidants from α-radiolysis in the South Devon deposit

    International Nuclear Information System (INIS)

    Christensen, H.

    2001-08-01

    The maximum production of H 2 O 2 caused by α-radiolysis of water in the close vicinity of uranium-containing nodules found at the South Devon site has been estimated. The integrated α-doses from decay of U-238 and U-235 from the time of mineralization until today have been calculated. Calculations have been carried out for three different times: 140, 170, and 240 Myear. The maximum production from one nodule (diameter 4 cm) under 240 Myear was estimated to be 0.075 mole H 2 O 2 (= 2.5 g). For a number of causes, discussed in the report, the actual production will probably be much lower

  9. CGR MeV program for water and liquid sludges treatment with high-energy electron beams. Pt. 1

    International Nuclear Information System (INIS)

    Gallien, C.L.; Icre, P.; Levaillant, C.; Montiel, A.

    1976-01-01

    Research on the application of high-energy electron beams treatment to water and liquid sludges is described. Topics discussed include limitations of conventional methods of water treatment, dosimetry, biological assays with Pleurodeles waltlii, radioactivity measurement, chemical and bacteriological analysis. (author)

  10. Simulation of energy deposit distribution in water for 10 and 25 MeV electron beams

    International Nuclear Information System (INIS)

    Borrell Carbonell, Maria de los Angeles.

    1977-01-01

    The Monte Carlo method was applied to transport simulation of electron beams from the exit window of a linear accelerator till the absorption by a water phantom. The distribution of energy deposit is calculated for ideal apparatus and experimental conditions. Calculations are made for a distance window-water surface of one meter, for 10 and 25 MeV monoenergetic incident electrons, and for different fields (15x15 cm 2 to 4x4 cm 2 ). Comparisons with experimental measurements obtained in comparable conditions with a Sagittaire accelerator (C.G.R.-MeV), show a good agreement concerning radial distribution and depth distribution around isodose 100%. However a certain disagreement appears in the end of depth penetration [fr

  11. Application of chemsimul for groundwater radiolysis

    DEFF Research Database (Denmark)

    Christensen, Hilbert; Bjergbakke, Erling

    1986-01-01

    + to and removal of Fe(OH), from the solution, and for reactions with a solid UO2-wall. The validity of the program has been confirmed by comparing calculated results with results of well-documented experiments described in the literature. In three of these experiments, pure water containing only oxygen...... a deviation of 20% was found. Even more complex systems, such as bentonite/water mixtures irradiated with γ- or β-radiaton, were simulated by computer calculations. Also in these cases the agreement between experiment and calculation was satisfactory....

  12. Dosimetric study of thermoluminescent detectors in clinical photon beams using liquid water and PMMA phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C., E-mail: lmatsushima@ipen.br [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Veneziani, Glauco R. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sakuraba, Roberto K. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil); Cruz, Jose C. da [Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil)

    2012-07-15

    The purpose of this study was the dosimetric evaluation of thermoluminescent detectors of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) produced by IPEN compared to the TL response of lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti) dosimeters and microdosimeters produced by Harshaw Chemical Company to clinical photon beams dosimetry (6 and 15 MV) using liquid water and PMMA phantoms. - Highlights: Black-Right-Pointing-Pointer Dosimetric study of thermoluminescent detectors of CaSO{sub 4}:Dy, LiF:Mg,Ti and {mu}LiF:Mg,Ti. Black-Right-Pointing-Pointer Clinical (6 and 15 MV) photon beams dosimetry using liquid water and PMMA phantom. Black-Right-Pointing-Pointer Linear behavior to the dose range (0.1 to 5 Gy). Black-Right-Pointing-Pointer TL response reproducibility better than {+-}4.34%. Black-Right-Pointing-Pointer CaSO{sub 4}:Dy represent a cheaper alternative to the TLD-100.

  13. Verification of IMRT dose distributions using a water beam imaging system

    International Nuclear Information System (INIS)

    Li, J.S.; Boyer, Arthur L.; Ma, C.-M.

    2001-01-01

    A water beam imaging system (WBIS) has been developed and used to verify dose distributions for intensity modulated radiotherapy using dynamic multileaf collimator. This system consisted of a water container, a scintillator screen, a charge-coupled device camera, and a portable personal computer. The scintillation image was captured by the camera. The pixel value in this image indicated the dose value in the scintillation screen. Images of radiation fields of known spatial distributions were used to calibrate the device. The verification was performed by comparing the image acquired from the measurement with a dose distribution from the IMRT plan. Because of light scattering in the scintillator screen, the image was blurred. A correction for this was developed by recognizing that the blur function could be fitted to a multiple Gaussian. The blur function was computed using the measured image of a 10 cmx10 cm x-ray beam and the result of the dose distribution calculated using the Monte Carlo method. Based on the blur function derived using this method, an iterative reconstruction algorithm was applied to recover the dose distribution for an IMRT plan from the measured WBIS image. The reconstructed dose distribution was compared with Monte Carlo simulation result. Reasonable agreement was obtained from the comparison. The proposed approach makes it possible to carry out a real-time comparison of the dose distribution in a transverse plane between the measurement and the reference when we do an IMRT dose verification

  14. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  15. TRAX-CHEM: A pre-chemical and chemical stage extension of the particle track structure code TRAX in water targets

    Science.gov (United States)

    Boscolo, D.; Krämer, M.; Durante, M.; Fuss, M. C.; Scifoni, E.

    2018-04-01

    The production, diffusion, and interaction of particle beam induced water-derived radicals is studied with the a pre-chemical and chemical module of the Monte Carlo particle track structure code TRAX, based on a step by step approach. After a description of the model implemented, the chemical evolution of the most important products of water radiolysis is studied for electron, proton, helium, and carbon ion radiation at different energies. The validity of the model is verified by comparing the calculated time and LET dependent yield with experimental data from literature and other simulation approaches.

  16. A pulse radiolysis study of the formation and reactions of reduced metal EDTA complexes

    International Nuclear Information System (INIS)

    Buitenhuis, R.

    1977-01-01

    The construction of a computerized pulse radiolysis system with available means appropriate for the wavelength interval between 300 and 1000 nm is described. The investigation of the radiolysis of aqueous solutions of EDTA complexes in the presence of alcohols is discussed

  17. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons; Degradacion de naftaleno y fluoreno por radiolisis empleando electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Flores de Jesus, I

    2003-07-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  18. Deuterium-hydrogen isotopic exchange in water molecules adsorbed on Teflon under atomic-molecular hydrogen beams

    International Nuclear Information System (INIS)

    Grankin, V.P.; Savinkov, N.A.; Styrov, V.V.; Tyurin, Yu.I.

    1994-01-01

    Processes of deuterium-hydrogen exchange in the course of interaction between hydrogen molecular beam and H+H 2 atomic-molecular beam with adsorbed water molecules from D 2 O, HDO, H 2 O on Teflon have been studied. Desorption of the above molecules into vacuum, as well as their desorption under conditions of molecular and atomic-molecular hydrogen beam effect on Teflon surface have been investigated experimentally. Relative probabilities of hydrogen isotopes desorption from Teflon surface have been defined, relative probabilities and cross sections of diverse reactions of isotopic exchange have been found. 2 refs.; 3 figs

  19. If Frisch is true - impacts of varying beam width, resolution, frequency combinations and beam overlap when retrieving liquid water content profiles

    Science.gov (United States)

    Küchler, N.; Kneifel, S.; Kollias, P.; Loehnert, U.

    2017-12-01

    Cumulus and stratocumulus clouds strongly affect the Earth's radiation budget and are a major uncertainty source in weather and climate prediction models. To improve and evaluate models, a comprehensive understanding of cloud processes is necessary and references are needed. Therefore active and passive microwave remote sensing of clouds can be used to derive cloud properties such as liquid water path and liquid water content (LWC), which can serve as a reference for model evaluation. However, both the measurements and the assumptions when retrieving physical quantities from the measurements involve uncertainty sources. Frisch et al. (1998) combined radar and radiometer observations to derive LWC profiles. Assuming their assumptions are correct, there will be still uncertainties regarding the measurement setup. We investigate how varying beam width, temporal and vertical resolutions, frequency combinations, and beam overlap of and between the two instruments influence the retrieval of LWC profiles. Especially, we discuss the benefit of combining vertically, high resolved radar and radiometer measurements using the same antenna, i.e. having ideal beam overlap. Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res.: Atmos., 103 (18), 23 195-23 197, doi:0148-0227/98/98JD-01827509.00.

  20. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  1. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    International Nuclear Information System (INIS)

    Hohlfeld, K.

    1996-01-01

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  2. Electron Beam-Induced Immobilization of Laccase on Porous Supports for Waste Water Treatment Applications

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri

    2014-08-01

    Full Text Available The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a “green” water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA. Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.

  3. Programming for controlling of pulse radiolysis setup. Program RADIO96

    International Nuclear Information System (INIS)

    Mirkowski, J.; Grodkowski, J.

    1998-01-01

    Program RADIO96 was written in Pascal using DELPHI 1.0 (Borland) programming platform. It can operate on IBM PC compatible computers in WINDOWS 3x or WINDOWS'95 environment. The program is dedicated to the pulse radiolysis setup based on the linear electron accelerator LAE 13/9 of the Department of Radiation Chemistry and Technology of the INCT. This work was based on apparatus and results described before and also on programming manuals of used equipment and technical data of programming platform. (author)

  4. Pulse radiolysis of catalase in solution: Pt. 1

    International Nuclear Information System (INIS)

    Gebicka, Lidia; Metodiewa, Diana; Gebicki, J.L.

    1989-01-01

    The time-course of absorption changes of oxygen-saturated solutions of bovine-liver catalase after pulse radiolysis have been studied. The rate constant of formation of Compound I due to the reaction of catalase with hydrogen peroxide has been estimated to be 2.0 x 10 7 dm 3 mol -1 s -1 . Radiation generated super-oxide radicals reduce Compound I to Compound II with a rate constant of 5.0 x 10 6 dm 3 mol -1 s -1 . The formation of Compound III in the direct reaction of O 2 - with catalase has also been observed. (author)

  5. Study of the radiolysis of some simple alcohols

    International Nuclear Information System (INIS)

    Roux, Jean-Claude

    1974-01-01

    In the first part of this research thesis, the author recalls optical properties of electrons solvated in alcohols, and the various hypotheses of description of the mechanism of electron solvation in these polar environments. In the next parts, the author reports the study of reduced and oxidized species, presents a new model to explain the formation of aldehydes during the radiolysis of primary alcohols. He notices that this mode of formation does not comply with diffusion models. The FORTRAN software used for diffusion kinetic calculations, and experimental techniques are presented in appendix [fr

  6. Gamma radiolysis of C6F6, product formation

    International Nuclear Information System (INIS)

    Sagert, N.H.; LeBlanc, J.C.; Wood, D.D.; Kremers, W.; Westmore, J.B.; Buchannon, W.D.

    1991-01-01

    The γ radiolysis of perfluorobenzene (PFB) has been studied at a dose rate of about 26 Gy·s -1 and at total doses up to 10 5 Gy. Radiolyses were carried out in fluorine-passivated nickel cells in the absence of air. There were no significant gas yields, but higher molecular weight products were observed and characterized by combined gas chromatography and mass spectrometry (GC/MS). The yield of all polymers totalled 1.7 molecules of PFB consumed for each 100 eV absorbed. This result is comparable to yields measured by earlier workers at much higher doses and dose rates. (author)

  7. The mechanism of radiolysis of alkaline-earth nitrates

    Science.gov (United States)

    Anan'ev, V.; Kriger, L.; Miklin, M.

    2015-04-01

    The formation of peroxynitrite and nitrite in crystalline alkaline-earth nitrates under γ-irradiation at 310 K by optical reflectance spectroscopy has been studied. The radiolysis of Sr(NO3)2 and Ba(NO3)2 results in nitrite and peroxynitrite, Mg(NO3)2·6H2O and Ca(NO3)2·4H2O - nitrite. The mechanism for nitrite and peroxynitrite formation under γ-irradiation of crystalline alkaline-earth nitrates has been discussed.

  8. Penetration depth measurement of a 6 MeV electron beam in water by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    B. E. Hammer

    2011-11-01

    Full Text Available We demonstrate magnetic resonance imaging (MRI visualization of a 6 MeV electron beam in ferrous-doped water; a 25 mm penetration depth was measured. Time domain nuclear magnetic resonance was used to investigate the effect of generated free radicals on the free induction decay (FID in nondoped water; no apparent effects to the FID were observed. We show that MRI visualization of charged particle beams used in medical applications will require exogenous agents to provide contrast enhancement.

  9. Measurement of water decomposition products after the irradiation with high-energy heavy-ion beams

    International Nuclear Information System (INIS)

    Katsumura, Y.; Yamashita, S.; Muroya, Y.; Lin, M.; Miyazaki, T.; Kudo, H.; Murakami, T.

    2005-01-01

    We measured the G-values of water decomposition products produced by high-energy heavy-ion beams. It was found that the evaluated yields are consistent with reported ones. In other words, with the increase of LET, the radical yields decrease, and the molecular yields increase and tend to level off. But the evaluated yields are slightly higher than reported values. So we have started two trials. One is to check the values with experiment again, and the other is to explain the difference between the yields by using the spur diffusion model. In order to explain the values quantitatively, the spur diffusion model has been applied and track structure has been investigated. (author)

  10. Modal Analysis and Measurement of Water Cooling Induced Vibrations on a CLIC Main Beam Quadrupole Prototype

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Janssens, S; Leuxe, R; Modena, M; Moron Ballester, R; Struik, M; Deleglise, C; Jeremie, A

    2011-01-01

    To reach the Compact Linear Collider (CLIC) design luminosity, the mechanical jitter of the CLIC main beam quadrupoles should be smaller than 1.5 nm integrated root mean square (r.m.s.) displacement above 1 Hz. A stiff stabilization and nano-positioning system is being developed but the design and effectiveness of such a system will greatly depend on the stiffness of the quadrupole magnet which should be as high as possible. Modal vibration measurements were therefore performed on a first assembled prototype magnet to evaluate the different mechanical modes and their frequencies. The results were then compared with a Finite Element (FE) model. The vibrations induced by water-cooling without stabilization were measured with different flow rates. This paper describes and analyzes the measurement results.

  11. Reactivity of OH radicals with chlorobenzoic acids-A pulse radiolysis and steady-state radiolysis study

    DEFF Research Database (Denmark)

    Zona, Robert; Solar, Sonja; Getoff, Nikola

    2010-01-01

    The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k(OH+substrates)=(4.5−6.2)×109 dm3 mol−1 s−1, have been studied by pulse radiolysis in N2O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320−340 nm. Their decay wa...... to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out....

  12. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  13. Toxicity reduction for pharmaceuticals mixture in water by electron beam irradiation

    International Nuclear Information System (INIS)

    Boiani, Nathalia Fonseca; Tominaga, Flavio Kiyoshi; Borrely, Sueli Ivone

    2015-01-01

    The incorrect disposal of products is committing the environment quality once the aquatic environment is the main vehicle for dispersion of pollutants. Among the highlighted contaminants there are the pharmaceuticals, which are also released to the aquatic environment through the domestic sewage, hospitals and effluents. The monitoring of these pharmaceuticals in the environment has grown, showing many of them as persistent pollutants. Pharmaceuticals from different therapeutic classes have been detected in domestic sewage, surface water and groundwater around the world. Several studies evidenced Fluoxetine Hydrochloride residues in waters. Another important product is the Propranolol, used for heart disease treatments as far as fluoxetine is applied for treating mental diseases. The objective of this study was to apply the radiation processing for the abatement of pollutant in waters. Electron beam accelerator was used during irradiation of the mixture (Propranolol + Fluoxetine Hydrochloride) in aqueous solution. Acute toxicity assays were carried out for Vibrio fischeri marine bacterium, 15 minutes exposure. The results showed that irradiation (2.5kGy and 5.0kGy) enhanced the average effective concentration of the mixture, which means reduction of toxicity (56.34%, 55.70% respectively). Inverse effect was obtained with 7.5 kGy and 10 kGy. (author)

  14. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  15. Toxicity reduction for pharmaceuticals mixture in water by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boiani, Nathalia Fonseca; Tominaga, Flavio Kiyoshi; Borrely, Sueli Ivone, E-mail: flavio_tominaga@hotmail.com, E-mail: sborrely@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The incorrect disposal of products is committing the environment quality once the aquatic environment is the main vehicle for dispersion of pollutants. Among the highlighted contaminants there are the pharmaceuticals, which are also released to the aquatic environment through the domestic sewage, hospitals and effluents. The monitoring of these pharmaceuticals in the environment has grown, showing many of them as persistent pollutants. Pharmaceuticals from different therapeutic classes have been detected in domestic sewage, surface water and groundwater around the world. Several studies evidenced Fluoxetine Hydrochloride residues in waters. Another important product is the Propranolol, used for heart disease treatments as far as fluoxetine is applied for treating mental diseases. The objective of this study was to apply the radiation processing for the abatement of pollutant in waters. Electron beam accelerator was used during irradiation of the mixture (Propranolol + Fluoxetine Hydrochloride) in aqueous solution. Acute toxicity assays were carried out for Vibrio fischeri marine bacterium, 15 minutes exposure. The results showed that irradiation (2.5kGy and 5.0kGy) enhanced the average effective concentration of the mixture, which means reduction of toxicity (56.34%, 55.70% respectively). Inverse effect was obtained with 7.5 kGy and 10 kGy. (author)

  16. One-electron oxidation of the hydroquinonic form of vitamin K by OH· and N3· free radicals. A steady-state gamma radiolysis study

    International Nuclear Information System (INIS)

    Nguyen Van Binh, E.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1991-01-01

    The oxidation of a water-soluble model of vitamin K hydroquinone, symbolised by KH 2 p, has been studied by γ radiolysis using OH· or N 3 · free radicals as oxidants. Irradiation doses were up to 300 Gy. The analysis of final products by spectrophotometric absorption and HPLC allowed to characterize the formation of the quinone K and to estimate the initial yield of KH 2 p-disappearance and K-formation. N 3 · radicals led selectively to the formation of the quinone K with a G-value of (3.0 ± 0.3) x 10 -7 mol/J, thus involving a simple one-electron oxidation mechanism. On the contrary, when OH· radicals oxidized KH 2 p, in addition to the quinone, other non identified species were simultaneously produced during the radiolysis, thus requiring a more complex oxidation mechanism [fr

  17. Radiolysis of cyanocobalamin (vitamin B{sub 12})

    Energy Technology Data Exchange (ETDEWEB)

    Juanchi, X.; Albarran, G.; Negron-Mendoza, A

    2000-03-01

    Research on the radiolysis of vitamins is of considerable interest since these compounds are important nutritional constituents in foods and in dietetic supplements. In spite of these considerations there are few data and very often difficult to compare for the radiolytic behavior of vitamins. In this work we focused our attention on to the study of the radiolysis of cyanocobalamin (vitamin B{sub 12}) in solid state and in aqueous solutions. The procedure was followed by HPLC and UV-spectroscopy. The results obtained in aqueous solutions showed a dependence of the decomposition as a linear function of the dose. The G of decomposition for a 1x10{sup -5} M solution was 3.3. In the solid state the vitamin was very stable towards the irradiation in the conditions used in this study with a G=2.1x10{sup -3}. A study made with Serratia marcescens as a microbiological contaminant showed that at the sterilization dose there is a destruction of the vitamin in aqueous solution. In the solid state the degree of decomposition was 7%. (author)

  18. The sonolysis and radiolysis of adenine and related biomolecules

    International Nuclear Information System (INIS)

    Craig, W.K.

    1979-04-01

    The sonolysis of adenine, its nucleoside adenosine and the carbohydrates glucose, fructose and ribose were investigated at 459 Hz. The insonation of air-saturated aqueous adenine solutions degrades adenine at a rate that is linear with time and independent of the initial concentration. The radiolytic decomposition of air-saturated aqueous adenine solutions were also investigated and the degradation products found to be essentially identical to those obtained by sonolysis. since the products derived from sonolysis and radiolysis were similar, a degradation mechanism can be proposed that accounts for all the observed products. The major feature of this mechanism is that the principal loci of attack are the C(8) position and the central C(4)-C(5) double bond. The sonolysis of air-saturated aqueous solutions of the carbohydrates results in the formation of products analogous to those produced by ionizing radiation. While two types of products are formed in the radiolysis of carbohydrate solutions, depending on the initial presence or absence of oxygen, the sonolysis of air-saturated carbohydrate solutions leads to the formation of both types of products. This is due to the depletion of oxygen from the solution during insonation. Existing mechanisms for the radiolytic decomposition of carbohydrates in the presence and absence of oxygen can be modified to rationalize the sonolysis products. Insonation of an aqueous solution of adenosine resulted in the production of adenine and ribose. The other products are consistent with those obtained in the ultrasonic degradation of adenine and ribose

  19. Radiolytic corrosion of uranium dioxide induced by He{sup 2+} localized irradiation of water: Role of the produced H{sub 2}O{sub 2} distance

    Energy Technology Data Exchange (ETDEWEB)

    Traboulsi, Ali [SUBATECH, UMR 6457, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, 4, Rue Alfred Kastler, La Chantrerie BP 20722, 44307 Nantes Cedex 3 (France); Vandenborre, Johan, E-mail: johan.vandenborre@subatech.in2p3.fr [SUBATECH, UMR 6457, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, 4, Rue Alfred Kastler, La Chantrerie BP 20722, 44307 Nantes Cedex 3 (France); Blain, Guillaume [SUBATECH, UMR 6457, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, 4, Rue Alfred Kastler, La Chantrerie BP 20722, 44307 Nantes Cedex 3 (France); Humbert, Bernard [Institut de Matériaux Jean Rouxel, UMR 6502, Université de Nantes – CNRS, 2 rue de la Houssinnière, BP 32229, 44340 Nantes (France); Haddad, Ferid [SUBATECH, UMR 6457, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, 4, Rue Alfred Kastler, La Chantrerie BP 20722, 44307 Nantes Cedex 3 (France); Cyclotron Arronax, 1 rue Arronax, CS 10112, 44817 Saint Herblain Cedex (France); Fattahi, Massoud [SUBATECH, UMR 6457, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, 4, Rue Alfred Kastler, La Chantrerie BP 20722, 44307 Nantes Cedex 3 (France)

    2015-12-15

    The short-range (few μm in water) of the α-emitting from the spent fuel involves that the radiolytic corrosion of this kind of sample occurs at the solid/solution interface. In order to establish the role of localization of H{sub 2}O{sub 2} species produced by the He{sup 2+} particle beam in water from the surface, we perform UO{sub 2} radiolytic corrosion experiment with different distance between H{sub 2}O{sub 2} production area and UO{sub 2} surface. Then, in this work, the radiolytic corrosion of UO{sub 2} particles by oxidative species produced by {sup 4}He{sup 2+} radiolysis of water was investigated in open to air atmosphere. The dose rate, the localization of H{sub 2}O{sub 2} produced by water radiolysis and the grain boundaries present on the surface of the particles were investigated. UO{sub 2} corrosion was investigated by in situ (during irradiation) characterization of the solid surface, analysis of H{sub 2}O{sub 2} produced by water radiolysis and quantification of the uranium species released into the solution during irradiation. Characterization of the UO{sub 2} particles, surface and volume, was realized by Raman spectroscopy. UV–vis spectrophotometry was used to monitor H{sub 2}O{sub 2} produced by water radiolysis and in parallel the soluble uranium species released into the solution were quantified by inductively coupled plasma mass spectrometry. During the He{sup 2+} irradiation of ultra-pure water in contact with the UO{sub 2} particles, metastudtite phase was formed on the solid surface indicating an oxidation process of the particles by the oxidative species produced by water radiolysis. This oxidation occurred essentially on the grain boundaries and was accompanied by migration of soluble uranium species (U(VI)) into the irradiated solution. Closer to the surface the localization of H{sub 2}O{sub 2} formation, higher the UO{sub 2} oxidation process occurs, whereas the dose rate had no effect on it. Simultaneously, closer to the surface

  20. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams.

    Science.gov (United States)

    Lourenço, A; Shipley, D; Wellock, N; Thomas, R; Bouchard, H; Kacperek, A; Fracchiolla, F; Lorentini, S; Schwarz, M; MacDougall, N; Royle, G; Palmans, H

    2017-05-21

    The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, [Formula: see text]. Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, [Formula: see text], between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, [Formula: see text] and [Formula: see text] factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental [Formula: see text] values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, [Formula: see text] correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest [Formula: see text] values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, [Formula: see text] factors were deviating more from unity than [Formula: see text] factors

  1. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams

    Science.gov (United States)

    Lourenço, A.; Shipley, D.; Wellock, N.; Thomas, R.; Bouchard, H.; Kacperek, A.; Fracchiolla, F.; Lorentini, S.; Schwarz, M.; MacDougall, N.; Royle, G.; Palmans, H.

    2017-05-01

    The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, {{H}\\text{pl,\\text{w}}} . Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, {{k}\\text{fl}} , between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, {{H}\\text{pl,\\text{w}}} and {{k}\\text{fl}} factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental {{H}\\text{pl,\\text{w}}} values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, {{H}\\text{pl,\\text{w}}} correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest {{H}\\text{pl,\\text{w}}} values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, {{k}\\text{fl}} factors were deviating more from unity than {{H

  2. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams.

    Science.gov (United States)

    Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J

    2016-09-21

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  3. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise

    Czech Academy of Sciences Publication Activity Database

    Stolarczyk, L.; Trinkl, S.; Romero-Exposito, M.; Mojzeszek, N.; Ambrožová, Iva; Domingo, C.; Davídková, Marie; Farah, J.; Klodowska, M.; Kneževic, Z.; Liszka, M.; Majer, M.; Miljanic, S.; Ploc, Ondřej; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-01-01

    Roč. 63, č. 8 (2018), č. článku 085017. ISSN 0031-9155 Institutional support: RVO:61389005 Keywords : passive detectors * neutron dosimetry * gamma radiation dosimetry * water phantom measurements * secondary radiation measurements * pencil beam scanning proton radiotherapy Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.742, year: 2016

  4. Competition reactions of H2O•+ radical in concentrated Cl- aqueous solutions: picosecond pulse radiolysis study.

    Science.gov (United States)

    El Omar, Abdel Karim; Schmidhammer, Uli; Rousseau, Bernard; LaVerne, Jay; Mostafavi, Mehran

    2012-11-29

    Picosecond pulse-probe radiolysis measurements of highly concentrated Cl(-) aqueous solutions are used to probe the oxidation mechanism of the Cl(-). The transient absorption spectra are measured from 340 to 710 nm in the picosecond range for the ultrafast electron pulse radiolysis of halide solutions at different concentrations up to 8 M. The amount of Cl(2)(•-) formation within the electron pulse increases notably with increasing Cl(-) concentration. Kinetic measurements reveal that the direct ionization of Cl(-) cannot solely explain the significant amount of fast Cl(2)(•-) formation within the electron pulse. The results suggest that Cl(-) reacts with the precursor of the OH(•) radical, i.e., H(2)O(•+) radical, to form Cl(•) atom within the electron pulse and the Cl(•) atom reacts subsequently with Cl(-) to form Cl(2)(•-) on very short time scales. The proton transfer reaction between H(2)O(•+) and the water molecule competes with the electron transfer reaction between Cl(-) and H(2)O(•+). Molecular dynamics simulations show that number of water molecules in close proximity decreases with increasing concentration of the salt (NaCl), confirming that for highly concentrated solutions the proton transfer reaction between H(2)O(•+) and a water molecule becomes less efficient. Diffusion-kinetic simulations of spur reactions including the direct ionization of Cl(-) and hole scavenging by Cl(-) show that up to 30% of the H(2)O(•+) produced by the irradiation could be scavenged for solutions containing 5.5 M Cl(-). This process decreases the yield of OH(•) radical in solution on the picosecond time scale. The experimental results for the same concentration of Cl(-) at a given absorbed dose show that the radiation energy absorbed by counterions is transferred to Cl(-) or water molecules and the effect of the countercation such as Li(+), K(+), Na(+), and Mg(2+) on the oxidation yield of Cl(-) is negligible.

  5. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid

    International Nuclear Information System (INIS)

    Cruz-Castaneda, J.; Negron-Mendoza, A.; Heredia, A.; Ramos-Bernal, S.; Villafane-Barajas, S.; Frias, D.; Colin-Garcia, M.

    2015-01-01

    In the context of chemical evolution a simulation of a hydrothermal vent was performed. The thermolysis and radiolysis of malonic acid in aqueous solution were studied. The thermolysis was done by heating the samples (95 deg C) and radiolysis using gamma radiation. Products were identified by gas chromatography and gas chromatography-mass spectrometry. The thermal treatment produced acetic acid and CO 2 . The radiolysis experiments yield carbon dioxide, acetic acid, and di- and tricarboxylic acids. A theoretical model of the chemical process occurring under irradiation was developed; this was able to reproduce formation of products and the consumption of malonic acid. (author)

  6. Radiolysis and corrosion aspects of the aqueous self-cooled blanket concept

    International Nuclear Information System (INIS)

    Bruggeman, A.; Snykers, M.; Bogaerts, W.F.; Waeben, R.; Embrechts, M.J.; Steiner, D.

    1989-01-01

    Corrosion and radiolysis aspects of the Aqueous Self-Cooled Blanket concept, proposed as a potential shielding breeding blanket for near term fusion devices and fusion reactors, have been investigated. On the basis of preliminary results for selected aqueous solutions of lithium compounds, no particular corrosion problems have been revealed for the low-temperature concept envisaged for NET and radiolysis effects might be controlled by appropriate countermeasures. For the reactor-relevant high-temperature concept particular attention has to be paid to intergranular stress-corrosion and to the synergistic radiolysis-corrosion effects. Further information is needed from tests performed in relevant operational conditions. (orig.)

  7. Utilization of the high energy electrons beams generated in accelerator for treatment of drinking water and wastewater

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-01-01

    Samples of drinking water and wastewater were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% of trihalomethanes (THM) in drinking water (concentration from 2.7μg/l to 45μg/l, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid wastewater. (author)

  8. MO-FG-CAMPUS-JeP1-03: Luminescence Imaging of Water During Proton Beam Irradiation for Range Estimation

    International Nuclear Information System (INIS)

    Yamamoto, S; Komori, M; Toshito, T; Watabe, H

    2016-01-01

    Purpose: Since proton therapy has the ability to selectively deliver a dose to a target tumor, the dose distribution should be accurately measured. A precise and efficient method to evaluate the dose distribution is desired. We found that luminescence was emitted from water during proton irradiation and thought this phenomenon could be used for estimating the dose distribution. Methods: For this purpose, we placed water phantoms set on a table with a spot-scanning proton-therapy system, and luminescence images of these phantoms were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton-beam irradiation. We also conducted the imaging of phantoms of pure-water, fluorescein solution and acrylic block. We made three dimensional images from the projection data. Results: The luminescence images of water phantoms during the proton-beam irradiations showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. The image of the pure-water phantom also showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had 14.5% shorter proton range than that of water; the proton range in the acrylic phantom was relatively matched with the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 sec. Three dimensional images were successfully obtained which have more quantitative information. Conclusion: Luminescence imaging during proton-beam irradiation has the potential to be a new method for range estimations in proton therapy.

  9. MO-FG-CAMPUS-JeP1-03: Luminescence Imaging of Water During Proton Beam Irradiation for Range Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Komori, M [Nagoya University, Nagoya, Aichi (Japan); Toshito, T [Nagoya Proton Therapy Center, Nagoya, Aichi (Japan); Watabe, H [Tohoku University, Sendai, Miyagi (Japan)

    2016-06-15

    Purpose: Since proton therapy has the ability to selectively deliver a dose to a target tumor, the dose distribution should be accurately measured. A precise and efficient method to evaluate the dose distribution is desired. We found that luminescence was emitted from water during proton irradiation and thought this phenomenon could be used for estimating the dose distribution. Methods: For this purpose, we placed water phantoms set on a table with a spot-scanning proton-therapy system, and luminescence images of these phantoms were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton-beam irradiation. We also conducted the imaging of phantoms of pure-water, fluorescein solution and acrylic block. We made three dimensional images from the projection data. Results: The luminescence images of water phantoms during the proton-beam irradiations showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. The image of the pure-water phantom also showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had 14.5% shorter proton range than that of water; the proton range in the acrylic phantom was relatively matched with the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 sec. Three dimensional images were successfully obtained which have more quantitative information. Conclusion: Luminescence imaging during proton-beam irradiation has the potential to be a new method for range estimations in proton therapy.

  10. Full scale electron beam systems for treatment of water, wastewater and medical waste

    International Nuclear Information System (INIS)

    Waite, T.D.; Kurucz, C.N.; Cooper, W.J.; Brown, D.

    1998-01-01

    High energy electron accelerators have been used in numerous applications for several decades. In the early 1980's several attempts to use electron accelerators for the disinfection of sludge proved that the technology could be used for that application. One such facility was designed, built and tested for one year at the Miami-Dade Virginia Key Wastewater Treatment Plant. The process successfully disinfected anaerobically digested sludge. However, due to changing local regulations the process was never implemented. Now this process may provide a viable alternative for the ultimate destruction of toxic and hazardous organic chemicals from water and sludges. When high energy electrons impact an aqueous solution, with or without particulate matter present, reactive transient species are formed. The three transient species of most interest are the aqueous electron, e - aq, hydrogen radical, H·, and the hydroxyl radical, ·OH. The relative concentration of these radicals in an irradiated solution of pure water is 44, 10 and 46%, respectively. The absolute concentration of the radicals is dose and water quality dependent, but is in excess of mM levels in potable, raw and secondary wastewater effluent at our facility. This paper describes the facilities at the Electron Beam Research Facility (EBRF) in Miami, FL. The accelerator is a 1.5 MeV, 50 mA insulated core transformer type. Several areas of research have been the focus of the studies with an interdisciplinary team of faculty and students in engineering and science. The areas included are, inactivation of bacteria in raw and chlorinated and unchlorinated secondary wastewater and the changes in biochemical oxygen demand and chemical oxygen demand in the raw and unchlorinated secondary wastewater. The removal of toxic chemicals has also been studied in some detail. These studies have been conducted both at the EBRF and using 60 Co gamma irradiation. To examine the effect of water quality on the destruction of the

  11. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center

    Science.gov (United States)

    Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.

    2017-08-01

    The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  12. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center.

    Science.gov (United States)

    Tessonnier, T; Böhlen, T T; Ceruti, F; Ferrari, A; Sala, P; Brons, S; Haberer, T; Debus, J; Parodi, K; Mairani, A

    2017-07-31

    The introduction of 'new' ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  13. Quality indexes based on water measurements for low and medium energy x-ray beams: A theoretical study with PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Chica, U. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain and FISRAD S.A.S Carrera 64 a No 22-41, Bogotá D.C. (Colombia); Anguiano, M.; Lallena, A. M., E-mail: lallena@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Vilches, M. [Servicio de Radiofísica, Hospital Universitario “San Cecilio”, Avda. Dr. Olóriz, 16, E-18012 Granada (Spain)

    2014-01-15

    Purpose : To study the use of quality indexes based on ratios of absorbed doses in water at two different depths to characterize x-ray beams of low and medium energies. Methods : A total of 55 x-ray beam spectra were generated with the codes XCOMP5R and SPEKCALC and used as input of a series of Monte Carlo simulations performed with PENELOPE, in which the percentage depth doses in water and thek{sub Q,Q{sub 0}} factors, defined in the TRS-398 protocol, were determined for each beam. Some of these calculations were performed by simulating the ionization chamber PTW 30010. Results : The authors found that the relation betweenk{sub Q,Q{sub 0}} and the ratios of absorbed doses at two depths is almost linear. A set of ratios statistically compatible with that showing the best fit has been determined. Conclusions : The results of this study point out which of these ratios of absorbed doses in water could be used to better characterize x-ray beams of low and medium energies.

  14. Gas production in the radiolysis of Poly(dimethysiloxanes)

    Science.gov (United States)

    LaVerne, Jay A.; Tratnik, Nicole A. I.; Sasgen, Andrea

    2018-01-01

    A variety of small poly(dimethyl siloxanes) were irradiated with γ-rays followed by the determination of the production of methane and molecular hydrogen and characterization of spectroscopic changes in the medium. The yields of methane was found to be about twice that of molecular hydrogen indicating that breakage of the C-Si bond occurs at a frequency comparable to the breakage of the C-H bond. Both yields slowly decrease with increasing molecular weight of the medium. The presence of oxygen decreases the yield of both gases suggesting radical precursors to methane and molecular hydrogen, presumably the methyl radical and H atom, respectively. Temperature gravimetric analysis and UV-visible spectroscopy both suggest the formation of higher molecular weight compounds with radiolysis, which agrees with bond loss and formation observed in infrared spectroscopy.

  15. Pulse radiolysis of ethanolic solutions of rhodamine dyes

    International Nuclear Information System (INIS)

    Kartasheva, L.I.; Kucherenko, E.A.; Kozlov, A.S.; Pikaev, A.K.

    1983-01-01

    The primary products of radiolytical transformations of rhodamine 6G, rhodamine B, rhodamine 3B and rhodamine 110 in ethanolic solutions were studied by pulse radiolysis method under various conditions. It was found that the semireduced form of a dye was the only intermediate product of such transformations in ethanolic solutions of all dyes. It was shown that this species was formed by interaction of the dye with esub(s) - and CH 3 CHOH. The properties of this species were investigated and the rate constants of respective reactions for each dye were determined. It was found that nature and position of a substituent in the molecule of the dye have an effect on the rate of formation of the semi-reduced form. (author)

  16. Radiolysis of Reactive Azo Dyes in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Agustin N.M. Bagyo

    2004-07-01

    Full Text Available The effects of radiation on aerated reactive dye solutions i.e Cibacron Violet, Cibacron Orange and Cibacron Yellow solutions have been studied. Parameters analysis were the change of pH after radiation, the change of absorption, degradation products and effects of pH on the radiolysis. The uv-vis absorption of solutions were observed before and after irradiation. pH variation was done from pHs 3, 5, 7, 9 and 12. Irradiation was done at doses of 0, 2, 4, 6, 8 and 10 kGy with dose rate of 5 kGy/h and was determined by a Fricke dosimeter. HPLC with UV detector was used to analyze the degradation products. Oxalic acid was the main degradation product and small amount of succinic acid was also detected.

  17. Pulse radiolysis of ethyl acetate and its solutions

    International Nuclear Information System (INIS)

    Ramanan, G.

    1976-01-01

    Pure ethyl acetate was subjected to electron pulse radiolysis in the liquid state and the absorption spectrum of the transient species produced was obtained between 280 and 650 nm. Two different species were produced, one with a short life of about 150 ns absorbing at longer wavelengths attributed to the solvated electron and a much longer lived radical absorbing at wavelengths less than 400 nm. The solute triplet yields were followed using anthracene and biphenyl at different concentrations. An upperlimit for the yield of excited singlet anthracene was estimated from the study of fluorescence to be G approximately equal to 0.1. Anthracene singlet yields in the presence of benzene at different concentrations were measured and the contribution of ethyl acetate positive ions in forming the additional exicted singlets is discussed. The free ion yield is G = 0.25. Yield of ethyl acetate positive ions scavengeable at high benzene concentrations is G = 0.63

  18. Pulse radiolysis of Triton X-100 aqueous solution

    International Nuclear Information System (INIS)

    Perkowski, J.; Mayer, J.

    1990-01-01

    Pulse radiolysis of deaerated aqueous solutions of 4 · 10 -5 -2.4 · 10 -3 mol · dm -3 Triton X-100 gives rise to a transient species originating from the reactions of OH radicals and H atoms. The rate constants of these reactions were found to be 8.8 · 10 9 mol -1 · dm 3 · s -1 and 1.25 · 10 9 mol -1 · dm 3 · s -1 , respectively, for Triton X-100 concentrations below CMC. The corresponding transient species were found to decay according to second order kinetics. The mechanism of the reactions, including concentration effects is discussed. (author) 18 refs.; 3 figs

  19. Gamma radiolysis of C 6F 6, product formation

    Science.gov (United States)

    Sagert, Norman H.; LeBlanc, Jacques C.; Wood, Donald D.; Kremers, Walter; Westmore, John B.; Buchannon, Wayne D.

    The γ radiolysis of perfluorobenzene (PFB) has been studied at a dose rate of about 26 Gy · s -1 and at total doses up to 10 5 Gy. Radiolyses were carried out in fluorine-passivated nickel cells in the absence of air. There were no significant gas yields, but higher molecular weight products were observed and characterized by combined gas chromatography and mass spectrometry (GC/MS). These higher molecular weight products included decafluorobiphenyl (DFBP), but more highly fluorinated dimers were produced with higher yields. Higher oligomers were formed in significant yields, and the trimer was especially prominent. Polymers with molar masses up to and exceeding 1500 (which corresponds to octamers) were observed by GC/MS, although their yields were small. The yield of all polymers totalled 1.7 molecules of PFB consumed for each 100 eV absorbed. This result is comparable to yields measured by earlier workers at much higher doses and dose rates.

  20. Radiolysis of carbohydrates and of carbohydrate-containing foodstuffs

    International Nuclear Information System (INIS)

    Diehl, J.F.; Adam, S.; Delincee, H.; Jakubick, V.

    1978-01-01

    Toxicological evaluation of irradiated foodstuffs requires knowledge of radiation-induced chemical changes. A review of the literature reveals much information on the radiation chemistry of pure substances, e.g., dilute solutions of individual carbohydrates. Much less is known about the interactions of food constituents during irradiation. In an effort to remedy this situation, radiation effects on various compounds have been studied in systems of increasing complexity. In one approach, gas chromatography was used to investigate the radiolysis of tehalose in pure solution and in the presence of amino acids or proteins. In another approach, radiation-induced aggregation of proteins and of [ 14 C]tryptophan with proteins was studied in the absence and presence of carbohydrates (trehalose, starch), emulsified sunfower oil, and a mixture of carbohydrates and emulsified sunflower oil

  1. Design guideline to prevent the pipe rupture by radiolysis gases in BWR steam piping

    International Nuclear Information System (INIS)

    Inagaki, T.; Miyagawa, M.; Ota, T.; Sato, T.; Sakata, K.

    2009-01-01

    In late 2001, pipe rupture accidents due to fast combustion of radiolysis gas occurred in Japan and elsewhere's BWR power plants. TENPES began to set up the guideline as action to such a new problem to prevent accumulation and combustion of radiolysis gas in BWR steam piping. And then, the first edition of guideline was published in October 2005. Afterwards, the experimental study about combustion/detonation of radiolysis gas have been continued. And in March 2007, TENPES published a revised edition of the guideline. This is the report of the revised edition of that guideline. According to this guideline, it became possible to design BWR's steam piping to prevent accumulation of radiolysis gas. (author)

  2. Common products from gamma-radiolysis and ultraviolet photolysis of metronidazole

    International Nuclear Information System (INIS)

    Moore, D.E.; Wilkins, B.J.

    1990-01-01

    u.v. Photolysis of metronidazole in aqueous solution at pH 7.0 results in rearrangement through an imino-ketone to an oxadiazole. These compounds were also found following γ-radiolysis of metronidazole, being about 10% of the products. Saturation of the solution with nitrous oxide caused a slight increase in the yield of imino-ketone in radiolysis. Conversely, the imino-ketone was not detected on addition of sodium formate or propan-2-ol to the radiolysis, but an increased yield of other products was observed. It is suggested that formation of the imino-ketone and oxadiazole in both photolysis and radiolysis occurs via processes which do not involve the nitro radical anion as first transient species. (author)

  3. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1976--October 1977

    International Nuclear Information System (INIS)

    Dorfman, L.M.

    1977-01-01

    Results from research in the following two areas are given: formation, properties, and reactivity of molecular ionic species in irradiated liquid systems; and pulse radiolysis of elementary reactions in protein function

  4. Biomarkers on Europa: Unique signatures produced by radiolysis?

    Science.gov (United States)

    Carlson, R. W.; Hand, K. P.

    A promising habitat for life is Jupiter's moon Europa, with its likely ocean under a young, active surface. Europa orbits in the heart of Jupiter's powerful magnetosphere and suffers intense energetic particle bombardment, producing both good and bad aspects for astrobiology at Europa. Ionizing radiation can produce oxidants that could support a radiation-driven ecology as proposed by Chyba. On the other hand, biomolecular evidence for oceanic life that may be emplaced on the surface is rapidly altered by radiation, perhaps complicating astrobiological searches for evidence of life. We are studying the radiolytic degradation of molecular biomarkers in ice at Europa temperatures by studying both simple organics and more complex biomolecules, including microorganisms. High energy (1-100 keV) electron irradiation is employed and the products are analyzed using infrared spectroscopy, thermal desorption mass spectroscopy, and laser desorption/ionization mass spectroscopy. Hydrocarbon radiolysis yields carbon dioxide and methane which can escape the system and results in the net loss of carbon. Aliphatic molecules with C=O bonds are formed and thought to be mainly polymethylene oxides. When heated, they polymerize to form brown, high-molecular-weight refractory residues with linear, spherical, and ring- shaped macrostructures, typically many tens of micrometers in size. Laser desorption mass spectra of the residues are not overly complex and are different for each initial species. Radiolysis of microorganisms shows the destruction of amine, amide, methyl, and methylene groups, and production of carbon dioxide, carbon monoxide, nitriles, and isocyanates. Mass spectra of irradiated B. pumilus spores are different and surprisingly less complex than those of unirradiated spores. It is possible that unique, diagnostic biosignatures may exist in mass spectra of irradiated microorganisms.

  5. Pulse Radiolysis of Aqueous Solutions of Aniline and Substituted Anilines

    International Nuclear Information System (INIS)

    Christensen, H.C.

    1971-01-01

    The primary reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with aniline and the aniline cation in aqueous solutions have been studied by the technique of pulse radiolysis and by determination of end products after y-radiolysis. Hydrogen atoms and hydrated electrons react with aniline under formation of the cyclohexadienyl type radical with absorption maximum at 355 nm and an extinction coefficient of 4100/M/cm. A similar radical formed by reaction of hydrogen atoms with the aniline cation has its absorption maximum at 31 0 nm and an extinction coefficient of 3200/M/cm. Hydrogen atoms react with the acid and neutral forms of aniline with rate constants of (1.3 ± 0.2 ) x 10 9 /M/s and (2.9 ± 0.7) x 10 9 /M/s, respectively. OH radicals react with aniline with a rate constant of (1.4 ± 0.3) x 10 10 /M/s under formation of the cyclohexadienyl radical with absorption maximum at 355 nm and the anilino radical with absorption maxima at 300 and 400 nm. The cyclohexadienyl radical decayed in a first order process with a rate constant of 1.4 x 10 5 /s by elimination of NH 3 , whereas the anilino radical disappeared in a second order reaction under formation of hydrazobenzene. O - radicals react with aniline at pH 13.3 with a rate constant of (3.1 ± 0.6) x 10 9 under formation of anilino radicals. The reaction of OH radicals with the aniline cation produced the anilino radical cation with a rate constant of (4.8 ± 0.8) x 10 9 . The absorption maximum was placed at 415 nm, The cyclohexadienyl type radical with absorption maximum at 350 nm was also found in aqueous solutions of 2-amino-1,3-dimethylbenzene but was not formed in solutions of N,N' -dimethylaniline

  6. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications; Propagation d'une impulsion laser ultra-intense dans un plasma sous-dense: generation de faisceaux d'electrons quasi monoenergetiques et developpement d'applications

    Energy Technology Data Exchange (ETDEWEB)

    Glinec, Y

    2006-09-15

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  7. Non-gaseous radiolysis products of 6-aminopenicillanic acid and potassium salt of benzylepenicillin

    International Nuclear Information System (INIS)

    Dziegielewski, J.; Jezowska-Trzebiatowska, B.; Siemion, I.Z.

    1974-01-01

    The radiolysis products of 6-aminopenicillanic acid (6-APA) and potassium salt of benzylpenicillin G, irradiated with γ-rays were separated by the extraction methods and chromatographically by the thin-layer method. On the basis of the IR and UV spectroscopic investigations as well as by the NMR and mass spectrometry methods of the radiolysis products, the paths of the radiation decomposition of 6-APA and of penicillin G were determined. (author)

  8. Studies on oxidative radiolysis of ibuprofen in presence of potassium persulfate

    International Nuclear Information System (INIS)

    Paul, Jhimli; Naik, D.B.; Bhardwaj, Y.K.; Varshney, Lalit

    2014-01-01

    The radiolysis of ibuprofen (IBP), a model pharmaceutical compound, was studied by gamma irradiation in an aqueous solution in the presence and absence of potassium persulfate (K 2 S 2 O 8 ). The extent of mineralization was investigated by measuring the UV–visible spectra, decrease in the chemical oxygen demand (COD) and the total organic carbon (TOC) content of aqueous IBP solution at different doses. The gamma radiolysis, in the presence of K 2 S 2 O 8 , required much lesser dose compared to in the absence of K 2 S 2 O 8 for the same extent of mineralization of aqueous IBP solution. The pulse radiolysis of IBP was carried out under different radiolytic conditions to understand the mechanism of efficient mineralization of IBP during gamma radiolysis in the presence of K 2 S 2 O 8 . It was found that unlike · OH radical, SO 4 ·− radical preferentially produces benzyl type of radicals via the formation of the benzene radical cation. The results concluded that the gamma radiolysis in presence of K 2 S 2 O 8 could be one of the efficient advanced oxidation processes for degradation of pharmaceutical compounds present in the aqueous solution. - Highlights: • The radiolysis of aqueous solution of Ibuprofen (IBP) was investigated. • The COD and TOC content decreased significantly in presence of K 2 S 2 O 8 . • Pulse radiolysis studies revealed the mechanism of mineralization of IBP. • The presence of K 2 S 2 O 8 increased the efficiency of gamma radiolysis

  9. Gamma-radiolysis of dimethyl sulfoxide. II. Radiolysis yields and possible mechanisms; Gamma-Radiolisis del dimetilsulfoxido II. Rendimientos radioloticos y posibles mecanismos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. C.; Barrera, R.

    1978-07-01

    As result of quantitative studies on gamma-radiolysis of DMSO at a dose range of 90-850 Mrads, constant G values have been obtained for the following radiolysis compounds: G(-DMSO) - 6.7 {+-}0.2; G(dimethyl sulphide) - 3.4 {+-}0.3; G(methane) - 0,75 {+-} 0.04; G(dimethyl disulphide) -0.33 {+-}0,03; G(tri methylsulphonium methanesulphonate) - 0.26 {+-} 0,01; G(methyl methanethiosulphonate) - 0,25 {+-}0.02; G(dimethyl sulphona)-0.21{+-}0.02; G(H{sub 2})-0.18{+-}0.02; and G(propane)--0.0092{+-}0.0007. Initial G values have been obtained for other identified compounds: Gi(ethane)-0,46; Gi(CO)-0.052; and Gi(CO{sub 2})-0.030. Possible mechanisms on the radiolysis process are proposed. (Author) 17 refs.

  10. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  11. Geant-4 simulation for photon and proton beams through a water phantom

    International Nuclear Information System (INIS)

    Saleh, M. Saleh; Albanghazi, Hajer; Alarabi, Shrifa

    2015-01-01

    Geant-4 is an object oriented toolkit for simulating the passage of particles through matter. It is a free software package and can be installed on Windows system. Geant4 consists of sets of components to model the simulation setup in terms of the geometry, material composition, particle generation, tracking of particle through materials, data acquisition and etc. The software offers an extensive set of physics processes (electromagnetic, optical and hadronic) for governing various types of particle interactions and energy ranges. This paper consists of first a brief introduction of the fundamentals of Geant-4 toolkit. The second part will focus on a Geant-4 application to simulate a 6 MeV photon and 210 MeV proton beams incident in a water phantom. The result of the simulation is the dose deposition in a region of interest. In this work, Geant4 toolkit was successfully installed and run under the Window system. The software is fairly complex and sufficient knowledge of physics an C++ programming is required to accurately use the toolkit.(author)

  12. Applications, features, and mechanistic aspects of liquid water beam desorption mass spectrometry

    Science.gov (United States)

    Abel, B.; Charvat, A.; Diederichsen, U.; Faubel, M.; Girmann, B.; Niemeyer, J.; Zeeck, A.

    2005-05-01

    In the present study we highlight recent applications of liquid beam desorption mass spectrometry for the analysis of biomolecules. The protonated macromolecules are desorbed from a 10 [mu]m thick liquid jet in vacuum with an IR laser pulse tuned in resonance with the OH stretch vibration of water. Cytochrome c, viscotoxin A3, synthetic analogues of DNA and nucleobase substituted [beta]-peptides (PNA like oligomers), bovine serum albumin (BSA), as well as specifically designed pharmaceutical macromolecules have been investigated. The salt and buffer tolerance has been measured for the desorption of cytochrome c. For the PNA oligomers it has been shown that a mixture can be desorbed and that the relative intensity of the mass peaks reflects relative concentrations in solution. With diluted BSA water solutions it has been demonstrated that the desorption technique provides a quantitative measure of BSA in solution. The gas phase signal of singly protonated BSA desorbed from a series of well defined solution concentrations has been found to be linear over at least three orders of magnitude. This feature appears to be promising for quantitative online monitoring applications of this technique. Beyond applications of this technique mechanistic aspects of the poorly characterized desorption mechanism are discussed. With a field-free-drift time-of-flight approach we were able to monitor features of the desorption process by selecting fractions of the broad velocity distribution of desorbed species using an ion optics acting as an ion gate. The observed features were discussed within a "desorption/ionization" model featuring the interplay of an explosive thermal and a shock wave dispersion of the microfilament controlling the ejection of hot nano-droplets and microsolvated molecules as well as their desolvation.

  13. Solvation of the electron in alcohols studied using the Argonne picosecond pulse radiolysis system

    International Nuclear Information System (INIS)

    Jonah, C.D.; Kenney-Wallace, G.A.

    1979-01-01

    With a stroboscopic pulse radiolysis system, it is possible to measure the reactions of solvated electrons and dry electrons and the solvation time of electrons in alcohols from 20 psec to 350 psec. The solvation in alcohol and alcohol-alkane solutions is a complex process which depends on the microscopic structure of the fluid, so that the studies of solvation in alcohols as a function of temperature or as a function of the concentration of the alcohols must take into account the structure of the fluid being studied. The relaxation processes may not be dominant at low temperature. However, in room temperature alcohols, pre-existing traps are the dominant means of electron trapping. The extrapolation to water may be reasonable since water and alcohols both give similar final species. To obtain such idea of the solvation process in alcohols, the change of the absorption of electrons at 500 nm was measured. At very low concentration of alcohols in alkanes, electrons form a complex with a cluster of alcohol molecules, and the most probable size of this cluster is two alcohols (C 4 , C 10 ). The species formed is not solvated electrons, since the characteristic spectrum of solvated electrons is absent, and the conductivity of the species is far above that of solvated electrons. (Yamashita, S.)

  14. Identification and evaluation of radiolysis products of irradiated chloramphenicol by HPLC-MS and HPLC-DAD

    International Nuclear Information System (INIS)

    Hong, L.; Altorfer, H.R.; Horni, A.; Hesse, M.

    2005-01-01

    The radiolysis products of chloramphenicol under γ-radiation sterilization were investigated systematically in the present study. Eight main radiolysis products were identified and quantified by HPLC-MS and HPLC-DAD, including two compounds that have never been reported. The minor radiolysis products were quantified, which shows that they are at the concentration levels below the threshold for identification. Carbon-carbon rupture reaction and oxidation reaction were proposed as the main radiolysis reactions of chloramphenicol powder. The applicability of γ-sterilization for chloramphenicol products was quantitatively evaluated with qualitative and quantitative data and the data were compared to the threshold requirements of international regulations for identification. It was concluded that toxicities of the radiolysis products of chloramphenicol produced by γ-radiation sterilization can be neglected, the radiolysis products are safe for human health from chemical view. (author)

  15. Water content and porosity effect on hydrogen radiolytic yields of geopolymers

    Science.gov (United States)

    Chupin, Frédéric; Dannoux-Papin, Adeline; Ngono Ravache, Yvette; d'Espinose de Lacaillerie, Jean-Baptiste

    2017-10-01

    The behavior of geopolymers under irradiation is a topic that has not been thoroughly investigated so far. However, if geopolymers are considered to be used as radioactive waste embedding matrices, their chemical and mechanical stability under ionizing radiation as well as low hydrogen production must be demonstrated. For that purpose, a particular focus is put on water radiolysis. Various formulations of geopolymers have been irradiated either with γ-rays (60Co source) or 95 MeV/amu 36Ar18+ ions beams and the hydrogen production has been quantified. This paper presents the results of radiolytic gas analysis in order to identify important structural parameters that influence confined water radiolysis. A correlation between geopolymers nature, water content on the one side, and the hydrogen radiolytic yield (G(H2)) on the other side, has been demonstrated. For both types of irradiations, a strong influence of the water content on the hydrogen radiolytic yield G(H2) is evidenced. The geopolymers porosity effect has been only highlighted under γ-rays irradiation.

  16. The effects of additives on thermal stability of electron beam crosslinked (polyethylene-vinylacetate) blend in hot water

    International Nuclear Information System (INIS)

    Hassanpour, S.; Khoylou, F.

    2002-01-01

    Now a days electron beam radiation has a wide variety of application in wires, pipes, cable coating and modification of the polymers. Blending is a well-known method of modifying the properties of polymers. As it is reported, mechanical properties of irradiated polyethylene improved with addition of ethylene- vinylacetate copolymer. In previous work the thermal oxidation of electron beam irradiated LD/EVA blend mixed without any additives in hot water was investigated. In this work LD/EVA blends with additives was exposed to electron beam radiation. The effects of a hindered amin antioxidant, Chimmasorb 944 and two trifunctional monomers, triallyoxy-1, 3,5-triazine and 2-ethyl 2-(hydroxymethyl) 1,3 propandiol trimethacrylate on its properties after irradiation and thermal aging in hot water were investigated. After irradiation the gel fraction increased up to 70%. In addition irradiated samples showed noticeable changes in mechanical properties and elongation at break. From the results of the thermal aging procedure, Chimmasorb 944 showed a convenient influence on the increasing of the polymer blend thermal stability due to having a quite slow migration to the surface of the specimens. Furthermore, it appeared that two trifunctional monomers have different thermal stability after long time immersion in hot water. (Author)

  17. Interfacial radiolysis effects in tank waste speciation. 1998 annual progress report

    International Nuclear Information System (INIS)

    Camaioni, D.; Meisel, D.; Orlando, T.M.

    1998-01-01

    'The purpose of this program is to deliver pertinent, fundamental information that can be used to make technically defensible decisions on safety issues and processing strategies associated with storage and clean up of DOE mixed chemical and radioactive wastes. The radioactive and chemical wastes present in DOE underground storage tanks contain complex mixtures of sludges, salts, and supernatant liquids. These mixtures, which contain a wide variety of oxide materials, aqueous solvents, and organic components, are constantly bombarded with gamma quanta, beta and alpha particles produced via the decay of radioactive isotopes. Currently, there is a vital need to understand radiolysis of organic and inorganic species present in mixed waste tanks because these processes: (a) produce mixtures of toxic, flammable, and potentially explosive gases (i.e., H 2 , N 2 O and volatile organics) (b) degrade organics, possibly to gas-generating organic fragments, even as the degradation reduces the hazards associated with nitrate-organic mixtures, (c) alter the surface chemistry of insoluble colloids in tank sludge, influencing sedimentation and the gas/solid interactions that may lead to gas entrapment phenomena. This report summarizes the technical achievements of a 3-year project that is now in its 2nd year. Progress in three areas is reported: (1) radiation effects at NaNO 3 crystal interfaces, (2) reactions of organic complexants with NO 2 in water, and (3) radiation effects in oxide particles.'

  18. Favism inducing agents: a pulse radiolysis study of isouramil and convicine

    International Nuclear Information System (INIS)

    Chevion, M.; Ilan, Y.A.

    1980-01-01

    Isouramil and covicine, substances implicated in precipitating favic crises in glucose-6-phosphate dehydrogenase deficient individuals, have been studied in N 2 O-saturated aqueous solutions by pulse radiolysis, and the kinetics of the reactions of both substances with OH radicals were determined. The products of these reactions are addition intermediates absorbing above 330 nm. The decay of the intermediate(s) formed in the isouramil reaction is a biphasic one, while the decay of the corresponding intermediate for the convicine reaction is characterized by a single constant. By analogy to uracil, it is suggested that the OH radical is added to the double bond at either positions 5 or 6 of the pyrimidine ring forming two different intermediates. Each of these intermediates loses a molecule of water indicated by the observed biphasic decay reaction. For convicine on the other hand, position 5 is blocked by the O-gucosidic bond and the addition of the OH radical could take place only at position 6. Thus, a single intermediate is formed and its decay is a single-phase one. It has been shown that although free radicals could not be detected in the course of the reactions between isouramil and oxygen or with cellular components by electron paramagnetic resonance, isouramil can participate in a uni-electron transfer reacton and can form relatively stable intermediates. Thus, it is speculated that in the red blood cells isouramil could give rise to deleterious free radicals

  19. Comparison of the microbiocidal effect of gamma- and electron beam treatment and ozone with respect to water disinfection

    International Nuclear Information System (INIS)

    Pribil, W.

    2006-04-01

    The microbiocidal effect of ionizing radiation (gamma and electron beam radiation) and ozone with respect to water disinfection was investigated. Test organisms were spores of Bacillus subtilis, Escherichia coli and the bacteriophages PHI X 174, MS 2 and B 40 8. Experiments were conducted in sterile deionized water, Vienna City tap water and water with TOC-concentrations of about 5 mg/L and 15 mg/L. In some selected experiments the DOC-, BDOC- and AOC concentrations of water containing humic substances were observed in the course of ozonization or treatment with ionizing radiation. Pilot tests for the gamma and electron beam irradiation were conducted to define reproducible test conditions for all test organisms, test waters and applied radiation doses. For all test organisms inactivation experiments were performed and applied doses were chosen to enable reductions between 0 and 6 log units. Spores of B. subtilis were more resistant to gamma and electron beam irradiation than the bacteriophages PHI X 174, B 40 8 und MS 2. The radiation sensitivity of E. coli was similar to that of the bacteriophages. The gamma inactivation behaviour of the bacteriophages was influenced by the composition of the test water. To reach identical levels of reduction, higher applied doses were necessary in Vienna City tap water compared to sterile deionized water. This effect was insignificant for spores of B. subtilis. For all test organisms with the exception of the bacteriophage B 40 8 a dose rate effect was observed and quantified. Inactivation experiments with ozone showed under the tested conditions (0,4 mg O3/L after 4 min und 0,1 mg O3/L after 10 min reaction time) a good virucidal and bactericidal effect, with the exception of spores of B. subtilis. Hydrogen peroxide, generated by ionizing radiation, did not affect the inactivation behaviour of the test organisms under the experimental conditions tested. It was shown that gamma and electron beam radiation reduced the

  20. γ-radiolysis of methane adsorbed on γ-alumina

    International Nuclear Information System (INIS)

    Norfolk, D.J.; Swan, T.

    1978-01-01

    An earlier study showed that γ-alumina surfaces outgassed above 570 K contain sites involving exposed lattice ions at which methane is chemisorbed during γ-irradiation. When the species so formed are heated they decompose yielding C 1 , C 2 and C 3 alkanes and alkanes together with hydrogen. The present study investigates the kinetics of the reactions occurring during irradiation. These reactions are shown to be the activation of surface sites and the dissociative chemisorption of methane, in accord with the mechanism previously suggested. Overall product yields are chiefly determined by the rate at which excited charge carriers reach the surface, the highest rate observed being G(- CH 4 ) = 2.0 but declining when fewer than approximately 3 x 10 15 m -2 chemisorption sites remain unoccupied. A kinetic scheme is proposed to account for the variation in yields with methane coverage, radiation dose and dose rate, and specific surface area of the γ-alumina. It is also shown that the individual products formed when the precursors decompose depend on the configuration of the methane chemisorption sites, and so on the origin of the γ-alumina and the outgassing temperature used. Two subsidiary reactions are identified. The first of these resembles normal radiolysis but occurs at sites less accessible to methane. In the second, however, new surface species are formed when irradiation continues after either the methane or the chemisorption sites have been exhausted. These scavenge part of the adsorbed hydrocarbon material. (author)

  1. Improvements in detection system for pulse radiolysis facility

    CERN Document Server

    Rao, V N; Manimaran, P; Mishra, R K; Mohan, H; Mukherjee, T; Nadkarni, S A; Sapre, A V; Shinde, S J; Toley, M

    2002-01-01

    This report describes the improvements made in the detection system of the pulse radiolysis facility based on a 7 MeV Linear Electron Accelerator (LINAC) located in the Radiation Chemistry and Chemical Dynamics Division of Bhabha Atomic Research Centre. The facility was created in 1986 for kinetic studies of transient species whose absorption lies between 200 and 700 nm. The newly developed detection circuits consist of a silicon (Si) photodiode (PD) detector for the wavelength range 450-1100 nm and a germanium (Ge) photodiode detector for the wavelength range 900-1600 nm. With these photodiode-based detection set-up, kinetic experiments are now routinely carried out in the wavelength range 450-1600 nm. The performance of these circuits has been tested using standard chemical systems. The rise time has been found to be 150 ns. The photo-multiplier tube (PMT) bleeder circuit has been modified. A new DC back-off circuit has been built and installed in order to avoid droop at longer time scales. A steady baselin...

  2. Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2018-03-01

    Here we present our recent studies on the color and spectral reflectance changes induced by ∼0.9 MeV proton irradiation of ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. Ultraviolet-visible spectroscopy was used to observe and identify reaction products in the ice sample and digital photography was used to document the corresponding color changes at 10-160 K. Our experiments clearly show that the resulting color of the sample depends not only on the irradiation dose but also the irradiation temperature. Furthermore, unlike in our most recent studies of irradiation of NH4SH at 120 K, which showed that higher irradiation doses caused the sample to appear green, the lower temperature studies now show that the sample becomes red after irradiation. However, comparison of these lower temperature spectra over the entire spectral range observed by HST shows that even though the color and spectrum resemble the color and spectrum of the GRS, there is still enough difference to suggest that another component may be needed to adequately fit spectra of the GRS and other red regions of Jupiter's clouds. Regardless, the presence of NH4SH in the atmosphere of Jupiter and other gas giants, combined with this compound's clear alteration via radiolysis, suggests that its contribution to the ultraviolet-visible spectra of any of these object's clouds is significant.

  3. The γ radiolysis at room temperature of liquid deaerated isopropanol

    International Nuclear Information System (INIS)

    Gilles, L.

    1969-02-01

    The main products formed in the room temperature γ radiolysis of liquid isopropanol, and their respective yields, are: hydrogen 3.8, methane 1.6, acetone 3.4, acetaldehyde 1.1, and pinacol 0.3. These results give a material balance in good agreement with the formula of isopropanol and lead to a value for the yield of decomposition: 5, 3. The absence of butanediol 2.3 shows that the acetaldehyde cannot come from the dismutation of hydroxyethyl radicals. The variations of the hydrogen yield in the neutral medium with the concentration of added electron scavengers may be explained in terms of the model proposed by Freeman and FAYADH which supposes the existence of spurs. The yield of solvated electrons diffusing into the bulk of the solution and also the ratios of rate constants for the reactions of the scavengers with the electrons may likewise be obtained on the basis of this model. Certain effects not foreseen by this model may result from the capture of electrons solvated or not, whose mode of disappearance in pure alcohol remains unknown. One may distinguish a yield of excited molecules of at least 2, of which 80 per cent lead to the production of molecular hydrogen and 20 per cent to that of molecular methane, and an ionization yield of 2. 2. The discussion of the various mechanisms which may lead to the formation of the products indicates that these yields may be higher than the values quoted. (author) [fr

  4. Pulse radiolysis studies concerning oxidative degradation processes in linear polymers

    International Nuclear Information System (INIS)

    Schnabel, Wolfram

    1986-01-01

    On the basis of pulse radiolysis experiments carried out with various polymers in dilute solution three modes of action of molecular oxygen, 0 2 , can be discriminated with respect to main-chain scission: (a) 0 2 acts as a promoter, (b) 0 2 acts as an inhibitor, and (c) 0 2 acts as a fixing agent for main-chain breaks. The promoting mode of action (a) is due to the inhibition of simultaneously occurring intermolecular crosslinking (DNA, polymethylvinylketone) and/or to the combination of peroxyl radicals with the subsequent formation of readily decomposing oxyl radicals (polyethylene oxide, polyacrylamide, polyvinylpyrrolidone, polyribouridylic acid, polyriboadenylic acid, polyribocytidylic acid). The inhibiting mode of action (b) pertains to the reaction of 0 2 with macroradicals that otherwise undergo main-chain rupture (amylose polymethylmethacrylate). Fixing of main-chain ruptures (mode c) becomes important, if macroradicals generated by a very fast rupture of bonds in the main-chain, are prone to recombine quickly. This mode of action was evidenced in the case of polybutenesulfone where main-chain scission involves the extrusion of small segments of the chain. (author)

  5. Pulse radiolysis of adrenaline in acid aqueous solutions

    International Nuclear Information System (INIS)

    Gohn, M.; Getoff, N.; Bjergbakke, E.

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1 to 3) was carried out. The rate constants for the reactions of adrenaline with H and 0H were determined: k(H + adr.) = (0.9 +- 0.1) x 10 9 dm 3 mol -1 s -1 ; k(0H + adr.) = (1.65 +- 0.15) x 10 10 dm 3 mol -1 s -1 . The H-adduct of adrenaline has two lambdasub(max), at 280 and 355 nm, with epsilon 280 = 420 m 2 mol -1 and epsilon 355 = 390 m 2 mol -1 , which disappears according to a first order reaction, k 1 = 1.4 x 10 3 s -1 . The spectra formed by 0H attack was assigned to the corresponding benzoxy radical with absorption maxima at 285 and 365 nm and epsilon 285 = 620 m 2 mol -1 and epsilon 365 = 105 m 2 mol -1 . Due to the overlapping of the intermediates, no decay kinetics could be obtained. (author)

  6. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Andreo, P.; Tabata, T.

    1996-01-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth - dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies. (author)

  7. Radiolysis of a mixture of 2-Propanol-ketones and its comparison with photolysis

    International Nuclear Information System (INIS)

    Alipour, E.

    1983-01-01

    A mixture of 2-propanol and a ketone was subjected to gamma rays. The products obtained from pure radiolysis are methane, hydrogen, acetone, and pinacol. In the presence of a ketone, the radiation chemical yields of the products, with the exception of the yield of methane, decrease. At different concentration, the ketone undergoes reduction and is converted into the corresponding alcohol. The substances that have been separated and identified from the radiolysis of cyclohexanone are follows: cyclohexanone, cyclohexanol, bicyclohexanone, 3-isoprolylhydroxycyclohexanone. In order to investigated the mechanism of the above reaction experiments were carried out in the presence of electron acceptors (e.g.nitromethane, naphthalene, and lithium nitrate) and radical-acceptors(e.g. 1-hexene). The results show that cyclohexanone, like all other ketones, accepts the electron released from the ionization of an alcohol and is converted into a radical anion. This radical anion, then, accepts a proton and is converted into a hydroxy cyclohexyl radical which, by extracting a hydrogen atom from a second molecule of hydroxy cyclohexyl radical is converted into the corresponding alcohol. TOe existance and annihilation of solvated electrons and the formation of radicals was investigated by the method of pulse radiolysis. The results obtained confirm the mechanism proposed above. In addition, the results of radiolysis of a number of mixture of ketones 2-propanol were compared with the results of their photolysis. All the ketones investigated were reduced on radiolysis but, on photolysis, the straight-chain ketones and α-substituted cyclohexanones were not reduced

  8. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  9. The Reaction Mechanism and Rate Constants in the Radiolysis of Fe2+-Cu2+ Solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Sehested, Knud; Rasmussen, O. Lang

    1976-01-01

    Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some...... of the reactions have been determined at different pH's. $k_{{\\rm Cu}^{+}+{\\rm O}_{2}}=4.6\\times 10^{5}$ and $1.0\\times 10^{6}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}^{+}+{\\rm Fe}^{3+}}=5.5\\times 10^{6}$ and $1.3\\times 10^{7}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}({\\rm III)}+{\\rm Fe}^{2+}}=3.3\\times...

  10. GC-FTIR-MS analysis of volatile radiolytic products in the radiolysis of nitroaniline

    International Nuclear Information System (INIS)

    Kuruc, J.; Sahoo, M.K.; Kubinec, R.

    1993-01-01

    A good deal of products formed in the γ-radiolysis of isomeric nitroaniline solutions in carbon tetrachloride have been identified using GC-FTIR-MS technique. Tetrachloroethylene, chlorobenzene, hexachloroethane isomeric di-, tri- and tetrachlorobenzenes and chloroisocyanatobenzenes are among the important products formed in the radiolysis. Formation of dichlorobenzene is the result of ipso-substitution of both the nitro and aniline group by chlorine atom and the subsequent chloration of dichlorobenzene results in the formation of polychlorobenzenes. Chloroisocyanatobenzene is proposed to be the product arising from the interaction of dichlorocarbene and the nitro group of nitroaniline followed by chlorination of the resulting product, isocyanatobenzene. A 94% yield of undissolved 1,2-aminonitrobenzene chloride salt is obtained from the radiolysis of o-nitroaniline solution in carbon tetrachloride with a radiation yield of 1.83 molecules per 100 eV absorbed energy for an irradiation dose of 267 kGy. (author) 9 refs.; 3 figs.; 2 tabs

  11. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Ho-Hyun Lee

    2015-10-01

    Full Text Available Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.

  12. New experiment WAGASCI to measure cross sections of neutrino interactions in water and hydrocarbon using J-PARC beam

    Science.gov (United States)

    Ovsiannikova, T.; Antonova, M.; Izmaylov, A.; Kudenko, Y.; Khabibullin, M.; Khotjantsev, A.; Mefodiev, A.; Mineev, O.; Suvorov, S.; Yershov, N.

    2017-11-01

    The main objective of the long base T2K,Tokai-to-Kamioka, Japan, experiment is the investigation of neutrino oscillations with a high-intensity beam of muon neutrinos and antineutrinos. Neutrino interaction measurements in the near detector complex (ND280) of the T2K experiment are used for adjustment of the parameters defining event simulation in the far detector (Super-Kamiokande), which is the key idea of the experiment; this allows one to considerably increase the oscillation analysis accuracy. The difference in the target material of the far (water) and near (scintillator, hydrocarbon) detectors results in a substantial systematic error in oscillation analysis. Systematic error can be reduced by direct measurements, a new water grid and scintillator detector WAGASCI was proposed for this purpose. The detector will operate at the J-PARC neutrino beam and measure the ratio of charged-current neutrino cross sections between water and hydrocarbon with a few percent precision. Further physical programs may include precise measurements of various charged channels of neutrino interaction. This paper presents the detector concept and the current plan for its installation.

  13. Using multi-beam echo sounder backscatter data for sediment classification in very shallow water environments

    NARCIS (Netherlands)

    Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G.

    2009-01-01

    In a recent work described in Ref. [1], an angle-independent methodology was developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed sediment classification. The method employs the backscatter data at a certain angle to obtain the number of sediment classes and to

  14. Dynamic analysis of the radiolysis of binary component system

    International Nuclear Information System (INIS)

    Katayama, M.; Trumbore, C.N.

    1975-01-01

    Dynamic analysis was performed on a variety of combinations of components in the radiolysis of binary system, taking the hydrogen-producing reaction with hydrocarbon RH 2 as an example. A definite rule was able to be established from this analysis, which is useful for revealing the reaction mechanism. The combinations were as follows: 1) both components A and B do not interact but serve only as diluents, 2) A is a diluent, and B is a radical captor, 3) both A and B are radical captors, 4-1) A is a diluent, and B decomposes after the reception of the exciting energy of A, 4-2) A is a diluent, and B does not participate in decomposition after the reception of the exciting energy of A, 5-1) A is a radical captor, and B decomposes after the reception of the exciting energy of A, 5-2) A is a radical captor, and B does not participate in decomposition after the reception of the exciting energy of A, 6-1) both A and B decompose after the reception of the exciting energy of the partner component; and 6-2) both A and B do not decompose after the reception of the exciting energy of the partner component. According to the dynamical analysis of the above nine combinations, it can be pointed out that if excitation transfer participates, the similar phenomena to radical capture are presented apparently. It is desirable to measure the yield of radicals experimentally with the system which need not much consideration to the excitation transfer. Isotope substitution mixture system is conceived as one of such system. This analytical method was applied to the system containing cyclopentanone, such as cyclopentanone-cyclohexane system. (Iwakiri, K.)

  15. Glycoside bond cleavage in the radiolysis of aqueous solutions of methylglycosides and disaccharides

    International Nuclear Information System (INIS)

    Shadyro, O.I.; Kisel', R.M.

    2007-01-01

    The kinetics of formation of methylglycoside and disaccharide radiolysis products resulting from the O-glycoside bond cleavage under the action of 137 Cs γ-radiation (0-2.5 kGy radiation doses, 0.28 Gy/s dose rate) was studied, and the yields of these products were determined. It was found that oxygen inhibits these processes. The findings suggest that the fragmentation reaction of C' 2 radicals plays an important role in the formation of carbohydrate degradation products in the radiolysis of aqueous carbohydrate solutions [ru

  16. Non-specificity of C-H bond rupture by γ radiolysis of 3-methylpentane glass

    International Nuclear Information System (INIS)

    Laet, M. de; Tilquin, B.

    1988-01-01

    Some authors using esr data claimed that there is a high selectivity for the rupture of a particular C-H bond after the radiolysis of solid branched alkanes. Using the identification of dimer isomers and very low total dose, we have established the identity of the trapped radical produced at 77 K by the radiolysis of 3-methylpentane, all the parent radicals are formed. If there is a different probability of breaking a particular C-H bond, the bond rupture is not much less selective in liquid than in the glassy state [fr

  17. Comparison of the NMIJ and the ARPANSA standards for absorbed dose to water in high-energy photon beams.

    Science.gov (United States)

    Shimizu, M; Morishita, Y; Kato, M; Tanaka, T; Kurosawa, T; Takata, N; Saito, N; Ramanathan, G; Harty, P D; Oliver, C; Wright, T; Butler, D J

    2015-04-01

    The authors report the results of an indirect comparison of the standards of absorbed dose to water in high-energy photon beams from a clinical linac and (60)Co radiation beam performed between the National Metrology Institute of Japan (NMIJ) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Three ionisation chambers were calibrated by the NMIJ in April and June 2013 and by the ARPANSA in May 2013. The average ratios of the calibration coefficients for the three ionisation chambers obtained by the NMIJ to those obtained by the ARPANSA were 0.9994, 1.0040 and 1.0045 for 6-, 10- and 15-MV (18 MV at the ARPANSA) high-energy photon beams, respectively. The relative standard uncertainty of the value was 7.2 × 10(-3). The ratio for (60)Co radiation was 0.9986(66), which is consistent with the results published in the key comparison of BIPM.RI(I)-K4. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Inland and Near Shore Water Profiles Derived from the High Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    Science.gov (United States)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest

  19. Ultra-fast pulse radiolysis: A review of the recent system progress and its application to study on initial yields and solvation processes of solvated electrons in various kinds of alcohols

    International Nuclear Information System (INIS)

    Muroya, Yusa; Lin Mingzhang; Han Zhenhui; Kumagai, Yuta; Sakumi, Akira; Ueda, Toru; Katsumura, Yosuke

    2008-01-01

    In order to study radiation-induced fast phenomena, a new pulse radiolysis system with higher time resolution based on pulse-and-probe method was developed and utilized for practical work. A few picosecond electron beam generated from a linear accelerator, in which a laser photocathode RF-gun is introduced, was synchronized with a femtosecond laser pulse which is employed as the analyzing light. The synchronization precision between them was suppressed within 1.6 ps (rms). Converting the fundamental laser into white light continuum or optical parametric amplification allows to measure in the wide wavelength from visible to infrared region

  20. Electrochemical behaviour of stainless steel under radiation and exposed to representative chemistry in pressurised water reactor conditions

    International Nuclear Information System (INIS)

    Wang, Mi

    2013-01-01

    The dissertation focuses on the behaviour of stainless steel under irradiation and exposed to primary PWR conditions. The electrochemical potential of austenitic 316L stainless steel and the environmental parameters (hydrogen pressure, temperature, etc.,) have been measured continuously at high temperature (HT) and high pressure (HP) under irradiation, using a unique experimental HTHP working cell. Two sources of irradiation, proton and electron beams, have been employed in the study. A high similarity of electrochemical behaviour under both types of irradiations has been observed: (i) an oxidative potential response under irradiation (few tens of milli-volts); (ii) an increase in the hydrogen pressure reduces the oxidative potential response; (iii) a synergetic effect of thermal ageing and fluence leading to a decrease of the oxidative response under irradiation. The observations of the oxide film showed that without irradiation, metallic nickel in the inner and outer oxide films has been observed under a high hydrogen pressure. Under irradiation, um scale cavities (pits) have been observed in the strongly electron irradiated oxide film formed on 316L stainless steel. These defects are induced by the effect of irradiation of the passive film and water radiolysis. It is also shown that water radiolysis influences the PWR water chemistry by making it become a stronger oxidant at the oxide/solution interface. As a result, the release of metallic cations is increased and a-Fe 2 O 3 hematite has been observed on the irradiated outer oxide film where cavities were formed. (author) [fr

  1. Measurement of the broadening and depolarization of a Gaussian beam to transmit in fog water

    International Nuclear Information System (INIS)

    Serrano, G.; Reynoso, E; Davila, J. A.

    2012-01-01

    In this paper, we develop a controlled experimental environment in the laboratory, a waterproof camera where it will introduce artificial fog and become a beam of linearly polarized Gaussian laser light, creating sprawl, broadening and depolarization is studied with a system capable of measuring such phenomena. Most studies on dispersion have focused on the lobes of backscattering, however the correct conditions with the incident light beam a substantial fraction of light is scattered in the forward direction forming a widened light lobe. With this light lobe formed could be studied with extreme precision many factors such as the existence of single or multiple scattering and the amount by which this is carried out. This is of great importance in the estimation of lidar returns because these foundations can learn important information such as extinction and backscatter coefficients, particulate pollutants in the atmosphere and thus understand the operation model of nature. (Author)

  2. Comparison of surface roughness quality created by abrasive water jet and CO2 laser beam cutting

    Czech Academy of Sciences Publication Activity Database

    Zeleňák, M.; Valíček, Jan; Klich, Jiří; Židková, P.

    2012-01-01

    Roč. 19, č. 3 (2012), s. 481-485 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive waterjet cutting * CO2 laser beam cutting * optical profilometry * titanium sample Subject RIV: JQ - Machines ; Tools Impact factor: 0.601, year: 2012 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=129054

  3. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  4. Observations and theoretical evaluations of color changes of traveling light beams caused by optical rotation phenomena in sugared water and their applications for educational purposes

    Science.gov (United States)

    Tokumitsu, Seika; Hasegawa, Makoto

    2017-08-01

    Investigations were conducted for the purposes of understanding coloring phenomena to be caused by optical rotation of polarized light beams in sugared water and realizing their applications as educational tools. By allowing polarized laser beams in red, blue or green to travel in sugared water of certain concentrations, changes in their intensities were measured while changing a distance between a pair of polarizing plates in the sugared water. An equation was established for a theoretical value for the angle of rotation for light of any colors (wavelengths) travelling in sugared water of any concentrations. The predicted results exhibited satisfactory matching with the measured values. In addition, the intensities of transmitted laser beams, as well as colors to be observable when a white-color LED torch was employed as a light source, were also become predictable, and the predicted results were well-matched with the observation results.

  5. Inedible cellulose-based biomass resist material amenable to water-based processing for use in electron beam lithography

    Directory of Open Access Journals (Sweden)

    Satoshi Takei

    2015-07-01

    Full Text Available An electron beam (EB lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm2, a resist thickness uniformity of less than 0.4 nm on a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process.

  6. Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    Science.gov (United States)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1

  7. Gamma radiolysis of the highly selective ligands CyMe{sub 4}BTBP and CyMe{sub 4}BTPhen: Qualitative and quantitative investigation of radiolysis product

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.; Wilden, A.; Modolo, G.; Bosbach, D. [Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research IEK-6: Nuclear Waste Management, 52425 Juelich (Germany); Santiago-Schuebel, B.; Hupert, M. [Forschungszentrum Juelich GmbH, Central Institute for Engineering, Analytics - ZEA-3, 52425 Juelich (Germany); Svehla, J.; Gruner, B. [Institute of Inorganic Chemistry, Academy of Sciences, Hlavni 1001, 25068 Husinec-Rez (Czech Republic); Ekberg, C. [Department of Chemical and Biochemical Engineering, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2016-07-01

    The highly selective nitrogen donor ligands CyMe{sub 4}BTBP and CyMe4{sub B}TPhen where γ-irradiated under identical experimental conditions in 1-octanol with and without contact to nitric acid solution. Subsequently, solvent extraction experiments were carried out to evaluate the stability of the extractants against γ-radiation monitoring Am(III) and Eu(III) distribution ratios. Generally, decreasing distribution ratios with increasing absorbed dose were detected for both molecules. Furthermore, qualitative mass spectrometric analyses were performed and ligand concentrations were determined by HPLC-DAD after irradiation to investigate the radiolysis mechanism. An exponential decrease with increasing absorbed dose was observed for both ligands with a faster rate for CyMe{sub 4}BTPhen. Main radiolysis products indicated the addition of one or more diluent molecules (1-octanol) to the ligand via prior production of α-hydroxy-octyl radicals from diluent radiolysis. The addition of nitric acid during the irradiation lead to a remarkable stabilization of the system, as the extraction of Am(III) and Eu(III) did not change significantly over the whole examined dose range. Quantification of the remaining ligand concentration on the other hand showed decreasing concentrations with increasing absorbed dose. The stabilization of D values is therefore explained by the formation of 1-octanol addition products which are also able to extract the studied metal ions. (authors)

  8. Gamma radiolysis of the highly selective ligands CyMe4BTBP and CyMe4BTPhen: Qualitative and quantitative investigation of radiolysis product

    International Nuclear Information System (INIS)

    Schmidt, H.; Wilden, A.; Modolo, G.; Bosbach, D.; Santiago-Schuebel, B.; Hupert, M.; Svehla, J.; Gruner, B.; Ekberg, C.

    2016-01-01

    The highly selective nitrogen donor ligands CyMe 4 BTBP and CyMe4 B TPhen where γ-irradiated under identical experimental conditions in 1-octanol with and without contact to nitric acid solution. Subsequently, solvent extraction experiments were carried out to evaluate the stability of the extractants against γ-radiation monitoring Am(III) and Eu(III) distribution ratios. Generally, decreasing distribution ratios with increasing absorbed dose were detected for both molecules. Furthermore, qualitative mass spectrometric analyses were performed and ligand concentrations were determined by HPLC-DAD after irradiation to investigate the radiolysis mechanism. An exponential decrease with increasing absorbed dose was observed for both ligands with a faster rate for CyMe 4 BTPhen. Main radiolysis products indicated the addition of one or more diluent molecules (1-octanol) to the ligand via prior production of α-hydroxy-octyl radicals from diluent radiolysis. The addition of nitric acid during the irradiation lead to a remarkable stabilization of the system, as the extraction of Am(III) and Eu(III) did not change significantly over the whole examined dose range. Quantification of the remaining ligand concentration on the other hand showed decreasing concentrations with increasing absorbed dose. The stabilization of D values is therefore explained by the formation of 1-octanol addition products which are also able to extract the studied metal ions. (authors)

  9. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.

    Science.gov (United States)

    Pilling, Sergio; Duarte, Eduardo Seperuelo; Domaracka, Alicja; Rothard, Hermann; Boduch, Philippe; da Silveira, Enio F

    2011-09-21

    An experimental study of the interaction of highly charged, energetic ions (52 MeV (58)Ni(13+) and 15.7 MeV (16)O(5+)) with mixed H(2)O : C(18)O(2) astrophysical ice analogs at two different temperatures is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by cosmic rays inside dense, cold astrophysical environments, such as molecular clouds or protostellar clouds as well at the surface of outer solar system bodies. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a CsI substrate at 13 K and 80 K. In situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross section at 13 K of both H(2)O and CO(2) is about 3-4 times smaller when O ions are employed. The ice temperature seems to affect differently each species when the same projectile was employed. The formation cross section at 13 K of molecules such as C(18)O, CO (with oxygen from water), and H(2)O(2) increases when Ni ions are employed. The formation of organic compounds seems to be enhanced by the oxygen projectiles and at lower temperatures. In addition, because the organic production at 13 K is at least 4 times higher than the value at 80 K, we also expect that interstellar ices are more organic-rich than the surfaces of outer solar system bodies.

  10. The unique facilities offered by γ radiolysis to understand polymerization kinetics

    International Nuclear Information System (INIS)

    Gilbert, R.G.

    1998-01-01

    Full text: One of the most important means of polymer formation involves initiation by free radicals. A subset of this, especially important in industry, is emulsion polymerization, whereby the polymerization process is dispersed in water: an environmentally-friendly 'solvent'. γ radiolysis as an initiation method for free-radical polymerization can give unique mechanistic information: it can penetrate opaque media (i.e., produce a uniform flux of radicals) yet can be switched off instantly, thereby enabling radical loss mechanisms to be investigated. It also gives a steady radical flux at any temperature, which is particularly convenient for looking at reactions at low temperatures, thereby giving the means of 'tuning out' complications that can occur at elevated temperatures. Data will be presented to show that this has enabled rate coefficients for a variety of free-radical processes to be obtained, often for the first time: for example, radical loss in emulsion polymerization by exit and by termination. A new method enables termination rate coefficients to be obtained by two completely independent means (one of which requires γ), thereby verifying the results from both. However, care must be taken for certain systems, such as those involving vinyl esters, where evidence has been obtained that unusual species are formed which undergo slow subsequent polymerization but rapid termination, thereby limiting the applications of the technique. The knowledge gained from these studies has been used to develop theories for these free-radical processes which are being further refined by testing with further experiments. Moreover, this knowledge has also been used to design new materials

  11. One- and two-electron reduction of quinizarin and 5-methoxyquinizarin: a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Tulsi; Swallow, A.J. (Christie Hospital and Holt Radium Inst., Manchester (UK). Paterson Labs.); Guyan, P.M.; Bruce, J.M. (Manchester Univ. (UK). Dept. of Chemistry)

    1990-01-01

    Absorption characteristics of the semiquinone free radicals formed by one-electron reduction of quinizarin (QH{sub 2}), 5-methoxyquinizarin (MQH{sub 2}) and quinizarin 2-sulphonate (QSH{sub 2}) have been studied by pulse radiolysis in a mixed solvent system consisting of water, isopropyl alcohol and acetone. Second-order rate constants have been determined for the reactions of (CH{sub 3}){sub 2}COH with the quinones, of the semiquinones with O{sub 2} and of the semiquinones with each other. The one-electron reduction potentials (vs. NHE) are E{sub 7}{sup 1} = -269 mV for QH{sub 2}, -333 mV for MQH{sub 2} and -298 mV for QSH{sub 2}. They vary with pH in accordance with the pK{sub a} values of the parent quinones and the semiquinones. The radicals are stable within the approximate pH range 5-11. The stability constant is highest at pH 8.5 (K{sub 2} {approx equal} 0.09) for QH{sub 2}, at pH {approx equal} 9.5 for QSH{sub 2} (K{sub s} {approx equal}10) and pH {approx equal} 10.8 for MQH{sub 2} (K{sub s} {approx equal} 4.8), respectively. The one-electron reduction potentials of the semiquinones and the two-electron reduction potentials of the quinones are calculated to be E{sub 7}{sup 2} = -188, -192 and -216 mV, and E{sub 7}{sup m} = -229, -263 and -257 mV for QH{sub 2}, MQH{sub 2} and QSH{sub 2}, respectively. The effect of solvent on the properties of the semiquinones is discussed. (author).

  12. Photosynthetic pigments and model compounds studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Jensen, N.-H.

    1980-05-01

    The photosynthetic pigments chlorophyll a and alltrans-β-carotene as well as the quinone model compound duroquinone have been studied in solution by pulse radiolysis combined with time-resolved absorption and resonance Raman spectroscopy. In benzene solution the excited triplet states of the subtrates were produced either directly in the case of duroquinone or by triplet energy transfer from triplet naphthalene in the case of chlorophyll a and β-carotene. All relevant rate constants involved in the reactions of the excited states in benzene were determined, including i) the rate constants for energy transfer from triplet naphthalene to chlorophyll a with k = (3.6+-0.6).10 9 M -1 s -1 and β-carotene with k = (10.7+-1.2).10 9 M -1 s -1 ii) the rate constants of triplet annihilation of chlorophyll a: (1.4+-0.3).10 9 M -1 s -1 , β-carotene: (3.6+-0.4).10 9 M -1 s -1 , duroquinone: (3.0+-0.6).10 9 M -1 s -1 . For β-carotene it is suggested that triplet-triplet annihilation produces the optically forbidden excited 1 Asub(g) state. The first-order components of the triplet decays were strongly dependent upon irradiation dose in the case of naphthalene and duroquinone but apparently only slightly dependent on or independent or irradiation dose in the case of chlorophyll a and β-carotene. Apparent bimolecular rate constants for triplet quenching by radiolytically produced free radicals are determined. The triplet state of duroquinone is quenched by ground state duroquinone with a rate constant of (1.2+-0.3).10 6 M -1 s -1 . The excited triplet state of all-trans-β-carotene has been investigated by time-resolved resonance Raman spectroscopy. Six transient Raman bands at 965 cm -1 , 1009 cm -1 , 1125 cm -1 , 1188 cm -1 , 1236 cm -1 and 1496 cm -1 were observed. The spectra suggest that the C = C band order is decreased and that the molecule may be substantially twisted, presumably at the 15,15 1 band, in the triplet state. The radical anion of chlorophyll a with

  13. Radiolysis and corrosion of Pu-doped UO2 pellets in chloride brine

    Indian Academy of Sciences (India)

    Unknown

    Radiolysis and corrosion of. 238. Pu-doped UO2 pellets in chloride brine. M KELM* and E BOHNERT. Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, Postfach. 3640, 76021 Karlsruhe, Germany e-mail: kelm@ine.f3k.de. Abstract. Deaerated 5 M NaCl solution is irradiated in the presence of UO2 pellets.

  14. Radiolysis and corrosion of 238 Pu-doped UO2 pellets in chloride ...

    Indian Academy of Sciences (India)

    radiation from 238Pu. Experiments are conducted with 238Pu doped pellets and others with 238Pu dissolved in the brine. The radiolysis products and yields of mobilized U and Pu from the oxidative dissolution of UO2 are determined. Results ...

  15. DNA radiolysis in DNA-protein complex: a stochastic simulation of attack by hydroxyl radicals

    Czech Academy of Sciences Publication Activity Database

    Běgusová, Marie; Giliberto, S.; Gras, J.; Sy, D.; Charlier, M.; Spotheim Maurizot, M.

    2003-01-01

    Roč. 79, č. 6 (2003), s. 385-391 ISSN 0955-3002 R&D Projects: GA AV ČR IAA1048103 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiolysis * DNA-protein complexes * hydroxyl radicals Subject RIV: BO - Biophysics Impact factor: 2.165, year: 2003

  16. Radiolysis study of the radical-like action mechanisms of an antioxidant: Sulfarlem

    International Nuclear Information System (INIS)

    Ruimy-Ifrah, Pascale

    1989-01-01

    Sulfarlem or p-anisyldithiolthione (ADT) is a sulfured heterocyclic compound which exhibits antioxidant properties. This work presents the quantitative study of the mono-electronic exchange mechanisms involved in this action. This study has been performed by gamma radiolysis and pulse radiolysis. The gamma radiolysis of ADT aerated ethanolic solutions has shown that O 2 . and RO 2 . radicals are not reactive towards ADT. In return, ADT is an efficient scavenger of R . radicals; the rate constant of this reaction being k (ADT + R . ) = 6.7 x 10 4 mol -1 .l.s -1 . The pulse radiolysis experiments allowed the characterization of ADT reduction by the solvated electron (k (e solv - + ADT) = 2.3 x 10 10 mol -1 .l.s -1 ), the determination of the absorption spectrum of the reduced species A . (maximum wavelength = 580 nm) and the rate constant of its evolution (k (A . + A . ) = 5.7 x 10 8 mol -1 .l.s -1 ). An analogous study has been performed with ADO, an ADT oxidized derivative, which appeared to be a less efficient free radicals scavenger. (author) [fr

  17. Semi-quantitative and quantitative studies on the gamma radiolysis of C5-BTBP

    Czech Academy of Sciences Publication Activity Database

    Fermvik, A.; Grüner, Bohumír; Kvíčalová, Magdalena; Ekberg, C.

    2011-01-01

    Roč. 99, č. 2 (2011), s. 113-119 ISSN 0033-8230 Grant - others:EUROPEAN COMMISSION(XE) FP7-CP-2007-211267 Institutional research plan: CEZ:AV0Z40320502 Keywords : radiolysis * degradation product * solvent extraction * partitioning Subject RIV: CA - Inorganic Chemistry Impact factor: 1.575, year: 2011

  18. Reactivity of OH and O– with aqueous methyl viologen studied by pulse radiolysis

    DEFF Research Database (Denmark)

    Solar, Sonja; Solar, Wolfgang; Getoff, Nikola

    1985-01-01

    The behaviour of aqueous MV2+ towards oxidizing radicals (OH and O–) has been investigated in the pH range from 6 to 14 by means of pulse radiolysis. A semi-linear optimization method was applied for resolving the complex reaction mechanism. In the pH range from 6 to 8 the rate constant for attac...

  19. Stability and linearity of luminescence imaging of water during irradiation of proton-beams and X-ray photons lower energy than the Cerenkov light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Yabe, Takuya; Komori, Masataka; Tada, Junki; Ito, Shiori; Toshito, Toshiyuki; Hirata, Yuho; Watanabe, Kenichi

    2018-03-01

    Luminescence of water during irradiations of proton-beams or X-ray photons lower energy than the Cerenkov-light threshold is promising for range estimation or the distribution measurements of beams. However it is not yet obvious whether the intensities and distributions are stable with the water conditions such as temperature or addition of solvable materials. It remains also unclear whether the luminescence of water linearly increases with the irradiated proton or X-ray energies. Consequently we measured the luminescence of water during irradiations of proton-beam or X-ray photons lower energy than the Cerenkov-light threshold with different water conditions and energies to evaluate the stability and linearity of luminescence of water. We placed a water phantom set with a proton therapy or X-ray system, luminescence images of water with different conditions and energies were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton or X-ray irradiations to the water phantom. In the stability measurements, imaging was made for different temperatures of water and addition of inorganic and organic materials to water. In the linearity measurements for the proton, we irradiated with four different energies below Cerenkov light threshold. In the linearity measurements for the X-ray, we irradiated X-ray with different supplied voltages. We evaluated the depth profiles for the luminescence images and evaluated the light intensities and distributions. The results showed that the luminescence of water was quite stable with the water conditions. There were no significant changes of intensities and distributions with the different temperatures. Results from the linearity experiments showed that the luminescence of water linearly increased with their energies. We confirmed that luminescence of water is stable with conditions of water. We also confirmed that the luminescence of water linearly increased with their energies.

  20. Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study.

    Science.gov (United States)

    Yamashita, Shinichi; Ma, Jun; Marignier, Jean-Louis; Hiroki, Akihiro; Taguchi, Mitsumasa; Mostafavi, Mehran; Katsumura, Yosuke

    2016-12-01

    We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical ( • OH) and hydrated electron ([Formula: see text])] in the gels, were determined to be 4.5 × 10 9 and 1.8 × 10 7 M -1 s -1 , respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of [Formula: see text], but the additionally produced amount of [Formula: see text] disappeared immediately within 200 ps, indicating fast recombination of [Formula: see text] with hole radicals on HPC or on surrounding hydration water molecules. Reactions of [Formula: see text] with nitrous oxide (N 2 O) and nitromethane (CH 3 NO 2 ) were also examined. Decay of [Formula: see text] due to scavenging by N 2 O and CH 3 NO 2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N 2 O than for CH 3 NO 2 , revealing lower solubility of N 2 O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH 3 NO 2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of [Formula: see text], which is affected by the amount of the scavenged precursor of [Formula: see text], in hydrogel containing N 2 O was slightly higher than that in water containing N 2 O, and the same tendency was found for CH 3 NO 2 .

  1. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    CERN Document Server

    Yamamoto, T; Horiguchi, Y; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Yamamoto, K

    2002-01-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without sup 1 sup 0 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of sup 1 sup 0 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99+-0.24, 3.04+-0.19 and 1.43+-0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50+-0.32, 2.34+-0.30 and 2.17+-0.28 for EN...

  2. Absorbed dose to water reference dosimetry using various water-equivalent solid phantoms in high-energy photon beams

    International Nuclear Information System (INIS)

    Araki, Fujio; Hanyu, Yuji; Okumura, Masahiko

    2007-01-01

    Most recent megavoltage dosimetry protocols (e.g., the Japan Society of Medical Physics (JSMP) (JSMP-01), the American Association of Physicists in Medicine (AAPM) (TG-51), and the International Atomic Energy Agency (IAEA) (TRS-398)) have limited to the use of liquid water as a phantom material for reference dose measurements. This is because water is well-defined and reproducibly available compared to water-equivalent solid phantoms. This study presents methods to determine absorbed dose to water using ionization chambers calibrated in terms of absorbed dose to water but irradiated in solid phantoms. Achieving solid phantom measurements on an absolute basis has distinct advantages in verification measurements and quality assurance. We provide a depth scaling factor that transfers a depth in the solid phantom to a water equivalent depth and an ionization conversion factor (ionization ratio) that converts a chamber reading in the solid phantom to that in water. The absorbed dose to water under reference conditions can be obtained from the solid phantom measurements by using the two factors. We calculated the depth scaling factor for four solid phantoms (Solid Water RMI457, Tough Water WE211, RW3, and MixDP) for photon energies between 4 and 18 MV. The calculated average scaling factor for each phantom agreed within 1.5% compared with the relative electron density. For various Farmer-type cylindrical chambers, we also calculated and measured the ionization conversion factor for the four solid phantoms. The solid phantom measurements were performed at many hospitals. For RMI457 and WE211, the differences between measured and calculated factors varied between -0.5% and 0.7% with the average ionization conversion factor 0.3% lower than the calculation, whereas RW3 agreed within 0.5% after one phantom examination. Similarly, the differences for MixDP ranged from -0.2% to -1.5% with the average 1.0% lower than the calculation. The composition of commercial plastic

  3. Holographic Measurements of Electron-Beam Dose Distributions Around Inhomogeneities in Water

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1976-01-01

    Dose distribution measurements made in a small quartz cell filled with water, and with an Al rod placed in the water are reported. The cell was irradiated vertically from above with monoenergetic 3 MeV electrons from a Van de Graaff accelerator. The holographic interferometric method previously...

  4. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  5. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  6. Comparison of k Q factors measured with a water calorimeter in flattening filter free (FFF) and conventional flattening filter (cFF) photon beams

    Science.gov (United States)

    de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Perik, Thijs; Wittkämper, Frits

    2018-02-01

    Recently flattening filter free (FFF) beams became available for application in modern radiotherapy. There are several advantages of FFF beams over conventional flattening filtered (cFF) beams, however differences in beam spectra at the point of interest in a phantom potentially affect the ion chamber response. Beams are also non-uniform over the length of a typical reference ion chamber and recombination is usually larger. Despite several studies describing FFF beam characteristics, only a limited number of studies investigated their effect on k Q factors. Some of those studies predicted significant discrepancies in k Q factors (0.4% up to 1.0%) if TPR20,10 based codes of practice (CoPs) were to be used. This study addresses the question to which extent k Q factors, based on a TPR20,10 CoP, can be applied in clinical reference dosimetry. It is the first study that compares k Q factors measured directly with an absorbed dose to water primary standard in FFF-cFF pairs of clinical photon beams. This was done with a transportable water calorimeter described elsewhere. The measurements corrected for recombination and beam radial non-uniformity were performed in FFF-cFF beam pairs at 6 MV and 10 MV of an Elekta Versa HD for a selection of three different Farmer-type ion chambers (eight serial numbers). The ratio of measured k Q factors of the FFF-cFF beam pairs were compared with the TPR20,10 CoPs of the NCS and IAEA and the %dd(10) x CoP of the AAPM. For the TPR20,10 based CoPs differences less than 0.23% were found in k Q factors between the corresponding FFF-cFF beams with standard uncertainties smaller than 0.35%, while for the %dd(10) x these differences were smaller than 0.46% and within the expanded uncertainty of the measurements. Based on the measurements made with the equipment described in this study the authors conclude that the k Q factors provided by the NCS-18 and IAEA TRS-398 codes of practice can be applied for flattening filter free beams without

  7. Monte Carlo Calculations of Dose to Medium and Dose to Water for Carbon Ion Beams in Various Media

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Petersen, Jørgen B.B.; Jäkel, Oliver

    treatment plans. Here, we quantisize the effect of dose to water vs. dose to medium for a series of typical target materials found in medical physics. 2     Material and Methods The Monte Carlo code FLUKA [Battistioni et al. 2007] is used to simulate the particle fluence spectrum in a series of target...... materials exposed to carbon ion beams. The scored track-length fluence spectrum Φi for a given particle i at the energy E, is multiplied with the mass stopping power for target material for calculating Dm . Similarly, Dw is calculated by multiplying the same fluence spectrum with the mass stopping power...... the PSTAR, ASTAR stopping power routines available at NIST1 and MSTAR2 provided by H. Paul et al. 3     Results For a pristine carbon ion beam we encountered a maximum deviation between Dw and Dm up to 8% for bone. In addition we investigate spread out Bragg peak configurations which dilutes the effect...

  8. Velocity measurements and identification of the flow pattern of vertical air-water flows with light-beam detectors

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Leoni, B.

    1980-07-01

    A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)

  9. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  10. Electron beam induced dis-infection of biologically treated waste water effluent

    International Nuclear Information System (INIS)

    Rawat, K.P.; Khader, S.A.; Sarma, K.S.S.

    2012-01-01

    The conservation of water is need of the hour as there is vast gap between demand and supply. The waste water generated in conventional waste water treatment plant can be recycled for irrigation. The presence of pathogenic micro-organism makes it unsafe for this purpose. EB is very effective in killing all forms of pathogens. The biologically treated waste water effluent was used for this purpose. The pathogen count reduced to undetectable level with the EB dose of 0.45 kGy. The BOD and COD values were within the permissible limit. The other physico-chemical parameters remained unaltered. The ability of EB to deliver higher dose rates makes it ideal for handling large volumes of effluent generated in megacities. (author)

  11. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  12. Effects of electron beam irradiation combined with hot water immersion treatment for shelf life extension of bananas

    International Nuclear Information System (INIS)

    Russly Abdul Rahman

    1996-01-01

    A study of the effects of minimal processing treatments, both individually or in combinations, was carried out in order to extend the shelf life and to improve the quality of bananas. Pre climacteric bananas at light full three-quarter grade, were either treated with hot water immersion for 1-30 min at 45-55 degree C, or irradiated with electron beams (2.0 MeV, Van de Graaff accelerator), to a dose of 0.1-1.5 kGy. All fruit was stored at 21 ± 1 degree C and relative humidity of 85-95 %. There was no significant delay in ripening of fruit treated with hot water immersion at the above temperatures. Some damage to fruit particularly peel scalding at ends occurred at the higher temperatures (>50 degree C). The 50 degree C, 5 minutes immersion was selected for further study. Irradiation to 0.1-0.3 kGy delayed the ripening (up to 3 days) without affecting fruit quality. Doses greater than 0.4 kGy resulted in extensive discoloration and fruit splitting. No significant differences could be detected organoleptically between bananas irradiated at 0.15 kGy and the control. Results of the physico-chemical attributes of the bananas were reported for fruits at colour stage 5 and after 10 and 15 days of storage. The combination treatment of hot water immersion and irradiation at the above settings further extended the shelf life of the banana fruits

  13. Gas phase radiolysis and vacuum ultraviolet photolysis of heterocyclic organic compounds. Progress report, February 1, 1974--February 1, 1975

    International Nuclear Information System (INIS)

    Scala, A.A.; Salomon, D.; Colon, I.; D'Angona, J.

    1975-01-01

    In the γ radiolysis of tetrahydrofuran there are pronounced density effects in the pressure range from 0 to 50 Torr with the most important ion-pair yields decreasing as the pressure increases. The relative product yields of the radiolysis is compared with that of xenon photolysis. Possible mechanisms to explain the results obtained are discussed. The ion-pair yields from the γ radiolysis of the heterocyclic amines, ethylenimine, azetidine, pyrrolidine, and piperidine, are determined, and the pressure effects are evaluated. Reactions mechanisms are discussed. The vacuum ultraviolet photolysis products of thietane and tetrahydrothiophene are studied and compared with the γ radiolysis products. Reaction mechanisms are discussed. The status of the construction of a photoionization mass spectrometer and the measurement of the ionization efficiencies and extinction coefficients of organic compounds is reported. (U.S.)

  14. The effect of different stabilizers on the thermostability of electron beam crosslinked polyethylene in hot water

    International Nuclear Information System (INIS)

    Hassanpour, S.; Khoylou, F.

    2003-01-01

    Plastic pipes owing to their flexibility, great lengths, easier handling and absence of corrosion have been used for hot-water installations. Crosslinked high-density polyethylene is one of the best materials, being used for this purpose. The useful lifetime of unstabilized polyethylene is predicted to vary from a few months in hot water (30-40 deg. C) to almost two years in cool water (0-10 deg. C). Polyethylene was mixed with different types of stabilizers, in order to increase its durability. The samples were irradiated at 100-150 kGy. The amount of gel fraction and the changes in mechanical properties were measured. Irradiated samples were immersed in hot water for 1000 h. The thermostability of the specimens and the existence of antioxidants were measured by the induction time technique using differential scanning calorimetry at different time intervals. Furthermore, the changes in chemical structure and mechanical properties of the samples during their immersion in hot water were determined

  15. Electron beam damage in oxides: a review.

    Science.gov (United States)

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  16. Corrosion behavior of 316 L stainless steel simulated by studying the influence of the species produced in the radiolysis in tritiated aqueous solutions

    International Nuclear Information System (INIS)

    Bellanger, G.

    1991-10-01

    The corrosion of 316 L stainless steel in tritiated aqueous solutions was simulated by studying the influence of species produced or present in the radiolysis in these solutions. The species studied were nitrates, fluorides, nitrites, hydrogen peroxide and components of the steel, as well as the pH. The method used was voltammetry. The corroded or passivated surfaces were examined by scanning electron microscopy and the corrosion rates were determined by measuring the electrochemical impedance. The depletion of the component elements of the stainless steel at the surface was observed by X-ray fluorescence. From our results we propose methods to limit the corrosion in an industrial tritiated water installation by controlling the pH, the oxidation-reduction potential of the water and the voltage of the installation [fr

  17. Precise determination of the Bragg peak position of proton beams in liquid water

    International Nuclear Information System (INIS)

    Marouane, Abdelhak; Ouaskit, Said; Inchaouh, Jamal

    2011-01-01

    The influence of water molecules on the surrounding biological molecules during irradiation with protons is currently a major subject in radiation science. Proton collisions with the water molecules are estimated around the Bragg peak region, taking into account ionization, excitation, charge-changing processes, and energetic secondary electron behavior. The Bragg peak profile and position was determined by adopting a new approach involving discretization, incrementation, and dividing the target into layers, the thickness of each layer being selected randomly from a distribution weighted by the values of the total interaction cross section, from excitation up to ionization of the target and the incident projectile charge exchange. The calculation was carried out by a Monte-Carlo simulation in the energy range 20 ≤ E ≤ 10 8 eV, including the relativistic corrections.

  18. Water resistance and surface morphology of synthetic fabrics covered by polysiloxane/acrylate followed by electron beam irradiation

    CERN Document Server

    El-Naggar, A M; Mohammed, S S; Alam, E A

    2003-01-01

    Different synthetic fabrics were treated by electron beam surface coating with two formulations based on polydimethylsiloxane (PDMS) and polystyrene (PS) or poly(methyl methacrylate) (PMMA) oligomers. The water resistance properties were investigated in terms of the percentage of water repellency and absorption. Also, the surface coated fabrics were examined by scanning electron microscopy/microscope (SEM) connected to an energy dispersive X-ray (EDX) unit to determine the percentage atomic contents of elements. The results showed that the adhesion of the polysiloxane formulation to the surface depends largely on the kind of acrylate oligomer and textile fabric as indicated by the EDX analysis for silicon. In this regard, PDMS/PS formulation is more compatible with polyester and nylon-6 fabrics than PDMS/PMMA one. However, it was found that PDMS/PMMA formulation is more compatible with cotton/polyester blend than PDMS/PS. The SEM micrographs give further supports to the EDX analysis. On the basis of the perce...

  19. A pulse radiolysis study of the dynamics of ascorbic acid free radicals within a liposomal environment.

    Science.gov (United States)

    Kobayashi, Kazuo; Seike, Yumiko; Saeki, Akinori; Kozawa, Takahiro; Takeuchi, Fusako; Tsubaki, Motonari

    2014-10-06

    The dynamics of free-radical species in a model cellular system are examined by measuring the formation and decay of ascorbate radicals within a liposome with pulse radiolysis techniques. Upon pulse radiolysis of an N2O-saturated aqueous solution containing ascorbate-loaded liposome vesicles, ascorbate radicals are formed by the reaction of OH(·) radicals with ascorbate in unilamellar vesicles exclusively, irrespective of the presence of vesicle lipids. The radicals are found to decay rapidly compared with the decay kinetics in an aqueous solution. The distinct radical reaction kinetics in the vesicles and in bulk solution are characterized, and the kinetic data are analyzed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Study of excited states in liquid organic systems with the use of pulse radiolysis

    International Nuclear Information System (INIS)

    Ramanan, G.

    1979-01-01

    Application of electron pulse radiolysis of liquid organic systems in the investigations of excited singlet and triplet states has been illustrated with ethyl acetate and hexafluorobenzene. The fluorescence spectrum and lifetime of singlet excited hexafluorobenzene ( 1 HFB*) in cyclohexane medium have been obtained using nanosecond electron pulses. The possible formation of excimer in this case has been investigated. Energy transfer reactions from excited benzene singlet to HFB in benzene and cyclohexane media have been studied and their transfer constants were evaluated. Pulse radiolysis of ethyl acetate in presence of different concentrations of anthracene or biphenyl were used in the study of solute triplets. An upper limit for the yield of excited singlet anthracene was estimated to be approximately 0.1. The contribution of ethyl acetate cations in forming the excited singlet states of anthracene has been discussed. (auth.)

  1. The analysis of radiolysis impurities in 18F-FDG and methods of repurification

    International Nuclear Information System (INIS)

    Jinming Zhang; Yungang Li; Jian Liu; Xiaojun Zhang; Jiahe Tian

    2010-01-01

    To investigate the radio impurity in the radiolysis of 18 F-FDG at high radiodose and radioconcentrated solutions and develop methods of repurification. The radiolysis of 18 F-FDG was analyzed by TLC. The radio-impurity was confirmed by biodistribution and small animal PET/CT studies. 18 F-FDG was unstable at high radioconcentration over 37 GBq/mL or under basic condition. TLC, biodistribution and PET/CT all indicated that the main autoradiolysis byproduct was free fluoride ion. The radiolyzed 18 F-FDG was repurified by solid-phase extraction (SPE) column. The repurified 18 F-FDG had a radiochemical purity (RCP) of over 99% and significantly lower bone uptake than that was before repurification (P = 0.0003). There was a positive correlation between the recovery yield and the purity of 18 F-FDG (R 2 = 0.66). (author)

  2. Radiolysis studies of kappa carrageenan for bio based materials development

    International Nuclear Information System (INIS)

    Abad, Lucille V.

    2010-01-01

    Kappa (κ-) carrageenan oligomers are known to have several biological activities such as anti-HIV, anti-herpes, anti tumor and antioxidant properties. Recent progress in the development of radiation modified κ-carrageenan has resulted in new applications such as plant growth promoter, radiation dose indicator and hydrogels for wound dressing. This study would investigate on the changes in chemical structure, gelation and conformational transition behavior and molecular size of κ-carrageenan at doses from 0 to 200 kGy and would be correlated to these functions for the development of bio-based materials. Pulse radiolysis studies on κ-carrageenan was carried out to determine what transient species directly affects the degradation rate of κ-carrageenan in aqueous solution. The results reveal that there is no seeming reaction of the hydrated electron with κ-carrageenan. OH reacts with κ-carrageenan at a fast rate of approximately 1.2 x 10 9 M-1a-1. This value was influenced by conformational change from helix to coil by the addition of the metal ion Na +, reduction of molecular weight by the hydrolysis reaction and reduction of reactive sites by seasonally or irradiation. Most applications from the radiation degradation of polysaccharides started with the use of the ''hit and miss'' process where polysaccharides were irradiated at a certain dose range and finding out which dose is suitable for a specific function. Measurement of the radiation degradation yield (G d ) at different conditions can give an approximation of the Mw at an absorbed dose. This will allow the production of oligomers with a specified Mw. With the use of the G d both in solid and in aqueous solution, one can also make a rough calculation whether it is more economical to irradiateκ-carrageenan in solid r in aqueous solution. Results of this experiment reveal that the radiation yields (G d ) of κ-carrageenan in solid and in aqueous (1%) were as follows: 2.5, 1.7 and 1.2 x 10-7 mol J-1 for

  3. Determination of one-electron reduction potentials of tea polyphenol components using pulse radiolysis technique

    International Nuclear Information System (INIS)

    Jiang Yue; Lin Weizhen; Yao Side; Lin Nianyun

    1998-01-01

    One-electron reduction potential (E1/7) is one of the important parameters of electrophilic radioprotectors. In this work, one-electron reduction potential of tea polyphenol components including EGCG, ECG, EGC and EC in aqueous solution at pH7 were determined to be -321 mV, -326 mV, -331 mV and -330 mV, respectively, using pulse radiolysis techniques. 2,6-dimethyl benzoquinone (DQ) was used as a reference compound

  4. EVIDENCE OF CORROSIVE GAS FORMED BY RADIOLYSIS OF CHLORIDE SALTS IN PLUTONIUM-BEARING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Louthan, M.

    2010-02-01

    Corrosion and pitting have been observed in headspace regions of stainless steel containers enclosing plutonium oxide/salt mixtures. These observations are consistent with the formation of a corrosive gas, probably HCl, and transport of that gas to the headspace regions of sealed containers. The NH{sub 4}Cl films found on the walls of the sealed containers is also indicative of the presence of HCl gas. Radiolysis of hydrated alkaline earth salts is the probable source of HCl.

  5. Solid state radiolysis of non-proteinaceous amino acids in vacuum. Astrochemical implications

    International Nuclear Information System (INIS)

    Franco Cataldo; Giancarlo Angelini; Yaser Hafez; Susana Iglesias-Groth

    2013-01-01

    The analysis of the amino acids present in Murchison meteorite and in other carbonaceous chondrites has revealed the presence of 66 different amino acids. Only eight of these 66 amino acids are proteinaceous amino acids used by the present terrestrial biochemistry in protein synthesis, the other 58 amino acids are somewhat 'rare' or unusual or even 'unknown' for the current terrestrial biochemistry. For this reason in the present work a series of 'uncommon' non-proteinaceous amino acids, namely, l-2-aminobutyric acid, R(-)-2-aminobutyric acid, 2-aminoisobutyric acid (or α-aminoisobutyric acid), l-norleucine, l-norvaline, l-β-leucine, l-β-homoalanine, l-β-homoglutamic acid, S(-)-α-methylvaline and dl-3-aminoisobutyric acid were radiolyzed in vacuum at 3.2 MGy a dose equivalent to that emitted in 1.05 x 10 9 years from the radionuclide decay in the bulk of asteroids or comets. The residual amount of each amino acid under study remained after radiolysis was determined by differential scanning calorimetry in comparison to pristine samples. For optically active amino acids, the residual amount of each amino acid remained after radiolysis was also determined by optical rotatory dispersion spectroscopy and by polarimetry. With these analytical techniques it was possible to measure also the degree of radioracemization undergone by each amino acid after radiolysis. It was found that the non-proteinaceous amino acids in general do not show a higher radiation and radioracemization resistance in comparison to the common 20 proteinaceous amino acids studied previously. The unique exception is represented by ?-aminoisobutyric acid which shows an extraordinary resistance to radiolysis since 96.6 % is recovered unchanged after 3.2 MGy. Curiously α-aminoisobutyric acid is the most abundant amino acid found in carbonaceous chondrites. In Murchison meteorite α-aminoisobutyric acid represents more than 20 % of the total 66 amino acids found in this meteorite. (author)

  6. Comparative radiosensitivity of amino acids during γ-radiolysis in aqueous solutions

    International Nuclear Information System (INIS)

    Duzhenkova, N.A.; Savich, A.V.

    1977-01-01

    The radiosensitivity of amino acids contained in proteins has been compared. The γ-radiolysis of aqueous solutions of amino acids has studied over a wide range of concentrations in the presence of air, the dose rate being 60 rad/sec, and the dose, 100 krad. Radiation-chemical yields of amino acid decay and ammonia accumulation are given. An increase in yields with amino acid concentration has been established. Assumptions concerning some peculiarities of the amino acid decay mechanism are made

  7. Radiolysis of ethylene glycol aqueous solutions in the presence of Co(2) ions

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kovalenko, N.I.; Saskevich, G.G.; Shadyro, O.I.

    1982-01-01

    Radiolysis of ethylene glycol aqueous solutions with CoSO 4 additions is investigated. On the basis of data on the yields of hydrogen, acetaldehyde, succinic and glycol aldehydes and dependence of the product yields on pH of the medium a conclusion is made on the important role of Co(1) ions formed as a result of Co(2) interaction with esub(aq)

  8. Generalized model for the radiolysis of groundwaters: bicarbonate chemistry and influences

    International Nuclear Information System (INIS)

    Nicolosi, S.L.

    1987-01-01

    A groundwater radiolysis model has been developed at Battelle-Columbus which is applicable to groundwaters containing bicarbonate species. The model consists of a chemical mechanism which describes interactions between groundwater species and radiolytic species. Due to the chemical kinetics nature of the model, elementary reactions can be added to extend its range of applicability to other groundwaters. This paper describes the chemical kinetics and influences of bicarbonate species in the model. 23 references, 2 tables

  9. Low temperature differential thermal analysis (DTA) of some matrices stabilizing primary γ-radiolysis products

    International Nuclear Information System (INIS)

    Kroh, J.; Piekarska, J.; Szajdzinska-Pietek, E.; Swiatkowski, W.

    1980-01-01

    DTA studies were carried out for a number of systems currently used in this laboratory as matrices stabilizing primary γ-radiolysis products. Temperatures of the first and second-order phase transitions were determined and compared with the available literature data. Some hydrocarbon and alcohol matrices were examined by DTA after γ-irradiation. The additional heat effects observed were ascribed to the reactions of trapped intermediates. DTA results were compared with those of RTL and ESR. (author)

  10. Chromatographic studies of gamma radiolysis products of phenols in methanolic solution

    International Nuclear Information System (INIS)

    Cordeiro, P.J.M.

    1989-10-01

    The radiolytic effects on phenolic compounds (catechol, resorcinol, hydroquinone and pyrogallol), under different doses of gamma irradiation, were studied. The results shown that the radiolytic effects are independent of the irradiation doses with almost all compounds formed from the solvent radiolysis. Analysis of the resulting products were carried out by High Performance Liquid Chromatography and Capillary Gas Chromatography. The quantification of these compounds was made by mass spectrometry. (author)

  11. Mechanism of the γ-radiolysis of 2-propanol solutions of cyclohexanones

    International Nuclear Information System (INIS)

    Alipour, E.; Vidril, D.; Micheau, J.C.; Paillous, N.; Lattes, A.; Gilles, L.

    1983-01-01

    The γ-radiolysis of 2-propanol solutions of cyclohexanone gives mainly hydrogen, acetone, pinacol, methane derived from 2-propanol, and cyclohexanol, 2-(2-cyclohexanonyl)-cyclohexanone, and 3-(2-hydroxy-2-propyl)cyclohexanone derived from cyclohexanone. The radiolytic yields of all these products were highly dependent on the initial cyclohexanone concentration. The formation of cyclic alcohols by radioreduction has been extended to various substituted cyclohexanones. Radiolytically generated solvated electrons are scavenged by cyclohexanone, leading to the corresponding radical anions. The protonation of these radical anions gives rise to cyclohexanol via the dismutation of the hydroxycyclohexyl radicals. Steady state radiolysis measurements were complemented by pulse radiolysis in dilute solution. It was established that radical-anions and hydroxylated radicals decayed according to a second order rate law. When ketone concentration was lower than 0.1 M, radiolytic yields were in agreement with the mechanism mentioned above. However, in concentrated media the large increase in G(cyclohexanol) cannot be only accounted for by the involvement of radiolytically generated solvated electrons; probably it is due to an electron transfer from the cyclohexanone enolate to cyclohexanone itself, thus generating extra amounts of cyclohexanone radical anions. (author)

  12. Pulse radiolysis studies of some atomic and molecular processes in the gas phase

    International Nuclear Information System (INIS)

    Hatano, Y.; Takao, S.; Shimamori, H.; Ueno, T.; Yokoyama, A.

    1977-01-01

    The technique of pulse radiolysis has been applied to the study of some atomic and molecular processes in gas phase. The first application was to the determination of the Penning ionization rate constant. He-N 2 mixture was irradiated with nano-second pulses of 600 keV electrons, and the optical emission of N 2 + was measured. The result was compared with those obtained by other techniques. The second application was to the study of the lowest triplet state of benzene. The triplet state relaxation of benzene in gas phase was studied by measuring the phosphorescence of biacetyl induced by the energy transfer to biacetyl from triplet benzene in the pulse radiolysis of benzene-biacetyl mixture. The third application was to the study of thermal electron attachment to O 2 , in which microwave cavity method combined with pulse radiolysis has been used to observe the disappearance of thermal electrons directly with the fast response by attachment to O 2 . (Aoki, K.)

  13. γ-radiolysis of dialkyl, alkyl-aryl and diaryl sulphones

    International Nuclear Information System (INIS)

    Bowmer, T.N.; O'Donnell, J.H.

    1981-01-01

    Dialkyl sulphones, RSO 2 R, have been considered as model compounds for the radiolysis of poly(olefin sulphone)s. They show preferential C-S scission and SO 2 elimination, attributable to the relatively low strengths of these bonds. Combination of the alkyl radicals, which are produced singly or in pairs according to whether one or two C-S scissions occur in one molecule, competes with hydrogen abstraction from sulphone molecules. The latter is favoured for single C-S scissions and as the size of the radical increases and hence its mobility decreases. An important degradation reaction in radiolysis is considered to be ionization to form the cation radical of the dialkyl sulphone, followed by a single C-S scission to produce the alkyl radical and the complementary alkyl sulphonyl cation, which may undergo scission of the remaining C-S bond to produce SO 2 . GC/MS studies of the volatile products from dimethyl sulphone have shown that radiolysis results in a complexity of fragmentation and combination reactions, involving scission of most bonds in the molecule. The variety of products has been confirmed using CD 3 SO 2 CD 3 . Radiation protection by aromatic substituents has been demonstrated and branched alkyls have been shown to give higher yields of alkanes and SO 2 than linear alkyls. (author)

  14. Triplet excited states and radical intermediates formed in electron pulse radiolysis of amino-substituted fluorenones

    Energy Technology Data Exchange (ETDEWEB)

    Samant, Vaishali; Singh, A.K.; Mukherjee, Tulsi; Palit, D.K. E-mail: dkpalit@apsara.barc.ernet.in

    2005-04-01

    Electron pulse radiolysis of four differently substituted amino derivatives of fluorenone, namely, 1-amino-, 2-amino- 3-amino-, and 4-aminofluorenone, has been carried out to study the effect of structure on the spectroscopic and kinetic characteristics of the triplet excited states as well as the transient free radical intermediates formed under reducing and oxidizing conditions. The triplet states of these compounds have been generated in benzene by pulse radiolysis and in other solvents by flash photolysis technique and their spectral and kinetic properties have been investigated. Hydrated electron (e{sub aq}{sup -}) has been found to react with these fluorenone derivatives to form the anion radical species with a diffusion-controlled rate constant. The spectral and kinetic properties of the transient ketyl and anion radicals have been studied by generating them in aqueous solutions of suitable pH. The pK{sub a} values of ketyl[rlhar2]anion radical equilibria are in the range of 6.8-7.7 for these derivatives. The oxidized species have been generated by reaction with the azide radical. Hydrogen atom adducts as well as the cation radicals of these derivatives have also been generated by pulse radiolysis and characterized.

  15. Influence of alpha and gamma radiolysis on Pu retention in the solvent TBP/kerosene

    Directory of Open Access Journals (Sweden)

    Gao Yang

    2014-12-01

    Full Text Available In light of the issue of radiolysis of the solvent system in PUREX process, alpha and gamma radiation stability of tributyl phosphate (TBP/kerosene (OK have been studied in this paper, in which 238Pu dissolved in the organic phase and 60Co are selected as alpha and gamma irradiation sources, respectively. The amount of the degradation products not easily removed after the washing process has been measured by the plutonium retention. The effects of the absorbed dose, the TBP volume fraction, the cumulative absorbed dose and the presence of UO2 2+ and Zr4+ on the radiolysis of the solvents have been investigated. The results have indicated that the Pu retention increases with the increase of the absorbed dose after alpha or gamma irradiation, and is larger for the solvent containing less TBP. There is competition between UO2 2+ and Pu4+ to complex with the degradation products, and Zr4+ accelerates the radiolysis of the system.

  16. Electron paramagnetic resonance study of radicals formed by radiolysis at 77 K of nitroalkanes and of their solutions in organic glasses. Chromatography analysis of radiolysis products of nitromethane in ethanol solution in a vitreous medium

    International Nuclear Information System (INIS)

    Rosilio, C.

    1969-01-01

    With a view to explaining the formation of the final products resulting from the photolysis and the radiolysis of nitro-alkanes, we have attempted to identify the paramagnetic species formed as intermediates during the radiolysis. Our work has covered the structure and the reactivity of the radicals formed by 7 irradiation of the nitrogen containing derivatives at 77 K, and on the mechanism of formation and of disappearance of these radicals in the various matrices used. The radicals resulting from the removal of a hydrogen atom in the α position of the NO 2 group, and the radicals resulting from addition reactions on the nitrogen group characterized by an unpaired electron on the nitrogen have been identified, either during the radiolysis of pure nitroalkanes, or during the radiolysis of nitro-alkanes in solution in organic glasses at 77 K. A study has been made of the conformation and the movements of radicals in the matrices, and the mechanism of formation of the observed radicals produced generally by the capture by the nitro-alkanes of primary radiolysis species. The nitro-alkanes in ethanol solution can behave as traps both for electrons and for free radicals. The study of the radiolysis of nitro-alkanes in solution in a polar ethanol glass has been completed with chemical analyses on the final radiolysis products; it has been possible to deduce the capture efficiency of trapped electrons and of free radicals by nitro-alkanes in ethanol. For this we have determined the radio-chemical yields of hydrogen, acetaldehyde and glycol as a function of the capture agent concentration, for the nitro-methane-ethanol system. A mechanism for the disappearance of the observed radicals is proposed. (author) [fr

  17. Sodium/water reaction detection confirmation and location with time domain beam former

    International Nuclear Information System (INIS)

    Cornu, C.

    1997-01-01

    The CEA studied the validity of a time beamforming method for the detection and location of Sodium/water reaction in steam generators of breeder reactors. In the context of the RCM, we apply this method on recorded data during a water injection in Sodium in ASB loop, artificially mixed with PFR background. Despite the severity of experiment conditions (the signal to noise ratio is between -6 and -24 dB). We show that the employed method completed with a low frequency pass band filter allows us to locate the injection with a precision of 30% of the diameter of the loop. Using the method in the course of time allows us to coarsely locate the start time and the duration of the leak. The good functioning of the method is however perturbed by uncertainty about the wave celebrity in the sodium about wave propagation in waves guides that are mounted with the sensors and in the structure of the loop. (author). 1 ref., 8 figs

  18. Application of version 3.1 of EPRI BWR radiolysis model

    International Nuclear Information System (INIS)

    values less than -230 mV (required for mitigation) in the bottom head, while others require much less. It is important to understand this observation and predict the behaviour. This paper therefore compares model predictions of molar ratio with plant data for plants using noble metals and also predictions of lower vessel ECP with HWC-M plant measurements. The paper explains what controls the plant to plant variation in bottom plenum ECP. The paper also shows comparisons of the model with chemistry measurements from other locations in the plant, such as recirculation oxidant, steam oxidant and from data from an Advanced Boiling Water Reactor (ABWR), the top of the downcomer. These comparisons indicate the model gives a reasonable representation of the radiolysis chemistry and ECP in a BWR, despite all the uncertainties associated with this chemistry. (authors)

  19. SU-E-T-411: Characterization of Novel Water-Equivalent PRESAGE for Megavoltage and Kilovoltage X-Ray Beam Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alqathami, M; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States); Blencowe, A [University of South Australia, Adelaide, SA (Australia)

    2014-06-01

    Purpose: To introduce and characterize novel water-equivalent PRESAGE dosimeters for megavoltage and kilovoltage X-ray beam dosimetry. Methods: Three novel metal-optimized PRESAGE dosimeters referred to as MO-PRESAGE 1, 2 and 3 were formulated. The radiological properties were key factors that were considered when formulating the new dosimeters. All formulations were prepared in spectrophotometric cuvettes, irradiated with a 6 MV X-ray beam, and the change in optical density was measured using a spectrophotometer. Their sensitivity, post-response stability, and water equivalency were investigated. Results: The results showed that all three formulations exhibited radiological properties closer to water than any of the commercially available PRESAGE formulations. For example, the novel MO-PRESAGE 1, 2 and 3 have mass densities only 3.9-4.4% higher than that of water, whereas the mass density for the commercial formulation is 5.3% higher. The novel formulations have almost identical Zeff values to that of water (7.42), while the Zeff for the commercial formulation was 3.7% higher than that of water. In addition, the MO-PRESAGE 3 formulation showed mass and energy attenuation coefficients that deviated from those of water by less than 50% relative to the commercial formulation. Furthermore, the reduced Zeff of the three different MOPRESAGE formulations resulted in a maximum variation in the probability of photoelectric absorption of 1.3 times than of water, compared to 1.8 times that of water for the commercial formulation. MO-PRESAGE 3 was also more sensitive to radiation than the other two new formulations introduced in this work due to the presence of alkylbromide radical initiators in the MO-PRESAGE 3 formulation. Conclusion: All three novel MOPRESAGE dosimeter formulations displayed excellent radiological properties, superior to any of the commercially available PRESAGE formulations and thus can be used for the dosimetry of clinical megavoltage and kilovoltage X

  20. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    The beam diagnostic components for both the transfer and the high-energy beamlines perform well except for some of the scanners whose noise pick-up has become a problem, especially at low beam intensities. This noise pick-up is primarily due to deterioration of the bearings in the scanner. At some locations in the high-energy beamlines, scanners were replaced by harps as the scanners proved to be practically useless for the low-intensity beams required in the experimental areas. The slits in the low-energy beamline, which are not water-cooled, have to be repaired at regular intervals because of vacuum leaks. Overheating causes the ceramic feedthroughs to deteriorate resulting in the vacuum leaks. Water-cooled slits have been ordered to replace the existing slits which will later be used in the beamlines associated with the second injector cyclotron SPC2. The current-measurement system will be slightly modified and should then be much more reliable. 3 figs

  1. Electron beam induced water-soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid

    Science.gov (United States)

    Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol

    2016-01-01

    The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.

  2. Dynamics and reactivity of confined water

    International Nuclear Information System (INIS)

    Musat, R.

    2008-01-01

    In the context of new sustainable energy sources quest, the nuclear energy remains a key solution. However, with the development of nuclear technology, problems relating to nuclear waste disposal arise; thus, the radiolysis of water in confined media is extremely important with respect to matters related to long time storage of nuclear waste. Studies in model porous media would allow the projection of a confined water radiolysis simulator. A first step in this direction was made by studying the radiolysis of water confined in Vycor and CPG glasses; this study continues the trend set and investigates the effects of confinement in metal materials upon the water radiolysis allowing the understanding of metal - water radiation induced corrosion. A further/complete understanding of the radiolytic process under confinement requires knowledge of the effect of confinement upon the dynamics of confined molecules and on the evolution of the species produced upon ionizing radiation. In this respect, we have used the OH vibrator as a probe of the hydrogen bond network properties and thus investigated the dynamics of confined water using IR time resolved spectroscopy. The evolution of the hydrated electron under confinement was studied on a nano and picosecond time scale using UV pump - visible probe technique and single shot spectroscopy. (author) [fr

  3. Investigation of mixed ion fields in the forward direction for 220.5 MeV/u helium ion beams: comparison between water and PMMA targets

    Science.gov (United States)

    Aricò, G.; Gehrke, T.; Jakubek, J.; Gallas, R.; Berke, S.; Jäkel, O.; Mairani, A.; Ferrari, A.; Martišíková, M.

    2017-10-01

    Currently there is a rising interest in helium ion beams for radiotherapy. For benchmarking of the physical beam models used in treatment planning, there is a need for experimental data on the composition and spatial distribution of mixed ion fields. Of particular interest are the attenuation of the primary helium ion fluence and the build-up of secondary hydrogen ions due to nuclear interactions. The aim of this work was to provide such data with an enhanced precision. Moreover, the validity and limits of the mixed ion field equivalence between water and PMMA targets were investigated. Experiments with a 220.5 MeV/u helium ion pencil beam were performed at the Heidelberg Ion-Beam Therapy Center in Germany. The compact detection system used for ion tracking and identification was solely based on Timepix position-sensitive semiconductor detectors. In comparison to standard techniques, this system is two orders of magnitude smaller, and provides higher precision and flexibility. The numbers of outgoing helium and hydrogen ions per primary helium ion as well as the lateral particle distributions were quantitatively investigated in the forward direction behind water and PMMA targets with 5.2-18 cm water equivalent thickness (WET). Comparing water and PMMA targets with the same WET, we found that significant differences in the amount of outgoing helium and hydrogen ions and in the lateral particle distributions arise for target thicknesses above 10 cm WET. The experimental results concerning hydrogen ions emerging from the targets were reproduced reasonably well by Monte Carlo simulations using the FLUKA code. Concerning the amount of outgoing helium ions, significant differences of 3-15% were found between experiments and simulations. We conclude that if PMMA is used in place of water in dosimetry, differences in the dose distributions could arise close to the edges of the field, in particular for deep seated targets. The results presented in this publication are

  4. Microdosimetry measurements characterizing the radiation fields of 300 MeV/u 12C and 185 MeV/u 7Li pencil beams stopping in water.

    Science.gov (United States)

    Martino, G; Durante, M; Schardt, D

    2010-06-21

    In order to characterize the complex radiation field produced by heavy-ion beams in water, in particular the lateral dose fall-off and the radiation quality, microdosimetry measurements were performed at GSI Darmstadt using pencil-like beams of 300 MeV/u (12)C and 185 MeV/u (7)Li ions delivered by the heavy-ion synchrotron SIS-18. The ion beams (range in water about 17 cm) were stopped in the center of a 30 x 30 x 30 cm(3) water phantom and their radiation field was investigated by in-phantom measurements using a tissue-equivalent proportional chamber (TEPC). The chamber was placed at 35 different positions in the central plane at various depths along the beam axis and at radial distances of 0, 1, 2, 5 and 10 cm. The off-axis measurements for both (12)C and (7)Li ions show very similar distributions of the lineal energy, all peaking between 1 and 10 keV microm(-1) which is a typical range covered by secondary hydrogen fragments and neutrons. The radiation quality given by the dose-mean lineal energy [Formula in text] was found to be at a constant level of 1-2 keV microm(-1) at radial distances larger than 2 cm. The relative absorbed dose at each position was obtained by integration of the measured spectra normalized to the number of incident primary beam particles. The results confirm that the lateral dose profile of heavy ions shows an extremely steep fall-off, with relative values of about 10(-3), 10(-4) and 10(-5) at the 2, 5 and 10 cm distance from the beam axis, respectively. The depth-dose curves at a fixed distance from the beam axis slowly rise until they reach the depth of the Bragg peak, reflecting the build-up of secondary fragments with increasing penetration depth. The measured (12)C dose profiles were found to be in good agreement with a similar experimental study at HIMAC (Japan).

  5. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2011-01-01

    We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.

  6. Radiolysis of concentrated solution of nitrate and formate

    International Nuclear Information System (INIS)

    Hickel, Bernard

    1970-08-01

    We have studied the influence of specific scavengers of solvated electron, the potassium nitrate and of OH radical, the sodium formate on the decomposition on water submitted to γ rays. By the analysis of the final products we have been able to determine the radical and molecular yields in function of the concentration of the scavengers and compare their evolution with the theoretical prediction of the spurs model. We have also studied the influence of oxygen and the importance of the direct effect of γ rays on the scavengers. The results show that the yields of the molecular products H 2 and H 2 O 2 and the atomic hydrogen yield decrease in function of the concentration of the scavengers in conformity with the prevision of the spurs model, while the yield of solvated electron and OH radical increases. The total yield of decomposition of water increases until the value of 4,6±0,3 (author) [fr

  7. Analytical approach for determining beam profiles in water phantom of symmetric and asymmetric fields of wedged, blocked, and open photon beams.

    Science.gov (United States)

    Tahmasebi Birgani, Mohamad Javad; Chegeni, Nahid; Arvandi, Shole; Razmjoo Ghalaee, Sasan; Zabihzadeh, Mansoor; Khezerloo, Davood

    2013-11-04

    Nowadays, in most radiotherapy departments, the commercial treatment planning systems (TPS) used to calculate dose distributions needs to be verified; therefore, quick, easy-to-use, and low-cost dose distribution algorithms are desirable to test and verify the performance of the TPS. In this paper, we put forth an analytical method to calculate the phantom scatter contribution and depth dose on the central axis based on the equivalent square concept. Then, this method was generalized to calculate the profiles at any depth and for several field shapes - regular or irregular fields - under symmetry and asymmetry photon beam conditions. Varian 2100 C/D and Siemens Primus Plus linacs with 6 and 18 MV photon beam were used for irradiations. Percentage depth doses (PDDs) were measured for a large number of square fields for both energies and for 45° wedge, which were employed to obtain the profiles in any depth. To assess the accuracy of the calculated profiles, several profile measurements were carried out for some treatment fields. The calculated and measured profiles were compared by gamma-index calculation. All γ-index calculations were based on a 3% dose criterion and a 3 mm dose-to-agreement (DTA) acceptance criterion. The γ values were less than 1 at most points. However, the maximum γ observed was about 1.10 in the penumbra region in most fields and in the central area for the asymmetric fields. This analytical approach provides a generally quick and fairly accurate algorithm to calculate dose distribution for some treatment fields in conventional radiotherapy.

  8. Corrosion of zirconium alloys in nuclear reactors: A model for irradiation induced enhancement by local radiolysis in the porous oxide

    International Nuclear Information System (INIS)

    Lemaignan, C.; Salot, R.

    1997-01-01

    An analysis has been undertaken of the various cases of local enhancement of corrosion rate of zirconium alloys under irradiation. It is observed that in most cases a strong emission of energetic β - is present leading to a local energy deposition rate higher than the core average. This suggests that the local transient radiolytic oxidizing species produced in the coolant by the β - particles could contribute to corrosion enhancement, by increasing the local corrosion potential. This process is applicable to the local enhanced corrosion found in front of stainless steels structural parts, due to the contribution of Mn, and in front of Pt inserts or Cu-rich cruds. It explains also the irradiation corrosion enhancement of Cu-Zr alloys. Enhanced corrosion around neutron absorbing material is explained similarly by pair production from conversion of high energy capture photons in the cladding, leading to energetic electrons. The same process was found to be active with other highly ionizing species like α from Ni-rich alloys and fission products in homogeneous reactors. Due to the changes induced by the irradiation intensity on the concentration of the radiolytic species, the coolant chemistry, that controls the boundary conditions for oxide growth, has to be analyzed with respect to the local value of the energy deposition rate. An analysis has been undertaken which shows that, in a porous media, the water is exposed to a higher intensity than bulk water. This leads to a higher concentration of oxidizing radiolytic species at the root of the cracks of the porous oxide, and increases the corrosion rate under irradiation. This mechanism, deduced from the explanation proposed for localized irradiation enhanced corrosion, can be extended to the whole reactor core, where the general enhancement of Zr alloys corrosion under irradiation could be attributed to the general radiolysis in the porous zirconia. (author). 18 refs, 3 figs, 3 tabs

  9. Identification of tetraphenylborate radiolysis products in a simulated feedstock for radioactive waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Bartlett, M.G.; Carlson, R.E.; Testino, S.A. Jr.; Kunkel, G.J.; Browner, R.F.; Busch, K.L. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemistry and Biochemistry

    1994-10-01

    The first step towards immobilization of the soluble radioactive species in borosilicate glass is the addition of sodium tetraphenylborate (TPB) and sodium titanate to the radioactive aqueous solution. Initial studies of the TPB hydrolysis process have found that some component of the radiolysis mixture inactivates the Cu catalyst. The interaction of organic materials with the catalyst, and the subsequent interference with the hydrolysis process, would have presented problems with the use of the vitrification process. Prevention of the catalyst deactivation is obtained by washing the irradiated TPB precipitate in the Late Wash Facility prior to hydrolysis to remove the soluble radiolysis products. Identification of the organic radiolysis products, their distribution in the Late Wash Facility, and their interactions with the Cu catalyst has become an important analytical issue. To further investigate the reaction products of the TPB precipitation process, a simulated feedstock was created from compounds known to be present in the starting materials. This simulated feedstock was precipitated with sodium TPB and then exposed to Co-60 gamma radiation to simulate two years of additional storage time prior to the hydrolysis process. The irradiated product was divided into two parts, the filtered supernatant liquid and the precipitate slurry, which contains the TPB and the solid sodium titanate. Using gas chromatography/mass spectrometry, liquid secondary ion mass spectrometry, inductively coupled plasma/mass spectrometry, ion chromatography, and high performance liquid chromatography, over 50 organic and inorganic species have been identified in the aqueous portion of a simulated feedstock for TPB hydrolysis. The major organic species present are benzene, phenol, benzamide and a variety of substituted phenylphenols. The major inorganic species present are sodium, nitrite, and oxalate ions.

  10. Linear electron accelerator based pulse radiolysis facility probing radiation - matter interaction

    International Nuclear Information System (INIS)

    Sarkar, Sisir K.

    2011-01-01

    Since the first report of the chemical effects of radiation by Pierre and Marie Curie, researchers have needed tools to deliver ionizing radiation for their scientific studies in increasingly precise ways. In the mid-20th century, particle (primarily electrons) accelerators took over as the primary tools of radiation chemists. However, the development of pulse radiolysis techniques in the 1960s vastly increased the ability of radiation chemists. We at Radiation and Photochemistry Division of Bhabha Atomic Research Centre engaged in investigations of different thrust areas of radiation-matter interaction. However, the past twenty five years has seen an explosion of interest because of their pivotal role in physics, chemistry and biology. In the present talk, I would like to share some of the excitements from the first pulse radiolysis facility in the country based on 7 MeV electron LINAC which is the work-horse for Radiation Chemistry Research. After going through the essential hardware and software, we will have glimpses of our R and D programmes which have evolved around this facility. Future plans to make it more versatile facility will also be discussed. In the new frontier, we are in advanced stage of developing a picosecond pulse radiolysis facility employing photocathode RF gun. This will be used apart from radiation chemistry research for radiation damage studies of structural materials; polymers; biological material; charge-carrier dynamics of semiconductors and quantum dots. Further I will touch upon the new ultrafast sources with femtosecond resolution currently being developed internationally which will widen the canvas of radiation chemical research. (author)

  11. Resolved multisite OH-attack on aqueous aniline studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Solar, S.; Solar, W.; Getoff, N.

    1986-01-01

    The individual formation and decay kinetics as well as the absorption characteristics of the simultaneously formed primary species by OH attack on aniline in aqueous solution (pH 8-9.6), saturated with N 2 O, have been determined by pulse radiolysis combined with a computer optimization procedure. Further the rate constant of e - sub(aq) with aniline was determined to (3.0+-0.1) x l0 7 dm 3 mol -1 cm -1 . Qualitative analysis of final products were also performed. (author)

  12. Thermodynamic conversion process comporting a stage of chemical dissociation by radiolysis

    International Nuclear Information System (INIS)

    Gomberg, H.J.; Lewis, J.G.; Powers, J.E.

    1980-01-01

    Process for thermodynamic conversion by heating a working fluid at high pressure so that its temperature rises to a high figure, and extracting the heat from the working fluid at low pressure. The heating of the working fluid includes a first stage, of chemical dissociation of at least some of this fluid by radiolysis at a temperature under the thermal balance temperature of the dissociated fluid so that it is in a state of macroscopic thermal imbalance, and a second chemical reaction stage of the dissociated constituants of the working fluid so that they recombine with simultaneous heating of the working fluid [fr

  13. Mechanism and kinetics in reactions of caffeic acid with radicals by pulse radiolysis and calculation

    International Nuclear Information System (INIS)

    Li, Xifeng; Cai, Zhongli; Katsumura, Yosuke

    2000-01-01

    The interaction of caffeic acid with e aq - , (CH 3 ) 2 (OH) CCH 2 · , CO 2 ·- , H · , ·OH and N 3 · radicals were studied by γ-, pulse radiolysis and molecular orbital calculation. UV-visible spectra of electron/·OH adducts, semi-quinone radicals of caffeic ions, and the stable products from the reactions were derived. The rate constants were determined. The attacked sites and the most favorable structures of the transient radicals were predicted. Reaction mechanisms were proposed. (author)

  14. Modification of DNA radiolysis by DNA-binding proteins: Structural aspects

    Czech Academy of Sciences Publication Activity Database

    Davídková, Marie; Štísová, Viktorie; Goffinont, S.; Gillard, N.; Castaing, B.; Maurizot, M. S.

    2007-01-01

    Roč. 122, 1-4 (2007), s. 100-105 ISSN 0144-8420. [Symposium on Microdosimetry /14./. Venezia, 13.11.2005-18.11.2005] R&D Projects: GA MŠk 1P05OC085 Grant - others:GA MŠk(CS1) Barrande 2005-6-018-1 Institutional research plan: CEZ:AV0Z10480505 Keywords : specific DNA-protein complexes * radiolysis * ionizing radiation Subject RIV: BO - Biophysics Impact factor: 0.528, year: 2007

  15. Pulse radiolysis studies of the interaction of tea polyphenol derivatives with oxidizing OH adduct of thymine

    International Nuclear Information System (INIS)

    Jiang Yue; Li Hucheng; Yao Side; Zuo Zhihua; Wang Zailan; Zhang Jiashan; Lin Nianyun

    1996-01-01

    The electron transfer reactions between oxidizing OH adduct of thymine with tea polyphenol derivatives has been investigated by pulse radiolysis. The tea polyphenol derivatives are identified as good antioxidants for reduction of oxidizing OH adducts of thymine. From buildup kinetic analysis of radical phenoxyl product, the rate constants for reactions of the N 3 radical with tea polyphenol derivatives have been determined to be (8-9) x 10 9 dm 3 /mol s, while the rate constants of electron transfer from tea polyphenol derivatives to oxidizing OH adducts of thymine was obtained to be around 10 9 dm 3 /mol s. Copyright direct C 1996 Elsevier Science Ltd

  16. Radiolysis study of the oxidation of a vitamin K model compound in ethanolic solution

    International Nuclear Information System (INIS)

    Fackir, L.; Jore, D.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1993-01-01

    It seems that the biological action of vitamin K (with its important role in carboxylating processes) may involve monoelectronic exchanges. Therefore radical mechanisms of a vitamin K model molecule KHp have been studied in ethanolic solution by mean of steady state radiolysis method. The oxidation of KHp by H 3 C-CH(OH)OO . model peroxyl radicals leads to the formation of a 'dimeric' form of vitamin K. The superoxide anions seem not to be reactive towards KHp in the chosen irradiation conditions

  17. Fragmentation of excited molecules and ions in the radiolysis of hydrocarbons

    International Nuclear Information System (INIS)

    Shida, S.; Hatano, Y.

    1976-01-01

    A survey is given of recent studies of the primary C-H and C-C bond dissociations of excited molecules and ions in the gas-and liquid-phase radiolysis of hydrocarbons, which have been mainly carried out by the product analysis method. In the C-C bond dissociations evidence has been presented for the fragmentation of the excited parent ion, while in the C-H bond dissociations attention has been focused upon an important role of hot hydrogen atoms in the hydrogen formation. A theoretical treatment of highly excited hydrocarbon molecules involving super-excited states in also described. (author)

  18. Use of pulse radiolysis for the study of the chemistry of aqueous ozone and ozonide solutions

    DEFF Research Database (Denmark)

    Sehested, Knud; Holcman, Jerzy; Bjergbakke, Erling

    1986-01-01

    The chemistry of aqeous ozone, O3, and ozonide, O3−, is of great interest from a technological, environmental and scientific point of view. The literature about their aqueous chemistry is extensive, the reaction mechanisms are still not well understood. The ozonide anion is a free radical...... of a detailed mechanism. We have investigated the reaction mechanisms using pulse radiolysis in combination with a high pressure cell, rapid mixing and numerical simulation of the experiments. This study makes it possible to give a detailed description of the reaction mechanisms in terms of uni- and bimolecular...... reactions and provides kinetic data sufficient for computer simulations of aqueous O3/O3− chemistry....

  19. Gamma radiolysis of 3-methylpentane. Effect of added olefins on the formation of C12-olefins

    International Nuclear Information System (INIS)

    Laet, M. de; Tilquin, B.

    1991-01-01

    Contributions of congruent (parent derived) olefins to the formation of unsaturated heavy products (C 12 H 24 ) are investigated. Effects of dose or of olefinic additives on the G yield values are studied by capillary gas chromatography. The dose dependence is explained by transfer of positive charge to congruent olefins (C 6 H 12 ) even though their concentrations build up linearly with dose. γ Irradiation of 3-methylpentane containing pentenes or butenes (0.2-2 mol %) provides good examples of transfer of energy, however the results are unexpected. C-H scission in the radiolysis of solid 3-methylpentane is also reviewed. (author)

  20. An overview of radiolysis studies for the molten salt reactor remediation project

    International Nuclear Information System (INIS)

    Icenhour, A.S.; Williams, D.F.; Trowbridge, L.D.; Toth, L.M.; Del Cul, G.D.

    2001-01-01

    A number of radiolysis experiments have been performed in support of the remediation of the Molten Salt Reactor Experiment (MSRE)at the Oak Ridge National Laboratory.Materials studied included simulated MSRE fuel salt,fluorinated charcoal, NH 4 F,2NaFUF 6 ,UO 2 F 2 uranium oxides with a known residual fluoride content,and uranium oxides with a known moisture content.The results from these studies were used as part of the basis for the interim or long-term storage of materials removed from the MSRE. (author)

  1. Beam structure studies of low-energy ion beams

    Science.gov (United States)

    Saadatmand, K.; Schneider, J. D.; Geisik, C.; Stevens, R. R.

    1991-05-01

    The ion beam structure at various axial positions along the beam-transport line has been monitored and studied utilizing a fluor screen and a video camera. The fluor material is aluminum oxide that is plasma-jet sprayed onto the surface of an aluminum or a water-cooled copper substrate. The visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for the on-line viewing by the experimentalist. Digitized video signals are stored for further off-line processing and extracting more information about the beam, such as beam profiles. This inexpensive and effective diagnostic enables the experimentalist to observe the real-time beam response (such as evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position) to parameter changes.

  2. Synthesis of silver nanoparticles by radiolysis, photolysis and chemical reduction of AgNO3 in Hibiscus sabdariffa infusion (karkade)

    International Nuclear Information System (INIS)

    Cataldo, Franco; Ursini, Ornella; Angelini, Giancarlo

    2016-01-01

    Silver nanoparticles of different average diameters were synthesized by γ-radiolysis, UV-photolysis and chemical reduction of AgNO 3 solutions in Hibiscus sabdariffa infusion commonly known as 'karkade'. The UV-photolysis was performed either by using a conventional Hg low pressure lamp emitting at 254 nm and also by using a new compact UV-LED source emitting at 360 nm. The kinetics rate constant of silver nanoparticles synthesis produced by γ-radiolysis and UV photolysis were determined and the average diameter of the resulting nanoparticles was estimated. (author)

  3. Pulse radiolysis studies of berkelium(III): preparation and identification of berkelium(II) in aqueous perchlorate media. [Pulsed Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.C.; Schmidt, K.H.; Morss, L.R.; Pippin, C.G.; Williams, C. (Argonne National Lab., IL (USA))

    1988-02-24

    The first direct evidence for the formation of Bk(II) in aqueous solutions as a result of pulse radiolysis is reported herein. The barrier that the necessity of a high pH has presented for this reaction was circumvented by using bicarbonate to adjust the pH, by maintaining rigorously oxygen-free conditions, and by using ethanol to suppress radiolysis products. The absorption ascribed to Bk(II) occurs at 310nm, and the molar absorptivity at this wavelength is consistent with theoretical considerations advanced by Carnall and Crosswhite. 10 references, 2 figures.

  4. Contribution to the study of gamma radiolysis of 2-furyl butyl or substituted phenyl ketones in isopropanol

    International Nuclear Information System (INIS)

    El Dessouky Aly, M.M.

    1982-03-01

    The following ketones: 2-furyl butyl ketone (I), 2 furyl phenyl ketone (II), 2-furyl p-methylphenyl ketone (III) and 2-furyl p-methoxyphenyl ketone (IV) were synthesised and characterised. The yields of hydrogen and methane obtained during radiolysis of the mixtures ketones (I to IV)-2-propanol were determined. These yields are always lower than with pure 2-propanol. Radiolysis products for ketones (I) and (II) are studied. Analysis of radiolitical products were conducted by gas chromatography. Effect of radiation dose and ketone concentration is determined. Reaction mechanisms are studied [fr

  5. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  6. Local radiolysis and electrochemical corrosion potential in crevice environment

    International Nuclear Information System (INIS)

    Wada, Yoichi; Watanabe, Atsushi; Ishida, Kazushige; Tachibana, Masahiko; Shigenaka, Naoto; Kawashima, Norio; Aizawa, Motohiro

    2012-09-01

    Effects of γ-ray irradiation upon crevice corrosion (CC) of type 316L stainless steel (316L SS) as an initiation site of stress corrosion cracking in a boiling water reactor (BWR) environment have been studied using a material corrosion test loop which could be irradiated with a 60 Co γ-ray source during testing. The CC tests were conducted using crevice specimens with various crevice gaps. Scanning electron microscope observations showed that many specimen surfaces exhibited a selective grain boundary dissolution, that is intergranular attack (IGA) as a result of the CC when the crevice gap was narrower than a certain value. The initiation of IGA was accelerated by either simulated corrosion product filling or γ-ray irradiation. When γ-rays were present, the IGA was observed in a shorter immersion time than the no-irradiation condition. In the γ-ray irradiation environment, Fe oxide on the crevice specimen surface was highly oxidized and strongly adhered to the base metal. Electrochemical corrosion potentials (ECPs) inside crevice specimens were also measured under various crevice gap conditions without irradiation in order to understand the CC mechanism in high temperature water. The narrower the crevice gap of the 316L specimens was, the lower the internal ECP was. Based on comparison with the CC test results, it was concluded that the IGA occurred in the gap where the internal ECP was below -0.4 V vs SHE and difference between internal and external ECPs were very large. Even for γ-ray irradiation at 10 4 Gy/h, the internal ECP was estimated to be low since the assumed maximum production rates of radiolytic oxidants were not high enough to get a large cathodic current density in a narrower crevice gap to give high ECP on the crevice walls. However, since the γ-ray irradiation accelerated the corrosion rate of the SS inside a crevice, the ECP must not be a unique parameter governing the CC. It was assumed that oxidation of Fe 2+ ion in water near the

  7. Scatter and leakage contributions to the out-of-field absorbed dose distribution in water phantom around the medical LINAC radiation beams

    International Nuclear Information System (INIS)

    Bordy, J.M.; Bessiere, I.; Ostrowsky, A.; Poumarede, B.; Sorel, S.; Vermesse, D.

    2013-01-01

    This work is carried out within the framework of EURADOS Working Group 9 (WG9) whose general objective is 'to assess non-target organ doses in radiotherapy and the related risks of second cancers, with the emphasis on dosimetry'. The objective of the present work is to provide reference values (i) to evaluate the current methods of deriving three-dimensional dose distributions in and around the target volume using passive dosimeters, (ii) to derive the leakage dose from the head of the medical linear accelerator (LINAC) and the doses due to scattered radiation from the collimator edges and the body (phantom) itself. Radiation qualities of 6, 12 and 20 MV are used with standard calibration conditions described in IAEA TRS 398 and nonstandard conditions at a reference facility at the Laboratoire National Henri Becquerel (CEA LIST/LNE LNHB). An ionisation chamber is used to measure profile and depth dose in especially design water phantom built to enable investigation of doses up to 60 cm from the beam axis. A first set of experiments is carried out with the beam passing through the tank. From this first experiment, penumbra and out-of-field dose profiles including water and collimator scatter and leakage are found over three orders of magnitude. Two further sets of experiments using the same experimental arrangement with the beam outside the tank, to avoid water scatter, are designed to measure collimator scatter and leakage by closing the jaws of the collimator. It is shown that the ratios between water scatter, collimator scatter and leakage depend on the photon energy. Depending on the energy, typical leakage and collimator scatter represents 10-40% and 30-50% of the total out-of-field doses respectively. Water scatter decreases with energy while leakage increases with energy, and collimator scatter varies only slowly with energy. (authors)

  8. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism

    Science.gov (United States)

    Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.

    2016-08-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4-). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm-2 s-1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  9. Study of the radiolysis of succinic acid - applications in the dosimetry of high doses

    International Nuclear Information System (INIS)

    Andrade e Silva, L.G.

    1978-01-01

    A study is made of the effect of the gama radiation dose and of particle size of succinic acid (fine powder of large crystals) in relation with the formation of CO 2 and CO + H 2 , which are the main gaseous products of radiolysis. A different yield of CO + H 2 is found when the succinic acid is used as powder compared to the material in the form of large crystals. The reason for this difference is searched, studying the influence of heating and sublimation of the succinic acid prior to irradiation. The influence, in the mentioned yield, of the surface area of succinic acid particles, of the presence of oxygen (air) and of the rapid recrystallization of the acid are also studied. The formation of intermediate species in the radiolysis of succinic acid is examined. The system used in ethanol-succinic acid at 77K. Analysis are made using an electronic paramagnetic resonance spectrometer. The possibility of using succinic acid as a dosimeter for high level gama radiation doses is discussed [pt

  10. Radiolysis of benzyl alcohol in aqueous solution by external gamma-irradiation

    International Nuclear Information System (INIS)

    Ikebuchi, Hideharu; Kido, Yasumasa; Urakubo, Goro

    1977-01-01

    Radiolysis of 0.05% aqueous solution of benzyl alcohol with 60 Co γ-rays ranging from 1 x 10 4 to 7 x 10 5 rad was investigated, in order to presume the change of it contained in radiopharmaceuticals. For both O 2 free and oxygenated solutions, an approximately linear relationship holds between the retaining benzyl alcohol and dose in the range from 1 x 10 5 to 7 x 10 5 rads. The G(-M) values of benzyl alcohol calculated from the relation were 2.34 in the absence and 1.92 in presence of oxygen. In the presence of oxygen, a main product was benzaldehyde and its G value was 0.87. In the absence of oxygen, the main products of the radiolysis were dibenzyl, benzyl phenylcalbinol and hydrobenzoin, which were regarded as the radical-reaction products of PhCH 2 and PhCHOH, and the yield of benzaldehyde was negligible. Irrespective of the presence of oxygen, o- and p-hydroxylated products of benzyl alcohol were found only in small quantity. (auth.)

  11. The fate of primary cations in radiolysis of alkanes as studied by ESR

    International Nuclear Information System (INIS)

    Iwasaki, M.; Toriyama, K.; Nunome, K.

    1983-01-01

    The structures and reactions of alkane cations (RH + ) have been studied by ESR to elucidate the fate of primary cations in radiolysis of alkanes. Radical cations of prototype alkanes such as C 2 H 6 , C 3 H 8 , iso-C 4 H 10 and neo-C 5 H 12 etc. as well as their partially deuterated analogues were stabilized in irradiated frozen matrices such as SF 6 , CFCl 2 CF 2 Cl and CFCl 3 having a higher ionization potential than that of these alkanes contained as dilute solutes. RH + in SF 6 and in CFCl 2 CF 2 Cl converts into alkyl radicals by deprotonation probably through bimolecular reactions, whereas RH + in CFCl 3 unimolecularily decomposes into olefinic cations by H 2 and/or CH 4 elimination reactions. It is further found that the electronic structures of propane and isobutane cations in halocarbon matrices are different from those in SF 6 and the difference is drastically reflected in the site preference of their deprotonation reactions. The results are discussed in relation to the mechanisms of pairwise formation of alkyl radicals in low temperature radiolysis of neat alkanes and its suppression by addition of electron scavengers. (author)

  12. Water Sorption in Electron-Beam Evaporated SiO2 on QCM Crystals and Its Influence on Polymer Thin Film Hydration Measurements.

    Science.gov (United States)

    Kushner, Douglas I; Hickner, Michael A

    2017-05-30

    Spectroscopic ellipsometry (SE) and quartz crystal microbalance (QCM) measurements are two critical characterization techniques routinely employed for hydration studies of polymer thin films. Water uptake by thin polymer films is an important area of study to investigate antifouling surfaces, to probe the swelling of thin water-containing ionomer films, and to conduct fundamental studies of polymer brush hydration and swelling. SiO 2 -coated QCM crystals, employed as substrates in many of these hydration studies, show porosity in the thin electron-beam (e-beam) evaporated SiO 2 layer. The water sorption into this porous SiO 2 layer requires correction of the optical and mass characterization of the hydrated polymer due to changes in the SiO 2 layer as it sorbs water. This correction is especially important when experiments on SiO 2 -coated QCM crystals are compared to measurements on Si wafers with dense native SiO 2 layers. Water adsorption filling void space during hydration in ∼200-260 nm thick SiO 2 layers deposited on a QCM crystal resulted in increased refractive index of the layer during water uptake experiments. The increased refractive index led to artificially higher polymer swelling in the optical modeling of the hydration experiments. The SiO 2 -coated QCM crystals showed between 6 and 8% void as measured by QCM and SE, accounting for 60%-85% of the measured polymer swelling in the low humidity regime (70% RH) from optical modeling for 105 and 47 nm thick sulfonated polymer films. Correcting the refractive index of the SiO 2 layer for its water content resulted in polymer swelling that successfully resembled swelling measured on a silicon wafer with nonporous native oxide.

  13. Effects of the radiolysis products of sennoside A on HepG2 and PC-3 cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Jo, Min Ho [Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    Radiolysis of sennoside A was carried out by gamma irradiation and the anti-cancer activities of the radiolysis product were evaluated. An aqueous solution of sennoside A was exposed to 0.5-3 kGy of gamma irradiation and the radiolysis products were analyzed by HPLC. A fraction of radiolysis product (RLF) of sennoside A was isolated and the RLF was presumed as a rhein-8-β-D-glucoside. The anticancer effect of the RLF was compared with the sennoside and rhein using a in vitro assay system of human prostate cancer cells (PC-3) and human hepatoma HepG2 cells. The cell viability of PC-3 and HepG2 cell was significantly decreased to 12.4±1.2% and 32.4±2.1%, respectively, by the treatment of 0.6 μM of RLF. The sennoside A (range from 0 to 25 μM) had no cytotoxic effect on PC-3 and HepG2 cells, while the rhein had the effect on HepG2 cells with a LD{sub 50} at 80 μM.

  14. Radiolysis of C5-BTBP in cyclohexanone irradiated in the absence and presence of an aqueous phase

    Czech Academy of Sciences Publication Activity Database

    Fermvik, A.; Aneheim, E.; Grüner, Bohumír; Hájková, Zuzana; Kvíčalová, Magdalena; Ekberg, C.

    2012-01-01

    Roč. 100, č. 4 (2012), s. 273-282 ISSN 0033-8230 Grant - others:ACSEPT(XE) FP7-CP-2007-211 267 Institutional research plan: CEZ:AV0Z40320502 Keywords : radiolysis * degradation product * solvent extraction * partitioning * BTBP Subject RIV: CA - Inorganic Chemistry Impact factor: 1.373, year: 2012

  15. Radiolysis of aqueous solutions of sodium salt of adipic acid bis-(2,4,6-triiodo-3-carboxyanilide). [Gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, V.T.; Pikaev, A.K.; Shubnyakova, L.P.; Sysoeva, K.S.

    1975-07-01

    The ..gamma.. radiolysis of aqueous solutions of the sodium salt of adipic acid bis-(2,4,6-triiodo-3-carboxyanilide) was studied. The radiation-chemical decomposition yields of this compound and the formation of iodide ions under various conditions were measured. (auth)

  16. Radical intermediates of low temperature radiolysis of di-tert-butylcyclohexano-18-crown-6/1-octanol extractant

    International Nuclear Information System (INIS)

    Zakurdaeva, O.A.; Nesterov, S.V.; Moscow State Univ.; Feldman, V.I.

    2013-01-01

    Intermediates of low temperature (77 K) X-rays radiolysis of 1-octanol and di-tert-butylcyclohexano-18-crown-6 solutions in 1-octanol were studied by ESR spectroscopy. Hydroxyalkyl CH 3 (CH 2 ) 6 C circle HOH and interior-type alkyl R 1 C circle HR 2 OH radicals were found to be main paramagnetic products stabilized in 1-octanol irradiated at 77 K. In addition to abovementioned radicals, macrocyclic -O-CH 2 -C circle H- and acyclic -C circle H-C(H)=O radicals produced from crown ether were identified in irradiated 1.0 M DtBuCH18C6 solution in octanol. No deviation in radiation-chemical yield of the stabilized acyclic radicals from the value expected in accord with 'additive' rule was observed in the latter case. It was supposed that macrocycle cleavage in DtBuCH18C6 occurred at early stages of radiolysis rather than in secondary radical reactions between products of 1-octanol radiolysis and crown ether. Meanwhile, alkyl radicals formed from 1-octanol can react with crown ether, resulting in formation of macrocyclic products of radiolysis. (orig.)

  17. Radical intermediates of low temperature radiolysis of di-tert-butylcyclohexano-18-crown-6/1-octanol extractant

    Energy Technology Data Exchange (ETDEWEB)

    Zakurdaeva, O.A.; Nesterov, S.V. [Russian Academy of Sciences, Moscow (Russian Federation). Enikolopov Institute of Synthetic Polymer Materials; Moscow State Univ. (Russian Federation). Dept. of Chemistry; Feldman, V.I. [Moscow State Univ. (Russian Federation). Dept. of Chemistry

    2013-03-01

    Intermediates of low temperature (77 K) X-rays radiolysis of 1-octanol and di-tert-butylcyclohexano-18-crown-6 solutions in 1-octanol were studied by ESR spectroscopy. Hydroxyalkyl CH{sub 3}(CH{sub 2}){sub 6}C {sup circle} HOH and interior-type alkyl R{sub 1}C {sup circle} HR{sub 2}OH radicals were found to be main paramagnetic products stabilized in 1-octanol irradiated at 77 K. In addition to abovementioned radicals, macrocyclic -O-CH{sub 2}-C {sup circle} H- and acyclic -C {sup circle} H-C(H)=O radicals produced from crown ether were identified in irradiated 1.0 M DtBuCH18C6 solution in octanol. No deviation in radiation-chemical yield of the stabilized acyclic radicals from the value expected in accord with 'additive' rule was observed in the latter case. It was supposed that macrocycle cleavage in DtBuCH18C6 occurred at early stages of radiolysis rather than in secondary radical reactions between products of 1-octanol radiolysis and crown ether. Meanwhile, alkyl radicals formed from 1-octanol can react with crown ether, resulting in formation of macrocyclic products of radiolysis. (orig.)

  18. The effect of ultralow temperature on olefin cation formation by ionic fragmentation in the radiolysis of 2,3-dimethylbutane

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo

    1991-01-01

    The formation of olefin cations in the radiolysis of 2,3-dimethylbutane (DMB) was studied by ESR at 4.2 and 77 K. When a DMB-SF 6 mixture is γ-irradiated at 77 K, tetramethylethylene (TME) cations are formed remarkably. The formation of the TME cations, however, is suppressed at 4.2 K. When the DMB-SF 6 mixture is γ-irradiated at 4.2 K and then warmed to 77 K, TME cations are formed by thermal annealing. The TME cations are not formed by a charge transfer to olefinic impurities or olefinic products in radiolysis, but by H 2 elimination from parent DMB cations in the ground state. The remarkable formation of olefin cations at 77 K corresponds to the large yields of unsaturated dimers in the radiolysis of DMB at 77 K. The suppression of olefin cation formation at 4.2 K corresponds to the low yields of unsaturated dimers in the radiolysis of DMB at 4.2 K. (author)

  19. Studies of some elementary processes involving electrons in the gas phase by pulse-radiolysis microwave-cavity technique

    International Nuclear Information System (INIS)

    Sunagawa, Takeyoshi; Makita, Takeshi; Musasa, Hirofumi; Tatsumi, Yoshitsugu; Shimamori, Hiroshi

    1995-01-01

    The pulse radiolysis-microwave cavity technique has been employed for detection of free electrons in the gas phase. Presented are results of the observation of electron disappearance by attachment to molecules, the electron thermalization (energy loss) processes in the presence of an electron-attaching compound, and the formation of electrons by Penning ionization. (author)

  20. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  1. Passive vibro-acoustic detection of a sodium-water reaction in a steam generator of a sodium-cooled fast neutrons nuclear reactor by beam forming

    International Nuclear Information System (INIS)

    Moriot, Jeremy

    2013-01-01

    This thesis deals with a new method to detect a sodium-water reaction in a steam generator of a fast sodium-cooled nuclear reactor. More precisely, the objective is to detect a micro-leak of water (flow ≤ 1 g/s) in less than 10 seconds by measuring the external shell vibrations of the component. The strong background noise in operation makes impossible the use of a detection system based on a threshold overrun. A beam forming method applied to vibrations measured by a linear array of accelerometers is developed in this thesis to increase the signal-to-noise ratio and to detect and locate the leak in the steam generator. A numerical study is first realized. Two models are developed in order to simulate the signals measured by the accelerometers of the array. The performances of the beam forming are then studied in function of several parameters, such as the source location and frequency, the damping factor, the background noise considered. The first model consists in an infinite plate in contact with a heavy fluid, excited by an acoustic monopole located in this fluid. Analyzing the transverse displacements in the wavenumber domain is useful to establish a criterion to sample correctly the vibration field of the plate. A second model, more representative of the system is also proposed. In this model, an elastic infinite cylindrical shell, filled with a heavy fluid is considered. The finite dimensions in the radial and circumferential directions lead to a modal behavior of the system which impacts the beam forming. Finally, the method is tested on an experimental mock-up which consists in a cylindrical pipe made in stainless steel and filled with water connected to hydraulic circuit. The water flow speed can be controlled by varying the speed of the pump. The acoustic source is generated by a hydro-phone. The performances of the beam forming are studied for different water flow speeds and different amplitude and frequencies of the source. (author) [fr

  2. HYDROGEN GENERATION FROM SLUDGE SAMPLE BOTTLES CAUSED BY RADIOLYSIS AND CHEMISTRY WITH CONCETNRATION DETERMINATION IN A STANDARD WASTE BOX (SWB) OR DRUM FOR TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    RILEY DL; BRIDGES AE; EDWARDS WS

    2010-03-30

    A volume of 600 mL of sludge, in 4.1 L sample bottles (Appendix 7.6), will be placed in either a Super Pig (Ref. 1) or Piglet (Ref. 2, 3) based on shielding requirements (Ref. 4). Two Super Pigs will be placed in a Standard Waste Box (SWB, Ref. 5), as their weight exceeds the capacity of a drum; two Piglets will be placed in a 55-gallon drum (shown in Appendix 7.2). The generation of hydrogen gas through oxidation/corrosion of uranium metal by its reaction with water will be determined and combined with the hydrogen produced by radiolysis. The hydrogen concentration in the 55-gallon drum and SWB will be calculated to show that the lower flammability limit of 5% hydrogen is not reached. The inner layers (i.e., sample bottle, bag and shielded pig) in the SWB and drum will be evaluated to assure no pressurization occurs as the hydrogen vents from the inner containers (e.g., shielded pigs, etc.). The reaction of uranium metal with anoxic liquid water is highly exothermic; the heat of reaction will be combined with the source term decay heat, calculated from Radcalc, to show that the drum and SWB package heat load limits are satisfied. This analysis does five things: (1) Estimates the H{sub 2} generation from the reaction of uranium metal with water; (2) Estimates the H{sub 2} generation from radiolysis (using Radcalc 4.1); (3) Combines both H{sub 2} generation amounts, from Items 1 and 2, and determines the percent concentration of H{sub 2} in the interior of an SWB with two Super Pigs, and the interior of a 55-gallon drum with two Piglets; (4) From the combined gas generation rate, shows that the pressure at internal layers is minimal; and (5) Calculates the maximum thermal load of the package, both from radioactive decay of the source and daughter products as calculated/reported by Radcalc 4.1, and from the exothermic reaction of uranium metal with water.

  3. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2011-11-01

    Full Text Available zones capable of introducing a phase shift of zero or p on the alternately out of phase rings of the TEMp0 beams into a unified phase and then focusing the rectified beam to generate a high resolution beam which has a Gaussian beam intensity distribution...

  4. A study of solute transport of radiolysis products in crud and its effects on crud growth on PWR fuel pin

    International Nuclear Information System (INIS)

    Joe, Justin H.; Kim, Seung Jun; Jones, Barclay G.

    2016-01-01

    Highlights: • We model a 3-D numerical solute transport within crud deposit on PWR fuel pin. • Source term effect from radiolysis yield and recombination is minimal. • Lower crud porosity leads substantially higher concentration of solutes. • Thicker crud deposit generates substantially higher concentration of solutes. • High concentration of radiolysis species (H 2 , O 2 , and H 2 O 2 ) can be directly related to corrosion issues on fuel cladding. - Abstract: This research examines the concentration of radiolysis species (H 2 , O 2 , and H 2 O 2 ) over the porous crud layer using a three dimensional time dependent solute transport model. A Monte Carlo random walk technique is adopted to simulate the transport behavior of the different species with various parametric studies of source term, crud thickness, and crud porosity. Particularly, this model employs a system of coupled mass transport and chemical interactions as the source term, which makes the problem non-linear. It is demonstrated that a negligible effect on radiolysis species concentrations change due to the consideration of source term. The crud thickness and porosity effect on the concentration distributions are notably observed. In general, higher concentration starts from the intersection of the heating surface with the chimney wall from the beginning and it reaches the equilibrium state within tens of seconds. The concentration profiles of the radiolysis species H 2 , O 2 , and H 2 O 2 can be directly related to corrosion issues. The direct application of this study to nuclear engineering research is to aid in the design of reactors with higher performance without experiencing an Axial Offset Anomaly (AOA), an unexpected measured shift in axial power distribution from predicted values.

  5. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-D transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    Full text: The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV

  6. Picosecond pulse radiolysis of highly concentrated sulfuric acid solutions: evidence for the oxidation reactivity of radical cation H2O(•+).

    Science.gov (United States)

    Ma, Jun; Schmidhammer, Uli; Mostafavi, Mehran

    2014-06-12

    Aqueous solution of sulfuric acid is used as a suitable system to investigate the reactivity of the short-lived radical cation H2O(•+) which is generated by radiation in water. Ten aqueous solutions containing sulfuric acid with concentration from 1 to 18 mol L(-1) are studied by picosecond pulse radiolysis. The absorbance of the secondary radical SO4(•-) (or HSO4(•)) formed within the 10 ps electron pulse is measured by a pulse-probe method in the visible range. The analysis of the kinetics show that the radicals of sulfuric acid are formed within the picosecond electron pulse via two parallel mechanisms: direct electron detachment by the electron pulse and oxidation by the radical cation of water H2O(•+). In highly concentrated solution when SO4(2-) is in contact with H2O(•+), the electron transfer becomes competitive against proton transfer with another water molecule. Therefore, H2O(•+) may act as an extremely strong oxidant. The maximum radiolytic yield of scavenged H2O(•+) is estimated to be 5.3 ± 0.1 × 10(-7) mol J(-1).

  7. Investigation of the flat-beam model of the beam-beam interaction

    Directory of Open Access Journals (Sweden)

    Bjoern S. Schmekel

    2003-10-01

    Full Text Available At the interaction point of a storage ring collider each beam is subject to perturbations due to the electromagnetic field of the counterrotating beam. For flat beams, a well-known approximation models the beam by a current sheet which is uniform in the horizontal plane, restricting the particle motion to the vertical direction. In this classical model a water-bag beam distribution has been used to find working points and beam-beam tune shift parameters which lead to a stable beam distribution. We investigate the stability of a more realistic Gaussian equilibrium distribution. A linearized Vlasov equation written in action-angle variables is used to compute the radial and angular modes of a perturbation in two-dimensional phase space to first order in the displacement from the design trajectory. We find that the radial modes, which are often neglected, can have a stabilizing effect on the beam motion.

  8. Beam-beam and impedance

    CERN Document Server

    White, S.

    2014-07-17

    As two counter-rotating beams interact they can give rise to coherent dipole modes. Under the influence of impedance these coherent beam-beam modes can couple to higher order head-tail modes and lead to strong instabilities. A fully self-consistent approach including beam-beam and impedance was used to characterize this new coupled mode instability and study possible cures such as a transverse damper and high chromaticity.

  9. Radiolysis compounds in bacon and chicken. Final report 18 Sep 81-20 Sep 82

    International Nuclear Information System (INIS)

    Merritt, C. Jr.

    1984-01-01

    The results of this study are in agreement with the precepts established in studies published previously on beef, chicken, ham, and pork. The radiolysis compounds from bacon, chicken, ham, and pork are comparable in identity and amounts to those found in irradiated beef for comparable compositions and irradiation parameters (temperature, dose, etc.). The results of this study support the conclusions drawn in the CORC report of 'commonality in chemistry, predictability of products, and extrapolation of results.' Consequently, the same conclusions can be drawn concerning the wholesomeness of irradiated bacon, chicken, ham, and pork as for other irradiated meat products of similar composition and irradiation parameters as reported in the FASEB report and its supplements (I and II) on irradiated beef

  10. Radiolysis of liquid cyclohexanol. Determination of yields and reactivity of radicals by spin traps method

    International Nuclear Information System (INIS)

    Val'ter, A.I.; Zubarev, V.E.; Bugaenko, L.T.

    1986-01-01

    Using C-phenyl-N-tretbutylnitron (PBN) spin trap total yield of radicals Gsub(σR)=3.2+-0.2 rad/100 eV during cyclohexanol radiolysis ( 60 Co) in liquid phase is measured. 1-hydroxycyclohexyl RC[OH)R radical yield is Gsub(RC(OH)R)=1.2+-0.1 rad/100 eV, RC-HR radicals of H atom scission from the ones of C 2 , C 3 , C 4 -cyclohexane ring are formed with the yield Gsub(RC-HR)=2.0+-0.1 rad/100 eV. RC-HR radicals react with cyclohexanol molecules forming RC[OH)R. The rate constant ratio of RC-HR reactions with alcohol and PBN:Rsub(al)/ksub(PBN)=(3.6+-0.4)x10sup(-4) is determined

  11. Ultraviolet part of transient absorption spectrum induced in liquid ammonia by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Farhataziz

    1977-01-01

    The absorption spectra induced in neat liquid ammonia and ammoniacal solution of N 2 O by nanosecond pulse radiolysis have been measured for wavelength range 250 to 325 nm. The results indicate that the absorption spectrum induced in liquid ammonia is a composite of absorption spectra of e/sub am/ - and NH 2 . The absorptions due to e/sub am/ - decrease with decreasing wavelength, and are attributed to the tail of the absorption spectrum (maximum absorption in near infrared) of e/sub am/ - . The absorption spectrum for NH 2 has a shoulder at approximately 255 nm. In liquid ammonia at 23 0 C, the extinction coefficient for NH 2 at 250 nm is 1.1 x 10 3 M -1 cm -1

  12. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1979-September 1980

    International Nuclear Information System (INIS)

    Dorfman, L.M.

    1980-01-01

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of reactive intermediates using the pulse radiolysis technique. Optical absorption spectra of these transient species, which determine the course of the chemistry, are being obtained. The types of reactive species currently of interest are organic molecule ions (both cations and anions) and radical ions, and transition metal carbonyl radicals in solution. Since reaction is initiated by a pulse of high energy electrons, our investigations inherently relate to radiation chemical systems. The information obtained is, however, also of interest in various areas of organic reaction kinetics in which ionic species are known to play a central role. The reactivity of the transition metal carbonyl radicals is of interest in the area of homogeneous catalysis. Current activities involve: spectra and reactivities of transition metal carbonyl radicals of the type M(CO) 5 ; reactivity of organic ionic species (including carbocations and carbanions) in irradiated solutions

  13. Investigation of free-radical processes in low temperature radiolysis of copolymers of ethylene with styrene

    International Nuclear Information System (INIS)

    Mal'tseva, A.P.; Golikov, V.P.; Leshchenko, S.S.; Karpov, V.L.; Muromtsev, V.I.

    1977-01-01

    Free radical processes during γ-radiolysis of statistical ethylene-styrene copolimers (ESC) have been investigated. The presence of styrene links in the ESC has been shown to reduce both radical yields and their reaction ability as compared with low density polyethylene irradiated under the same conditions. The character of radical processes in ESC sighificantly depends both on styrene concentration in them and on the dose absorbed. The most pronounced decrease in radical yield is found in the copolymer having 5 mol % styrene. This effect seems to be caused by the accumulation in the irradiated copolymer of products which are capable of more effective dissipation of absorbed energy than only styrene links alone

  14. Relaxation studies of the seeded emulsion polymerization of styrene initiated by γ-radiolysis

    International Nuclear Information System (INIS)

    Lansdowne, S.W.; Gilbert, R.G.; Napper, D.H.; Sangster, D.F.

    1980-01-01

    Results are reported for the relaxation kinetics of the emulsion polymerization of styrene in seeded systems initiated by γ-radiolysis. The decay in the rate of polymerization after removal from the radiation field was followed dilatometrically. The data were interpreted using an extended Smith-Ewart theory. This confirmed values for the rate coefficients for both the first-order loss of free radicals from the particles (k) and the entry of thermally generated free radicals into the particles (rho 0 ) obtained in a separate chemically initiated study. Temperature-dependent studies showed that these two rate coefficients, for particles of radius 48 +- 2 nm, could be expressed as equations: these are presented. (author)

  15. Matrix radiolysis and photoionization of CFCl3. Infrared spectra of CFCl+2 and the parent cation

    International Nuclear Information System (INIS)

    Prochaska, F.T.; Andrews, L.

    1978-01-01

    The ''Freon'' compound CFCl 3 has been subjected to radiolysis and photoionization during condensation with excess argon at 15 K. Infrared spectra of the matrix samples identified stable and free radical products and new absorptions which are attributed to charged species. The molecular ion bands exhibited three different behavior patterns on filtered mercury arc photolysis: The most photosensitive bands, destroyed by 420--1000 nm light, are assigned to the parent cation; several absorptions which photodissociated with 290--1000 nm radiation are due to a molecular anionic species; and new bands reduced by 220--1000 nm light are assigned to the daughter cation CFCl + 2 . The vibrational assignments were confirmed by carbon-13 substitution

  16. Radiolysis of Amino Acids in Outer Solar-System Ice Analogs

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2011-01-01

    Amino acids have been found in cometary dust particles and in the organic component of meteorites. These molecules, important for pre-biotic chemistry and for active biological systems, might be formed in cold planetary or interstellar environments and then delivered to H20-rich surfaces in the outer solar system. Many models for the availability of organic species on Earth and elsewhere depend on the ability of these molecules to survive in radiation-rich space environments. This poster presents results of O.8-MeV proton radiolysis of ice films at lS-140K. using infrared spectroscopy, the destruction rates of glycine, alanine, and phenylalanine have been determined for both pure films and those containing amino acids diluted in H2o. our results are discussed in terms of the survivability of these molecules in the icy surfaces present in the outer solar system and the possibility of their detection by instruments on board the New Horizons spacecraft

  17. Radiolysis of KCN aqueous solution in the presesnce of solid catalysts

    International Nuclear Information System (INIS)

    Qi Shengchu; Dong Changzhi; Jilan

    1989-01-01

    γ-radiolysis of KCN aqueous solution contained clay and pd-black has been studied. The product spectrum and the main product yields have also been determined by paper chromatography. A small amounts of clay (0.2 g/5 ml) can lightly increase the yields of amino acids, but a large quantities of clay (2.7 g/5 ml) can inhibit the formation of amino acids. Some solids (such as clay, pd-black) can catalytically polymerize CN - ion to form polymers which produce some amino acids on hydrolysis. There exist some evidence about peptide or quasi-peptide substances in the clay-containing samples. The samples show positive reaction to Folin-Phenol reagent and amino acids are formed on hydrolysis

  18. Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Lin Weizhen; Yao Side; Lin Nianyun [Laboratory of Radiation Chemistry, Shanghai Institute of Nuclear Research, Academic Sinica, Shanghai (China); Navaratnam, Suppiah [Faculty of Science and Technology, North East Wales Institute of Higher Education, Mold Road, Plas Coch, Wraxham, Clwyd (United Kingdom)

    1998-10-01

    Spectral and redox properties of the phenoxyl radicals from hydroxycinnamic acid derivatives and one selected component of phenylpropanoid glycosides, verbascoside, were studied using pulse radiolysis techniques. On the basis of the pH dependence of phenoxyl radical absorptions, the pK{sub a} values for deprotonation of sinapic acid radical and ferulic acid radical are 4.9 and 5.2. The rate constants of one electron oxidation of those antioxidants by azide radical and bromide radical ion were determined at pH 7. The redox potentials of those antioxidants were determined as 0.59-0.71 V vs NHE at pH 7 with reference standard 4-methoxyphenol and resorcinol.

  19. Pulse radiolysis of malachite green leucocyanide in alcoholic solvents, the influence of oxygen

    International Nuclear Information System (INIS)

    Grodkowski, J.; Stuglik, Z.; Wieczorek, G.

    1992-01-01

    The solutions of malachite green leucocyanide (MGCN) in methanol, n-propanol and 2-propanol were investigated using pulse radiolysis. In the presence of oxygen, MG + -carbonium ions were radiolytically formed in two different time steps. The yield of MG + in the slower process was dependent on oxygen concentration and was proportional to the yield of intermediate MG radicals. The yield of MG was about ten times higher in 2-propanol than in methanol and n-propanol solutions. The reactants responsible for MG oxidation to MG + were RO 2 , hydroxyalkylperoxyl radicals derived from alcohols. The rate constant for MG reaction with RO 2 were estimated as (6.5±1) x 10 8 M -1 s -1 . The molar extinction coefficient of MG was calculated. (author)

  20. The reduction process of phytic acid-silver ion system: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, Tulsi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2007-05-15

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag{sup +{yields}}Ag{sup 0{yields}}Ag{sub 2} {sup +{yields}}Ag{sub 3} {sup 2+}, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size (R {sub av}=100 nm)

  1. One-electron reduction of anthraquinone sulphonates: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Pal, H.; Palit, D.K.; Mukherjee, T.; Mittal, J.P.

    1991-01-01

    Semiquinone free radicals, derived from 2-sulphonate, 1,5-disulphonate and 2,6-disulphonate derivatives of 9,10-anthraquinone, have been studied using pulse radiolysis and kinetic absorption spectrophotometry techniques. Spectroscopic characteristics of both neutral and anionic species have been ascertained. Kinetics of formation and decay, reactivity with oxygen and one-electron reduction potential values have been estimated. The semiquinone radicals have been shown to be very stable under suitable pH conditions where the equilibrium (2 semiquinone ↔ quinone + hydroquinone) lies predominantly to the left. From a measurement of the equilibrium constants at different pH, values of E 2 and E m have been calculated. (author)

  2. Effect of spatially correlated generation of macroradicals in the radiolysis of polymers

    International Nuclear Information System (INIS)

    Bol'bit, N.M.; Taraban, V.B.; Klinshpont, Eh.R.; Shelukhov, I.P.; Milinchuk, V.K.

    2000-01-01

    Multiple increase in radiation-chemical yield of macro radicals when polymers (polystyrene, polymethylmethacrylate, polycarbonate) are subjected to ionizing radiations at super-low absorbed dose rates (0.1-1 mGy/s) in vacuum at room temperature was revealed. A model of radiolysis process was suggested based on the mechanism of preferable generation and stabilization of macro radicals during polymer irradiation in the vicinity of macro radicals available at the moment. The mechanism results in formation of clusters (swarms) of free radicals. Experiments of luminescence quenching permitted ascertaining the efficiency of spatially correlated generation of macro radicals, degree of clustering and average ratio of the clusters in certain polymers and scintillators on their basis [ru

  3. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range

    International Nuclear Information System (INIS)

    Draganic, Z.D.; Negron-Mendoza, A.; Vujosevic, S.I.; Navarro-Gonzales, R.; Albarran-Sanchez, M.G.

    1991-01-01

    Oxygen-free aqueous solutions of 0.05 mol dm -3 ammonium and sodium bicarbonate were studied after receiving various doses of 60 Co gammas (0.01-400 kGy) or 0.5-20 Gy pulses of 10 Mev electrons. Formate and oxalate were found to be the main radiolytic products, in addition to trace amounts of formaldehyde and an unidentified polymer. A large initial yield of formate in the γ-radiolysis, G(HCOO - ) = 2.2, is due to the reaction COO - + HCO 3 - ↔ HCOO - +CO 3 - . The efficiency of organic synthesis within the large dose range studied is low and is explained by efficient pathways leading to the reformation of bicarbonate, where the reaction COO - + CO 3 - is particularly significant. (author)

  4. Oxidation of cinnamic acid derivatives: A pulse radiolysis and theoretical study

    International Nuclear Information System (INIS)

    Yadav, Pooja; Mohan, Hari; Maity, Dilip Kumar; Suresh, Cherumuttathu H.; Rao, B.S. Madhav

    2008-01-01

    Second order rate constants in the range of (k = 1.6-4.5) x 10 9 dm 3 mol -1 s -1 were obtained for the · OH induced oxidation of nitro- and methoxycinnamic acid derivatives in neutral solutions using pulse radiolysis. The transient absorption spectra exhibited a broad peak around 360-410 nm in o-methoxy, o- and p-nitrocinnamates or two peaks around 310-330 and 370-410 nm in other isomers. Quantum chemical calculations revealed that addition of · OH to olefinic moiety yielded considerably more stable structures than ring addition products and the para system among the latter is the most stable. Spin density analysis suggested that olefinic adducts retained the aromaticity in contrast to its loss in ring · OH adducts. An excellent linear correlation between the relative stabilities of the · OH adducts (after accounting for the aromatic stabilization in olefinic adducts) and the maximum S d values is also obtained

  5. The mechanism for diamagnetic products formation under the radiolysis of alkali nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Anan' ev, Vladimir [Department of Analytical Chemistry, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043 (Russian Federation)], E-mail: eprlab@kemsu.ru

    2009-06-15

    Based on optical measurements, the kinetics of peroxynitrite accumulation in alkali nitrate crystals {gamma}-irradiated at 310 K has been investigated. The initial radiation chemical yields were calculated to be 0.60{+-}0.05, 0.14{+-}0.03, 0.35{+-}0.03, 0.65{+-}0.04 (100 eV){sup -1} for NaNO{sub 3}, KNO{sub 3}, RbNO{sub 3}, and CsNO{sub 3}, respectively. The mechanism for the radiolysis of crystalline alkali nitrates is interpreted in terms of formation of the peroxynitrite ions and the nitrite ions from high-energy singlet and triplet excited states of the nitrate ions, respectively. These states can be generating under the radiationless transitions of electrons from the cation conductivity band into the anion conductivity band accompanied by the Auger excitation of the nitrate ions.

  6. Mechanism and kinetics in reactions of caffeic acid with radicals by pulse radiolysis and calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xifeng; Cai, Zhongli; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The interaction of caffeic acid with e{sub aq}{sup -}, (CH{sub 3}){sub 2}(OH) CCH{sub 2}{sup {center_dot}}, CO{sub 2}{sup {center_dot}}{sup -}, H{sup {center_dot}}, {center_dot}OH and N{sub 3}{sup {center_dot}} radicals were studied by {gamma}-, pulse radiolysis and molecular orbital calculation. UV-visible spectra of electron/{center_dot}OH adducts, semi-quinone radicals of caffeic ions, and the stable products from the reactions were derived. The rate constants were determined. The attacked sites and the most favorable structures of the transient radicals were predicted. Reaction mechanisms were proposed. (author)

  7. Caltrop particles synthesized by photochemical reaction induced by X-ray radiolysis.

    Science.gov (United States)

    Yamaguchi, Akinobu; Fukuoka, Takao; Okada, Iukuo; Ishihara, Mari; Sakurai, Ikuya; Utsumi, Yuichi

    2017-05-01

    X-ray radiolysis of a Cu(CH 3 COO) 2 solution was observed to produce caltrop-shaped particles of cupric oxide (CuO, Cu 2 O), which were characterized using high-resolution scanning electron microscopy and micro-Raman spectrometry. X-ray irradiation from a synchrotron source drove the room-temperature synthesis of submicrometer- and micrometer-scale cupric oxide caltrop particles from an aqueous Cu(CH 3 COO) 2 solution spiked with ethanol. The size of the caltrop particles depended on the ratio of ethanol in the stock solution and the surface of the substrate. The results indicated that there were several synthetic routes to obtain caltrop particles, each associated with electron donation. The technique of X-ray irradiation enables the rapid synthesis of caltrop cupric oxide particles compared with conventional synthetic methods.

  8. Study of He-Ne Laser Beam Propagation Through Air and Pure, Salt (Still and Turbulence Water

    Directory of Open Access Journals (Sweden)

    Safa AL. Barmany

    2018-01-01

    Full Text Available  This papers ,study  properties of the laser beam in the  different condition,  By using optical system consist of the (He- Ne laser ((λ =632.8nm , p=1.04mw, the parameter beam laser(spot, shape, intensity were study and also study the attenuation and turbulence for the laser mentioned above and with following environmental condition.(1 in the air (2 in the pure ,slate (seawaterwater with concentration 10-5Ml (still, turbulence  at different distance. Measurement were obtained by using a CCD camera and silicon detector type(Silicon PIN in fast response (.0.4-0.7A/W, absorption coefficient value of all cases  was calculated.

  9. Impact of β- radiolysis and transient products on irradiation-enhanced corrosion of zirconium alloys

    International Nuclear Information System (INIS)

    Lemaignan, C.

    1992-01-01

    An analysis has been undertaken of the various cases of local enhancement of the corrosion rate of zirconium alloys under irradiation. It is observed that in most cases a strong emission of energetic β - is present leading to a local energy desorption rate higher than the core average. This suggests that the local transient radiolytic oxidising species produced in the coolant by the β - particles could contribute to corrosion enhancement, by increasing the local corrosion potential. This process is applicable to the local enhanced corrosion found in front of stainless steels structural parts, due to the contribution of Mn, in front of Pt inserts and Cu-rich cruds. It explains also the irradiation corrosion enhancement of Cu-rich Zr alloys. Enhanced corrosion around neutron absorbing material is explained similarly by pair production from conversion of high energy capture photons in the cladding, leading to energetic electrons. The same process was found to be active with other highly ionising species like α in Ni-rich alloys and fission products in homogeneous reactors. This mechanism, applicable for an explanation of localised irradiation-enhanced corrosion, is proposed to be extended to the reactor core, where the general enhancement of Zr-alloy corrosion under irradiation would be due to the general radiolysis. It suggests that care should be taken to avoid any source of β - emission or other ionising species in the reactor core that could give an increase of energy deposition rate for radiolysis. Also the corrosion testing conditions for the materials to be used in reactors have to be relevant to the radiolytic environments found in the reactor cores. (orig.)

  10. Radiolysis of cesium iodide solutions in conditions prevailing in a pressurized water reactor severe accident

    International Nuclear Information System (INIS)

    Lucas, M.

    1988-01-01

    Measurements were made of I/sub 2/ formed when aqueous cesium iodide (CsI) solutions were exposed to two temperatures, 43 and 95 0 C, with irradiation. Iodine partition coefficients were obtained from the experiments. The parameters varied were dose, CsI concentration, and Cs/sub 2/CO/sub 3/ concentration, in the presence of air-carbon dioxide and air-carbon dioxide-hydrogen mixtures, to provide information to calculate the form in which iodine released from fuel as CsI in a reactor accident might reach the environment. In a series of experiments, a two-compartment cell was used to trap the gaseous iodine produced. In this case, it was found that the quantity of gaseous iodine produced increased approximately linearly with the dose (at the dose rate used)

  11. Picosecond Water Radiolysis at High Temperature. Br- Oxidation - Experiments and MC-Simulations

    International Nuclear Information System (INIS)

    Baldacchino, G.; Saffre, D.; Jeunesse, J.P.; Schmidhammer, U.; Larbre, J.P.; Mostafavi, M.; Beuve, M.; Gervais, B.

    2012-09-01

    Acidic solutions of bromhydric acid have been irradiated by picosecond pulses of 7 MeV-electrons provided by ELYSE accelerator (LCP Orsay). At elevated temperatures up to 350 deg. C, salts like NaBr or KBr usually precipitate and organic compound are decomposed. Another choice of OH-scavenger may be acidic halogenates like HBr or HCl. In this situation, the processes involving H + and Br - must be considerate: while hydrated electrons are scavenged by H + , . OH reacts with Br - . Then the formations of BrOH . and Br 2 .- have been investigated by using a devoted picosecond pump-probe setup. A dedicated small-size high temperature optical flow cell has been developed for fitting the picosecond duration of the electron pulses. This cell replaces the one used also with nanosecond resolution. The picosecond time resolution remains roughly not affected by the material crossed by electrons (0.4 mm of Inconel 718) and by the white light continuum (20 mm of Sapphire windows and 6 mm of liquid solution). Depending on the concentration of HBr, the growing up of the signal can be attributed to mainly BrOH . or Br2 .- . Actually with a relatively low scavenging power ([HBr] = 25 mM), Br 2 .- is formed with a reaction between Br . and Br - which delays of around 4 ns the apparition of Br2 .- . In this particular case we then assume the absorbance is due to BrOH . . With higher and higher temperature, from 100 deg. C to 300 deg. C, the rate constant of this formation is lightly less and less. This observation must be associated to the fact that the formation of BrOH . is actually equilibrium with a lower and lower equilibrium constant value when temperature is increased. This presentation tries to explain this fact in detail by also considering Monte Carlo simulations. This will allows following all transient species from ps to μs. (authors)

  12. Radiolysis of water in sarcophagus at the action of alpha, beta and gamma rays

    International Nuclear Information System (INIS)

    Azarov, S.I.; Vilenskaya, L.N.; Korchevnaya, O.V.

    1998-01-01

    The paper deals with the data systematic approach on physical and chemical processes at ionisation of environment in premises of Sarcophagus (reactor 4 at the Chernobyl Nuclear Power Plant). Inter reaction of the ionizing radiation of difficult structure α, β- and γ-radiation with environment arises the ionisation process have been performed

  13. A beam source model for scanned proton beams.

    Science.gov (United States)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-07

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  14. Charge-transfer energy in the water-hydrogen molecular aggregate revealed by molecular-beam scattering experiments, charge displacement analysis, and ab initio calculations.

    Science.gov (United States)

    Belpassi, Leonardo; Reca, Michael L; Tarantelli, Francesco; Roncaratti, Luiz F; Pirani, Fernando; Cappelletti, David; Faure, Alexandre; Scribano, Yohann

    2010-09-22

    Integral cross-section measurements for the system water-H(2) in molecular-beam scattering experiments are reported. Their analysis demonstrates that the average attractive component of the water-H(2) intermolecular potential in the well region is about 30% stronger than dispersion and induction forces would imply. An extensive and detailed theoretical analysis of the electron charge displacement accompanying the interaction, over several crucial sections of the potential energy surface (PES), shows that water-H(2) interaction is accompanied by charge transfer (CT) and that the observed stabilization energy correlates quantitatively with CT magnitude at all distances. Based on the experimentally determined potential and the calculated CT, a general theoretical model is devised which reproduces very accurately PES sections obtained at the CCSD(T) level with large basis sets. The energy stabilization associated with CT is calculated to be 2.5 eV per electron transferred. Thus, CT is shown to be a significant, strongly stereospecific component of the interaction, with water functioning as electron donor or acceptor in different orientations. The general relevance of these findings for water's chemistry is discussed.

  15. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  16. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  17. TH-CD-201-09: High Spatial Resolution Absorbed Dose to Water Measurements Using Optical Calorimetry in Megavoltage External Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Martinez, E; DeWerd, L [School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States); Radtke, J [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To develop and implement a high spatial resolution calorimeter methodology to measure absorbed dose to water (ADW) using phase shifts (PSs) of light passing through a water phantom and to compare measurements with theoretical calculations. Methods: Radiation-induced temperature changes were measured using the PSs of a He-Ne laser beam passing through a (10×10×10) cm{sup 3} water phantom. PSs were measured using a Michelson interferometer and recording the time-dependent fringe patterns on a CCD camera. The phantom was positioned at the center of the radiation field. A Varian 21EX was used to deliver 500 MU from a 9 MeV beam using a (6×6) cm{sup 2} cone. A 127cm SSD was used and the PSs were measured at depths ranging from of 1.90cm to 2.10cm in steps of 0.05cm by taking profiles at the corresponding rows across the image. PSs were computed by taking the difference between pre- and post-irradiation image frames and then measuring the amplitude of the resulting image profiles. An amplitude-to-PS calibration curve was generated using a piezoelectric transducer to mechanically induce PSs between 0.05 and 1.50 radians in steps of 0.05 radians. The temperature dependence of the refractive index of water at 632.8nm was used to convert PSs to ADW. Measured results were compared with ADW values calculated using the linac output calibration and commissioning data. Results: Milli-radian resolution in PS measurement was achieved using the described methodology. Measured radiation-induced PSs ranged from 0.10 ± 0.01 to 0.12 ± 0.01 radians at the investigated depths. After converting PSs to ADW, measured and calculated ADW values agreed within the measurement uncertainty. Conclusion: This work shows that interferometer-based calorimetry measurements are capable of achieving sub-millimeter resolution measuring 2D temperature/dose distributions, which are particularly useful for characterizing beams from modalities such as SRS, proton therapy, or microbeams.

  18. E-beam irradiation and activated sludge system for treatment of mixed textiles and food base industrial waste water

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Selambakkannu, S; Jamaliah Sharif; Khairul Zaman Mohd Dahlan; Ming, T.T.; Natasha Isnin; Hasnul Nizam Osman

    2012-01-01

    The combination of irradiation and biological technique was chosen to study COD, BOD 5 and colour removal from textiles effluent in the presence of food industry waste water. Two biological treatments, the first consisting a mix of non irradiated textile and food industry waste water and the second a mix of irradiated textiles waste water and food industry waste water were operated in parallel. Reduction percentage of COD in textiles waste water increased from 29.4 % after radiation to 62.4 % after further undergoing biological treatment. After irradiation, the BOD 5 of textiles waste water was reduced by 22.1 % but reverted to the original value of 36 mg/ L after undergoing biological treatment. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and continued to decrease to 109.3 ADMI after passing through biological treatment. (author)

  19. Comparison of two dosimetric protocols in water and solid phantoms for electron beams in an extension cone

    International Nuclear Information System (INIS)

    Genis S, R.; Garcia C, C.; Martinez A, M.

    1998-01-01

    The objective of this work is to realize the dosimetry for an extension cone for electron beams and proposing a simple and reliable procedure for this purpose. Clinically it was sufficient to employ an energy not greater than 9 MeV, by the clinical conditions of the leisure. It was had nominally 6 or 9 MeV and it was decided to employ the second energy. This cone was elaborated for special cases that by the anatomical position of the leisure, it is not allowed the easy access with the usual cones. (Author)

  20. Removing NDMA (N,N-dimethylnitrosamine) from natural waters

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Cooper, W.J.; Bartels, D.M.

    2003-01-01

    Nitrosoamines are ubiquitous in water environments, and are of concern as they are potent carcinogens. In particular, N,N-dimethylnitrosamine (NDMA, (CH 3 ) 2 NNO) is volatile, and therefore has been detected around factories producing secondary amines or rocket fuel, in areas near industrial plants that use dimethylamine in organic synthesis, and even in foods and beverages that contain nitrite or which have been exposed to nitrous oxides. Various technologies have been suggested for removing trace levels of NDMA contamination from aqueous systems. However, Advanced Oxidation Technologies (AOTs), such as ozone, UV/ozone, and UV/H 2 O 2 , which use oxidation via the hydroxyl radical ( . OH), or heterogeneous catalysis by TiO 2 , sonolysis, or the electron beam process, which produce a mixture of oxidizing . OH radicals with reducing hydrated electrons (e - aq ) and hydrogen atoms ( . H), may also produce unwanted stable products in the treatment. Some of these stable products, such as secondary amines, allow regeneration of NDMA to occur. To ensure that any process applied to NDMA contaminated water occurs efficiently and quantitatively a complete understanding of the chemistry involved under the conditions of use is necessary. This requires mathematical modeling of the process, which in turn needs reaction rate constants and mechanisms. In this study, absolute rate constants at room temperature for the reaction of the hydroxyl radical, hydrated electron, and hydrogen atom with NDMA in water have been determined using electron pulse radiolysis and absorption spectroscopy, (e - aq and . OH) and EPR free induction decay attenuation ( . H) measurements. The specific values of (4.30± 0.12) x 10 8 , (1.41 ± 0.02) x 10 10 , and (2.01 ± 0.03) x 10 8 M -1 s -1 , respectively, demonstrate that the reductive destruction of this nitrosoamine would be the dominant removal pathway in any remediation process. Based on these data we have begun modeling the large-scale electron

  1. Investigation into radiolysis of tbp labelled with 32P in the 30%tbp-diluent-HNO3 systems

    International Nuclear Information System (INIS)

    Novak, M.; Novak, Z.; Rokhon', A.

    1975-01-01

    Phosphorus-containing compounds, prepared by radiolysis of the TBP-diluent-HNO 3 system, are determined quantitatively. Effects of the HNO 3 concentration and the diluent type upon the degree of the TBP decomposition in the system under investigation were determined as well. To separate the TBP decomposition products the thin layer chromatography method was used, and for the quantitative determination TBP, labelled with 32 P was used. As a result of TBP radiolysis except dibutyl phosphate and monobutylphosphate other compounds are prepared, which contain phosphorus in a molecule, besides, their quantity depends on the nitric acid concentration and the diluent type (n-dodecan, carbon tetrachloride, mesitylen), together with which TBP was irradiated. The prepared compounds are grouped in the aqueous and organic phases

  2. The effects of γ-irradiation on the garlic oil contents in garlic bulbs and the radiolysis of allyl trisulfide

    International Nuclear Information System (INIS)

    Wei Genshuan, Wang Guanghui; Yang Ruipu; Wu Jilan

    1995-01-01

    The study of the effects of γ-irradiation on the garlic oil contents in the garlic bulbs and the radiolysis of allyl trisulfide and disulfide were carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant as stored for 10 months long. The main components of the garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3 C HOH radical into acetaldehyde, which causes that the formation of 2,3-butanediol is extensively inhibited. (author)

  3. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    International Nuclear Information System (INIS)

    Wei Genshuan; Wang Guanghui; Yang Ruipu; Wu Jilan

    1996-01-01

    A study of the effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisufide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3 C . HOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited. (author)

  4. Selective hydrogen atom abstraction by hydrogen atoms in photolysis and radiolysis of alkane mixtures at 770 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Kinugawa, K.; Eguchi, M.; Guedes, S.M.L.

    1977-01-01

    Selective hydrogen atom abstraction reaction by H atoms, has been found in Isobutane, 2,2,3,3-tetramethylbutane(TMB), cyclopropane matrices besides neopentane matrix. The selective hydrogen atom abstraction reaction in neopentane-isobutane mixture is affected by the difference of kinetic energies of H atoms. The reaction occurs more favorably with decreasing the kinetic energy of H atoms. Competitive reaction between c-C 6 H 12 and Hi for H atoms has been studied in the radiolysis and photolysis of neo-C 5 H 12 HI mixture at 77 K. The rate constants of these reactions in neopentane matrix are quite different from these of thermal H atom reaction, but similar to those of hot H atom reaction. Importance of the selective hydrogen atom abstraction reaction by H atoms is pointed out in the radical formation in the radiolysis of pure TMB at 77 K [pt

  5. Mechanisms of transformation of the antioxidant kaempferol into depsides. Gamma-radiolysis study in methanol and ethanol.

    Science.gov (United States)

    Marfak, A; Trouillas, P; Allais, D P; Calliste, C A; Cook-Moreau, J; Duroux, J L

    2003-09-01

    In this study, we irradiated the antioxidant kaempferol in ethanol and methanol solutions with gamma rays at doses ranging from 0.2-20 kGy. NMR and ES-MS spectroscopy were used to identify radiolysis products. Two depsides, [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) methyl acetate and [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) ethyl acetate, were the major compounds of kaempferol degradation in methanol and in ethanol, respectively. Other products formed in low concentrations were identified as [4-hydroxyphenyl](oxo) methyl acetate, [4-hydroxyphenyl](oxo) ethyl acetate, and depside [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) acetic acid. The formation of the latter was observed in both solvents. We propose degradation mechanisms that suggest that (.)CH(2)OH and CH(3)(.)CHOH, produced by solvent radiolysis, react with the 3-OH kaempferol group because of its high H-donor capacity. pi-Electron delocalization in the flavonoxy formed after the first H-transfer leads to C-ring opening and consequently to the formation of depsides. G calculation of the degradation products and of (.)CH(2)OH and CH(3)(.)CHOH radicals confirmed the proposed mechanism of kaempferol radiolysis. The rate constants for the reaction between kaempferol and these free radicals were also calculated. Formation of depside has also been observed in many studies of the oxidation of flavonoids; those studying human metabolism have suggested similar redox transformation of flavonols. The antioxidant activities of radiolysis products were evaluated and compared to those of kaempferol.

  6. A new electron linac for pulse radiolysis experiments at the Institute of Nuclear Chemistry and Technology, Poland

    International Nuclear Information System (INIS)

    Zimek, Z.

    1990-01-01

    A new electron accelerator LAE 10 is under construction at the Institute of Nuclear Chemistry and Technology in Warsaw. This facility will be dedicated to pulse radiolysis and related experiments. The basic parameters of the linac are the following: electron energy 10 MeV, pulse durations 10-100 ns, peak current 10-2 A respectively. Accelerator structure traveling wave type powered by klystron operated at a frequency 1818 MHz is applied. (author)

  7. A new electron linac for pulse radiolysis experiments at the Institute of Nuclear Chemistry and Technology, Poland

    Science.gov (United States)

    Zimek, Z.

    A new electron accelerator LAE 10 is under construction at the Institute of Nuclear Chemistry and Technology in Warsaw. This facility will be dedicated to pulse radiolysis and related experiments. The basic parameters of the linac are the following: electron energy 10 MeV, pulse durations 10-100 ns, peak current 10-2 A respectively. Accelerator structure traveling wave type powered by klystron operated at a frequency 1818 MHz is applied.

  8. Effects of energy, distance and orientation on electron transfer rates studied by pulse radiolysis in organic media

    International Nuclear Information System (INIS)

    Miller, J.R.

    1987-01-01

    In the past few years the methods of radiation chemistry in organic media have made an enormous change in how we view electron transfer processes, as these media have proved the most useful for studying long distance electron transfer between molecules. This paper briefly summarizes a few of the aspects of this area and discusses some of the attributes and limitations of radiation tehniques, particularly pulse radiolysis, in organic solvents. 14 refs., 2 figs

  9. Pulse radiolysis study of reaction of bull serum albumin electron adduct with oxygen. Polychromatic kinetics of reaction with adsorbed oxygen

    International Nuclear Information System (INIS)

    Pribush, A.G.

    1986-01-01

    By the method of pulse radiolysis the reaction of bull serum albumin electron adduct with oxygen is investigated. As pulsed radiation source electron linear accelerators with particle energy of 8.0 and 4.5 MeV and pulse time of 40 ns and 2.2 μs, respectively have been used. It is assumed that the disappearance of protein electron adduct occurs in the course of its interaction with oxygen adsorbed on protein globular molecule

  10. Dose distribution of secondary radiation in a water phantom for a proton pencil beam - EURADOS WG9 inter-comparison exercise.

    Science.gov (United States)

    Stolarczyk, Liliana; Trinkl, Sebastian; Romero-Exposito, Maite; Mojżeszek, Natalia; Ambrozova, Iva; Domingo, Carles; Davidkova, Marie; Farah, Jad; Kłodowska, Magdalena; Knežević, Željka; Liszka, Małgorzata; Majer, Marija; Miljanic, Saveta; Ploc, Ondrej; Schwarz, Marco; Harrison, Roger Michael; Olko, Pawel

    2018-03-06

    Systematic 3-D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam (PBS) in a 300 × 300 × 600 mm3 water phantom was performed using a set of thermoluminescence detectors (TLD): MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MTS-N (natLiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti), radiophotoluminescent detectors (RPL) GD-352M and GD-302M and polyallyldiglycol carbonate (PADC)-based (C12H18O7) track-etched detectors. Neutron and gamma-ray doses, as well as LET distributions were experimentally determined at 200 points within the phantom. In parallel, GEANT 4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume 100 × 100 × 100 mm3 (Spread Out Bragg Peak with modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicularly to the primary beam were approximately 0.5 mGy/Gy at a distance of 100 mm and 0.02 mGy/Gy at 300 mm from the centre of the target. For neutrons, the corresponding values of dose equivalent were found to be ~ 0.7 mSv/Gy and ~ 0.06 mSv/Gy respectively. The measured neutron doses were comparable with the out-of-field neutron doses from the similar experiment with 20 MV X-rays, whereas photon doses for the scanning proton beam were up to 3 orders of magnitude lower. © 2018 Institute of Physics and Engineering in Medicine.

  11. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  12. Pulse radiolysis of alkanes in the gas-phase, ion-molecule reactions and neutralization mechanisms of hydrocarbon ions

    International Nuclear Information System (INIS)

    Ausloos, P.

    1975-01-01

    A discussion is presented of the fate of unreactive hydrocarbon ions in various selected gaseous systems. It is shown that experiments performed with the high radiation dose rates obtained in pulse radiolysis experiments have several advantages over conventional low dose rate experiments for the elucidation of the mechanism of homogeneous neutralization of unreactive hydrocarbon ions. This is so because the charged species has a much shorter lifetime with respect to neutralization under high dose rate (pulse radiolysis) conditions, so that the reaction of the ions with minor impurities or accumulated products is much less probable than in low dose rate experiments. It is further shown through a few examples, that quantitative information about the rate contants of neutralization events and ion-molecule reactions can be obtained when the dose rate is high enough for neutralization and chemical reaction to be in competition. Once reliable rate constants for neutralization and ion-molecule reactions are derived, one can obtain a quantitative evaluation of the products which will by formed in the pulse radiolysis of a hydrocarbon gas mixture from a computer calculation. (author)

  13. Monte Carlo simulation of the relative biological effectiveness and DNA damage from a 400 MeV/u carbon ion beam in water.

    Science.gov (United States)

    Ou, Haifeng; Zhang, Bin; Zhao, Shujun

    2018-06-01

    A 400 MeV/u carbon ion beam incident on a water phantom was simulated with GATE/Geant4 to calculate the energy spectra of 12 C and its fragments at various depths. Based on the energy spectra, the DNA double strand break (DSB) yields from 12 C and its fragments were calculated with Monte Carlo Damage Simulation (MCDS) code. The relative biological effectiveness (RBE) distributions for 12 C and its fragments were calculated from the DSB yields. The DNA damages from each type of the particles and their contribution to the total DNA damages at various depths were calculated from the DSB yields and dose distributions. These characteristics of 12 C and its fragments are important for understanding the corresponding RBEs and the DNA damages. The purpose of this work was to obtain the RBEs and the DNA damage distributions of carbon ions and their fragments in beams used in radiotherapy by means of simulating the macroscopic phantom and microscopic cells. The simulation method can be easily extended by changing some parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Determination of absorbed dose to water for high-energy photon and electron beams-comparison of the standards DIN 6800-2 (1997), IAEA TRS 398 (2000) and DIN 6800-2 (2006).

    Science.gov (United States)

    Zakaria, Golam Abu; Schuette, Wilhelm

    2007-01-01

    For the determination of the absorbed dose to water for high-energy photon and electron beams the IAEA code of practice TRS-398 (2000) is applied internationally. In Germany, the German dosimetry protocol DIN 6800-2 (1997) is used. Recently, the DIN standard has been revised and published as Draft National Standard DIN 6800-2 (2006). It has adopted widely the methodology and dosimetric data of the code of practice. This paper compares these three dosimetry protocols systematically and identifies similarities as well as differences. The investigation was done with 6 and 18 MV photon as well as 5 to 21 MeV electron beams. While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using cylindrical as well as plane-parallel chambers. The discrepancies in the determination of absorbed dose to water between the three protocols were 0.4% for photon beams and 1.5% for electron beams. Comparative measurements showed a deviation of less than 0.5% between our measurements following protocol DIN 6800-2 (2006) and TLD inter-comparison procedure in an external audit.

  15. Super-low-k SiOCH film (k = 1.9) with extremely high water resistance and thermal stability formed by neutral-beam-enhanced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Yasuhara, Shigeo; Sasaki, Toru; Samukawa, Seiji [Institute of Fluid Science, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Shimayama, Tsutomu; Tajima, Kunitoshi; Yano, Hisashi; Kadomura, Shingo; Yoshimaru, Masaki; Matsunaga, Noriaki, E-mail: samukawa@ifs.tohoku.ac.j [Semiconductor Technology Academic Research Center (STARC) 2F Yusen Shinyokohama Bldg., 17-2, Shinyokohama 3-chome, Kohoku-ku, Yokohama, 222-0033 (Japan)

    2010-02-17

    We developed a neutral-beam-enhanced method of chemical vapour deposition (NBECVD) to obtain a lower dielectric constant for the SiOCH interlayer dielectric film while maintaining a reasonable modulus. We achieved a higher deposition rate than that with the precursor of dimethyl-dimethoxy-silane (DMDMOS) we previously reported on by using Ar NBECVD with a precursor of dimethoxy-tetramethyl-disiloxine (DMOTMDS). This is because of the high absorption coefficient of DMOTMDS. Ar NBECVD with DMOTMDS also achieved a much lower dielectric constant than the conventional PECVD film, because this method avoids the precursor dissociation that causes low dielectric film with many linear Si-O structures. We obtained a k value of 1.9 for the super-low-k SiOCH film with an extremely water resistant, and very thermally stable and integration-possible modulus (>4 GPa) by controlling the bias power.

  16. Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment

    Science.gov (United States)

    Gregorčič, P.; Lukač, N.; Možina, J.; Jezeršek, M.

    2016-04-01

    We examine the effects of the synchronized delivery of multiple Er:YAG-laser pulses during vapor-bubble oscillations into water. For this purpose, we used a laser beam transmission probe that enables monitoring of the bubble's dynamics from a single shot. To overcome the main drawbacks of this technique, we propose and develop an appropriate and robust calibration by simultaneous employment of shadow photography. By using the developed experimental method, we show that the resonance effect is obtained when the second laser pulse is delivered at the end or slightly after the first bubble's collapse. In this case, the resonance effect increases the mechanical energy of the secondary bubble's oscillations and prolongs their duration. The presented laser method for synchronized delivery of Er:YAG-laser pulses during bubble oscillations has great potential for further improvement of laser endodontic treatment, especially upon their safety and efficiency.

  17. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  18. Methodology for the analysis of the radiolysis of the organic materials and impacts on their long-term behaviour in storage conditions

    International Nuclear Information System (INIS)

    Ferry, M; Lebeau, D.; Lamouroux, C.; Dauvois, V.; Durand, D.; Legrand, S.; Esnouf, S.; Dannoux-Papin, A.; Coignet, P.; Cochin, F.; Ngono-Ravache, Y.; Balanzat, E.

    2013-01-01

    It is important to take into account the degradation of organic materials present in nuclear wastes in order to assess the impact of the degradation products on the cement matrix. Most organic materials present in nuclear wastes are polymers, they are sensitive to radiolysis and hydrolysis. The first step has been to list all the polymers likely to be present in nuclear wastes, the second step has been to perform, for each element of the list, a series of irradiation experiments in which the polymer has been submitted to alpha, beta and gamma radiations. The radiochemical yields for the production of gases have been measured for various doses and it has appeared that these yields decrease as the dose increases, this fact can be considered as a self-shielding effect of the defects generated by the irradiation. The third step has been to study the lixiviation of the degradation products (particularly those that are water-soluble like ketone, esters,...) through setting adequate experiments. (A.C.)

  19. Absorbed dose to water comparison between NE 2561 and NE 2671 chambers using IAEA, HPA and NACP protocols for gamma ray beam

    International Nuclear Information System (INIS)

    Mohd Taufik Dolah; Noriah Mod Ali; Taiman Kadni

    2002-01-01

    The aim of this study to evaluate the performance of NE 2571 chamber in comparison with NE 2561 chamber in determination of the absorbed dose to water in gamma ray beam. In this study NE 2561 is taking as a reference standard chamber while NE 2571 as a working standard. Irradiation of chamber (alternately) was performed at a reference depth, 5 cm, inside the IAEA water phantom. Both chambers were exposed to 13 difference exposures of gamma rays. The values of absorbed dose to water were then determined using IAEA, HPA and NACP protocols. Deviations of absorbed dose determined by NE 2561 and NE 2571 were calculated for each protocol. result obtained in terms of [protocol, μ (mean deviation) ± σ s e (standard error)] were (IAEA, 1.12 ± 0.04], [HPA, 0.09 ± 0.04], and [NCP, 0.09 ± 0.04]. It can be concluded that NE 2571 shown acceptable performance as it is within acceptable limit ± 3%. (Author)

  20. Elliptical beams.

    Science.gov (United States)

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2008-12-08

    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others.