WorldWideScience

Sample records for beam water radiolysis

  1. Electrons in water radiolysis

    International Nuclear Information System (INIS)

    The hydrated electron is the main reducing species produced in the radiolysis of water. Many studies have examined its reactivity using pulsed radiolysis techniques and competition kinetics. Data bases list hundreds of rate coefficients for reaction of the hydrated electron with substances ranging from inorganic ions like nitrate to biopolymers like DNA. Although the chemistry of the hydrated electron is often examined, its mechanism of formation and variation in yield are considerable less known, especially under extreme conditions such as in high temperature water or with heavy ion radiolysis. This work will examine various aspects of the radiation chemistry of the hydrated electron beginning with the generation of secondary electrons in primary energy loss events during the passage of ionizing radiation to the radiolytic yields of the hydrated electron produced by different types of radiation. Ion radiation is a 'white light source.' Energy losses range from the minimum excitation energy of the medium up to the kinematic maximum determined by the collision parameters. However, certain energy loss events are more probable than others. The dipole oscillator strength distributions of media essentially give the probability of energy loss events in collisions with no momentum transfer. Dipole oscillator distributions have been constructed from experimental data for a wide variety of materials including all the phases of water. Calculations using cross sections based on dipole oscillator distributions show that the most probable energy loss event in water is only about 20 eV with an average value closer to 60 eV. The preponderance of energy loss events of less than 100 eV means that many low energy electrons are formed by the passage of a single ion. Low energy electrons have short mean free paths and they remain in the vicinity of the primary energy loss events. The spatial distribution of these low energy electrons defines the radial track structure of the incident

  2. Construction of ion beam pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, Norihisa; Katsumura, Yosuke; Domae, Masafumi; Ishigure, Kenkichi; Murakami, Takeshi [Tokyo Univ. (Japan)

    1996-10-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24 MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3} and KSCN, were irradiated and the absorption signals were observed. (author)

  3. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  4. Modelling of spatial radiolysis in primary water

    International Nuclear Information System (INIS)

    The radiolysis of water in LWRs (light water-cooled reactors) by gamma, neutron and alpha radiation leads to the production of molecular (H2O2, H2) and radical (H, OH, e-(aq), H+) species. These species subsequently react and achieve steady state concentrations. The concentrations of the oxidizing species (O2, H2O2) and dissolved hydrogen significantly influence the corrosion potential of an alloy exposed to the primary coolant and, hence, affect the resistance of the alloy to localized corrosion and stress corrosion cracking particularly. A common approach to estimate the corrosion potential of in-core components is numerical calculation. The steady state concentrations of dissolved hydrogen, oxygen and hydrogen peroxide are estimated by conventional radiolysis codes. These concentrations are used afterwards to calculate the corrosion potential. However, the analytical expressions employed in the calculations for approximation of the mass transport do not take into account radiolysis in the diffusion layer. This can cause significant errors in the estimation of the corrosion potential even for a simple electrode geometry; hence also for occluded regions like baffle bolt crevices. Therefore, to improve the numerical calculation of radiolysis one should take into account simultaneously mass transport effects and radiolysis. This approach has been called spatial radiolysis calculations. A typical PWR radiolysis model contains some 50 chemical reactions involving some 20 species. The implementation of all these reactions into a finite element code in order to calculate mass transport and radiolysis simultaneously has not been successful

  5. Modeling of water radiolysis at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Kanner, G.S.; Lillard, R.S.; Butt, D.P.; Brun, T.O.; Sommer, W.F.

    1998-12-01

    In spallation neutron sources neutrons are produced when a beam of high-energy particles (e.g., 1 GeV protons) collides with a (water-cooled) heavy metal target such as tungsten. The resulting spallation reactions produce a complex radiation environment (which differs from typical conditions at fission and fusion reactors) leading to the radiolysis of water molecules. Most water radiolysis products are short-lived but extremely reactive. When formed in the vicinity of the target surface they can react with metal atoms, thereby contributing to target corrosion. The authors will describe the results of calculations and experiments performed at Los Alamos to determine the impact on target corrosion of water radiolysis in the spallation radiation environment. The computational methodology relies on the use of the Los Alamos radiation transport code, LAHET, to determine the radiation environment, and the AEA code, FACSIMILE, to model reaction-diffusion processes.

  6. Mathematical modelling of water radiolysis kinetics under reactor conditions

    International Nuclear Information System (INIS)

    Experimental data on coolant radiolysis (RBMK-1000 reactor) were used to construct mathematical model of water radiolysis kinetics under reactor conditions. Good agreement of calculation results with the experiment is noted

  7. Fundamental Aspects of Water Coolant Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Hilbert [Studsvik Nuclear AB, Nykoeping (Sweden)

    2006-04-15

    The current state of knowledge of radiolysis in Light Water Reactors (LWR) is presented in this report. High-temperature data for rate constants and primary radiolysis yields have been collected and are shown in tables. Data from different sources have been compared and based on this recommended values have been selected. There is generally a good agreement between g-values for gamma-radiation at ambient temperature from different sources. There are larger discrepancies between results for primary yields from fast neutrons and also for g-values at reactor temperatures. Complete reaction mechanisms, including rate constants at reactor temperatures, from different sources are discussed and shown in tables. Experimentally determined activation energies are also shown, including the temperature range within which they have been determined. In normal cases rate constants at high temperature have been calculated from the rate constant at ambient temperature and the activation energy. Exceptions from this rule are shown and uncertainties have been discussed. The results of a number of radiolysis calculations, carried out for reactor temperatures, are also shown. The results of some sensitivity analyses are discussed. It has been shown that results from radiolysis calculations are rather sensitive to the rate constant ratio k(OH + H{sub 2})/(k(OH + H{sub 2}O{sub 2}). The first reaction leads to recombination, whereas the last reaction leads to decomposition. In some cases reactions which are unimportant at ambient temperature may play a role at reactor temperatures. This may be the case for reactions with a low rate constant at ambient temperature in combination with a high activation energy.

  8. Fundamental Aspects of Water Coolant Radiolysis

    International Nuclear Information System (INIS)

    The current state of knowledge of radiolysis in Light Water Reactors (LWR) is presented in this report. High-temperature data for rate constants and primary radiolysis yields have been collected and are shown in tables. Data from different sources have been compared and based on this recommended values have been selected. There is generally a good agreement between g-values for gamma-radiation at ambient temperature from different sources. There are larger discrepancies between results for primary yields from fast neutrons and also for g-values at reactor temperatures. Complete reaction mechanisms, including rate constants at reactor temperatures, from different sources are discussed and shown in tables. Experimentally determined activation energies are also shown, including the temperature range within which they have been determined. In normal cases rate constants at high temperature have been calculated from the rate constant at ambient temperature and the activation energy. Exceptions from this rule are shown and uncertainties have been discussed. The results of a number of radiolysis calculations, carried out for reactor temperatures, are also shown. The results of some sensitivity analyses are discussed. It has been shown that results from radiolysis calculations are rather sensitive to the rate constant ratio k(OH + H2)/(k(OH + H2O2). The first reaction leads to recombination, whereas the last reaction leads to decomposition. In some cases reactions which are unimportant at ambient temperature may play a role at reactor temperatures. This may be the case for reactions with a low rate constant at ambient temperature in combination with a high activation energy

  9. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam

    International Nuclear Information System (INIS)

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 μA). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water

  10. Radiolysis of water in the vicinity of passive surfaces

    International Nuclear Information System (INIS)

    Highlights: • HO° production through water radiolysis is enhanced near metal surfaces. • Hastelloy and Stainless steel surfaces can also produce HO° radicals through hydrogen peroxide activation. • There is a deficit in solvated electron production compared to hydroxyl radicals near metal surfaces. - Abstract: Porous metals were used to describe the water radiolysis in the vicinity of metal surfaces. The hydroxyl radical production under gamma irradiation was measured by benzoate scavenging in water confined in a 200 nm porous Ni base alloy or in Stainless steel. The presence of the metallic surfaces changed drastically the HO° production level and lifetime. The solvated electron production was measured via glycylglycine scavenging for Stainless steel and was found to be significantly smaller than hydroxyl production. These observations imply that interfacial radiolysis may deeply impact the corrosion behavior of the SS and Ni based alloys

  11. Primary processes in the radiolysis of water at high temperature

    International Nuclear Information System (INIS)

    A sharp increase of temperature as it is expected in the proximity of radioactive wastes (150 to 200 Celsius degrees) can modify the yields and kinetics of products from water radiolysis. We have used an experimental device based on an optical flow cell coupled to an electron accelerator able to deliver 9 MeV electron on 15 ps long pulses. The radiolysis of water has been studied in the 23 - 350 Celsius degrees temperature range. It is shown that the yield of the hydrated electron increases with temperature and that its kinetics in the 100 ps - 3 ns range is all the slower as the temperature increases. (A.C.)

  12. Radiolysis of water vapor in the presence of solids

    International Nuclear Information System (INIS)

    An influence of a radiation and doze rate on radiolysis of water vapor at the presence of various cationic forms of aluminosilicate and borosilicate glasses are investigated. The various valency cations of Zr, Rb, P, Ce, Li and Cs were entered into aluminosilicate with mass percents from 3 up to 6. After warming-up of researched substances in ampoules they were filled by a twice-distilled water. Then the ampoules were gamma-irradiated thermostatically by 60Co source with dose rate 1,5-5,0 Gy/sec. The analysis of product of radiolysis was conducted by the gas-chromatographic method. The quantity and life time of electronic defects which are catalytically active centers of the water steam decomposition depend on a dose, temperature and dose rate. 15 refs., 2 tabs., 1 fig

  13. In-Situ Raman observation of the first step of uranium dioxide weathering exposed to water radiolysis

    International Nuclear Information System (INIS)

    The effect of irradiation is a key point in the knowledge of the behavior of some compounds such as uranium-based ones. Regarding this topic, the authors developed an original in-situ Raman spectroscopy device coupled to a cyclotron ion beam. This original instrument allows observing the kinetics of uranium dioxide weathering by a radiolysis of water. The authors then observed that an altered layer made of Studtite and Schoepite phases grows linearly during the irradiation and extends for several hours after irradiation. Kinetics of production of some molecular species during radiolysis were also reported. (authors)

  14. Water Sorption and Radiolysis Studies for Neptunium Oxides

    International Nuclear Information System (INIS)

    Plans are to convert the 237Np that is currently stored as a nitrate solution at the Savannah River Site to NpO2 and then ship it to the Y-12 National Security Complex in Oak Ridge for interim storage. This material will serve as feedstock for the 238Pu production program, and some will be periodically shipped to the Oak Ridge National Laboratory (ORNL) for fabrication into targets. The safe storage of this material requires an understanding of the radiolysis of moisture that is sorbed on the oxides, which, in turn, provides a basis for storage criteria (namely, moisture content). A two-component experimental program has been undertaken at ORNL to evaluate the radiolytic effects on NpO2: (1) moisture uptake experiments and (2) radiolysis experiments using both gamma and alpha radiation. These experiments have produced two key results. First, the water uptake experiments demonstrated that the 0.5 wt % moisture limit that has been typically established for similar materials (e.g., uranium and plutonium oxides) cannot be obtained in a practical environment. In fact, the uptake in a typical environment can be expected to be at least an order of magnitude lower than the limit. The second key result is the establishment of steady-state pressure plateaus as a result of the radiolysis of sorbed moisture. These plateaus are the result of back reactions that limit the overall pressure increase and H2 production. These results clearly demonstrate that 0.5 wt % H2O on NpO2 is safe for long-term storage--if such a moisture content could even be practically reached

  15. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam; Radiolisis de benceno, tolueno y fenol en solucion acuosa utilizando haces de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Vanderhaghen, D.E

    1998-12-31

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 {mu}A). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water

  16. Radiation-catalytical properties of natural zeolite of mordenite type during radiolysis of water

    International Nuclear Information System (INIS)

    Radiation-catalytic properties of natural zeolite of mordenite type in cation Na+, K+, Ca2+, Ba2+ forms during radiolysis of water molecules were investigated with the use of 60Co γ-radiation (6 Gy/s). Kinetic parameters of radiolysis of water molecules in the presence of these zeolite samples were determined. It was revealed that zeolite of mordenite type catalyzes the radiolysis water molecules, its catalytic activity growing with decrease in ionic radius of the cation in the zeolite composition

  17. Interaction of radicals from water radiolysis with melanin.

    Science.gov (United States)

    Sarna, T; Pilas, B; Land, E J; Truscott, T G

    1986-08-01

    Melanins are considered to be natural photoprotectors in the melanocytes and keratinocytes of the skin. These pigments have also been suggested to play an important role in protection of melanin-containing cells against ionising radiation. Various mechanisms have been proposed to explain the protective role of melanin which invoke the radical scavenging properties of the polymer. In the present work the reactions of melanins with radicals generated in aqueous media by pulse radiolysis have been studied. Time-resolved changes in absorbance of the melanin or the radical species were recorded at selected wavelengths. Experiments were carried out on synthetic dopa- and 5-S-cysteinyldopa-melanins and a natural melanin in phosphate buffer (pH 7.4). Under the conditions employed, melanin reacted predominantly with either oxidising (OH., N3.) or reducing (eaq-, CO2-) species. We were also able to monitor the interaction of melanin with superoxide radical, which was reducing in this case. Detailed analysis of transient changes in melanin absorbance, detected at different wavelengths, was demonstrated to be a convenient method for studying redox processes of this substance, as shown by model experiments using ferricyanide and dithionite as oxidising and reducing agents, respectively. Among the radicals studied, OH. exhibited the strongest reactivity with melanins. Apparent rate constants for the reactions of radicals with autoxidative dopa-melanin (1.5 X 10(9) M-1 X s-1, 2.6 X 10(8) M-1 X s-1, 1.8 X 10(8) M-1 X s-1, 5 X 10(5) M-1 X s-1, 10(6)-10(7) M-1 X s-1 for OH., eaq-, N.3. O2- and CO2-, respectively) are reported. The reactivity of melanins with radicals from water radiolysis and their effect on pigment properties are discussed in terms of the structure and possible biological role of the pigments. PMID:3015231

  18. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Sophie Le Caër

    2011-02-01

    Full Text Available The radiolysis of water due to ionizing radiation results in the production of electrons, H· atoms, ·OH radicals, H3O+ ions and molecules (dihydrogen H2 and hydrogen peroxide H2O2. A brief history of the development of the understanding of water radiolysis is presented, with a focus on the H2 production. This H2 production is strongly modified at oxide surfaces. Different parameters accounting for this behavior are presented.

  19. Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation

    International Nuclear Information System (INIS)

    The radiolysis of water due to ionizing radiation results in the production of electrons, H and OH radicals, H3O+ ions and molecules (dihydrogen H2 and hydrogen peroxide H2O2). A brief history of the development of the understanding of water radiolysis is presented, with a focus on the H2 production. This H2 production is strongly modified at oxide surfaces. Different parameters accounting for this behavior are presented. (author)

  20. Risk analysis for a radiolysis gas detonation in an in-pile loop with supercritical water

    International Nuclear Information System (INIS)

    The SCWR (supercritical water reactor) -FQT project is a cooperation between European and Chinese partners aimed to test the fuel SCWR elements under reactor conditions. In the frame of this work the risk of radiolysis gas production in the active range of the test track was assessed. The radiolysis gas could accumulate in an emergency cooling system with stagnating coolant. The ignition of this radiolysis gas could cause pressure peaks that are able to damage the primary coolant circuit. Pressure increase and deformations in case of ignition of accumulated gas were investigated. As piping material the Ti stabilized austenitic steel 08Ch18N10T was assumed, the simulation was performed using the ANSYS code. The results show that pipes without significant wall thickness enhancement cannot withstand the radiolysis gas detonation.

  1. Radiolysis of water at high temperature and pressure conditions: a picosecond pulse radiolysis experiment and numerical simulations

    International Nuclear Information System (INIS)

    Radiolytic products of coolant material under strong radiation field in water-cooled reactors are known to give undesirable effects on nuclear structural materials. Understanding of the fundamental processes will be of great importance for various application fields in water chemistry. Ionization and excitation of water molecules by ionizing radiations initiate very fast physical and chemical processes within μs(10-6 sec), ns (10-9 sec) or even ps (10-12 sec), followed by formation of primary radiolytic species (e-aq, OH, H, H2, H2O2 etc.). Through the processes, the radiation chemical yields (G-values) are supposed to change dynamically depending on time and also on temperature. However, because of so high reactivity (short lifetime), it was difficult to observe experimentally the temporal behaviors (spatially inhomogeneous reactions, called spur diffusion reactions). In this work, the fundamental processes (G-values of the intermediates and the fast reaction kinetics) of the radiolysis of water at high temperature and pressure conditions (HTHP) were investigated by a newly developed picosecond time-resolved pulse radiolysis system, and also by numerical analyses. The results indicated that the hydrated electron (e-aq) in the spur reaction process mainly reacts with OH at room temperature, while that with H3O+ becomes also competitive in subcritical water. Taking the cumulative yield variations (ΔG molec./100eV) into account, it is suggested that historically defined primary G-value of the hydrated electron in subcritical water (G ∼ 3.6 molec./100eV) will be appropriately reexamined to the lower value below 2.7 in neutral pH condition, while it is rather close to it in basic condition. (author)

  2. Influence of chemisorption products of carbon dioxide and water vapour on radiolysis of tritium breeder

    International Nuclear Information System (INIS)

    Highlights: • Chemisorption products affect formation proceses of radiation-induced defects. • Radiolysis of chemisorption products increase amount of radiation-induced defects. • Irradiation atmosphere influence radiolysis of lithium orthosilicate pebbles. - Abstract: Lithium orthosilicate pebbles with 2.5 wt% excess of silica are the reference tritium breeding material for the European solid breeder test blanket modules. On the surface of the pebbles chemisorption products of carbon dioxide and water vapour (lithium carbonate and hydroxide) may accumulate during the fabrication process. In this study the influence of the chemisorption products on radiolysis of the pebbles was investigated. Using nanosized lithium orthosilicate powders, factors, which can influence the formation and radiolysis of the chemisorption products, were determined and described as well. The formation of radiation-induced defects and radiolysis products was studied with electron spin resonance and the method of chemical scavengers. It was found that the radiolysis of the chemisorption products on the surface of the pebbles can increase the concentration of radiation-induced defects and so could affect the tritium diffusion, retention and the released species

  3. Determination of primary yields in the alpha radiolysis of alkaline water

    International Nuclear Information System (INIS)

    This work presents a fundamental study of the radiolysis of water within the framework of the management of nuclear waste. During their storage, the packages of cemented radioactive waste are likely to release molecular hydrogen. Indeed, interstitial water undergoes decomposition under irradiation. This phenomenon is called radiolysis. In order to envisage the impact of H2 de-gasification on the security of the installations, it is necessary to determine the primary radiolytic yields in the cementing medium (characterised by a pH ranging between 12 and 14), which provides a basic simulations thus allowing us to obtain both the quantities of gas and the pressure in the pore. Such data is currently not available in the literature. Studies were undertaken with a beam of accelerated helium ions in order to reproduce the conditions of irradiation on solutions at pH = 13 in order to determine a first complete series of radiolytic yields.A more complete study was undertaken on the effects of LET and pH on the yield of molecular hydrogen. The results seem to show that the yield of this primary product is little influenced by pH. Such results were in good agreement with those obtained by Monte-Carlo simulations. These studies have shown that, contrary to γ irradiations, the irradiations with α-particles do not lead to the same characteristic times. The extrapolation of this data with respect to the problem of the packaging of nuclear waste is delicate due to the limited amount of results in the literature and also the chemical and physical complexity of the concretes. (author)

  4. pH dependence of H2O2 in the radiolysis of water

    International Nuclear Information System (INIS)

    The yields of hydrogen peroxide have been experimentally determined in the gamma and heavy ion radiolysis of aerated water at a pH range of 1-14. Experimental results have been combined with diffusion-kinetic track models to obtain a complete mechanistic understanding of the production of hydrogen peroxide over the pH range examined in this work. Hydrogen peroxide yields from the radiolysis of aerate water increase at both high and low pH values as compared to normal water. The production of hydrogen peroxide is found to mainly be due to relatively long time reactions of the hydroperoxyl radical and its conjugate base in the homogeneous radiolysis regime. (author)

  5. Conditions for critical effects in the mass action kinetics equations for water radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wittman, Richard S.; Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Smith, Frances N.; Soderquist, Chuck Z.

    2014-11-25

    We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics has been studied extensively in the past, it is only in recent years that high speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature – specifically, “jumps” in predicted concentrations, and inconsistencies between predictions and experiments have been reported for alpha radiolysis. We computationally map-out a critical concentration behavior for alpha radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique – both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists, from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported alpha radiolysis data and that no such behavior should occur for gamma radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for alpha radiolysis and could place more restrictive ranges on G-values from derived relationships between them.

  6. Conditions for critical effects in the mass action kinetics equations for water radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wittman, Richard S.; Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Smith, Frances N.; Soderquist, Chuck Z.

    2014-12-26

    We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics has been studied extensively in the past, it is only in recent years that high speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature – specifically, “jumps” in predicted concentrations, and inconsistencies between predictions and experiments have been reported for alpha radiolysis. We computationally map-out a critical concentration behavior for alpha radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique – both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists, from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported alpha radiolysis data and that no such behavior should occur for gamma radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for alpha radiolysis and could place more restrictive ranges on G-values from derived relationships between them.

  7. Measurement of the hydrogen yield in the radiolysis of water by dissolved fission products

    International Nuclear Information System (INIS)

    Hydrogen from the radiolysis of water by dissolved fission products is stripped from the solution and collected by bubbling CO2 through the solution. Quantitative measurements of the G value for hydrogen show that the yield is essentially the same as would be obtained by external gamma radiolysis of nonradioactive solutions of the same chemical composition. The hydrogen yield can be enhanced by addition of a hydrogen-atom donor, such as formic acid, to the solution. The yield of hydrogen from fission-waste solutions is discussed with respect to the question of whether it represents a significant energy source

  8. The formation of hydrogen in the radiolysis of water in closed volumes

    International Nuclear Information System (INIS)

    By applying the sum total of the elementary reactions involving short-lived particles it is possible to fairly accurately calculate the kinetics of hydrogen formation and of its separation from water, and also to calculate the accumulation of hydrogen peroxide and oxygen during radiolysis of pure water and water solutions at room temperature. This paper describes a semi-empirical method to calculate the kinetics of hydrogen formation for certain cases encountered in nuclear power production. (author)

  9. Water/polyethylene system radiolysis: application to the tritiated water storage in polyethylene bottle

    International Nuclear Information System (INIS)

    This study deals with the validation and the search of the limitations for the storage of tritiated water (HTO) in polyethylene (PE) containers. The hydroxyl radical (HO.), produced during the radiolysis of water, is known for its reactivity toward alkanes in water. Our competition experiments (with SCN- or coumarin) by pulse radiolysis shows the reactivity of HO. with PE, which gives rise to chemical modifications of PE. Some FTIR analysis of PE, irradiated in the presence of water, show that the amounts of C=C, C-O, and C=O functions are more important when the production of HO. is favoured. Moreover the reactivity of eaq- in the presence of PE has also been highlighted by time resolved spectroscopy. The study of permeability of the HTO/PE system shows that the volumetric activity within PE is 104 fold lower than the water activity after a one year immersion in 1853 Ci.L-1 HTO. The MCNP simulation of the irradiation by the β- of the tritium points out that 200 kGy is deposited within the first 250 nanometers of the PE. In spite of an early diffusion these results show a very weak solubility. Furthermore the value of the diffusion decreases following the modifications induced by the β- at the surface. Crosslinking is a parameter that directly acts on the diffusion of molecules through the polymer. We have adapted and used the thermo-poro-metry technique in order to assess the crosslinking of PE. Using this investigation we have characterized the cross linking as a function of the dose, especially with respect to the mesh size distribution. We have also established a relationship allowing the determination of the crosslinking density in a swelled PE sample by p-xylene by DSC analysis. (author)

  10. Study of the consequences of secondary water radiolysis within and surrounding a defective canister

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu; Neretnieks, I. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology; Stroemberg, Bo [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2000-11-01

    Consequences of secondary water radiolysis, caused by dispersed radionuclides released from spent nuclear fuel, both inside a defective canister and in the bentonite buffer surrounding the canister have been studied. The dissolution rate of the spent fuel is assumed to be controlled by chemical kinetics. Several cases have been addressed. First a simple mass balance model is presented. Some very conservative assumptions like complete failure of the canister one thousand years after its deposition in the repository and instantaneous oxidation rate of the spent fuel are deliberately made, to explore the upper bound limit of the effect of the secondary water radiolysis on the spent fuel dissolution. The model results show that the spent fuel could possibly be oxidised in an ever-increasing rate with these very simplified assumptions. More realistic and less conservative cases are then considered. In these cases, the canister is assumed to be initially defective with a hole of a few millimeters on its wall. The small hole will considerably restrict the transport of oxidants through the canister wall and the release of radionuclides to the outside of the canister. The spent fuel dissolution is assumed to be controlled by chemical kinetics at rates extrapolated from experimental studies. The cases are modelled with progressive complication. In the first case the effect of the secondary radiolysis inside fuel canister is neglected. It is also assumed that secondary phases of radionuclides do not precipitate inside the canister. The model results show that a relatively large domain of the near-field can be oxidised by the oxidants of secondary radiolysis. In the second case it is assumed that the radionuclide concentration within the canister is controlled by its respective solubility limit. The amount of radionuclides released out of the canister will then be limited by the solubility of the secondary phases. The effect of the secondary radiolysis will be quite limited in

  11. Revaluation of hydrogen generation by water radiolysis in SDS vessels at TMI-2 accident

    International Nuclear Information System (INIS)

    Two years after Three Mile Island Unit 2 (TMI-2) loss-of-coolant accident, radioactive contaminated water has been processed by Submerged Demineralizer System (SDS) with two types of zeolite adsorbents to remove radioactive nuclides of Sr-90, Cs-134 and Cs-137. During and after the process, adsorption amount and distribution of nuclides on the zeolites, residual water content and thermal conductivity in the SDS vessels have been measured or estimated for verification of safety in the process, subsequent transportation and disposal. Hydrogen generation has been also evaluated mainly by direct monitoring in the large-scale of vessel after the process. In this work, the revaluation of hydrogen generation was demonstrated on the basis of the open information of vessel, and the latest experimental data obtained in adsorption and radiolysis occurring in small-scale of zeolite-water mixtures. As a property of the zeolites (UOP IE-96, A-51), adsorption and desorption of water vapour on the zeolites were observed as a function of relative pressure corresponding to relative humidity. 10-20 wt% of water was found to be physically and chemically adsorbed on the zeolites within normal humidity of 20 to 90 %RH, reflecting residual water content absorbed on the dominant zeolites in the dewatering of vessels after the process. Hydrogen generated in the radiolysis of zeolite-water mixtures was further measured to obtain the observed yields of hydrogen as functions of water content in the mixtures and of the height of mixtures. It was found that additional water radiolysis took place through the energy dissipation of radiation to the zeolites, and that liquid depth effect on the yield in water was depressed by adding zeolites to water. Based on these experimental results and further estimations, hydrogen generation dependent on decay heat and water content in the SDS vessel was finally revaluated. The procedure and results in this revaluation would be helpful for the decontamination

  12. Pulse radiolysis studies of liquid heavy water at temperatures up to 250 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, C.R.; Ouellette, D.C.; Elliot, A.J

    2002-09-01

    This report documents the rate constants and associated activation energies for the reactions of the primary radical species, e{sub aq}{sup -}, {center_dot}OD and {center_dot}D, which are formed during the radiolysis of heavy water within the temperature range 20 to 250 {sup o}C. These heavy-water data have been compared with the corresponding information for light water. These kinetic data form part of the database that is required to model the aqueous radiation chemistry that occurs within the core of the heavy water cooled and moderated CANDU reactor. (author)

  13. Rate constants and g-values for the simulation of the radiolysis of light water over the range 0-300 deg C

    International Nuclear Information System (INIS)

    This report collects together all the rate constants, pK's and g-values required for the simulation of the radiolysis of light water, at near-neutral pH, over the temperature range of room temperature to 300 deg C. As very few of the rate constants have been measured over this whole temperature range, the experimental data have been extrapolated using both the Arrhenius equation and the Noyes model. In general, each rate constant is given as a function of temperature using the Arrhenius equation. In some cases a polynomial function was used. The g-values for the radiolysis with low linear energy transfer radiation are given as linear functions of temperature. A preliminary estimate of the g-values for fast-neutron radiolysis at room temperature and at 300 deg C has been made, based on the results of the published ion-beam data and on unpublished high-temperature ion-beam studies at Chalk River Laboratories. (author). 91 refs., 14 tabs., 24 figs

  14. Hydrogen generation by water radiolysis with immersion of oxidation products of Zircaloy-4

    International Nuclear Information System (INIS)

    In order to predict the hydrogen gas generation from seawater or water in which debris would be included by the severe accident of nuclear power plant, we investigated the effect of ZrO2 and the oxidation products of Zircaloy-4 on hydrogen gas generation by radiolysis of water since the radiolytic generation could be affected by materials immersed in water. Powders of well-characterized oxides and oxidation products were immersed in either seawater or distilled water, and irradiated by gamma ray from a Co-60 source. The observed hydrogen yield, G(H2), was measured as a function of the weight fraction of oxide in water up to 50 wt%. The enhancement of the hydrogen generation by radiolysis of water with the commercial oxides and the oxidation products of Zircaloy-4 was quite small or absent in seawater. But the enhancement was observed in the presence of the oxides or the oxidation products at low weight fraction in distilled water. This enhancement in distilled water seemed to be dependent on specific surface area or particle size, but its dependence on the crystal structure was not apparent in the experimental results. The enhancement was saturated at higher ZrO2 weight fractions and it was not apparent in the seawater. (author)

  15. The behaviour of phenylphosphine oxide containing polyimides in a water plasma following γ-radiolysis

    International Nuclear Information System (INIS)

    The surface oxidation of two polyimides containing fluorinated phenylphosphine oxide units, TOR-RC and TOR-RC ODPA, have been studied by (XPS) spectroscopy following γ-radiolysis under vacuum or in air and subsequent treatment in a water plasma. The changes in the O 1s/C 1s ratios obtained from (XPS) analysis showed that on exposure to the water plasma the ratio increases and then levels to a constant value which is similar to that found for exposure to the plasma without prior γ-radiation treatment. Evidence for the formation of phosphate species was also obtained from the (XPS) analyses

  16. Kinetic behaviors of e{sub a}q- and ·OH radical in water radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A Yeong; Kim, Han-Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Jun-Yeop; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Iodine in the aqueous solution changes its volatile molecule through chemical complexation with free radicals which are formed in water radiolysis. In particular, aqueous electrons (e{sub a}q-) and hydroxyl radicals (·OH) play an essential role in iodine behavior. Aqueous electrons react with oxygen and thus produce ·O{sub 2}- radical which is a strong reductant of molecular iodine. On the other hand, the rate of iodide oxidation depends on the concentration of ·OH that oxidize I- to·I which eventually combines to form I{sub 2} (volatile species). Korea Institute of Nuclear Safety (KINS) has been developing the Radio-Active Iodine chemistry Model (RAIM) which simulates iodine behavior in the containment. However, it does not reflect the water radiolysis reaction in detail that has been just applied based on the IMOD (Iodine Model for containment codes) methodology. This paper presents the methods to compute the concentration of water radiolysis products and suggests the application of computing methods by comprehending the behavior of e{sub a}q- and ·OH. The calculation code to compute the concentration of water radiolysis products has been developed and validated. Based on the code, the reaction kinetics of aqueous electrons and hydroxyl radicals was investigated. The calculation code developed in the present work can be applied to RAIM for the simplified calculation of water radiolysis products.

  17. Detection of OH and O{sub 2}{sup -} radicals generated by water radiolysis of water; Detection des radicaux OH et O{sub 2}{sup -} issus de la radiolyse de l'eau par chimiluminescence resolue en temps

    Energy Technology Data Exchange (ETDEWEB)

    Wasselin-Trupin, V.; Baldacchino, G.; Hickel, B. [CEA/Saclay, Centre National de la Recherche Scientifique-CNRS, Gif sur Yvette CEDEX (France)

    2001-02-01

    A new method for the detection of low concentrations of hydroxyl and superoxide radicals, formed by water radiolysis, is described in this article. The method used is the time resolved chemiluminescence. It has been performed with an electron beam delivered by a Febetron 707 accelerator. This method allows to measure hydroxyl and superoxide radical concentrations in a large range of concentrations, between 10{sup -5} and 10{sup -8} M. (author)

  18. The temperature dependence of the rate constants and yields for the simulation of the radiolysis of heavy water

    International Nuclear Information System (INIS)

    At Chalk River Laboratories, a computer code is being developed to model the radiolysis of the heavy water in the moderator and the heat-transport system in CANDU reactors. This report collects together, for heavy water, the current knowledge regarding the rate constants, pKa's, yields and diffusion coefficients based on measurements in this laboratory and reports in the literature. The latest data available for the radiolysis of light water are generally included for comparison, which forms a partial update to the report on the radiolysis of light water (Elliot, AECL- 11073, COG-94-167, 1994). There are some reactions where little or no data are available at ambient or elevated temperatures; in these cases, an indication is given of the approach that will be taken to measure or estimate the required parameters. (author)

  19. O2 and glutathione effects on water radiolysis: a simulation study

    International Nuclear Information System (INIS)

    We present a MC simulation of water radiolysis when O2 and glutathione are present in the solution. Our simulation is based on the continuum approximation proposed by Green and co-workers'. We investigate in particular the sensitivity of the yield of HO2.+O2-. to the concentration of O2 and glutathione and to the LET of the ionising radiation. We demonstrate that the production of HO2./O2-. is highly sensitive to these parameters and that the variation of their yield with the O2 concentration shares remarkable similarities with the O2 effect reported for biological cell damage efficiency .

  20. A quantitative model of water radiolysis and chemical production rates near radionuclide-containing solids

    Science.gov (United States)

    Dzaugis, Mary E.; Spivack, Arthur J.; D'Hondt, Steven

    2015-10-01

    We present a mathematical model that quantifies the rate of water radiolysis near radionuclide-containing solids. Our model incorporates the radioactivity of the solid along with the energies and attenuation properties for alpha (α), beta (β), and gamma (γ) radiation to calculate volume normalized dose rate profiles. In the model, these dose rate profiles are then used to calculate radiolytic hydrogen (H2) and hydrogen peroxide (H2O2) production rates as a function of distance from the solid-water interface. It expands on previous water radiolysis models by incorporating planar or cylindrical solid-water interfaces and by explicitly including γ radiation in dose rate calculations. To illustrate our model's utility, we quantify radiolytic H2 and H2O2 production rates surrounding spent nuclear fuel under different conditions (at 20 years and 1000 years of storage, as well as before and after barrier failure). These examples demonstrate the extent to which α, β and γ radiation contributes to total absorbed dose rate and radiolytic production rates. The different cases also illustrate how H2 and H2O2 yields depend on initial composition, shielding and age of the solid. In this way, the examples demonstrate the importance of including all three types of radiation in a general model of total radiolytic production rates.

  1. pH dependence of H{sub 2}O{sub 2} in the radiolysis of water

    Energy Technology Data Exchange (ETDEWEB)

    LaVerne, J.A.; Roth, O. [Univ. of Notre Dame, Notre Dame, Indiana (United States); Pimblott, S.M. [Univ. of Manchester, Manchester (United Kingdom)

    2010-07-01

    The yields of hydrogen peroxide have been experimentally determined in the gamma and heavy ion radiolysis of aerated water at a pH range of 1-14. Experimental results have been combined with diffusion-kinetic track models to obtain a complete mechanistic understanding of the production of hydrogen peroxide over the pH range examined in this work. Hydrogen peroxide yields from the radiolysis of aerate water increase at both high and low pH values as compared to normal water. The production of hydrogen peroxide is found to mainly be due to relatively long time reactions of the hydroperoxyl radical and its conjugate base in the homogeneous radiolysis regime. (author)

  2. State of knowledge on the water radiolysis in cemented wasteforms and its approach by simulation

    International Nuclear Information System (INIS)

    The decomposition of water under radiation within the cementitious matrix is at the origin of a potential source of harmful effects in the wasteform and their environment (pressurization and emanation of di-hydrogen) which can have an impact on the safety. In the aim of a better evaluation of the 'H2' risk induced by such a complex and heterogeneous system, this document is an analysis of the elements necessary for a global understanding of the radiolysis in the cemented wasteform to be achieved: - summary of the basic knowledge on water radiolysis with transposition to the cementitious medium, - critical review of the various phenomenologies at work in a wasteform (radioactive source-term, gas transport, mineral equilibria); description of their mutual couplings and of their feedback on radiolytic chemistry; identification of the determining parameters, - presentation of a selection of experimental facts putting in light some theoretical points, - presentation of an outline of operational model deriving from the global vision; presentation of an adapted tool for simulation (CHEMSIMUL) and study of the influence of the principal parameters, starting from a reference case. The main result of this work is that it is shown, in the case of a βγ source term, that the control of the pore fluid composition by calcium octo-hydrate peroxide constitutes an efficient regulating mechanism for the radiolysis and H2 production. Not likely possible in the case of an α source term, this suggests a separate management of the wasteform according to their radiological contents. The gaps and limits of the model which are also evoked are promising of a lot of research prospects, primarily of a fundamental nature (impact of the porous medium). (author)

  3. Effect of water alpha radiolysis on the spent nuclear fuel UO2 matrix alteration

    International Nuclear Information System (INIS)

    Leaching experiments with solution renewal were carried out on UO2 pellets doped with alpha emitters (238/239Pu) to quantify the impact of alpha irradiation on UO2 matrix alteration. Three batches of doped UO2 pellets with different alpha flux levels were studied as well as spent fuel fragments. Interim storage in air of UO2 pellets doped with alpha emitters results in variations of the UO2 surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO2 pellet batches and spent fuel. However, leaching experiments performed in deaerated media after annealing the samples and pre-leaching the surface suggest that alpha radiolysis does indeed affect the dissolution, which varies with the flux at the UO2/water interface. (authors)

  4. A quantitative model of water radiolysis and chemical production rates near radionuclide-containing solids

    International Nuclear Information System (INIS)

    We present a mathematical model that quantifies the rate of water radiolysis near radionuclide-containing solids. Our model incorporates the radioactivity of the solid along with the energies and attenuation properties for alpha (α), beta (β), and gamma (γ) radiation to calculate volume normalized dose rate profiles. In the model, these dose rate profiles are then used to calculate radiolytic hydrogen (H2) and hydrogen peroxide (H2O2) production rates as a function of distance from the solid–water interface. It expands on previous water radiolysis models by incorporating planar or cylindrical solid–water interfaces and by explicitly including γ radiation in dose rate calculations. To illustrate our model's utility, we quantify radiolytic H2 and H2O2 production rates surrounding spent nuclear fuel under different conditions (at 20 years and 1000 years of storage, as well as before and after barrier failure). These examples demonstrate the extent to which α, β and γ radiation contributes to total absorbed dose rate and radiolytic production rates. The different cases also illustrate how H2 and H2O2 yields depend on initial composition, shielding and age of the solid. In this way, the examples demonstrate the importance of including all three types of radiation in a general model of total radiolytic production rates. - Highlights: • Our model quantifies radiolytic chemical production near solid–water interfaces. • The model accounts for chemical production by α, β and γ radiation. • The model is applicable to both planar and curved surfaces. • Relative production by α, β and γ radiation strongly depends on solid composition. • We apply the model to young and old spent nuclear fuel, with and without cladding

  5. Correlation between yields of positronium and hydrogen, excited molecules, hydrated electron appearing during water radiolysis

    International Nuclear Information System (INIS)

    Analytic expression for dependences of the yields of positronium (Ps) and radiolytic hydrogen (H2) on concentration of dissolved in water substances (acetone, H2O2, inorganic acids, salts of various metals) under 60Coγ-irradiation were obtained on the basis of assumptions about similarity of the mechanism of Ps and H2 formation - intratrack recombination with participation of nonhydrated electron. Found equations were used for analyzing large amount of experimental results. In majority of cases the dissolved substances effect alike on Ps and H2 yields. Some exceptions are explained in the framework of considered model. It was established that nonhydrated electron represents the direct precursor of not only Ps and radiolytic hydrogen but solvated electron and excited molecules appearing during radiolysis of water and organoaqueous solutions

  6. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: Effects of nuclear fragmentation and its simulation with PHITS

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, Takuya [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamashita, Shinichi; Taguchi, Mitsumasa [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Baldacchino, Gerard [CEA Saclay, IRAMIS, UMR 3299 CEA-CNRS SIS2M, Laboratoire de Radiolyse, F-91191 Gif sur Yvette Cedex (France); Sihver, Lembit [Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Department of Nuclear Engineering, Texas A and M University, TX 77843-3133 (United States); Department of Roanoke College, Salem, VA 24153 (United States); Department of Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Murakami, Takeshi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-12-15

    The G(OH) values in aqueous coumarin-3-carboxylic-acid (3-CCA) solutions irradiated with {sup 12}C{sup 6+} beams having the energies of 135, 290 and 400 MeV/u were measured by a fluorescent method around the Bragg peak, with 0.6 mm intervals, and quartz cells of 1 cm optical lengths, at the Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences (NIRS). For each ion, the G(OH) has been calculated as a function of dose average LET and position. The calculated results have been compared to measurements, and the results, reproducibility and reliability of the calculations are discussed in the paper. - Highlights: > Therapeutic ion beam has energy of several hundred MeV/u because it is necessary for a few tens cm range. > With such high energy, nuclear fragmentations of carbon ions occur resulting in production of lighter ions. > In this study, OH yield in water radiolysis near the Bragg peak of therapeutic ion beams was measured. > Measured yields are discussed considering nuclear fragmentation by PHITS code.

  7. Modelling of hydrogen production from pore water radiolysis in cemented intermediate level waste

    Directory of Open Access Journals (Sweden)

    Di Giandomenico M.-V.

    2013-07-01

    Full Text Available In France, some of the intermediate and low level wastes are embedded in hydraulic binder and put into concrete canisters. They contain β and γ emitters which cause an irradiation of water present in the pores of the hydraulic binder. This is responsible for a dihydrogen (H2 production due to radiolysis. EDF R&D and CEA have collaborated since many years in order to understand this phenomenon and develop a model called DO-RE-MI which can predict such a production of dihydrogen in concrete waste packages. A parametric study, using the developed model, was implemented in order to determine the effects of each parameter on H2 production. The main results are presented in this paper.

  8. Interaction study of water radiolysis products with Crotalus durissus terrificus miotoxin

    International Nuclear Information System (INIS)

    Ionizing radiation has been satisfactorily employed for venoms detoxification. In this report, the radiation was employed to verify the effects caused by the radiolysis products of water on the Crotamine, toxin purified from Crotalus durissus terrificus venom. These effects were analyzed using some substances called 'scavengers', those substances competes for specific reactive species hindering them to act on the toxins molecules. In order to study the possible structural damages caused on the toxins, circular dichroism, fluorescence, nuclear magnetic resonance, amino acids analysis and intravital microscopy were employed. Our results indicate that ionizing radiation caused structure alterations, mainly, in secondary and tertiary structure of crotamine. In the irradiated crotamine, was not possible to determine tridimensional structure. And the crotamine toxic effect was removed by ionizing radiation. (author)

  9. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  10. Temperature effect on yield of molecular hydrogen at ν-radiolysis of liquid water

    International Nuclear Information System (INIS)

    The yield of molecular hydrogen has been measured during ν-radiolysis of air-saturated water and aqueous solutions of KBr, NO3, NaCl in 30-250 deg C range. The initial yield of molecular hydrogen in pure water does not depend on temperature in 20-250 deg C range and equals 0.44+-0.02 molecules per 100 eV. In saturated sodium chloride solutions Gsub(Hsub(2)) increases from 0.51+-0.03 at 20 deg up to 0.79+-0.07 molecules per 100 eV at 250 deg. In 1 mol/l NaNO3 solution Gsub(Hsub(2))=0.11 molecules per 100 eV at 20 deg increases with the growth of temperature reaching the value of 0.29 molecules per 100 eV in 150-2O0 deg range and then it falls down to 0.13 molecules per 100 eV at 250 deg. The obtained results are discussed within the framework of recombination - diffusion model of water radyolysis

  11. Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water

    Science.gov (United States)

    Sterniczuk, Marcin; Yakabuskie, Pamela A.; Wren, J. Clara; Jacob, Jasmine A.; Bartels, David M.

    2016-04-01

    Low Linear Energy Transfer (LET) radiolysis escape yields (G values) are reported for the sum (G(radH)+G(e-)aq) and for G(H2) in subcritical water up to 350 °C. The scavenger system 1-10 mM acetate/0.001 M hydroxide/0.00048 M N2O was used with simultaneous mass spectroscopic detection of H2 and N2 product. Temperature-dependent measurements were carried out with 2.5 MeV electrons from a van de Graaff accelerator, while room temperature calibration measurements were done with a 60Co gamma source. The concentrations and dose range were carefully chosen so that initial spur chemistry is not perturbed and the N2 product yield corresponds to those reducing radicals that escape recombination in pure water. In comparison with a recent review recommendation of Elliot and Bartels (AECL report 153-127160-450-001, 2009), the measured reducing radical yield is seven percent smaller at room temperature but in fairly good agreement above 150 °C. The H2 escape yield is in good agreement throughout the temperature range with several previous studies that used much larger radical scavenging rates. Previous analysis of earlier high temperature measurements of Gesc(radOH) is shown to be flawed, although the actual G values may be nearly correct. The methodology used in the present report greatly reduces the range of possible error and puts the high temperature escape yields for low-LET radiation on a much firmer quantitative foundation than was previously available.

  12. Radiolysis of concrete

    International Nuclear Information System (INIS)

    A computer based radiation chemical program has been used to simulate experiments with gamma and alpha radiolysis in concrete. The experiments have been performed at Savannah River by Ned Bibler and co-workers. The calculations showed that the gas yields were very sensitive to the pH of the water phase. At a pH of 12.3 fairly good agreement was obtained between measured and calculated gas yields, assuming that the gas production only took place in the free water phase of the concrete. The following main conclusions could be made from both measurements and calculations: 1/ A steady state is obtained by gamma radiolysis of a NO3 free concrete. 2/ The yields are higher and a steady state is not obtained if NO3 is present. The yields are higher and a steady state is not obtained by alpha radiolysis. Calculations were also carried out on radiolysis from cladding hull waste stored in a cement matrix assuming both alpha and beta radiation. In the presence of an aerated gas phase a steady state pressure of more than 0.21 MPa was obtained.(author)

  13. A microsecond pulse radiolysis apparatus

    International Nuclear Information System (INIS)

    A pulse radiolysis system built up in Beijing Radiation Center was described. Using a 5 MeV scanning linac as the pulse radiation source, the system could provide a 2 microsecond width and 200 mA single pulse. The non-interrupt beam monitor was used to monitor the beam current. A kinetic spectrophotometer was chosen to detect the transient optical absorption. A BCM-80A single board computer system with a transient signal recording board was used to record and process the signal and to control the time sequencing. Several pulse radiolysis experiments were carried out in aqueous system and positive results were obtained

  14. Study of the effect of water radiolysis on zirconolite dissolution; Etude de l'effet de la radiolyse de l'eau sur la livixation de la zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Tribet, M

    2007-09-15

    Zirconolite is one of the matrices foreseen for the confinement of minor actinides in case of deep geological disposal. Indeed, zirconolite (general formula: CaZr{sub x}Ti{sub 3-x}O{sub 7} (0.8 {<=} x {<=} 1.37)) is able to incorporate rare earth elements and actinides by substitution in calcium and zirconium sites and, moreover, its chemical durability into water is well known. However, in case of deep geological disposal, after a long period, water can reach the confinement matrix and can be radiolysed at the moment of the radionuclide alpha decays. In this work we have thus studied the effects of water radiolysis induced by charged particles (alphas or protons) on the dissolution of a synthetic sintered zirconolite. The formula of this zirconolite is Ca{sub 0,8}Nd{sub 0,2}ZrTi{sub 1,8}Al{sub 0,2}O{sub 7} where Nd simulates the presence of trivalent and tetravalent actinides. We performed the irradiations with external ion beams in two distinct geometries where the fluences ranged from 10{sup 15} to 10{sup 16} ions.cm{sup -2}. In the first geometry the beam stops into water before the surface/water interface. In the second one the beam gets through the sample before stopping at the surface/water interface. The use of these different configurations allows to study the respective influence of parameters such as sample irradiation, Linear Energy Transfer at the surface/water interface or total deposited energy. The irradiations were performed on both crystalline and amorphous zirconolites in pure water or with complexing species such as F{sup -}. The sample dissolution has been monitored through the release of cations. The radiolytic production of H{sub 2}O{sub 2} has also been measured. Our results show that the water radiolysis has an effect on the preferential release of Zr, Ti and Nd: for these elements, releases are one or two order of magnitude higher than releases out of radiolysis. Such preferential releases occur whatever the temperature (20 or 50 C), the

  15. Pulse radiolysis

    International Nuclear Information System (INIS)

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  16. The synergic impact of the boiling and water radiolysis on the pressurized water reactor fuel cladding's chemical environment

    Energy Technology Data Exchange (ETDEWEB)

    Dobrevski, I.; Zaharieva, N. [Bulgarian Academy of Sciences, Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2010-07-01

    By the presence of local boiling at the cladding surfaces of pressurized water reactors (PWRs), including WWER-1000 Units, the behaviors of gases dissolved in water phase (coolant) is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. On the other hand it is known that the hydrogen is added to primary coolant of PWRs, in order to avoid the production of oxidants as radiolysis of water products. It is clear that if boiling strips out dissolved hydrogen, the creation of local oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O{sub 2}) and hydrogen (H{sub 2}), but also hydrogen peroxide (H{sub 2}O{sub 2}) will be produced. While the resulting by water radiolysis hydrogen and oxygen can be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in the wall water phase and will act as an important factor for creation of oxidizing conditions in fuel cladding environment, together with some water radiolytical radicals: ·OH, HO{sub 2}·/ O{sub 2}{sup -}. Summarizing of the above mentioned allows the conclusion that creation of oxidizing conditions in the nuclear fuel cladding environment is not a direct boiling consequence but, in fact, is a result (consequence) of the synergic impact of the boiling- and water radiolysis- processes on the Pressurized Water Reactor fuel cladding surface areas. The PWRs experiences confirm that the density of SNB (sub-cooled nucleate boiling), resp. steaming rate, control the degree of the above mentioned water radiolysis processes. If it is not possible to moderate the steaming rate of the fuel cladding surfaces in PWRs, the only way to avoid the cladding damages caused by the local oxidizing conditions, is the applying of cladding materials

  17. Water corrosion of spent nuclear fuel:radiolysis driven dissolution at the UO2/water interface

    OpenAIRE

    Springell, Ross S; Rennie, Sophie L; COSTELLE Leila; Darnbrough, James E; Stitt, C A D; Cocklin, Elizabeth; Lucas, Chris; Burrows, Robbert; SIMS, Howard; Wermeille, Didier; RAWLE Jonathan; Nicklin, Chris; Nuttall , William; Scott, Thomas Bligh; Lander, Gerard

    2015-01-01

    X-ray diffraction has been used to probe the radiolytic corrosion of uranium dioxide. Single crystal thin films of UO2 were exposed to an intense X-ray beam at a synchrotron source in the presence of water, in order to simultaneously provide radiation fields required to split the water into highly oxidising radiolytic products, and to probe the crystal structure and composition of the UO2 layer, and the morphology of the UO2/water interface. By modeling the electron density, surface roughness...

  18. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C., E-mail: christophe.jegou@cea.f [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Vercouter, T. [Commissariat a l' Energie Atomique (CEA), Saclay Reasearch Center, B.P. 11, F-91191 Gif-sur-Yvette Cedex (France); Roudil, D. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2 (registered) ) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 deg. C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO{sub 2} matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO{sub 2} grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH){sub 4(am)} phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  19. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Science.gov (United States)

    Jégou, C.; Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S.; Vercouter, T.; Roudil, D.

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2®) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 °C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO 2 matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO 2 grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH) 4(am) phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  20. Radiolysis Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Wittman, Richard S.; Skomurski, Frances N.; Cantrell, Kirk J.; McNamara, Bruce K.; Soderquist, Chuck Z.

    2012-07-17

    Assessing the performance of spent (used) nuclear fuel in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water (including OH• and H• radicals, O2-, eaq, H2O2, H2, and O2) that may increase the waste form degradation rate and change radionuclide behavior. H2O2 is the dominant oxidant for spent nuclear fuel in an O2 depleted water environment, the most sensitive parameters have been identified with respect to predictions of a radiolysis model under typical conditions. As compared with the full model with about 100 reactions it was found that only 30-40 of the reactions are required to determine [H2O2] to one part in 10–5 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.

  1. An apparatus for the study of high temperature water radiolysis in a nuclear reactor: calibration of dose in a mixed neutron/gamma radiation field.

    Science.gov (United States)

    Edwards, Eric J; Wilson, Paul P H; Anderson, Mark H; Mezyk, Stephen P; Pimblott, Simon M; Bartels, David M

    2007-12-01

    The cooling water of nuclear reactors undergoes radiolytic decomposition induced by gamma, fast electron, and neutron radiation in the core. To model the process, recombination reaction rates and radiolytic yields for the water radical fragments need to be measured at high temperature and pressure. Yields for the action of neutron radiation are particularly hard to determine independently because of the beta/gamma field also present in any reactor. In this paper we report the design of an apparatus intended to measure neutron radiolysis yields as a function of temperature and pressure. A new methodology for separation of neutron and beta/gamma radiolysis yields in a mixed radiation field is proposed and demonstrated.

  2. Temperature Dependence of the Primary Species Yields of Liquid Water Radiolysis by 0.8-MeV Fast Neutrons

    Directory of Open Access Journals (Sweden)

    S.L. Butarbutar

    2016-04-01

    Full Text Available The yields of species such as e-aq, H•, •OH, H2 and H2O2, formed from the radiolysis of neutral liquid water by the incidence of 0.8-MeV neutrons at temperatures between 25 and 350°C, were calculated by using Monte Carlo simulations. The slowing down of these neutrons through elastic scattering produced recoil protons elastically of ~0.5057, 0.186, and 0.0684 MeV which had linear energy transfers (LETs of ~40, 67 and 76 keV/µm, respectively, at 25°C. The effects of neutron radiation can be predicted based on the contribution of those first three recoil protons by neglecting the radiation effects due to oxygen ion recoils. Then, the fast neutron yields could be estimated by summing the yields of contributing protons after corresponding weightings were used according to their energy. In this work, yields were calculated at 10-7 and 10-6 s after incidence of neutron radiation in water at the aforementioned temperature range. Overall, there is a reasonably good agreement between our calculated and existing experimental G-values for the entire temperature range. However, we proposed an hypothesis that the not very significant difference between experimental data and our calculated data is due to the different measuring time used in obtaining the experimental data as compared to the ones used in our calculation. Our computed yields for 0.8-MeV fast neutron radiation show an essentially similar temperature dependences over the range of temperature studied with 2-MeV fast neutron and low-LET radiation, but with lower values for yields of free radicals and higher values for molecular yields.

  3. Water radiolysis in extreme conditions of temperature and LET. Scavenging of HO. by Br- ions

    International Nuclear Information System (INIS)

    The purpose of this thesis is to contribute to the understanding of the oxidation mechanism of Br- in which the HO. radical is involved. The HO. radiolytic yield is strongly connected with the oxidation yield of Br-, and therefore we have studied the influence of different physical and chemical parameters on this global yield: temperature, LET, dose rate, pH, saturation gas. The solutions have been irradiated with 4 types of ionizing rays: X-rays (from 13 to 18 keV), electrons (from 7 to 10 MeV), C6+-ions beam of 975 MeV and He2+-ions beam of 70 MeV. The development of an optical autoclave with solution flow, compatible with high LET ionizing rays has allowed us conduct the first experiments at constant high LET and high temperature. This cell has turned out to be compatible with the picosecond pump-probe experiments performed with the ELYSE accelerator. The HO. scavenging yield has been, therefore, estimated at both high LET and high temperature. A better understanding of the Br- oxidation mechanism has been achieved, in acid medium, in particular, by comparing the kinetics results with Monte Carlo Simulations for time scales inferior to the microsecond and with Chemsimul for the stable products (Br2.- and Br3- formations). (author)

  4. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H.; Endo, M. [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  5. Radiolysis of ground water: influence of carbonate and chloride on hydrogen peroxide production

    International Nuclear Information System (INIS)

    The formation of an expanding oxidative volume by the diffusion of radiolytically formed oxidizing species out of α-irradiated volumes of pure water and synthetic ground water containing HCO3- and Cl- as principal reactive solutes is demonstrated by monitoring the H2O2 production and Fe2+ consumption in an outer aqueous phase separated from the irradiated solution by a diffusion barrier. Experimentally G(H2O2) was obtained in 'pure' water. In solutions containing HCO3- and in ground water G(H2O2) decreased. The same decrease was not found in the calculations. The discrepancy between calculated and experimental G(H2O2) for solutions containing HCO3- ions may be due to incomplete description of the radiolytic reaction mechanism for the carbonate system. (author) 9 refs.; 9 figs.; 8 tabs

  6. Radiolysis of ground water: influence of carbonate and chloride on the hydrogen peroxide production

    International Nuclear Information System (INIS)

    Small volumes of aqueous solutions have been subjected to α-radiation from a Am-241 source. The irradiated solution was separated from the bulk solution by a glass filter serving as a diffusion barrier. The H2O2 concentration in the bulk solution was monitored by a chemiluminescence technique and the overall production of oxidizing species (H2O2/O2) in irradiated ground water was studied by measuring the Fe2+-consumption in ground water initially containing 2 x 10-6 mol x dm-3 Fe2+. H2O2 yields calculated using the computer program CHEMSIMUL are in fair agreement with experimental yields for 'pure' water (pH 8) and aqueous methanol solutions (pH 5). Experimentally G(H2O2) = 1.06 +- 0.1 was obtained in 'pure' water. In solutions containing 2 x 10-3 mol x dm-3 HCO3- and in ground water G(H2O2) decreased to 0.69 +- 0.03. A corresponding decrease in G(H2O2) was not found in the calculations. The agreement between measured and calculated Fe2+ consumption is fair when slow oxidative reactions in the bulk solutions are taken into account. (authors)

  7. The reaction set, rate constants and g-values for the simulation of the radiolysis of light water over the range 20 deg to 350 deg C based on information available in 2008

    International Nuclear Information System (INIS)

    An understanding of the aqueous radiolysis-induced chemistry in nuclear reactors is an important key to the understanding of materials integrity issues in reactor systems. Significant materials and chemistry issues have emerged in Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR) and CANDU reactors that have required a detailed understanding of the radiation chemistry of the coolant. For each reactor type, specific computer radiolysis models have been developed to gain insight into radiolysis processes and to make chemistry control adjustments to address the particular issues. The objective of this report is to compile and review the radiolysis data now available and, where possible, correct the reported g-values and rate constants to provide a recommendation for the best values to use in high temperature modelling of light water radiolysis up to 350oC. With a few exceptions, the review has been limited to those reactions that occur in slightly acid and slightly alkaline solutions, e.g., it does not address reactions involving the oxide radical anion, O-, or ionized forms of hydrogen peroxide, HO2-, beyond their acid-base equilibria reactions. However, a few reactions have been included where the rate constant for a reaction involving O- is significantly larger than the corresponding hydroxyl radical reaction rate constant and thus can influence the chemistry below the pKA of the hydroxyl radical. (author)

  8. Alpha radiolysis of nitric acid and sodium nitrate with 4He2+ beam of 13.5 MeV energy

    International Nuclear Information System (INIS)

    A study of aqueous nitric acid solution alpha radiolysis was performed through experiments carried out at a cyclotron facility, where a helion beam with an energy of 13.5 MeV could be delivered into the solution. The effects of nitrate and hydronium ions on the formation yields of hydrogen peroxide and nitrous acid, G(H2O2) and G(HNO2), were studied. The results showed that G(H2O2) decreases linearly with increasing nitrate ion concentration. On the other hand, G(HNO2) increases with the nitrate ion concentration until it reaches a plateau for nitric acid concentrations higher than 2 mol L–1. It was also found that an increase of hydronium ion concentration has a favorable effect on G(H2O2) and G(HNO2). Furthermore, it appears that these effects are additive and that the variations of G(H2O2) and G(HNO2) can be described by two parametric expressions, as a function of the nitrate and hydronium ion concentrations. - Highlights: • G(H2O2) decreases linearly with increasing nitrate ion concentrations. • G(H2O2) increases considerably with increasing acidity (up to [H+]=0.5 mol L−1). • G(HNO2) increases with increasing nitrate and hydronium concentrations until a plateau is reached. • The effects of nitrate and hydronium ions on G(H2O2) and G(HNO2) are additive

  9. Calculation of initial and primary yields in the radiolysis of water

    International Nuclear Information System (INIS)

    Monte Carlo calculations have been used to model the initial physical and chemical changes, together with the subsequent diffusion-controlled reactions (up to 10-6s) which take place following the irradiation of water by electrons from 100 eV to 1 MeV. Investigations were carried out to determine the sensitivity of the radical yields to the following: vapour and liquid cross sections, the initial spatial distribution of electrons and radicals, vibrational cross sections, ionization potentials and initial electron energy for both complete tracks and also for short track sections. The roles played by the vibrational cross sections and by the relaxation of excited states through ionization were found to be most important in determining the sub-excitation electron ''entry'' energy spectrum, which in turn determines the electron thermalization distribution and therefore the primary yields. (author)

  10. Primary processes in radiation chemistry. LET (Linear Energy Transfer) effect in water radiolysis

    International Nuclear Information System (INIS)

    The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e-aq, H., OH., H2O2, H2). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H2O2 yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H2O2 yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H2O2 formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O2.- yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)

  11. Experiments about the integrity of BWR relief pipes in postulated radiolysis gas combustion. Scenario No.1. Steam leakages with full lowering of the water level

    International Nuclear Information System (INIS)

    Experiments in a pipe of the original scale, original material, and original quality control were carried out to study the maximum possible loads potentially arising in the combustion of radiolysis gas / nitrogen mixtures in BWR relief pipes with full lowering of the water level. Peak pipe loads resulted for narrow ranges of concentration around 43% N2 (for 0.8 bar initial pressure) and 50% N2 (for 1.6 bar initial pressure), respectively. With these mixtures, ignition of the homogeneous H2/O2/N2 mixture is followed by a deflagration - detonation transition in pre-compressed unburnt gas only a short distance upstream of the end flange. This phenomenon generally occurs when, in the combustion gas studied, the starting distance for detonation transition becomes comparable to the pipe length. No strains higher than 0.2% were measured in any of the experiments. The dynamic pipe load remained in the elastic range in all experiments performed, which also prevented the pipe from being damaged in the course of a test series. The pipe was not subjected to any major axial forces and accelerations in the experiments. This constitutes experimental proof, under conservative boundary conditions, of the integrity of relief pipes even in the case of assumed complete filling with the most adverse radiolysis gas mixture and subsequent combustion. (orig.)

  12. SimulRad: a Java interface for a Monte-Carlo simulation code to visualize in 3D the early stages of water radiolysis

    International Nuclear Information System (INIS)

    Using a Fortran step-by-step Monte-Carlo simulation code of liquid water radiolysis and the Java programming language, we have developed a Java interface software, called SimulRad. This interface enables a user, in a three-dimensional environment, to either visualize the spatial distribution of all reactive species present in the track of an ionizing particle at a chosen simulation time, or present an animation of the chemical development of the particle track over a chosen time interval (between ∼10-12 and 10-6 s). It also allows one to select a particular radiation-induced cluster of species to view, in fine detail, the chemical reactions that occur between these species

  13. Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister

    Energy Technology Data Exchange (ETDEWEB)

    Wittman, Richard S.

    2013-09-20

    This report fulfills the M3 milestone (M3FT-13PN0810027) to report on a radiolysis computer model analysis that estimates the generation of radiolytic products for a storage canister. The analysis considers radiolysis outside storage canister walls and within the canister fill gas over a possible 300-year lifetime. Previous work relied on estimates based directly on a water radiolysis G-value. This work also includes that effect with the addition of coupled kinetics for 111 reactions for 40 gas species to account for radiolytic-induced chemistry, which includes water recombination and reactions with air.

  14. Radiolysis effects on polyethylene terephtalate

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, Traian [ICPE-CA, Advanced Institute for Electrical Engineering, 313 Splaiul Unirii, P.O. Box 87, Bucharest 030138 (Romania)]. E-mail: zaharescut@gw-chimie.math.unibuc.ro; Ciuprina, Florin [' POLITEHNICA' University of Bucharest, 313 Splaiul Independentei, Bucharest 060042 (Romania)

    2005-07-01

    The effects of high energy exposure of polyethylene terephtalate, the main electrical insulator for the conduction bars in alternative current generators, is presented. For comparison {gamma}-irradiation was performed in distilled water and air at various doses, up to about 200 kGy. The dependencies of current on time for radiation processed PET sheets allow to depict the variation in the resistivity values as a measure of chemical changes in polyethylene terephtalate macromolecules. The comparison between the evolution of currents in irradiated specimens and spectral analysis bring about a light on the accumulation of radiolysis product in PET matrix. The high energy exposure of PET in air causes an increase of final value of current, while similar experiments in water produces a contrary effect. Some considerations of degradation mechanism are presented.

  15. Radiolysis effects on polyethylene terephtalate

    Science.gov (United States)

    Zaharescu, Traian; Ciuprina, Florin

    2005-07-01

    The effects of high energy exposure of polyethylene terephtalate, the main electrical insulator for the conduction bars in alternative current generators, is presented. For comparison γ-irradiation was performed in distilled water and air at various doses, up to about 200 kGy. The dependencies of current on time for radiation processed PET sheets allow to depict the variation in the resistivity values as a measure of chemical changes in polyethylene terephtalate macromolecules. The comparison between the evolution of currents in irradiated specimens and spectral analysis bring about a light on the accumulation of radiolysis product in PET matrix. The high energy exposure of PET in air causes an increase of final value of current, while similar experiments in water produces a contrary effect. Some considerations of degradation mechanism are presented.

  16. Pulse radiolysis of gases

    International Nuclear Information System (INIS)

    The pulse radiolysis equipment and technique are described and its relevance to atmospheric chemistry is discussed. Pulse radiolysis of a number of different chemical systems have been used to check the validity of the proposed mechanisms: 1) The hydrogen atom yield in the pulse radiolysis of H2 was measured by four independent calibration techniques, using reactions of H with O2, C1NO, and HI. The H atom yield was compared with O2 yields in pure O2 and in O2/SF6 mixtures which lead to a value G(H) = 17.6. The rate constants at room temperature of several reactions were determined. 2) OH radical reactions with tetraalkyllead at room temperature and with ethane, methane, and a series of C1- and F-substituted methanes at 300-400 K were studied. Arrhenius parameters, A and Esub(a), were determined for several reactions. The lifetime of Pb(CH3)4 and Pb(C2H5)4 in ambient air is estimated. CF2C12 was found to be a very efficient third body, M, in the reaction OH + OH + M arrow H2O2 + M. 3) In the H2S systems the HS extinction coefficient at 3242 AA was determined to 9.5 x 102 cm-1 mol-1. Four rate constants at room temperature were determined. (author)

  17. Experiments about the integrity of BWR relief pipes in postulated radiolysis gas combustion. Scenario No.2. Minor steam leakages without any lowering of the water level

    International Nuclear Information System (INIS)

    The experiments described in this article were performed to study this comprehensive radiolysis gas scenario: - The relief pipe is filled completely with radiolysis gas (2H2+O2). - After opening of the S and R valve, the radiolysis gas is compressed adiabatically by the incoming steam without mixing. - Roughly at the point of peak pressure in the relief pipe (20 bar) the radiolysis gas ignites. This dynamic scenario was studied in steady-state model experiments with a test pipe which corresponds to the relief pipes installed in KKP-1 in terms of materials, dimensions, and manufacturing control. The initial conditions and boundary conditions of the experiments were conservative. In the course of the tests, the maximum dynamic strain and the residual plastic deformation of the test pipe were measured via the transient detonation load. The maximum dynamic strain measured was 0.75%, the maximum residual plastic strain reached 0.15%. The pipe suffered no other deformation above and beyond this slight plastic strain. The radiolysis gas detonation was simulated very well numerically. Using the calculated pressure loads in a structural dynamics model also showed good agreement with the measured maximum dynamic pipe strains. In this way, the experimental findings were confirmed theoretically. The experiments and the calculations showed that postulated radiolysis gas reactions during pressure relief cannot jeopardize the integrity of the relief pipe. (orig.)

  18. Study on radiation-induced reaction in microscopic region for basic understanding of electron beam patterning in lithographic process. 1. Development of subpicosecond pulse radiolysis and relation between space resolution and radiation-induced reactions of onium salt

    International Nuclear Information System (INIS)

    In the acid generation processes of chemically amplified electron beam and X-ray resists, the ionization of a base resin plays an important role. A proton is generated from the cation radical of the base resin. On the other hand, a counter anion is generated from an acid generator after the reaction of the acid generator with the electron generated by the ionization of the base resin. In the resist materials in which both the radical cation of base resin and the electron play important roles in forming a latent image, the initial separation distance between the cation radical and the electron and the subsequent reactions immediately after irradiation are important for the fabrication of nanoscale patterns. For the understanding of electron beam and X-ray patterning, we developed a subpicosecond pulse radiolysis system for conducting the absorption spectroscopy and investigated the reactions of onium salt. The onium salt efficiently reacts with an electron generated by ionization. The high efficiency of reaction of an onium salt with an electron is thought to block the migration of a thermalized electron in the resist matrix and prevent the degradation of the space resolution of resists caused by the migration of the thermalized electron. (author)

  19. Nuclear power plant conference 2010 (NPC 2010): International conference on water chemistry of nuclear reactor systems and 8th International radiolysis, electrochemistry and materials performance workshop

    International Nuclear Information System (INIS)

    The Nuclear Plant Chemistry Conference was held in Quebec City, Quebec, Canada on October 3-7, 2010. It was hosted by the Canadian Nuclear Society and was held in Canada for the first time. This international event hosted over 300 attendees, two thirds from outside of Canada, mostly from Europe and and Far East. The conference is formally known as the International Conference on Water Chemistry of Nuclear Reactor Systems and is the 15th of a series that began in 1977 in Bournemouth, UK. The conference focussed on the latest developments in the science and technology of water chemistry control in nuclear reactor systems. Utility scientists, engineers and operations people met their counterparts from research institutes, service organizations and universities to address the challenges of chemistry control and degradation management of their complex and costly plants for the many decades that they are expected to operate. Following the four day conference, the 8th International Radiolysis, Electrochemistry and Materials Performance Workshop was held as associated, but otherwise free-standing event on Friday, October 8, 2010. It was also well attended and the primary focus was the effect of radiation on corrosion. When asked about the importance of chemistry in operating nuclear power plants, the primary organizers summarized it in the following statement: 'Once a nuclear plant is in operation, chemistry improvement is the only way to increase the longevity of the plant and its equipment'. The organisers of the 2010 Workshop and the NPC 2010 conference decided that these two events would be held consecutively, as previous, but for the first time the organization and registration would be shared, which proved to be a winning combination by the attendance.

  20. On the formation of a moving redox-front by α-radiolysis of compacted water saturated bentonite

    International Nuclear Information System (INIS)

    The formation of an expanding volume containing the radiolytically formed oxidants H2O2 and O2 has been studied in α-irradiated compacted water saturated bentonite (ρ = 2.12 gxcm-3). The G-values (0.67±0.05), (0.64±0.07) for H2O2 and O2 respectively are in fair agreement with the corresponding G-values obtained in experiments with synthetic ground water. From the leaching of γ-irradiated bentonite it is concluded that only a fraction of the Fe2+ content is easily accessible as scavenger for the radiolytically formed oxidants. (orig.)

  1. Investigations of pipeline reactions to detonations of radiolysis gas

    International Nuclear Information System (INIS)

    As a case of damage in a head spray cooling piping of a boiling-water reactor showed, detonations of radiolysis gas in safety-relevant tubes of nuclear power plants cannot be excluded in all cases. Radiolysis gas is a mixture of gaseous hydrogen and oxygen in stoichiometric ratio which is generated by dissociation of water under the influence of gamma and neutron radiation. Within the scope of a research project funded by the Federal Ministry of Economics and Technology (BMWi) the basis for the assessment of the related risk potential for plant operation shall, among others, be provided. Due to the high-rate response of the pipe to the detonation, multiple longitudinal cracks and fragmentation can occur. Detonation tests and numerical evaluations are performed to simulate detonations of radiolysis gas in thin-walled pipes. The radiolysis gas is simulated by mixing hydrogen and oxygen from gas bottles. Pipes made of austenitic steel with the nominal dimensions of OD x t = 114,30 mm x 6,02 mm are used for the tests. The internal pressure is 70 bar in all cases. In different tests, which are carried out at room temperature, the ratio of radiolysis gas in the pipe is varied and for the simulation of steam nitrogen is used as another filling medium. Next to the results of three detonation tests with a radiolysis gas ratio of 60% and 80% the results of tests, carried out for the experimental evaluation of the radiolysis gas reactions, with thick-walled vessels are presented. (orig.)

  2. State of knowledge on the water radiolysis in cemented wasteforms and its approach by simulation; Etat des connaissances sur la radiolyse de l'eau dans les colis de dechets cimentes et son approche par simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bouniol, P

    2004-07-01

    The decomposition of water under radiation within the cementitious matrix is at the origin of a potential source of harmful effects in the wasteform and their environment (pressurization and emanation of di-hydrogen) which can have an impact on the safety. In the aim of a better evaluation of the 'H{sub 2}' risk induced by such a complex and heterogeneous system, this document is an analysis of the elements necessary for a global understanding of the radiolysis in the cemented wasteform to be achieved: - summary of the basic knowledge on water radiolysis with transposition to the cementitious medium, - critical review of the various phenomenologies at work in a wasteform (radioactive source-term, gas transport, mineral equilibria); description of their mutual couplings and of their feedback on radiolytic chemistry; identification of the determining parameters, - presentation of a selection of experimental facts putting in light some theoretical points, - presentation of an outline of operational model deriving from the global vision; presentation of an adapted tool for simulation (CHEMSIMUL) and study of the influence of the principal parameters, starting from a reference case. The main result of this work is that it is shown, in the case of a {beta}{gamma} source term, that the control of the pore fluid composition by calcium octo-hydrate peroxide constitutes an efficient regulating mechanism for the radiolysis and H{sub 2} production. Not likely possible in the case of an {alpha} source term, this suggests a separate management of the wasteform according to their radiological contents. The gaps and limits of the model which are also evoked are promising of a lot of research prospects, primarily of a fundamental nature (impact of the porous medium). (author)

  3. Study of water radiolysis in relation with the primary cooling circuit of pressurized water reactors; Etude sur la radiolyse de l`eau en relation avec le circuit primaire de refroidissement des reacteurs nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Pastina, B

    1997-07-01

    This memorandum shows a fundamental study on the water radiolysis in relation with the cooling primary circuit of PWR type reactors. The water of the primary circuit contains boric acid a soluble neutronic poison and also hydrogen that has for role to inhibit the water decomposition under radiation effect. In the aim to better understand the mechanism of dissolved hydrogen action and to evaluate the impact of several parameters on this mechanism, aqueous solutions with boric acid and hydrogen have been irradiated in a experimental nuclear reactor, at 30, 100 and 200 Celsius degrees. It has been found that, with hydrogen, the water decomposition under irradiation is a threshold phenomenon in function of the ratio between the radiation flux `1` B(n, )`7 Li and the gamma flux. When this ratio become too high, the number of radicals is not sufficient to participate at the chain reaction, and then water is decomposed in O{sub 2} and H{sub 2}O{sub 2} in a irreversible way. The temperature has a beneficial part on this mechanism. The iron ion and the copper ion favour the water decomposition. (N.C.). 83 refs.

  4. Radiolysis of Aqueous Toluene Solutions

    International Nuclear Information System (INIS)

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N2O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N2O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H2). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  5. gamma-radiolysis and pulse radiolysis of aqueous 4-chloroanisole

    DEFF Research Database (Denmark)

    Quint, R.M.; Park, H.R.; Krajnik, P.;

    1996-01-01

    after T-radiolysis in dependence of dose (100-600 Gy) are given for N2O-, air-, oxygen- and argon saturated neutral aqueous solutions. In conditions favoring the OH radical oxidation 4-chlorophenol, 4-methoxyphenol, 5-chloro-2-methoxyphenol and 2-chloro-5-methoxyphenol were determined as final products...... quantitatively to the degradation of the substrate. In the presence of air or solutions saturated with pure oxygen predominantly hydroquinone. 4-chlorophenol and muconic acids are formed and the material balance is similar to 50%. The efficient dechlorination (similar to 66% of the decomposed 4-CIAn) as well as...

  6. Yields of hydrogen peroxide in radiolysis of aqueous ethylene glycol solutions

    International Nuclear Information System (INIS)

    The main source of information on mechanisms for the formation of H2O2 and other molecular water radiolysis products is the dependence of their yields on the concentration of a substance (S) dissolved in the water. A diffusion/recombination model for water radiolysis predicts that at low (≤0.1 mole/dm3) concentrations of S in water (C/sub S/) the yields of molecular water radiolysis products (G/sub M/), i.e., H2 and H2O2, drop linearly with the cube root of C/sub S/. This paper attempts to prove the assumption experimentally by studying how G/sub H2O2/, the ideal water breakdown yield, is affected by high concentrations of ethylene glycol in deaerated aqueous solutions. The observed radiolytic yield of H2O2 in this system agreed with the initial G/sub H2O2/

  7. Radiolysis effects in sub-cooled nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, S.; Henshaw, J.; Tuson, A.; Sims, H.E. [AEA Technology (United Kingdom)

    2002-07-01

    A hydrogen depleted region may form in the water during bubble formation when boiling occurs in a PWR. This would arise from stripping of gases into the steam phase. The depleted water may then become oxidising due to radiolysis forming H{sub 2}O{sub 2}. The presence of radiolytic oxidising conditions is one of the mechanisms proposed to explain deposits formed in Axial Offset Anomalies. This work describes a model that has been developed to examine this behaviour. The model deals with bubble growth and material transport as well as the radiolysis chemistry. The model simulates diffusion of species through the gas/liquid boundary layer. The appropriate mass conservation equations for this problem are described and the results of their numerical solution discussed. This model indicates the importance of the assumed boundary conditions on the results of the calculations. These boundary conditions are discussed in detail and the most appropriate ones for the actual reactor situation are outlined. The conclusion of this modelling study is that at normal PWR operating conditions of 40 cc H{sub 2} (STP) kg{sup -1} it is unlikely that radiolysis in a subcooled boiling region would be important. The situation is more ambiguous at the 1 to 5 cc H{sub 2} (STP) kg{sup -1} range. (author)

  8. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...

  9. Investigation on the gas-phase radiolysis of metal complexes

    International Nuclear Information System (INIS)

    Gas-phase radiolysis of metal carbonyls has been performed. These carbonyls with iron, chromium and cobalt are sublimed easily by heating under atmospheric condition, and formed fine powder by gamma-ray-or electron-irradiation. Chemical compositions of fine powders prepared by electron beam irradiation are estimated as metal oxide after physical analysis such as microscopic observation, particle sizing, thermal and chemical analysis. These metal oxides thus obtained contain CO2, H2O, and some carbonic compounds, and they are removed easily by heating up to 400degC. (author)

  10. Radiolysis of polychlorodibenzodioxins in hexane

    International Nuclear Information System (INIS)

    Possible decomposition of polychlorodibenzodioxins (PCDD) in hexane under gamma-radiation effect is studied. 2,3,7,8-Tetrachlorodibenzodioxin (2,3,7,8-TCDD) solution in hexane was irradiated by 1.0, 3.8 and 6.5 Mrad. It is stated that 2,3,7,8-TCDD radiolysis (by 6.5 Mrad dose) its decomposition degree according to mass-spectrometry data is not less than 99.99995 rel.% (detection limit is 2 x 10-10 mass.%). Therewith, less chlorinated dibenzodioxin forming under lower radiation doses, are not detected. Promising use of gamma-radiation for complete decomposition of PCDD in wastes of chemical and petro-chemical industries is shown

  11. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  12. Radiolysis of hexane absorbing on borosilicate surface research

    International Nuclear Information System (INIS)

    The radiolysis process of hexane absorbing on borosilicate with various hydration degree is being investigated. Samples of borosilicate were treated by thermal vacuum at and T=493 K and P=1.33·10-4 Pa. The absorption of water and hexane was carried out on manometric equipment at 77 K temperature. An irradiation was conducted by γ-rays from 60Co source in the sealed in ampoules at 77 K with 10 kGy dose. In the irradiated samples the ESR spectrum with wide range that is characteristic for irradiated alkanes in the absorbing condition was observed. With increase of temperature of registration narrowing lines and improved sanction connected to recombination processes of radicals was observed. With increase of a hydration of a surface the redistribution and reduction of intensity separate component of a spectrum was observed. It specifies formation and stabilization bonding of radicals at smaller filling of a surface borosilicate. To reveal structure of radiolysis products IR spectra of desorbed from a borosilicate surface gas products were received at 333 K. In the field of low-frequency deformation of fluctuations CH2-groups the doublet strip with maxima was observed at 790 cm-1 and 770 cm-1 which is referred to low-molecular of radiolysis products

  13. Shear Strength of Reinforced Concrete Beams Under Sea Water

    Institute of Scientific and Technical Information of China (English)

    阎西康; 王铁成; 张玉敏

    2004-01-01

    The marine structures such as harbour,pier and inshore concrete terrace are exposed in adverse circumstances in a long period of time . Owing to the attack of external corrosive medium, their safety, durability and reliability decline. Especially the reinforced concrete(RC) structures in the wave splash area are more likely to be subjected to destruction and the loss is vast. Now the safety ,durability and reliability of structure have become increasingly an important subject to be studied. By way of the soaking and drying cycle test on the different mix proportions oblique section of 10 pieces of RC beams suffered artificial sea water(ASW) corrosion under 0,35,70,105,140 times of dry-wet cycles ,the compared results of exerting pressure test of these beams under simply supporting were investigated. The law about the changes of the mechanical performance for RC beams with different mix proportions under different time periods for suffering corrosion of dry-wet cycles is as follows: the resistivity to ASW corrosion of the concrete specimens with various water cement ratio( various initial strength) is different; the characters of oblique section failure for RC beams attacked by sea water are about the same as those for ordinary RC beam; along with the extension of the time for sea water attack, the bearing capacity for oblique section of RC beams varies wave upon wave. The specimens attacked by sea water for about 35 times of corrosion cycle achieve minimum bearing capacity.

  14. Valine radiolysis by MeV ions

    Science.gov (United States)

    Da Silveira, Enio

    2016-07-01

    Valine, (CH3)2 CHCH (NH2) COOH, is a protein amino acid that has been identified in extraterrestrial environments and in the Murchison meteorite [1]. The knowledge of half-lives of small organic molecules under ionizing radiation is important for the setup of models describing the spread out of prebiotics across the Solar System or the Galaxy. We have investigated typical effects of MeV cosmic ray ions on prebiotic molecules in laboratory by impinging ions produced by the PUC-Rio Van de Graaff accelerator. Pure valine films, deposited by evaporation on KBr substrates, were irradiated by H ^{+}, He ^{+} and N ^{+} ion beams, from 0.5 to 1.5 MeV and up to a fluence of 10 ^{15} projectiles/cm ^{2}. The sample temperature was varied from 10 K to 300 K. The irradiation was interrupted several times for Mid-FTIR analysis of the sample. The main findings are: 1- The column density of the valine decreases exponentially with fluence. 2- In some cases, a second exponential appears in the beginning of irradiation; this feature has been attributed to sample compaction by the ion beam [2]. 3- Destruction cross sections of valine are in the 10 ^{-15} cm ^{2} range, while compaction cross sections are in the 10 ^{-14} cm ^{2} range. 4- Destruction cross section increases with the stopping power of the beam and also with the sample temperature. 5- Surprisingly, during the radiolysis of valine, just CO _{2} is seen by as a daughter molecule formed in the bulk. 6- After long beam fluence, also a CO peak appears in the infrared spectrum; this species is however interpreted as a fragment of the formed CO2 molecules. 7- Considering the flux ratio between laboratory experiments and actual galactic cosmic rays, half-life of valine is predicted for ISM conditions [3]. This work on pure valine is the first measurement of a series. New experiments are planned for determining cross sections of valine dissolved in H _{2}O or CO _{2}, inspired by the study performed for glycine [4]. [1] P

  15. Radiolysis studies of aqueous kappa-carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Abad, L.V., E-mail: lvabad@pnri.dost.gov.p [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Kudo, H. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Saiki, S. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagasawa, N.; Tamada, M. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fu, H.; Muroya, Y. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Lin, M.; Katsumura, Y. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Relleve, L.S.; Aranilla, C.T.; DeLaRosa, A.M. [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines)

    2010-05-15

    The effects on N{sub 2}O and N{sub 2} gas on the radiation degradation yield of aqueous kappa (kappa-) carrageenan were investigated. The G{sub d} of solution saturated with N{sub 2}O solution was expectedly much higher than in air (1.7 and 1.2 x 10{sup -7} mol J{sup -1}). On the other hand, a lower G{sub d} of 1.1 x 10{sup -7} mol J{sup -1} was obtained from kappa-carrageenan solution saturated with N{sub 2}. The rate constant of reaction of OH radicals with sonicated and irradiated kappa-carrageenan were determined using e-beam pulse radiolysis. The rate constant of OH{sup c}entre dot interaction with sonicated kappa-carrageenan decreased with decreasing molecular weight. On the other hand, the OH{sup c}entre dot interaction with irradiated kappa-carrageenan decreased but did not vary significantly with decreasing molecular weight. Metal ion (Na{sup +}) induced conformational transition into helical form decreased the rate constant of OH{sup c}entre dot reaction with kappa-carrageenan. Likewise, the G{sub d} in aqueous form was affected by the conformational state of kappa-carrageenan. The helical conformation gave a lower G{sub d} (7 x 10{sup -8} mol J{sup -1}) than the coiled conformation (G{sub d} = 1.2 x 10{sup -7} mol J{sup -1}).

  16. Radiolysis of Aqueous Benzene Solutions

    International Nuclear Information System (INIS)

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H2) = 0.44 (0. 43) and G(H2O2) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e-aq + H2O2) >> k(H + H2O2). Furthermore, the results indicate that a competition takes place between the reactions: 2 C6H6OH · -> dimer -> biphenyl. C6H7 · + C6H6OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H2O2) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C6H6)/k(H + O2) was 1.4x10-2. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe2+ or Fe3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  17. Tractor beam on the water surface

    CERN Document Server

    Punzmann, Horst; Xia, Hua; Falkovich, Gregory; Shats, Michael

    2014-01-01

    Can one send a wave to bring an object from a distance? The general idea is inspired by the recent success in moving micro particles using light and the development of a tractor beam concept. For fluid surfaces, however, the only known paradigm is the Stokes drift model, where linear planar waves push particles in the direction of the wave propagation. Here we show how to fetch a macroscopic floater from a large distance by sending a surface wave towards it. We develop a new method of remote manipulation of floaters by forming inward and outward surface jets, stationary vortices, and other complex surface flows using nonlinear waves generated by a vertically oscillating plunger. The flows can be engineered by changing the geometry and the power of a wave maker, and the flow dissipation. The new method is robust and works both for long gravity and for short capillary waves. We use a novel method of visualising 3D particle trajectories on the surface. This letter introduces a new conceptual framework for unders...

  18. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons

    International Nuclear Information System (INIS)

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  19. Fenton-enhanced {gamma}-radiolysis of cyanuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Rani [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Aravind, Usha K. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Aravindakumar, Charuvila T. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India)]. E-mail: CT-Aravindakumar@rocketmail.com

    2007-04-02

    Degradation of cyanuric acid (OOOT), a stable end product of oxidative decomposition of atrazine, is investigated in a combined field of gamma radiolysis and fenton reaction. The reaction of hydroxyl radical ({center_dot}OH) at pH 6 was carried out by irradiating N{sub 2}O saturated aqueous solutions containing OOOT (1 x 10{sup -3} mol dm{sup -3}), and this resulted only a marginal degradation (20%). However, when the same reaction was carried out in the presence of varying concentrations of ferrous sulfate ((5-10) x 10{sup -5} mol dm{sup -3}), the decay of OOOT has been enhanced to more than 80%. This decay followed a first order kinetics. Nearly similar effects were observed with another triazine derivative, 2,4-dioxohexahydro-1,3,5-triazine (DHT). Two major reaction mechanisms are proposed for the enhanced decay of OOOT. The formation of unstable hydroxyl radical adducts from the reaction of {center_dot}OH which is the result of gamma radiolysis and the Fenton reaction (resulting from the reaction of the added Fe(II) and of the H{sub 2}O{sub 2} from the radiolysis of water), is proposed as the first mechanism. The second mechanism, which is likely the major contributor to degradation, is proposed as the reaction of a nucleophilic adduct, Fe(II)OOH, which could directly react with the electron deficient triazine ring. It is highlighted that such degradation reactions must be explored for the complete degradation of the byproducts of the oxidative decomposition of atrazine.

  20. Calculated LET Spectrum from Antiproton Beams Stopping in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael

    2009-01-01

    Antiprotons have been proposed as a potential modality for radiotherapy because the annihilation at the end of range leads to roughly a doubling of physical dose in the Bragg peak region. So far it has been anticipated that the radiobiology of antiproton beams is similar to that of protons...... significantly differ from unity, which seems to warrant closer inspection of the radiobiology in this region. Monte Carlo simulations using FLUKA were performed for calculating the entire particle spectrum of a beam of 126 MeV antiprotons hitting a water phantom. In the plateau region of the simulated...

  1. Application of chemsimul for groundwater radiolysis

    DEFF Research Database (Denmark)

    Christensen, Hilbert; Bjergbakke, Erling

    1986-01-01

    The application of the radiation chemical computer program chemsimul, for the calculation of radiolysis in connection with the storage of high level waste has been studied. Methods have been developed for the diffusion of gases out of the irradiated system, for the continuous addition of Fe2+ to ...

  2. A microsecond pulse radiolysis system in Beijing

    International Nuclear Information System (INIS)

    The first setup of pulse radiolysis system in China with the time resolution of 2 microseconds has been built up recently in Beijing Radiation Center. The experimental apparatus is described briefly. The observation of transient absorption of Br2- and I2- radicals in aqueous solution using this system is introduced. (author)

  3. A microsecond pulse radiolysis system in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Andong Liu; Zhongwei Zhao; Zhongliang Tong; Yingxin Sun; Hongchun Gu; Wanhua Shun; Huadan Hu; Zhonghe Hao; Ruiying Zhou (Beijing Normal Univ., BJ (China). Inst. of Low Energy Nuclear Physics)

    1989-01-01

    The first setup of pulse radiolysis system in China with the time resolution of 2 microseconds has been built up recently in Beijing Radiation Center. The experimental apparatus is described briefly. The observation of transient absorption of Br{sub 2}{sup -} and I{sub 2}{sup -} radicals in aqueous solution using this system is introduced. (author).

  4. Picosecond pulse radiolysis study of primary reactions in solutions

    International Nuclear Information System (INIS)

    Following the discovery of ionizing radiations and their chemical effects, it was important to study and comprehend the formation mechanisms of short lived free radicals and molecular products. In order to perform such studies, researchers and research groups worked on developing tools allowing both formation and detection of those species at short time scales. Nowadays, pulse radiolysis imposed itself as a fundamental and efficient tool allowing scientists to probe chemical effects as well as reaction mechanisms in studied media. The Laboratoire de Chimie Physique d'Orsay 'LCP' is an interdisciplinary laboratory hosting the platform of fast kinetics known as 'ELYSE'. Due to its femtosecond laser and its picosecond electron accelerator, we have the possibility to study chemical effects of ionizing radiations interaction with media at ultrashort times up to ∼5 ps.Knowing that we are interested in primary reactions induced in aqueous media by ionizing radiations, ELYSE represents the essential tool in performing our studies. The obtained results concern:- First direct determination of hydroxyl radical 'HO*' radiolytic yield as function of time at picosecond time scale;- Direct effect of ionizing radiation in highly concentrated aqueous solutions as well as investigation of the ultrafast electron transfer reaction between solute molecules and positive holes 'H2O*+' formed upon water radiolysis;- Study at room temperature of electron transfer reaction between solvated electron (electron donor) and organic solutes (electron acceptors) en viscous medium;- Study at room temperature of electron's solvation dynamics in ethylene glycol and 2-propanol. (author)

  5. Calculated LET spectrum from antiproton beams stopping in water

    CERN Document Server

    Bassler, Niels

    2009-01-01

    Antiprotons have been proposed as a potential modality for radiotherapy because the annihilation at the end of range leads to roughly a doubling of physical dose in the Bragg peak region. So far it has been anticipated that the radiobiology of antiproton beams is similar to that of protons in the entry region of the beam, but very different in the annihilation region, due to the expected high-LET components resulting from the annihilation. On closer inspection we find that calculations of dose averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity, which seems to warrant closer inspection of the radiobiology in this region. Materials and Methods. Monte Carlo simulations using FLUKA were performed for calculating the entire particle spectrum of a beam of 126 MeV antiprotons hitting a water phantom. Results and Discussion. In the plateau region of the simulated antiproton beam we observe a dose-averaged unrestrict...

  6. Gamma Ray Radiolysis of the FPEX Solvent

    Energy Technology Data Exchange (ETDEWEB)

    B. J. Mincher; S. P. Mezyk; D. R. Peterman

    2006-09-01

    Slide presentation. FPEX contains a calixarene for Cs extraction, a crown ether for Sr extraction, Cs7SB modifier, and TOA to aid in stripping, in Isopar L diluent. The radiation stability FPEX must be evaluated prior to process use. Radiolytic degradation of species in solution are due to reaction with the direct radiolysis products of the diluent. In Isopar L, the reactive species produced include e-, •H and alkane radicals, resulting in a reducing environment. However, in nitric acid, oxidizing hydroxyl (•OH) and nitro (•NO2) radicals dominate system chemistry. Thus, the nature of diluent and the presence of radical scavengers affect the results of irradiation. We report the preliminary results of a new program to investigate the radiolysis of FPEX using the 60Co irradiation of FPEX neat solvent, acid pre-equilibrated solvent and mixed aerated phases. The Cs and Sr distribution ratios were used as metrics.

  7. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    Energy Technology Data Exchange (ETDEWEB)

    Grills, David C., E-mail: dcgrills@bnl.gov; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Wishart, James F. [Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000 (United States); Bernstein, Herbert J. [Department of Mathematics and Computer Science, Dowling College, 1300 William Floyd Parkway, Shirley, New York 11967 (United States)

    2015-04-15

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330 to 1051 cm{sup −1}. The response time of the TRIR detection setup is ∼40 ns, with a typical sensitivity of ∼100 μOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  8. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility.

    Science.gov (United States)

    Grills, David C; Farrington, Jaime A; Layne, Bobby H; Preses, Jack M; Bernstein, Herbert J; Wishart, James F

    2015-04-01

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330 to 1051 cm(-1). The response time of the TRIR detection setup is ∼40 ns, with a typical sensitivity of ∼100 μOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  9. Structural analysis of radiolysis products of sennoside

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun Pa; Kim, Dong Ho [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    The purpose of the present investigation was to analyze the structural changes of gamma irradiated sennoside B (prodrug) and to provide the possibility for application of irradiation to induce structural changes of the prodrugs for enhanced bioavailability. Sennoside B (200 ppm) in 70% methanol solution with or without the use of hydrogen peroxide or nitrous oxide gas was irradiated with 1, 3, 5, 10 and 20 kGy by gamma ray. The radiolysis products of gamma irradiated sennoside B solution were identified and determined by TLC, HPLC and LC-MS/MS. The sennoside B quantity decreased when irradiation dose increased and completely degraded at 10 kGy of irradiation. There was a linear relationship between the production of the radiolysis compounds and the absorbed dose of the gamma ray irradiated sennoside B. Radiolysis products yields increased on the addition of nitrous oxide gas into the sennoside B solution. No anthraquinone compounds were formed after irradiation of sennosie B. Scission of the O-glycoside bond and consequently formation of aglycone of sennoside B was observed

  10. The radiolysis of lithium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tiliks, J.; Supe, A.; Kizane, G.; Tiliks, J. Jr. [Latvia Univ., Riga (Latvia). Dept. of Chemistry; Grishmanov, V.; Tanaka, S.

    1998-03-01

    The radiolysis of Li{sub 2}O ceramics exposed to accelerated electrons (5 MeV) at 380 K was studied in the range of high absorbed doses up to 250 MGy. The formation of radiation defects (RD) and radiolysis products (RP) was demonstrated to occur simultaneously in the regions of (1) the regular crystalline lattice and (2) an enhanced content of the intrinsic defects and impurities. The production of the electronic RD and RP is more efficient in the region of the defected lattice than that at the site of the regular crystalline lattice. However, the stability of RD and RP formed in the region of the intrinsic defects is far less than those produced at the crystalline lattice, since most of the first mentioned RD and RP disappears with irradiation dose due to the radiation stimulated recombination. By this means the enhanced quantity of RD and RP is localized in the Li{sub 2}O ceramics irradiated to absorbed dose of 40-50 MGy, and hence this can influence the tritium release parameters. As soon as the intrinsic defects have been consumed in the production of RD and RP and the recombination of unstable electronic RD and RP takes place (at dose of {approx}100 MGy), the radiolysis of Li{sub 2}O ceramics occurs only at the crystalline lattice. Furthermore, the concentration of RD and RP increases monotonically and tends to the steady-state level. (author)

  11. Structural analysis of radiolysis products of sennoside

    International Nuclear Information System (INIS)

    The purpose of the present investigation was to analyze the structural changes of gamma irradiated sennoside B (prodrug) and to provide the possibility for application of irradiation to induce structural changes of the prodrugs for enhanced bioavailability. Sennoside B (200 ppm) in 70% methanol solution with or without the use of hydrogen peroxide or nitrous oxide gas was irradiated with 1, 3, 5, 10 and 20 kGy by gamma ray. The radiolysis products of gamma irradiated sennoside B solution were identified and determined by TLC, HPLC and LC-MS/MS. The sennoside B quantity decreased when irradiation dose increased and completely degraded at 10 kGy of irradiation. There was a linear relationship between the production of the radiolysis compounds and the absorbed dose of the gamma ray irradiated sennoside B. Radiolysis products yields increased on the addition of nitrous oxide gas into the sennoside B solution. No anthraquinone compounds were formed after irradiation of sennosie B. Scission of the O-glycoside bond and consequently formation of aglycone of sennoside B was observed

  12. Radiolysis of a pig gastric glycopeptide

    International Nuclear Information System (INIS)

    A study has been made of the radiolysis of a single purified preparation of pig gastric glycopeptide F1, since the radiosensitivity of the epithelial lining of the digestive tract is of special interest. The amino acid composition of this glycopeptide is similar to the pattern found in several glycoproteins from mucous secretions. Steady-state 60Co gamma irradiations were carried out on aqueous glycoprotein solutions (1 mg/ml). Measurements were made of viscosity, and elution patterns on gel filtration on Sephadex G-200, and chromatographic analyses carried out for hexoses, fucose and amino acids. Transient absorption spectra after pulse radiolysis using a 12 meV linear accelerator gave information on the initial reactions between the primary aqueous free radicals and the glycopeptide. The results indicated that very low radiation doses (5x102 rad) could produce some depolymerisation of the glycopeptide, which increased at higher doses (104 and 105 rad). At the highest dose (105 rad) some evident modification of the carbo-hydrate components took place, whereas the peptide moiety seemed unaffected by irradiation. The pulse-radiolysis data also indicated that the transient absorbance was due to the carbohydrate moiety. These results suggest that the glucide moiety can exert some radio-protective action at the level of the protein core, the highest depolymerisation being associated with damage to the carbohydrate components. (U.K.)

  13. Radiolysis of HCN in heterogeneous phase

    International Nuclear Information System (INIS)

    HCN is considered to have been one of the more important precursors of biomolecules leading to the origin of life in the early Earth. This simple molecule is a key compound in chemical evolution studies. HCN could have been formed by a number of routes under possible prebiological conditions, and it is likely that this compound may be present in prebiotic environments because it is formed by a variety of processes driven by thermal energy. In this work an attempt is made to analyze the formation of some carboxylic acids from simple CN-compounds. As a source of energy we have employed ionizing radiation. The role of ionizing radiation has been underestimated in prebiotic chemistry. However, our previous work has demonstrated that a great variety of organic compounds important to life are formed by the irradiation of aqueous solution of HCN. We study the behavior of HCN molecule in an heterogeneous phase. With this purpose we have analyzed the effect of a clay mineral, namely Na-montmorillonite, in the radiolysis of aqueous solutions of HCN. The results obtained shows that carboxylic acids are formed among the radiolysis product of HCN. Their production is a function of radiation dose. In the radiolysis of HCN in the presence of clay, the formation of carboxylic acids is observed but in less extent. (author)

  14. The reactivity of the electron formed in the radiolysis of aerated alkaline aqueous solutions containing tetracycline hydrochloride, at 77 Ksup(+)

    International Nuclear Information System (INIS)

    The radiolysis of tetracycline hydrochloride dissolved in aerated alkaline aqueous solutions containing 0.1, 0.5 and 1M NaOH at 77 K, followed by ESR is reported. The rate constants for the reactions between the electron and physical or chemical traps which are present in these solutions are calculated. The reactivity of electrons that are formed in the radiolysis of water decreases in the following proportions: physical traps: chemical traps: molecules of water (4.8x10sup(14) : 6.5x10sup(8) : 1.0). The electrons react preferentially with the solute instead of the solvent. (author)

  15. The synthesis and analysis of diuloses and deoxydiuloses with special reference to the radiolysis products of fructose

    International Nuclear Information System (INIS)

    The exposure of fruit to γ-irradiation is a technique that is receiving increasing attention as a practical and economic preservation method. The analysis of irradiated fruit is necessary in order to identify and quantify possible mutagenic and toxic products formed during irradiation. Water and carbohydrates are the main components of fruit, the carbohydrates consisting mainly of mono- and disaccharides. An investigation of the radiolysis products of sugars, with special reference to hexosuloses and hexosdiuloses as possible toxic and/or mutagenic agents, formed the basis of the work described in this thesis. A number of diuloses formally derived from D-fructose was synthesized for mutagenicity tests and as standards for an investigation of the radiolysis products of D-fructose. High pressure liquid chromatography was used as analytical technique. The investigation represents the first application of the technique for the analysis of radiolysis products of sugars. It was succesfully applied to a study of the diuloses formed by the radiolysis of D-fructose in the presence of oxygen. The results obtained confirmed earlier work carried out with GC-MS as analytical technique. In addition, a previously unknown radiolysis product of D-fructose was identified as D-erythrohexos-2,3-diulose

  16. Gamma radiolysis of aqueous solutions of glycerin α-monochlorohydrin

    International Nuclear Information System (INIS)

    Data on γ-radiolysis of 0.1 mol/l aqueous solutions of glycerin α-monochlorohydrin (GMC) are presented. The radiolysis mechanism is considered. The rate constant of GMC reaction with esub(aq) k=(6.8+-0.8)x108 l/molxs is determined on the basis of experimental data

  17. Gas phase pulse radiolysis. [Reaction with hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Jonah, C.D.; Andong Liu; Mulac, W.A.

    1987-01-01

    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab.

  18. Comparison of Alpha- and Gamma-Ray Radiolysis of Thymine

    International Nuclear Information System (INIS)

    The radiolysis of thymine with polonium-210 alpha particles shows that qualitatively the same products of radiolysis are formed as with X- or gamma rays. In the presence of oxygen thymine hydroperoxide and thymine glycols are the main products of radiolysis with alpha rays. The amount of thymine hydroperoxide is about 30% of all products formed. In the absence of oxygen, thymine glycols, dihydrothymine and its monohydro- xyderivatives and 5-hydroxymethyluracil are formed. These results prove that the OH radical is the main species taking part in the alpha radiolysis of thymine. The presence of dihydrothymine and its derivatives shows the H atom to take part also in the splitting of thymine by alpha particles. Among other products of alpha radiolysis there is a higher percentage of urea and 5-hydroxymethyluracil if compared with gamma rays. (author)

  19. Study on the gamma radiolysis of poly (vinyl chloride). Application to the study on degradation by irradiation and leaching of industrial PVC

    International Nuclear Information System (INIS)

    The works presented in this memory enter in the context of the management of plastic nuclear waste. This study was carried out on pure PVC and industrial PVC (formulated polymer). The radiolysis at high doses (up to 4 MGy) of pure PVC in anaerobic condition involves the formation of polyenyl radicals, polyenic sequences, hydrogen chloride and reactions of crosslinking. In aerobic condition, the radiolysis at high doses of pure PVC generates the formation of peroxyl radicals, hydrogen chloride, acid water, carboxylic acids, saturated or conjugated ketones and phenomena of scission. The production of HCl generated by irradiation of industrial PVC was carried out up to 40 MGy. The HCl formed by radiolysis is completely trapped by the calcic loads contained in industrial PVC and by the water produced by these reactions of trapping. A qualitative study on the formation of the products of radiolysis highlighted that the mechanisms of radiolysis of industrial PVC are different from those of pure PVC. This difference is due to the presence of additives belonging to the formulation of industrial PVC. The irradiation of plasticizers such as phthalic esters could induce the formation of radicals being able to react, by reaction of grafting, with the macro-radicals of PVC or with the polyenic sequences formed by radiolysis of PVC macromolecules. The results of leaching experiments tend to confirm this type of mechanism. (author)

  20. A bibliographical review on the radiolysis of uranyl nitrate solutions in nitric acid medium

    International Nuclear Information System (INIS)

    A bibliographical study on the effects of ionizing radiation on uranyl nitrate solutions in nitric acid medium was performed, and the state of knowledge on this subject is presented. The main experimental and theoretical results on water, nitric acid and uranium solutions radiolysis are reviewed and critically evaluated. This paper provides a collection of references as an aid to the development of practical applications, and to stimulate new research on fundamental processes in these systems. (author)

  1. Biradical formation in the radiolysis of cycloalkanes

    International Nuclear Information System (INIS)

    Complete text of publication follows. In the radiolysis and vacuum-ultraviolet photolysis of liquid cycloalkanes structural isomerizations to open-chain olefins, while in the cases of 1,2-, 1,3- and 1,4-dimethylcycloalkanes also geometrical (cis↔trans) isomerizations were observed. Biradicals are suggested as intermediates of these isomerizations. Iodine scavenging studies, similar to that previously performed for n-alkanes and isoalkanes, were made in the γ radiolysis of cyclopentane, cyclohexane, cycloheptane, cyclooctane and cyclodecane. Using gel permeation chromatography (GPC) for the separation of iodide scavenging products αω-diiodo alkanes were also found to form in addition to the usual scavenging products, cycloalkyl iodides and fragment iodoalkanes. The production of αω- diiodo alkanes was attributed to biradical scavenging. The diiodo alkane yields showed a strong dependence on iodine concentration revealing a Stern-Volmer type competition between unimolecular stabilization of the biradicals forming hydrocarbon products and the radical scavenging reaction. This competition allowed to estimate the biradical lifetimes, 100-600 ns, and the biradical yields, G = 0.06 - 0.25 biradical/100 eV.

  2. Radiolysis in cement-based materials ; application to radioactive waste-forms

    International Nuclear Information System (INIS)

    Cement-based materials appear to be an original environment with respect to radiolysis, due to their intrinsic complexity (porous, multiphasic and evolutional medium) or their very specific physico-chemical conditions (hyper-alkaline medium with pH ≥ 13, high content in calcium) or by the fact of numerous couplings existing between different phenomenologies. At the level of a radioactive cemented wasteform, a high degree of complexity is reached, in particular if the system communicates with the atmosphere (open system allowing regulation of the pressures but also the admission of O2, strong reactive with regards to radiolysis). Then, the radiolysis description exceeds widely the only one aspect of the decomposition of alkaline water under irradiation and makes necessary a global phenomenological approach. In this context, some 'outlying' phenomena, highly coupled with radiation chemistry, have to be taken into account because they contribute to deeply modify the net result of the radiolysis: radioactive decay of multiple αβγ emitters with filiation, phase changes (for example H2 aq → H2 gas) within the pores, gas transport by convection (Darcy law) and by diffusion (Fick law), precipitation/dissolution of solid phases, effect of the ionic strength and the temperature, disturbances connected to the presence of some solutes with redox potentialities (iron, sulphur). The integration work carried out on the previous points leads to an operational model (DOREMI) allowing the estimate of H2 amounts produced by radiolysis in different cemented radioactive waste-forms. As the final expression of the model, numerical simulations constitute a relevant tool of expertise and prospecting, contributing to accompany the thought on radiolysis in cement matrices in general and in cemented waste-forms in particular. Starting from different examples, simulations can be so used in order to test some hypotheses or illustrate the greatest influence of gas transport, dose rate

  3. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    OpenAIRE

    Zhang, Rui; Taddei, Phillip J.; Fitzek, Markus M.; Newhauser, Wayne D.

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several...

  4. In-air fluence profiles and water depth dose for uncollimated electron beams

    Directory of Open Access Journals (Sweden)

    Toutaoui Abdelkader

    2008-01-01

    Full Text Available Advanced electron beam dose calculation models for radiation treatment planning systems require the input of a phase space beam model to configure a clinical electron beam in a computer. This beam model is a distribution in position, energy, and direction of electrons and photons in a plane in front of the patient. The phase space beam model can be determined by Monte Carlo simulation of the treatment head or from a limited set of measurements. In the latter case, parameters of the electron phase space beam model are obtained by fitting measured to calculated dosimetric data. In the present work, data for air fluence profiles and water depth doses have been presented for electron beams without an applicator for a medical linear accelerator. These data are used to parameterize the electron phase space beam model to a Monte Carlo dose calculation module available in the first commercial (MDS Nordion, now Nucletron Monte Carlo treatment planning for electron beams.

  5. Gamma-radiolysis of dimethyl sulfoxide. II. Radiolysis yields and possible mechanisms

    International Nuclear Information System (INIS)

    As result of quantitative studies on gamma-radiolysis of DMSO at a dose range of 90-850 Mrads, constant G values have been obtained for the following radiolysis compounds: G(-DMSO) - 6.7 ±0.2; G(dimethyl sulphide) - 3.4 ±0.3; G(methane) - 0,75 ± 0.04; G(dimethyl disulphide) -0.33 ±0,03; G(tri methylsulphonium methanesulphonate) - 0.26 ± 0,01; G(methyl methanethiosulphonate) - 0,25 ±0.02; G(dimethyl sulphona)-0.21±0.02; G(H2)-0.18±0.02; and G(propane)--0.0092±0.0007. Initial G values have been obtained for other identified compounds: Gi(ethane)-0,46; Gi(CO)-0.052; and Gi(CO2)-0.030. Possible mechanisms on the radiolysis process are proposed. (Author) 17 refs

  6. Pulse Radiolysis of Aqueous Thiocyanate Solution

    International Nuclear Information System (INIS)

    The pulse radiolysis of N2O saturated aqueous solutions of KSCN was studied under neutral pH conditions. The observed optical absorption spectrum of the SCN#lgbullet# radical in solution is more complex than previously reported, but it is in good agreement with that measured in the gas phase. Kinetic traces at 330 nm and 472 nm corresponding to SCN#lgbullet# and (SCN)2#lgbullet#-, respectively, were fit using a Monte Carlo simulation kinetic model. The rate coefficient for the oxidation of SCN- ions by OH radicals, an important reaction used in competition kinetics measurements, was found to be 1.4 ± 0.1 x 1010 M-1 s-1, about 30% higher than the normally accepted value. A detailed discussion of the reaction mechanism is presented

  7. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams

    International Nuclear Information System (INIS)

    Two commercially available water-equivalent solid phantom materials were evaluated for output calibration in both photon (6-15 MV) and electron (6-20 MeV) beams. The solid water 457 and virtual water materials have the same chemical composition but differ in manufacturing process and density. A Farmer-type ionization chamber was used for measuring the output of the photon beams at 5- and 10-cm depth and electron beams at maximum buildup depth in the solid phantoms and in natural water. The water-equivalency correction factor for the solid materials is defined as the ratio of the chamber reading in natural water to that in the solid at the same linear depth. For photon beams, the correction factor was found to be independent of depth and was 0.987 and 0.993 for 6- and 15-MV beams, respectively, for solid water. For virtual water, the corresponding correction factors were 0.993 and 0.998 for 6- and 15-MV beams, respectively. For electron beams, the correction factors ranged from 1.013 to 1.007 for energies of 6 to 20 MeV for both solid materials. This indicated that the water-equivalency of these materials is within ± 1.3%, making them suitable substitutes for natural water in both photon and electron beam output measurements over a wide energy range. These correction factors are slightly larger than the manufacturers' advertised values (± 1.0% for solid water and ± 0.5% for virtual water). We suggest that these corrections are large enough in most cases and should be applied in the calculation of beam outputs

  8. Radiolysis studies of uranyl nitrate solution in nitric acid medium

    International Nuclear Information System (INIS)

    The radiolysis of acidic uranyl nitrate solutions was investigated using Co-60 gamma radiation. Hydrogen peroxide was determined as a function of increasing dose. The UV-vis absorption spectra of the irradiated solutions were measured and the spectral changes were analyzed. The increasing dose increases the absorbance intensities, possibly by an increment in nitrate concentration produced by radiolysis, which can originate the formation of different uranyl complexes in solution. (author)

  9. Stability of DMHAN on 238Pu α-Radiolysis

    Institute of Scientific and Technical Information of China (English)

    WANG; Liang; HE; Hui; SONG; Peng

    2013-01-01

    238Pu was used asαliquid inside source(does rate:34.0 Gy·g-1·min-1)for the radiolysis of N,N-dimethylhydroxylamine(DMHAN).DMHAN can reduce Pu(Ⅳ)efficiently,in nitric acid solution,Pu should be trivalence while DMHAN exists.Characteristic wavelength of Pu(Ⅲ)and Pu(Ⅳ)in radiolysis

  10. Burnout experiment in subcooled forced-convection boiling of water for beam dumps of a high power neutral beam injector

    International Nuclear Information System (INIS)

    Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m2. These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m2 with a margin of a factor of 2 for burnout

  11. Nuclear fragmentation of high-energy light-ion beams in water

    International Nuclear Information System (INIS)

    Light-ion beams ranging between carbon and neon with energies of a few hundred MeV/u offer favorable conditions for the treatment of deep-seated tumors. Nuclear fragmentation experiments are presented to study favorable therapy beams simultaneously in thick water target. Comparative measurements with 10B, 12C, 14N, 16O beams are described. (R.P.) 5 refs.; 4 figs

  12. Extension of filament propagation in water with Bessel-Gaussian beams

    OpenAIRE

    KAYA, G.; Kaya, N.; M. Sayrac; Y. Boran; Strohaber, J.; Kolomenskii, A. A.; M. Amani; Schuessler, H. A.

    2016-01-01

    We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size o...

  13. The radiolysis in the nuclear-chemical extraction systems

    International Nuclear Information System (INIS)

    In the first part, the progress of research works including spent fuel reprocessing of nuclear power reactor, process chemistry of uranium, plutonium, actinides, lanthanoids and fission products and radiation chemistry including photochemistry is reviewed. in the second part, works of the author in radiation processes and photochemical processes in extraction systems used in spent fuel reprocessing of nuclear power reactor, (namely) in tri-n-butylphosphate, di-n-butylphosphate, tritolylphosphate, di-n-butyl-butylphosphonate bis(2-ethylhexyl)phosphoric acid, cobalt(III) dicarbollide, nitrobenzene, carbon tetrachloride, chlorobenzene and its one-phase and liquid-liquid two-phase systems with water or nitric acid solutions, and crown-ethers (12-crown-4, 15-crown-5, dicyclohexano-24-crown-8 and their analogues tetrahydrofuran and 1,4-dioxane) which were studied with GC-MS, GC-FTIR, HPLC, capillary isotachophoresis, UV-VIS and EPR spectroscopy, preparative or laser flash photolysis, steady state and pulse radiolysis and other methods are reviewed.(author) The 24 papers is presented in the appendix. 469 refs., 17 tabs. 2 figs

  14. An Advantage of the Equivalent Velocity Spectroscopy for Femtsecond Pulse Radiolysis

    CERN Document Server

    Kondoh, Takafumi; Tagawa, Seiichi; Tomosada, Hiroshi; Yang Jin Feng; Yoshida, Yoichi

    2005-01-01

    For studies of electron beam induced ultra-fast reaction process, femtosecond(fs) pulse radiolysis is under construction. To realize fs time resolution, fs electron and analyzing light pulses and their jitter compensation system are needed. About a 100fs electron pulse was generated by a photocathode RF gun linac and a magnetic pulse compressor. Synchronized Ti: Sapphire laser have a puleswidth about 160fs. And, it is significant to avoid degradation of time resolution caused by velocity difference between electron and analyzing light in a sample. In the 'Equivalent velocity spectroscopy' method, incident analyzing light is slant toward electron beam with an angle associated with refractive index of sample. Then, to overlap light wave front and electron pulse shape, electron pulse shape is slanted toward the direction of travel. As a result of the equivalent velocity spectroscopy for hydrated electrons, using slanted electron pulse shape, optical absorption rise time was about 1.4ps faster than normal electro...

  15. Pulse radiolysis study on several fluoroquinolones

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Peng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Yao Side [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li Haixia; Song Xiyu; Liu Yancheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Wang Wenfeng, E-mail: wangwenfeng@sinap.ac.c [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2011-04-15

    Reactions of several fluoroquinolones (FQs), including enoxacin, norfloxacin, and ciprofloxacin, with various reactive species such as e{sub aq}{sup -}, N{sup {center_dot}}{sub 3}, and {sup {center_dot}O}H are investigated by pulse radiolysis techniques. The FQ radical anions formed in the reactions of FQs with e{sub aq}{sup -} could either be protonated or deprotonated, and the absorption of FQ radical anions was located around 370 nm. The absorption of the neutral radicals produced in the protonation, and the radical dianions produced in the deprotonation of FQ radical anions were located in the 500-750 nm region. The FQ radical cations formed in the reactions of FQs with N{sub 3}{sup {center_dot}} showed an absorption band around 360 nm. Due to the strong bleaching below 350 nm, the absorption maxima ({lambda}{sub max}) of FQ radical anions, and the {lambda}{sub max} of FQ radical cations were not confirmed. The absorption of the FQ radical anions and cations was clearly pH dependent. Under neutral conditions, the reaction rate constants of FQs with e{sub aq}{sup -} and {sup {center_dot}O}H, which are diffusion controlled, were determined.

  16. Extension of filament propagation in water with Bessel-Gaussian beams

    Directory of Open Access Journals (Sweden)

    G. Kaya

    2016-03-01

    Full Text Available We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.

  17. Double beam near-infrared spectrometer for compensation of background water absorption and instrumental drift in intensity

    Institute of Scientific and Technical Information of China (English)

    CHANG Min; PENG Dan; XU Ke-xin

    2007-01-01

    A double beam near-infrared spectrometer is developed to compensate the water absorption and instrumental drift in intensity. The spectrometer maybe used for both single and double beam measurements, and the two operation modes are compared. The results show that the double beam technique eliminates instrumental drift in the single beam measurement and therefore the stability of the system increases by more than 20%. The compensation of the double beam system on water absorption is verified by the measurement of fat content in milk. The results show that the spectrum data based on double beam mode get better calibration model and lower prediction error than traditional single beam mode.

  18. Pulse radiolysis of aqueous solutions of ethyl acrylate and hydroxy ethyl acrylate

    Science.gov (United States)

    Safrany, A.; Biro, A.; Wojnarovits, L.

    1993-10-01

    Ethyl- and hydroxy ethyl acrylate show high reactivities with hydrated electron and hydroxyl radical intermediates of water radiolysis. The electron adduct reversibly protonate with pK values of 5.7 and 7.3. The adducts may take part in irreversible protonation at the β carbon atom forming α-carboxyl alkyl radicals. Same type of radical forms in reaction of acrylates with OH: at low concentration the adduct mainly disappear in self termination reactions. Above 5 mmol dm -1 the signals showed the startup of oligomerization.

  19. Radiolysis of berberine or palmatine in aqueous solution

    Science.gov (United States)

    Marszalek, Milena; Wolszczak, Marian

    2011-01-01

    The reactions of hydrated electron (eaq-), hydrogen atom (H rad ) (reducing species) and Cl2•-, Br2•-, N,O•H radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of eaq- and rad OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with eaq- and radicals generated during radiolysis are unstable and undergo further reactions.

  20. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins

    International Nuclear Information System (INIS)

    The purpose of this review is to bring together and to correlate the wide variety of experimental studies that provide information on the reaction products and reaction mechanisms involved in the radiolysis of peptides, polypeptides and proteins (including chromosomal proteins) in both aqueous and solid-state systems. The comparative radiation chemistry of these systems is developed in terms of specific reactions of the peptide main-chain and the aliphatic, aromatic-unsaturated and sulfur-containing side-chains. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis and ESR spectroscopy is included. 147 refs

  1. Radiolysis of Boric Acid Solutions under Mixed Thermal and Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Im, Heejung; Choi, Ke Chon; Yeon, Jeiwon; Song, Kyuseok; Jung Hoansung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The thermal neutron irradiation of water samples containing neutron absorbers has not been published except for a paper reporting the experimental data obtained at high temperatures. However, irradiation or simulations of water and voluminous liquid samples with fast neutrons and gamma rays are frequently discussed in several published papers. Several water samples containing {sup 10}B-enriched boric acid, and natural and {sup 10}B-enriched mixed boric acids in the range of 0 to 2000 μg/mL for the function of {sup 10}B concentration, were irradiated to study the radiolysis of the cooling water containing boric acid. The concentration of natural boron in the primary coolant of pressurized water reactors (PWRs) is known to start at 1500 μg/mL, and boric acid is used for the purpose of nuclear reaction control.

  2. TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop: FY-2012 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Lonnie G. Olson; Richard D. Tillotson; Rocklan G. McDowell; Jack D. Law

    2012-09-01

    The INL radiolysis test loop has been used to evaluate the affect of radiolytic degradation upon the efficacy of the strip section of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  3. Summary of TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Lonnie G. Olson; Rocklan G. McDowell; Gracy Elias; Jack D. Law

    2012-03-01

    The INL radiolysis and hydrolysis test loop has been used to evaluate the effects of hydrolytic and radiolytic degradation upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. Repeated irradiation and subsequent re-conditioning cycles did result in a significant decrease in the concentration of the TBP and CMPO extractants in the TRUEX solvent and a corresponding decrease in americium and europium extraction distributions. However, the build-up of solvent degradation products upon {gamma}-irradiation, had little impact upon the efficiency of the stripping section of the TRUEX flowsheet. Operation of the TRUEX flowsheet would require careful monitoring to ensure extraction distributions are maintained at acceptable levels.

  4. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  5. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  6. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Directory of Open Access Journals (Sweden)

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  7. [Pulsed radiolysis of aqueous solutions of serum albumin containing naphthoquinones].

    Science.gov (United States)

    Pribush, A G; Savich, A V

    1987-01-01

    As was shown by the pulse radiolysis method the simultaneous presence of naphthoquinone and human serum albumin molecules in an aqueous solution leads to the adsorption of the former on the surface of the latter. It is suggested that in these conditions the protein tertiary structure changes. New conformation reduces the reactivity of albumin toward the hydrated electron. PMID:3628723

  8. Direct measurement of electron beam quality conversion factors using water calorimetry

    International Nuclear Information System (INIS)

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General

  9. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  10. Pulse radiolysis with (sub) nanosecond time resolution using a 3 MV electron accelerator

    International Nuclear Information System (INIS)

    In this thesis the development of equipment for pulse radiolysis is described and the application of the technique to time-resolved measurements of the fluorescence emission of excited states formed after irradiation of some alkanes is dealt with. A review is given of the development of the pulsed 3MV Van de Graaf electron accelerator for the generation of subnanosecond electron beam pulses and of the development of the equipment for optical detection as accomplished by the author. The initial stage of a further development for shorter pulses and higher time resolution is briefly discussed. A collection of papers on the development of apparatus and a collection of papers dealing with the results obtained from measurements of the fluorescence of excited states, formed by the recombination of electrons and ions in irradiated alkanes such as cyclohexane and the decalines, are included. (Auth.)

  11. Nuclear fragmentation of high-energy heavy-ion beams in water.

    Science.gov (United States)

    Schardt, D; Schall, I; Geissel, H; Irnich, H; Kraft, G; Magel, A; Mohar, M F; Munzenberg, G; Nickel, F; Scheidenberger, C; Schwab, W; Sihver, L

    1996-01-01

    As a part of the physical-technical program of the heavy-ion therapy project at GSI we have investigated the nuclear fragmentation of high-energy ion beams delivered by the heavy-ion synchrotron SIS, using water as a tissue-equivalent target. For a direct comparison of fragmentation properties, beams of 10B, 12C, 14N, and 16O were produced simultaneously as secondary beams from a primary 18O beam and separated in flight by magnetic beam analysis. The Z-distributions of beam fragments produced in the water target were measured via energy loss in a large ionisation chamber and a scintillator telescope. From these data we obtained both total and partial charge-changing cross sections. In addition we have performed Bragg measurements using two parallel-plate ionization chambers and a water target of variable length. The detailed shape of the measured Bragg curves and the measured cross sections are in good agreement with model calculations based on semi-empirical formulae.

  12. Study on Structure of Arched Longitudinal Beams of Deep Water Wharf

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High-pile and beam-slab quays have been widely used after several years development. They are mature enough to be one of the most important structural types of wharves in China coastal areas. In order to accommodate large tonnage vessels, wharves should be constructed in deep water gradually. However, conventional high-pile and beam-slab structures are hard to meet the requirements of large deep-water wharf. According to arch's stress characteristics, a new type of wharf with catenary arched longitudinal beams is presented in this paper. The new wharf structure can make full use of arch's overhead crossing and reinforced concrete compression resistance, improve the interval between transverse bents greatly, and decrease underwater construction quantity. Thus, the construction cost cab be reduced. Take the third phase project of the Yangshan Deep-water Port for example, comparative analysis on catenary arched longitudinal beams and conventional longitudinal beams has been made. The result shows that with the same wharf length and width, the same loads and same longitudinal beam moment, catenary arch structure can improve the interval between bents up to 28 m, decrease the number of piles and underwater construction quantity.

  13. The effect of temperature on radiolysis of iodide ion diluted aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorbovitskaya, T.; Tiliks, J. [Latvia Univ., Lab. of Radiation Chemistry, Riga (Latvia)

    1996-12-01

    To investigate the radiolysis of iodine containing aqueous solutions a flow type facility (ITF) has a possibility to irradiate aqueous solutions in the steel vessel with {sup 60}Co {gamma}-rays and continuously (on line) to analyze the products of radiolysis both in liquid and in gaseous phases. By means of ITF the formation of I{sub ox} (I{sub 2} + I{sub 3}{sup -} + HOI), IO{sub 3}{sup -}, H{sub 2}O{sub 2} was studied in 10{sup -5} - 10{sup -3} mol/dm{sup 3} CsI aqueous solutions by their radiolysis at dose rate 4.5 kGv/h for six hours in region of temperatures from 313 to 404 K. Some experiments in glass ampoules were also performed. The steady-state concentrations of I{sub ox} and IO{sub 3}{sup -} decreased with increasing temperature as linear function of inverted temperature. The effect decreased with decreasing concentration of iodide ion. As the result, at high temperatures (T{>=}380 K) the steady-state concentration of I{sub ox} does not depend essentially on the iodide ion initial concentration. Molecular iodine (I{sub 2}) released from the solution was the main radiolysis product in gaseous phase. Its steady-state concentration increased with increasing temperature because of iodine solubility in the water and decreased at the same time because the radiolytic iodine concentrations decreased. Therefore the most volatility of irradiated 10{sup -3} and 10{sup -4}M CsI solutions was observed at the temperature about 350 K. The volatility of 10{sup -5}M solutions gradually decreased with increasing temperature. The experimental data were explained on the base of the hypothesis that the reaction between I{sub 2} and radiolytic H{sub 2}O{sub 2} was the limit one determining the temperature dependence of I{sub ox} and IO{sub 3}{sup -}steady-state concentrations. Its activation energy was estimated to be 27,5 kcal.mol{sup -1}. The temperature dependence for reaction (IO{sup -} + H{sub 2}O{sub 2}) was also estimated. (author) 8 figs., 1 tab., 17 refs.

  14. Evaluation of thermoluminescent dosimeters using water equivalent phantoms for application in clinical electrons beams dosimetry

    International Nuclear Information System (INIS)

    The dosimetry in Radiotherapy provides the calibration of the radiation beam as well as the quality control of the dose in the clinical routine. Its main objective is to determine with greater accuracy the dose absorbed by the tumor. This study aimed to evaluate the behavior of three thermoluminescent dosimeters for the clinical electron beam dosimetry. The performance of the calcium sulfate detector doped with dysprosium (CaSO4: Dy) produced by IPEN was compared with two dosimeters commercially available by Harshaw. Both are named TLD-100, however they differ in their dimensions. The dosimeters were evaluated using water, solid water (RMI-457) and PMMA phantoms in different exposure fields for 4, 6, 9, 12 and 16 MeV electron beam energies. It was also performed measurements in photon beams of 6 and 15 MV (2 and 5 MeV) only for comparison. The dose-response curves were obtained for the 60Co gamma radiation in air and under conditions of electronic equilibrium, both for clinical beam of photons and electrons in maximum dose depths. The sensitivity, reproducibility, intrinsic efficiency and energy dependence response of dosimeters were studied. The CaSO4: Dy showed the same behavior of TLD-100, demonstrating only an advantage in the sensitivity to the beams and radiation doses studied. Thus, the dosimeter produced by IPEN can be considered a new alternative for dosimetry in Radiotherapy departments. (author)

  15. Measurements of absorbed energy distributions in water from pulsed electron beams

    International Nuclear Information System (INIS)

    An evaluation of the use of a holographic interferometer to measure the energy deposition as a function of depth in water from pulsed electron beams, together with a brief description of the interferometer and the technique of generating a hologram are presented. The holographic interferometer is used to measure the energy deposition as a function of depth in water from various pulsed beams of monoenergetic electrons in the energy range from 1.0 to 2.5 MeV. These results are compared to those computed by using a Monte Carlo radiation transport code, ETRAN-15, for the same electron energies. After the discrepancies between the measured and computed results are evaluated, reasonable agreement is found between the measured and computed absorbed energy distributions as a function of depth in water. An evalutation of the response of the interferometer as a function of electron intensities is performed. A comparison among four energy deposition curves that result from the irradiation of water with pulsed electron beams from a Febetron accelerator, model 705, is presented. These pulsed beams were produced by the same vacuum diode with the same charging voltage. The results indicate that the energy distribution of the electrons in the pulsed beam is not always constant. A comparison of the energy deposition curves that result from the irradiation of water with electron pulses from different vacuum diodes but the same charging voltage is presented. These results indicate again that the energy distribution of the electrons in the pulsed beam may vary between vacuum diodes. These differences would not be realized by using a totally absorbing metal calorimeter and Faraday Cup

  16. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    OpenAIRE

    Zhao Qiang; Zhang Zheng; Li Yang

    2016-01-01

    Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position o...

  17. Calculated electronic energy loss of swift proton and helium ion beams in liquid water

    OpenAIRE

    Abril Sánchez, Isabel; García Molina, Rafael; Denton Zanello, Cristian D.; Emfietzoglou, Dimitris

    2008-01-01

    The electronic energy loss of swift proton and helium beams in liquid water is theoretically evaluated. Our model is based in the dielectric formalism, taking into account the charge exchange of the projectile during its travel through the target. The electronic properties of liquid water are described by the MELF-GOS model, where the outer electron excitations are represented by a sum of Mermin functions fitted to the experimental data in the optical limit, whereas the inner-shell electron e...

  18. Modeling of reverberation in shallow-water based on the beam tracing theory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A reverberation intensity model and a reverberation series model in shallow-water based on the beam tracing theory were presented.The brief theoretical deduction to compute reverberation intensity was given,and the results were compatible with the measured data. The reverberation series simulation method was built and its characteristics were tested with the measured data and other results that had been verified.The studies show that the reverberation intensity model can be used to forecast shallow-water...

  19. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  20. The effects of radiolysis on the corrosion and stress corrosion behavior of 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Duquette, D.J.; Steiner, D.

    1993-09-01

    This program is focused on the corrosion, stress corrosion and corrosion fatigue behavior of Type 316 stainless steel (316SS) at 50, 90, and 130 C in high-purity water. Irradiated solution tests are performed using high-energy photon radiation. Purpose of this work is to determine the effects of radiolysis products on the environmental stability of 316SS in support of the ITER first wall/shield/blanket design. Preliminary results suggest that irradiation of pure water at 50 C results in a shift in the electrochemical potential for 316SS of approximately 100mV in the active direction and nearly an order of magnitude increase in the passive current density as compared to non-irradiated conditions. This proposal outlines a three-year program to develop corrosion design criteria for the use of 316SS in an ITER environment.

  1. Radiolysis of berberine or palmatine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Marszalek, Milena [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland); Wolszczak, Marian, E-mail: marianwo@mitr.p.lodz.p [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland)

    2011-01-15

    The reactions of hydrated electron (e{sub aq}{sup -}), hydrogen atom (H{sup {center_dot}}) (reducing species) and Cl{sub 2}{sup {center_dot}}{sup -},Br{sub 2}{sup {center_dot}}{sup -},{sup {center_dot}}N{sub 3},{sup {center_dot}}OH radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of e{sub aq}{sup -} and {sup {center_dot}}OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with e{sub aq}{sup -} and radicals generated during radiolysis are unstable and undergo further reactions.

  2. Radiolysis of actinides and technetium in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H., Westinghouse Hanford

    1996-07-10

    The {gamma}-radiolysis of aerated alkaline aqueous solutions of Np(V), Np(VI), Pu(VI), Tc(IV), Tc(V), and TC(VII) was studied in the absence of additives and in the presence of CO{sub 3}{sup 2-}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, EDTA, formate, and other organic compounds. The radiolytic reduction of Np(V), Np(VI), Pu(VI), and TC(VII) under different experimental conditions was examined in detail. The addition of EDTA, formate, and alcohols was found to considerably increase the radiation-chemical reduction yields. The formation of the Np(V) peroxo complex was observed in the {gamma}-radiolysis of alkaline aqueous solutions of Np (VI) in the presence of nitrate.

  3. A pulse radiolysis study on electron affinity of piperonal

    Institute of Scientific and Technical Information of China (English)

    MA; Jianhua; LIN; Weizhen; WANG; Wenfeng; YAO; Side

    2005-01-01

    The piperonal electron affinity was studied using pulse radiolysis technique. The electron transfer reaction process between piperonal and anthraquinone-2-sulfate was observed in the pH 7 phosphoric acid salt buffer. The transient absorption spectra of electron transfer reaction between piperonal and anthraquinone-2-sulfate were obtained, and the initial proof of the electron transfer between electron donor and acceptor was provided directly. The one-electron reduction potential of piperonal was determined to be -0.457 V.

  4. Pulse radiolysis of aqueous lignin solutions with acryl monomers

    International Nuclear Information System (INIS)

    Radiation-induced polymerization in aqueous solutions of methylmethacrylate and methylacrylate with and without lignin added was studied by pulse radiolysis method. Optical spectra of intermediates taking part in the chain evolution were obtained. The rate constant of the chain polymerization termination diminished when lignin added from 1.2 x 109 up to 2 x 108 mol-1 s-1. A reaction scheme of radiation-induced polymerization was proposed which included the lignin entering in chain propagation reactions. (author)

  5. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  6. Radiolysis of methylene blue studied by ESR. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Contineau, M.; Iliescu, C.; Ciureanu, M. (National Inst. of Chemistry, Bucharest (RoO). Dept. of Physical Chemistry)

    1983-05-31

    Electron spin resonance spectra have been used to gain information on the mechanism of radiolysis of aqueous solutions of methylene blue. The identity and behaviour of the semiquinone radicals formed as intermediate reduction products were discussed for strongly acid and for alcaline solutions. In order to obtain information on the radiolytic mechanism in strongly acidic media, irradiation was performed in the presence of various types of scavengers: sodium formate, glucose, succinic acid, hydroquinone and D,L-..cap alpha.. alanine.

  7. Redox transformations in peroxidases studied by pulse radiolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Gebicka, L.; Gebicki, J.L. (Lodz Univ. (Poland))

    1992-01-01

    By means of pulse radiolysis technique, redox processes in two heme enzymes, horseradish peroxidase (HRP) and lactoperoxidase (LPO) have been studied. It has been found that both hydrated electron and hydroxyl radical reduce HRP and LPO to their ferrous forms. The formation of compound III (an oxyform of the heme enzyme) in a two-step reaction of LPO and HRP with superoxide anion has been proposed. (author).

  8. Nuclear halo of a 177\\,MeV proton beam in water

    CERN Document Server

    Gottschalk, Bernard; Daartz, Juliane; Wagner, Miles S

    2014-01-01

    The dose distribution of a pencil beam in a water tank consists of a core, a halo and an aura. The core consists of primary protons which suffer multiple Coulomb scattering (MCS) and slow down by multiple collisions with atomic electrons (Bethe-Bloch theory). The halo consists of charged secondaries, many of them protons, from elastic interactions with H, elastic and inelastic interactions with O, and nonelastic interactions with O. We show that the halo radius is roughly one third of the beam range. The aura consists of neutral secondaries (neutrons and gamma rays) and the charged particles they set in motion. We have measured the core/halo at 177 MeV using a test beam offset in a water tank. The beam monitor was a plane parallel ionization chamber (IC) and the field IC a dose calibrated Exradin T1. Our dose measurements are absolute. We took depth-dose scans at ten displacements from the beam axis ranging from 0 to 10 cm. The dose spans five orders of magnitude, and the transition from halo to aura is obvio...

  9. Single-beam water vapor detection system with automatic photoelectric conversion gain control

    Science.gov (United States)

    Zhu, C. G.; Chang, J.; Wang, P. P.; Wang, Q.; Wei, W.; Liu, Z.; Zhang, S. S.

    2014-11-01

    A single-beam optical sensor system with automatic photoelectric conversion gain control is proposed for doing high reliability water vapor detection under relatively rough environmental conditions. Comparing to a dual-beam system, it can distinguish the finer photocurrent variations caused by the optical power drift and provide timely compensation by automatically adjusting the photoelectric conversion gain. This system can be rarely affected by the optical power drift caused by fluctuating ambient temperature or variation of fiber bending loss. The deviation of the single-beam system is below 1.11% when photocurrent decays due to fiber bending loss for bending radius of 5 mm, which is obviously lower than the dual-beam system (8.82%). We also demonstrate the long-term stability of the single-beam system by monitoring a 660 ppm by volume (ppmv) water vapor sample continuously for 24 h. The maximum deviation of the measured concentration during the whole testing period does not exceed 10 ppmv. Experiments have shown that the new system features better reliability and is more apt for remote sensing application which is often subject to light transmission loss.

  10. Influence of radiolysis on UO2 fuel matrix dissolution under disposal conditions. Literature Study

    International Nuclear Information System (INIS)

    The objective of this study was to examine the recent published literature on the influence of water radiolysis on UO2 fuel matrix dissolution under the disposal conditions. The α radiation is considered to be dominating over the other types of radiations at times longer than 1000 years. The presence of the anaerobic corrosion products of iron, especially of hydrogen, has been observed to play an important role under radiolysis conditions. It is not possible to exclude gamma/beta radiolysis effects in the experiments with spent fuel, since there is not available a fuel over 100 years old. More direct measurements of α radiolysis effects have been conducted with α doped UO2 materials. On the basis of the results of these experiments, a specific activity threshold to observe α radiolysis effects has been presented. The threshold is 1.8 x 107 to 3.3 x 107 Bq/g in anoxic 10-3 M carbonate solution. It is dependent on the environmental conditions, such as the reducing buffer capacity of the conditions. The results of dissolution rate measurements at VTT with 233 U-doped UO2 samples in 0.01 to 0.1 M NaCl solutions under anoxic conditions did not show any effect of α radiolysis with doping levels of 5 and 10% 233 U (3.2 x 107 and 6.3 x 107 Bq/g). Both Fe2+ and hydrogen can act as reducing species and could react with oxidizing radiolytic species. Fe2+ concentrations of the order of 10-5 M can decrease the rate of H2 O2 production. Low dissolution rates, 2 x 10-8 to 2 x 10-7 /yr, have been measured in the presence of metallic Fe with 5 and 10%233U-doped UO2 in 0.01 to 1 M NaCl solutions. The tests with isotope dilution method showed precipitation phenomena of U to occur during dissolution process. The concentrations of dissolved U were extremely low (≤ 8.4 x 10-11 M). No effects of -radiolysis could be seen. It is difficult to distinguish the effects of metallic Fe, Fe2+ or hydrogen in these tests. Hydrogen could also act as a reducing agent. Interaction tests

  11. Effect of Gamma and Electron Beam Irradiation on Textile Waste Water

    International Nuclear Information System (INIS)

    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water was done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy, was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation. (author)

  12. Testing Thermo-acoustic Sound Generation in Water with Proton and Laser Beams

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C; Salomon, K; Stegmann, C

    2005-01-01

    Experiments were performed at a proton accelerator and an infrared laser acility to investigate the sound generation caused by the energy deposition of pulsed particle and laser beams in water. The beams with an energy range of 1 PeV to 400 PeV per proton beam spill and up to 10 EeV for the laser pulse were dumped into a water volume and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed at varying pulse energies, sensor positions, beam diameters and temperatures. The data is well described by simulations based on the thermo-acoustic model. This implies that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the media giving rise to an expansion or contraction of the medium resulting in a pressure pulse with bipolar shape. A possible application of this effect would be the acoustical detection of neutrinos with energies greater than 1 EeV.

  13. Comparison of the secondary electrons produced by proton and electron beams in water

    Science.gov (United States)

    Kia, Mohammad Reza; Noshad, Houshyar

    2016-05-01

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  14. Inversion for sound speed profile in shallow water using matched-beam processing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhongbing; MA Yuanliang; YANG Kunde; YAN Shefeng

    2004-01-01

    To quickly obtain the sound speed profile (SSP) in shallow water by inversion methods, an inversion scheme for SSP in shallow water using matched-beam processing (MBI) is developed. The cost function of MBI is based on matched-beam concept. It is verified experimentally that MBI is feasible and superior in comparison to conventional matched-field inversion (MFI) by using the East China Sea Experiment data. The SSP inverted by MBI using the wide-band explosion signals is in good agreement with the results measured based on conductivity, temperature and depth (CTD) in the experiment. And the root of mean square error of the inverted SSP is less than 2 m/s. Research results have shown that MBI is robust with respect to the sediment parameters mismatch. And SSP in shallow water can be more quickly obtained by MBI than by MFI.

  15. Molecular mechanisms induced by the effects of ionizing radiation on nucleic acids: Free radicals in 5-halogenated uracil derivatives after reaction of radiolysis products of water in low-temperature glass

    International Nuclear Information System (INIS)

    This thesis deals with the molecular mechanisms induced by the effects of ionizing radiation on the DNA. The study has been made for the main purpose of clarifying the possible role of the indirect effect, namely the attack of diffusible water radicals, in the process of radiosensitivity enhancement due to the incorporation of bromouracil instead of thymine into the DNA. The results of the experiments can be summarized by the statement that among the reactions studied in the low-temperature glasses, none revealed such a clear difference between uracil and thymine on the one hand, and the halogenated uracils on the other, that this difference could suffice to explain in terms of quality and quantity the observed in-vivo enhancement of radiosensitivity by halogenated uracils. This conclusion is in agreement with the results of radiobiological measurements on phagae and bacteria which in all cases revealed no or only very slight enhancement of the radiosensitivity in the indirect effect subsequent to bromouracil incorporation. (orig./AJ)

  16. Primary processes in radiation chemistry. LET (Linear Energy Transfer) effect in water radiolysis; Processus primaires en chimie sous rayonnement. Influence du transfert d'energie lineique sur la radiolyse de l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Trupin-Wasselin, V

    2000-07-11

    The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e{sup -}{sub aq}, H{sup .}, OH{sup .}, H{sub 2}O{sub 2}, H{sub 2}). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H{sub 2}O{sub 2} yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H{sub 2}O{sub 2} yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H{sub 2}O{sub 2} formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O{sub 2}{sup .-} yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)

  17. Spectroscopic characterization of mechanisms of oxidation of Phe by SO4- radical: A pulse radiolysis study

    Institute of Scientific and Technical Information of China (English)

    储高升; 韩镇辉; 都志文; 张淑娟; 姚思德; 张志成

    2002-01-01

    By using time-resolved kinetic spectrophotometry and pulse radiolysis technique, the oxidation of Phe by SO4- radical has been investigated both in aqueous and water/acetonitrilemixed solutions. The results reveal that attack of the oxidizing SO4- radical on Phe leads directlyto the formation of Phe cation radical 3 with a strong absorption peak at 310 nm, then it proceeds in three competitive reactions via either hydroxylation, deprotonation or decarboxylation, which were found to be strongly dependent upon the ionization state of the substitutes -COOH and -NH2 and the nature of the solvents. Decarboxylation takes place only when the carboxyl group is deprotonated. At high pH deprotonation of Phe cation radical 3 is much easier to occur than that in neutral or acid solutions. Moreover, with addition of acetonitrile, deprotonation is more predominant than hydroxylation, whereas in aqueous solutions hydroxylation is much easier to occur.

  18. Spectroscopic characterization of mechanisms of oxidation of Phe by SO.-4 radical: A pulse radiolysis study

    Institute of Scientific and Technical Information of China (English)

    储高升; 张淑娟; 姚思德; 韩镇辉; 都志文; 张志成

    2002-01-01

    By using time-resolved kinetic spectrophotometry and pulse radiolysis technique, the oxidation of Phe by radical has been investigated both in aqueous and water/acetonitrile mixed solutions. The results reveal that attack of the oxidizing SO4-radical on Phe leads directly to the formation of Phe cation radical 3 with a strong absorption peak at 310 nm, then it proceeds in three competitive reactions via either hydroxylation, deprotonation or decarboxylation, which were found to be strongly dependent upon the ionization state of the substitutes -COOH and -NH2 and the nature of the solvents. Decarboxylation takes place only when the carboxyl group is deprotonated. At high pH deprotonation of Phe cation radical 3 is much easier to occur than that in neutral or acid solutions. Moreover, with addition of acetonitrile, deprotonation is more predominant than hydroxylation, whereas in aqueous solutions hydroxylation is much easier to occur.

  19. Nuclear halo of a 177 MeV proton beam in water: theory, measurement and parameterization

    CERN Document Server

    Gottschalk, Bernard; Daartz, Juliane; Wagner, Miles S

    2014-01-01

    The dose distribution of a monoenergetic pencil beam in water consists of an electromagnetic "core", a "halo" from charged nuclear secondaries, and a much larger "aura" from neutral secondaries. These regions overlap, but each has distinct spatial characteristics. We have measured the core/halo using a 177MeV test beam offset in a water tank. The beam monitor was a fluence calibrated plane parallel ionization chamber (IC) and the field chamber, a dose calibrated Exradin T1, so the dose measurements are absolute (MeV/g/p). We performed depth-dose scans at ten displacements from the beam axis ranging from 0 to 10cm. The dose spans five orders of magnitude, and the transition from halo to aura is clearly visible. We have performed model-dependent (MD) and model-independent (MI) fits to the data. The MD fit separates the dose into core, elastic/inelastic nuclear, nonelastic nuclear and aura terms, and achieves a global rms measurement/fit ratio of 15%. The MI fit uses cubic splines and the same ratio is 9%. We re...

  20. Fabrication of an oil-water separation copper filter using laser beam machining

    Science.gov (United States)

    Ha, Kyoung Ho; Chu, Chong Nam

    2016-04-01

    In this study, oil and water are successfully separated using a copper filter that is fabricated using only laser beam machining. Even though copper is hydrophilic and recast copper material, which inevitably results during laser beam machining, is super-hydrophilic, the filter can prevent the water from penetrating and allow oil to flow based on surface tension of the liquids at the hole exit. For practical uses of the filter, both the pressure differences at which the filter is able to retain its ability to separate and the oil penetration rate of the filter are revealed. The fabrication process is simple and time-saving, and the filter has high durability because of lack of surface coating or surface chemical modification.

  1. Added mass matrix estimation of beams partially immersed in water using measured dynamic responses

    Science.gov (United States)

    Liu, Fushun; Li, Huajun; Qin, Hongde; Liang, Bingchen

    2014-09-01

    An added mass matrix estimation method for beams partially immersed in water is proposed that employs dynamic responses, which are measured when the structure is in water and in air. Discrepancies such as mass and stiffness matrices between the finite element model (FEM) and real structure could be separated from the added mass of water by a series of correction factors, which means that the mass and stiffness of the FEM and the added mass of water could be estimated simultaneously. Compared with traditional methods, the estimated added mass correction factors of our approach will not be limited to be constant when FEM or the environment of the structure changed, meaning that the proposed method could reflect the influence of changes such as water depth, current, and so on. The greatest improvement is that the proposed method could estimate added mass of water without involving any water-related assumptions because all water influences are reflected in measured dynamic responses of the structure in water. A five degrees-of-freedom (dofs) mass-spring system is used to study the performance of the proposed scheme. The numerical results indicate that mass, stiffness, and added mass correction factors could be estimated accurately when noise-free measurements are used. Even when the first two modes are measured under the 5 percent corruption level, the added mass could be estimated properly. A steel cantilever beam with a rectangular section in a water tank at Ocean University of China was also employed to study the added mass influence on modal parameter identification and to investigate the performance of the proposed method. The experimental results demonstrated that the first two modal frequencies and mode shapes of the updated model match well with the measured values by combining the estimated added mass in the initial FEM.

  2. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2016-01-01

    Full Text Available Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position of Bragg peaks. Carbon ion has a higher local ionization density and produces more secondary electrons than proton, so carbon ion beams can achieve a higher value of relative biological effectiveness.

  3. DYNAMICS OF IONIZATION-ENHANCED SPECTRAL EXPANSION IN WATER INDUCED BY AN INTENSE FEMTOSECOND LASER BEAM

    Institute of Scientific and Technical Information of China (English)

    WANG SHU-FENG; QIN YUAN-DONG; YANG HONG; WANG DAN-LING; ZHU CHANG-JUN; GONG QI-HUANG

    2001-01-01

    The dynamic process of white-continuum generation in water was investigated by the pump-probe technique with a femtosecond intense laser at 805nm. The spectrum width of the probe beam was broadened at the blue side and varied with different delay times. This blueshift was attributed to the ionization-enhanced optical nonlinearity, in which both the multi-photon ionization and avalanche ionization had an effect.

  4. Production of HCl and H2 in the radiolysis of PVC

    International Nuclear Information System (INIS)

    Complete text of publication follows. PVC is a thermoplastic polymer commonly encountered in nuclear waste management, disposition and disposal. The effects of ionising radiation on its performance are insufficiently understood. Our study has focused on the postirradiation degradation of γ and 4He ion irradiated PVC and on the release of potentially corrosive and explosive gases, such as HCl and H2, from deaerated, aerated, and water mixtures of PVC. Experiments were performed with PVC powder samples with number average weight of 22000 D and with unplasticised PVC film. The samples were irradiated with 60Co γ-rays and 4He ions at room temperature. The production and post-irradiation release of HCl and H2 was measured using ion and gas chromatography, respectively. The post-irradiation evolution of the solid plastic was examined using GPC and EPR, FT-IR and UV/VIS spectroscopy. UV/VIS absorbance spectroscopy was performed on PVC powder dissolved in THF. FT-IR transmittance spectra were obtained from PVC powder in air. EPR spectra were taken after γ-irradiation of PVC powders in air and vacuum, and for PVC film irradiated with γ-rays and 4He ions. GPC measurements were made on both pure and irradiated PVC powder and PVC film. The yield of HCl from γ-radiolysis of PVC powder is 19.6 molecules/100 eV. Chloride ion is released from the polymer for days following radiolysis. The H2 yield with γ-rays is about 0.23 molecule/100 eV and 0.45 molecule/100 eV with 4He ion radiolysis. Visually, irradiated PVC samples change from white to a green-brown colour with the extent of discolouration dependent on the applied dose and irradiation environment. No significant post-irradiation evolution of the chromophores was observed by FT-IR or UV/VIS, but the EPR spectra obtained evolve with time. GPC analysis showed a molecular weight distribution with a smaller mean in the irradiated samples compared to pure PVC. This change is related to HCl loss and possibly to main chain

  5. Possible interactions of vapor-radiolysis with the oxidation of zirconium by steam

    International Nuclear Information System (INIS)

    An interaction of the zirconium oxidation process with the radiolysis of steam is discussed. The conclusion is drawn that a great deal of experimentation is necessary to determine whether the radiolysis of superheated vapor triggers the zirconium oxidation at elevated temperatures in a manner that would result in a considerable decrease of the temperature necessary to create a self-sustaining exothermic reaction

  6. Experimental design approach for identification of the factors influencing the γ-radiolysis of ion exchange resins

    International Nuclear Information System (INIS)

    Gamma radiolysis was investigated on a nuclear grade mixed bed ion exchange resin and its pure components under different irradiation conditions. Screening designs were performed to identify the factors influencing gas production after their γ-radiolysis and to compare their γ-degradation stability. Only hydrogen and trimethylamine quantities were considered as the response in the experimental designs. The other detected gases and water-soluble products were used to improve the resins degradation. Aerobic irradiation atmosphere decreased the H2g production of AmbOH, MB400, and amines. The water presence increased the H2g quantities for AmbH and decreased those for MB400 resin. Liquid water had no effect on H2g production from AmbOH but was favorable to increased amine production. The H2g production of AmbH increased with the absorbed dose that had little effect on the AmbOH resin. No impact of dose on the H2g production was detected for MB400 that appeared to be less degraded. - Highlights: • Ion exchange resins were irradiated under different conditions. • Resins degradation was studied from the gases and water-soluble products analyses. • A screening design allowed identifying the factors influencing gases production. • The resins gamma stability was estimated from the response of experimental designs. • A reaction scheme was proposed for each resin degraded under different conditions

  7. Effects of thermal conduction and convection on temperature profile in a water calorimeter for proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Gargioni, E.; Manfredotti, C. [Torino Univ. (Italy). Dipt. di Fisica; Laitano, R.F.; Guerra, A.S. [Ist. Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA, Roma (Italy)

    1997-09-01

    In water calorimetry, in addition to the temperature increase due to beam energy deposition in water, unwanted thermal effects occur during and after calorimeter irradiation. This should be accounted for by applying proper corrections to the experimental results. In order to determine such corrections heat flow calculations were performed using the `finite element` method. This method applies even to complex 3D geometries with not necessarily symmetric conditions. Some preliminary results of these calculations are presented together with a description of the analytical method for the evaluation of the correction factors that should be applied to the experimental results to account for the above thermal effects. (orig.)

  8. Treatment of ships' ballast water by irradiation of pulsed, intense relativistic electron beam

    International Nuclear Information System (INIS)

    Zooplankton contained in ships' ballast water has been successfully treated by irradiation of pulsed, intense relativistic electron beam (PIREB). A treatment chamber is filled up with solution of 3-wt% salt in water containing a larva of artemia as the zooplankton, and is irradiated by the PIREB (2 MeV, 0.4 kA, 140 ns). We have found that electric conductivity and pH of the salt solution does not change significantly within 10 shots of the PIREB irradiation. We have obtained that the artemia of 24% is inactivated by firing 10 shots of the PIREB irradiation. (author)

  9. Electric dipole moments of nitric acid-water complexes measured by cluster beam deflection

    CERN Document Server

    Moro, Ramiro; Kresin, Vitaly V

    2009-01-01

    Water clusters embedding a nitric acid molecule HNO3(H2O)_{n=1-10} are investigated via electrostatic deflection of a molecular beam. We observe large paraelectric susceptibilities that greatly exceed the electronic polarizability, revealing the contribution of permanent dipole moments. The moments derived from the data are also significantly higher than those of pure water clusters. An enhancement in the susceptibility for n=5,6 and a rise in cluster abundances setting in at n=6 suggest that dissociation of the solvated acid molecule into ions takes place in this size range.

  10. Biological systems: from water radiolysis to carbon ion radiotherapy

    Science.gov (United States)

    Beuve, Michael; Moreau, Jean-Michel; Rodriguez, Claire; Testa, Etienne

    2015-07-01

    Hadron therapy is an innovative cancer treatment method based on the acceleration of light ions at high energy. In addition to their interesting profile of dose deposition, which ensures accurate targeting of localized tumors, carbon ions offer biological properties that lead to an efficient treatment for radio- and chemo-resistant tumors and to provide a boost for tumors in hypoxia. This paper is a short review of the progress in theoretical, experimental, fundamental and applied research, aiming at understanding the origin of the biological benefits of light ions better. As a limit of such a vast and multidisciplinary domain, this review adopts the point of view of the physicists, leaning on results obtained in connection with CIMAP's IRRABAT platform.

  11. (n, γ)-radiolysis of magnesium iodate

    International Nuclear Information System (INIS)

    The initial retention of thermal neutron irradiated magnesium iodate tetrahydrate was found to be 47% and increased to 54% for the dehydrated salt. The post irradiation isothermal annealing followed the characteristic pattern both in hydrated and dehydrated salts; the rate of increase in retention in the hydrated salt being faster than in the dehydrated form. At an annealing temperature of 453 K, 100% retention was achieved by the hydrated salt but the corresponding value for the dehydrated magnesium iodate was not higher than 88%. The role of water of crystallization in the retention studies of magnesium iodate is discussed. (author)

  12. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  13. Post-accident gas generation from radiolysis of organic materials

    International Nuclear Information System (INIS)

    This report presents a methodology for estimating the gas generation rates resulting from radiolysis of organic materials in paints and electrical cable insulation inside a nuclear reactor containment building under design basis accident conditions. The methodology was based on absorption of the radiation energies from the post-accident fission products and the assumed gas yields of the irradiated materials. A sample calculation was made using conservative assumptions, plant-specific data of a nuclear power plant, and a radiation source term which took into account the time-dependent release and physico-chemical behavior of the fission products

  14. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons; Degradacion de naftaleno y fluoreno por radiolisis empleando electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Flores de Jesus, I

    2003-07-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  15. Appliance of Electron Beam Technology for Disinfection of Sewage Water to Minimize Public Health Risks

    Directory of Open Access Journals (Sweden)

    S. Sabharwal

    2013-06-01

    Full Text Available First time in India, a study was aimed to establish a base- line data for electron beamradiation dose level needed to disinfect and also improve the water quality of sewage waterfor possible reuse in irrigation, industries as well as a few domestic purposes. Raw andsecondary treated sewage water samples, which were rich with microorganisms from NaviMumbai municipal sewage plant were irradiated with electron beam accelerator at doses of0.45, 0.75, 1.5, 3.0, 4.5, 6.0, 7.5, 9.0 and 10.5 kGy. Electron Beam irradiation treatment ofthe wastewater was found to be very effective in reducing the pathogenic load. ElectronBeam (EB dose of 1.5 kGy was sufficient for complete elimination of total coli formswhereas Cryptococcus laurentii, Aspergillus fumigatus and Absidia sp. were killedby10.0 kGy and no larvae of helminthes (Ascaris lumbricoides were recovered at thedose ≥ 1.5 kGy. The experimental findings obtained highlighted the potential of thistechnology for disinfection of wastewater.

  16. Reactivity of OH radicals with chlorobenzoic acids-A pulse radiolysis and steady-state radiolysis study

    DEFF Research Database (Denmark)

    Zona, Robert; Solar, Sonja; Getoff, Nikola;

    2010-01-01

    The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k(OH+substrates)=(4.5−6.2)×109 dm3 mol−1 s−1, have been studied by pulse radiolysis in N2O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320−340 nm. Their decay wa...... to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out....

  17. The sonolysis and radiolysis of adenine and related biomolecules

    International Nuclear Information System (INIS)

    The sonolysis of adenine, its nucleoside adenosine and the carbohydrates glucose, fructose and ribose were investigated at 459 Hz. The insonation of air-saturated aqueous adenine solutions degrades adenine at a rate that is linear with time and independent of the initial concentration. The radiolytic decomposition of air-saturated aqueous adenine solutions were also investigated and the degradation products found to be essentially identical to those obtained by sonolysis. since the products derived from sonolysis and radiolysis were similar, a degradation mechanism can be proposed that accounts for all the observed products. The major feature of this mechanism is that the principal loci of attack are the C(8) position and the central C(4)-C(5) double bond. The sonolysis of air-saturated aqueous solutions of the carbohydrates results in the formation of products analogous to those produced by ionizing radiation. While two types of products are formed in the radiolysis of carbohydrate solutions, depending on the initial presence or absence of oxygen, the sonolysis of air-saturated carbohydrate solutions leads to the formation of both types of products. This is due to the depletion of oxygen from the solution during insonation. Existing mechanisms for the radiolytic decomposition of carbohydrates in the presence and absence of oxygen can be modified to rationalize the sonolysis products. Insonation of an aqueous solution of adenosine resulted in the production of adenine and ribose. The other products are consistent with those obtained in the ultrasonic degradation of adenine and ribose

  18. Is solvent radiolysis a safety problem for PUREX plant performance?

    International Nuclear Information System (INIS)

    During two campaigns with shortly cooled low burn-up and with high burn-up fuel of 2 to 4 years cooling time, respectively, the solvent quality of the first solvent cycle of the WAK plant has been analyzed. Quick analytical methods were used to obtain information on the concentration of radiolysis products. Applying formation rates from a solvent radiolysis model, the total radiation absorbed dose of the solvent was estimated and could be broken down in to the α- and β/γ-contributions. These figures compare well with those obtained if one considers the irradiation history of WAK plant solvent. The α-irradiation of extracted plutonium contributes the major part of radiation damage to the solvent. However, only one half of the observed α-dose is due to the stay of plutonium loaded solvent in the extraction banks. The other half is caused by α-irradiation of organic slip phase, which is collected in aqueous plutonium product catch tanks and is discontinuously fed back to the solvent cycle. (orig./RB)

  19. Radiolysis Model Formulation for Integration with the Mixed Potential Model

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Wittman, Richard S.

    2014-07-10

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste. Within the UFDC, the components for a general system model of the degradation and subsequent transport of UNF is being developed to analyze the performance of disposal options [Sassani et al., 2012]. Two model components of the near-field part of the problem are the ANL Mixed Potential Model and the PNNL Radiolysis Model. This report is in response to the desire to integrate the two models as outlined in [Buck, E.C, J.L. Jerden, W.L. Ebert, R.S. Wittman, (2013) “Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation,” FCRD-UFD-2013-000290, M3FT-PN0806058

  20. Radiolysis of cyanocobalamin (vitamin B{sub 12})

    Energy Technology Data Exchange (ETDEWEB)

    Juanchi, X.; Albarran, G.; Negron-Mendoza, A

    2000-03-01

    Research on the radiolysis of vitamins is of considerable interest since these compounds are important nutritional constituents in foods and in dietetic supplements. In spite of these considerations there are few data and very often difficult to compare for the radiolytic behavior of vitamins. In this work we focused our attention on to the study of the radiolysis of cyanocobalamin (vitamin B{sub 12}) in solid state and in aqueous solutions. The procedure was followed by HPLC and UV-spectroscopy. The results obtained in aqueous solutions showed a dependence of the decomposition as a linear function of the dose. The G of decomposition for a 1x10{sup -5} M solution was 3.3. In the solid state the vitamin was very stable towards the irradiation in the conditions used in this study with a G=2.1x10{sup -3}. A study made with Serratia marcescens as a microbiological contaminant showed that at the sterilization dose there is a destruction of the vitamin in aqueous solution. In the solid state the degree of decomposition was 7%. (author)

  1. Radiolysis of acrinol on radio-sterilization for acrinol pharmaceutical

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Syojiro; Nishimura, Reiko; Kanbashi, Toshitaka; Jo, Hisanobu; Koide, Hiroaki

    1983-11-01

    Acrinol in dry solid state after gamma irradiation with 80 kGy (8 Mrad) undergoes 8% decomposition, with G(-M)=30, and in wet solid state (10% moisture content) undergoes 15% decomposition, with G(-M)=56, as shown by absorbed spectrometric measurement. From these results, it is estimated that the irradiation dose of 25 kGy (2.5 Mrad) preferred by many countries as a sterilization dose will achieve the radiolysis rate of 2.8% or 4.7% for dry solid state or wet solid state acrinol, respectively. The stickiness of plaster tape made of raw rubber and polyterpene resin does not decrease with an irradiation dose of less than 40 kGy (4 Mrad). There a radio-sterilization dose of 25 kGy (2.5 Mrad) may be applied to solid pharmaceuticals such as commercial rubber adhesive plaster with acrinol pad. Acrinol in 0.1% aqueous solution after irradiation of 10 kGy (1 Mrad) at room temperature undergoes 20% decomposition, with G(-M)=0.5. The radiolysis rate in this state is estimated to be 45% with a dose of 25 kGy (2.5 Mrad). There radio-sterilization with this dose must not be applied to liquid pharmaceuticals such as 0.1% acrinol aqueous solution. It has been reported by Hosobuchi and Sato that the antimicrobial effect of irradiated acrinol to Staphlococcus aureus increased with irradiation dose.

  2. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications

    International Nuclear Information System (INIS)

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  3. Design, fabrication, installation and commissioning of water-cooled beam viewer for undulator front-ends of Indus-2

    International Nuclear Information System (INIS)

    A water-cooled beam viewer is developed indigenously to observe the bright synchrotron light coming from recently installed undulators in Indus-2 storage ring at RRCAT, Indore. The beam viewer is installed in the undulator front-end. The frontend is a long ultra high vacuum (UHV) assembly consisting of UHV valves, shutters, vacuum pumps and beam diagnostic devices. The front-end acts as an interface between Indus-2 ring and beamline. The beam viewer uses a fluorescent sheet of Chromium doped Alumina (CHROMOX) which produces visible fluorescent light when bright synchrotron light from the undulator falls on it. This visible fluorescent light is observed through a glass window by a CCD camera. The beam viewer has been successfully tested and commissioned in Indus-2 front-end for undulator. At present, the beam viewer is operating under vacuum of 5 x 10-10 mbar in the Indus-2 undulator front-end

  4. On the nuclear halo of a proton pencil beam stopping in water

    Science.gov (United States)

    Gottschalk, Bernard; Cascio, Ethan W.; Daartz, Juliane; Wagner, Miles S.

    2015-07-01

    The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541-61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination. We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo. Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions. We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies. The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose

  5. Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter

    Science.gov (United States)

    He, Shijun; Wang, Jianlong; Ye, Longfei; Zhang, Youxue; Yu, Jiang

    2014-12-01

    The degradation of DCF was investigated in aqueous solution by using electron beam (EB) technology. When the initial concentration was between 10 and 40 mg/L, almost 100% of the DCF was degraded at a dose of 0.5 kGy. However, only about 6.5% of DCF was mineralized even at 2 kGy according to total organic carbon (TOC) measurements. A combined process of EB and biological aerated filter (BAF) was therefore developed to enhance the treatment of DCF contaminated surface water. The effluent quality of combined process was substantially improved by EB pretreatment due to the degradation of DCF and related intermediates. Both irradiation and biological treatment reduced the toxicity of the treated water. The experimental results showed that EB is effective for removing DCF from artificial aqueous solution and real surface water.

  6. Characterization of the water-equivalent material WTe for use in electron beam dosimetry

    Science.gov (United States)

    McEwen, M. R.; Du Sautoy, A. R.

    2003-07-01

    This paper describes the characterization of the water-equivalent material WTe (produced by St Bartholomew's Hospital, London). The use of epoxy resin phantoms offers a number of advantages over water for radiotherapy dosimetry in terms of robustness and ease of use, but the published uncertainties in the fluence corrections for such phantoms significantly increase the overall uncertainty in the measurement of absorbed dose to water at the reference point. Depth-ionization data were obtained in water and WTe for electron beams in the range 4 MeV to 16 MeV and it was found that the measured fluence in the WTe phantom was approximately 0.4% higher than in a water phantom at the same depth. For measurements only at the reference depth this difference was less, with the fluence in the WTe phantom being 0.2% higher. The standard uncertainty on this value is estimated to be +/-0.12%, which represents a significant improvement over previous measurements. It was also found that the range scaling factor is not equal to unity, as previously recommended for this material, but that the data was best fitted by the relation 1 mm WTe = 1.01 mm water (with an uncertainty of +/-0.2%). The results obtained confirm previous investigations of WTe as to its suitability for reference ion chamber dosimetry in the radiotherapy clinic. However, the recommendation is still to use a water phantom wherever possible.

  7. Characterization of the water-equivalent material WTe for use in electron beam dosimetry

    International Nuclear Information System (INIS)

    This paper describes the characterization of the water-equivalent material WTe (produced by St Bartholomew's Hospital, London). The use of epoxy resin phantoms offers a number of advantages over water for radiotherapy dosimetry in terms of robustness and ease of use, but the published uncertainties in the fluence corrections for such phantoms significantly increase the overall uncertainty in the measurement of absorbed dose to water at the reference point. Depth-ionization data were obtained in water and WTe for electron beams in the range 4 MeV to 16 MeV and it was found that the measured fluence in the WTe phantom was approximately 0.4% higher than in a water phantom at the same depth. For measurements only at the reference depth this difference was less, with the fluence in the WTe phantom being 0.2% higher. The standard uncertainty on this value is estimated to be ±0.12%, which represents a significant improvement over previous measurements. It was also found that the range scaling factor is not equal to unity, as previously recommended for this material, but that the data was best fitted by the relation 1 mm WTe = 1.01 mm water (with an uncertainty of ±0.2%). The results obtained confirm previous investigations of WTe as to its suitability for reference ion chamber dosimetry in the radiotherapy clinic. However, the recommendation is still to use a water phantom wherever possible

  8. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  9. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    International Nuclear Information System (INIS)

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water

  10. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    Science.gov (United States)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  11. On the nuclear halo of a proton pencil beam stopping in water

    OpenAIRE

    Gottschalk, Bernard; Cascio, Ethan W.; Daartz, Juliane; Wagner, Miles S.

    2014-01-01

    The dose distribution of a pencil beam in water consists of a core, a halo, an aura and (possibly) spray. The core is due to primary protons which suffer multiple Coulomb scattering (MCS) and slow down by multiple collisions with atomic electrons (Bethe-Bloch theory). The halo is due to charged secondaries, many of them protons, from elastic interactions with H, elastic and inelastic interactions with O, and nonelastic interactions with O. We show that the halo radius is roughly one third of ...

  12. Disinfection and reduction of organic load of sewage water by electron beam radiation

    Science.gov (United States)

    Maruthi, Y. Avasn; Das, N. Lakshmana; Hossain, Kaizar; Sarma, K. S. S.; Rawat, K. P.; Sabharwal, S.

    2011-09-01

    The efficacy of electron beam radiation for the disinfection and reduction of organic load of sewage water was assessed with ILU-6 Accelerator at Radiation Technology Development Division of the Bhabha Atomic Research Centre, Mumbai India. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises heterogeneous organic based chemicals as well as pathogens. EB treatment of the wastewater has found to be very effective in reducing the pathogens as well as organic load. EB dose of 1.5 kGy was sufficient for complete elimination of total coli forms. The experimental results elucidated the reduction of biological oxygen demand—BOD (35 and 51.7%) in both inlet and outlet sewage samples. Similarly reduction of chemical oxygen demand—COD was observed (37.54 and 52.32%) in both sewage samples with respect to increase in irradiation doses (0.45-6 kGy). The present study demonstrated the potential of ionizing radiation for disinfection of sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation, in industry for cooling purpose and some selected domestic purposes.

  13. Radiation stability of selected ionic liquids: a pulse radiolysis study

    International Nuclear Information System (INIS)

    One important potential application of ionic liquids (IL) is as a medium for processing of spent nuclear fuel. It is therefore imperative to study the radiation chemistry of ILs, not only to determine their radiolytic products and degradation pathways, but also to describe how the radiolysis may affect or interfere in the separation processes. An understanding of Radiation Chemistry of ILs would also facilitate general chemical reactivity in this medium, which will aid in the development of energy production, chemical industry and environmental applications. We were interested in understanding how the specific physical properties of ionic liquids influence the dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions in this medium. In the pulse radiolysis experiments on Imidazolium based ILs (1-Ethyl-3-methylimidazolium) (Ethyl sulphate) or (Emim) (EtSO4) under oxidizing or reducing conditions, we observed a transient peak at 320 nm. This absorption may be due to the formation of a radical as electron reacts with the imidazolium cation of the ionic liquid. We have not observed hydrated electrons because the electron reacts with imidazolium cation very fast. Pulse radiolysis experiments have also been performed on FAP (Fluoro Alkyl Phosphates) ILs having imidazolium as cation e.g. (1-Ethyl-3-methylimidazolium) (tris(pentafluoroethyl) trifluorophosphate) or FAP-1 and (1-(2-HydroxyEthyl-3-methylimidazolium) (tris(pentafluoroethyl) trifluorophosphate) or FAP-2. FAP-ionic liquids show an excellent hydrolytic stability, low viscosity and high electrochemical and thermal stability that makes them attractive for use in electrochemical devices and as a new media for application in modern technologies and chemical synthesis. The time-resolved transient spectra of FAP ILs were recorded and characterized under different experimental conditions. The formation and decay

  14. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    CERN Document Server

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  15. Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water.

    Science.gov (United States)

    Hafizi, B; Palastro, J P; Peñano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-04-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown, and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. The phenomenon of gain-focusing discussed here for propagation in water is expected to be of general occurrence applicable to any medium supporting nonlinear focusing and stimulated Raman scattering. PMID:25831383

  16. Dosimetric study of thermoluminescent detectors in clinical photon beams using liquid water and PMMA phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C., E-mail: lmatsushima@ipen.br [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Veneziani, Glauco R. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sakuraba, Roberto K. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil); Cruz, Jose C. da [Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil)

    2012-07-15

    The purpose of this study was the dosimetric evaluation of thermoluminescent detectors of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) produced by IPEN compared to the TL response of lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti) dosimeters and microdosimeters produced by Harshaw Chemical Company to clinical photon beams dosimetry (6 and 15 MV) using liquid water and PMMA phantoms. - Highlights: Black-Right-Pointing-Pointer Dosimetric study of thermoluminescent detectors of CaSO{sub 4}:Dy, LiF:Mg,Ti and {mu}LiF:Mg,Ti. Black-Right-Pointing-Pointer Clinical (6 and 15 MV) photon beams dosimetry using liquid water and PMMA phantom. Black-Right-Pointing-Pointer Linear behavior to the dose range (0.1 to 5 Gy). Black-Right-Pointing-Pointer TL response reproducibility better than {+-}4.34%. Black-Right-Pointing-Pointer CaSO{sub 4}:Dy represent a cheaper alternative to the TLD-100.

  17. Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Jin Seop Bak

    2014-12-01

    Full Text Available In order to overcome the limitation of commercial electron beam irradiation (EBI, lignocellulosic rice straw (RS was pretreated using water soaking-based electron beam irradiation (WEBI. This environment-friendly pretreatment, without the formation (or release of inhibitory compounds (especially hydroxymethylfurfural and furfural, significantly increased the enzymatic hydrolysis and fermentation yields of RS. Specifically, when water-soaked RS (solid:liquid ratio of 100% was treated with WEBI doses of 1 MeV at 80 kGy, 0.12 mA, the glucose yield after 120 h of hydrolysis was 70.4% of the theoretical maximum. This value was predominantly higher than the 29.5% and 52.1% measured from untreated and EBI-treated RS, respectively. Furthermore, after simultaneous saccharification and fermentation for 48 h, the ethanol concentration, production yield, and productivity were 9.3 g/L, 57.0% of the theoretical maximum, and 0.19 g/L h, respectively. Finally, scanning electron microscopy images revealed that WEBI induced significant ultrastructural changes to the surface of lignocellulosic fibers.

  18. Study of proton radiolysis of solid uracil film

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In order to understand the molecules mechanism of ion irradiation,which has been widelyused in many fields such as cancer therapy, uracil, one of the bases ofnucleic acid,waschosen in the low energy ion radiolysis research. The solid uracil films with mass thickness of0.314 mg/cm2 were irradiated by 200 keV H+ ions.The experimental results show that 200 keVH+ ions are effective in decomposition of uracil molecules. One of the decomposition products,5,6-dihydro-uracil, was separated by high performance liquid chromatograph (HPLC) anddetected using an UV-light detector. Its yield increases first but then decreases as the ion doseincreasing. In addition, the mechanism of uracil decomposition and 5,6-dihydro-uracilformation was also discussed.

  19. Pulse radiolysis studies on superoxide reductase from Treponema pallidum

    CERN Document Server

    Nivière, V; Fontecave, M; Houée-Levin, C

    2015-01-01

    Superoxide reductases (SORs) are small metalloenzymes, which catalyze reduction of O2*- to H2O2. The reaction of the enzyme from Treponema pallidum with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bi-molecular reaction of the ferrous center with O2, with a rate constant of 6 x 10 (8) M(-1) s(-1). A first intermediate is formed which is converted to a second one with a slower rate constant of 4800 s(-1). This latter value is 10 times higher than the corresponding one previously reported in the case of SOR from Desulfoarculus baarsii. The reconstituted spectra for the two intermediates are consistent with formation of transient iron-peroxide species.

  20. Radiolysis of pentachlorophenol (PCP) in aqueous solution by gamma radiation

    Institute of Scientific and Technical Information of China (English)

    XUE Jun; WANG Jianlong

    2008-01-01

    Steady-state radiolysis experiments were performed to investigate the y-irradiation treatment of pentachlorophenol (PCP) in aqueoussolution. The effect of initial concentration on the PCP degradation was also investigated. The experimental results showed that γ-irradiation was able to degrade PCP in aqueous solution successfully, and the radiolytical degradation process of PCP could be describedby the first-order kinetic model. When the initial concentration of PCP was 25 and 50 mg/L and the radiation dose was 4 and 6 kGy,respectively, the degradation efficiency was 100%. A luminescence bacterial test was used for evaluating the toxicity of the radiolyticintermediate products. Total detoxification of a 75 mg/L PCP solution could be achieved by carrying out the irradiation procedure at the dose of 15 kGy.

  1. Radiolysis of Reactive Azo Dyes in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Agustin N.M. Bagyo

    2004-07-01

    Full Text Available The effects of radiation on aerated reactive dye solutions i.e Cibacron Violet, Cibacron Orange and Cibacron Yellow solutions have been studied. Parameters analysis were the change of pH after radiation, the change of absorption, degradation products and effects of pH on the radiolysis. The uv-vis absorption of solutions were observed before and after irradiation. pH variation was done from pHs 3, 5, 7, 9 and 12. Irradiation was done at doses of 0, 2, 4, 6, 8 and 10 kGy with dose rate of 5 kGy/h and was determined by a Fricke dosimeter. HPLC with UV detector was used to analyze the degradation products. Oxalic acid was the main degradation product and small amount of succinic acid was also detected.

  2. Pulse radiolysis of tetraalkylammonium hydroxides in alkaline solution containing oxygen

    International Nuclear Information System (INIS)

    In the pulse radiolysis of aqueous oxygenated solutions of tetraalkylammonium hydroxides there is a build-up of ozonide ion lasting up to 100 μs after the pulse. The build-up does not occur in solutions containing a twenty fold (reactivity) excess of N2O to O2. The influence of various concentrations of tetraalkylammonium cations, oxygen and different reactivity ratios of N2O to O2 on the build-up of ozonide ion after the pulse was investigated. The reaction rates of O2-and O- with peroxy radicals and organic cations, respectively, control the nature of the observed build-up and decay of ozonide ion. (author)

  3. Computerised pulse-radiolysis system for gas-phase kinetics

    International Nuclear Information System (INIS)

    Pulse-radiolysis equipment for studies of radical reaction kinetics in the gas phase is described. The equipment is built around an accelerator of the Febetron type for 800 keV electrons. The analysing light is pulsed with optical feedback regulation of the intensity to increase the luminosity ca. 50 times during the measurement. It is equipped with photoelectric detection of transient optical absorptions in the time interval 1 x 10-8 10-3 s of radicals in the wavelength range 200-900 mm. The stray-light level is low (3 radical in SF6 bath gas are in the interval ± 10% of the literature value. The equipment is intended for measurements of reaction kinetics related to combustion and atmospheric chemistry. (au) (13 refs.)

  4. Solid state radiolysis of amino acids in an astrochemical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Franco, E-mail: franco.cataldo@fastwebnet.i [Istituto Nazionale di Astrofisica-Osservatorio Astrofisica di Catania, Via S. Sofia 78, 95123 Catania (Italy); Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy); Angelini, Giancarlo [Istituto di Metodologie Chimiche, CNR, Via Salaria Km 29300, 00016 Monterotondo Stazione, Rome (Italy); Iglesias-Groth, Susana [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain) and CSIC (Spain)

    2011-01-15

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T{sub 1/2} for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6x10{sup 9} years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6x10{sup 9} years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant k{sub rac}.

  5. Solid state radiolysis of amino acids in an astrochemical perspective

    Science.gov (United States)

    Cataldo, Franco; Angelini, Giancarlo; Iglesias-Groth, Susana; Manchado, Arturo

    2011-01-01

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T1/2 for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6×109 years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6×109 years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant krac.

  6. Radiolytic corrosion of uranium dioxide induced by He2+ localized irradiation of water: Role of the produced H2O2 distance

    Science.gov (United States)

    Traboulsi, Ali; Vandenborre, Johan; Blain, Guillaume; Humbert, Bernard; Haddad, Ferid; Fattahi, Massoud

    2015-12-01

    The short-range (few μm in water) of the α-emitting from the spent fuel involves that the radiolytic corrosion of this kind of sample occurs at the solid/solution interface. In order to establish the role of localization of H2O2 species produced by the He2+ particle beam in water from the surface, we perform UO2 radiolytic corrosion experiment with different distance between H2O2 production area and UO2 surface. Then, in this work, the radiolytic corrosion of UO2 particles by oxidative species produced by 4He2+ radiolysis of water was investigated in open to air atmosphere. The dose rate, the localization of H2O2 produced by water radiolysis and the grain boundaries present on the surface of the particles were investigated. UO2 corrosion was investigated by in situ (during irradiation) characterization of the solid surface, analysis of H2O2 produced by water radiolysis and quantification of the uranium species released into the solution during irradiation. Characterization of the UO2 particles, surface and volume, was realized by Raman spectroscopy. UV-vis spectrophotometry was used to monitor H2O2 produced by water radiolysis and in parallel the soluble uranium species released into the solution were quantified by inductively coupled plasma mass spectrometry. During the He2+ irradiation of ultra-pure water in contact with the UO2 particles, metastudtite phase was formed on the solid surface indicating an oxidation process of the particles by the oxidative species produced by water radiolysis. This oxidation occurred essentially on the grain boundaries and was accompanied by migration of soluble uranium species (U(VI)) into the irradiated solution. Closer to the surface the localization of H2O2 formation, higher the UO2 oxidation process occurs, whereas the dose rate had no effect on it. Simultaneously, closer to the surface the localization of H2O2 formation lower the H2O2 concentration measured in solution. Moreover, the metastudtite was the only secondary

  7. Effect of alpha-radiolysis on the dissolution of UO2 doped with alpha emitters under anoxic conditions

    International Nuclear Information System (INIS)

    The α emissions constitute almost entirely the radiation field of spent nuclear fuel after 500 years in a geological repository. In this work the effect of α-radiolysis on the fuel dissolution in the near field was studied. Pellets of UO2 doped with 10% wt. and 0.1% wt. of ''238 Pu (α-emitter) were prepared using a solgel method which provides homogenous distribution of the dopant in the UO2 matrix. The sintered materials were extensively characterized. Static leaching tests on these materials were carried out under anoxic conditions in deaerated water at room temperature. The results show that the uranium release from the matrix increase for the higher dopant concentration. Under the experimental conditions used it was difficult to observe a clear radiolysis effect on dissolution of the material containing 0.1% wt. of ''238 Pu. In order to study the radiation damage due to α decay in the fluorite type lattice of the UO2, the variation of the lattice parameter as a function of time was measured. An increase of the lattice parameter of approx 0,2% was observed after 1,5 months of storage in the UO2 doped with 10% wt. of plutonium. In the case of the UO2 doped with 0,1% wt. ''238 Pu, the lattice parameter did not vary significantly during the same time interval. The possible effects of damage accumulation on UO2 dissolution are discussed. (Author) 7 refs

  8. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions)

  9. Design guideline to prevent the pipe rupture by combustion of radiolysis gases in BWR steam piping

    International Nuclear Information System (INIS)

    In late 2001, pipe rupture accidents due to fast combustion of radiolysis gas occurred in Japan and elsewhere's BWR power plants. TENPES began to set up the guideline as action to such a new problem to prevent accumulation and combustion of radiolysis gas in BWR steam piping. And then, the first edition of guideline was published in October 2005, and the 2nd edition in March 2007. Afterwards, the experimental study about combustion/detonation of radiolysis gas have been continued. And in March 2010, JANTI published the 3rd edition of the guideline. This is the report of the final edition of that guideline. According to this guideline, it became possible to design BWR's steam piping to prevent pipe rupture accident due to combustion of radiolysis gas. (author)

  10. Pulse radiolysis and spectrophotometric studies on the binding of organic cations with heparin

    Science.gov (United States)

    Jakubowska, Małgorzata; Adamus, Jan; Gębicki, Jerzy; Marcinek, Andrzej; Sikora, Adam

    2014-06-01

    Here we present the spectroscopic and pulse radiolysis studies of the interactions of heparin and some organic cations:methylene blue (MB), 1-methylnicotinamide (MNA+), and its dimer 1,3-bis(1-methylnicotinamide)propane (bis(MNA+)).

  11. Realistic assessment of direct radiolysis for synthetic fuels production using fusion radiation sources

    International Nuclear Information System (INIS)

    These studies indicate that synthetic fuel production by direct radiolysis cannot compete economically with other production methods. Low G-values and radiation contamination of products are given as reasons

  12. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1976--October 1977

    International Nuclear Information System (INIS)

    Results from research in the following two areas are given: formation, properties, and reactivity of molecular ionic species in irradiated liquid systems; and pulse radiolysis of elementary reactions in protein function

  13. Gamma-radiolysis of dimethyl sulfoxide. II. Radiolysis yields and possible mechanisms; Gamma-Radiolisis del dimetilsulfoxido II. Rendimientos radioloticos y posibles mecanismos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. C.; Barrera, R.

    1978-07-01

    As result of quantitative studies on gamma-radiolysis of DMSO at a dose range of 90-850 Mrads, constant G values have been obtained for the following radiolysis compounds: G(-DMSO) - 6.7 {+-}0.2; G(dimethyl sulphide) - 3.4 {+-}0.3; G(methane) - 0,75 {+-} 0.04; G(dimethyl disulphide) -0.33 {+-}0,03; G(tri methylsulphonium methanesulphonate) - 0.26 {+-} 0,01; G(methyl methanethiosulphonate) - 0,25 {+-}0.02; G(dimethyl sulphona)-0.21{+-}0.02; G(H{sub 2})-0.18{+-}0.02; and G(propane)--0.0092{+-}0.0007. Initial G values have been obtained for other identified compounds: Gi(ethane)-0,46; Gi(CO)-0.052; and Gi(CO{sub 2})-0.030. Possible mechanisms on the radiolysis process are proposed. (Author) 17 refs.

  14. Mössbauer study on the gamma radiolysis of anhydrous cesium tris (oxalato) ferrate(III)

    Science.gov (United States)

    Ladriere, J.; Senterre, V.; Apers, D.

    1992-04-01

    The final product of the gamma radiolysis of anhydrous cesium tris(oxalato) ferrate(III) has been identified by Mössbauer spectroscopy as Cs2Fe(ox)2. The radiolytic decomposition proceeds as a first-order process due to the original compound depletion and to the radiolytic stability of the ferrous compound. Lamb-Mössbauer factors measurements indicate that the recoilless fractions of the iron species are practically unaffected by the radiolysis.

  15. Gas evolution and change in thickening properties of loosely crosslinked carboxyvinyl polyelectrolytes in γ radiolysis

    International Nuclear Information System (INIS)

    The authors establish that carbon oxides are the main gaseous products of gamma radiolysis of polyacrylic acid and of loosely crosslinked polyelectrolytes obtained by the copolymerization of acrylic acid with hexallylsaccharose or tetraallylpentaerythritol. Besides decarbonization, radiation-chemical processes of crosslinking and rupturing of originally formed crosslinks occur in the gamma radiolysis of loosely crosslinked polyelectrolytes, which reduces their thickening ability. These processes are more intensive in the presence of air

  16. Electron Beam-Induced Immobilization of Laccase on Porous Supports for Waste Water Treatment Applications

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri

    2014-08-01

    Full Text Available The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a “green” water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA. Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.

  17. Molecular weight changes and scission and crosslinking in poly(dimethyl siloxane) on gamma radiolysis

    International Nuclear Information System (INIS)

    The molecular weight changes which occur on the γ-radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state 29Si NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S)=1.15±0.2 and G(H)=1.45±0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion

  18. Spectroscopic assessment of argon gas discharge induced radiolysis of aqueous adenine and thymine

    International Nuclear Information System (INIS)

    Ionizing radiation influences life profoundly for it can modify genetic materials. It is a long-standing task to investigate the interaction between energetic particles and DNA together with its components such as nucleotides, nucleosides and bases so as to predict and assess the potential biological effects. In this study, argon gas discharge was employed to produce energetic ions and electrons. The gas discharge caused the radiolysis of aqueous bases and the involved reactions were analyzed by means of spectroscopic tools including UV-vis absorption, fluorescence and Fourier transformation infrared (FTIR) spectroscopy, also assisted by liquid chromatography/mass spectrometry (LC/MS). It was found that the discharge resulted in the adenine-derived lesions such as 4,6-diamino-5-formamidopyrimidine, 8-OH-Ade and 2-OH-Ade in the radiolysis of aqueous adenine, as well as the thymine-derived lesions such as thymine glycol, 5-hydroxy-6-hydrothymine and/or 6-hydroxy-5-hydrothymine, 5-hydroxymethyluracil and 5-formyluracil in the radiolysis of aqueous thymine. The study of radio-sensitivity showed that adenine was more resistant to the discharge. The mechanisms of the involved reactions were studied in detail, confirming that the hydroxyl radical played a dominant role. - Highlights: → Effective new way to study radiolysis of bases via a home-made argon discharge apparatus. → Quantitative analysis of base radiolysis employing spectroscopic tools combined with HPLC/MS. Discovery of different radiolysis effect compared with other forms of ionizing radiations.

  19. Spectroscopic assessment of argon gas discharge induced radiolysis of aqueous adenine and thymine

    Energy Technology Data Exchange (ETDEWEB)

    Su Xi [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China); Huang Qing, E-mail: huangq@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China); Dang Bingrong [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Wang Xiangqin; Yu Zengliang [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China)

    2011-12-15

    Ionizing radiation influences life profoundly for it can modify genetic materials. It is a long-standing task to investigate the interaction between energetic particles and DNA together with its components such as nucleotides, nucleosides and bases so as to predict and assess the potential biological effects. In this study, argon gas discharge was employed to produce energetic ions and electrons. The gas discharge caused the radiolysis of aqueous bases and the involved reactions were analyzed by means of spectroscopic tools including UV-vis absorption, fluorescence and Fourier transformation infrared (FTIR) spectroscopy, also assisted by liquid chromatography/mass spectrometry (LC/MS). It was found that the discharge resulted in the adenine-derived lesions such as 4,6-diamino-5-formamidopyrimidine, 8-OH-Ade and 2-OH-Ade in the radiolysis of aqueous adenine, as well as the thymine-derived lesions such as thymine glycol, 5-hydroxy-6-hydrothymine and/or 6-hydroxy-5-hydrothymine, 5-hydroxymethyluracil and 5-formyluracil in the radiolysis of aqueous thymine. The study of radio-sensitivity showed that adenine was more resistant to the discharge. The mechanisms of the involved reactions were studied in detail, confirming that the hydroxyl radical played a dominant role. - Highlights: > Effective new way to study radiolysis of bases via a home-made argon discharge apparatus. > Quantitative analysis of base radiolysis employing spectroscopic tools combined with HPLC/MS. > Discovery of different radiolysis effect compared with other forms of ionizing radiations.

  20. Analysis of. gamma. -radiolysis products of aqueous solutions of esters of aliphatic amino acids by the PMR method

    Energy Technology Data Exchange (ETDEWEB)

    Panin, V.I.; Sidorov, P.S.; Usatyi, A.F.

    1987-09-01

    The ..gamma..-radiolysis of aqueous solutions of methyl esters of aliphatic amino acids and peptides was investigated by the method of nuclear (proton) magnetic resonance (PMR). The resonance lines appearing in the PMR spectra of the irradiated systems were identified, and a conclusion was drawn about the molecular structure of the radiolysis products. The kinetics of the accumulation of radiolysis products was studied, and the values of their radiation yields were estimated.

  1. Toxicity reduction for pharmaceuticals mixture in water by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boiani, Nathalia Fonseca; Tominaga, Flavio Kiyoshi; Borrely, Sueli Ivone, E-mail: flavio_tominaga@hotmail.com, E-mail: sborrely@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The incorrect disposal of products is committing the environment quality once the aquatic environment is the main vehicle for dispersion of pollutants. Among the highlighted contaminants there are the pharmaceuticals, which are also released to the aquatic environment through the domestic sewage, hospitals and effluents. The monitoring of these pharmaceuticals in the environment has grown, showing many of them as persistent pollutants. Pharmaceuticals from different therapeutic classes have been detected in domestic sewage, surface water and groundwater around the world. Several studies evidenced Fluoxetine Hydrochloride residues in waters. Another important product is the Propranolol, used for heart disease treatments as far as fluoxetine is applied for treating mental diseases. The objective of this study was to apply the radiation processing for the abatement of pollutant in waters. Electron beam accelerator was used during irradiation of the mixture (Propranolol + Fluoxetine Hydrochloride) in aqueous solution. Acute toxicity assays were carried out for Vibrio fischeri marine bacterium, 15 minutes exposure. The results showed that irradiation (2.5kGy and 5.0kGy) enhanced the average effective concentration of the mixture, which means reduction of toxicity (56.34%, 55.70% respectively). Inverse effect was obtained with 7.5 kGy and 10 kGy. (author)

  2. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  3. Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations

    International Nuclear Information System (INIS)

    With converged shock wave, extracorporeal shock wave lithotripsy (ESWL) has become a preferable way to crush human calculi because of its advantages of efficiency and non-intrusion. Nonlinear spheroidal beam equations (SBE) are employed to illustrate the acoustic wave propagation for transducers with a wide aperture angle. To predict the acoustic field distribution precisely, boundary conditions are obtained for the SBE model of the monochromatic wave when the source is located on the focus of an ESWL transducer. Numerical results of the monochromatic wave propagation in water are analyzed and the influences of half-angle, fundamental frequency, and initial pressure are investigated. According to our results, with optimization of these factors, the pressure focal gain of ESWL can be enhanced and the effectiveness of treatment can be improved. (paper)

  4. Electron-beam distillation of natural polymers

    Science.gov (United States)

    Ponomarev, A. V.; Makarov, I. E.; Ershov, B. G.

    2014-01-01

    Pyrolysis of cellulose, lignin, and chitin may be upgraded by the use of an electron-beam irradiation. The radiation-thermal destruction mode does more probable production of liquid low-molecular-weight products instead of solid pyrolitic oligomers. Furans, methoxyphenols, and pyridines are dominant products of high-temperature radiolysis of cellulose, lignin, and chitin, respectively. The mechanism of chain destruction of natural polymers is considered.

  5. Chromium Waste Treatment from Leather Manufacture Using Electron Beam Radiation Technic

    International Nuclear Information System (INIS)

    Leather manufacture chromium waste treatment using chemical methods have an essential disadvantage, because of the production of the secondary contamination of wastes and separated sediments used by reagents. Therefore, a new technique is needed to solve this problem. The aim of the research to learn the advantages of electron beam radiation for chromium waste treatment. Water radiolysis can be produced by the interaction between electron beam and water or liquid substances. This phenomenon produces many reducing agents and ions that could reduce chromium concentrations in the liquid waste. Ethyl alcohol as a scavenger was added in the waste samples, then the pH of varied from 1, 4, 8 to 12, then were irradiated. Irradiation were done by Electron Beam Machine with dose 15, 25, and 35 kGy. After irradiation, chromium concentration in the samples were analyzed by AAS and UV-vis spectrophotometer. The results had shown that chromium could be reduced by high dose electron beam. The optimum reduction of chromium was achieved at liquid waste pH 8 and irradiation dose 35 kGy. (author)

  6. Pulse Radiolysis Using Very-high-energy Ions for Optimizing Cancer Therapy.

    Science.gov (United States)

    Getoff, Nikola

    2016-01-01

    Cancer therapy by means of high-energy ions is very efficient. As a consequence of the linear-energy-transfer effect only a negligible part of the produced free radicals can escape combination processes to form molecular products and to cause undesired side processes. Positrons (e⁺) and γ-rays, generated by the nuclear interaction of high-energy ions in the medium, serve in monitoring the radiation dose absorbed by the tumor. However, due to the dipole nature of water molecules a small proportion of thermalized positrons (e⁺th) can become solvated (e⁺aq). Hence, they are stabilized, live longer and can initiate side reactions. In addition, positronium (Ps), besides solvated electrons (e⁺aq), can be generated and involved in the reaction mechanisms. For a better understanding of the reaction mechanisms involved and to improve cancer therapy, a time-resolved pulse radiolysis instrument using high-energy particles is discussed here. The proposed method is examined and recommended by CERN experts. It is planned to be realized at the MedAustron Radiation Therapy and Research Centre in Wiener Neustadt, Austria. PMID:26912822

  7. Time-dependent radiolytic yield of OH• radical studied by picosecond pulse radiolysis.

    Science.gov (United States)

    El Omar, Abdel Karim; Schmidhammer, Uli; Jeunesse, Pierre; Larbre, Jean-Philippe; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke; Pernot, Pascal; Mostafavi, Mehran

    2011-11-10

    Picosecond pulse radiolysis measurements using a pulse-probe method are performed to measure directly the time-dependent radiolytic yield of the OH(•) radical in pure water. The time-dependent absorbance of OH(•) radical at 263 nm is deduced from the observed signal by subtracting the contribution of the hydrated electron and that of the irradiated empty fused silica cell which presents also a transient absoption. The time-dependent radiolytic yield of OH(•) is obtained by assuming the yield of the hydrated electron at 20 ps equal to 4.2 × 10(-7) mol J(-1) and by assuming the values of the extinction coefficients of e(aq)(-) and OH(•) at 782 nm (ε(λ=782 nm) = 17025 M(-1) cm(-1)) and at 263 nm (ε(λ=263 nm) = 460 M(-1) cm(-1)), respectively. The value of the yield of OH(•) radical at 10 ps is found to be (4.80 ± 0.12) × 10(-7) mol J(-1). PMID:21970432

  8. Thermo-acoustic Sound Generation in the Interaction of Pulsed Proton and Laser Beams with a Water Target

    CERN Document Server

    Lahmann, R; Graf, K; Hößl, J; Kappes, A; Katz, U; Mecke, K; Schwemmer, S

    2015-01-01

    The generation of hydrodynamic radiation in interactions of pulsed proton and laser beams with matter is explored. The beams were directed into a water target and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed with varying pulse energies, sensor positions, beam diameters and temperatures. The obtained data are matched by simulation results based on the thermo-acoustic model with uncertainties at a level of 10%. The results imply that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the medium. The heating results in a fast expansion or contraction and a pressure pulse of bipolar shape is emitted into the surrounding medium. An interesting, widely discussed application of this effect could be the detection of ultra-high energetic cosmic neutrinos in future large-scale acoustic neutrino detectors. For this application a validation of the sound generation mechanism to high accur...

  9. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    Science.gov (United States)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  10. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams

    International Nuclear Information System (INIS)

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, pQ, has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate pwall, pcav and pQ perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth zref and the depth where the dose has decreased to 50% of the maximum dose, R50. pwall was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at zref. For higher energy electron beams pwall decreased to a value of about 1%. Combined with a pcav about 1% below unity for all energies at zref, this was found to cause pQ to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber

  11. Heterogeneous radiolysis of HCN adsorbed on a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Colin-Garcia, M.; Ortega-Gutierrez, F. [Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Ramos-Bernal, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Negron-Mendoza, A., E-mail: negron@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2010-07-21

    Hydrogen cyanide is a key molecule for chemical evolution studies because, when it is exposed to different sources of energy, it forms various compounds of biological importance. To understand the role of minerals in chemical evolution, a series of experiments was performed. First, the adsorption capacity of HCN on different surface minerals was studied; the results show that HCN is readily adsorbed onto the solids proposed (zeolite, serpentine, dolomite, and sodium montmorillonite), in particular zeolite and montmorillonite. Second, the radiolysis of HCN adsorbed on olivine (as an example of a mineral surface) was also followed; it was found that the rate of HCN decomposition by gamma irradiation is enhanced in the presence of the solid. The third series of studies show that organic material was produced in high abundance from HCN at high radiation doses. The radiolytic products included gases (CO{sub 2}, NH{sub 4}, and CO) and oligomeric materials that release carboxylic acids (succinic, malonic, citric, and tricarballylic acids) and amino acids upon acid hydrolysis. These experiments suggest that minerals could have participated actively in chemical evolution processes.

  12. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...... to determine activation energies for reactions of importance in reactor chemistry. The activation energy of the reaction e−aq+e−aq has been determined to be 22 kJ·mol−1 (5.3 kcal·mol−1) in good agreement with literature values. Furthermore, the activation energies of the reactions Cu2++OH (13.3 kJ·mol−1, 3.......2 kcal.mol−1) and OH+OH (tentatively 8 kJ·mol−1, 1.9 kcal·mol−1) have been determined. The absorption spectrum of the OH radical has been determined up to temperatures of 200°C. The absorption maximum is found at 230 nm at all temperatures. The reaction between Fe2+ and OH radicals has been studied up...

  13. Radiolysis and hydrolysis of magnetically assisted chemical separation particles

    International Nuclear Information System (INIS)

    The magnetically assisted chemical separation (MACS) process is designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste. Magnetic microparticles (1--25 μm) were coated with octyl (phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP) and tested for removing TRU elements from acidic nitrate solutions. The particles were contacted with nitric acid solutions and Hanford plutonium finishing plant (PFP) simulant, irradiated with a high intensity 60Co γ-ray source, and evaluated for effectiveness in removing TRU elements from 2m HNO3 solutions. The resistance of the coatings and magnetic cores to radiolytic damage and hydrolytic degradation was investigated by irradiating samples of particles suspended in a variety of solutions with doses of up to 5 Mrad. Transmission electron microscopy (TEM), magnetic susceptibility measurements, and physical observations of the particles and suspension solutions were used to assess physical changes to the particles. Processes that affect the surface of the particles dramatically alter the binding sites for TRU in solution. Hydrolysis played a larger role than radiolysis in the degradation of the extraction capacity of the particles

  14. Improvements in detection system for pulse radiolysis facility

    CERN Document Server

    Rao, V N; Manimaran, P; Mishra, R K; Mohan, H; Mukherjee, T; Nadkarni, S A; Sapre, A V; Shinde, S J; Toley, M

    2002-01-01

    This report describes the improvements made in the detection system of the pulse radiolysis facility based on a 7 MeV Linear Electron Accelerator (LINAC) located in the Radiation Chemistry and Chemical Dynamics Division of Bhabha Atomic Research Centre. The facility was created in 1986 for kinetic studies of transient species whose absorption lies between 200 and 700 nm. The newly developed detection circuits consist of a silicon (Si) photodiode (PD) detector for the wavelength range 450-1100 nm and a germanium (Ge) photodiode detector for the wavelength range 900-1600 nm. With these photodiode-based detection set-up, kinetic experiments are now routinely carried out in the wavelength range 450-1600 nm. The performance of these circuits has been tested using standard chemical systems. The rise time has been found to be 150 ns. The photo-multiplier tube (PMT) bleeder circuit has been modified. A new DC back-off circuit has been built and installed in order to avoid droop at longer time scales. A steady baselin...

  15. Radiolysis and Thermolysis of Cytosine: Importance in Chemical Evolution

    Directory of Open Access Journals (Sweden)

    J. Cruz-Castañeda

    2016-08-01

    Full Text Available An important aspect of chemical evolution is the study of the stability of organic molecules with biological significance in primitive conditions, especially in the presence of constant energy sources. An example of sets of biologically important organic compounds is nitrogenous bases. The presence of these compounds in prebiotic environments is very important in forming more complex systems, such as nucleic acids, in which nitrogenous bases are an essential component. The aim of the present work is to study the stability of cytosine, a pyrimidine base, in high-radiation fields or at high temperature and to evaluate its recovery. Our results show that the cytosine (1x10-4 M aqueous solution, oxygen-free decomposed completely at a dose of 22 kGy, and 25% recovery was obtained with a dose of 7.4 kGy. The analysis of irradiated samples was followed by HPLC, HPLC-mass spectrometry and UV-VIS spectroscopy. The main product in both thermolysis and radiolysis was uracil, formed via a deamination reaction. Uracil is another nitrogenous base with biological significance.

  16. Studies on oxidative radiolysis of ibuprofen in presence of potassium persulfate

    Science.gov (United States)

    Paul (Guin), Jhimli; Naik, D. B.; Bhardwaj, Y. K.; Varshney, Lalit

    2014-07-01

    The radiolysis of ibuprofen (IBP), a model pharmaceutical compound, was studied by gamma irradiation in an aqueous solution in the presence and absence of potassium persulfate (K2S2O8). The extent of mineralization was investigated by measuring the UV-visible spectra, decrease in the chemical oxygen demand (COD) and the total organic carbon (TOC) content of aqueous IBP solution at different doses. The gamma radiolysis, in the presence of K2S2O8, required much lesser dose compared to in the absence of K2S2O8 for the same extent of mineralization of aqueous IBP solution. The pulse radiolysis of IBP was carried out under different radiolytic conditions to understand the mechanism of efficient mineralization of IBP during gamma radiolysis in the presence of K2S2O8. It was found that unlike OH radical, SO4- radical preferentially produces benzyl type of radicals via the formation of the benzene radical cation. The results concluded that the gamma radiolysis in presence of K2S2O8 could be one of the efficient advanced oxidation processes for degradation of pharmaceutical compounds present in the aqueous solution.

  17. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications; Propagation d'une impulsion laser ultra-intense dans un plasma sous-dense: generation de faisceaux d'electrons quasi monoenergetiques et developpement d'applications

    Energy Technology Data Exchange (ETDEWEB)

    Glinec, Y

    2006-09-15

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  18. A pulse radiolysis apparatus with a scanning linac and some experimental results

    International Nuclear Information System (INIS)

    The first set of pulse radiolysis apparatus in China with microsecond time resolution was built up at Beijing Radiation Center (Institute of Low Energy Nuclear Physics, Beijing Normal University). The radiation source is a 5-Mev s-band scanning Linac which is mainly used as a radiator for doing radiation processing technology studies in this laboratory. In order to use this Linac as a radiation source in pulse radiolysis, some special designs of electronic, mechanical, optical and sample-holding systems were taken. Several experiments on pulse radiolysis of aqueous solution have been done successfully proving that this apparatus is very useful in our attempt to combine the industrial applications of radiation with the basic research of radiation chemistry in this laboratory. (author)

  19. Pulse radiolysis apparatus with a scanning linac and some experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhongwei; Liu Andong; Tong Zhongliang; Song Yingxin; Hu Huadan; Sun Wanhua; Gu Hongchun; Zhou Ruiying

    1988-01-01

    The first set of pulse radiolysis apparatus in China with microsecond time resolution was built up at Beijing Radiation Center (Institute of Low Energy Nuclear Physics, Beijing Normal University). The radiation source is a 5-Mev s-band scanning Linac which is mainly used as a radiator for doing radiation processing technology studies in this laboratory. In order to use this Linac as a radiation source in pulse radiolysis, some special designs of electronic, mechanical, optical and sample-holding systems were taken. Several experiments on pulse radiolysis of aqueous solution have been done successfully proving that this apparatus is very useful in our attempt to combine the industrial applications of radiation with the basic research of radiation chemistry in this laboratory.

  20. Destabilization of water-organic dispersions under the influence of an electron beam

    Science.gov (United States)

    Metreveli, P. K.; Kholodkova, E. M.; Ponomarev, A. V.

    2016-07-01

    Influence of an irradiation on aqueous dispersions of starch, lignin and humic acids has been investigated using monoenergetic and multienergetic electron beams. As shown, coagulation and sedimentation of dispersed solids were initiated in the irradiated samples, however in neutral dispersions the multienergetic beam had a smaller effect compared to a monoenergetic beam. As supposed, the coagulation slowdown effect is caused by formation and repulsion of singlycharged and multiply-charged micelles during electron deceleration and capture directly in the bulk of dispersion.

  1. Kinetic decay of H. in the radiolysis of tetracycline hydrochloride in powder form at 77 K

    International Nuclear Information System (INIS)

    Kinetic decay of paramagnetic species formed in the radiolysis of tetracycline hydrochloride in powder form at 77 K, shows that most of the H. is not able to migrate. But when H. acquires enough kinetic energy to migrate, it reacts preferentially with species different from its partner. The e- is not observed by ESR, at 77 K, although tetracycline hydrochloride is a chemical trap for e- in methanol, benzyl alcohol and alkaline aqueous solutions. In the radiolysis of tetracycline hydrochloride in powder form, the dimethylammonium group blocks H. abstraction reaction at 77 K. (author) 18 refs.; 5 figs

  2. Laser Flash Photolysis and Pulse Radiolysis of Iodate and Periodate in Aqueous Solution

    DEFF Research Database (Denmark)

    Kläning, U K; Sehested, Knud; Wolff, Thomas

    1981-01-01

    Species containing iodine in oxidation state six are formed by photolysis and radiolysis of aqueous iodate and periodate solutions in the following reactions: IO3–+ O–→ IO42–; IO3–+ OH → IO3; IVII+ eaq–→ IeVI and IVII [graphic omitted] I0VI+ O–(or OH). The present pulse radiolysis and laser flash...... is estimated to have a large positive value. Observations of reactivity of iodine(VI) towards tert-butanol and periodate suggest that reduction of iodine(VI) to iodate generally takes place by transfer of OH....

  3. A pulse radiolysis study of the dynamics of ascorbic acid free radicals within a liposomal environment.

    Science.gov (United States)

    Kobayashi, Kazuo; Seike, Yumiko; Saeki, Akinori; Kozawa, Takahiro; Takeuchi, Fusako; Tsubaki, Motonari

    2014-10-01

    The dynamics of free-radical species in a model cellular system are examined by measuring the formation and decay of ascorbate radicals within a liposome with pulse radiolysis techniques. Upon pulse radiolysis of an N2O-saturated aqueous solution containing ascorbate-loaded liposome vesicles, ascorbate radicals are formed by the reaction of OH(·) radicals with ascorbate in unilamellar vesicles exclusively, irrespective of the presence of vesicle lipids. The radicals are found to decay rapidly compared with the decay kinetics in an aqueous solution. The distinct radical reaction kinetics in the vesicles and in bulk solution are characterized, and the kinetic data are analyzed.

  4. A water calorimeter for on-site absorbed dose to water calibrations in (60)Co and MV-photon beams including MRI incorporated treatment equipment.

    Science.gov (United States)

    de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Aalbers, Tony

    2016-07-01

    In reference dosimetry the aim is to establish the absorbed dose to water, D w, under reference conditions. However, existing dosimetry protocols are not always applicable for rapidly emerging new treatment modalities. For primary standard dosimetry laboratories it is generally not feasible to acquire such modalities. Therefore it is strongly desired that D w measurements with primary standards can be performed on-site in clinical beams for the new treatment modalities in order to characterize and calibrate detectors. To serve this need, VSL has developed a new transportable water calorimeter serving as a primary D w standard for (60)Co and MV-photons including MRI incorporated treatment equipment. Special attention was paid to its operation in different beam geometries and beam modalities including the application in magnetic fields. The new calorimeter was validated in the VSL (60)Co beam and on-site in clinical MV-photon beams. Excellent agreement of 0.1% was achieved with previous (60)Co field calibrations, i.e. well within the uncertainty of the previous calorimeter, and with measurements performed in horizontal and vertical MV-photon beams. k Q factors, determined for two PTW 30013 ionization chambers, agreed very well with available literature data. The relative combined standard uncertainty (k  =  1) for D w measurements in (60)Co and MV-photons is 0.37%. Calibrations are carried out with a standard uncertainty of 0.42% and k Q -factors are determined with a relative standard uncertainty of 0.40%. PMID:27300589

  5. A water calorimeter for on-site absorbed dose to water calibrations in 60Co and MV-photon beams including MRI incorporated treatment equipment

    Science.gov (United States)

    de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Aalbers, Tony

    2016-07-01

    In reference dosimetry the aim is to establish the absorbed dose to water, D w, under reference conditions. However, existing dosimetry protocols are not always applicable for rapidly emerging new treatment modalities. For primary standard dosimetry laboratories it is generally not feasible to acquire such modalities. Therefore it is strongly desired that D w measurements with primary standards can be performed on-site in clinical beams for the new treatment modalities in order to characterize and calibrate detectors. To serve this need, VSL has developed a new transportable water calorimeter serving as a primary D w standard for 60Co and MV-photons including MRI incorporated treatment equipment. Special attention was paid to its operation in different beam geometries and beam modalities including the application in magnetic fields. The new calorimeter was validated in the VSL 60Co beam and on-site in clinical MV-photon beams. Excellent agreement of 0.1% was achieved with previous 60Co field calibrations, i.e. well within the uncertainty of the previous calorimeter, and with measurements performed in horizontal and vertical MV-photon beams. k Q factors, determined for two PTW 30013 ionization chambers, agreed very well with available literature data. The relative combined standard uncertainty (k  =  1) for D w measurements in 60Co and MV-photons is 0.37%. Calibrations are carried out with a standard uncertainty of 0.42% and k Q -factors are determined with a relative standard uncertainty of 0.40%.

  6. Experimental study of the water-to-air stopping power ratio of monoenergetic carbon ion beams for particle therapy

    Science.gov (United States)

    Sánchez-Parcerisa, D.; Gemmel, A.; Jäkel, O.; Parodi, K.; Rietzel, E.

    2012-06-01

    Reference dosimetry with ionization chambers requires a number of chamber-specific and beam-specific calibration factors. For carbon ion beams, IAEA report TRS-398 yields a total uncertainty of 3% in the determination of the absorbed dose to water, for which the biggest contribution arises from the water-to-air stopping power ratio (sw, air), with an uncertainty of 2%. The variation of (sw, air) along the treatment field has been studied in several Monte Carlo works presented over the last few years. Their results were, in all cases, strongly dependent on the choice of mean ionization potentials (I-values) for air and water. A smaller dependence of (sw, air) with penetration depth was observed. Since a consensus on Iw, air and Iair has not yet been reached, the validity of such studies for clinical use cannot be assessed independently. Our approach is based on a direct experimental measurement of water-equivalent thicknesses of different air gaps at different beam energies. A theoretical expression describing the variation of the stopping power ratio with kinetic energy, sw,air(E), was derived from the Bethe-Bloch formula and fit to the measured data, yielding a coherent pair of Iw and Iair values with Iair/Iw = 1.157 ± 0.023. Additionally, the data from five different beam energies were combined in an average value of sw,air = 1.132 ± 0.003 (statistical) ± 0.003 (variation over energy range), valid for monoenergetic carbon ion beams at the plateau area of the depth dose distribution. A detailed uncertainty analysis was performed on the data, in order to assess the limitations of the method, yielding an overall standard uncertainty below 1% in sw,air(E). Therefore, when properly combined with the appropriate models for the fragment spectra, our experimental work can contribute to narrow the uncertainty margins currently in use in absorbed dose to water determination for dosimetry of carbon ion beam radiotherapy.

  7. Monte Carlo Calculations of Dose to Medium and Dose to Water for Carbon Ion Beams in Various Media

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Petersen, Jørgen B.B.; Jäkel, Oliver;

    treatment plans. Here, we quantisize the effect of dose to water vs. dose to medium for a series of typical target materials found in medical physics. 2     Material and Methods The Monte Carlo code FLUKA [Battistioni et al. 2007] is used to simulate the particle fluence spectrum in a series of target......1     Background In clinical practice the quantity dose to water (Dw ) is used as a reference standard for dosimeters and treatment planning systems. Treatment planning systems usually rely on analytical representation of the particle beam, which are normally expressed as dose with respect to water...... for water. This represents the case that our “detector” is an infinitesimal small non-perturbing entity made of water, where charged particle equilibrium can be assumed following the Bragg-Gray cavity theory. Dw and Dm are calculated for typical materials such as bone, brain, lung and soft-tissues using...

  8. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.

    Science.gov (United States)

    Pilling, Sergio; Duarte, Eduardo Seperuelo; Domaracka, Alicja; Rothard, Hermann; Boduch, Philippe; da Silveira, Enio F

    2011-09-21

    An experimental study of the interaction of highly charged, energetic ions (52 MeV (58)Ni(13+) and 15.7 MeV (16)O(5+)) with mixed H(2)O : C(18)O(2) astrophysical ice analogs at two different temperatures is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by cosmic rays inside dense, cold astrophysical environments, such as molecular clouds or protostellar clouds as well at the surface of outer solar system bodies. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a CsI substrate at 13 K and 80 K. In situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross section at 13 K of both H(2)O and CO(2) is about 3-4 times smaller when O ions are employed. The ice temperature seems to affect differently each species when the same projectile was employed. The formation cross section at 13 K of molecules such as C(18)O, CO (with oxygen from water), and H(2)O(2) increases when Ni ions are employed. The formation of organic compounds seems to be enhanced by the oxygen projectiles and at lower temperatures. In addition, because the organic production at 13 K is at least 4 times higher than the value at 80 K, we also expect that interstellar ices are more organic-rich than the surfaces of outer solar system bodies.

  9. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.

    Science.gov (United States)

    Pilling, Sergio; Duarte, Eduardo Seperuelo; Domaracka, Alicja; Rothard, Hermann; Boduch, Philippe; da Silveira, Enio F

    2011-09-21

    An experimental study of the interaction of highly charged, energetic ions (52 MeV (58)Ni(13+) and 15.7 MeV (16)O(5+)) with mixed H(2)O : C(18)O(2) astrophysical ice analogs at two different temperatures is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by cosmic rays inside dense, cold astrophysical environments, such as molecular clouds or protostellar clouds as well at the surface of outer solar system bodies. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a CsI substrate at 13 K and 80 K. In situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross section at 13 K of both H(2)O and CO(2) is about 3-4 times smaller when O ions are employed. The ice temperature seems to affect differently each species when the same projectile was employed. The formation cross section at 13 K of molecules such as C(18)O, CO (with oxygen from water), and H(2)O(2) increases when Ni ions are employed. The formation of organic compounds seems to be enhanced by the oxygen projectiles and at lower temperatures. In addition, because the organic production at 13 K is at least 4 times higher than the value at 80 K, we also expect that interstellar ices are more organic-rich than the surfaces of outer solar system bodies. PMID:21647477

  10. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams.

    Science.gov (United States)

    Verhaegen, F; Zakikhani, R; Dusautoy, A; Palmans, H; Bostock, G; Shipley, D; Seuntjens, J

    2006-03-01

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, p(Q), has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate p(wall), p(cav) and p(Q) perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth z(ref) and the depth where the dose has decreased to 50% of the maximum dose, R50. p(wall) was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at z(ref). For higher energy electron beams p(wall) decreased to a value of about 1%. Combined with a p(cav) about 1% below unity for all energies at z(ref), this was found to cause p(Q) to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber. PMID:16481689

  11. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Verhaegen, F [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada); Zakikhani, R [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada); DuSautoy, A [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Palmans, H [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Bostock, G [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Shipley, D [Radiation Dosimetry, National Physical Laboratory, TW11 0LW Teddington (United Kingdom); Seuntjens, J [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G1A4 (Canada)

    2006-03-07

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, p{sub Q}, has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate p{sub wall}, p{sub cav} and p{sub Q} perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth z{sub ref} and the depth where the dose has decreased to 50% of the maximum dose, R{sub 50}. p{sub wall} was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at z{sub ref}. For higher energy electron beams p{sub wall} decreased to a value of about 1%. Combined with a p{sub cav} about 1% below unity for all energies at z{sub ref}, this was found to cause p{sub Q} to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber.

  12. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  13. Structural response of DN15-tubes under radiolysis gas detonation loads for BWR safety applications

    International Nuclear Information System (INIS)

    A U-shaped DN15 tube with 15 mm ID, 3 mm wall thickness was exposed to radiolysis gas (2H2+O2) detonation loads to investigate the structural stability of typical BWR tubes. Radiolysis gas at ambient temperatures was used at initial pressure up to 70 bar. The effect of transient detonation loads with peak pressures up to 1540 bar on the tube response was studied with strain gauges and simultaneous local pressure measurements. The strain measurements demonstrated that the tube material remained in the elastic response regime for initial radiolysis gas pressures of up to 20 bar. For the case with 30 and 70 bar initial pressure, local plastic deformations were observed under peak detonation pressures of 540 and 1540 bar, respectively. The measured strain values could be well explained with a simplified analysis of the elastic-plastic material behaviour under quasi-static loading conditions. Based on the measured strain data for the DN-15 tube, upper and lower bounds were estimated for the burst pressures of the failed pipes in the Brunsbuettel and the Hamaoka-1 NPP events. The experiments provide new data for the validation of structural dynamic codes and models of the response of typical BWR tubes under radiolysis gas detonation loads. (authors)

  14. Radiolysis and corrosion of 238Pu-doped UO2 pellets in chloride brine

    Indian Academy of Sciences (India)

    M Kelm; E Bohnert

    2002-12-01

    Deaerated 5 M NaCl solution is irradiated in the presence of UO2 pellets with a-radiation from 238Pu. Experiments are conducted with 238Pu doped pellets and others with 238Pu dissolved in the brine. The radiolysis products and yields of mobilized U and Pu from the oxidative dissolution of UO2 are determined. Results found for radiolysis products and for the oxidation/dissolution of pellets immersed in Pu containing brine are similar to results for Pu doped pellets, where the radiation chemical processes occur only in the liquid layer of some 10 m thickness adjacent to the pellet. The yield of radiolysis products is comparable to earlier results, that of mobilized U from the pellets is < 1% of the total amount of oxidized species. Thus, the radiation chemical yield (-value) for mobilized hexavalent U is < 0.01 ions/100 eV. In spite of the low radiation yield for the corrosion, the rate of UO2 dissolution is higher than expected for the concentrations of long-lived oxidizing radiolysis compounds found in the solutions.

  15. Controlling Proton Beam Halo-chaos With Initial Water Bag Distribution

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High current proton beams have attractive features for possible breakhrough applications. However,the study of halo-chaos has become one of the key issues which a focusing research subject has beenformulated on developing new high-power accelerators. In this area, what needs to be resolved includesnot onlv a better understanding mechanism of beam halo-chaos formation but also its suppression and

  16. Microdosimetry of radiation fields from therapeutic C-12 beams in water: a study with Geant4 toolkit

    CERN Document Server

    Burigo, Lucas; Mishustin, Igor; Bleicher, Marcus

    2013-01-01

    We model the responses of Tissue-Equivalent Proportional Counters (TEPC) to radiation fields of therapeutic C-12 beams in a water phantom and to quasi-monoenergetic neutrons in a PMMA phantom. Simulations are performed with the Monte Carlo for Heavy Ion Therapy (MCHIT) model based on the Geant4 toolkit. The shapes of the calculated lineal energy spectra agree well with measurements in both cases. Measurements on the axis of a narrow C-12 beam with its width smaller than the TEPC diameter are studied in detail. The relation between LET and measured frequency-mean lineal energy yf is discussed. It is found that the choice of the nuclear fragmentation model used in MCHIT simulations has a relatively small influence on the calculated total lineal energy spectra. However, the shapes of the spectra measured with C-12 beams are better described by MCHIT calculations which take into account the production of delta-electrons. The validation of MCHIT with neutron beams gives us confidence in estimating the contribution...

  17. Electrochemical behaviour of stainless steel under radiation and exposed to representative chemistry in pressurised water reactor conditions

    International Nuclear Information System (INIS)

    The dissertation focuses on the behaviour of stainless steel under irradiation and exposed to primary PWR conditions. The electrochemical potential of austenitic 316L stainless steel and the environmental parameters (hydrogen pressure, temperature, etc.,) have been measured continuously at high temperature (HT) and high pressure (HP) under irradiation, using a unique experimental HTHP working cell. Two sources of irradiation, proton and electron beams, have been employed in the study. A high similarity of electrochemical behaviour under both types of irradiations has been observed: (i) an oxidative potential response under irradiation (few tens of milli-volts); (ii) an increase in the hydrogen pressure reduces the oxidative potential response; (iii) a synergetic effect of thermal ageing and fluence leading to a decrease of the oxidative response under irradiation. The observations of the oxide film showed that without irradiation, metallic nickel in the inner and outer oxide films has been observed under a high hydrogen pressure. Under irradiation, um scale cavities (pits) have been observed in the strongly electron irradiated oxide film formed on 316L stainless steel. These defects are induced by the effect of irradiation of the passive film and water radiolysis. It is also shown that water radiolysis influences the PWR water chemistry by making it become a stronger oxidant at the oxide/solution interface. As a result, the release of metallic cations is increased and a-Fe2O3 hematite has been observed on the irradiated outer oxide film where cavities were formed. (author)

  18. STUDIES ON ION BEAM APPLICATION TO IMPROVE AQUATIC MACROPHYTE REMEDIATION CAPACITY IN EUTROPHIC WATERS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ion beams have been widely usedinthe semiconduc-tor industryand appliedfor surface modificationof materi-als since the1970s,while nobody had discussed howthese ion beams could be used in genetic modification inbiological science,evenfewpeople paid attentionto bio-logical effects induced byion beamandtheir possible usein genetics.In1986,Yu et al.have discovered the ge-netic effects in rice mediated by low energy ions[1—5].Since thenion beamradiation has been widely usedtoim-prove crops and the performance of...

  19. Using multi-beam echo sounder backscatter data for sediment classification in very shallow water environments

    NARCIS (Netherlands)

    Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G.

    2009-01-01

    In a recent work described in Ref. [1], an angle-independent methodology was developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed sediment classification. The method employs the backscatter data at a certain angle to obtain the number of sediment classes and to discrim

  20. Comparison of the standards for absorbed dose to water of the NRC and the BIPM for accelerator photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Picard, S.; Burns, D.T.; Roger, P.; Allisy-Roberts, P.J. [Bureau International des Poids et Mesures (BIPM), 92 - Sevres (France); McEwen, M.R.; Cojocaru, C.D.; Ross, C.K. [National Research Council of Canada, Ionizing Radiation Standards, Ottawa, ON (Canada)

    2010-12-15

    A comparison of the dosimetry for high-energy accelerator photon beams was carried out between the National Research Council of Canada (NRC) and the Bureau International des Poids et Mesures (BIPM) in June 2009. The comparison was based on the determination of absorbed dose to water for three radiation qualities. The comparison result, reported as a ratio of the NRC and the BIPM evaluations, is 0.997 at 6 MV, 1.001 at 10 MV and 0.994 at 25 MV, each with a relative standard uncertainty of 6 * 10{sup -3}. This result is the first of the ongoing BIPM.RI(I)-K6 comparison. (authors)

  1. Summary Report on Gamma Radiolysis of TBP/n-dodecane in the Presence of Nitric Acid Using the Radiolysis/Hydrolysis Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Bruce J. Mincher; Catherine L. Riddle; Richard D. Tillotson

    2010-08-01

    Design and installation has been completed for a state-of-the-art radiolysis/hydrolysis test loop system. The system is used to evaluate the effects of gamma radiolysis and acid hydrolysis on the stability and performance of solvent extraction process solvents. The test loop is comprised of two main sections; the solvent irradiation and hydrolysis loop and the solvent reconditioning loop. In the solvent irradiation and hydrolysis loop, aqueous and organic phases are mixed and circulated through a gamma irradiator until the desired absorbed dose is achieved. Irradiation of the mixed phases is more representative of actual conditions in a solvent extraction process. Additionally, the contact of the organic phase with the aqueous phase will subject the solvent components to hydrolysis. This hydrolysis can be accelerated by controlling the system at an elevated temperature. At defined intervals, the organic from the irradiation/hydrolysis loop will be transferred to the solvent reconditioning loop where the solvent is contacted with scrub, strip, and solvent wash solutions which simulate process flowsheet conditions. These two processes are repeated until the total desired dose is achieved. Since all viable solvent extraction components in an advanced fuel cycle must exhibit high radiolytic and hydrolytic stability, this test loop is not limited to any one solvent system but is applicable to all systems of interest. Also, the test loop is not limited to testing of process flowsheets. It is also a valuable tool in support of fundamental research on newly identified extractants/modifiers and the impact of gamma radiation on their stability in a dynamic environment. The investigation of the radiolysis of a TBP/n-dodecane process solvent in contact with aqueous nitric acid has been performed. These studies were intended to confirm/optimize the operability of the test loop system. Additionally, these data are directly applicable to numerous other solvent extraction

  2. Validation of nuclear models in Geant4 using the halo of a proton pencil beam stopping in water

    CERN Document Server

    Hall, David C; Paganetti, Harald; Gottschalk, Bernard

    2015-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Impressive agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment whi...

  3. Radiolysis studies of kappa carrageenan for bio based materials development

    International Nuclear Information System (INIS)

    Kappa (κ-) carrageenan oligomers are known to have several biological activities such as anti-HIV, anti-herpes, anti tumor and antioxidant properties. Recent progress in the development of radiation modified κ-carrageenan has resulted in new applications such as plant growth promoter, radiation dose indicator and hydrogels for wound dressing. This study would investigate on the changes in chemical structure, gelation and conformational transition behavior and molecular size of κ-carrageenan at doses from 0 to 200 kGy and would be correlated to these functions for the development of bio-based materials. Pulse radiolysis studies on κ-carrageenan was carried out to determine what transient species directly affects the degradation rate of κ-carrageenan in aqueous solution. The results reveal that there is no seeming reaction of the hydrated electron with κ-carrageenan. OH reacts with κ-carrageenan at a fast rate of approximately 1.2 x 109M-1a-1. This value was influenced by conformational change from helix to coil by the addition of the metal ion Na+, reduction of molecular weight by the hydrolysis reaction and reduction of reactive sites by seasonally or irradiation. Most applications from the radiation degradation of polysaccharides started with the use of the ''hit and miss'' process where polysaccharides were irradiated at a certain dose range and finding out which dose is suitable for a specific function. Measurement of the radiation degradation yield (Gd) at different conditions can give an approximation of the Mw at an absorbed dose. This will allow the production of oligomers with a specified Mw. With the use of the Gd both in solid and in aqueous solution, one can also make a rough calculation whether it is more economical to irradiateκ-carrageenan in solid r in aqueous solution. Results of this experiment reveal that the radiation yields (Gd) of κ-carrageenan in solid and in aqueous (1%) were as follows: 2.5, 1.7 and 1.2 x 10-7 mol J-1 for solid in

  4. Effect of heterogeneous catalysts on radiolysis of aqueous solutions of phenol

    International Nuclear Information System (INIS)

    Peculiarities of phenol aqueous solution radiolysis under conditions of continuous liquid flow through the layer of solid sorbent or various heterogeneous catalysts (MnO2, Pt, Ni, Ni-Pd), applied on activated carbons, are investigated. γ-radiation dose rate is 3 Gy/s, the dose is 0.36 kGy. Data on radiation-chemical yields of phenol destruction in the presence of sorbent and heterogeneous catalysts are presented. It is shown that during heterogeneous radiolysis of phenol in all the cases its more effective removal as compared with homogeneous one takes place; simultaneously, selective effect of the surface nature of the catalysts used on the mechanism of reactions and quantitative characteristics of the destruction process is observed

  5. A study on scavenging effects of Chinese medicine on superoxide anion radicals by pulse radiolysis

    International Nuclear Information System (INIS)

    A study on scavenging and dismutation effects on superoxide anion radical (·O2-) using two Chinese antiaging medicines - Salvia miltiorrhiza injection (S.M.) and Sulekang capsule (S.C.) was carried out using pulse radiolysis. The absorption spectra of · OH2- was redetermined by radiolysis of an aqueous solution of sodium format. The absorption maximum is at about 250 nm. The results suggested that S.M. and S.C. can dismutate and scavenge ·O2-. The experimental scavenging rates of S.M. (150μg/ml) and S.C. (250μg/ml) were 89.6% and 69.5% respectively. (author)

  6. Reactivity of H. formed in the radiolysis of benzyl alcohol containing tetracycline hydrochloride at 77 K+

    International Nuclear Information System (INIS)

    The radiolysis of tetracycline hydrochloride dissolved in benzyl alcohol was studied at 77 K by ESR. The H. and e- which are formed in the radiolysis of benzyl alcohol at 77 K migrate over a distance corresponding to about 95 and 995 molecules of solvent, respectively, before they are captured by the tetracycline hydrochloride solute. The migration of H. in neopentane matrix is more favoured than in benzyl alcohol matrix. When the mole ratio between solute and solvent is 1:10000, the reactivity of H. observed by ESR is the following: a) 20% of H. reacts preferentially with solute; b) 80% of H. reacts exclusively with the solvent in the first collision. (author)

  7. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    Science.gov (United States)

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-04-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries.

  8. A study on scavenging effects of Chinese medicine on superoxide anion radicals by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengmei; Liu Andong; Gu Hongchun; Di Shaojie (Beijing Normal Univ., BJ (China). Inst. of Low Energy Nuclear Physics)

    A study on scavenging and dismutation effects on superoxide anion radical ([center dot]O[sub 2][sup -]) using two Chinese antiaging medicines - Salvia miltiorrhiza injection (S.M.) and Sulekang capsule (S.C.) was carried out using pulse radiolysis. The absorption spectra of [center dot] OH[sub 2][sup -] was redetermined by radiolysis of an aqueous solution of sodium format. The absorption maximum is at about 250 nm. The results suggested that S.M. and S.C. can dismutate and scavenge [center dot]O[sub 2][sup -]. The experimental scavenging rates of S.M. (150[mu]g/ml) and S.C. (250[mu]g/ml) were 89.6% and 69.5% respectively. (author).

  9. A study on scavenging effects of Chinese medicine on superoxide anion radicals by pulse radiolysis

    Science.gov (United States)

    Fengmei, Li; Andong, Liu; Hongchun, Gu; Shaojie, Di

    1993-10-01

    A study on scavenging and dismutation effects on superoxide anion radical (·O -2) by using two Chinese antiaging medicine-Salvia Miltiorrhiza injection (S.M.) and Sulekang capsule (S.C.) were performed by pulse radiolysis. The absorption spectra of ·O -2 have been redetermined in radiolysis of aqueous solution of sodium format. The absorption maximum is at about 250nm. The results suggested that S.M. and S.C. can dismutate and scavenge ·O -2. The experimental scavenging rate of S.M. (150μg/ml) and S.C. (250μg/ml) were 89.6% and 69.5% respectively.

  10. Study on the 1,3,5-triazine gamma-radiolysis

    International Nuclear Information System (INIS)

    Triazines are a class of molecules which have been found in meteorites such as Orgueil meteorite. Despite their poor resistance to UV radiation, these molecules survived millions of years inside a meteorite. The present work is dedicated to the examination of the radiation resistance of the simplest sym-triazine: 1,3,5-triazine. The crystals of this molecule have been irradiated with γ-radiation at 50 and 350 kGy and were studied by electronic absorption spectroscopy, liquid chromatography, FT-IR spectroscopy and differential scanning calorimetry (DSC). All the data suggest the relatively low stability of this molecule to high energy radiation. The resulting products from radiolysis are formamidine together with triazine dimers and oligomers. Other radiolysis products are H2, CH4, HCN and other gases

  11. A chain mechanism of radiolysis and photolysis in H[AuCl4]-polyvinyl alcohol system

    International Nuclear Information System (INIS)

    A study of optical properties of H[AuCl4]-containing polyvinyl alcohol (PVA) films allows the basis of a chain mechanism of their photolysis and radiolysis to be put forward. A suggestion is made, that in these chain reactions the Cl radical functions as an active particle, initiating the formation of two interacting chains in reactions of this radical with PVA and [AuCl4]-ions correspondingly. (author)

  12. EVIDENCE OF CORROSIVE GAS FORMED BY RADIOLYSIS OF CHLORIDE SALTS IN PLUTONIUM-BEARING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Louthan, M.

    2010-02-01

    Corrosion and pitting have been observed in headspace regions of stainless steel containers enclosing plutonium oxide/salt mixtures. These observations are consistent with the formation of a corrosive gas, probably HCl, and transport of that gas to the headspace regions of sealed containers. The NH{sub 4}Cl films found on the walls of the sealed containers is also indicative of the presence of HCl gas. Radiolysis of hydrated alkaline earth salts is the probable source of HCl.

  13. High dose rate radiolysis of n-pentane, n-hexane, and their mixtures

    International Nuclear Information System (INIS)

    The radiolysis of pure liquid n-pentane, n-hexane, and n-pentane/n-hexane mixtures have been studied at dose rates up to 1.2 x 1028 eV l-1 sec-1 (approximately 1015 rads hr-1). Both the absolute yields of many of the radiolysis products and their relative distribution were found to be appreciably affected by dose rate. The gamma and high-dose rate 100-eV yields of hydrogen, G(H2), for example, equalled respectively 5.5 and 4.2 in the case of n-hexane radiolysis and 5.0 and 3.5 in the case of n-pentane radiolysis. The corresponding yields of the dimeric products are similarly, for G(C12H26) (hexane experiments), 1.8 and 1.1; and for G(C10H22) (pentane experiments) 2.2 and 1.3. In addition, the distribution of the products is also seen to be a function of dose rate, e.g., the relative yields of the six isomeric dodecanes (n-dodecane, 5-methylundecane, 4-ethyldecane, 5,6-dimethyldecane, 4-ethyl-5-methylnonane and 4,5-diethyloctane) was found to change from 0.11:0.44:0.31:1.0:1.46:0.63 (gamma experiments) to 0.22:1.33:1.0:1.0:1.67:0.95 (high dose rate experiments). Kinetic analysis of our experimental results showed that the reactions principally responsible for the observed dependence on the dose rate are the reactions between the hydrogen atoms and the alkyl radicals, the intercombination of the alkyl radicals, and at the highest dose rates, the combination of the hydrogen atoms

  14. Chromatographic studies of gamma radiolysis products of phenols in methanolic solution

    International Nuclear Information System (INIS)

    The radiolytic effects on phenolic compounds (catechol, resorcinol, hydroquinone and pyrogallol), under different doses of gamma irradiation, were studied. The results shown that the radiolytic effects are independent of the irradiation doses with almost all compounds formed from the solvent radiolysis. Analysis of the resulting products were carried out by High Performance Liquid Chromatography and Capillary Gas Chromatography. The quantification of these compounds was made by mass spectrometry. (author)

  15. Gamma-ray beam attenuation as an auxiliary technique for the evaluation of the soil water retention curve

    Energy Technology Data Exchange (ETDEWEB)

    Bacchi, O.O.S.; Reichardt, K. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil); Nielsen, D.R. [California Univ., Davis, CA (United States). Dept. of Land, Air and Water Resources; Oliveira, J.C.M

    1998-09-01

    The soil water retention curve is fundamental for the hydraulic characterization of a soil and has many applications in agricultural research as well as in practical agriculture. A new procedure for soil moisture and soil bulk density evaluation inside closed pressure chambers through gamma-ray beam attenuation is presented. The proposed procedure presents several advantages in relation to the traditional process: avoids the need of continuous sample manipulation; minimizes the problem of hysteresis; allows a more precise evaluation of soil moisture by taking into account changes of soil bulk density due to swelling or shrinking on addition or removal of water allows frequent evaluation of soil moisture without the need of opening the pressure chamber; allows a more precise judgement of equilibrium; reduces drastically the time of the determination of the retention curve and alloys easy automation of data acquisition by a computer. (author) 6 refs., 1 fig.

  16. Inedible cellulose-based biomass resist material amenable to water-based processing for use in electron beam lithography

    International Nuclear Information System (INIS)

    An electron beam (EB) lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm2, a resist thickness uniformity of less than 0.4 nm on a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process

  17. Evaluation of Streamwise Waveform on a High-Speed Water Jet by Detecting Trajectories of Two Refracted Laser Beams

    Directory of Open Access Journals (Sweden)

    Kazuhiro Itoh

    2011-01-01

    Full Text Available Free surface fluctuations on a high-speed water jet were measured by a laser beam refraction technique. This method can be used to obtain quantitative time-series data on local surface fluctuations. The developed system employs two pulsed laser diodes, and it uses a high-speed optical sensor to detect the instantaneous positions of the laser beams that are refracted at the free surface. Fluctuations in the slope angle are measured at two locations separated by 1.27 mm. The wave speed of each free surface wave, which is determined by the zero-upcrossing method, is experimentally evaluated by the cross-correlation method. A two-dimensional waveform is obtained by integrating the slope angle data. The local mean wavelength and mean wave steepness are evaluated for average jet velocities up to =10 m/s. Streamwise waveforms of the high-speed water jet at several locations exhibit appreciable asymmetry and have steep profiles.

  18. Determination of Absorbed Dose to Water in Megavoltage Electron Beams Using a Calorimeter-Fricke Hybrid System

    International Nuclear Information System (INIS)

    A water calorimeter-Fricke solution hybrid dosimetry system was developed at the National Research Council of Canada to be used for reference dosimetry for high energy electron beams in the energy range produced by medical linear accelerators. The system uses water calorimetry for higher energy beams of 18 MeV and 22 MeV, while Fricke dosimetry is used for the lower energies of 4 MeV, 8 MeV and 12 MeV. Fricke solution dosimetry was also used for 18 MeV and 22 MeV to determine the Fricke solution's ε·G(Fe3+) coefficient needed for calculations at lower energies. The deviation from linearity of the system in the dose range from 6 to 52 Gy was typically 0.2-0.3% for all energies, while the average repeatability for a single dosimeter was about 1%. As a practical application, the energy dependence of the response of a parallel-plate ionization chamber was investigated. It was found that at higher energies, the predictions were similar to those calculated by TG-51 and TRS 398, while for lower energies, differences were observed of up to 1%, consistent with new Monte Carlo and experimental investigations of chamber perturbation corrections,. (author)

  19. Radiolysis Experiments for the Aqueous Self-Cooled Blanket. Final report

    International Nuclear Information System (INIS)

    The results of Fusion Technology Task NAB 1.1 (Radiolytic Experiments for the ASCB), are reported . In the Aqueous Self-Cooled Blanket (ASCB) concept, an aqueous 6Li solution in a metallic structure is used as a shielding-breeding blanket for fusion reactors. Radiolysis could be very important with respect to the design and the use of an ASCB. The objectives of this project were to quantify the radiolytic decomposition of neutron irradiated aqueous lithium solutions and to demonstrate, if possible, the suppression of this decomposition by the initial addition of a small amount of hydrogen. Closed capsules, with the solutions and an inert gas or hydrogen as cover gas, were irradiated with thermal neutrons in a fission reactor. Radiolysis products hydrogen and oxygen (from hydrogen peroxide) as well as tritium were measured after irradiation. Tritium served as an internal dosimeter. The experimental results with LiNO3 , Li2SO4 and LiOH solutions indicate that the radiolytic gas production in an ASCB is proportional to the absorbed radiation energy. The observed radiation chemical yields allow the preliminary estimation of the radiolysis effects for a specific ASCB design. Contrary to the theoretical predictions, the use of hydrogen as a cover gas at up to 1 MPa had no measurable effect on the radiolytic gas production. Probably it will thus not be possible to suppress the radiolytic decomposition of a low-pressure ASCB by the addition of H2. Catalytic recombination will be required

  20. Gamma radiolysis of aqueous solutions of 1,10-phenanthroline-5,6-quinone

    International Nuclear Information System (INIS)

    One-electron reduction of 1,10-phenanthroline-5,6-quinone (PQ) in aqueous solutions was studied by 60Co γ-radiolysis using isopropanol free radical as a reductant. The UV/vis absorption spectrum obtained after irradiation at pH9 showed a new broad band centered at 490 nm. Different absorption spectra were obtained at pH ≅ 7 and ≅ 4. Below pH7, the increase in the absorption around 490 nm was much small and decreased with decreasing pH. These observations agree with that in pulse radiolysis experiments where a residual absorption at about 490 nm remained constant for several milliseconds, and this residual absorption increased with increasing pH. It is suggested that the absorption in the visible region observed after the γ-irradiation and millisecond after pulse radiolysis is caused by the same species, a final product. MS analysis indicates that a final product with more mass number that PQ was produced after γ-irradiation at pH 3.3. This final product was assumed to be PQH2 produced by the disproportionation of PQ semiquinone neutral radical

  1. Radiolysis of carbohydrates as studied by ESR and spin-trapping

    International Nuclear Information System (INIS)

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH2-CO-and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reaction processes induced by OH reactions or γ-radiolysis in the solid state are discussed. (author)

  2. Gamma radiolysis of methyl t-butyl ether: a study of hydroxyl radical mediated reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wu Taixing; Cruz, Vivian; Mezyk, Stephen; Cooper, William J.; O' Shea, Kevin E. E-mail: osheak@fiu.edu

    2002-11-01

    The reactions of hydroxyl radicals with methyl t-butyl ether (MTBE) were studied using gamma radiolysis. Aqueous solutions of 100 ppm MTBE were saturated with 4:1 N{sub 2}O/O{sub 2} gas mixture prior to irradiation. Under these conditions hydroxyl radical is the predominant reactive species generated during gamma radiolysis. Complete degradation of MTBE is achieved within {approx}30 min of irradiation at a dose rate of 0.21 kGy/min. The major volatile organic compounds (VOCs) produced are t-butyl formate (TBF), t-butyl alcohol (TBA), acetone, and methyl acetate. Under the reaction conditions, TBF does not yield TBA, but rather acetone as the primary reaction product. The formation of TBA by hydrolysis of TBF and a hemiacetal formed during the initial oxidative processes of MTBE appear to be minor reaction pathways. Although 2-methyl-2-methoxyl-propionaldehyde (MMP) has been proposed as a reaction product, we were unable to confirm its existence and we therefore, propose a reaction pathway, which does not involve MMP, as the predominant path leading to the formation of methyl acetate. The overall yields of VOCs are low with maximum individual yields between 4% and 13%. Upon extended treatment with gamma radiolysis the VOCs can be completely degraded. These studies contribute to a better fundamental understanding of the reactions of hydroxyl radicals with MTBE, and the resulting oxidation products, TBF and TBA.

  3. Influence of alpha and gamma radiolysis on Pu retention in the solvent TBP/kerosene

    Directory of Open Access Journals (Sweden)

    Gao Yang

    2014-12-01

    Full Text Available In light of the issue of radiolysis of the solvent system in PUREX process, alpha and gamma radiation stability of tributyl phosphate (TBP/kerosene (OK have been studied in this paper, in which 238Pu dissolved in the organic phase and 60Co are selected as alpha and gamma irradiation sources, respectively. The amount of the degradation products not easily removed after the washing process has been measured by the plutonium retention. The effects of the absorbed dose, the TBP volume fraction, the cumulative absorbed dose and the presence of UO2 2+ and Zr4+ on the radiolysis of the solvents have been investigated. The results have indicated that the Pu retention increases with the increase of the absorbed dose after alpha or gamma irradiation, and is larger for the solvent containing less TBP. There is competition between UO2 2+ and Pu4+ to complex with the degradation products, and Zr4+ accelerates the radiolysis of the system.

  4. Pulse radiolysis apparatus for monitoring at 2000 Å

    DEFF Research Database (Denmark)

    Christensen, H.C.; Nilsson, G.; Pagsberg, Palle Bjørn;

    1969-01-01

    increased luminance; (2) a fast electronic switch that cut out the signal due to the Cerenkov radiation; (3) a secondary emission chamber that allowed the simultaneous measurement of the current and the direction of the pulsed electron beam; and (4) a system for remote controlled change of liquid samples...... stored in glass syringes. Reliable measurements of optical transmission could be made starting 0.2 μsec after the electron pulse at wavelengths down to 2000 Å on transient species having products of yield and absorptivity G×ε>500 mole (100 eV)-1.liter-1.cm-1...

  5. Effect of radiolysis on leachability of plutonium and americium from 76-101 glass. [Glass containing 2 mole % plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L.; Fried, S.; Friedman, A.M.; Susak, N.; Rickert, P.; Sullivan, J.C.; Karim, D.P.; Lam, D.J.

    1982-01-01

    One aspect of the leachability of actinide-bearing glass which has not been adequately addressed is the effect of radiolysis of the system (glass-water) on the amount of actinides liberated from the glass. In the present study, we have investigated the leaching of plutonium and americium from 76-101 glass samples (containing 2 mole % plutonium) in the presence of a one megaRad/hour gamma-radiation field. The presence of the radiation field was found to increase the leaching rate of both plutonium and americium by a factor of five. Speciation studies of the plutonium in the leachate indicate that the plutonium is present predominantly in the higher oxidation states, Pu(V) and Pu(VI) and that it is significantly associated with colloidal particles. Examination of the glass surfaces with x-ray photoemission spectroscopy, XPS, both before and after leaching was carried out; these studies showed lower surface concentrations of plutonium in the samples of glass leached in the radiation field. 1 figure, 3 tables.

  6. The Radiolysis of Direct Solar Orange 2 G L and Basic Sandocryl Blue B-3 G Dyes in Aqueous Solutions

    International Nuclear Information System (INIS)

    The effect of de-aeration on the decoloration of direct Solar Orange 2 G L (S O) and basic Sandocryl. Blue G-3 G (S B) dyes in aqueous solutions with concentrations ranging from 1.25x10-4 to 5x10=4 mole/L was studied at different gamma doses and dose rated. De-aerating the dye solutions by nitrogen bubbling to saturation promoted the decoloration of both dye solutions irradiated at different irradiation conditions. The decoloration rate constant K4(mole/L s) for the dyes increases with the increase of dose rate from 0.44 to 2.22 Gy/s and de-aeration treatment. The contribution of dose rate for decoloration is higher than that to de-aeration. Increase in irradiation dose was found to increase the degree of decoloration of dye solutions. The degree of decoloration was found to decrease with increasing the initial dye concentration. The absorbed dose 0.792 kGy, depending on the initial dye concentration, resulted in partial decoloration of dye solutions while the dose 4.0 kGy decolored the aqueous solutions of both dyes at faster rates. The radiation chemical yield for decoloration Gd was found to increase with de-aeration, the increase of initial dye concentration and decreases with the increase of dose. An attempt to explain the decoloration of the dye solutions based on the product species resulting from water radiolysis is given

  7. Pulse radiolysis of poly(vinyl methyl ether) in aqueous solution. Formation and structure of primary radicals

    International Nuclear Information System (INIS)

    The reactivity of a temperature-sensitive polymer poly(vinyl methyl ether) (PVME) towards OH, e-aq, and H atoms in aqueous solution has been investigated by pulse radiolysis. The rate constant for reaction of OH with PVME (1.2 x 105 Da) has been determined as 2.2 x 108 dm3 mol-1 s-1 by competition kinetics at 296 K. Hydrogen atoms are less reactive. The rate constant of the reaction of hydrated electrons with PVME is lower than 1.9 x 107 dm3 mol-1 s-1. Radicals of PVME formed in the reaction with OH have a featureless absorption spectrum with increasing absorption towards shorter wavelengths. Upon OH attack three kinds of radicals are generated: two at different α-positions and one at a β-position with respect to the oxygen atom. The α-radicals rapidly reduce tetranitromethane yielding the stable nitroform anion. From the yield of the latter species it is calculated that ca. 54% of the PVME radicals are formed at α-positions. Results are compared with earlier data on low-molecular-weight ethers and simple water-soluble polymers

  8. Secondary Beam Fragments Produced by 200 and 400 MeV/u 12C6+ Ions in Water

    International Nuclear Information System (INIS)

    Based on the GEANT4 toolkit, we study the transportation of nucleons and nuclei in tissue-like media. The fragmentation of projectile nuclei and secondary interactions of produced nuclear fragments are considered. Livermore data is used to calculate electromagnetic interaction of primary and secondary charged particles. We validate the models using experimental data of 200 MeV/u and 400 MeV/u carbon ions, interacting with tissue equivalent materials of water. The model can well describe the depth-dose distributions in water and the doses measured for secondary fragments of certain charge and certain mass number. The secondary beam fragments produced by 200 MeV/u and 400 MeV/u 12C6+ ions in water are investigated using the model. When the primary nuclei are in water, several neutron production mechanisms are involved. The light charged particles (p, d, t, 3He and 4He) and fast neutrons contribute to the dose tail behind the Bragg peak. The 11C fragments which may be the most suitable nuclei for monitoring the energy deposition in carbon-ion therapy are also discussed

  9. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    CERN Document Server

    Yamamoto, T; Horiguchi, Y; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Yamamoto, K

    2002-01-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without sup 1 sup 0 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of sup 1 sup 0 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99+-0.24, 3.04+-0.19 and 1.43+-0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50+-0.32, 2.34+-0.30 and 2.17+-0.28 for EN...

  10. Inception of Acetic Acid/Water Cluster Growth in Molecular Beams.

    Science.gov (United States)

    Bende, Attila; Perretta, Giuseppe; Sementa, Paolo; Di Palma, Tonia M

    2015-10-01

    The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium-doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well-detected Na(+) -AcA(H2O)n and Na(+)-AcA2 (H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na(+)-AcAm (H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water-acid clusters. Theoretical calculations show that small acid-water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre-nucleation embryo in the formation of aerosols in wet environments. PMID:26296812

  11. Immobilization of bacterial proteases on water-solved polymer by means of electron beam

    International Nuclear Information System (INIS)

    Possibility of electron beam usage for proteases' immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease takes place due to free-radical linking of enzyme and carrier with formation of mycellium-like structures. Immobilization improves heat resistance of enzyme up to 60oC without substrate and up to 80oC in presence of substrate, widens range of pH activity in comparison with non-immobilized forms. Immobilized proteases do not contain peroxides or long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology. (Author)

  12. Travel-time sensitivity kernels versus diffraction patterns obtained through double beam-forming in shallow water.

    Science.gov (United States)

    Iturbe, Ion; Roux, Philippe; Virieux, Jean; Nicolas, Barbara

    2009-08-01

    In recent years, the use of sensitivity kernels for tomographic purposes has been frequently discussed in the literature. Sensitivity kernels of different observables (e.g., amplitude, travel-time, and polarization for seismic waves) have been proposed, and relationships between adjoint formulation, time-reversal theory, and sensitivity kernels have been developed. In the present study, travel-time sensitivity kernels (TSKs) are derived for two source-receiver arrays in an acoustic waveguide. More precisely, the TSKs are combined with a double time-delay beam-forming algorithm performed on two source-receiver arrays to isolate and identify each eigenray of the multipath propagation between a source-receiver pair in the acoustic waveguide. A relationship is then obtained between TSKs and diffraction theory. It appears that the spatial shapes of TSKs are equivalent to the gradients of the combined direction patterns of the source and receiver arrays. In the finite-frequency regimes, the combination of TSKs and double beam-forming both simplifies the calculation of TSK and increases the domain of validity for ray theory in shallow-water ocean acoustic tomography. PMID:19640037

  13. Production of intense beams of mass-selected water cluster ions and theoretical study of atom-water interactions

    CERN Document Server

    Wang, Z P; Reinhard, P -G; Suraud, E; Bruny, G; Montano, C; Feil, S; Eden, S; Abdoul-Carime, H; Farizon, B; Farizon, M; Ouaskit, S; Maerk, T D

    2009-01-01

    The influences of water molecules surrounding biological molecules during irradiation with heavy particles (atoms,ions) are currently a major subject in radiation science on a molecular level. In order to elucidate the underlying complex reaction mechanisms we have initiated a joint experimental and theoretical investigation with the aim to make direct comparisons between experimental and theoretical results. As a first step, studies of collisions of a water molecule with a neutral projectile (C atom) at high velocities (> 0.1 a.u.), and with a charged projectile (proton) at low velocities (< 0.1 a.u.) have been studied within the microscopic framework. In particular, time-dependent density functional theory (TDDFT) was applied to the valence electrons and coupled non-adiabatically to Molecular dynamics (MD) for ionic cores. Complementary experimental developments have been carried out to study projectile interactions with accelerated (< 10 keV) and mass-selected cluster ions. The first size distributio...

  14. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  15. Effects of electron beam irradiation combined with hot water immersion treatment for shelf life extension of bananas

    International Nuclear Information System (INIS)

    A study of the effects of minimal processing treatments, both individually or in combinations, was carried out in order to extend the shelf life and to improve the quality of bananas. Pre climacteric bananas at light full three-quarter grade, were either treated with hot water immersion for 1-30 min at 45-55 degree C, or irradiated with electron beams (2.0 MeV, Van de Graaff accelerator), to a dose of 0.1-1.5 kGy. All fruit was stored at 21 ± 1 degree C and relative humidity of 85-95 %. There was no significant delay in ripening of fruit treated with hot water immersion at the above temperatures. Some damage to fruit particularly peel scalding at ends occurred at the higher temperatures (>50 degree C). The 50 degree C, 5 minutes immersion was selected for further study. Irradiation to 0.1-0.3 kGy delayed the ripening (up to 3 days) without affecting fruit quality. Doses greater than 0.4 kGy resulted in extensive discoloration and fruit splitting. No significant differences could be detected organoleptically between bananas irradiated at 0.15 kGy and the control. Results of the physico-chemical attributes of the bananas were reported for fruits at colour stage 5 and after 10 and 15 days of storage. The combination treatment of hot water immersion and irradiation at the above settings further extended the shelf life of the banana fruits

  16. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  17. Electron beam damage in oxides: a review.

    Science.gov (United States)

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  18. Development of ultra-violet femtosecond pulse radiolysis system based on a photocathode rf electron-gun linac

    International Nuclear Information System (INIS)

    Two important radical species of alkyl radical (R·) and hydroxyl radicals (OH·) in nuclear fuel reprocessing or radiation cancer therapy have absorption bands around the 250 nm in Ultra-violet region. Despite the OH· and R· are important active species in the radiation chemistry, since those absorption coefficients are small and lack of time resolution of pulse radiolysis, a direct study of the reaction dynamics has been difficult until now. In order to elucidate the formation and reaction with solutes, measurable wavelength was extended to ultraviolet of the femtosecond pulse radiolysis system using a photocathode RF gun accelerator. Problems of ultraviolet femtosecond pulse radiolysis measurement, the time dependent behaviors of R· and OH· are reported. (author)

  19. A Potential Mechanism for Perchlorate Formation on Mars: Surface-Radiolysis-Initiated Atmospheric Chemistry

    Science.gov (United States)

    Wilson, Eric; Atreya, Sushil K.; Kaiser, Ralf-Ingo; Mahaffy, Paul

    2016-10-01

    Perchlorate (ClO4–) is prevalent on Earth, and with observations of perchlorate on lunar samples and chondrite meteorites, along with recent observations indicating the presence of perchlorate (ClO4–) in the Martian surface by the Phoenix lander and the Sample Analysis at Mars (SAM) on the Mars Science Laboratory (MSL) rover, it appears that the existence of perchlorate is widespread throughout the solar system. However, the abundance and isotopic composition of Martian perchlorate suggest that the perchlorate formation mechanism on Mars may involve a different path than perchlorate found elsewhere in the solar system. Motivated by this, we employ a one-dimensional chemical model to investigate the viability of perchlorate formation in the atmosphere of Mars, instigated by the radiolysis of the Martian surface by galactic cosmic rays. The surface-atmosphere interaction to produce Martian perchlorate involves the sublimation of chlorine oxides into the atmosphere, through surface radiolysis, and their subsequent synthesis to form perchloric acid (HClO4), followed by surface deposition and mineralization to form surface perchlorates. Considering the chlorine oxide, OClO, we find an OClO surface flux as low as 3.2x107 molecules cm–2 s–1, sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  20. Femtosecond pulse radiolysis study of solvation process of electrons in alcohol

    International Nuclear Information System (INIS)

    The solvation processes of electrons in neat n-alcohols have been studied by using the femtosecond pulse radiolysis. The transient optical absorptions of the solvated electrons and the pre-solvated electrons were observed in the visible region and the infrared region, respectively. The reaction rate constants of a dry electron and a pre-solvated electron were obtained by using electron scavengers. The data suggested a dry electron has much higher reactivity than a pre-solvated electron or a solvated electron. (author)

  1. Reaction of hydroxyl radical with phenylpropanoid glycosides from Pedicularis species: a pulse radiolysis study

    Institute of Scientific and Technical Information of China (English)

    王潘奋; 郑荣梁; 高建军; 贾忠建; 王文峰; 姚思德; 张加山; 林念芸

    1996-01-01

    Using pulse radiolysis technique, the reaction between hydroxyl radical and 7 phenylpropanoidglycosides: echinacoside, verbascoside, leucosceptoside A, martynoside, pediculariosides A, M and N which were isolated from Pedicularis were examined. The rate constants of these reactions were determined by transient absorption spectra. All 7 phenylpropanoid glycosides react with hydroxyl radical at high rate constants within (0.97-1.91)×1010L · mol-1 · s-1. suggesting that they are effective hydroxyl radical scavengers. The results demonstrate that the numbers of phenolic hydroxyl groups of phenylpropanoid glycosides are directly related to their scavenging activities. The scavenging activities are likely related to o-dihydroxy group of phenylpropanoid glycosides as well.

  2. Time resolved ESR spectroscopy. ESR pulse radiolysis equipment with microsecond time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Beckert, D.; Mehler, K. (Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1983-01-01

    Time resolved ESR experiments allow the study of the chemical kinetics as well as spin dynamics of free radicals in the liquid phase. Starting from the physical and chemical requirements the experimental parameters of a universal time resolved ESR spectrometer are derived. The main components of the ESR pulse radiolysis equipment are described and their technical parameters are discussed. By two experimental examples it is shown that at a time resolution of 0.3 ..mu..s a sensitivity of c/sub min/ = 10/sup -6/ mol dm/sup -3/ for simple radical spectra can be achieved.

  3. Pulse radiolysis study of solvated electron formation in glassy alcohols at low temperature

    International Nuclear Information System (INIS)

    Pulse radiolysis study of glass-forming alcohols at low temperature (140K∼RT) was carried out to clarify the primary process of pre-solvated and solvated electron in lower alcohols. The very slow decay of pre-solvated electron and the very slow formation of solvated electron were observed at nanosecond region because of very high viscosity of alcohols near melting and glass transition temperature. The activation energy of solvated electron formation was estimated to be 0.17 eV, and this suggests that the formation process of solvated electron depends on a break of hydrogen bond due to reorientation of OH-groups. (author)

  4. Aromatic carbonium ions in liquid alkanes and alcohols from laser photoionization and pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Trifunac, A.D.; Liu, A.D.; Sauer, M.C. Jr.; Jonah, C.D.

    1991-05-01

    Aromatic carbonium ions are observed in photoionization and radiolysis of aromatic compounds in hydrocarbons and alcohols. These aromatic carbonium ions result from the protonation of aromatic molecules by the protonated species of hydrocarbons and alcohols which are ubiquitous in the {open_quotes}high energy{close_quotes} chemistry processes. The condensed-phase optical absorption spectra of aromatic radical cations and aromatic carbonium ions are essentially identical. The assignment of the carbonium ion species is feasible by considering the lifetimes, kinetics, scavenger and solvent effects on radical cation and carbonium ion lifetimes.

  5. The possible role of hydrothermal vents in chemical evolution: Succinic acid radiolysis and thermolysis

    Science.gov (United States)

    Cruz-Castañeda, J.; Colín-García, M.; Negrón-Mendoza, A.

    2014-07-01

    In this research, the behavior under a high radiation field or high temperature of succinic acid, a dicarboxylic acid clue in metabolic routes, is studied. For this purpose, the molecule was irradiated with gamma rays in oxygen-free aqueous solutions, and the thermal decomposition was studied in a static system at temperatures up to 90 °C, simulating a white hydrothermal vent. Our results indicate that a succinic acid is a relatively stable compound under irradiation. The gamma radiolysis yields carbon dioxide and di- and tricarboxylic acids such as malonic, carboxysuccinic, and citric acids. The main products obtained by the thermal treatment were CO2 and propionic acid.

  6. The reduction process of phytic acid silver ion system: A pulse radiolysis study

    Science.gov (United States)

    Joshi, Ravi; Mukherjee, Tulsi

    2007-05-01

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag +→Ag 0→Ag 2+→Ag 32+, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size ( Rav=100 nm).

  7. The reduction process of phytic acid-silver ion system: A pulse radiolysis study

    International Nuclear Information System (INIS)

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag+→Ag0→Ag2+→Ag32+, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size (R av=100 nm)

  8. Mechanism and kinetics in reactions of caffeic acid with radicals by pulse radiolysis and calculation

    International Nuclear Information System (INIS)

    The interaction of caffeic acid with eaq-, (CH3)2(OH) CCH2·, CO2·-, H·, ·OH and N3· radicals were studied by γ-, pulse radiolysis and molecular orbital calculation. UV-visible spectra of electron/·OH adducts, semi-quinone radicals of caffeic ions, and the stable products from the reactions were derived. The rate constants were determined. The attacked sites and the most favorable structures of the transient radicals were predicted. Reaction mechanisms were proposed. (author)

  9. Radiation chemistry of high temperature and supercritical water

    International Nuclear Information System (INIS)

    The progresses of the studies on water radiolysis at elevated temperatures and supercritical water are reviewed, with the emphasis on the temperature and density effects on the radiolytic yields of water decomposition products, the reaction rate constants and the spectral properties of hydrated electron. (author)

  10. Water resistance and surface morphology of synthetic fabrics covered by polysiloxane/acrylate followed by electron beam irradiation

    CERN Document Server

    El-Naggar, A M; Mohammed, S S; Alam, E A

    2003-01-01

    Different synthetic fabrics were treated by electron beam surface coating with two formulations based on polydimethylsiloxane (PDMS) and polystyrene (PS) or poly(methyl methacrylate) (PMMA) oligomers. The water resistance properties were investigated in terms of the percentage of water repellency and absorption. Also, the surface coated fabrics were examined by scanning electron microscopy/microscope (SEM) connected to an energy dispersive X-ray (EDX) unit to determine the percentage atomic contents of elements. The results showed that the adhesion of the polysiloxane formulation to the surface depends largely on the kind of acrylate oligomer and textile fabric as indicated by the EDX analysis for silicon. In this regard, PDMS/PS formulation is more compatible with polyester and nylon-6 fabrics than PDMS/PMMA one. However, it was found that PDMS/PMMA formulation is more compatible with cotton/polyester blend than PDMS/PS. The SEM micrographs give further supports to the EDX analysis. On the basis of the perce...

  11. Dynamics and reactivity of confined water

    International Nuclear Information System (INIS)

    In the context of new sustainable energy sources quest, the nuclear energy remains a key solution. However, with the development of nuclear technology, problems relating to nuclear waste disposal arise; thus, the radiolysis of water in confined media is extremely important with respect to matters related to long time storage of nuclear waste. Studies in model porous media would allow the projection of a confined water radiolysis simulator. A first step in this direction was made by studying the radiolysis of water confined in Vycor and CPG glasses; this study continues the trend set and investigates the effects of confinement in metal materials upon the water radiolysis allowing the understanding of metal - water radiation induced corrosion. A further/complete understanding of the radiolytic process under confinement requires knowledge of the effect of confinement upon the dynamics of confined molecules and on the evolution of the species produced upon ionizing radiation. In this respect, we have used the OH vibrator as a probe of the hydrogen bond network properties and thus investigated the dynamics of confined water using IR time resolved spectroscopy. The evolution of the hydrated electron under confinement was studied on a nano and picosecond time scale using UV pump - visible probe technique and single shot spectroscopy. (author)

  12. Synthesis of silver nanoparticles by radiolysis, photolysis and chemical reduction of AgNO3 in Hibiscus sabdariffa infusion (karkade)

    International Nuclear Information System (INIS)

    Silver nanoparticles of different average diameters were synthesized by γ-radiolysis, UV-photolysis and chemical reduction of AgNO3 solutions in Hibiscus sabdariffa infusion commonly known as 'karkade'. The UV-photolysis was performed either by using a conventional Hg low pressure lamp emitting at 254 nm and also by using a new compact UV-LED source emitting at 360 nm. The kinetics rate constant of silver nanoparticles synthesis produced by γ-radiolysis and UV photolysis were determined and the average diameter of the resulting nanoparticles was estimated. (author)

  13. Gassing and change of thickening properties of infrequently-cross-linked carboxyvinyl polyelectrolytes during γ-radiolysis

    International Nuclear Information System (INIS)

    Effect of 60Co j-radiation on polyacrylic acid (PAA) and infrequently-cross-linked carboxyvinyl polyelectrolytes (ICP) obtained on the basis of acrylic acid is studied. Irradiation was carried out at room temperature up to 1.4-350 kGr, the dose rate being 6.4 Gr/s. It is stated that carbon oxides are the main gaseous products of PAA and ICP radiolysis. Along with decarbonization during radiolysis radiation-chemical processes of cross-linking and destruction of initial joints in infrequently-cross-linked polyelectrolytes take place, that decreases their thickening properties. In air these processes are intensified

  14. An ESR study of the gamma radiolysis of aromatic polyesters containing isomeric naphthalene links

    International Nuclear Information System (INIS)

    Six polyesters were synthesised from 4,4'-oxy-bis(benzoyl chloride) and 1,4-, 1,5-, 1,6-, 2,3-, 2,6-, and 2,7-naphthalenediol isomers. The structures of the polyesters were characterised by means of IR, inherent viscosities in tetrachloroethane (TCE), solutions at 303 K and thermal analysis. The glass transition temperatures were in the range of 425-494 K by DSC thermal analysis. All of the polyesters were irradiated in an AECL Gammacell 220 unit at a dose rate of approximately 6.7 kGy/h to doses in the range of 0-15 kGy at 77 and 300 K. ESR spectroscopy was used to examine the radicals formed during radiolysis and to measure their yields. The G-values for radical formation in the polyesters were found to be in the range 0.18-1.41 at 77 K and 0.19-0.78 at 300 K. At 77 K, up to 15% of the radicals formed on radiolysis were found to be photo-bleachable anion radicals. Annealing experiments were carried out in order to identify the neutral radicals, which were assigned to naphthyl- or phenyl- and phenoxyl-type radicals

  15. Semi-quantitative and quantitative studies on the gamma radiolysis of C5-BTBP

    Energy Technology Data Exchange (ETDEWEB)

    Fermvik, A.; Ekberg, C. [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Nuclear Chemistry; Chalmers Univ. of Technology, Goeteborg (Sweden). Industrial Materials Recycling; Gruener, B.; Kvicalova, M. [Academy of Sciences of the Czech Republic, Husinec-Rez near Prague (Czech Republic). Inst. of Inorganic Chemistry

    2011-07-01

    An industrial liquid-liquid extraction process for reprocessing of spent nuclear fuel will inevitably lead to radiolysis of the phases, since the process streams contain highly radioactive species. Solvents containing one of the BTBP (6,6'-bis(5,6-dialkyl-[1,2,4]-triazin-3-yl)-2,2'-bipyridine) molecules intended for the separation of trivalent actinides (An) from lanthanides (Ln), the so called C5-BTBP, have shown a dramatic decrease in both distribution ratios and An/Ln separation factor when irradiated; hence, the molecule is highly unstable towards radiolysis. HPLC-, APCI(+)-MS and LC-MS analyses were performed on irradiated solvents containing initially 0.005 M C5-BTBP dissolved in either hexanol or cyclohexanone. The decrease in concentration of starting molecule as well as the increase in concentration of various degradation products were studied with quantitative and semi-quantitative measurements. Structures were suggested for the degradation products produced in highest yields and these were compared to previously proposed structures for the same products. (orig.)

  16. An ESR study of the gamma radiolysis of aromatic polyesters containing isomeric naphthalene links

    Science.gov (United States)

    Hill, David J. T.; Choi, Bong-Ku; Ahn, Hung-Kun; Choi, E.-Joon

    2001-07-01

    Six polyesters were synthesised from 4,4'-oxy-bis(benzoyl chloride) and 1,4-, 1,5-, 1,6-, 2,3-, 2,6-, and 2,7-naphthalenediol isomers. The structures of the polyesters were characterised by means of IR, inherent viscosities in tetrachloroethane (TCE), solutions at 303 K and thermal analysis. The glass transition temperatures were in the range of 425-494 K by DSC thermal analysis. All of the polyesters were irradiated in an AECL Gammacell 220 unit at a dose rate of approximately 6.7 kGy/h to doses in the range of 0-15 kGy at 77 and 300 K. ESR spectroscopy was used to examine the radicals formed during radiolysis and to measure their yields. The G-values for radical formation in the polyesters were found to be in the range 0.18-1.41 at 77 K and 0.19-0.78 at 300 K. At 77 K, up to 15% of the radicals formed on radiolysis were found to be photo-bleachable anion radicals. Annealing experiments were carried out in order to identify the neutral radicals, which were assigned to naphthyl- or phenyl- and phenoxyl-type radicals.

  17. Laboratory measurements of forward and backward scattering of laser beams in water droplet clouds

    Science.gov (United States)

    Smith, R. B.; Houston, J. D.; Ulitsky, A.; Carswell, A. I.

    1986-01-01

    Many aspects of the forward and backward scattering in dense water droplet clouds were studied using a laboratory scattering facility. This system is configured in a lidar geometry to facilitate comparison of the laboratory results to current lidar oriented theory and measurements. The backscatter measurements are supported with simultaneous measurements of the optical density, mass concentration, and droplet size distribution of the clouds. Measurements of the extinction and backscatter coefficients at several important laser wavelength have provided data on the relationship between these quantities for laboratory clouds at .633, 1.06, and 10.6 microns. The polarization characteristics of the backscatter of 1.06 microns were studied using several different types of clouds. More recently, the laboratory facility was modified to allow range-resolved backscatter measurements at 1.06 microns. Clouds made up of 3 layers, each with its own density, can be constructed. This allows the study of the effect of cloud inhomogeneity on the forward and backscatter.

  18. ESR study on free radicals produced from hexane by vacuum-ultraviolet photolysis, sensitized photolysis, and γ-radiolysis

    International Nuclear Information System (INIS)

    The free radicals generated from polycrystalline hexane at 77K by photolysis with vacuum-ultraviolet light, sensitized photolysis, and γ-radiolysis were compared with each others using the ESR method. The selectivity of radical formation was found to depend on the excitation method. (author)

  19. Development of compact quantum beam generation system and the application

    International Nuclear Information System (INIS)

    After the approval of the project as the 'High-Tech Research Center Project' conducted by MEXT at Waseda University, the laser driven photo-cathode RF-Gun (RF-Gun) has been developed very extensively. The system was developed to obtain the stable and high quality (i.e. very low emittance) electron beam in conjunction with the system stabilization such as RF power source and laser system for the electron emission. The high quality electron beams have been applied for the development of novel beam diagnostic system. At the same time, the beams (electron and laser) are applied for the inverse Compton scattering experiment for the generation of soft-X-ray with quasi-monochromatic energy and short time structure, and for the pump probe experiment (the pico-second pulse radiolysis) as the very compact system. (author)

  20. HYDROGEN GENERATION FROM SLUDGE SAMPLE BOTTLES CAUSED BY RADIOLYSIS AND CHEMISTRY WITH CONCETNRATION DETERMINATION IN A STANDARD WASTE BOX (SWB) OR DRUM FOR TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    RILEY DL; BRIDGES AE; EDWARDS WS

    2010-03-30

    A volume of 600 mL of sludge, in 4.1 L sample bottles (Appendix 7.6), will be placed in either a Super Pig (Ref. 1) or Piglet (Ref. 2, 3) based on shielding requirements (Ref. 4). Two Super Pigs will be placed in a Standard Waste Box (SWB, Ref. 5), as their weight exceeds the capacity of a drum; two Piglets will be placed in a 55-gallon drum (shown in Appendix 7.2). The generation of hydrogen gas through oxidation/corrosion of uranium metal by its reaction with water will be determined and combined with the hydrogen produced by radiolysis. The hydrogen concentration in the 55-gallon drum and SWB will be calculated to show that the lower flammability limit of 5% hydrogen is not reached. The inner layers (i.e., sample bottle, bag and shielded pig) in the SWB and drum will be evaluated to assure no pressurization occurs as the hydrogen vents from the inner containers (e.g., shielded pigs, etc.). The reaction of uranium metal with anoxic liquid water is highly exothermic; the heat of reaction will be combined with the source term decay heat, calculated from Radcalc, to show that the drum and SWB package heat load limits are satisfied. This analysis does five things: (1) Estimates the H{sub 2} generation from the reaction of uranium metal with water; (2) Estimates the H{sub 2} generation from radiolysis (using Radcalc 4.1); (3) Combines both H{sub 2} generation amounts, from Items 1 and 2, and determines the percent concentration of H{sub 2} in the interior of an SWB with two Super Pigs, and the interior of a 55-gallon drum with two Piglets; (4) From the combined gas generation rate, shows that the pressure at internal layers is minimal; and (5) Calculates the maximum thermal load of the package, both from radioactive decay of the source and daughter products as calculated/reported by Radcalc 4.1, and from the exothermic reaction of uranium metal with water.

  1. Electron beam induced water-soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid

    Science.gov (United States)

    Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol

    2016-01-01

    The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.

  2. Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Jerden, James L.; Ebert, William L.; Wittman, Richard S.

    2013-08-30

    The primary purpose of this report is to describe the strategy for coupling three process level models to produce an integrated Used Fuel Degradation Model (FDM). The FDM, which is based on fundamental chemical and physical principals, provides direct calculation of radionuclide source terms for use in repository performance assessments. The G-value for H2O2 production (Gcond) to be used in the Mixed Potential Model (MPM) (H2O2 is the only radiolytic product presently included but others will be added as appropriate) needs to account for intermediate spur reactions. The effects of these intermediate reactions on [H2O2] are accounted for in the Radiolysis Model (RM). This report details methods for applying RM calculations that encompass the effects of these fast interactions on [H2O2] as the solution composition evolves during successive MPM iterations and then represent the steady-state [H2O2] in terms of an “effective instantaneous or conditional” generation value (Gcond). It is anticipated that the value of Gcond will change slowly as the reaction progresses through several iterations of the MPM as changes in the nature of fuel surface occur. The Gcond values will be calculated with the RM either after several iterations or when concentrations of key reactants reach threshold values determined from previous sensitivity runs. Sensitivity runs with RM indicate significant changes in G-value can occur over narrow composition ranges. The objective of the mixed potential model (MPM) is to calculate the used fuel degradation rates for a wide range of disposal environments to provide the source term radionuclide release rates for generic repository concepts. The fuel degradation rate is calculated for chemical and oxidative dissolution mechanisms using mixed potential theory to account for all relevant redox reactions at the fuel surface, including those involving oxidants produced by solution radiolysis and provided by the radiolysis model (RM). The RM calculates

  3. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m3 day-1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  4. Pharmaceuticals as emerging contaminants and their removal from water. A review.

    Science.gov (United States)

    Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ferro-García, María Ángeles; Prados-Joya, Gonzalo; Ocampo-Pérez, Raúl

    2013-10-01

    The main objective of this study was to conduct an exhaustive review of the literature on the presence of pharmaceutical-derived compounds in water and on their removal. The most representative pharmaceutical families found in water were described and related water pollution issues were analyzed. The performances of different water treatment systems in the removal of pharmaceuticals were also summarized. The water treatment technologies were those based on conventional systems (chlorine, chlorine dioxide, wastewater treatment plants), adsorption/bioadsorption on activated carbon (from lotus stalks, olive-waste cake, coal, wood, plastic waste, cork powder waste, peach stones, coconut shell, rice husk), and advanced oxidation processes by means of ozonation (O₃, O₃/H₂O₂, O₃/activated carbon, O₃/biological treatment), photooxidation (UV, UV/H₂O₂, UV/K₂S₂O₈, UV/TiO₂, UV/H₂O₂/TiO₂, UV/TiO₂/activated carbon, photo-Fenton), radiolysis (e-Beam, ⁶⁰Co, ¹³⁷Cs. Additives used: H₂O₂, SO₃²⁻, HCO₃⁻, CH₃₋OH, CO₃²⁻, or NO₃⁻), and electrochemical processes (Electrooxidation without and with active chlorine generation). The effect of these treatments on pharmaceutical compounds and the advantages and disadvantages of different methodologies used were described. The most important parameters of the above water treatment systems (experimental conditions, removal yield, pharmaceutical compound mineralization, TOC removal, toxicity evolution) were indicated. The key publications on pharmaceutical removal from water were summarized.

  5. Reaction of carotenoids with CCl3OO· by using pulse radiolysis

    Institute of Scientific and Technical Information of China (English)

    赵文恩; 姚思德; 王强; 钱素平; 王文峰; 韩雅珊

    2003-01-01

    The interactions of carotenoids (bixin, β-carotene and lycopene) with CCl3OO@ in aqueous and i-propylalcohol solution saturated with air have been studied by pulse radiolysis. For bixin and β-carotene reaction products from forming process, absorbing in the region of 650 nm, is observed with concomitant carotenoid bleaching (bixin at 500 nm, β-carotene at 450 nm). Their rate constants from forming process are 1.78×108 and 7.8×107 mol-1@L@s-1 respectively. However, in the case of lycopene, no such a forming process of reaction as bixin and β-carotene can be observed although there is the bleaching reaction (rate constant 4×107 mol-1@L@s-1). The results suggest that the carotenoid radical cationand an additional radical are produced in the case of bixin and β-carotene, whereas lycopene undergoes electron transfer with CCl3OO@, forming cation radical.

  6. Formation of semiquinone radical anion and free radical scavenging reactions of plumbagin. A pulse radiolysis study

    International Nuclear Information System (INIS)

    Kinetics and mechanism of scavenging of reducing free radicals by plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) are studied using pulse radiolysis technique. It scavenged superoxide radical, hydroxyethyl radical and hydrated electron with bimolecular rate constants of 8.9 × 107, 2.3 × 109 and 1.6 × 1010 M-1 s-1, respectively in aqueous-alcohol medium. Plumbagin also scavenged linoleic acid peroxyl radical and tyrosyl radical with bimolecular rate constants of 1.0 × 108 and 7.0 × 106 M-1 s-1, respectively. Further, redox properties of plumbagin and its transients are studied using standard redox couples and cyclic voltammetry. (author)

  7. Radiolysis of Amino Acids in Outer Solar-System Ice Analogs

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2011-01-01

    Amino acids have been found in cometary dust particles and in the organic component of meteorites. These molecules, important for pre-biotic chemistry and for active biological systems, might be formed in cold planetary or interstellar environments and then delivered to H20-rich surfaces in the outer solar system. Many models for the availability of organic species on Earth and elsewhere depend on the ability of these molecules to survive in radiation-rich space environments. This poster presents results of O.8-MeV proton radiolysis of ice films at lS-140K. using infrared spectroscopy, the destruction rates of glycine, alanine, and phenylalanine have been determined for both pure films and those containing amino acids diluted in H2o. our results are discussed in terms of the survivability of these molecules in the icy surfaces present in the outer solar system and the possibility of their detection by instruments on board the New Horizons spacecraft

  8. Use of pulse radiolysis for the study of the chemistry of aqueous ozone and ozonide solutions

    DEFF Research Database (Denmark)

    Sehested, Knud; Holcman, Jerzy; Bjergbakke, Erling;

    1986-01-01

    The chemistry of aqeous ozone, O3, and ozonide, O3−, is of great interest from a technological, environmental and scientific point of view. The literature about their aqueous chemistry is extensive, the reaction mechanisms are still not well understood. The ozonide anion is a free radical...... that is too unstable in aqueous media to be studied by classical means. Some properties of the aqueous ozonide radical ion have been elucidated earlier by means of the pulse radiolysis technique. The OH− catalyzed chain decomposition of aqueous ozone, 2O3→3O2, has not yet been rationalized in terms...... reactions and provides kinetic data sufficient for computer simulations of aqueous O3/O3− chemistry....

  9. Chemical kinetics in the gas phase pulse radiolysis of hydrogen sulfide systems

    International Nuclear Information System (INIS)

    Formations and decays of HS and HS2 radicals in the gas phase pulse radiolysis of pure H2S, H2S/Ar and H2S/H2 systems have been followed directly by kinetic spectroscopy. The literature on the subject is reviewed and a complete reaction scheme is discussed. Computer simulations have been used to check the validity of the proposed mechanisms. Rate constants ksub(HS+HS) = (2.0+-0.4) x 1010 M-1s-1 and ksub(H+H2S) = (6.0+-1.2)x 108 M-1s-1 have been determined. The reaction of HS radicals with S atoms is responsible for the HS2 formation. Pseudo-first order rate constants for reactions of HS with 1.3 butadiene, ethylene and molecular oxygen are reported. (author)

  10. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route.

    Science.gov (United States)

    Abedini, Alam; Bakar, Ahmad Ashrif A; Larki, Farhad; Menon, P Susthitha; Islam, Md Shabiul; Shaari, Sahbudin

    2016-12-01

    This paper focuses on the recent advances on radiolysis-assisted shape-controlled synthesis of noble metal nanostructures. The techniques and protocols for producing desirable shapes of noble metal nanoparticles are discussed through introducing the critical parameters which can influence the nucleation and growth mechanisms. Nucleation rate plays a vital role on the crystallinity of seeds while growth rate of different seeds' facets determines the final shape of resultant nanoparticles. Nucleation and growth rate both can be altered with factors such as absorbed dose, capping agents, and experimental environment condition to control the final shape. Remarkable physical and chemical properties of synthesized noble metal nanoparticles by controlled morphology have been systematically evaluated to fully explore their applications. PMID:27283051

  11. Pulse radiolysis of fast reactions in molecular systems. Progress report, November 1979-September 1980

    International Nuclear Information System (INIS)

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of reactive intermediates using the pulse radiolysis technique. Optical absorption spectra of these transient species, which determine the course of the chemistry, are being obtained. The types of reactive species currently of interest are organic molecule ions (both cations and anions) and radical ions, and transition metal carbonyl radicals in solution. Since reaction is initiated by a pulse of high energy electrons, our investigations inherently relate to radiation chemical systems. The information obtained is, however, also of interest in various areas of organic reaction kinetics in which ionic species are known to play a central role. The rectivity of the transition metal carbonyl radicals is of interest in the area of homogeneous catalysis. Current activities involve: spectra and reactivities of transition metal carbonyl radicals of the type M(CO)5; reactivity of organic ionic species (including carbocations and carbanions) in irradiated solutions

  12. Use of pulse radiolysis for the study of the chemistry of aqueous ozone and ozonide solutions

    International Nuclear Information System (INIS)

    The chemistry of aqueous ozone, O-3, and ozonide, O3-, is of great interest from a technological, environmental and scientific point of view. The literature about their aqueous chemistry is extensive, the reaction mechanisms are still not well understood. The OH- catalyzed chain decomposition of aqueous ozone, 2O3 yields 3O2, has not yet been rationalized in terms of a detailed mechanism. An investigation on the reaction mechanisms using pulse radiolysis in combination with a high pressure cell, rapid mixing and numerical simulation of the experiments is reported. The technique makes it possible to give a detailed description of the reaction mechanisms in terms of uni- and bimolecular reactions and provides kinetic data sufficient for computer simulations of aqueous O3/O3- chemistry. (author)

  13. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1979-September 1980

    International Nuclear Information System (INIS)

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of reactive intermediates using the pulse radiolysis technique. Optical absorption spectra of these transient species, which determine the course of the chemistry, are being obtained. The types of reactive species currently of interest are organic molecule ions (both cations and anions) and radical ions, and transition metal carbonyl radicals in solution. Since reaction is initiated by a pulse of high energy electrons, our investigations inherently relate to radiation chemical systems. The information obtained is, however, also of interest in various areas of organic reaction kinetics in which ionic species are known to play a central role. The reactivity of the transition metal carbonyl radicals is of interest in the area of homogeneous catalysis. Current activities involve: spectra and reactivities of transition metal carbonyl radicals of the type M(CO)5; reactivity of organic ionic species (including carbocations and carbanions) in irradiated solutions

  14. Direct optical observation of the formation of some aliphatic alcohol radicals. A pulse radiolysis study

    Indian Academy of Sciences (India)

    E Janata

    2002-12-01

    The kinetics of the reactions of hydroxyl radicals and hydrogen atoms with some aliphatic alcohols in aqueous solutions were studied using pulse radiolysis. Based on the increase in optical absorption in the UV region, the rate constants for the reaction of hydroxyl radicals and hydrogen atoms with methanol, ethanol, 2-propanol or -butyl alcohol were determined to be 9.0 × 108, 2.2 × 109, 2.0 × 109, 6.2 × 108 and 1.1 × 106, 1.8 × 107, 5.3 × 107, 2.3 × 105 dm3 mol-1 s-1 respectively. The bimolecular decay rate constants for the alcohol radicals produced in methanol and ethanol were evaluated to be 2 .4 × 109 and 1.5 × 109 dm3 mol-1 s-1. The values observed are in fairly good agreement with those reported earlier.

  15. The reduction process of phytic acid-silver ion system: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, Tulsi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2007-05-15

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag{sup +{yields}}Ag{sup 0{yields}}Ag{sub 2} {sup +{yields}}Ag{sub 3} {sup 2+}, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size (R {sub av}=100 nm)

  16. Pulse radiolysis study on the free radical scavenging activities of puerarin

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yaping; (赵亚平); WANG; Wenfeng; (王文锋); YU; Wenli; (于文利); YAO; Side; (姚思德); QIAN; Suping; (钱素平); WANG; Dapu; (王大璞)

    2003-01-01

    The free radical scavenging activities of puerarin towards nitrogen dioxide radicals , nitric oxide radicals (NO·) and hydroxyl radicals (OH·) were investigated by pulse radiolysis. Puerarin reacted with or NO·to form puerarin-4-O· with the absorption maximum at 340 nm, but reacted with OH·to form at least three transient species including puerarin-2-O·, puerarin-4-O· and [puerarin-OH]· with a broad absorption spectrum band (300-750 nm). In addition, the reaction rate constants of puerarin reacting with , NO·, and OH· were determined as 2.6×108, 1.7×108 and 3.9×109 L@mol·1@s·1, respectively.

  17. Ability of melanins to protect against the radiolysis of thymine and thymidine.

    Science.gov (United States)

    Hill, H Z; Huselton, C; Pilas, B; Hill, G J

    1987-01-01

    Individuals with black skin rarely get skin cancer, and melanomas, tumors arising from pigmented cells, are generally resistant to radiation therapy. The role of melanin in these two phenomena has not been defined, but oxygen-radical species have been implicated in both effects. These studies were undertaken to determine the ability of various melanins to compete for ionizing radiation-produced radicals which destroy nucleic acid bases. The ability of Sigma eumelanin (S-eumelanin) to protect against the radiolysis of thymidine in buffered solutions was compared to the protective ability of seven amino acids, including melanin precursors; bovine serum albumin, as a model protein; ficoll, as a model polysaccharide; and DNA. Both proteins and polysaccharides are known to scavenge hydroxyl radicals in cells. The concentration of thymidine after exposure to gamma radiation was determined by High Performance Liquid Chromatography (HPLC) analysis after removal of insoluble melanin by acid precipitation. S-eumelanin was more effective at competing with thymidine for free radicals than bovine serum albumin, Ficoll, or DNA, but less effective than certain of the small molecules. Several of the above compounds were also examined for ability to protect against thymine radiolysis. In addition, melanins from other sources were compared to S-eumelanin. Of these, enzymatically synthesized phaeomelanin was the most effective. The results indicate that melanins can compete for base- and nucleoside-damaging free radicals more effectively than other cellular macromolecules. Of the small molecules, the phenolic compounds had the greatest scavenging ability. In vivo, melanins are found in melanosomes bound to protein. Therefore, the relevance of these findings to the photo- and radiobiology of melanins in vivo has yet to be determined. PMID:3507668

  18. Studies on laser flash photolysis and pulse radiolysis of quinoline and some of its derivatives%喹啉及其衍生物的脉冲辐解和激光光解研究

    Institute of Scientific and Technical Information of China (English)

    ZHU Dazhang; WANG Shilong; SUN Xiaoyu; LI Wenzhe; ZENG Kailing; NI Yaming; WANG Wenfeng; YAO Side

    2005-01-01

    Quinoline and some of its derivatives were reported to be carcinogenic, toxic and mutagenic[1-3]. The widespread use of quinoline and its derivatives entails that these compounds are distributed in the environment, polluting soil and water together with many other environmental chemicals.Time-resolved laser flash photolysis and pulse radiolysis have been used to study the reaction of quinoline (Q), 2, 6-dimethyl-quinoline (DMQ) and isoquinoline (IQ) with hydrated electrons, hydroxyl radicals and hydrogen radicals. Transient absorption spectra were obtained and reaction rate constants to the reactions were determined, as showed in Table 1. Rossible mechanisms of the reactions were suggested.In addition, oxidization reactions of SO4·-, Br2·- and N3·- with isoquinoline, quinoline and its derivatives were studied. It showed that SO4- could oxidize quinoline, 2, 6-dimethylquinoline and isoquinoline; Br2·-could oxidize isoquinoline to its cation radicals, but it could not oxidize quinoline or 2, 6-diemethylquinoline; N3·- could oxidize none of them.With a better understandings on photolysis and radiolysis of isoquinoline, quinoline and its derivates, the study is of help for degradation of the chemicals and for environment protection.

  19. Kinetic Model for the Radical Degradation of Tri-Halonitromethane Disinfection Byproducts in Water

    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Mezyk; Bruce J. Mincher; William J. Cooper; S. Kirkham Cole; Robert V. Fox; Pieror R. Gardinali

    2012-10-01

    The halonitromethanes (HNMs) are byproducts of the ozonation and chlorine/chloramine treatment of drinking waters. Although typically occurring at low concentrations HNMs have high cytotoxicity and mutagenicity, and may therefore represent a significant human health hazard. In this study, we have investigated the radical based mineralization of fully-halogenated HNMs in water using the congeners bromodichloronitromethane and chlorodibromonitromethane. We have combined absolute reaction rate constants for their reactions with the hydroxyl radical and the hydrated electron as measured by electron pulse radiolysis and analytical measurements of stable product concentrations obtained by 60Co steady-state radiolysis with a kinetic computer model that includes water radiolysis reactions and halide/nitrogen oxide radical chemistry to fully elucidate the reaction pathways of these HNMs. These results are compared to our previous similar study of the fully chlorinated HNM chloropicrin. The full optimized computer model, suitable for predicting the behavior of this class of compounds in irradiated drinking water is provided.

  20. Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water

    Science.gov (United States)

    Mezyk, Stephen P.; Mincher, Bruce J.; Cooper, William J.; Kirkham Cole, S.; Fox, Robert V.; Gardinali, Piero R.

    2012-10-01

    The halonitromethanes (HNMs) are byproducts of the ozonation and chlorine/chloramine treatment of drinking waters. Although typically occurring at low concentrations HNMs have high cytotoxicity and mutagenicity, and may therefore represent a significant human health hazard. In this study, we have investigated the radical based mineralization of fully-halogenated HNMs in water using the congeners bromodichloronitromethane and chlorodibromonitromethane. We have combined absolute reaction rate constants for their reactions with the hydroxyl radical and the hydrated electron as measured by electron pulse radiolysis and analytical measurements of stable product concentrations obtained by 60Co steady-state radiolysis with a kinetic computer model that includes water radiolysis reactions and halide/nitrogen oxide radical chemistry to fully elucidate the reaction pathways of these HNMs. These results are compared to our previous similar study of the fully chlorinated HNM chloropicrin. The full optimized computer model, suitable for predicting the behavior of this class of compounds in irradiated drinking water, is provided.

  1. Investigation of ozonide ion reaction with neptunium (6) ions in alkali aqueous solutions by the method of pulse radiolysis

    International Nuclear Information System (INIS)

    By pulse radiolysis method with spectrophotometric recording of short-living particles kinetics of O3-radical-ion reaction with Np5+ and Np6+ in alkaline solutions is investigated. Rate constant of the first reaction equals to (2.0±0.3)x106, of the second -(2.1±0.2)x105 l/(mol·c) in 0.2-2.0 mol/l of LiOH. Peculiarities of Np6+ γ-radiolysis in alkaline solutions saturated with N2O and in aerated solutions containing K2S2O8 are explained. Np7+ yield is determined by O3-behaviour which depends on Np6+ and OH- concentration

  2. 3D analysis of the gas dynamic loads in the KKB containment resulting from combustion of radiolysis gas

    International Nuclear Information System (INIS)

    The radiolysis gas explosion in the KKB power plant was recalculated in 3D simulations as followed: The total energy released was limited as far as possible. - Pressure generation and dispersion across the containment was calculated for three different initial energies. - Loads in the near field were simulated assuming the most probable total energy (about 14 MJ) and using three different models of the explosion process. The calculation with direct simulation of detonation inside the tube provided realistic results, according to the authors. - Transient local pressure and temperature loads were recorded in specified local points and evaluated in further damage analyses. The results showed that modern 3D flow and combustion calculations provide valuable information on pressure and temperature loads resulting from radiolysis gas reactions in big complex safety containments. (orig.)

  3. Pulse radiolysis study of reaction of bull serum albumin electron adduct with oxygen. Polychromatic kinetics of reaction with adsorbed oxygen

    International Nuclear Information System (INIS)

    By the method of pulse radiolysis the reaction of bull serum albumin electron adduct with oxygen is investigated. As pulsed radiation source electron linear accelerators with particle energy of 8.0 and 4.5 MeV and pulse time of 40 ns and 2.2 μs, respectively have been used. It is assumed that the disappearance of protein electron adduct occurs in the course of its interaction with oxygen adsorbed on protein globular molecule

  4. Gamma-luminescence and radiolysis of ZnSe(Te,O) scintillators after high dose gamma-irradiation

    International Nuclear Information System (INIS)

    The paper presents the results of studying the product of radiolysis and gamma-luminescence (GL) depending on temperature and dose of gamma-irradiation in new scintillating ZnSe crystals containing Te impurity from 0.01 to 0.6 mass % and subjected to thermal treatment in oxygen flow. The X-ray analysis showed a super-stoichiometric content of zinc in the crystals, consequently, the number of intrinsic defects was estimated ∼ 1020 cm-3 before the irradiation. Spectra of GL at 300 K contain only a wide band at 630-680 nm. Spectra of GL at 77 K are much more intensive than at 300 K and contain additional bands at 470 and 550 nm. After continuous gamma-irradiation at 300 K to the high dose of 109 R the intensity of GL decreases significantly, besides about 10 nm of subsurface layer damages because of radiolysis. The radiolysis mechanism is considered theoretically in which shock waves generated under ionization produce much damage near the surface. (author)

  5. The role of radiolytically generated species in radiation-induced polymerization of vinylbenzyltrimethylammonium chloride (VBT) in aqueous solution. Steady-state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Radiation-induced polymerization of vinylbenzyltrimethylammonium chloride (VBT) in aqueous solution has been investigated by steady-state and pulse radiolysis techniques. The effects of dose, dose rate, monomer concentration, pH, and ambient conditions on steady state polymerization were investigated. The reactions of primary radicals of water radiolysis, such as OH radical, e-aq, and H atom, were studied. The reactions of other chemically active species such as O.-, oxidizing radicals such as N3., Cl2.-, Br2.-, SO4.-, and a reducing specie such as CO2.- with VBT were also investigated. The reaction of VBT with OH radical and H atom were investigated by formation kinetics and by competition kinetics. The rate constant values for the reaction of OH radical with VBT were 4.7 x 109 dm3 mol-1 s-1 and 1.7 x 1010 dm3 mol-1 s-1 by formation kinetics and by competition kinetics, respectively. The results indicate that OH radicals undergo electron transfer reactions (resulting in a radical cation) and addition reactions. The hydrated electron reacts with VBT with a rate constant of 1.9 x 1010 dm3 mol-1 s-1 to form an anion. At pH ∼1, H atom reaction with VBT is diffusion controlled with a rate constant of 5.1 x 109 dm3 mol-1 s-1 as determined by formation kinetics and 1.7 x 1010 dm3 mol-1 s-1 as determined by competition kinetics. VBT radical anion reacts with VBT at a rate that is almost twice the rate at which VBT radical cation reacts with VBT, indicating anionic initiation of the polymerization of VBT. VBT undergoes very fast steady-state polymerization and dose rate; the presence of efficient radical quenchers such as oxygen and concentration of VBT in the aqueous solution affects the extent of polymerization. Typically, a dose of 4 kGy is sufficient to achieve 80-85% polymerization. The monomer solution shows a drastic increase in the viscosity of the solution, which finally gels to a soft rubbery mass. (author)

  6. Passive vibro-acoustic detection of a sodium-water reaction in a steam generator of a sodium-cooled fast neutrons nuclear reactor by beam forming

    International Nuclear Information System (INIS)

    This thesis deals with a new method to detect a sodium-water reaction in a steam generator of a fast sodium-cooled nuclear reactor. More precisely, the objective is to detect a micro-leak of water (flow ≤ 1 g/s) in less than 10 seconds by measuring the external shell vibrations of the component. The strong background noise in operation makes impossible the use of a detection system based on a threshold overrun. A beam forming method applied to vibrations measured by a linear array of accelerometers is developed in this thesis to increase the signal-to-noise ratio and to detect and locate the leak in the steam generator. A numerical study is first realized. Two models are developed in order to simulate the signals measured by the accelerometers of the array. The performances of the beam forming are then studied in function of several parameters, such as the source location and frequency, the damping factor, the background noise considered. The first model consists in an infinite plate in contact with a heavy fluid, excited by an acoustic monopole located in this fluid. Analyzing the transverse displacements in the wavenumber domain is useful to establish a criterion to sample correctly the vibration field of the plate. A second model, more representative of the system is also proposed. In this model, an elastic infinite cylindrical shell, filled with a heavy fluid is considered. The finite dimensions in the radial and circumferential directions lead to a modal behavior of the system which impacts the beam forming. Finally, the method is tested on an experimental mock-up which consists in a cylindrical pipe made in stainless steel and filled with water connected to hydraulic circuit. The water flow speed can be controlled by varying the speed of the pump. The acoustic source is generated by a hydro-phone. The performances of the beam forming are studied for different water flow speeds and different amplitude and frequencies of the source. (author)

  7. Raman spectroscopy characterization of actinide oxides (U 1-yPu y)O 2: Resistance to oxidation by the laser beam and examination of defects

    Science.gov (United States)

    Jégou, C.; Caraballo, R.; Peuget, S.; Roudil, D.; Desgranges, L.; Magnin, M.

    2010-10-01

    Structural changes in four (U 1-yPu y)O 2 materials with very different plutonium concentrations (0 ⩽ y ⩽ 1) and damage levels (up to 110 dpa) were studied by Raman spectroscopy. The novel experimental approach developed for this purpose consisted in using a laser beam as a heat source to assess the reactivity and structural changes of these materials according to the power supplied locally by the laser. The experiments were carried out in air and in water with or without hydrogen peroxide. As expected, the material response to oxidation in air depends on the plutonium content of the test oxide. At the highest power levels U 3O 8 generally forms with UO 2 whereas no significant change in the spectra indicating oxidation is observed for samples with high plutonium content ( 239PuO 2). Samples containing 25 wt.% plutonium exhibit intermediate behavior, typified mainly by a higher-intensity 632 cm -1 peak and the disappearance of the 1LO peak at 575 cm -1. This can be attributed to the presence of anion sublattice defects without any formation of higher oxides. The range of materials examined also allowed us to distinguish partly the chemical effects of alpha self-irradiation. The results obtained with water and hydrogen peroxide (a water radiolysis product) on a severely damaged 238PuO 2 specimen highlight a specific behavior, observed for the first time.

  8. Radiation-heterogeneous processes in water-hexane mixtures

    International Nuclear Information System (INIS)

    Full text : The results of the heterogeneous radiolysis of hexane and a mixture of water-hexane in the presence of gamma-Al2O3 at different ratios have been presented. It has been found that the radiation-chemical yield of molecular hydrogen G (H2) has been increased with increasing content of hexane

  9. Radiation-heterogeneous processes in water-hexane mixtures

    International Nuclear Information System (INIS)

    Full text : The results of the heterogeneous radiolysis of hexane and a mixture of water-hexane in the presence of γAl2O3 at different ratios have been presented. It has been found that the radiation-chemical yield of molecular hydrogen G (H2) has been increased with increasing content of hexane

  10. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S

    2013-08-21

    Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite

  11. Reaction of hydroxyl radical with phenylpropanoid glycoside and its derivatives by pulse radiolysis

    Institute of Scientific and Technical Information of China (English)

    石益民; 王文锋; 康九红; 师彦平; 贾忠建; 王瑛; 苏保宁; 姚思德; 林念芸; 郑荣梁

    1999-01-01

    The reaction of hydroxyl radical with 1 phenylpropanoid glycoside ( PPG), cistanoside C, and its 3 derivatives: 1-O-β-D-2-(p-hydroxyphenyl)-ethanyl-glucose, 6-O-(E)-feruloyl-glucose and 6-O-(E)-p-hydroxy-cinnamoylglucose isolated from folk medicinal herbs was investigated by pulse radiolysis technique respectively. The reaction rate constants were determined by analysis of built-up trace of absorption at λmax of specific transient absorption spectra of PPG and its derivatives upon attacking·OH. All four compounds react with·OH at close to diffusion controlled rate (1.03×109—19.139×109 L·mol-1·s-1), suggesting that they are effective·OH scavengers. The results demonstrated that the numbers of phenolic hydroxyl groups of PPG and its derivatives are directly related to their scavenging activities. By comparing the reaction rates of·OH with 1-O-β-D-2-(p-hydroxyphenyl)-ethanyl-glucose, 6-O-(E)-feruloyl-glueose or 6-O-(E)-p-hydroxy-cinnomoyl-glucose, it is evident that the phenylethyl g

  12. Chemical behaviour of americium in natural aquatic solutions: Hydrolysis, radiolysis and redox reactions

    International Nuclear Information System (INIS)

    Hydrolysis and redox reactions of the Am(III) and Am(V) ions have been investigated in NaClO4 and NaCl solutions as well as in natural saline groundwaters. The hydrolysis constants of Am(OH)n3-n species and the solubility product of Am(OH)3(s) have been determined in 0.1 M NaClO4, 0.1 M NaCl and 0.6 M NaCl solutions. As observed in concentrated NaCl solutions (> 3 M), the α-radiation induces the radiolytic oxidation of the Cl--ion to produce Cl2, HClO, ClO- and other oxidized species, which result in a strongly oxidizing medium. Consequently Am(III) is oxidized to Am(V). Under these conditions the hydrolysis constants of AmO2(OH)n1-n species and the solubility product are also determined. The α-radiation induced radiolysis reactions in NaCl solution and the subsequent oxidation reaction of Am(III) have been systematically investigated by varying pH, NaCl concentration and specific α-activity. Also included in the investigation are a few selected groundwaters of relatively high salinity from the Gorleben aquifer systems. (orig.)

  13. The use of 19F NMR for new structure determination in the radiolysis of FEP

    International Nuclear Information System (INIS)

    The radiation chemistry of poly(tetrafluoroethylene-co-perfluoropropylene), FEP, with a mole fraction of tetrafluoroethylene, TFE, of 0.90 has been studied under vacuum using 60Co γ-radiation over absorbed dose ranges up to 3.0 MGy. The radiolysis temperatures were 300, 363, 423 and 523 K. New structure formation in the copolymers was analyzed by solid-state 19F NMR. The new structures formed in the copolymers have been identified and the G-values for the formation of new -CF3 groups was 2.2 at the lower temperatures and increased to 2.9 at 523 K. The G-value for the loss of original -CF3 groups was ∼1.0 at all temperatures. At the lower temperatures there was a net loss of -CF- groups on irradiation; G(CF) of -1.3, -0.9 and -0.5 at 300, 363 and 423 K, respectively, but at 523 K there was a net gain with G(CF) equal to 0.8

  14. Reaction between ortho-semiquinones and oxygen: pulse radiolysis, electron spin resonance, and oxygen uptake studies.

    Science.gov (United States)

    Kalyanaraman, B; Korytowski, W; Pilas, B; Sarna, T; Land, E J; Truscott, T G

    1988-10-01

    The cytotoxicity to tumor cells or cardiotoxic side effects of certain para-quinone antitumor drugs have been attributed to the corresponding semiquinones and derived superoxide and hydroxyl radicals. It has also been suggested that ortho-semiquinones, including those that arise during melanogenesis, produced via either the one-electron oxidation of catechol(amine)s or the one-electron reduction of the corresponding quinones, react with molecular oxygen to give superoxide and hydrogen peroxide. Furthermore it has been shown that catechol(amine)s which form noncyclizable quinones are more cytotoxic toward melanogenic cells than those forming cyclizable quinones. In order to provide further kinetic information on the interaction of oxygen with ortho-semiquinones, using pulse radiolysis we directly measured the rates of reaction of various ortho-semiquinones with molecular oxygen. The semiquinones of the corresponding catechol(amine)s were also produced by the horseradish peroxidase/hydrogen peroxide system, and detected by electron spin resonance spectroscopy using the spin stabilization method. Oxygen consumption was monitored using a standard Clark oxygen electrode. Our data indicate that while ortho-semiquinones from catechol(amine)s and catechol estrogens do not react with molecular oxygen at a rate equal to or greater than k less than or equal to 10(5) M-1 s-1, semiquinones from hydroxy-substituted catechol(amine)s react with dioxygen with rates in the range k = 10(6)-10(7) M-1 s-1. PMID:2845864

  15. Pulse radiolysis study of reactions of tetracycline with radiolytically generated reducing species

    International Nuclear Information System (INIS)

    The transients involved in the reaction of tetracycline (TC) with reducing radicals such as eaq-, (CH3)2COH and CO2.-have been characterized by the pulse radiolysis technique. The semi-reduced species formed (λmax = 630 nm, ε 3.4 x 103 dm3 mol-1 cm-1) has been found to be a strong reductant with reduction potential lying in the range -0.450 to -1.40 V vs NHE. TC reacts with eaq- at diffusion-controlled rates and the rate constant, depending upon the ionic form of TC existing at a particular pH, varies from 1.2 x 1010 to 2.8 x 1010 dm3 mol-1 s-1. Based on these results a plausible site of electron addition has been suggested. Reaction of H atoms with TC gives rise to a transient which exhibits spectral and kinetic features different from that of semi-reduced species. (author)

  16. Radiolysis of H2O:CO2 ices by heavy energetic cosmic ray analogs

    CERN Document Server

    Pilling, S; Domaracka, A; Rothard, H; Boduch, P; da Silveira, E F

    2010-01-01

    An experimental study on the interaction of heavy, highly charged, and energetic ions (52 MeV Ni^13+) with pure H2O, pure CO2 and mixed H2O:CO2 astrophysical ice analogs is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by heavy cosmic rays inside dense and cold astrophysical environments such as molecular clouds or protostellar clouds. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds in Caen, France). The gas samples were deposited onto a CsI substrate at 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross sections of pure H2O and CO2 ices are 1.1 and 1.9E-13 cm^2, respectively. In the case of mixed H2O:CO2 (10:1) the dissociation cross sections of both species are about 1E-13 cm^2. The measured sputtering yield of pure CO2 ice is 2.2E4 molec/ion. After a f...

  17. Pulse radiolysis study on tetra-alkylammonium hydroxides in alkaline solutions containing 02 and N20

    International Nuclear Information System (INIS)

    The reactivity of the oxide radical ion 0- and the decay kinetics of the ozonide ion, 03-, have been investigated in aqueous solutions at pH 12.8 in the presence of tetramethyl-, tetraethyl-, tetrapropyl-, and tetrabutylammonium ions, 02 and N20. Using pulse radiolysis to follow the 03- kinetics gives information on the competition of 02 and R4N+ for 0-. Absolute rate constants for these reactions are: 3.0 x 108 dm3 mol-1 s-1 for 0- + (CH3)4N+, 1.0 x 109 dm3 mol-1 s-1 for 0- + (C2H5)4N+, 1.3 x 109 dm3 mol-1 s-1 for 0- + (C3H7)4N+ and 2.2 x 109 dm3 mol-1 s-1 for O- + (C4H9)4N+. The decay of 03- occurs through the thermal dissociation reaction, 03 →(reversible) 02 + 0-, for which the absolute rate constant at 220C was found to be 6.2 +- 1.2 x 103 s-1. (author)

  18. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    Science.gov (United States)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  19. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  20. On the problem of the representativity and safety of capsule in-pile material corrosion testing in water and water vapor

    International Nuclear Information System (INIS)

    Factors (irradiation, impurities temperature, pressure) affecting safety and representativity of data on capsule in-pile corrosion testing of structural materials for WWER and LWGR type reactors are analyzed. A comparison of experimental data on measurement of radiolysis product quantity in inmovable and circulating coolant is performed. Experiments at the CM-2 reactor on determining stationary concentrations of radiolytic hydrogen at radiolysis of water and water vapour, parameters of which correspond to the testing conditions of zirconium alloys for WWER and LWGR type reactors are described. Calculational and experimental data on detonating gas build-up are reported. The conclusion is drawn that stationary pure water radiolysis product concentrations are considerably less than explosion-risk values which permits realizing in-pile corrosion material testing in capsule devices are carried out. Impurities, particularly O2, Br, Cl, Fe, U, Mn, Cr essentially retard recombination reactions and increase stationary water radiolysis product concentrations. Medium temperature and pressure increase in a capsule decreases several times the stationary product concentration of water radiolytic decomposition. Stationary radio;ysis product concentrations in vapour are somewhat higher than in water, however essentially less than explosion-resk concentrations. Corrosion testing representativity from the view point of corrosion medium composition somewhat decreases during sample irradiation in closed capsules. There is no such defect in weakly-moving corrosion medium devices

  1. E-beam irradiation and activated sludge system for treatment of mixed textiles and food base industrial waste water

    International Nuclear Information System (INIS)

    The combination of irradiation and biological technique was chosen to study COD, BOD5 and colour removal from textiles effluent in the presence of food industry waste water. Two biological treatments, the first consisting a mix of non irradiated textile and food industry waste water and the second a mix of irradiated textiles waste water and food industry waste water were operated in parallel. Reduction percentage of COD in textiles waste water increased from 29.4 % after radiation to 62.4 % after further undergoing biological treatment. After irradiation, the BOD5 of textiles waste water was reduced by 22.1 % but reverted to the original value of 36 mg/ L after undergoing biological treatment. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and continued to decrease to 109.3 ADMI after passing through biological treatment. (author)

  2. Comparison of two dosimetric protocols in water and solid phantoms for electron beams in an extension cone

    International Nuclear Information System (INIS)

    The objective of this work is to realize the dosimetry for an extension cone for electron beams and proposing a simple and reliable procedure for this purpose. Clinically it was sufficient to employ an energy not greater than 9 MeV, by the clinical conditions of the leisure. It was had nominally 6 or 9 MeV and it was decided to employ the second energy. This cone was elaborated for special cases that by the anatomical position of the leisure, it is not allowed the easy access with the usual cones. (Author)

  3. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins II reactions at side-chain loci in model systems

    International Nuclear Information System (INIS)

    The major emphasis in radiation biology at the molecular level has been on the nucleic acid component of the nucleic acid-protein complex because of its primary genetic importance. But there is increasing evidence that radiation damage to the protein component also has important biological implications. Damage to capsid protein now appears to be a major factor in the radiation inactivation of phage and other viruses. And, there is increasing evidence that radiation-chemical change in the protein component of chromation leads to changes in the stability of the repressor-operator complexes involved in gene expression. Knowledge of the radiation chemistry of protein is also of importance in other fields such as the application of radiation sterilization to foods and drugs. Recent findings that a class of compounds, the α,α'-diaminodicarboxylic acids, not normally present in food proteins, are formed in protein radiolysis is of particular significance since certain of their peptide derivatives have been showing to exhibit immunological activity. The purpose of this review is to bring together and to correlate our present knowledge of products and mechanisms in the radiolysis of peptides, polypeptides and proteins both aqueous and solid-state. In part 1 we presented a discussion of the radiation-induced reactions of the peptide main-chain in model peptide and polypeptide systems. Here in part 2 the emphasis is on the competing radiation chemistry at side-chain loci of peptide derivatives of aliphatic, aromatic-unsaturated and sulfur-containing amino acids in similar systems. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis, and ESR spectroscopy are included

  4. A beam source model for scanned proton beams

    Science.gov (United States)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  5. Alpha Radiolysis of Nuclear Solvent Extraction Ligands Used for An(III) and Ln(III) Separations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, Stephen P. [California State Univ. (CalState), Long Beach, CA (United States); Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nilsson, Mikael [Univ. of California, Irvine, CA (United States)

    2016-08-01

    This document is the final report for the Nuclear Energy Universities Program (NEUP) grant 10-910 (DE-AC07-05ID14517) “Alpha Radiolysis of Nuclear Solvent Extraction Ligands used for An(III) and Ln(III) Separations”. The goal of this work was to obtain a quantitative understanding of the impacts of both low Linear Energy Transfer (LET, gamma-rays) and high LET (alpha particles) radiation chemistry occurring in future large-scale separations processes. This quantitative understanding of the major radiation effects on diluents and ligands is essential for optimal process implementation, and could result in significant cost savings in the future.

  6. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour

    International Nuclear Information System (INIS)

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is dedicated to this study

  7. Study of the mechanism of the gamma radiolysis of saccharose and its derivatives in aqueous or solid phase. Study by spin trapping

    International Nuclear Information System (INIS)

    Powder or aqueous solutions of saccharose, deoxysaccharose and fructanes are irradiated. Radicals created during gamma radiolysis are converted into sugar-nitroxide radicals by reaction with 2 methyl 2 nitroso-propane. They are stable enough to be studied in solution by electron paramagnetic resonance (EPR) coupled or not to high performance liquid chromatography. EPR spectra obtained are simulated with the Voyons program for the determination of spectrocopic characteristics of trapped species. The study of glucosides, disaccharides and sugar labelled with carbon 13 allows to suggest a chemical structure for 5 out of the 7 species trapped during saccharose radiolysis. Influence of irradiation conditions is studied and mechanisms are proposed

  8. Analysis of low-molecular weight radiolysis products in extracts of gamma-irradiated polymers by gas chromatography and high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Estimating exposure to radiolysis products of polymers is an important part of the regulatory evaluation of packaging materials for use in food irradiation. However, as Koni Grob recently put it, the comprehensive analysis of migrants is a challenge. This paper discusses some of the analytical difficulties and presents results obtained with extracts of irradiated polystyrene and polyamide-6. The results indicate that headspace or thermal desorption techniques may, in some instances, lead to an overestimation of radiolysis product concentrations. It is concluded that validated analytical methods and a better understanding of the underlying radiation chemistry would greatly facilitate the safety assessment of irradiated packaging materials

  9. Self-organization of coupling optical waveguides by the "pulling water" effect of write beam reflections in photo-induced refractive-index increase media

    Science.gov (United States)

    Yoshimura, Tetsuzo; Kaburagi, Hiroshi

    2009-02-01

    To reduce efforts for optical assembly, we developed the reflective self-organized lightwave network (R-SOLNET). In R-SOLNET, optical devices with wavelength filters on their core facets are distributed in photo-induced refractive-index increase (PRI) media such as photo-polymers. Write beams from some devices and reflected write beams from the wavelength filters of the other devices overlap. In the overlap regions, the refractive index increases, pulling the write beams to the wavelength filter locations (the "pulling water" effect). By self-focusing, self-aligned optical waveguide networks are formed between the optical devices. Simulations based on the finite difference time domain method revealed that self-aligned optical waveguides of R-SOLNET are formed between cores with 2-μm and 0.5-μm widths including Y-branching waveguides. Experiments demonstrated that R-SOLNET is formed between an optical fiber and a micro-mirror placed with ~800-μm gap. For angular misalignment of 3o between the optical fiber and the micro-mirror, a bow-shaped R-SOLNET was observed. For lateral misalignment of 30 μm, an S-shaped R-SOLNET was observed. These results suggest that by placing reflective elements in PRI media, optical waveguides can be lead to the elements to form R-SOLNET. This enables self-aligned optical couplings for optoelectronic boards, intra-chip optical circuits, VCSELs/PDs, optical switches, and so on.

  10. Laser cutting technology which use the water jet guiding the laser beam. Application examination for the thick plate cutting

    International Nuclear Information System (INIS)

    Due to the increase of aged nuclear reactors, reduction of radioactive wastes is expected and cutting technology for thick structure would be necessary. Thermal cutting technology would be convenient for cutting thick materials, but generation of radioactive fume is one of the problems. A water jet-guided laser cutting is one of the suitable technologies for this application, because radioactive fume would be confined in the water and dose level won't be increased. However, this technology was developed for precision machining like dicing and slotting of silicon wafers, it is difficult to cut thick materials. In this study, cutting technology for thick material with a water jet-guided laser was discussed. Phenomenon during cutting thick stainless steel was observed by using high speed camera and optimum conditions for both water jet and laser cutting were derived. Finally, 50 mm thick stainless steel plate was successfully cut by using this technology. (author)

  11. First-Principles Investigation of Electronic Excitation Dynamics in Water under Proton Irradiation

    Science.gov (United States)

    Reeves, Kyle; Kanai, Yosuke

    2015-03-01

    A predictive and quantitative understanding of electronic excitation dynamics in water under proton irradiation is of great importance in many technological areas ranging from utilizing proton beam therapy to preventing nuclear reactor damages. Despite its importance, an atomistic description of the excitation mechanism has yet to be fully understood. Identifying how a high-energy proton dissipates its kinetic energy into the electronic excitation is crucial for predicting atomistic damages, later resulting in the formation of different chemical species. In this work, we use our new, large-scale first-principles Ehrenfest dynamics method based on real-time time-dependent density functional theory to simulate the electronic response of bulk water to a fast-moving proton. In particular, we will discuss the topological nature of the electronic excitation as a function of the proton velocity. We will employ maximally-localized functions to bridge our quantitative findings from first-principles simulations to a conceptual understanding in the field of water radiolysis.

  12. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    OpenAIRE

    Zhang, Rui; Newhauser, Wayne D.

    2009-01-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were deriv...

  13. Beam characteristics of energy-matched flattening filter free beams

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15

    . The PDDs of the FFF beams showed less variation with field size, the d{sub max} value was deeper for the matched FFF beam than the FFF beam and deeper than the flattened beam for field sizes greater than 5 cm × 5 cm. The head leakage when using the machine in FFF mode is less than half that for a flattened beam, but comparable for both FFF modes. The radiation protection dose-rate measurements show an increase of instantaneous dose-rates when operating the machines in FFF mode but that increase is less than the ratio of MU/min produced by the machine. Conclusions: The matching of a FFF beam to a flattened beam at a depth of 10 cm in water by increasing the FFF beam energy does not reduce any of the reported benefits of FFF beams. Conversely, there are a number of potential benefits resulting from matching the FFF beam; the depth of maximum dose is deeper, the out of field dose is potentially reduced, and the beam quality and penetration more closely resembles the flattened beams currently used in clinical practice, making dose distributions in water more alike. Highlighted in this work is the fact that some conventional specifications and methods for measurement of beam parameters such as penumbra are not relevant and further work is required to address this situation with respect to “matched” FFF beams and to determine methods of measurement that are not reliant on an associated flattened beam.

  14. Reconstruction of biologically equivalent dose distribution on CT-image from measured physical dose distribution of therapeutic beam in water phantom

    International Nuclear Information System (INIS)

    From the standpoint of quality assurance in radiotherapy, it is very important to compare the dose distributions realized by an irradiation system with the distribution planned by a treatment planning system. To compare the two dose distributions, it is necessary to convert the dose distributions on CT images to distributions in a water phantom or convert the measured dose distributions to distributions on CT images. Especially in heavy-ion radiotherapy, it is reasonable to show the biologically equivalent dose distribution on the CT images. We developed tools for the visualization and comparison of these distributions in order to check the therapeutic beam for each patient at the National Institute of Radiological Sciences (NIRS). To estimate the distribution in a patient, the dose is derived from the measurement by mapping it on a CT-image. Fitting the depth-dose curve to the calculated SOBP curve also gives biologically equivalent dose distributions in the case of a carbon beam. Once calculated, dose distribution information can be easily handled to make a comparison with the planned distribution and display it on a grey-scale CT-image. Quantitative comparisons of dose distributions can be made with anatomical information, which also gives a verification of the irradiation system in a very straightforward way. (author)

  15. Preliminary Experimental Study of Ion Beam Extraction of EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    XU Yong-Jian; HU Chun-Dong; LIU Sheng; XIE Ya-Hong; LIANG Li-Zhen; JIANG Cai-Chao

    2012-01-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating.The preliminary data of ion beam extraction is obtained on the EAST neutral beam injector test-stand.Beam extraction from the ion source of EAST-NBI is verified by measuring the beam current with a Faraday cup and by analyzing the results obtained by means of water calorimetric measurement on the temperature rises of water cooling the accelerator electrodes.

  16. Synergistic effect of combination of Irganox 1010 and zinc stearate on thermal stabilization of electron beam irradiated HDPE/EVA both in hot water and oven

    International Nuclear Information System (INIS)

    Thermo-oxidative stability of HDPE/EVA blends can be considerably increased by combination of a high-molecular weight phenolic antioxidant and zinc stearate. In this work, the post-irradiation thermal stability of HDPE/EVA blends has been studied. High-density polyethylene and its blends with ethylene-vinylacetate copolymer in both pure form and mixed with Irganox 1010 and zinc stearate were exposed to electron beam radiation at doses between 80 and 150 kGy, at room temperature, in air. In order to evaluate the thermal stability of the samples, post-irradiation heat treatments were done in both hot water bath at 95 deg. C and in an oven at 140 deg. C. The mechanical properties and changes in the chemical structure were determined during thermal aging in hot water and oven. The gel content was enhanced by increasing EVA concentration in all applied doses. The stabilized blends have lower gel content than the unstabilized samples. From the results of heat aging treatments it was observed that the thermal stability of the unstabilized blend samples was lower than HDPE. Thermal stability of the samples has been improved by incorporation of Irganox 1010 and zinc stearate. Formation of hydroxyl group was insignificant for stabilized samples during heat aging in both conditions. Also, the changes in the value of oxidation induction time (OIT) for the stabilized samples were negligible after prolonged immersion in hot water

  17. Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment

    Science.gov (United States)

    Gregorčič, P.; Lukač, N.; Možina, J.; Jezeršek, M.

    2016-04-01

    We examine the effects of the synchronized delivery of multiple Er:YAG-laser pulses during vapor-bubble oscillations into water. For this purpose, we used a laser beam transmission probe that enables monitoring of the bubble's dynamics from a single shot. To overcome the main drawbacks of this technique, we propose and develop an appropriate and robust calibration by simultaneous employment of shadow photography. By using the developed experimental method, we show that the resonance effect is obtained when the second laser pulse is delivered at the end or slightly after the first bubble's collapse. In this case, the resonance effect increases the mechanical energy of the secondary bubble's oscillations and prolongs their duration. The presented laser method for synchronized delivery of Er:YAG-laser pulses during bubble oscillations has great potential for further improvement of laser endodontic treatment, especially upon their safety and efficiency.

  18. Pulse radiolysis studies of short-lived species in solid amino acids as precursors of radicals and detected by ESR

    Science.gov (United States)

    Zagórski, Z. P.; Gładysz, Katarzyna

    1995-06-01

    The aim of the study was to bring closer solid state radiation chemistry and ESR spectroscopy by looking for precursors of free radicals which give ESR signals. It has been performed using time-resolved spectrophotometry (pulse radiolysis of the solid state) and diffuse reflection spectrophotometry. Alanine has been especially considered as the most investigated amino acid, important for radiation dosimetry. Absorption of the transient (Λ maximum at 460 nm) is identified as the species during deamination. The stable absorption spectrum with the Λ maximum at 345 nm is due to the same radical as the one detected by ESR. Other amino acids: valine, threonine, glutamine and arginine show similar behaviour: microsecond spectrum of the intermediate appears always at longer wavelenghts. The transient spectrum changes into stable absorption in UV of a lower wavelenght. Along with the optical spectrum, the ESR spectrum appears, of similar stability. Also, other features indicate that the same radical is responsible for both the electronic and ESR spectrum. Some amino acids, like methionine give intensive transient absorption in the microsecond range but no ESR signal, after completion of consecutive fast reactions. In that case any optical absorption is due to the stable product of radiolysis, i.e. compounds with paired electrons only.

  19. Chemical behaviour of Pu and Am: Hydrolysis reaction in brine solutions, carbonate complexation, α-radiolysis, humate complexation and speciation

    International Nuclear Information System (INIS)

    The chemical behaviour of transuranic elements (Pu and Am) has been investigated in saline solution of different NaCl concentrations in the near neutral pH range. Important reactions considered are hydrolysis, carbonate complexation, redox reaction, alpha-radiolysis, colloid generation and humate complexation. Hydrolysis reactions are studied for Pu(VI) in 3.6 M NaCl and for Am(III) in 0.1 M and 0.6 M NaCl solution, whereas carbonate complexation of Pu(IV) and Am(III) is investigated in HCO3-/CO32- solution of varying pH. Consequences of alpha-radiolysis in NaCl solution are thoroughly analysed as for the Eh change due to Cl- oxidation and the oxidation of Pu(IV) and Am(III). In groundwaters colloid generation of Am(III), particularly pseudocolloids, is characterized and correlated with the concentration of humic substances. Humate complexation under discussion deals mainly with the stabilization of Am(III) in a given groundwater through its colloid generation. (orig.)

  20. Radiolysis of triacetoneaminoxyl (TANO) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in aqueous solutions

    International Nuclear Information System (INIS)

    The mechanism of the γ-radiolysis of TANO and TEMPO in neutral deaerated aqueous solutions was investigated. The decomposition of TANO and TEMPO was followed spectrophotometrically by measuring the absorbance at the corresponding absorption maxima 235 and 245 nm. It was found, in agreement with other authors, that the main products of the radiolysis were the corresponding hydroxylamines TANOH and TEMPOH. In both cases a limiting decomposition yield was determined G(-TANO) = 2.1, and G(-TEMPO) = 3.2. TANO and TEMPO were also irradiated in aqueous solutions of n-C3H7OH, 2-C3H7OH, n-C4H9OH, CH3OH, C2H5OH and formic acid, where only reducing radicals were present. G(-TANO) and G(-TEMPO) were found to be approximately 6.1. The above results are consistent with the formation of the corresponding hydroxylamines, when nitroxyls react with H atoms, e-sub(aq) and hydroxyalkyl radicals. The EPR spectra of irradiated solutions suggest that OH radicals react with the nitroxyls by abstraction of H atoms, leading to the formation of biradicals. (author)

  1. Role of the superoxide anion in the oxidative activation of the new antitumor drug BD40: a radiolysis study

    International Nuclear Information System (INIS)

    BD40, a new antitumor drug derived from 9-azaellipticine, is thought to have an oxygen-dependent metabolism in vivo. The one-electron oxidation of this drug was effected by γ radiolysis using OH radical free radicals as oxidants and the reaction of O2anionradical with the BD40 oxidized transient(s). The absorption spectrum of the one-electron oxidized free radical was determined by pulse radiolysis using OH radical or N3radical as reactant. In the absence of O2 and O2anionradical, the initial yield of disappearance of the drug is equal to 2.5 x 10-7 molJ-1 independently of the initial concentration of the drug and of the dose rate. When BD40 is oxidized by OH anion radicals in the presence of O2 and O2anionradical, the yield is the same. This yield is halved if superoxide dismutase is present during irradiation. Superoxide anions do not react directly with the drug. Thus it is suggested that these radicals oxidize the BD40 free radical produced by oxidation with OH radical. Biological implications are discussed. (author)

  2. Examination of the effect of alpha radiolysis on plutonium(V) sorption to quartz using multiple plutonium isotopes.

    Science.gov (United States)

    Hixon, Amy E; Arai, Yuji; Powell, Brian A

    2013-08-01

    The objective of this research was to determine if radiolysis at the mineral surface was a plausible mechanism for surface-mediated reduction of plutonium. Batch sorption experiments were used to monitor the amount of plutonium sorbed to high-purity quartz as a function of time, pH, and total alpha radioactivity. Three systems were prepared using both (238)Pu and (242)Pu in order to increase the total alpha radioactivity of the mineral suspensions while maintaining a constant plutonium concentration. The fraction of sorbed plutonium increased with increasing time and pH regardless of the total alpha radioactivity of the system. Increasing the total alpha radioactivity of the solution had a negligible effect on the sorption rate. This indicated that surface-mediated reduction of Pu(V) in these systems was not due to radiolysis. Additionally, literature values for the Pu(V) disproportionation rate constant did not describe the experimental results. Therefore, Pu(V) disproportionation was also not a main driver for surface-mediated reduction of plutonium. Batch desorption experiments and X-ray absorption near edge structure spectroscopy were used to show that Pu(IV) was the dominant oxidation state of sorbed plutonium. Thus, it appears that the observed surface-mediated reduction of Pu(V) in the presence of high-purity quartz was based on the thermodynamic favorability of a Pu(IV) surface complex. PMID:23683959

  3. Radiolysis of C5-BTBP in cyclohexanone irradiated in the absence and presence of an aqueous phase

    Energy Technology Data Exchange (ETDEWEB)

    Fermvik, A.; Aneheim, E.; Kvicalova, M.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry; Chalmers Univ. of Technology, Goeteborg (Sweden). Industrial Materials Recycling; Gruener, B.; Hajkova, Z. [Academy of Sciences of the Czech Republic, Husinec-Rez (Czech Republic). Inst. of Inorganic Chemistry

    2012-07-01

    Spent nuclear fuel contains many highly radioactive species; hence solvents used in reprocessing will be subjected to radiolysis. In this study, solvents containing one of the BTBP molecules intended for the separation of trivalent actinides and lanthanides, the so called C5-BTBP, have been subjected to radiolysis and hydrolysis. We present here that this compound shows a dramatic decrease in both distribution ratios and separation factor when irradiated with higher doses up to 50 kGy; particularly in the presence of an aqueous phase. Furthermore, fast hydrolytic degradation is observed, which significantly contributes to the overall degree of decomposition. This is supported by speciation studies performed by HPLC and LC-MS methods. Proposed structures of the highest-yield degradation products are presented and they seem to confirm previously drawn structures for these products. From these studies it can be concluded that the presence of nitric acid or nitrate during irradiation leads to higher content of species containing keto groups. (orig.)

  4. Examination of the effect of alpha radiolysis on plutonium(V) sorption to quartz using multiple plutonium isotopes.

    Science.gov (United States)

    Hixon, Amy E; Arai, Yuji; Powell, Brian A

    2013-08-01

    The objective of this research was to determine if radiolysis at the mineral surface was a plausible mechanism for surface-mediated reduction of plutonium. Batch sorption experiments were used to monitor the amount of plutonium sorbed to high-purity quartz as a function of time, pH, and total alpha radioactivity. Three systems were prepared using both (238)Pu and (242)Pu in order to increase the total alpha radioactivity of the mineral suspensions while maintaining a constant plutonium concentration. The fraction of sorbed plutonium increased with increasing time and pH regardless of the total alpha radioactivity of the system. Increasing the total alpha radioactivity of the solution had a negligible effect on the sorption rate. This indicated that surface-mediated reduction of Pu(V) in these systems was not due to radiolysis. Additionally, literature values for the Pu(V) disproportionation rate constant did not describe the experimental results. Therefore, Pu(V) disproportionation was also not a main driver for surface-mediated reduction of plutonium. Batch desorption experiments and X-ray absorption near edge structure spectroscopy were used to show that Pu(IV) was the dominant oxidation state of sorbed plutonium. Thus, it appears that the observed surface-mediated reduction of Pu(V) in the presence of high-purity quartz was based on the thermodynamic favorability of a Pu(IV) surface complex.

  5. Production of perhydroxy radical (HO2) and oxygen in the radiolysis of aqueous solution and the LET effects

    International Nuclear Information System (INIS)

    This article aims to review the results concerning the production of perhydroxy radical (HO2) and oxygen from irradiated aqueous solutions and the LET effects on these products, beginning with a brief introduction to the elementary primary processes in radiolysis of aqueous solution. Oxygen, if produced in the radiolysis of aqueous solution, may be considered responsible for the decreased oxygen enhancement ratio (OER) in biological systems exposed to high LET radiation. A Harwell's group has determined oxygen generated from aqueous ferrous solutions irradiated with heavy ions and concluded that the oxygen is a precursor of perhydroxy radicals. The LET-dependent yields for perhydroxy radical have been determined by LaVerne and Schuler; the analysis of their results sheds light into the reactions taking place in high-LET track cores. In conjunction with these results, the possible contributions to the LET effects are pointed out and discussed of the energetic secondary electrons ejected from the track core by knock-on collision with heavy ions and of the variation in the track core size with energy of the heavy particles. (author)

  6. Pulse radiolysis studies on reactions of hydroxyl radicals with selenocystine derivatives.

    Science.gov (United States)

    Mishra, B; Kumbhare, L B; Jain, V K; Priyadarsini, K I

    2008-04-10

    Reactions of hydroxyl radicals (*OH) with selenocystine (SeCys) and two of its analogues, diselenodipropionic acid (SeP) and selenocystamine (SeA), have been studied in aqueous solutions at pHs of 1, 7, and 10 using the pulse radiolysis technique coupled with absorption detection. All of these diselenides react with *OH radicals with rate constants of approximately 10(10) M(-1) s(-1), producing diselenide radical cations ( approximately 1-5 micros after the pulse), with an absorption maximum at 560 nm, by elimination of H(2)O or OH(-) from hydroxyl radical adducts. Assignment of the 560 nm band to the diselenide radical cation was made by comparing the transient spectra with those produced upon reaction of diselenides with specific one-electron oxidants, Cl(2)(*-) (pH 1) and Br(2)(*-) radicals (pHs of 7 and 10). SeP having a carboxylic acid functionality showed quantitative conversion of hydroxyl radical adducts to radical cations. The compounds SeCys and SeA, having an amino functional group, in addition to the radical cations, produced a new transient with lambda(max) at 460 nm, at later time scales ( approximately 20-40 micros after the pulse). The rate and yield of formation of the 460 nm band increased with increasing concentrations of either SeCys or SeA. In analogy with similar studies reported for analogous disulfides, the 460 nm transient absorption band has been assigned to a triselenide radical adduct. The one-electron reduction potentials of the compounds were estimated to be 0.96, 1.3, and 1.6 V versus NHE, respectively, for SeP, SeCys, and SeA at pH 7. From these studies, it has been concluded that the electron-donating carboxylic acid group decreases the reduction potential and facilitates quantitative conversion of hydroxyl radical adducts to radical cations, while the electron-withdrawing NH(3)(+) group not only increases the reduction potential but also leads to fragmentation of the hydroxyl radical adduct to selenyl radicals, which are converted

  7. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  8. Charge transfer from 2-aminopurine radical cation and radical anion to nucleobases: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Manoj, P. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Mohan, H. [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mittal, J.P. [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Manoj, V.M. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Aravindakumar, C.T. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India)], E-mail: CT-Aravindakumar@rocketmail.com

    2007-01-08

    Pulse radiolysis study has been carried out to investigate the properties of the radical cation of 2-aminopurine (2AP) and the probable charge transfer from the radical cation and radical anion of 2AP to natural nucleobases in aqueous medium. The radical cation of 2AP was produced by the reaction of sulfate radical anion (SO{sub 4}{sup dot-}). The time resolved absorption spectra obtained by the reaction of SO{sub 4}{sup dot-} with 2AP at neutral pH have two distinct maxima at 380 and 470nm and is assigned to the formation of a neutral radical of the form 2AP-N{sup 2}(-H){sup dot} (k{sub 2}=4.7x10{sup 9}dm{sup 3}mol{sup -1}s{sup -1} at pH 7). This neutral radical is formed from the deprotonation reaction of a very short-lived radical cation of 2AP. The transient absorption spectra recorded at pH 10.2 have two distinct maxima at 400 and 480nm and is assigned to the formation of a nitrogen centered radical (2AP-N(9){sup dot}). As the hole transport from 2AP to guanine is a highly probable process, the reaction of SO{sub 4}{sup dot-} is carried out in the presence of guanosine, adenosine and inosine. The spectrum obtained in the presence of guanosine was significantly different from that in the absence and it showed prominent absorption maxima at 380 and 470nm, and a weak broad maximum centered around 625nm which match well with the reported spectrum of a neutral guanine radical (G(-H){sup dot}). The electron transfer reaction from the radical anion of 2AP to thymine (T), cytidine (Cyd) and uridine (Urd) was also investigated at neutral pH. Among the three pyrimidines, only the transient spectrum in the presence of T gave a significant difference from the spectral features of the electron adduct of 2AP, which showed a prominent absorption maximum at 340nm and this spectrum is similar to the electron adduct spectrum of T. The preferential reduction of thymine by 2AP{sup dot-} and the oxidation of guanosine by 2AP{sup dot+} clearly follow the oxidation

  9. Effect of water and oxygen contents on the decomposition of gaseous trichloroethylene in air under electron beam irradiation

    International Nuclear Information System (INIS)

    An electron beam (EB) treatment of gaseous trichloroethylene (TCE) in air was studied as a purification method of off-gases containing gaseous chloroethylenes. The model air containing TCE at input concentrations of 5-75 ppmv, detected mostly in actual off-gases, was irradiated with 1-MeV EBs in a gas-flow vessel at 10 L/min under the conditions of atmospheric pressure, 298 K, and different H2O contents. The decomposition of 75 ppmv TCE was also examined in humid air under different O2 contents of 1x103 - 2.1x105 ppmv. In the existence of H2O and O2 contents with ≥ 3x102 ppmv and ≥ 5x103 ppmv, respectively, the decomposition ratios of TCE were enhanced and TCE was decomposed into 83.0±1.5% of dichloroacetyl chloride (DCAC) and 17.5±0.6% of carbonyl chloride (COCl2) independently of the input TCE concentrations based on the carbon balance. Trichloroethylene of 5-75 ppmv was effectively decomposed by the OH radical through Cl-radical chain oxidation under the above-mentioned air conditions. (author)

  10. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  11. Pulse radiolysis investigation of the reaction of the electronic adduct of bovine serum albumin with oxygen. Polychromatic kinetics of the reaction with adsorbed oxygen

    International Nuclear Information System (INIS)

    The method of pulse radiolysis was used to investigate the reaction of the electronic adduct of bovine serum albumin with oxygen. It was suggested that the disappearance of the electronic adduct of the protein occurs in the course of its interaction with oxygen adsorbed on the globular protein molecule

  12. Pulse radiolysis study of reactions of alkyl and alkylperoxy radicals originating from methyl tert-butyl ether in the gas phase

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Ellermann, T.;

    1995-01-01

    UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm, sigma(R) = (2.6 +/- 0.4) X...

  13. Kinetics of the F+NO2+M->FNO2+M reaction studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.;

    1996-01-01

    The title reaction was initiated by the pulse radiolysis of SF6/NO2 gas mixtures, and the formation of FNO2 was studied by time-resolved infrared spectroscopy employing strong rotational transitions within the nu(1) and nu(4) bands of FNO2. The pressure dependence of the formation kinetics...

  14. Kinetics of the reaction F+NO+M->FNO+M studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.;

    1996-01-01

    The title reaction was initiated by pulse radiolysis of SF6/NO gas mixtures, and the formation of FNO was studied by time-resolved IR and UV spectroscopy. At SF6 pressures of 10-320 mbar at 298 K, the formation of FNO was studied by infrared diode laser spectroscopy at 1857.324 cm(-1). Comparative...

  15. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  16. Study of the oxide layer formed on stainless steel exposed to boiling water reactor conditions by ion beam techniques

    Science.gov (United States)

    Degueldre, C.; Buckley, D.; Dran, J. C.; Schenker, E.

    1998-01-01

    The build-up of the oxide layer on austenitic steel under boiling water reactor (BWR) conditions was studied by macro- and micro-Rutherford backscattering spectrometry (RBS) and sputtered neutral mass spectroscopy (SNMS). RBS is applicable when the oxide thickness is larger than 20 nm and yields both the layer thickness and its stoichiometry. SNMS provides elemental depth profiles and the oxide thickness when combined with profilometry. Stainless steel strip samples pre-treated (electro- or mechanically polished) or not, exposed in a loop simulating the BWR-conditions for periods ranging from 31 to 291 days and with a low water flow velocity show oxide layers with a thickness of about 300 to 600 nm. There is no significant increase of the oxide layer thickness after 31 days of exposure. The paper confirms the presence of inner and outer oxide layers and also confirms the stoichiometry M 2O 3 in the external part in contact with the oxygenated water. The oxide layer consists not only of an outer layer and an inner layer but also of a deep apparent oxide/metal interface that is attributed to oxide formation through the steel grain boundaries.

  17. Water equivalence study of some phantoms based on effective photon energy, effective atomic numbers and electron densities for clinical MV X-ray and Co-60 γ-ray beams

    Science.gov (United States)

    Kurudirek, Murat

    2013-02-01

    A previously proposed procedure has been applied to some water equivalent phantoms namely PMMA, Polystyrene, Solid Water (WT1), RW3 and ABS for the first time to compute effective photon energy (Eeff), effective atomic numbers (Zeff) and electron densities (neeff) for different MV X-ray beams and Co-60 gamma beam which are heterogeneous in energy. For the purpose of the present investigation, effective atomic cross-sections of the given materials have been determined first to obtain effective photon energies which were further used for calculation of Zeff and neeff. Similar procedure was adopted for Co-60 γ-rays to check the validity of the present method. Results were found to be quite satisfactory. When it comes to the water equivalence, the Eeff results showed that the RW3 and ABS phantoms are more effective for 6 MV beam whereas RW3 and Polystyrene are more effective for 15 MV and Co-60 beams, respectively. The ABS and WT1 phantoms have better water equivalences than the others according to the Zeff and neeff results, respectively.

  18. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  19. A pulsed electron beam synthesis of PEDOT conducting polymers by using sulfate radicals as oxidizing species

    Science.gov (United States)

    Coletta, Cecilia; Cui, Zhenpeng; Dazzi, Alexandre; Guigner, Jean-Michel; Néron, Stéphane; Marignier, Jean-Louis; Remita, Samy

    2016-09-01

    In this study, an original radiolytic method, based on pulsed electron beam irradiation, is used for the synthesis of conducting PEDOT in an aqueous solution containing EDOT monomers in the presence of potassium persulfate, K2S2O8, at 0 °C. At this low temperature, EDOT monomers are not chemically oxidized by S2O82- anions, initiating PEDOT polymerization, but are rather oxidized by sulfate radicals, SO4•-, which are radiolytically generated by the reaction of solvated electrons, produced by water radiolysis, with persulfate anions. Successfully, as demonstrated by UV-vis absorption spectrophotometry and ATR-FTIR spectroscopy, irradiating the aqueous solution, by using a series of accumulated electron pulses, enables complete EDOT oxidation and quantitative in situ PEDOT polymerization through a step-by-step oxidation mechanism. The morphology of PEDOT polymers, mixed with unreacted K2S2O8 salt, is characterized by Cryo-TEM microscopy in aqueous solution and by SEM after deposition. Successfully, in the absence of any washing step, high resolution AFM microscopy, coupled with infrared nanospectroscopy, is used to discriminate between the organic polymers and the inorganic salt and to probe the local chemical composition of PEDOT nanostructures. The results demonstrate that PEDOT polymers form globular self-assembled nanostructures which preferentially adsorb onto unreacted K2S2O8 solid nanoplates. The present results first demonstrate the efficiency of sulfate radicals as oxidizing species for the preparation of nanostructured PEDOT polymers and second highlight the promising potentiality of electron accelerators in the field of conducting polymers synthesis.

  20. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    Science.gov (United States)

    Zhang, Rui; Newhauser, Wayne D.

    2009-03-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.

  1. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIP{sup R)} or underwater laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze [Westinghouse Electric Company, LLC, New York (United States); Badlani, Manu [Nu Vision Engineering, New York (United States)

    2009-04-15

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP{sup R)}, depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development.

  2. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  3. Solid state 19F NMR determination of new structure formation in FEP following radiolysis at 300 and 363 K

    International Nuclear Information System (INIS)

    The radiation chemistry of FEP copolymer with a mole fraction TFE of 0.90 has been studied using 60Co γ-radiation at temperatures of 300 and 363 K. New structure formation in the copolymers was analysed by solid state 19F NMR. New chain scission products were the principal new structures found. The G-value for the formation of new -CF3 groups was 2.2 and 2.1 for the radiolysis of FEP at 300 and 363 K, respectively, and the G-value for the loss of original -CF3 groups was G(-CF3)=1.0 and 0.9 at these two temperatures, respectively. There was a net loss of -CF- groups on irradiation, with G(-CF) of 1.3 and 0.9 at 300 and 363 K, respectively. (author)

  4. Uranium (UO22+) retention property of degraded n-dodecane by acidic radiolysis in the purex process

    International Nuclear Information System (INIS)

    Radiation effects on the uranium retention property of degraded n-dodecane by acidic radiolysis in the Purex process were studied. The absorbed dose of n-dodecane varied from 24.04 to 2 403.69 kGy (5 to 500 Wh/dm3). When the absorbed dose exceeded 48.07 kGy (10 Wh/dm3), the uranium (UO22+) was retained in degraded n-dodecane even without TBP as extractant. An empirical correlation of the uranium retention was also derived. This correlation is a very effective one because it can especially be used for the prediction of the amount of retained uranium in the degraded n-dodecane. Data obtained through this work should be useful for the process design under solvent degradation conditions in nuclear fuel processing facilities especially reused solvent. (author)

  5. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, February 1, 1981-September 30, 1982

    International Nuclear Information System (INIS)

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of the formation and decay of reactive intermediates using the pulse radiolysis technique. These short-lived species are monitored by fast optical absorption measurement; optical absorption spectra of the transients are also obtained. Reactive species currently of interest include organic molecule ions (both cations and anions) and radical anions. Transition metal carbonyl radicals in solution, another category of intermediates, are also under investigation. Since the reactions are initiated by a pulse of high energy electrons, this work inherently relates to radiation chemical systems. The information obtained is also of interest in various areas of organic reaction kinetics in which ions play a central role. In the area of homogeneous catalysis, the reactivity of transition metal carbonyl radicals is of interest. Current activities are directed at reactivity of organic ionic species (carbocations and carbanions) in irradiated solutions; and optical spectra and reactivities of transition metal carbonyl radicals

  6. 3D PIC simulations of electron beams created via reflection of intense laser light from a water target

    CERN Document Server

    Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M

    2015-01-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...

  7. High energy electron beam irradiation: An emerging technology for the destruction of organic contaminants in water, wastewater and sludge

    International Nuclear Information System (INIS)

    As a result of the widespread presence hazardous organic contaminants in aqueous matrices, considerable research is being conducted on treatment technologies for removing these compounds from contaminated environments. Historically treatment process efficiency focused only on the removal of the solute of interest from solution, with little or no concern for the formation of potentially hazardous reaction by-products. An extension of this approach is the use of carbon absorption and aeration stripping. In the case of carbon the solutes are concentrated and then incinerated during the carbon regeneration process. Aeration stripping for the removal of volatile chemicals at worst transfers the problem directly into the atmosphere and at best transfers it to carbon or another adsorbent. A more realistic approach to the problem of the disposal of toxic and hazardous organic waste chemicals will be the development of treatment processes that result in, or facilitate, the mineralization of the chemicals. Probably the best known process to achieve this is the use of ozone, O3, most often in the presence of various catalysts for its decomposition, e.g. ultraviolet (UV) light and/or hydrogen peroxide, H2O2. Other chemical/physical processes that are receiving attention are supercritical oxidation and wet oxidation. Bioremediation can also be considered an ultimate disposal process. The three transient species of most interest, in the removal of hazardous contaminants from aqueous matrices, are the aqueous electron, the hydrogen radical, and the hydroxyl radical, OH. This paper describes the use of high energy electrons for the destruction of chloroform, trichloroethylene (TCE), tetrachloroethylene (PCE), benzene, toluene, and from aqueous solution. The experimental parameters examined are: absorbed dose, water quality (with and without the addition of 3% clay), and carbonate ion concentration. 6 refs., 3 tabs

  8. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  9. Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution

    International Nuclear Information System (INIS)

    The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD5) were investigated with respect to the applied dose. However, the concentration of the dye in the solution showed a great influence on all these observables. During the radiolysis process, it was found that the decoloration of dye was caused by the destruction of the chromophore group of the dye molecule, whereas COD and TOC removal were depended on the extent of mineralization of the dye. The decrease in pH during the radiolysis process indicated the fragmentation of the large dye molecule into smaller organic components mostly like smaller organic acids. The BOD5/COD ratio of the unirradiated dye solution was in the range of 0.1-0.2, which could be classified as non-biodegradable wastewater. However, the BOD5/COD ratio increased upon irradiation and it indicated the transformation of non-biodegradable dye solution into biodegradable solution. This study showed that electron beam irradiation could be a promising method for treatment of textile wastewater containing RR-120 dye.

  10. Investigation of the reaction of the ozonide ion with neptunium (VI) ions in aqueous alkaline solutions by the method of pulse radiolysis

    International Nuclear Information System (INIS)

    The method of pulse radiolysis with spectrophotometric recording of short-lived particles is used to investigate the kinetics of the reactions of O3- ion-radicals with Np(V) and Np(VI) in alkaline solutions. The rate constant of the first reaction is equal to (2.0 ± 0.3)·106, and of the second, (2.1 ± 0.2)·105 liter/(mole·sec) in 0.2-2.0 M LiOH. The peculiarities of γ-radiolysis of Np(VI) in alkaline solutions containing N2O and in aerated solutions containing K2S2O8 are elucidated. The yield of Np(VII) is determined by the behavior of O3-, which depends on the concentration of Np(VI) and OH-

  11. Radiolysis of carbohydrates as studied by ESR and spin-trapping—II. Glycerol- d8 xylitol, dulcitol, d-sorbitol and d-mannitol

    Science.gov (United States)

    Kuwabara, M.; Zhang, Z.-Y.; Inanami, O.; Yoshii, G.

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d 8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH 2-CO- and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reactions processes induced by OH reactions or γ-radiolysis in the solid state are discussed.

  12. Radiolysis of carbohydrates as studied by ESR and spin-trapping. 2. Glycerol-d/sub 8/, xylitol, dulcitol, D-sorbitol and D-mannitol

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Zhang, Z.Y.; Inanami, O.; Yoshii, G. (Hokkaido Univ., Sapporo (Japan). Faculty of Veterinary Medicine)

    1984-01-01

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d/sub 8/) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct ..gamma..-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH/sub 2/-CO-and HO-CH-, due to both OH reactions and direct ..gamma..-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reaction processes induced by OH reactions or ..gamma..-radiolysis in the solid state are discussed.

  13. Analysis of volatile radiolysis products in gamma-irradiated LDPE and polypropylene films by thermal desorption-gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Low-molecular-weight ('volatile') radiolysis products of low-density polyethylene (LDPE) and polypropylene (PP) films were investigated by thermal desorption-(TDS)-GC-MS after absorbed doses of up to 25 kGy. The films produce fingerprint chromatograms with highly characteristic patterns of groups of radiation-induced peaks; these are mainly hydrocarbons, aldehydes, ketones, and carboxylic acids with concentrations (after 25 kGy) ca one order of magnitude below that of the residual hydrocarbons (oligomers). PP additionally produces very substantial amounts of three degradation products of phenol-type antioxidants. The low molecular-weight (MW) radiolysis products are retained for considerable times in LDPE films and they are retained in PP films much longer than had been expected. Besides product identification, the following topics are addressed: Effects of the absorbed dose and the desorption temperature; comparison of several commercial (proprietary) films; high-temperature thermal desorption; the question whether TDS analyzes radiation-induced artifacts rather than genuine products; the possible existence of cyclic radiolysis products; the possibility of identifying an LDPE film as irradiated after a dose of only 1 kGy; and atypical trace fragments of antioxidants. Finally, the geometry and efficiency of the thermal desorption system is briefly discussed, and the implications of our findings for irradiation detection and for the safety of irradiated materials are considered

  14. Study of the selective abstration reaction of the hydrogen atom in the radiolysis and photolysis of alkane mixture at 77 K

    International Nuclear Information System (INIS)

    The occurence of the selective abstraction reaction of the solute hydrogen atom by hydrogen atom produced during radiolysis or photolysis of the systems such as neopentane/cyclo-hexane/HI, neopentane/2,3 dimethylbutane, n-pentane/HI/cyclo-hexane and cyclo-hexane/HI/n-pentane, at 77 K is studied. Experiments have been undertaken on the kinetics nature of the active species, the H atom, during radiolysis and photolysis of the neopentane/cyclo-hexane/HI system at 77 K, presenting competitive reactions. Studies have also been made on the occurrence of the selective abstraction reaction in inverted systems, in which the concentrations of the components of a system are so much altered that the solute becomes the solvent and vice-versa, in the other system. By means of photolysis at 77 K, it has been observed that for the two systems constitued by the cyclo-hexane and n-pentane the selective abstraction reaction occurs. However, for radiolysis of that same two systems it has been observed that only the hydrogen atom abstraction reaction corresponding to the solvent occurs. (Author)

  15. Radiation chemical effects in the near-field environment of a radwaste repository: {gamma} radiolysis in 6 molal NaCl solutions; Strahlenchemische Effekte im Endlagernahbereich: {gamma}-Radiolyse in 6 molarer NaCl-Loesung

    Energy Technology Data Exchange (ETDEWEB)

    Kelm, M.; Bohnert, E.

    1997-12-01

    The radiation emitted from high-level radioactive wastes in a radwaste repository causes radiolysis products to be formed in brines resulting from water intrusion. The products may alter via redox and complexing reactions the mobilisation processes of radionuclides. The major products of {gamma} radiolysis determined in 6 molal NaCl solution as a function of radiation dose are hydrogen, oxygen, and chlorate. Hypochlorite and chlorite were found to have concentrations in the {mu}Mol/kg range. There was no dependence on dose rate. For the experiments under atmospheric pressure, which allowed radiolytic gas to escape from the solution, the G values measured are 0.46 (H{sub 2}), 0.16 (O{sub 2}), and 0.074 (ClO{sub 3}). In pressurized experiments, with radiolytic gas remaining contained in the solution, the radiolytic effect was much smaller. After approx. 100 days, at a dose of about 2 MGy, gas equilibrium concentrations of some mMol/kg were measured. The results can be qualitatively described by a system of parallel running reaction rate equations. As to quantitative analysis, the reaction model needs to be refined. (orig./CB) [Deutsch] Die Strahlung von hochradioaktiven Abfaellen in einem Endlager im Salz hat zur Folge, dass bei einem Wasserzutritt in den entstehenden Laugen Radiolyseprodukte gebildet werden. Die Radiolyseprodukte koennen durch Redox- und Komplexierungsreaktionen die Mobilisierbarkeit von Radionukliden veraendern. Als Hauptprodukte der {gamma}-Radiolyse wurden in 6 molaler NaCl-Loesung Wasserstoff, Sauerstoff und Chlorat in Abhaengigkeit von der Dosis bestimmt. Hypochlorit und Chlorit erreichten nur Konzentrationen im {mu}Mol/kg-Bereich. Eine Dosisleistungsabhaengigkeit war nicht festzustellen. Bei den Experimenten unter Normaldruck, bei denen die Radiolysegase aus der Loesung entweichen konnten, betrugen die G-Werte 0.46 (H{sub 2}), 0,16 (O{sub 2}) und 0,074 (ClO{sub 3}{sup -}). Bei den Experimenten unter Druck wurden die Radiolysegase in Loesung

  16. γ-radiolysis of poly(A) in aqueous solution: efficiency of strand break formation by primary water radicals

    International Nuclear Information System (INIS)

    γ-radiation-induced single-strand break formation (ssb) in polyadenylic acid (poly(A)) was determined in Ar and N2O-saturated solution in the presence of various concentrations of t-butanol. The efficiencies for strand breakage caused by solvated electrons, hydrogen atoms and OH radicals were found to be 0.25, 0.20 and 7.8%, respectively. The efficiency of OH radicals depends only slightly on pH (pH 5.0, 7.5 and 9.0) and is independent of the presence of salt (0.01 mol dm-3 NaClO4) and of irradiation temperature (200C and 700C). The efficiency of OH for ssb formation obtained in this work with poly(A) is much smaller than that of poly(dA), explained by different molecular conformations of the sugar moiety of poly(A) (3'-endo) and poly(dA) (2'-endo). With increasing t-butanol concentration more strand breaks are formed than expected from simple homogeneous competition kinetics of poly(A) and t-butanol for OH radicals, considered to be due to non-homogeneous reaction kinetics. Rate constants for the reaction of OH and H with poly(A) have been determined. (author)

  17. Concerning the cube-root dependence of the molecular yield on scavenger concentration in the radiolysis of water

    International Nuclear Information System (INIS)

    It has been shown rigorously that, within the diffusion model, the reduction of the molecular yield by competitive scavenger reaction always follows a square-root law in the limit of small scavenger concentration, and not a cube-root law. The error of earlier demonstration of the cube-root dependence using diffusion kinetics by Byakov has been traced to several reasons. The most important reason is the neglect of competition between scavenging and recombination reaction within the characteristic time t1 which, in the limit of small concentration of the scavenger, proceeds to infinity

  18. Hydrogen water chemistry: can it work in a supercritical water reactor?

    International Nuclear Information System (INIS)

    Hydrogen water chemistry-the addition of a small amount of H2 to the reactor cooling water-is a spectacularly successful strategy for controlling water radiolysis and maintaining a corrosion potential low enough to inhibit stress corrosion cracking of primary cooling loop structural materials. It has become very clear from kinetic modeling with recently measured reaction rates, that the key reaction equilibrium is H2 + OH <==> H + H2O. A very small excess of H2 converts the oxidizing OH radical to reducing H atom, preventing formation of H2O2 and O2. The minimum amount of H2 which can prevent net radiolysis of water is referred to as the critical hydrogen concentration (CHC). As supercritical water is considered as the fluid of the primary cooling loops in advanced reactor designs, it is an obvious question to ask whether hydrogen water chemistry can work at the higher temperatures and large range of densities expected in such a reactor. To answer this simple question, we undertook experiments to measure the CHC in a small-scale flow experiment, using a 3MeV van de Graaff accelerator as the source of radiation. Surprising results were obtained. At 300oC, we could indeed suppress radiolysis in the water, but at supercritical temperatures, it seems that the addition of H2 actually stimulates further production of hydrogen. The talk will explore these results, examine the mechanism of corrosion of steel by H2O2, and consider the equilibrium H2 + OH <==> H + H2O in supercritical water.

  19. Construction Techniques for Long Cantilever Capping Beam of In-Water Portal Pier of Lanni Lake Viaduct%烂泥湖高架桥水中门式墩长悬臂盖梁施工技术

    Institute of Scientific and Technical Information of China (English)

    钟庆荣; 杨贵龙; 胡洪波; 张建春

    2012-01-01

    烂泥湖高架桥水中门式墩预应力盖梁悬臂长5.975 m,为确保盖梁施工顺利进行,在分析抱箍法(钢梢棒法)和钢管桩支架法的支架受力、悬臂端挠度后,确定采用钢管桩支架法施工盖梁.支架下部采用φ630 mm钢管桩,在钢管桩上搭设双排I45a工字钢作为分配梁,分配梁横桥向上铺设2组贝雷梁,贝雷梁顺桥向上铺设I20a工字钢,在盖梁翼缘及中部拱形横梁下方搭设碗扣式脚手架并设置剪刀撑及扫地杆,脚手架顺桥向顶撑上铺设10 cm×15 cm方木,以支承盖梁模板;支架搭设完后安装盖梁模板,加工钢筋,浇筑盖梁混凝土.分析表明,钢管桩支架法能保证长悬臂盖梁端部挠度变形不影响盖梁线形及断面尺寸,确保长悬臂盖梁施工质量及安全.%The cantilever length of a prestressed concrete capping beam of the in-water portal pier of Lanni Lake Viaduct is 5. 975 m. To ensure the smooth construction of the capping beam and after analysis of the force conditions and cantilever end deflection of the girdling method (steel tip staff method) and the steel pipe pile scaffolding method, it was determined that the steel pipe pile scaffolding method should be used for construction of the capping beam. For the lower part of the steel pipe pile scaffolding, the 0630 mm steel pipe piles were used. On the pipes, the double-row I45a I-steels were laid to serve as the distribution beam. On the distribution beam in the transverse direction of the bridge, 2 groups of the bailey trusses were laid and on the bailey trusses in the longitudinal direction of the bridge, the I20a I-steels were laid. On the flanges of the capping beam and under the middle arch crossing beam, the bowl-coupler scaffolding was set up, on which the cross struts and floor horizontal members were installed. On the top supports of the scaffolding in the longitudinal direction of the Bridge, the square timbers of 10 cmX 15 cm were laid to support the formwork of

  20. Formation of Pt-Zn Alloy Nanoparticles by Electron-Beam Irradiation of Wurtzite ZnO in the TEM.

    Science.gov (United States)

    Lee, Sung Bo; Park, Jucheol; van Aken, Peter A

    2016-12-01

    As is well documented, platinum nanoparticles, promising for catalysts for fuel cells, exhibit better catalytic activities, when alloyed with Zn. Pre-existing syntheses of Pt-Zn alloy catalysts are composed of a number of complex steps. In this study, we have demonstrated that nanoparticles of Pt-Zn alloys are simply generated by electron-beam irradiation in a transmission electron microscope of a wurtzite ZnO single-crystal specimen. The initial ZnO specimen is considered to have been contaminated by Pt during specimen preparation by focused ion beam milling. The formation of the nanoparticle is explained within the framework of ionization damage (radiolysis) by electron-beam irradiation and accompanying electrostatic charging. PMID:27440080

  1. Combined effects of Fe(II) and oxidizing radiolysis products on UO2 and PuO2 dissolution in a system containing solid UO2 and PuO2

    Science.gov (United States)

    Amme, Marcus; Pehrman, Reijo; Deutsch, Rudolf; Roth, Olivia; Jonsson, Mats

    2012-11-01

    The stability of UO2 spent nuclear fuel in an oxygen-free geological repository depends on the absence of oxidizing reaction partners in the near field. This work investigates the reactions between the products of water radiolysis by alpha radiation and Fe(II) an the effect on UO2 dissolution. Solid 238PuO2 powder and UO2 pellet were allowed to react in Fe(II) solution in oxygen-free batch reactor tests and kinetics of the subsequent redox reactions were measured. Depending on the concentration of Fe(II) (tests with 10-5 and 10-4 mol L-1 were made), the induced redox reactions took place between 20 and 400 h. Dissolved uranium concentrations went first through a minimum caused by reduction, followed by a maximum caused by radiolytic oxidation, and eventually reached another minimum, probably due to sorption on precipitated Fe(III). Plutonium concentrations were decreasing steadily after going through a maximum about 70 h from the start of the experiments. The results show that in the presence of the strong alpha-radiolytic field induced by the presence of solid 238Pu, the behavior of the system is largely governed by Fe(II) as it controls the H2O2 concentration, reduces U(VI) in solution and drives the Fenton reaction leading to the oxidation of Pu(IV).

  2. Electron beam induced grafting of N-isopropylacrylamide to a poly(ethylene-terephthalate) membrane for rapid cell sheet detachment

    International Nuclear Information System (INIS)

    Intact sheets of human prostate epithelium cells were successfully detached from a poly(N-isopropylacrylamide) (pNIPAM) membrane radiolytically grafted to poly(ethlylene-terephthalate (PET) culture dishes. The detachment process took less than 20 min without damaging the sheet structure. The grafting was performed using a high-energy electron beam to covalently bond NIPAM to the surface of PET culture dishes. This work demonstrates that the optimal conditions for uniform grafting can be achieved by adding argon-saturated solutions of NIPAM monomer onto pre-irradiated, surface-activated PET membranes. The solutions and the membranes were then irradiated under anaerobic conditions to a total absorbed dose of 25 kGy. This grafting method involves producing carbon-centered free radicals NIPAM· and PET· from both NIPAM and PET, respectively. An investigation of the kinetics of the early stages of polymerization of NIPAM was performed through electron beam pulse radiolysis with optical detection. The pulse radiolysis experiments of anaerobic NIPAM methanol solutions show that the esol·- reacts very rapidly with NIPAM producing NIPAM·- anions with a reaction rate constant of 1.4x109±10% L mol-1 s-1. The NIPAM·- anions then undergo a protonation reaction producing the initiation free radical (NIPAM·) with a reaction rate constant of 9x102 L mol-1 s-1. Along with pulse radiolysis, electron paramagnetic resonance (EPR) measurements show that the radiolytically produced carbon-centered free radicals of the PET, PET·, decay following an overall observed pseudo-first-order reaction with rate constants of k=2.0x10-4 and 7.0x10-4 s-1 produced in argon and in air, respectively. The overall observed decay reaction involve PET·+PET· cross-linking, PET·+O2, PET+HO2·, and PET+H-atoms, since these EPR measurements were conducted under aerobic conditions.

  3. Study of LiF:Mg,Ti and CaSO4:Dy dosimeters TL response to electron beams of 6 MeV applied to radiotherapy using PMMA and solid water phantoms

    International Nuclear Information System (INIS)

    The performance of CaSO4:Dy and LiF:Mg,Ti dosimeters to electron beams applied to radiotherapy was investigated. The TL response of these dosimeters was studied for 6 MeV electron beams using PMMA and Solid Water (SW) phantoms. The dosimeters were previously separated in groups according to their TL individual sensitivities to 60Co gamma-radiation in air under electronic equilibrium conditions. After that, they were irradiated with 6 MeV electron doses of 0.1, 0.5, 1, 5 and 10 Gy using a linear accelerator Clinac 2100C Varian of Hospital Israelita Albert Einstein – HIAE. The electron beam irradiations were performed using a 10 × 10 cm2 field size, 100 cm source-phantom surface distance and the dosimeters were positioned at the depth of maximum dose (1.2 cm). The TL readings were carried out between 24 and 32 h after irradiation using a Harshaw 3500 TL reader. The TL dose–response of both type of dosimeters and phantoms presented linear behavior on the electron dose range from 0.1 to 5 Gy CaSO4:Dy dosimeter is 21 times more sensitive than LiF:Mg,Ti, dosimeter commonly used in clinical dosimetry. The obtained results indicate that the performance of CaSO4:Dy dosimeters is similar to LiF:Mg,Ti dosimeters and this material can be an alternative dosimetric material to be used to clinical electron beams dosimetry.

  4. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour; Du couplage des techniques d'analyse par faisceaux d'ions et des methodes de caracterisation physico-chimique a l'etude des effets d'irradiation sur le comportement des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Millard-Pinard, N

    2003-07-01

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is

  5. Pulse radiolysis studies of the reactions of bromine atoms and dimethyl sulfoxide-bromine atom complexes with alcohols

    International Nuclear Information System (INIS)

    Dimethylsulfoxide (DMSO)-Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6x109 M-1 s-1 and 6300 M-1 cm-1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl3 solutions applying a competitive kinetic method using the DMSO-Br complex as the reference system. The obtained rate constants were ∼108 M-1 s-1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO-Br complexes with alcohols were determined to be ∼ 107 M-1 s-1. A comparison of the reactivities of Br atoms and DMSO-Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO-Br complexes

  6. Examination of the formation process of pre-solvated and solvated electron in n-alcohol using femtosecond pulse radiolysis

    Science.gov (United States)

    Toigawa, Tomohiro; Gohdo, Masao; Norizawa, Kimihiro; Kondoh, Takafumi; Kan, Koichi; Yang, Jinfeng; Yoshida, Yoichi

    2016-06-01

    The formation process of pre-solvated and solvated electron in methanol (MeOH), ethanol (EtOH), n-butanol (BuOH), and n-octanol (OcOH) were investigated using a fs-pulse radiolysis technique by observing the pre-solvated electron at 1400 nm. The formation time constants of the pre-solvated electrons were determined to be 1.2, 2.2, 3.1, and 6.3 ps for MeOH, EtOH, BuOH, and OcOH, respectively. The formation time constants of the solvated electrons were determined to be 6.7, 13.6, 22.2, and 32.9 ps for MeOH, EtOH, BuOH, and OcOH, respectively. The formation dynamics and structure of the pre-solvated and solvated electrons in n-alcohols were discussed based on relation between the obtained time constant and dielectric relaxation time constant from the view point of kinetics. The observed formation time constants of the solvated electrons seemed to be strongly correlated with the second component of the dielectric relaxation time constants, which are related to single molecule motion. On the other hand, the observed formation time constants of the pre-solvated electrons seemed to be strongly correlated with the third component of the dielectric relaxation time constants, which are related to dynamics of hydrogen bonds.

  7. Pulse radiolysis and 77 K matrix γ irradiation of dimethyl truxinates and trans-methyl cinnamate in 2-methyltetrahydrofuran

    International Nuclear Information System (INIS)

    One-electron reduction of dimethyl μ-truxinate (μ-DMT), dimethyl β-truxinate (β-DMT), and dimethyl α-truxillate (α-DMT) has been investigated by pulse radiolysis and 77 K matrix γ irradiation of the 2-methyltetrahydrofuran solutions. Cycloreversion of the radical anions formed by an electron attachment to these cyclobutanes was observed in all cases, even at 77 K. The orientation of the cycloreversion was dependent on the stereochemistry of the cyclobutanes, and the selectivity was reasonably explained by a so-called cis effect; the best possible release of steric hindrance decides the primary step of the reaction. In 77 K matrix γ irradiation of α-DMT, an intense IR absorption was found after the photobleaching of trapped electrons with light > 690 nm. In other DMTs, the IR absorption band was not observed while the cycloreversion of DMT by mobile electrons occurred. Thus, the IR band in the case of α-DMT was assigned to an associated dimer anion due to the interaction between the radical anion and the neutral molecule pair of trans-methyl cinnamate orginally formed by the cycloreversion of α-DMT. The dimer anion was presumed to be oriented in a head-to-tail structure in a solvent cage on the basis of the original configuration of α-DMT

  8. Pulse Radiolysis Studies of Temperature Dependent Electron Transfers among Redox Centers in ba(3)-Cytochrome c Oxidase from Thermus thermophilus

    DEFF Research Database (Denmark)

    Farver, Ole; Wherland, Scot; Antholine, William E;

    2010-01-01

    The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme......-a(b)(o) → Cu(A)(o) + heme-a(b)(r) in three structurally characterized enzymes: A-type aa(3) from Paracoccus denitrificans (PDB code 3HB3 ) and bovine heart tissue (PDB code 2ZXW ), and the B-type ba(3) from T. thermophilus (PDB codes 1EHK and 1XME ). k,T data sets were obtained with the use of pulse radiolysis...... in cytochrome ba(3) had no effect on the rate of this reaction whereas the II-Met160Leu Cu(A)-mutation was slower by an amount corresponding to a decreased driving force of ∼0.06 eV. The structures support the presence of a common, electron-conducting "wire" between Cu(A) and heme-a(b). The transfer...

  9. Low-intensity radiolysis study of free-radical reactions in cloudwater: H2O2 production and destruction

    International Nuclear Information System (INIS)

    Reactions in cloudwater can be important pathways for chemical transformation of atmospheric trace gases. One such reaction is the oxidation of dissolved sulfur dioxide by hydrogen peroxide. H2O2 is formed by the disproportionation of hydroperoxyl and superoxide radicals, O2(-I). The authors report measurements of the rate of H2O2 production from O2(-I) radicals generated by low-intensity cobalt-60 radiolysis of synthetic cloudwater solutions and actual precipitation samples. The authors results, employing O2(-I) production rates comparable to those expected upon transfer of HO2 from interstitial cloud air to cloudwater, confirm model predictions that H2O2 production if frequently the major fate of O2(-I) radicals. However, there is evidence of significant reaction between S(IV) and O2(-I), with a rate coefficient of (3 ± 2) x 104 at pH 4.96. In addition, the presence of 1 μM dissolved iron decreases the H2O2 yield, principally because of destruction of H2O2 by Fe(II)

  10. Study of unstable valences of cadmium and samarium by pulse radiolysis. Influence of complexation by some synthetical ionophores

    International Nuclear Information System (INIS)

    Instable valences of cations in solution are evidenced by pulse radiolysis, in spite of a lifetime often lower than a milli-second they participate to electron transfer reactions, owing to their redox potential. In this work are studied Cd+ and Sm2+ obtained respectively by reduction of Cd2+ and Sm3+ by a solvated electron. The reactivity of Cd+ in a cryptand and in a coronand is studied; it is a powerful reducing agent (redox potential -2V) going back to the stable valence by electron transfer to an acceptor. Transfer kinetics is studied by reduction of organic molecules, effect of solvents and ligands is also examined. For samarium the reduction kinetics by hydrated electrons is increased when the ion is in a cryptand in agreement with electrochemical observations, showing that the valence 2+ is stabilized in respect to the valence 3+ for lanthanides. The difference of behaviour between Cd+ and Sm2+ is probably due to the fact that for Cd the transferred electron comes from the external layer and for Sm it is a f electron protected by the 5s and 5p orbitals

  11. Design Features of the SMART Water Chemistry

    International Nuclear Information System (INIS)

    The design features for the primary water chemistry for the SMART are introduced from the viewpoint of the system characteristics and the chemical design concept. The most essential differences in water chemistry between the commercially operating PWRs and SMART are characterized by the presence of boron in the water and the operating mode of the purification system. SMART is a soluble boron free reactor, and the ammonia is used as a pH reagent. The material for SMART steam generator is also different from the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. In SMART hydrogen gas which suppresses a generation of oxidizing species by the radiolysis processes in the reactors is not added to the primary coolant, but is normally generated from the radiolysis of the ammonia as the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are in equilibrium, which depend on the decomposition and/or combination rate of the ammonia. The level of permissible oxygen concentration in the primary coolant can be ensured by both suppression of the water radiolysis through maintaining a high enough hydrogen concentration in the primary coolant and by a restriction of the oxygen ingress into the primary coolant with the makeup water. The ammonia chemistry in SMART reactor eliminates the need for hydrogen injection for the control of the dissolved oxygen in the primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of the ammonia decomposition. (authors)

  12. Survey of Water Chemistry and Corrosion of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-15

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented.

  13. Water calorimetry: The heat defect

    International Nuclear Information System (INIS)

    Domen developed a sealed water calorimeter at NIST to measure absorbed dose to water from ionizing radiation. This calorimeter exhibited anomalous behavior using water saturated with gas mixtures of H2O2. Using computer simulations of the radiolysis of water, the authors show that the observed behavior can be explained if, in the gas mixtures, the amount-of-substance of H2 and of O2 differed significantly from 50%. The authors also report the results of simulations for other dilute aqueous solutions that are used for water calorimetry--pure water, air-saturated water, and H2-saturated water. The production of H2O2 was measured for these aqueous solutions and compared to simulations. The results indicate that water saturated with a gas mixture containing an amount-of-substance of H2 of 50% and of O2 of 50% is suitable for water calorimetry if the water is stirred and is in contact with a gas space of similar volume. H2-saturated water does not require a gas space but O2 contamination must be guarded against. The lack of a scavenger for OH radicals in pure water means that, depending on the water purity, some pure water might require a large priming dose to remove reactive impurities. The experimental and theoretical problems associated with air-saturated water and O2-saturated water in water calorimeters are discussed

  14. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE-ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  15. The Boersch effect in a picosecond pulsed electron beam emitted from a semiconductor photocathode

    Science.gov (United States)

    Kuwahara, Makoto; Nambo, Yoshito; Aoki, Kota; Sameshima, Kensuke; Jin, Xiuguang; Ujihara, Toru; Asano, Hidefumi; Saitoh, Koh; Takeda, Yoshikazu; Tanaka, Nobuo

    2016-07-01

    The space charge effect has been clearly observed in the energy distributions of picosecond pulse beams from a spin-polarized electron microscope, and was found to depend upon the quantity of charge per pulse. The non-linear phenomena associated with this effect have also been replicated in beam simulations that take into account of a three-dimensional space charge. The results show that a charge of 500 aC/pulse provides the highest brightness with a 16-ps pulse duration, a 30-keV beam energy, and an emission spot of 1.8 μm. Furthermore, the degeneracy of the wave packet of the pulsed electron beam has been evaluated to be 1.6 × 10-5 with a charge of 100 aC/pulse, which is higher than that for a continuously emitted electron beam despite the low beam energy of 30 keV. The high degeneracy and high brightness contribute to the realization of high temporal and energy resolutions in low-voltage electron microscopy, which will serve to reduce radiolysis damage and enhance scattering contrast.

  16. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  17. The synthesis of polymer nano hydrogels using pulsed electron beams

    International Nuclear Information System (INIS)

    Complete text of publication follows. Nano-hydrogels made of bio-compatible hydrophilic polymers can be used in various medical applications such as drug delivery and imaging. Intravenously introduced hydrogel-drug conjugate (10 - 200 nm particles can be effectively accumulated in tissues/organs by prolonged circulation and can be selectively transported into tumor tissues by the EPR (enhanced permeability and retention) effect. We are investigating the radiation-induced synthesis of functionalized polymer nano-hydrogels that can serve as targeted nano-medicine carriers. The latest results on the synthesis and kinetic analysis of poly(vinyl pyrrolidone) (PVP) nanogels in dilute aqueous solutions using rays and electron beams, particularly at high temperature, will be presented. At temperatures above 60 deg C, PVP chains start to collapse decreasing its average hydrodynamic radius, Rh from 23 (at 20 deg C) to 15.6 nm (at 80 deg C) due to the disruption of polymer-water hydrogen bonds. The collapsed form of the PVP molecules enhances the intra-crosslinking reactions of the radiolytically produced free radicals leading to a further decrease in its average Rh to the value of 14 nm (γ-ray irradiation with 10 kGy). The nano-gel structure was also synthesized using pulsed electron beam irradiation at high repetition rates, which give rise to a high intra-chain yield of multiple free radicals. These free radicals enhance the intra-crosslinking reactions leading to the formation of smaller size nanogel molecules with average Rh value of 12 nm at 300 pulses per second. At high pulse repetition rates, the intramolecular crosslinking reactions of the carbon centered free radicals are preferred; this effect is enhanced at higher temperatures. While the high dose rate pulses enhance the intra-molecular crosslinking, low dose rate pulses and the extended shape of the PVP molecules favor inter-molecular crosslinking. From the pulse radiolysis, the second order reaction rate

  18. Influence of chloride ions on actinide chemistry. Effects of radiolysis and temperature

    International Nuclear Information System (INIS)

    This research thesis addresses the chemistry of radionuclides in natural waters, an issue which is related to the management of long life radioactive wastes. Chloride ions are the most concentrated ions but their weak complexing power explains the fact that they are often neglected in speciation calculations. The objective of this research is to identify the influence of chloride ions on transuranium elements (Np, Pu and Am). Their influence is investigated with respect to chemical conditions close to that of underground waters and for concentrated media related to storage conditions in saline media. The author discusses media-related corrections applied to thermodynamic functions, reports a bibliographic study on the stability of actinide chloride complexes, reports a spectrophotometric investigation of complexation by chlorides, and reports the study of the influence of chlorides in a carbonate medium (solubility of americium at different temperatures, and notably at room temperature)

  19. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hun; Nam, Ji Hyun; Shin, Ji Hye; Yun, Seo Yeon; Cho, Young Cheol; Oh, Kyoung hee [Chungbuk National University, Cheongju (Korea, Republic of)

    2011-04-15

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  20. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    International Nuclear Information System (INIS)

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  1. Study of the influence of radiolysis on the stability of plutonium III - Application to a heterogeneous medium formed by a nitric solution of ferrous ions and an organic solution of tri-laurylammonium nitrate

    International Nuclear Information System (INIS)

    As processes of purification of plutonium 238 are all based on redox, it is essential to know the influence of radiolysis on the redox behaviour, and on the distribution coefficients of this isotope in the solutions used during the separation from the neptunium 237 isotope. In this study, the selective extraction of neptunium is performed by using an organic solvent (tri-laurylammonium nitrate) and the author studied the behaviour of plutonium in the emulsion formed by the solvent and the nitric aqueous solution. In a first chapter, the author recalls some generalities about radiolysis. Then, he presents the Nernst law in a two-phase system (emulsion) which allows the establishment of the relationship between the potential and the plutonium distribution coefficient. Finally, experimental results are presented and discussed: study of plutonium sharing, verification of Nernst law, influence of radiolysis

  2. Radiolysis of ZnSe(Te,O) scintillators at irradiation with nuclear particles and gamma-rays

    International Nuclear Information System (INIS)

    , removed from the surface mechanically after the irradiation, procedure also had a nearly stoichiometric composition. Moreover, the higher was the irradiation dose, the lower was the loss by radiolysis. When exposed to fast neutrons up to 1016 cm-2, Zn ions were mostly emitted, and at the total flux of 5.4x1016 cm-2, Zn and Se were emitted in the stoichiometric ratio and the scintillating properties deteriorated substantially. The same picture was observed in the layer removed from the irradiated surface. When thermal neutrons were used for irradiation, the behaviour was different and the degradation became significant at a higher fluence (1017 cm-2). Bombardment with high energy protons at a dose of 1015 cm-2 in a vacuum led to permission of super-stoichiometric Zn from the exposed surface and some improvement of the surface and scintillating properties. In conclusion, the non-stoichiometric ion emission and radiolysis of sub-surface layer are responsible for the degradation of the scintillator; a suitable proper radiation treatment, on the other hand, can improve the structure and the characteristics, which is a beneficial positive result of irradiation

  3. Irradiation capability of Japanese materials test reactor for water chemistry experiments

    International Nuclear Information System (INIS)

    Appropriate understanding of water chemistry in the core of LWRs is essential as chemical species generated due to water radiolysis by neutron and gamma-ray irradiation govern corrosive environment of structural materials in the core and its periphery, causing material degradation such as stress corrosion cracking. Theoretical model calculation such as water radiolysis calculation gives comprehensive understanding of water chemistry at irradiation field where we cannot directly monitor. For enhancement of the technology, accuracy verification of theoretical models under wide range of irradiation conditions, i.e. dose rate, temperature etc., with well quantified in-pile measurement data is essential. Japan Atomic Energy Agency (JAEA) has decided to launch water chemistry experiments for obtaining data that applicable to model verification as well as model benchmarking, by using an in-pile loop which will be installed in the Japan Materials Testing Reactor (JMTR). In order to clarify the irradiation capability of the JMTR for water chemistry experiments, preliminary investigations by water radiolysis / ECP model calculations were performed. One of the important irradiation conditions for the experiments, i.e. dose rate by neutron and gamma-ray, can be controlled by selecting irradiation position in the core. In this preliminary study, several representative irradiation positions that cover from highest to low absorption dose rate were chosen and absorption dose rate at the irradiation positions were evaluated by MCNP calculations. As a result of the calculations, it became clear that the JMTR could provide the irradiation conditions close to the BWR. The calculated absorption dose rate at each irradiation position was provided to water radiolysis calculations. The radiolysis calculations were performed under various conditions by changing absorption dose rate, water chemistry of feeding water etc. parametrically. Qualitatively, the concentration of H2O2, O2 and H2 at

  4. The influence of radical transfer and scavenger materials in various concentrations on the gamma radiolysis of phenol

    Science.gov (United States)

    Kozmér, Zsuzsanna; Takács, Erzsébet; Wojnárovits, László; Alapi, Tünde; Hernádi, Klára; Dombi, András

    2016-07-01

    The influence of a radical scavenger (tert-butanol (t-BuOH)) and two radical transfer materials (formic acid (HCOOH) and formate anion (HCOO-)) on the radical set during radiolysis of a simple model compound, phenol (PhOH, 1.0×10-4 mol L-1) is discussed in this study. PhOH solutions were irradiated with γ-rays, in the presence of 1.0×10-3, 5.0×10-2 and 5.0×10-1 mol L-1t-BuOH, HCOOH or HCOONa under deoxygenated and O2-saturated reaction conditions. The rate of transformation of PhOH increased significantly in the presence of dissolved O2. The radical transfer or scavenger materials used reduced the rates of transformation of PhOH in O2-saturated solutions to a similar degree. The simultaneous presence of O2 and the organic additives in excess proportionally to PhOH results in the conversion of the radical set to less reactive intermediates (t-•OOBuOH, HO2• or O2•-), which made minor contribution to the transformation of PhOH. Under oxygenated conditions, t-BuOH and HCOOH in low concentrations slightly promoted the degradation, as opposed to HCOO- which reduced it. However, using higher additive concentrations, their competitive reactions for the primary intermediates came into prominence, thus they reduced the efficiency of PhOH decomposition. HO2• and O2•-, and also the carbon-centred radicals formed (order of their reactivity t-•BuOH>•COOH> CO2•-) have only a minor contribution to the degradation of PhOH, and the reactions of •OH+PhOH and eaq-+PhOH are the significant processes.

  5. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  6. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m3/day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  7. A study of the radiation chemistry of poly(chlorotrifluoroethylene) by ESR spectroscopy[Poly(chlorotrifluoroethylene); {gamma}-radiolysis; ESR study; Radicals; G-values

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.J.T. E-mail: hill@chemistry.uq.edu.au; Thurecht, K.J.; Whittaker, A.K

    2003-12-01

    The ESR spectra of poly(chlorotrifluoroethylene) were recorded following {gamma}-radiolysis under vacuum at room temperature and 77 K. The very broad spectrum at 77 K revealed little fine structure with which to identity the radicals formed upon irradiation, but subsequent photobleaching and annealing studies, together with radiolytic studies at higher temperatures, afforded scope for making radical assignments. Both main-chain radicals and a range of chain-end radicals have been identified. The G-values for radical formation were 1.55, 0.36 and 0.32 at 77 K, 273 K and room temperature, respectively.

  8. Gamma-radiolysis of tetracycline in solutions. Part 1. Basic chemical processes resulting from gamma irradiation in aqueous and methanolic tetracycline hydrochloride solutions

    International Nuclear Information System (INIS)

    The decomposition yield of tetracycline hydrochloride in 0.1 N H2SO4 and CH3OH solutions was found to increase with antibiotic (TC) concentration. The H+ ions, N2O and monochloroacetic acid lower the decomposition yield of TC and isopropyl alcohol does not affect the value of G(sub(-TC)). The radiolysis mechanism of TC was suggested and the values of k(sub(H+TC)) = 2.9.105l.mole-1sec-1 and k(sub(esub(s)+TC)) = 1.46.1091.mole-1.sec-1 were estimated. (author)

  9. Radiolysis of Salts and Long-Term Storage Issues for Both Pure and Impure PuO{sub 2} Materials in Plutonium Storage Containers

    Energy Technology Data Exchange (ETDEWEB)

    Lav Tandon

    2000-05-01

    The Material Identification and Surveillance (MIS) project sponsored a literature search on the effects of radiation on salts, with focus on alkali chlorides. The goal of the survey was to provide a basis for estimating the magnitude of {alpha} radiation effects on alkali chlorides that can accompany plutonium oxide (PuO{sub 2}) into storage. Chloride radiolysis can yield potentially corrosive gases in plutonium storage containers that can adversely affect long-term stability. This literature search was primarily done to provide a tutorial on this topic, especially for personnel with nonradiation chemistry backgrounds.

  10. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams.

    OpenAIRE

    Dalaryd, Mårten; Knöös, Tommy; Ceberg, Crister

    2014-01-01

    There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR20,10 and the Spencer-Attix restricted water-to-air mass collision stopping-power ratios, L̄/ρa...

  11. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  12. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  13. Electron beam processing of wastewater in Malaysia

    International Nuclear Information System (INIS)

    Electron beam processing technology started in Malaysia in 1991 when two accelerators were installed through JICA cooperation to perform medical product sterilization project. Since then several private companies have installed electron accelerators to develop in removing volatile organic materials and to demonstrate flue gas treatment. In this country report, effort on electron beam processing of wastewater or contaminated groundwater is presented: After de-coloration tests using gamma rays as function of radiation doses, electron beam treatment of textile industry wastewater as function of beam energy and current intensity as well as with combined treatment such as aeration or biological treatment to examine the effectiveness in color and BOD or COD change has been carried out and the main results are reported. Furthermore, the present technique was examined to apply in river water treatment for use as drinking water. Techno-economic feasibility study for recycling of industrial waste water using electron beam technology is now underway. (S. Ohno)

  14. Chemical effects of heavy ion beams on organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Hitoshi E-mail: koizumih@eng.hokudai.ac.jp; Ichikawa, Tsuneki; Taguchi, Mitsumasa; Kobayashi, Yasuhiko; Namba, Hideki

    2003-05-01

    Effects of ion beam irradiation on {alpha}-alanine, adipic acid and polydimethylsiloxane were examined. Stable radicals were generated in the radiolysis of solids of {alpha}-alanine and adipic acid by {gamma}-ray, 220 MeV C ions, 350 MeV Ne ions and 175 MeV Ar ions. The G-value decreases in this order. The G-value for adipic acid decreases more than that for {alpha}-alanine. The decreases in the G-value are ascribed to high local dose in the ion tracks. Effective G-value of the radicals for {gamma}-irradiations decreases at high doses. The local dose in the ion tracks exceeds those doses, and the G-values for the ion irradiation are hence smaller than the G-value for {gamma}-irradiations. The difference in the dependence of the G-values for {alpha}-alanine and adipic acid on the ion beams is due to difference in the dose-yield relationship for radical formation. The high local dose in the ion tracks exceeds the gelation dose of some of polymers. Formation of gel strings of polydimethylsiloxanes generated in heavy ion tracks was observed by atomic force microscopy.

  15. Dynamic acoustic tractor beams

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  16. Dynamic acoustic tractor beams

    Science.gov (United States)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  17. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  18. Reactions of B/sub 12r/ with aliphatic free radicals: a pulse-radiolysis study

    International Nuclear Information System (INIS)

    The spectra of the intermediates formed in the reactions of B/sub 12r/ with the free radicals Br2-., CO2-., .CH2C(CH3)2OH, .C(CH3)2OH, . CH2CHO, and .CH(OH)CH2OH are reported. The results indicate that Br2-. oxidizes B/sub 12r/ to B/sub 12a/, via an inner-sphere mechanism, and CO2- . reduces B/sub 12r/ to B/sub 12s/. All the aliphatic free radicals studied, .R, react with B/sub 12r/, yielding as the first product a pseudocoenzyme denoted Co/sup III/-R. Co/sup III/-CH2C(CH3)2OH is stable for over a second in the pH range 3 to 10 as is Co/sup III/-CH2CHO. The latter compound hydrolyzes in acid solutions to yield B/sub 12a/ and CH3CHO. Co/sup III/-C(CH3)2OH and Co/sup III/-CH(OH)CH2OH decompose heterolytically to yield mainly B/sub 12s/; a side reaction that probably yields Co/sup III/-H via a β-hydride shift is also observed. The kinetics of decomposition of Co/sup III/-CH(OH)CH2OH in neutral solutions are reported. No water elimination from the latter intermediate occurs. The reasons for the latter observation are discussed. 6 figures

  19. Investigation of radiation induced degradation mechanism and radiolysis by products of some opiates

    International Nuclear Information System (INIS)

    Full text: Opiates are constituents or derivatives of constituents found in opium, partially dried latex obtained from opium poppy plant. Opiate and their derivatives are very potent analgesics commonly used as therapeutic agents. Some of these compounds are also frequently abused as illicit drugs. Opium poppy, is grown mainly in west and central Anatolia, where the climate and ecological conditions are conducive to high alkaloid content, is cultivated as a source of opium alkaloids (morphine, codeine, thebaine, noscapine and papaverine) used for legitimate medical purposes and it continues to be one of the most significant economic and industrial elements in Turkey. The production of opium alkaloids in Turkey involves extraction and concentration of dried poppy capsules (poppy straw). The Afyon-Bolvadin Alkaloids Factory has the capacity to process 20,000 tons of poppy straw per year. This industrial application generates a wide range of opiate wastes released to water. Therefore, a treatment process is required to solve this problem. Radiation technology is an option for treatment of opiate rich wastewater. During this process some chemical and physicochemical changes occurs when high-energy (ionizing) radiation is absorbed by matter. Then, these changes are determined to identify the degradation mechanism and byproducts. In our study, morphine, codeine, noscapine, tebain, and papaverine rich wastewater exposed to radiation with 60Co-γ-irradiation source for different doses, and after irradiation opiates and byproducts were determined by using LC-MS and GC-MS techniques. After the analysis optimization of the chromatographic systems following fragmentations with the highest density were monitored: m/z 286→201,185,181 and 153 for morphine; m/z 312→251, 221 and 58 for thebaine; m/z 414→353, 323, 221, 220, 206 and 205 for noscapine; m/z 300→241, 225, 215, 199, 183, 181, 165 and 58 for codeine; m/z 340→325, 324, 296, 203, 202, 187 and 171 (author)

  20. Off-axis beam quality change in linear accelerator x-ray beams

    International Nuclear Information System (INIS)

    The effective energy of the x-ray beam from linear accelerators changes as a function of the position in the beam due to nonuniform filtration by the flattening filter. In this work, the transmittance through a water column was measured in good geometry and the beam quality characterized in units of HVL in water. Measurements were made on a variety of linear accelerators from 4 to 10 MV. The beam energy decreased with increasing distance from the central ray for all accelerators measured

  1. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  2. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  3. Ion Irradiation of Ethane and Water Mixture Ice at 15 K: Implications for the Solar System and the ISM

    Science.gov (United States)

    de Barros, A. L. F.; da Silveira, E. F.; Fulvio, D.; Rothard, H.; Boduch, P.

    2016-06-01

    Solid water has been observed on the surface of many different astronomical objects and is the dominant ice present in the universe, from the solar system (detected on the surface of some asteroids, planets and their satellites, trans-Neptunian objects [TNOs], comets, etc.) to dense cold interstellar clouds (where interstellar dust grains are covered with water-rich ices). Ethane has been detected across the solar system, from the atmosphere of the giant planets and the surface of Saturn’s satellite Titan to various comets and TNOs. To date, there were no experiments focused on icy mixtures of C2H6 and H2O exposed to ion irradiation simulating cosmic rays, a case study for many astronomical environments in which C2H6 has been detected. In this work, the radiolysis of a C2H6:H2O (2:3) ice mixture bombarded by a 40 MeV58Ni11+ ion beam is studied. The chemical evolution of the molecular species existing in the sample is monitored by a Fourier transform infrared spectrometer. The analysis of ethane, water, and molecular products in solid phase was performed. Induced chemical reactions in C2H6:H2O ice produce 13 daughter molecular species. Their formation and dissociation cross sections are determined. Furthermore, atomic carbon, oxygen, and hydrogen budgets are determined and used to verify the stoichiometry of the most abundantly formed molecular species. The results are discussed in the view of solar system and interstellar medium chemistry. The study presented here should be regarded as a first step in laboratory works dedicated to simulate the effect of cosmic radiation on multicomponent mixtures involving C2H6 and H2O.

  4. Effects of glucose irradiated by high doses of 60cobalt gamma rays, and of some products of glucose radiolysis on the growth of Jerusalem Artichoke tissue and potato shoots culture in vitro

    International Nuclear Information System (INIS)

    Glucose, irradiated in dry conditions by gamma rays from 5.105 to 107 rad, and incorporated into culture medium, inhibits growth and, simultaneously, increases rhizogenesis of Jerusalem Artichoke tissue in culture. Tuberisation of potato shoots grown in vitro is delayed and partially inhibited. Some substances which result from radiolysis of sugars give the same results, but only at higher concentrations

  5. Modeling of active beam units with Modelica

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Hultmark, Göran; Vorre, Anders;

    2015-01-01

    This paper proposes an active beam model suitable for building energy simulations with the programming language Modelica. The model encapsulates empirical equations derived by a novel active beam terminal unit that operates with low-temperature heating and high-temperature cooling systems....... Measurements from a full-scale experiment are used to compare the thermal behavior of the active beam with the one predicted by simulations. The simulation results show that the model corresponds closely with the actual operation. The model predicts the outlet water temperature of the active beam...... with a maximum mean absolute error of 0.18 °C. In term of maximum mean absolute percentage error, simulation results differ by 0.9%. The methodology presented is general enough to be applied for modeling other active beam units. Modeling of active beam units with Modelica. Available from: https...

  6. Collimator for the SPS extracted beam

    CERN Multimedia

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  7. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  8. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  9. Electron beam diagnostic for profiling high power beams

    Science.gov (United States)

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  10. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  11. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  12. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  13. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  14. Beam induced heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Baudrenghien, P; Bracco, C; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Esteban Mueller, J; Gentini, L; Goddar, B; Grudiev, A; Henrist, B; Jones, R; Lanza, G; Lari, L; Mastoridis, T; Métral, E; Mounet, N; Nougaret, J L; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Sapinski, M; Shaposhinkova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wollmann, D

    2012-01-01

    In 2011, the rapid increase of the luminosity performance of LHC came at the expense of increased temperature and pressure readings on several near-beam LHC equipments. In some cases, this beam induced heating was suspected to cause beam dumps and even degradation of the equipment. This contribution aims at gathering the observations of beam induced heating due to beam coupling impedance, their current level of understanding and possible actions that could be implemented during the winter stop 2011-2012.

  15. A technique for measuring the sea water optical parameters with a dedicated laser beam and a multi-PMT optical module

    International Nuclear Information System (INIS)

    The KM3NeT research infrastructure will be a deep sea multidisciplinary observatory in the Mediterranean Sea housing a neutrino telescope. Accurate knowledge of the optical properties of the sea water is important for the performance evaluation of the telescope. In this work we describe a technique for the evaluation of the parameters describing the scattering characteristics of the sea water using one multi-PMT optical module that detects scattered optical photons which are emitted from a laser. Our results show that we are able to determine these parameters with satisfying precision and are able to resolve the scattering length values with less than half a meter accuracy

  16. Kinetics of the addition reaction of methyl radicals with nitric oxide studied by pulse radiolysis combined with infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Jodkowski, J.T.; Ratajczak, E.; Sillesen, A.;

    1993-01-01

    The reaction CH3 + NO (+ M) --> CH3NO ( + M) was initiated by pulse radiolysis of acetone/nitric oxide mixtures and the kinetics of methyl radicals was studied by time-resolved infrared absorption spectroscopy. The rate constant was found to be strongly pressure dependent in the range of p (M) = 6.......5-150 mbar at 298 K with M = acetone as the third body. The experimental results are represented in terms of a fall-off curve centered at 37 mbar with limiting high- and low-pressure rate constants of k(rec,infinity) = (6.6 +/- 0.9) x 10(9) x (T/300)0.6 M-1 s-1 and k(rec,0)/[M] = (4.4 +/- 0.4) x 10(12) x (T...

  17. Structural characterisation of degradation products formed upon di-n-butyl phthalate radiolysis by high-performance liquid chromatography electro-spray tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tintaru, A.; Charles, L. [Univ Aix Marseille 1, CNRS, Lab Chim Provence Spectrometries Appl Chim Struct, UMR 6264, F-13397 Marseille (France); Univ Aix Marseille 2, CNRS, Lab Chim Provence Spectrometries Appl Chim Struct, UMR 6264, F-13397 Marseille (France); Labed, V. [CEA Marcoule, DTCD SPDE L2ED, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Complete text of publication follows: Structural characterisation of 15 degradation products, formed upon di-n-butyl phthalate (DBP) radiolysis, has been achieved using a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) coupling. The dissociation behaviour of protonated DBP was first established to be further used to characterise structural deviation in the degradation products. Based on accurate mass measurements, compounds shown by HPLC-MS analysis were all found to be DBP oxidation products, amongst which various sets of isomers could be distinguished. Collision-induced dissociation experiments performed on each electro-sprayed molecule first allowed unambiguous definition of the location of the additional oxygen atoms; that is, in the alkyl branch or on the aromatic ring. Although location of the oxygen atom in the alkyl branches could not always be precisely determined, relative abundances of some product ions allowed oxygenated functions to be identified

  18. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    Energy Technology Data Exchange (ETDEWEB)

    De la Mora, Eugenio [Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210 (Mexico); Lovett, Janet E. [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); EaStCHEM School of Chemistry, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3JJ, Scotland (United Kingdom); Blanford, Christopher F. [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN (United Kingdom); Garman, Elspeth F. [University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Valderrama, Brenda; Rudino-Pinera, Enrique, E-mail: rudino@ibt.unam.mx [Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210 (Mexico)

    2012-05-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O{sub 2}. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O{sub 2} reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  19. STUDIES ON ION BEAM APPLICATION TO IMPROVE AQUATIC MACROPHYTE REMEDIATION CAPACITY IN EUTROPHIC WATERS%利用离子束提高水生植物对富营养化水体修复功能的初步研究

    Institute of Scientific and Technical Information of China (English)

    LI Miao; WU Yue-Jin; ZHANG Jun; YU Han-Qing; WU Xiao-Lei; YU Zeng-Liang

    2006-01-01

    Using ion beam biotechnology in combination with soil-less plant cultivation on artificial substratum (floating beds), the experiments were conducted with Ipomoea aquatica Forsk. Plants were attached to floating-beds which were placed on the surface of artificially nutrient-enriched tank water, in order to study the purification and remediation efficiency of ion beam-treated I.aquatica cultivars. The results show that N+ ion beams with 25keV energy and dosages of 0, 2.6, 3.9, 5.2, 6.5, 7.8, 9.1 ×1013N+ (ions)/cm2 affected I. aquatica dry seeds differently, with the dose of 3.9 × 1013N+ (ions)/cm2 improving effectively the performance as expressed by various biological indices. After ion beam application, I. aquatica cultivars grew well in nutrient-enriched water bodies, increasing the growth of leaves and stem, number of leaves, length and area of roots, plant height, and weight more remarkably than observed in the control. The net removing rates of TN, TP were as high as 75% and 82%, respectively. Especially under the dose of 3.9 × 1013N + (ions)/cm2, the net removing rates of TN, TP were highest, for 77% and 85%, respectively. It was proved that ion beam application improves phytoremediation and may be used to purify nutrient rich water bodies.

  20. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water

    Science.gov (United States)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-07-01

    Nanostructured TiO2 thin films were deposited on indium tin oxide (ITO) substrate via sol-gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO2 (Au/TiO2) thin films were then irradiated with 500 keV Ar2+ ion beam at different ion fluences viz. 1 × 1016, 3 × 1016 and 1 × 1017 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV-visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO2 and Au/TiO2 thin film irradiated at 1 × 1016 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO2. The film irradiated at 1 × 1016 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (Voc) and reduced charge transfer resistance.