WorldWideScience

Sample records for beam sputtering simulation

  1. Simulating discrete models of pattern formation by ion beam sputtering

    International Nuclear Information System (INIS)

    Hartmann, Alexander K; Kree, Reiner; Yasseri, Taha

    2009-01-01

    A class of simple, (2+1)-dimensional, discrete models is reviewed, which allow us to study the evolution of surface patterns on solid substrates during ion beam sputtering (IBS). The models are based on the same assumptions about the erosion process as the existing continuum theories. Several distinct physical mechanisms of surface diffusion are added, which allow us to study the interplay of erosion-driven and diffusion-driven pattern formation. We present results from our own work on evolution scenarios of ripple patterns, especially for longer timescales, where nonlinear effects become important. Furthermore we review kinetic phase diagrams, both with and without sample rotation, which depict the systematic dependence of surface patterns on the shape of energy depositing collision cascades after ion impact. Finally, we discuss some results from more recent work on surface diffusion with Ehrlich-Schwoebel barriers as the driving force for pattern formation during IBS and on Monte Carlo simulations of IBS with codeposition of surfactant atoms.

  2. Computer simulation of scattered ion and sputtered species effects in ion beam sputter-deposition of high temperature superconducting thin films

    International Nuclear Information System (INIS)

    Krauss, A.R.; Auciello, O.

    1992-01-01

    Ion beam sputter-deposition is a technique currently used by many groups to produce single and multicomponent thin films. This technique provides several advantages over other deposition methods, which include the capability for yielding higher film density, accurate stoichiometry control, and smooth surfaces. However, the relatively high kinetic energies associated with ion beam sputtering also lead to difficulties if the process is not properly controlled. Computer simulations have been performed to determine net deposition rates, as well as the secondary erosion, lattice damage, and gas implantation in the films, associated with primary ions scattered from elemental Y, Ba and Cu targets used to produce high temperature superconducting Y-Ba-Cu-O films. The simulations were performed using the TRIM code for different ion masses and kinetic energies, and different deposition geometries. Results are presented for primary beams of Ar + , Kr + and Xe + incident on Ba and Cu targets at 0 degrees and 45 degrees with respect to the surface normal, with the substrate positioned at 0 degrees and 45 degrees. The calculations indicate that the target composition, mass and kinetic energy of the primary beam, angle of incidence on the target, and position and orientation of the substrate affect the film damage and trapped primary beam gas by up to 5 orders of magnitude

  3. Simulation experiments and solar wind sputtering

    International Nuclear Information System (INIS)

    Griffith, J.E.; Papanastassiou, D.A.; Russell, W.A.; Tombrello, T.A.; Weller, R.A.

    1978-01-01

    In order to isolate the role played by solar wind sputtering from other lunar surface phenomena a number of simulation experiments were performed, including isotope abundance measurements of Ca sputtered from terrestrial fluorite and plagioclase by 50-keV and 130-keV 14 N beams, measurement of the energy distribution of U atoms sputtered with 80-keV 40 Ar, and measurement of the fraction of sputtered U atoms which stick on the surfaces used to collect these atoms. 10 references

  4. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    King, W.J.

    1978-01-01

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO 2 , Al 2 O 3 , Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW) [de

  5. Simulation of carbon sputtering due to molecular hydrogen impact

    International Nuclear Information System (INIS)

    Laszlo, J.

    1993-01-01

    Simulated results are compared to experimental data on the sputtering yield of carbon due to atomic and to molecular hydrogen impact. The experimental sputtering yields of carbon (graphite) due to low energy hydrogen bombardment have been found to be higher than the simulated ones. Efforts are made to obtain high enough simulated yields by considering the formation of dimer, H 2 and D 2 molecules in the primary beam. The molecular beam model applies full neutralization and full dissociation at the surface. The simulation of sputtering yields of target materials up to Z 2 ≤ 30 is also included for the low primary energy regime for deuterium projectiles. It is found that, although the sputtering yields really tend to increase, the effect of molecule formation in the beam in itself cannot be made responsible for the deviation between measured and simulated sputtering yields. (orig.)

  6. Kinetic Monte Carlo simulations compared with continuum models and experimental properties of pattern formation during ion beam sputtering

    International Nuclear Information System (INIS)

    Chason, E; Chan, W L

    2009-01-01

    Kinetic Monte Carlo simulations model the evolution of surfaces during low energy ion bombardment using atomic level mechanisms of defect formation, recombination and surface diffusion. Because the individual kinetic processes are completely determined, the resulting morphological evolution can be directly compared with continuum models based on the same mechanisms. We present results of simulations based on a curvature-dependent sputtering mechanism and diffusion of mobile surface defects. The results are compared with a continuum linear instability model based on the same physical processes. The model predictions are found to be in good agreement with the simulations for predicting the early-stage morphological evolution and the dependence on processing parameters such as the flux and temperature. This confirms that the continuum model provides a reasonable approximation of the surface evolution from multiple interacting surface defects using this model of sputtering. However, comparison with experiments indicates that there are many features of the surface evolution that do not agree with the continuum model or simulations, suggesting that additional mechanisms are required to explain the observed behavior.

  7. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    International Nuclear Information System (INIS)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr + or Xe + ions is preferable to the most commonly used Ar + ions, since the undesirable phenomena mentioned above are minimized for the first two ions. These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs

  8. Variables affecting simulated Be sputtering yields

    Energy Technology Data Exchange (ETDEWEB)

    Björkas, C., E-mail: carolina.bjorkas@helsinki.fi; Nordlund, K.

    2013-08-15

    Since beryllium is a strong candidate for the main plasma-facing material in future fusion reactors, its sputtering behaviour plays an important role in predicting the reactor’s life-time. Consensus about the actual sputtering yields has not yet been achieved, as observations are influenced by experimental method and/or studied sample. In this work, the beryllium sputtering due to deuterium and beryllium self-bombardment is analyzed using molecular dynamics simulations. The main methodological aspects that influence the outcome, such as flux and fluence of the bombardment, are highlighted, and it is shown that the simulated yields also depend on the sample structure and deuterium content.

  9. Pattern evolution during ion beam sputtering; reductionistic view

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.-H.; Kim, J.-S., E-mail: jskim@sm.ac.kr

    2016-09-15

    The development of the ripple pattern during the ion beam sputtering (IBS) is expounded via the evolution of its constituent ripples. For that purpose, we perform numerical simulation of the ripple evolution that is based on Bradley–Harper model and its non-linear extension. The ripples are found to evolve via various well-defined processes such as ripening, averaging, bifurcation and their combinations, depending on their neighboring ripples. Those information on the growth kinetics of each ripple allow the detailed description of the pattern development in real space that the instability argument and the diffraction study both made in k-space cannot provide.

  10. MD simulation of cluster formation during sputtering

    International Nuclear Information System (INIS)

    Muramoto, T.; Okai, M.; Yamashita, Y.; Yorizane, K.; Yamamura, Y.

    2001-01-01

    The cluster ejection due to cluster impact on a solid surface is studied through molecular dynamics (MD) simulations. Simulations are performed for Cu cluster impacts on the Cu(1 1 1) surface for cluster energy 100 eV/atom, and for clusters of 6, 13, 28 and 55 atoms. Interatomic interactions are described by the AMLJ-EAM potential. The vibration energy spectrum is independent of the incident cluster size and energy. This comes from the fact that sputtered clusters become stable through the successive fragmentation of nascent large sputtered clusters. The vibration energy spectra for large sputtered clusters have a peak, whose energy corresponds to the melting temperature of Cu. The exponent of the power-law fit of the abundance distribution and the total sputtering yield for the cluster impacts are higher than that for the monatomic ion impacts with the same total energy, where the exponent δ is given by Y n ∝n δ and Y n is the yield of sputtered n-atom cluster. The exponent δ follows a unified function of the total sputtering yield, which is a monotonic increase function, and it is nearly equal to δ ∼ -3 for larger yield

  11. Ion beam sputter coatings for laser technology

    Science.gov (United States)

    Ristau, Detlev; Gross, Tobias

    2005-09-01

    The initial motivation for the development of Ion Beam Sputtering (IBS) processes was the need for optical coatings with extremely low optical scatter losses for laser gyros. Especially, backscattering of the gyro-mirrors couples the directional modes in the ring resonator leading to the lock in effect which limits the sensitivity of the gyro. Accordingly, the first patent on IBS was approved for an aircraft company (Litton) in 1978. In the course of the rapid development of the IBS-concept during the last two decades, an extremely high optical quality could be achieved for laser coatings in the VIS- and NIR-spectral region. For example, high reflecting coatings with total optical losses below 1 ppm were demonstrated for specific precision measurement applications with the Nd:YAG-laser operating at 1.064 μm. Even though the high quality level of IBS-coatings had been confirmed in many applications, the process has not found its way into the production environment of most optical companies. Major restrictions are the relatively low rate of the deposition process and the poor lateral homogeneity of the coatings, which are related to the output characteristics of the currently available ion sources. In the present contribution, the basic principles of IBS will be discussed in the context of the demands of modern laser technology. Besides selected examples for special applications of IBS, aspects will be presented for approaches towards rapid manufacturing of coatings and the production of rugate filters on the basis of IBS-techniques.

  12. Preliminary results on adhesion improvement using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Sputtering is an established technique for depositing films with smooth surfaces and interfaces and good thick control. Ejection of articles from a condensed matter due to impingement of high energy particles, termed as sputtering was observed as early as in 1852, however, it is only recently that the complex process of sputtering system. Coating adhesion and environmental stability of the ion beam sputtering deposition coatings performed very well. High-energy high-current ion beam thin film synthesis of adhesion problems can be solved by using. Enhancement of adhesion in thin film synthesis, using high energy and high current ion beam, of mobile phones, car parts and other possible applications in the related industry Alternative technology of wet chrome plating, considering environment and unit cost, for car parts and esthetic improvement on surface of domestic appliances.

  13. Preliminary results on adhesion improvement using Ion Beam Sputtering Deposition

    International Nuclear Information System (INIS)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang

    2013-01-01

    Sputtering is an established technique for depositing films with smooth surfaces and interfaces and good thick control. Ejection of articles from a condensed matter due to impingement of high energy particles, termed as sputtering was observed as early as in 1852, however, it is only recently that the complex process of sputtering system. Coating adhesion and environmental stability of the ion beam sputtering deposition coatings performed very well. High-energy high-current ion beam thin film synthesis of adhesion problems can be solved by using. Enhancement of adhesion in thin film synthesis, using high energy and high current ion beam, of mobile phones, car parts and other possible applications in the related industry Alternative technology of wet chrome plating, considering environment and unit cost, for car parts and esthetic improvement on surface of domestic appliances

  14. Computer simulation of sputtering: A review

    International Nuclear Information System (INIS)

    Robinson, M.T.; Hou, M.

    1992-08-01

    In 1986, H. H. Andersen reviewed attempts to understand sputtering by computer simulation and identified several areas where further research was needed: potential energy functions for molecular dynamics (MD) modelling; the role of inelastic effects on sputtering, especially near the target surface; the modelling of surface binding in models based on the binary collision approximation (BCA); aspects of cluster emission in MD models; and angular distributions of sputtered particles. To these may be added kinetic energy distributions of sputtered particles and the relationships between MD and BCA models, as well as the development of intermediate models. Many of these topics are discussed. Recent advances in BCA modelling include the explicit evaluation of the time in strict BCA codes and the development of intermediate codes able to simulate certain many-particle problems realistically. Developments in MD modelling include the wide-spread use of many-body potentials in sputtering calculations, inclusion of realistic electron excitation and electron-phonon interactions, and several studies of cluster ion impacts on solid surfaces

  15. Development of ion beam sputtering techniques for actinide target preparation

    International Nuclear Information System (INIS)

    Aaron, W.S.; Zevenbergen, L.A.; Adair, H.L.

    1985-01-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed. (orig.)

  16. Nanopatterning of swinging substrates by ion-beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sun Mi; Kim, J.-S., E-mail: jskim@sm.ac.kr [Department of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2016-05-28

    Graphite substrates are azimuthally swung during ion-beam sputtering (IBS) at a polar angle θ = 78° from the surface normal. The swinging of the substrate not only causes quasi-two-dimensional mass transport but also makes various sputter effects from the different incident angles to work together. Through variation of the swing angle, both the transport and sputtering effects synergistically produce a series of salient patterns, such as asymmetric wall-like structures, which can grow to several tens of nanometers and exhibit a re-entrant orientational change with the increased swing angle. Thus, the present work demonstrates that dynamic variables such as the swing angle, which have been little utilized, offer an additional parameter space that can be exploited to diversify the sputtered patterns, thereby expanding the applicability of an IBS as well as the comprehension of the IBS nano patterning mechanism.

  17. Nanopatterning of swinging substrates by ion-beam sputtering

    International Nuclear Information System (INIS)

    Yoon, Sun Mi; Kim, J.-S.

    2016-01-01

    Graphite substrates are azimuthally swung during ion-beam sputtering (IBS) at a polar angle θ = 78° from the surface normal. The swinging of the substrate not only causes quasi-two-dimensional mass transport but also makes various sputter effects from the different incident angles to work together. Through variation of the swing angle, both the transport and sputtering effects synergistically produce a series of salient patterns, such as asymmetric wall-like structures, which can grow to several tens of nanometers and exhibit a re-entrant orientational change with the increased swing angle. Thus, the present work demonstrates that dynamic variables such as the swing angle, which have been little utilized, offer an additional parameter space that can be exploited to diversify the sputtered patterns, thereby expanding the applicability of an IBS as well as the comprehension of the IBS nano patterning mechanism.

  18. Towards a magnetic field separation in Ion Beam Sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Malobabic, Sina, E-mail: s.malobabic@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Jupé, Marco [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Kadhkoda, Puja [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Ristau, Detlev [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany)

    2015-10-01

    Defects embedded in coatings due to particle contamination are considered as a primary factor limiting the quality of optical coatings in Ion Beam Sputtering. An approach combining the conventional Ion Beam Sputtering process with a magnetic separator in order to remove these particles from film growth is presented. The separator provides a bent axial magnetic field that guides the material flux towards the substrate positioned at the exit of the separator. Since there is no line of sight between target and substrate, the separator prevents that the particles generated in the target area can reach the substrate. In this context, optical components were manufactured that reveal a particle density three times lower than optical components which were deposited using a conventional Ion Beam Sputtering process. - Highlights: • We use bent magnetic fields to guide and separate the sputtered deposition material. • No line of sight between substrate and target prevents thin films from particles. • The transport efficiency of binary and ternary oxides is investigated. • The defect statistics of manufactured dielectric ternary multilayers are evaluated. • The phase separation leads to a drastically reduction of particle contamination.

  19. Development of ion beam sputtering techniques for actinide target preparation

    Science.gov (United States)

    Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.

    1985-06-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.

  20. Computer simulation of sputtering of graphite target in magnetron sputtering device with two zones of erosion

    Directory of Open Access Journals (Sweden)

    Bogdanov R.V.

    2015-03-01

    Full Text Available A computer simulation program for discharge in a magnetron sputtering device with two erosion zones was developed. Basic laws of the graphite target sputtering process and transport of sputtered material to the substrate were taken into account in the Monte Carlo code. The results of computer simulation for radial distributions of density and energy flux of carbon atoms on the substrate (at different values of discharge current and pressure of the working gas confirmed the possibility of obtaining qualitative homogeneous films using this magnetron sputtering device. Also the discharge modes were determined for this magnetron sputtering device, in which it was possible to obtain such energy and density of carbon atoms fluxes, which were suitable for deposition of carbon films containing carbon nanotubes and other nanoparticles.

  1. Ion beam sputtering of Ti: Influence of process parameters on angular and energy distribution of sputtered and backscattered particles

    Energy Technology Data Exchange (ETDEWEB)

    Lautenschläger, T. [Leibniz-Institute of Surface Modification, 04318 Leipzig (Germany); Feder, R., E-mail: thomas.lautenschlaeger@iom-leipzig.de [Leibniz-Institute of Surface Modification, 04318 Leipzig (Germany); Neumann, H. [Leibniz-Institute of Surface Modification, 04318 Leipzig (Germany); Rice, C.; Schubert, M. [Department of Electrical and Computer Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States); Bundesmann, C. [Leibniz-Institute of Surface Modification, 04318 Leipzig (Germany)

    2016-10-15

    Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Angular and energy distribution of secondary particles. • Interaction between incorporated and impinging process gas. • Measured data compared with simulations. - Abstract: In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E{sup −n}, which is in principle in accordance with Thompson’s theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to

  2. Computer simulation of the self-sputtering of uranium

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1983-01-01

    The sputtering of polycrystalline α-uranium by uranium ions of energies below 10 keV has been studied in the binary collision approximation using the computer simulation program marlowe. Satisfactory agreement of the computed sputtering yields with the small amount of available experimental data was achieved using the Moliere interatomic potential, a semilocal inelastic loss function, and a planar surface binding barrier, all with conventional parameters. The model is used to discuss low energy sputtering processes and the energy and angular distributions of the reflected primaries and the sputtered target particles

  3. Systematic investigations of low energy Ar ion beam sputtering of Si and Ag

    Energy Technology Data Exchange (ETDEWEB)

    Feder, R., E-mail: rene.feder@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig (Germany); Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B. [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig (Germany)

    2013-12-15

    Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done. A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the

  4. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    Science.gov (United States)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  5. Superconducting oxide thin films by ion beam sputtering

    International Nuclear Information System (INIS)

    Kobrin, P.H.; DeNatale, J.F.; Housley, R.M.; Flintoff, J.F.; Harker, A.B.

    1987-01-01

    Superconducting thin films of ternary copper oxides from the Y-Ba-Cu-O and La-Sr-Cu-O systems have been deposited by ion beam sputtering of ceramic targets. Crystallographic orientation of the polycrystalline films has been shown to vary with substrate identity, deposition temperature and annealing temperature. The onset of the superconductive transition occurs near 90K in the Y-Ba-Cu-O system. Fe impurities of < 0.2% have been found to inhibit the superconducting transition, probably by migrating to the grain boundaries

  6. Nanofabrication by ion-beam sputtering fundamentals and applications

    CERN Document Server

    Som, Tapobrata

    2012-01-01

    Considerable attention has been paid to ion beam sputtering as an effective way to fabricate self-organized nano-patterns on various substrates. The significance of this method for patterning surfaces is that the technique is fast, simple, and less expensive. The possibility to create patterns on very large areas at once makes it even more attractive. This book reviews various fascinating results, understand the underlying physics of ion induced pattern formation, to highlight the potential applications of the patterned surfaces, and to explore the patterning behavior by different irradiation

  7. Influence of ion beam and geometrical parameters on properties of Si thin films grown by Ar ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, Carsten; Feder, Rene; Neumann, Horst [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Leipzig (Germany)

    2012-07-01

    Ion beam sputtering (IBS) offers, in contrast to other physical vapour deposition techniques, such as magnetron sputtering or electron beam evaporation, the opportunity to change the properties of the layer forming particles (sputtered and scattered particles) by varying ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, emission angle). Consequently, these effects can be utilized to tailor thin film properties [1]. The goal is to study systematically the correlations between the primary and secondary parameters and, at last, the effects on the properties of Si thin films, such as optical properties, stress, surface topography and composition. First experimental results are presented for Ar-ion sputtering of Si.

  8. SiO2-Ta2O5 sputtering yields: simulated and experimental results

    International Nuclear Information System (INIS)

    Vireton, E.; Ganau, P.; Mackowski, J.M.; Michel, C.; Pinard, L.; Remillieux, A.

    1994-09-01

    To improve mirrors coating, we have modeled sputtering of binary oxide targets using TRIM code. First, we have proposed a method to calculate TRIM input parameters using on the one hand thermodynamic cycle and on the other hand Malherbe's results. Secondly, an iterative processing has provided for oxide steady targets caused by ionic bombardment. Thirdly, we have exposed a model to get experimental sputtering yields. Fourthly, for (Ar - SiO 2 ) pair, we have determined that steady target is a silica one. A good agreement between simulated and experimental yields versus ion incident angle has been found. For (Ar - Ta 2 O 5 ) pair, we have to introduce preferential sputtering concept to explain discrepancy between simulation and experiment. In this case, steady target is tantalum monoxide. For (Ar - Ta(+O 2 ) pair, tantalum sputtered by argon ions in reactive oxygen atmosphere, we have to take into account new concept of oxidation stimulated by ion beam. We have supposed that tantalum target becomes a Ta 2 O 5 one in reactive oxygen atmosphere. Then, following mechanism is similar to previous pair. We have obtained steady target of tantalum monoxide too. Comparison between simulated and experimental sputtering yields versus ion incident angle has given very good agreement. By simulation, we have found that tantalum monoxide target has at least 15 angstrom thickness. Those results are compatible with Malherbe's and Taglauer's ones. (authors)

  9. Molecular dynamics and experimental studies on deposition mechanisms of ion beam sputtering

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, C.-M.; Lien, W.-C.

    2008-01-01

    Molecular dynamics (MD) simulation and experimental methods are used to study the deposition mechanism of ionic beam sputtering (IBS), including the effects of incident energy, incident angle and deposition temperature on the growth process of nickel nanofilms. According to the simulation, the results showed that increasing the temperature of substrate decreases the surface roughness, average grain size and density. Increasing the incident angle increases the surface roughness and the average grain size of thin film, while decreasing its density. In addition, increasing the incident energy decreases the surface roughness and the average grain size of thin film, while increasing its density. For the cases of simulation, with the substrate temperature of 500 K, normal incident angle and 14.6 x 10 -17 J are appropriate, in order to obtain a smoother surface, a small grain size and a higher density of thin film. From the experimental results, the surface roughness of thin film deposited on the substrates of Si(1 0 0) and indium tin oxide (ITO) decreases with the increasing sputtering power, while the thickness of thin film shows an approximately linear increase with the increase of sputtering power

  10. Simple model of surface roughness for binary collision sputtering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Sloan J. [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Hobler, Gerhard, E-mail: gerhard.hobler@tuwien.ac.at [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Maciążek, Dawid; Postawa, Zbigniew [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30348 Kraków (Poland)

    2017-02-15

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  11. Simple model of surface roughness for binary collision sputtering simulations

    International Nuclear Information System (INIS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-01-01

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  12. Electron beam simulation applicators

    International Nuclear Information System (INIS)

    Purdy, J.A.

    1983-01-01

    A system for simulating electron beam treatment portals using low-temperature melting point alloy is described. Special frames having the same physical dimensions as the electron beam applicators used on the Varian Clinac 20 linear accelerator were designed and constructed

  13. Development of ion beam sputtering technology for mold and die

    International Nuclear Information System (INIS)

    Lee, Jaehyung; Park, J.; Lee, J.; Jil, J.; Yang, D.; Noh, Y.; You, B.; You, J.

    2003-06-01

    Ion beam sputtering technique, one of the surface modification techniques, is to reduce surface roughness of materials with selective detaching atoms and micro particles from the surface by bombarding energetic ions of a few to a few tens keV onto the materials surfaces. This technique can be applied for the surfaces that need to have sub micrometer surface roughness, and it has already been used by companies and/or Institute over the world. Although this is relatively high cost process, it has been widely demanded in the industries with developing the eco-friend equipment due to its high quality of products. In the domestic industry, it has been pointed out that the mechanical polishing technique for molds and dies is relatively expensive and does not produce the required surface roughness. Therefore, in this R and D, techniques obtained from the ion source and the ion beam irradiation techniques developed for the proton accelerator has been applied to polish the surface of molds and dies to solve the above-mentioned problems that take place during mechanical polishing. In case that ion beam polishing technique is used, we expect not only producing the high quality polished surfaces but also producing the economically valuable end-products. In this R and D project, we are aiming at establishing ion beam techniques for industrialization as well as mass production of low cost products with developing the economical instrumentation techniques. Also, as a result of this R and D it is expected that importing of precise molds and dies may be reduced and technical competitiveness will be enhanced

  14. Simple model of surface roughness for binary collision sputtering simulations

    Science.gov (United States)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  15. Surfactant Sputtering: Theory of a new method of surface nanostructuring by ion beams

    International Nuclear Information System (INIS)

    Kree, R.; Yasseri, T.; Hartmann, A.K.

    2009-01-01

    We present a new Monte Carlo model and a new continuum theory of surface pattern formation due to 'surfactant sputtering', i.e. erosion by ion beam sputtering including a submonolayer coverage of additional, co-sputtered surfactant atoms. This setup, which has been realized in recent experiments in a controlled way leads to a number of interesting possibilities to modify pattern forming processing conditions. We will present three simple scenarios, which illustrate some potential applications of the method. In all three cases, simple Bradley-Harper type ripples appear in the absence of surfactant, whereas new, interesting structures emerge during surfactant sputtering.

  16. Monte Carlo simulations of silicon sputtering by argon ions and an approach for comparison with molecular dynamic results

    Energy Technology Data Exchange (ETDEWEB)

    Feder, Rene; Frost, Frank; Mayr, Stefan G.; Neumann, Horst; Bundesmann, Carsten [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Leipzig (Germany)

    2012-07-01

    Ion beam sputter processes deliver some intrinsic features influencing the growing film properties. Utilisation of these features needs to know how primary ion properties and geometrical process conditions influence the energy and spatial distribution of the sputtered and scattered particles. Beside complex experiments simulations are helpful to explain the correlation between primary parameters and thin film properties. The paper presents first results of two simulation codes with completely different approaches: Monte Carlo (MC) calculations with help of the well known TRIM.SP code and Molecular Dynamics calculations with an in-house developed code. First results of both simulation principles are compared for Argon ion bombardment on a Silicon target. Furthermore, a special experimental setup is outlined for validation of modelling. The setup allows the variation of ion beam parameters (ion species, ion energy, ion incidence angle on the target) and the measurement of the properties of sputtered and scattered particles.

  17. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  18. Orientation-dependent ion beam sputtering at normal incidence conditions in FeSiAl alloy

    International Nuclear Information System (INIS)

    Batic, Barbara Setina; Jenko, Monika

    2010-01-01

    The authors have performed Ar+ broad ion beam sputtering of a polycrystalline Fe-Si-Al alloy at normal incidence at energies varying from 6 to 10 keV. Sputtering results in the formation of etch pits, which can be classified in three shapes: triangular, rectangular, and square. As each grain of individual orientation exhibits a certain type of pattern, the etch pits were correlated with the crystal orientations by electron backscattered diffraction technique.

  19. Characterization of copper thin films prepared by metal self-ion beam sputter deposition

    International Nuclear Information System (INIS)

    Gotoh, Yasuhito; Amioka, Takao; Tsuji, Hiroshi; Ishikawa, Junzo

    1994-01-01

    New deposition technique, 'metal-ion beam self-sputtering' method has been developed. Using metal ions which is the same element with the target material, no contamination with noble gas atoms, which are often used in the conventional sputtering, will occur. In this paper, fundamental measurement of the film purity is reported. As a result of PIXE measurements, it was clarified that only slight amount of iron is incorporated in the films. (author)

  20. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  1. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  2. Molecular dynamic simulations of the sputtering of multilayer organic systems

    CERN Document Server

    Postawa, Z; Piaskowy, J; Krantzman, K; Winograd, N; Garrison, B J

    2003-01-01

    Sputtering of organic overlayers has been modeled using molecular dynamics computer simulations. The investigated systems are composed of benzene molecules condensed into one, two and three layers on an Ag left brace 1 1 1 right brace surface. The formed organic overlayers were bombarded with 4 keV Ar projectiles at normal incidence. The development of the collision cascade in the organic overlayer was investigated. The sputtering yield, mass, internal and kinetic energy distributions of ejected particles have been analyzed as a function of the thickness of the organic layer. The results show that all emission characteristics are sensitive to the variation of layer thickness. Although most of the ejected intact benzene molecules originate from the topmost layer, the emission of particles located initially in second and third layers is significant. The analysis indicates that the metallic substrate plays a dominant role in the ejection of intact organic molecules.

  3. LSST beam simulator

    International Nuclear Information System (INIS)

    Tyson, J A; Klint, M; Sasian, J; Claver, C; Muller, G; Gilmor, K

    2014-01-01

    It is always important to test new imagers for a mosaic camera before device acceptance and constructing the mosaic. This is particularly true of the LSST CCDs due to the fast beam illumination: at long wavelengths there can be significant beam divergence (defocus) inside the silicon because of the long absorption length for photons near the band gap. Moreover, realistic sky scenes need to be projected onto the CCD focal plane Thus, we need to design and build an f/1.2 re-imaging system. The system must simulate the entire LSST 1 operation, including a sky with galaxies and stars with approximately black-body spectra superimposed on a spatially diffuse night sky emission with its complex spectral features

  4. Monocrystal sputtering by the computer simulation code ACOCT

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Takeuchi, Wataru.

    1987-09-01

    A new computer code ACOCT has been developed in order to simulate the atomic collisions in the crystalline target within the binary collision approximation. The present code is more convenient as compared with the MARLOWE code, and takes the higher-order simultaneous collisions into account. To cheke the validity of the ACOCT program, we have calculated sputtering yields for various ion-target combinations and compared with the MARLOWE results. It is found that the calculated yields by the ACOCT program are in good agreements with those by the MARLOWE code. The ejection patterns of sputtered atoms were also calculated for the major surfaces of fcc, bcc, diamond and hcp structures, and we have got reasonable agreements with experimental results. In order to know the effects of the simultaneous collision in the slowing down process the sputtering yields and the projected ranges are calculated, changeing the parameter of the criterion for the simultaneous collision, and the effect of the simultaneous collision is found to depend on the crystal orientation. (author)

  5. Angular Distributions of Sputtered Atoms from Semiconductor Targets at Grazing Ion Beam Incidence Angles

    International Nuclear Information System (INIS)

    Sekowski, M.; Burenkov, A.; Martinez-Limia, A.; Hernandez-Mangas, J.; Ryssel, H.

    2008-01-01

    Angular distributions of ion sputtered germanium and silicon atoms are investigated within this work. Experiments are performed for the case of grazing ion incidence angles, where the resulting angular distributions are asymmetrical with respect to the polar angle of the sputtered atoms. The performed experiments are compared to Monte-Carlo simulations from different programs. We show here an improved model for the angular distribution, which has an additional dependence of the ion incidence angle.

  6. Sputtering of silicon and glass substrates with polyatomic molecular ion beams generated from ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuaki, E-mail: m-takeuchi@kuee.kyoto-u.ac.jp; Hoshide, Yuki; Ryuto, Hiromichi; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-03-15

    The effect of irradiating 1-ethyl-3-methylimidazolium positive (EMIM{sup +}) or dicyanamide negative (DCA{sup –}) ion beams using an ionic liquid ion source was characterized concerning its sputtering properties for single crystalline Si(100) and nonalkaline borosilicate glass substrates. The irradiation of the DCA{sup –} ion beam onto the Si substrate at an acceleration voltage of 4 and 6 kV exhibited detectable sputtered depths greater than a couple of nanometers with an ion fluence of only 1 × 10{sup 15} ions/cm{sup 2}, while the EMIM{sup +} ion beam produced the same depths with an ion fluence 5 × 10{sup 15} ions/cm{sup 2}. The irradiation of a 4 kV DCA{sup –} ion beam at a fluence of 1 × 10{sup 16} ions/cm{sup 2} also yields large etching depths in Si substrates, corresponding to a sputtering yield of Si/DCA{sup – }= 10, and exhibits a smoothed surface roughness of 0.05 nm. The interaction between DCA{sup –} and Si likely causes a chemical reaction that relates to the high sputtering yield and forms an amorphous C-N capping layer that results in the smooth surface. Moreover, sputtering damage by the DCA{sup –} irradiation, which was estimated by Rutherford backscattering spectroscopy with the channeling technique, was minimal compared to Ar{sup +} irradiation at the same condition. In contrast, the glass substrates exhibited no apparent change in surface roughnesses when sputtered by the DCA{sup –} irradiation compared to the unirradiated glass substrates.

  7. Study on the Deposition Rate Depending on Substrate Position by Using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ion beams have been used for over thirty years to modify materials in manufacturing of integrated circuits, and improving the corrosion properties of surfaces. Recently, the requirements for ion beam processes are becoming especially challenging in the following areas : ultra shallow junction formation for LSI fabrication, low damage high rate ion beam sputtering and smoothing, high quality functional surface treatment for electrical and optical properties. Ion beam sputtering is an attractive technology for the deposition of thin film coatings onto a broad variety of polymer, Si-wafer, lightweight substrates. Demand for the decoration metal is increasing. In addition, lightweight of parts is important, because of energy issues in the industries. Although a lot of researches have been done with conventional PVD methods for the deposition of metal or ceramic films on the surface of the polymer, there are still adhesion problems.

  8. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-05-14

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  9. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    International Nuclear Information System (INIS)

    Meyer, Fred W.; Harris, Peter R.; Taylor, C.N.; Meyer, Harry M. III; Barghouty, N.; Adams, J. Jr.

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  10. Round Robin computer simulation of ejection probability in sputtering

    International Nuclear Information System (INIS)

    Sigmund, P.; Hautala, M.; Yamamura, Y.; Hosaka, S.; Ishitani, T.; Shulga, V.I.; Harrison, D.E. Jr.; Chakarov, I.R.; Karpuzov, D.S.; Kawatoh, E.; Shimizu, R.; Valkealahti, S.; Nieminen, R.M.; Betz, G.; Husinsky, W.; Shapiro, M.H.; Vicanek, M.; Urbassek, H.M.

    1989-01-01

    We have studied the ejection of a copper atom through a planar copper surface as a function of recoil velocity and depth of origin. Results were obtained from six molecular dynamics codes, four binary collision lattice simulation codes, and eight Monte Carlo codes. Most results were found with a Born-Mayer interaction potential between the atoms with Gibson 2 parameters and a planar surface barrier, but variations on this standard were allowed for, as well as differences in the adopted cutoff radius for the interaction potential, electronic stopping, and target temperature. Large differences were found between the predictions of the various codes, but the cause of these differences could be determined in most cases. A fairly clear picture emerges from all three types of codes for the depth range and the angular range for ejection at energies relevant to sputter ejection, although a quantitative discussion would have to include an analysis of replacement collision events which has been left out here. (orig.)

  11. IMPACT simulation and the SNS linac beam

    International Nuclear Information System (INIS)

    Zhang, Y.; Qiang, J.

    2008-01-01

    Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results

  12. Multilayered nanostructured coverings generated by a method of ion beam sputtering in vacuum

    International Nuclear Information System (INIS)

    Il'yushenko, A.F.; Andreev, M.A.; Markova, L.V.; Lisovskaya, Yu. O.

    2013-01-01

    Technological process of the formation of multilayered coverings by ion -beam sputtering is developed. At research of samples by method of AFM it is established, that the heating of a substrate leads to formation of rather large grains up to 100 nanometers in size, consisting of dispersed subgrains in the size 10-25 nanometers. The obtained results allow to say that in the course of formation of coverings interphase borders of section in one layer and section border between coat layers are formed. The use of a method of Electron Backscatter Diffraction Analysis (EBSD) has helped to confirm that the at ion-beam sputtering, ultrafine diamonds remain their diamond-like structure when migrating to the surface of the coating. It is found that with increasing number of monolayers coating microhardness increases. However, this relationship is described by a nonlinear and exponential model. (authors)

  13. Lead-silicate glass surface sputtered by an argon cluster ion beam investigated by XPS

    Czech Academy of Sciences Publication Activity Database

    Zemek, Josef; Jiříček, Petr; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2017-01-01

    Roč. 469, Aug (2017), s. 1-6 ISSN 0022-3093 R&D Projects: GA MŠk LM2015088; GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : lead-silicate glass * XPS * BO * NBO * Argon duster ion beam sputtering * X-ray irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.124, year: 2016

  14. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Bejšovec, Václav; Vacík, Jiří; Lavrentiev, Vasyl; Vrňata, M.; Kormunda, M.; Daniš, S.

    2016-01-01

    Roč. 389, DEC (2016), s. 751-759 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : Copper oxide * ion beam sputtering * Van der Pauw * nuclear reaction analysis * gas sensing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  15. A flexible platform for simulations of sputtering hollow cathode discharges for laser applications

    NARCIS (Netherlands)

    Mihailova, D.B.; Grozeva, M.; Hagelaar, G.J.M.; Dijk, van J.; Brok, W.J.M.; Mullen, van der J.J.A.M.

    2008-01-01

    The Plasimo modelling platform, extended with a cathode wall sputtering module is used to study the discharge processes and to optimise the design parameters of a sputtering hollow cathode discharge (HCD). We present Plasimo simulations of a HCD used for laser applications. A time dependent

  16. Technology and applications of broad-beam ion sources used in sputtering. Part II. Applications

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Kaufman, H.R.

    1982-01-01

    The developments in broad-beam ion source technology described in the companion paper (Part I) have stimulated a rapid expansion in applications to materials processing. These applications are reviewed here, beginning with a summary of sputtering mechanisms. Next, etching applications are described, including microfabrication and reactive ion beam etching. The developing area of surface layer applications is summarized, and related to the existing fields of oxidation and implantation. Next, deposition applications are reviewed, including ion-beam sputter deposition and the emerging technique of ion-assisted vapor deposition. Many of these applications have been stimulated by the development of high current ion sources operating in the energy range of tens of hundreds of eV. It is in this energy range that ion-activated chemical etching is efficient, self-limiting compound layers can be grown, and the physical properties of vapor-deposited films can be modified. In each of these areas, broad ion beam technology provides a link between other large area plasma processes and surface analytical techniques using ion beams

  17. Growth and surface morphology of ion-beam sputtered Ti-Ni thin films

    International Nuclear Information System (INIS)

    Rao, Ambati Pulla; Sunandana, C.S.

    2008-01-01

    Titanium-nickel thin films have been deposited on float glass substrates by ion beam sputtering in 100% pure argon atmosphere. Sputtering is predominant at energy region of incident ions, 1000 eV to 100 keV. The as-deposited films were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). In this paper we attempted to study the surface morphology and elemental composition through AFM and XPS, respectively. Core level as well as valence band spectra of ion-beam sputtered Ti-Ni thin films at various Ar gas rates (5, 7 and 12 sccm) show that the thin film deposited at 3 sccm possess two distinct peaks at binding energies 458.55 eV and 464.36 eV mainly due to TiO 2 . Upon increasing Ar rate oxidation of Ti-Ni is reduced and the Ti-2p peaks begin approaching those of pure elemental Ti. Here Ti-2p peaks are observed at binding energy positions of 454.7 eV and 460.5 eV. AFM results show that the average grain size and roughness decrease, upon increasing Ar gas rate, from 2.90 μm to 0.096 μm and from 16.285 nm to 1.169 nm, respectively

  18. Differential ion beam sputtering of segregated phases in aluminum casting alloys

    International Nuclear Information System (INIS)

    Nguyen, Chuong L.; Wirtz, Tom; Fleming, Yves; Metson, James B.

    2013-01-01

    Highlights: ► Novel combination of SIMS and SPM for accurate 3D chemical mapping. ► Different removal rates of metallurgical phases by ion beam. ► Faster oxidation rate of silicon vs. aluminum at room temperature in vacuum. - Abstract: Differential sputtering of materials is an important phenomenon in materials science with many implications. One of the practical applications of this phenomenon is the modification of the interface between a substrate and coating during sputter coating of materials. Aluminum casting alloys, as common materials in many applications, are suitable candidates to investigate this phenomenon due to their phase separated microstructures. Changes at the sample surface under ion bombardment can be characterized by a range of complimentary techniques. The novel SIMS–SPM instrument used here enables a thorough investigation into the evolution of topography and composition caused by ion beam sputtering. For the alloy examined in this work, the aluminum regions are removed faster than the silicon particles. The faster oxidation rate of silicon compared to aluminum in the exposed surface can also be deduced from this study.

  19. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

    Science.gov (United States)

    Telesh, E. V.; Dostanko, A. P.; Gurevich, O. V.

    2018-03-01

    The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150-390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

  20. Nanocrystalline magnetite thin films grown by dual ion-beam sputtering

    International Nuclear Information System (INIS)

    Prieto, Pilar; Ruiz, Patricia; Ferrer, Isabel J.; Figuera, Juan de la; Marco, José F.

    2015-01-01

    Highlights: • We have grown tensile and compressive strained nanocrystalline magnetite thin films by dual ion beam sputtering. • The magnetic and thermoelectric properties can be controlled by the deposition conditions. • The magnetic anisotropy depends on the crystalline grain size. • The thermoelectric properties depend on the type of strain induced in the films. • In plane uniaxial magnetic anisotropy develops in magnetite thin films with grain sizes ⩽20 nm. - Abstract: We have explored the influence of an ion-assisted beam in the thermoelectric and magnetic properties of nanocrystalline magnetite thin films grown by ion-beam sputtering. The microstructure has been investigated by XRD. Tensile and compressive strained thin films have been obtained as a function of the parameters of the ion-assisted beam. The evolution of the in-plane magnetic anisotropy was attributed to crystalline grain size. In some films, magneto-optical Kerr effect measurements reveal the existence of uniaxial magnetic anisotropy induced by the deposition process related with a small grain size (⩽20 nm). Isotropic magnetic properties have observed in nanocrystalline magnetite thin film having larger grain sizes. The largest power factor of all the films prepared (0.47 μW/K 2 cm), obtained from a Seebeck coefficient of −80 μV/K and an electrical resistivity of 13 mΩ cm, is obtained in a nanocrystalline magnetite thin film with an expanded out-of-plane lattice and with a grain size ≈30 nm

  1. Simulation study of the beam-beam interaction at SPEAR

    International Nuclear Information System (INIS)

    Tennyson, J.

    1980-01-01

    A two dimensional simulation study of the beam-beam interaction at SPEAR indicates that quantum fluctuations affecting the horizontal betatron oscillation play a critical role in the vertical beam blowup

  2. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, Andre

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GuineaPig and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam background hitting the vertex detector.

  3. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  4. Simulation and beam line experiments for the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-01-01

    The particle-in-cell code Warp has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving Warp the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disc. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS

  5. Full three-dimensional simulation of focused ion beam micro/nanofabrication

    International Nuclear Information System (INIS)

    Kim, Heung-Bae; Hobler, Gerhard; Steiger, Andreas; Lugstein, Alois; Bertagnolli, Emmerich

    2007-01-01

    2D focused ion beam simulation is only capable of simulating the topography where the surface shape does not change along the third dimension, both in the final result and during processing. In this paper we show that a 3D topography forms under the beam even though the variation in the final result along the third direction is small. We present the code AMADEUS 3D (advanced modelling and design environment for sputter processes), which is capable of simulating the surface topography in 3D space including angle-dependent sputtering and redeposition. The surface is represented by a structured or unstructured grid, and the nodes are moved according to the calculated sputtering and redeposition fluxes. In addition, experiments have been performed on nanodot formation and box milling for a case where a 3D temporary topography forms. The excellent agreement validates the code and shows the completeness of the model

  6. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    Science.gov (United States)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  7. Monte Carlo simulations of secondary electron emission due to ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mahady, Kyle [Univ. of Tennessee, Knoxville, TN (United States); Tan, Shida [Intel Corp., Santa Clara, CA (United States); Greenzweig, Yuval [Intel Israel Ltd., Haifa (Israel); Livengood, Richard [Intel Corp., Santa Clara, CA (United States); Raveh, Amir [Intel Israel Ltd., Haifa (Israel); Fowlkes, Jason D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rack, Philip [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes this study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.

  8. Production of intensive negative lithium beam with caesium sputter-type ion source

    Science.gov (United States)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  9. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziani, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France); Delmotte, F., E-mail: Franck.Delmotte@InstitutOptique.fr [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Le Paven-Thivet, C. [Institut d' Electronique et de Télécommunications de Rennes (IETR) UMR-CNRS 6164, Université de Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex France (France); Meltchakov, E.; Jérome, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Roulliay, M. [Institut des Sciences Moléculaires d’Orsay UMR 8214, Univ Paris Sud, 91405 Orsay France (France); Bridou, F. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Gasc, K. [Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France)

    2014-02-03

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B{sub 4}C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source.

  10. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    International Nuclear Information System (INIS)

    Ziani, A.; Delmotte, F.; Le Paven-Thivet, C.; Meltchakov, E.; Jérome, A.; Roulliay, M.; Bridou, F.; Gasc, K.

    2014-01-01

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B 4 C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source

  11. Magnetic and structural properties of ion beam sputtered Fe–Zr–Nb–B–Cu thin films

    International Nuclear Information System (INIS)

    Modak, S.S.; Kane, S.N.; Gupta, A.; Mazaleyrat, F.; LoBue, M.; Coisson, M.; Celegato, F.; Tiberto, P.; Vinai, F.

    2012-01-01

    Magnetic and structural properties of Fe–Zr–Nb–B–Cu thin films, prepared by ion beam sputtering on silicon substrates by using a target made up of amorphous ribbons of nominal composition Fe 84 Zr 3.5 Nb 3.5 B 8 Cu 1 , are reported. As-deposited thin film samples exhibit an in-plane uniaxial anisotropy, which can be ascribed to the preparation technique and the coupling of quenched-in internal stresses. Structural measurements indicate no significant variation of the grain size with thickness and with the annealing temperature. Increase in surface irregularities with annealing temperature and oxidation results in aggregates that would act as pinning centers, affecting the magnetic properties leading to magnetic hardening of the specimens. The role of the magnetic anisotropy is thoroughly discussed with the help of magnetic and ferromagnetic resonance measurements. - Highlights: ►Ion beam sputtered Fe–Zr–Nb–B–Cu thin films of different thickness are prepared. ►Films exhibit in-plane uniaxial anisotropy, which reduces with thermal treatments. ►Increased surface roughness leads to wall pinning, increasing the coercive field.

  12. Titanium carbide coatings on molybdenum by means of reactive sputtering and electron beam techniques

    International Nuclear Information System (INIS)

    Obata, T.; Aida, H.; Hirohata, Y.; Mohri, M.; Yamashina, T.

    1982-01-01

    This study is an experimental investigation of TiC coatings on Mo substrate by means of a reactive r.f. sputtering in the presence of CH 4 and a chemical reaction with interdiffusion in the sandwich structure of Ti/C/Mo by electron beam evaporation and heating. Using the reactive sputtering method, a homogeneous TiC coating with stoichiometric composition and good adhesion could be produced in the conditions of the partial pressure range of CH 4 , 2 approx. equal to 5 x 10 -4 Torr (total pressure, Psub(Ar) + Psub(CH) 4 = 5.6 x 10 -2 Torr) at 300 0 C (substrate). By using the electron beams, successively evaporated carbon and Ti on a Mo substrate was heated to 700 0 C to form a TiC surface layer on the top which then remained stable during further heating to 1000 0 C. Godd adhesion was brought about by interdiffusion to produce Mo 2 C layer between TiC layer and Mo substrate. It was also found that further heating of the coating layers subsequent to Ti evaporation on the TiC layer produced thicker TiC layer due to a chemical reaction between Ti and inner carbon layers. This could be a promising method of in situ replenishment for TiC coatings on the first wall and the limiter materials. (orig.)

  13. Gold removal rate by ion sputtering as a function of ion-beam voltage and raster size using Auger electron spectroscopy. Final report

    International Nuclear Information System (INIS)

    Boehning, C.W.

    1983-01-01

    Gold removal rate was measured as a function of ion beam voltage and raster size using Auger electron spectroscopy (AES). Three different gold thicknesses were developed as standards. Two sputter rate calibration curves were generated by which gold sputter rate could be determined for variations in ion beam voltage or raster size

  14. Statistical analysis of simulation calculation of sputtering for two interaction potentials

    International Nuclear Information System (INIS)

    Shao Qiyun

    1992-01-01

    The effects of the interaction potentials (Moliere potential and Universal potential) are presented on computer simulation results of sputtering via Monte Carlo simulation based on the binary collision approximation. By means of Wilcoxon two-Sample paired sign rank test, the statistically significant difference for the above results is obtained

  15. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  16. Study on low-energy sputtering near the threshold energy by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    C. Yan

    2012-09-01

    Full Text Available Using molecular dynamics simulation, we have studied the low-energy sputtering at the energies near the sputtering threshold. Different projectile-target combinations of noble metal atoms (Cu, Ag, Au, Ni, Pd, and Pt are simulated in the range of incident energy from 0.1 to 200 eV. It is found that the threshold energies for sputtering are different for the cases of M1 < M2 and M1 ≥ M2, where M1 and M2 are atomic mass of projectile and target atoms, respectively. The sputtering yields are found to have a linear dependence on the reduced incident energy, but the dependence behaviors are different for the both cases. The two new formulas are suggested to describe the energy dependences of the both cases by fitting the simulation results with the determined threshold energies. With the study on the energy dependences of sticking probabilities and traces of the projectiles and recoils, we propose two different mechanisms to describe the sputtering behavior of low-energy atoms near the threshold energy for the cases of M1 < M2 and M1 ≥ M2, respectively.

  17. Low temperature mechanical dissipation of an ion-beam sputtered silica film

    International Nuclear Information System (INIS)

    Martin, I W; Craig, K; Bassiri, R; Hough, J; Robie, R; Rowan, S; Nawrodt, R; Schwarz, C; Harry, G; Penn, S; Reid, S

    2014-01-01

    Thermal noise arising from mechanical dissipation in oxide mirror coatings is an important limit to the sensitivity of future gravitational wave detectors, optical atomic clocks and other precision measurement systems. Here, we present measurements of the temperature dependence of the mechanical dissipation of an ion-beam sputtered silica film between 10 and 300 K. A dissipation peak was observed at 20 K and the low temperature dissipation was found to have significantly different characteristics than observed for bulk silica and silica films deposited by alternative techniques. These results are important for better understanding the underlying mechanisms of mechanical dissipation, and thus thermal noise, in the most commonly-used reflective coatings for precision measurements. (paper)

  18. Control of surface ripple amplitude in ion beam sputtered polycrystalline cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Institute of Nanoscience, Nanotechnology and Molecular Materials, University of Castilla-La Mancha, Campus de la Fabrica de Armas, Toledo 45071 (Spain); Arranz, Miguel A. [Facultad de Ciencias Quimicas, University of Castilla-La Mancha, Ciudad Real 13071 (Spain)

    2011-02-15

    We have grown both polycrystalline and partially textured cobalt films by magnetron sputter deposition in the range of thickness (50-200 nm). Kinetic roughening of the growing film leads to a controlled rms surface roughness values (1-6 nm) increasing with the as-grown film thickness. Ion erosion of a low energy 1 keV Ar+ beam at glancing incidence (80{sup o}) on the cobalt film changes the surface morphology to a ripple pattern of nanometric wavelength. The wavelength evolution at relatively low fluency is strongly dependent on the initial surface topography (a wavelength selection mechanism hereby confirmed in polycrystalline rough surfaces and based on the shadowing instability). At sufficiently large fluency, the ripple wavelength steadily increases on a coarsening regime and does not recall the virgin surface morphology. Remarkably, the use of a rough virgin surface makes the ripple amplitude in the final pattern can be controllably increased without affecting the ripple wavelength.

  19. Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition.

    Science.gov (United States)

    Wang, C; Ke, S Y; Yang, J; Hu, W D; Qiu, F; Wang, R F; Yang, Y

    2015-03-13

    The dependence of the electronic properties of a single Ge/Si quantum dot (QD) grown by the ion-beam sputtering deposition technique on growth temperature and QD diameter is investigated by conductive atomic force microscopy (CAFM). The Si-Ge intermixing effect is demonstrated to be important for the current distribution of single QDs. The current staircase induced by the Coulomb blockade effect is observed at higher growth temperatures (>700 °C) due to the formation of an additional barrier between dislocated QDs and Si substrate for the resonant tunneling of holes. According to the proposed single-hole-tunneling model, the fact that the intermixing effect is observed to increase as the incoherent QD size decreases may explain the increase in the starting voltage of the current staircase and the decrease in the current step width.

  20. Capability of focused Ar ion beam sputtering for combinatorial synthesis of metal films

    International Nuclear Information System (INIS)

    Nagata, T.; Haemori, M.; Chikyow, T.

    2009-01-01

    The authors examined the use of focused Ar ion beam sputtering (FAIS) for combinatorial synthesis. A Langmuir probe revealed that the electron temperature and density for FAIS of metal film deposition was lower than that of other major combinatorial thin film growth techniques such as pulsed laser deposition. Combining FAIS with the combinatorial method allowed the compositional fraction of the Pt-Ru binary alloy to be systematically controlled. Pt-Ru alloy metal film grew epitaxially on ZnO substrates, and crystal structures changed from the Pt phase (cubic structure) to the Ru phase (hexagonal structure) in the Pt-Ru alloy phase diagram. The alloy film has a smooth surface, with the Ru phase, in particular, showing a clear step-and-terrace structure. The combination of FAIS and the combinatorial method has major potential for the fabrication of high quality composition-spread metal film.

  1. Capability of focused Ar ion beam sputtering for combinatorial synthesis of metal films

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, T.; Haemori, M.; Chikyow, T. [Advanced Electric Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2009-05-15

    The authors examined the use of focused Ar ion beam sputtering (FAIS) for combinatorial synthesis. A Langmuir probe revealed that the electron temperature and density for FAIS of metal film deposition was lower than that of other major combinatorial thin film growth techniques such as pulsed laser deposition. Combining FAIS with the combinatorial method allowed the compositional fraction of the Pt-Ru binary alloy to be systematically controlled. Pt-Ru alloy metal film grew epitaxially on ZnO substrates, and crystal structures changed from the Pt phase (cubic structure) to the Ru phase (hexagonal structure) in the Pt-Ru alloy phase diagram. The alloy film has a smooth surface, with the Ru phase, in particular, showing a clear step-and-terrace structure. The combination of FAIS and the combinatorial method has major potential for the fabrication of high quality composition-spread metal film.

  2. Atom beam sputtered Ag-TiO{sub 2} plasmonic nanocomposite thin films for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jaspal; Sahu, Kavita [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India); Pandey, A. [Solid State Physics Laboratory, Defence Research and Development Organization, Timarpur, Delhi 110054 (India); Kumar, Mohit [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Ghosh, Tapas; Satpati, B. [Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata 700064 (India); Som, T.; Varma, S. [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Avasthi, D.K. [Amity Institute of Nanotechnology, Noida 201313, Uttar Pradesh (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India)

    2017-07-31

    The development of nanocomposite coatings with highly enhanced photocatalytic activity is important for photocatalytic purification of water and air. We report on the synthesis of Ag-TiO{sub 2} nanocomposite thin films with highly enhanced photocatalytic activity by atom beam co-sputtering technique. The effects of Ag concentration on the structural, morphological, optical, plasmonic and photocatalytic properties of the nanocomposite thin films were investigated. UV–visible DRS studies revealed the presence of surface plasmon resonance (SPR) peak characteristic of Ag nanoparticles together with the excitonic absorption peak originating from TiO{sub 2} nanoparticles in the nanocomposites. XRD studies showed that the nanocomposite thin films consist of Ag nanoparticles and rutile TiO{sub 2} nanoparticles. The synthesized Ag-TiO{sub 2} nanocomposite thin films with 5 at% Ag were found to exhibit highly enhanced photocatalytic activity for sun light driven photocatalytic degradation of methylene blue in water, indicating their potential application in water purification.

  3. Optical and tribomechanical stability of optically variable interference security devices prepared by dual ion beam sputtering.

    Science.gov (United States)

    Çetinörgü-Goldenberg, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2011-07-01

    Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions.

  4. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  5. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    Science.gov (United States)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  6. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    International Nuclear Information System (INIS)

    Plank, Harald

    2015-01-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga + liquid ion sources towards higher resolution gas field ion sources (He + and Ne + ). Process simulations not only improve the fundamental understanding of the relevant ion–matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion–solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818–23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne + beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications. (viewpoint)

  7. Beam Dynamics Simulation for the CTF3 Drive Beam Accelerator

    CERN Document Server

    Schulte, Daniel

    2000-01-01

    A new CLIC Test Facility (CTF3) at CERN will serve to study the drive beam generation for the Compact Linear Collider (CLIC). CTF3 has to accelerate a 3.5 A electron beam in almost fully-loaded structures. The pulse contains more than 2000 bunches, one in every second RF bucket, and has a length of more than one microsecond. Different options for the lattice of the drive-beam accelerator are presented, based on FODO-cells and triplets as well as solenoids. The transverse stability is simulated, including the effects of beam jitter, alignment and beam-based correction.

  8. Energy dependence of angular distributions of sputtered particles by ion-beam bombardment at normal incidence

    International Nuclear Information System (INIS)

    Matsuda, Yoshinobu; Ueda, Yasutoshi; Uchino, Kiichiro; Muraoka, Katsunori; Maeda, Mitsuo; Akazaki, Masanori; Yamamura, Yasunori.

    1986-01-01

    The angular distributions of sputtered Fe-atoms were measured using the laser fluorescence technique during Ar-ion bombardment for energies of 0.6, 1, 2 and 3 keV at normal incidence. The measured cosine distribution at 0.6 keV progressively deviated to an over-cosine distribution at higher energies, and at 3 keV the angular distribution was an overcosine distribution of about 20 %. The experimental results agree qualitatively with calculations by a recent computer simulation code, ACAT. The results are explained by the competition between surface scattering and the effects of primary knock-on atoms, which tend to make the angular distributions over-cosine and under-cosine, respectively. (author)

  9. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. I. CLOUD-CRUSHING AND POST-PROCESSED GRAIN SPUTTERING

    International Nuclear Information System (INIS)

    Silvia, Devin W.; Smith, Britton D.; Michael Shull, J.

    2010-01-01

    We investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova (SN) remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the overdensity of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the timescale of the simulations. In general, our results indicate that grains with radii less than 0.1 μm are sputtered to much smaller radii and often destroyed completely, while larger grains survive their interaction with the reverse shock. We also find that, for high ejecta densities, the percentage of dust that survives is strongly dependent on the relative velocity between the clump and the reverse shock, causing up to 50% more destruction for the highest velocity shocks. The fraction of dust destroyed varies widely across grain species, ranging from total destruction of Al 2 O 3 grains to minimal destruction of Fe grains (only 20% destruction in the most extreme cases). C and SiO 2 grains show moderate to strong sputtering as well, with 38% and 80% mass loss. The survival rate of grains formed by early SNe is crucial in determining whether or not they can act as the 'dust factories' needed to explain high-redshift dust.

  10. Fabrication of highly oriented β-FeSi2 by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Nakanoya, Takamitsu; Sasase, Masato; Yamamoto, Hiroyuki; Saito, Takeru; Hojou, Kiichi

    2002-01-01

    We have prepared the 'environmentally friendly' semiconductor, β-FeSi 2 thin films by ion beam sputter deposition method. The temperature of Si (100) substrate during the deposition and total amount of deposited Fe have been changed in order to find the optimum condition of the film formation. The crystallinity and surface morphology of the formed silicides were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. It is understood that the domain of the epitaxially grown β-FeSi 2 increases with the substrate temperature up to 700degC at the fixed amount of deposited Fe (33 nm) by XRD spectra. On the other hand, α-FeSi 2 is appeared and increased with the temperature above 700degC. Granulation of the surface is also observed by SEM images at this temperature region. At the fixed temperature condition (700degC), formation of α phase, which is obtained at the higher temperature compared with β phase, is observed for the fewer deposited samples. These results suggest the possibility of the epitaxially grown β-FeSi 2 formation at the lower (< 700degC) temperature region. (author)

  11. Nanoscale pattern formation at surfaces under ion-beam sputtering: A perspective from continuum models

    International Nuclear Information System (INIS)

    Cuerno, Rodolfo; Castro, Mario; Munoz-Garcia, Javier; Gago, Raul; Vazquez, Luis

    2011-01-01

    Although reports on surface nanostructuring of solid targets by low to medium energy ion irradiation date back to the 1960s, only with the advent of high resolution tools for surface/interface characterization has the high potential of this procedure been recognized as a method for efficient production of surface patterns. Such morphologies are made up of periodic arrangements of nanometric sized features, like ripples and dots, with interest for technological applications due to their electronic, magnetic, and optical properties. Thus, roughly for the last ten years large efforts have been directed towards harnessing this nanofabrication technique. However, and particularly in view of recent experimental developments, we can say that the basic mechanisms controlling these pattern formation processes remain poorly understood. The lack of nanostructuring at low angles of incidence on some pure monoelemental targets, the role of impurities in the surface dynamics and other recent observations are challenging the classic view on the phenomenon as the mere interplay between the curvature dependence of the sputtering yield and surface diffusion. We review the main attempts at a theoretical (continuum) description of these systems, with emphasis on recent developments. Strong hints already exist that the nature of the morphological instability has to be rethought as originating in the material flow that is induced by the ion beam.

  12. Non-imaging ray-tracing for sputtering simulation with apodization

    Science.gov (United States)

    Ou, Chung-Jen

    2018-04-01

    Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.

  13. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions

    Science.gov (United States)

    Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian

    2018-03-01

    An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.

  14. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    International Nuclear Information System (INIS)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-01-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy

  15. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  16. Beam-Beam Simulations with GUINEA-PIG

    CERN Document Server

    Schulte, Daniel

    1998-01-01

    While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. GUINEA-PIG is a code to simulate the impact of this effect on luminosity and back ground. A short overview of the program is given with examples of its application to the back ground strudies for TESLA, the top quark threshold scan and a possible luminosity monitor, as well as some results for CLIC.

  17. Simulation of the electric potential and plasma generation coupling in magnetron sputtering discharges

    Science.gov (United States)

    Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2016-09-01

    Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.

  18. Parallel beam dynamics simulation of linear accelerators

    International Nuclear Information System (INIS)

    Qiang, Ji; Ryne, Robert D.

    2002-01-01

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies

  19. Nickel oxide films by thermal annealing of ion-beam-sputtered Ni: Structure and electro-optical properties

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Remeš, Zdeněk; Bejšovec, Václav; Vacík, Jiří; Daniš, S.; Kormunda, M.

    2017-01-01

    Roč. 640, č. 10 (2017), s. 52-59 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR(CZ) GA14-05053S; GA MŠk LM2015056 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : NiO * ion beam sputtering * thermal annealing * nuclear analytical methods * optical properties Subject RIV: JK - Corrosion ; Surface Treatment of Materials; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Coating and films; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 1.879, year: 2016

  20. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  1. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  2. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Science.gov (United States)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  3. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P., E-mail: phorak@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Bejsovec, V.; Vacik, J.; Lavrentiev, V. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Vrnata, M. [Department of Physics and Measurements, The University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Kormunda, M. [Department of Physics, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Danis, S. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2016-12-15

    Highlights: • A rapid oxidation process of thin copper films. • Sheet resistance up to 10{sup 9} Ω/◊. • Mixed oxide phase at 200 °C with significant hydroxide presence. • Gas sensing response to 1000 ppm of hydrogen and methanol vapours. • Increased sensitivity with Pd and Au catalyst to hydrogen and methanol, respectively. - Abstract: Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C–600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C–600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu{sub 2}O phase was identified. However, the oxidation at 200 °C led to a more complicated composition − in the depth Cu{sub 2}O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH){sub 2}. A limited amount of Cu{sub 2}O was also found in samples annealed at 600 °C. The sheet resistance R{sub S} of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing R{sub S} was measured in the range 2.64 MΩ/□–2.45 GΩ/□. The highest R{sub S} values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the {sup 16}O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed

  4. Sputtering of carbon using hydrogen ion beams with energies of 60–800 eV

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, Dmitry S., E-mail: dmitrisidoroff@rambler.ru [Nizhny Novgorod State University, 23 Gagarina Avenue, Nizhny Novgorod, Nizhny Novgorod Region 603950 (Russian Federation); Chkhalo, Nikolay I., E-mail: chkhalo@ipm.sci-nnov.ru [Institute for Physics of Microstructures RAS, Academicheskaya Str. 7, Afonino, Nizhny Novgorod Region, Kstovsky District, Kstovo Region 603087 (Russian Federation); Mikhailenko, Mikhail S.; Pestov, Alexey E.; Polkovnikov, Vladimir N. [Institute for Physics of Microstructures RAS, Academicheskaya Str. 7, Afonino, Nizhny Novgorod Region, Kstovsky District, Kstovo Region 603087 (Russian Federation)

    2016-11-15

    This article presents the result of a study on the sputtering of carbon films by low-energy hydrogen ions. In particular, the etching rate and surface roughness were measured. The range of energies where the sputtering switches from pure chemical to a combination of chemical and physical mechanisms was determined. It is shown that Sigmund’s theory for ion etching does not work well for fields of energy less than 150 eV and that it accurately describes the dependence of a sputtering coefficient on ion energy for energies greater than 300 eV. A strong smoothing effect for the surface of carbon film was also found. This result is interesting in itself and for its significance for the manufacture of super-smooth surfaces for X-ray applications.

  5. Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S., E-mail: 160184@mail.csc.com.tw [New Materials Research and Development Department, China Steel Corporation, 1 Chung Kang Road, Hsiao Kang, Kaohsiung 812, Taiwan, ROC (China); Chiu, C.H.; Hong, I.T.; Tung, H.C. [New Materials Research and Development Department, China Steel Corporation, 1 Chung Kang Road, Hsiao Kang, Kaohsiung 812, Taiwan, ROC (China); Chien, F.S.-S. [Department of Physics, Tunghai University, 1727, Sec. 4, Xitun Dist., Taiwan Boulevard, Taichung 407, Taiwan, ROC (China)

    2013-09-15

    Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes, which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.

  6. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Davis, V.T.; Covington, A.M.; Duvvuri, S.S.; Kraus, R.G.; Emmons, E.D.; Kvale, T.J.; Thompson, J.S.

    2007-01-01

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps

  7. Second order nonlinear optical properties of zinc oxide films deposited by low temperature dual ion beam sputtering

    International Nuclear Information System (INIS)

    Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.

    2005-01-01

    We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples

  8. Study of Sb/SnO{sub 2} bi-layer films prepared by ion beam sputtering deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Min [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Chun-Chieh [Department of Electrical Engineering, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Township, Kaohsiung 833, Taiwan, ROC (China); Kuo, Jui-Chao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2014-11-03

    In the present work, bi-layer thin films of Sb/SnO{sub 2} were produced on unheated glass substrates using ion beam sputtering (IBS) technique without post annealing treatment. The thickness of Sb layers was varied from 2 to 10 nm and the Sb layers were deposited on SnO{sub 2} layers having thicknesses of 40 nm to 115 nm. The effect of thickness was studied on the morphological, electrical and optical properties. The Sb/SnO{sub 2} bi-layer resulted in lowering the electrical resistivity as well as reducing the optical transmittance. However, the optical and electrical properties of the bi-layer films were mainly influenced by the thickness of Sb layers due to progressive transfer in structures from aggregate to continuous films. The bi-layer films show the electrical resistivity of 1.4 × 10{sup −3} Ω cm and an optical transmittance of 26% for Sb film having 10 nm thickness. - Highlights: • Bi-layer Sb/SnO{sub 2} structures were synthesized by ion beam sputtering (IBS) technique. • The 6 nm-thick Sb film is a transition region in this study. • The conductivity of the bi-layer films is increased as Sb thickness increases. • The transmittance of the bi-layer films is decreased as Sb thickness increases.

  9. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells

    Science.gov (United States)

    Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik

    2018-04-01

    In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors  >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.

  10. Simulation and Track Reconstruction for Beam Telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are an important tool to test new detectors under development in a particle beam. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, its predicted position on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them do not account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framework along with the General Broken ...

  11. Cyclotron beam dynamic simulations in MATLAB

    International Nuclear Information System (INIS)

    Karamysheva, G.A.; Karamyshev, O.V.; Lepkina, O.E.

    2008-01-01

    MATLAB is useful for beam dynamic simulations in cyclotrons. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modeling results with an example of two different cyclotron designs are presented. Programming with MATLAB opens wide possibilities of the development of the complex program, able to perform complete block of calculations for the design of the accelerators

  12. Simulation of the beam halo from the beam-beam interaction in LEP

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.

    1994-02-01

    The luminosity lifetimes of e + e - colliders are often dominated by the halo produced by the beam-beam interaction. They have developed a simulation technique to model this halo using the flux across boundaries in amplitude space to decrease the CPU time by a factor of one-hundred or more over 'brute force' tracking. It allows simulation of density distributions and halos corresponding to realistic lifetimes. Reference 1 shows the agreement with brute force tracking in a number of cases and the importance of beam-beam resonances in determining the density distribution of large amplitudes. this research is now directed towards comparisons with operating colliders and studies of the combined effects of lattice and beam-beam nonlinearities. LEP offers an ideal opportunity for both, and in this paper they are presenting the first results of LEP simulations

  13. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  14. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  15. Surface structuring in polypropylene using Ar+ beam sputtering: Pattern transition from ripples to dot nanostructures

    Science.gov (United States)

    Goyal, Meetika; Aggarwal, Sanjeev; Sharma, Annu; Ojha, Sunil

    2018-05-01

    Temporal variations in nano-scale surface morphology generated on Polypropylene (PP) substrates utilizing 40 keV oblique argon ion beam have been presented. Due to controlled variation of crucial beam parameters i.e. ion incidence angle and erosion time, formation of ripple patterns and further its transition into dot nanostructures have been realized. Experimental investigations have been supported by evaluation of Bradley and Harper (B-H) coefficients estimated using SRIM (The Stopping and Range of Ions in Matter) simulations. Roughness of pristine target surfaces has been accredited to be a crucial factor behind the early time evolution of nano-scale patterns over the polymeric surface. Study of Power spectral density (PSD) spectra reveals that smoothing mechanism switch from ballistic drift to ion enhanced surface diffusion (ESD) which can be the most probable cause for such morphological transition under given experimental conditions. Compositional analysis and depth profiling of argon ion irradiated specimens using Rutherford Backscattering Spectroscopy (RBS) has also been correlated with the AFM findings.

  16. Time domain simulations of beam-loading

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1989-09-01

    We present the results of computer simulations of high current beam loading in a proton storage ring. The model integrates the differential equation for gap voltage, and iterates the difference equations for particle longitudinal motion. The effects of cavity fields on the bunch shape and of the fundamental component of the beam on the cavity are treated in a self-consistent manner. The simulation model is applied to verify the dipole-quadrupole hybrid Robinson instability criterion, which differs from the dipole-mode criterion

  17. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    International Nuclear Information System (INIS)

    Yang, Jie; Zhao, Bo; Wang, Chong; Qiu, Feng; Wang, Rongfei; Yang, Yu

    2016-01-01

    Highlights: • Ge islands were prepared by ion beam sputtering with different grid-to-grid gaps. • Ge islands with larger sizes and low density are observed in 1-mm-spaced samples. • The island growth was determined by sputter energy and the quality of Si buffer. • The crystalline volume fraction of buffer must be higher than 72% to grow islands. - Abstract: Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  18. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zhao, Bo [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Wang, Chong, E-mail: cwang@mail.sitp.ac.cn [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Qiu, Feng; Wang, Rongfei [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Yang, Yu, E-mail: yuyang@ynu.edu.cn [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China)

    2016-11-15

    Highlights: • Ge islands were prepared by ion beam sputtering with different grid-to-grid gaps. • Ge islands with larger sizes and low density are observed in 1-mm-spaced samples. • The island growth was determined by sputter energy and the quality of Si buffer. • The crystalline volume fraction of buffer must be higher than 72% to grow islands. - Abstract: Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  19. Molecular dynamics simulations of sputtering of organic overlayers by slow, large clusters

    International Nuclear Information System (INIS)

    Rzeznik, L.; Czerwinski, B.; Garrison, B.J.; Winograd, N.; Postawa, Z.

    2008-01-01

    The ion-stimulated desorption of organic molecules by impact of large and slow clusters is examined using molecular dynamics (MDs) computer simulations. The investigated system, represented by a monolayer of benzene deposited on Ag{1 1 1}, is irradiated with projectiles composed of thousands of noble gas atoms having a kinetic energy of 0.1-20 eV/atom. The sputtering yield of molecular species and the kinetic energy distributions are analyzed and compared to the results obtain for PS4 overlayer. The simulations demonstrate quite clearly that the physics of ejection by large and slow clusters is distinct from the ejection events stimulated by the popular SIMS clusters, like C 60 , Au 3 and SF 5 at tens of keV energies.

  20. Simulation of integrated beam experiment designs

    International Nuclear Information System (INIS)

    Grote, D.P.; Sharp, W.M.

    2004-01-01

    Simulation of designs of an Integrated Beam Experiment (IBX) class accelerator have been carried out. These simulations are an important tool for validating such designs. Issues such as envelope mismatch and emittance growth can be examined in a self-consistent manner, including the details of injection, accelerator transitions, long-term transport, and longitudinal compression. The simulations are three-dimensional and time-dependent, and begin at the source. They continue up through the end of the acceleration region, at which point the data is passed on to a separate simulation of the drift compression. Results are be presented

  1. Specific features of fullerene-bearing thin film growth using ion beam vacuum sputtering of fullerene mixtures with B, Fe, Se, Gd and Na

    International Nuclear Information System (INIS)

    Semenov, A.P.; Semenova, I.A.; Bulina, N.V.; Lopatin, V.A.; Karmanov, N.S.; Churilov, G.N.

    2005-01-01

    A new approach to the growth of films containing fullerenes and doping elements is described. It is suggested that a cluster mechanism of the target sputtering by accelerated ions makes possible the deposition of fullerenes on a substrate with a certain probability for dopant atoms being introduced into the cavities of fullerene molecules and a higher probability of the doping element introduction between fullerene molecules. The proposed method has been experimentally implemented by using an Ar ion beam to sputter C 60 /C 70 fullerene mixtures, synthesized in a plasmachemical reactor at a pressure of 10 5 Pa and containing a doping element, i.e. Fe, Na, B, Gd or Se. Micron-thick films containing C 60 and C 70 fullerenes and the corresponding dopant element, i.e. Fe, Na, B, Gd or Se, were grown from dopant-containing fullerene mixtures by ion beam sputtering in a vacuum of ∼10 -2 Pa [ru

  2. Radial particle distributions in PARMILA simulation beams

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1984-03-01

    The estimation of beam spill in particle accelerators is becoming of greater importance as higher current designs are being funded. To the present, no numerical method for predicting beam-spill has been available. In this paper, we present an approach to the loss-estimation problem that uses probability distributions fitted to particle-simulation beams. The properties of the PARMILA code's radial particle distribution are discussed, and a broad class of probability distributions are examined to check their ability to fit it. The possibility that the PARMILA distribution is a mixture is discussed, and a fitting distribution consisting of a mixture of two generalized gamma distributions is found. An efficient algorithm to accomplish the fit is presented. Examples of the relative prediction of beam spill are given. 26 references, 18 figures, 1 table

  3. Effect of argon ion beam voltages on the microstructure of aluminum nitride films prepared at room temperature by a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Han Sheng; Cheng, C.-H.; Shih, H.C.

    2004-01-01

    Aluminum nitride (AlN) films were successfully deposited at room temperature onto p-type (1 0 0) silicon wafers by manipulating argon ion beam voltages in a dual ion beam sputtering (DIBS). X-ray diffraction spectra showed that aluminum nitride films could be synthesized above 800 V. The (0 0 2) orientation was dominant at 800 V, above which the orientation was random. The atomic force microscope (AFM) images displayed a relatively smooth surface with the root-mean-square roughness of 2-3 nm, where this roughness decreased with argon ion beam voltage. The Al 2p 3/2 and N 1s spectra indicated that both the aluminum-aluminum bond and aluminum-nitrogen bond appeared at 600 V, above which only the aluminum-nitrogen bond was detected. Moreover, the atomic concentration in aluminum nitride films was concentrated in aluminum-rich phases in all cases. Nevertheless, the aluminum concentration markedly increased with argon ion beam voltages below 1000 V, above which the concentration decreased slightly. The correlation between the microstructure of aluminum nitride films and argon ion beam voltages is also discussed

  4. Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments

    International Nuclear Information System (INIS)

    Georgieva, V; Bogaerts, A; Saraiva, M; Depla, D; Jehanathan, N; Lebelev, O I

    2009-01-01

    Using a molecular dynamics model the crystallinity of Mg x Al y O z thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al 2 O 3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the Mg-Al-O film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline Mg-Al-O films have a MgO structure with Al atoms in between.

  5. Multi-jump magnetic switching in ion-beam sputtered amorphous Co20Fe60B20 thin films

    International Nuclear Information System (INIS)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-01-01

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co 20 Fe 60 B 20 (5–75 nm) thin films grown on Si/amorphous SiO 2 are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices

  6. The influence of sequence of precursor films on CZTSe thin films prepared by ion-beam sputtering deposition

    Science.gov (United States)

    Zhao, Jun; Liang, Guangxing; Zeng, Yang; Fan, Ping; Hu, Juguang; Luo, Jingting; Zhang, Dongping

    2017-02-01

    The CuZnSn (CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu2ZnSnSe4 (CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 °C. The characterization methods of CZTSe thin films include X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu1+, Zn2+, Sn4+, Se2+. With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV. Project supported by the National Natural Science Foundation of China (No. 61404086), the Basical Research Program of Shenzhen (Nos. JCYJ20150324140036866, JCYJ20150324141711581), and the Natural Science Foundation of SZU (No. 2014017).

  7. The effect of FR enhancement in reactive ion beam sputtered Bi, Gd, Al-substituted iron- garnets: Bi2O3 nanocomposite films

    OpenAIRE

    Berzhansky, V.; Shaposhnikov, A.; Karavainikov, A.; Prokopov, A.; Mikhailova, T.; Lukienko, I.; Kharchenko, Yu.; Miloslavskaya, O.; Kharchenko, N.

    2012-01-01

    The effect of considerable Faraday rotation (FR) and figure of merit (Q) enhancement in Bi, Gd, Al-substituted iron garnets: Bi2O3 nano-composite films produced by separate reactive ion beam sputtered Bi:YIG and Bi2O3 films was found. It reached threefold enhancement of the FR and twofold of the Q one on GGG substrates.

  8. Monte Carlo simulation for theoretical calculations of damage and sputtering processes

    International Nuclear Information System (INIS)

    Yamamura, Yasunori

    1984-01-01

    The radiation damage accompanying ion irradiation and the various problems caused with it should be determined in principle by resolving Boltzmann's equations. However, in reality, those for a semi-infinite system cannot be generally resolved. Moreover, the effect of crystals, oblique incidence and so on make the situation more difficult. The analysis of the complicated phenomena of the collision in solids and the problems of radiation damage and sputtering accompanying them is possible in most cases only by computer simulation. At present, the methods of simulating the atomic collision phenomena in solids are roughly classified into molecular dynamics method and Monte Carlo method. In the molecular dynamics, Newton's equations are numerically calculated time-dependently as they are, and it has large merits that many body effect and nonlinear effect can be taken in consideration, but much computing time is required. The features and problems of the Monte Carlo simulation and nonlinear Monte Carlo simulation are described. The comparison of the Monte Carlo simulation codes calculating on the basis of two-body collision approximation, MARLOWE, TRIM and ACAT, was carried out through the calculation of the backscattering spectra of light ions. (Kako, I.)

  9. Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.; Subrahmanyam, A.

    2007-01-01

    Tungsten oxide thin films have been deposited by pulsed dc magnetron sputtering of tungsten in argon and oxygen atmosphere. The as-deposited WO 3 film is amorphous, highly transparent, and shows a layered structure along the edges. In addition, the optical properties of the as-deposited film show a steplike behavior of extinction coefficient. However, the electron beam irradiation (3.0 keV) of the as-deposited films results in crystallization, coloration (deep blue), and luminescence (intense red emission). The above changes in physical properties are attributed to the extraction of oxygen atoms from the sample and the structural modifications induced by electron bombardment. The present method of coloration and luminescence has a potential for fabricating high-density optical data storage device

  10. Temperature dependence of InN film deposition by an RF plasma-assisted reactive ion beam sputtering deposition technique

    International Nuclear Information System (INIS)

    Shinoda, Hiroyuki; Mutsukura, Nobuki

    2005-01-01

    Indium nitride (InN) films were deposited on Si(100) substrates using a radiofrequency (RF) plasma-assisted reactive ion beam sputtering deposition technique at various substrate temperatures. The X-ray diffraction patterns of the InN films suggest that the InN films deposited at substrate temperatures up to 370 deg C were cubic crystalline InN; and at 500 deg C, the InN film was hexagonal crystalline InN. In a scanning electron microscope image of the InN film surface, facets of cubic single-crystalline InN grains were clearly observed on the InN film deposited at 370 deg C. The inclusion of metallic indium appeared on the InN film deposited at 500 deg C

  11. The Beam Break-Up Numerical Simulator

    International Nuclear Information System (INIS)

    Travish, G.A.

    1989-11-01

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs

  12. Molecular dynamics simulation of chemical sputtering of hydrogen atom on layer structured graphite

    International Nuclear Information System (INIS)

    Ito, A.; Wang, Y.; Irle, S.; Morokuma, K.; Nakamura, H.

    2008-10-01

    Chemical sputtering of hydrogen atom on graphite was simulated using molecular dynamics. Especially, the layer structure of the graphite was maintained by interlayer intermolecular interaction. Three kinds of graphite surfaces, flat (0 0 0 1) surface, armchair (1 1 2-bar 0) surface and zigzag (1 0 1-bar 0) surface, are dealt with as targets of hydrogen atom bombardment. In the case of the flat surface, graphene layers were peeled off one by one and yielded molecules had chain structures. On the other hand, C 2 H 2 and H 2 are dominant yielded molecules on the armchair and zigzag surfaces, respectively. In addition, the interaction of a single hydrogen isotope on a single graphene is investigated. Adsorption, reflection and penetration rates are obtained as functions of incident energy and explain hydrogen retention on layered graphite. (author)

  13. Impurity Dynamics under Neutral Beam Injection at TJ-II (simulation)

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-01-01

    In this study the simulations of plasma transport under NBI for TJ-II, previously performed, are extended. Since than a considerable number of important modifications have been introduced in the model: change of magnetic configuration, use of experimental initial profiles, expansion of the Data base from NBI calculations and, mainly, a detailed handling of impurities with inclusion of sputtering effects. Moreover there is now a particular emphasis on the analysis of the conditions for discharge collapse and on the possible effects of single beam injection. This analysis of impurity behaviour with sputtering shows that in the expected usual cases there is no radioactive collapse and that if the recycling coefficients remain lower the unity it is always possible to find a strategy for external gas puffing leading to a stationary state, with densities below the limit and efficient NBI absorption (>50%). The radioactive collapse can appear either at high densities (central value higher than 1.4x10''20 m''3), excessive influx of impurities (i. e. with sputtering rates higher than twice the expected values) o for insufficient injected beam power (less than 45 kW). The present study analyses only the 100 4 4 6 4 configuration of TJ-II, but future works will start a systematic scan of configuration using this same model. (Author) 12 Refs

  14. Nanoripple formation on GaAs (001) surface by reverse epitaxy during ion beam sputtering at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debasree; Ghose, Debabrata, E-mail: debabrata1.ghose@gmail.com

    2016-11-01

    Highlights: • GaAs (001) surfaces are sputtered by 1 keV Ar{sup +} at sample temperature of 450 °C. • Highly ordered defect-free ripples develop at near-normal incidence angles (θ ≈ 0–25{sup 0}). • Concurrent sample rotation does not alter the ripple orientation with respect to the ion beam. • At grazing incidence angles anisotropic structure is formed. • Concurrent sample rotation shows that the structure orientation depends on the beam direction. - Abstract: Self-organized pattern formation by the process of reverse epitaxial growth has been investigated on GaAs (001) surfaces during 1 keV Ar{sup +} bombardment at target temperature of 450 °C for a wide range of incident angles. Highly ordered ripple formation driven by diffusion instability is evidenced at near normal incidence angles. Concurrent sample rotation shows that the ripple morphology and its orientation do not depend on the incident beam direction; rather they are determined by the symmetry of the crystal face.

  15. Temperature dependence of the optical properties of ion-beam sputtered ZrN films

    Energy Technology Data Exchange (ETDEWEB)

    Larijani, M.M. [NSTRI, AEOI, Radiation Applications Research School, Karaj (Iran, Islamic Republic of); Kiani, M. [Azad University, South Tehran Branch, Department of Physics, Tehran (Iran, Islamic Republic of); Jafari-Khamse, E. [NSTRI, AEOI, Radiation Applications Research School, Karaj (Iran, Islamic Republic of); University of Kashan, Department of Physics, Kashan (Iran, Islamic Republic of); Fathollahi, V. [Nuclear Science Research School, NSTRI, Tehran (Iran, Islamic Republic of)

    2014-11-15

    The reflectivity of sputtered Zirconium nitride films on glass substrate has been investigated in the spectral energy range of 0.8-6.1 eV as a function of deposition temperature varying between 373 and 723 K. Optical constants of the prepared films have been determined using the Drude analysis. Experimental results showed strong dependency of optical properties of the films, such as optical resistivity on the substrate temperature. The temperature increase of the substrate has shown an increase in both the plasmon frequency and electron scattering time. The electrical behavior of the films showed a good agreement between their optical and electrical resistivity. (orig.)

  16. Argonne inverted sputter source

    International Nuclear Information System (INIS)

    Yntema, J.L.; Billquist, P.J.

    1983-01-01

    The emittance of the inverted sputter source with immersion lenses was measured to be about 5π mm mrad MeV/sup 1/2/ at the 75% level over a wide range of beam intensities. The use of the source in experiments with radioactive sputter targets and hydrogen loaded targets is described. Self contamination of the source is discussed

  17. Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kiahosseini, Seyed Rahim, E-mail: rkiahoseyni@yahoo.com [Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan (Iran, Islamic Republic of); Afshar, Abdollah [Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mojtahedzadeh Larijani, Majid [Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Yousefpour, Mardali [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, 35131-19111 (Iran, Islamic Republic of)

    2017-04-15

    Highlights: • The thickness of HA coatings increase by ion beam sputtering time. • The residual strain in HA structure decrease by deposition time increment. • Crystallite size of HA coatings increase by deposition time increment. • The best corrosion resistance occurs at intermediate deposition time. - Abstract: The adhesion of hydroxyapatite (HA) as a coating for the AZ91 magnesium alloy substrate can be improved by using the sputtering method and an intermediate layer, such as ZrN. In this study, HA coatings were applied on ZrN intermediate layers at a temperature of 300 °C for 180, 240, 300, 360, and 420 min by ion beam sputtering. A profilometer device was used to study the HA coating thickness, which changed from 2 μm for the 180-min deposition to 4.7 μm for 420-min deposition. The grazing incidence X-ray diffraction analysis method and the Williamson–Hall analysis were used for structural investigation. As the deposition time increased, the crystalline size increased from 50 nm to 690 nm. However, given sufficient time for stress relief on the coating structure, the lattice strain values were close to zero. Energy-dispersive X-ray spectroscopy results showed that the Ca/P ratio ranged from 1.73 to 1.81. The external indentation method was used to evaluate the coating adhesion to the substrate. The slope of curve for applied force changes versus the radius of cracks in the coating (dP/dr) varied in the range of 0.2–0.07 by the deposition time, indicating that the adhesion increased with the increase in coating thickness. The potentiodynamic polarization technique was used to study the corrosion behavior. With increasing deposition time, the corrosion potential of samples did not show a significant change, and the corrosion potential of all samples (coated and uncoated substrates) was more positive than approximately 55 mV. When the deposition time increased to 360 min, the corrosion current density decreased from 5.5 μA/cm{sup 2} to 0.33

  18. Beam Delivery Simulation - Recent Developments and Optimization

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232566; Boogert, Stewart Takashi; Garcia-Morales, H; Gibson, Stephen; Kwee-Hinzmann, Regina; Nevay, Laurence James; Deacon, Lawrence Charles

    2015-01-01

    Beam Delivery Simulation (BDSIM) is a particle tracking code that simulates the passage of particles through both the magnetic accelerator lattice as well as their interaction with the material of the accelerator itself. The Geant4 toolkit is used to give a full range of physics processes needed to simulate both the interaction of primary particles and the production and subsequent propagation of secondaries. BDSIM has already been used to simulate linear accelerators such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), but it has recently been adapted to simulate circular accelerators as well, producing loss maps for the Large Hadron Collider (LHC). In this paper the most recent developments, which extend BDSIM’s functionality as well as improve its efficiency are presented. Improvement and refactorisation of the tracking algorithms are presented alongside improved automatic geometry construction for increased particle tracking speed.

  19. Classical dynamics simulation of the fluence dependence of sputtering properties for the 2 keV Cu → Cu(1 0 0) system

    International Nuclear Information System (INIS)

    Karolewski, M.A.

    2004-01-01

    Classical dynamics simulations of sputtering have been carried out for 2 keV Cu projectiles incident on a Cu(1 0 0) crystallite target, in order to study the effects of projectile fluence on sputtering properties. Five projectiles are delivered into a 400 Ang 2 region of a Cu crystallite target at 5 ps intervals, giving a maximum fluence of 1.25 x 10 14 cm -2 in the primary impact zone. The altitudinal angle (φ) of the projectiles was 30 deg. (measured with respect to the surface), and the azimuthal (phi) direction of incidence was parallel to the surface atomic rows. The sputter yield is found not to depend sensitively on fluence. Over the fluence range investigated, the predicted standard deviation of the sputter yield is only 5% of the mean value of 11.7. Resputtered projectiles contribute less than 2% of the total sputter yield. With increasing fluence, the angular distribution of sputtered atoms tends to become less anisotropic. For example, the intensity modulations in the azimuthal angular distribution are reduced. This effect is due to the increasing contribution from atoms that are sputtered from defective structural environments. However, sputtered atom energy distributions and emission statistics show little dependence on fluence. The information depth of sputtered atoms increases rapidly with fluence, from 0.11 monolayers (ML) initially, to 1.2 ML after sputtering 0.25 ML from the primary impact zone

  20. Simulation and track reconstruction for beam telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are used for testing new detectors under development. Sensors are placed and a particle beam is passed through them. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, it’s predicted hits on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them don’t account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framew...

  1. Surface processing with ionized cluster beams: computer simulation

    International Nuclear Information System (INIS)

    Insepov, Z.; Yamada, I.

    1999-01-01

    Molecular Dynamics (MD) and Monte Carlo (MC) models of energetic gas cluster irradiation of a solid surface have been developed to investigate the phenomena of crater formation, sputtering, surface treatment, and the material hardness evaluation by irradiation with cluster ions. Theoretical estimation of crater dimensions formed with Ar gas cluster ion irradiation of different substrates, based on hydrodynamics and MD simulation, are presented. The atomic scale shock waves arising from cluster impact were obtained by calculating the pressure, temperature and mass-velocity of the target atoms. The crater depth is given as a unique 1/3 dependence on the cluster energy and on the cold material Brinell hardness number (BHN). A new 'true material hardness' scale which can be very useful for example for thin film coatings deposited on a soft substrate, is defined. This finding could be used as a new technique for measuring of a material hardness. Evolution of surface morphology under cluster ion irradiation was described by the surface relaxation equation which contains a term of crater formation at cluster impact. The formation of ripples on a surface irradiated with oblique cluster ion beams was predicted. MD and MC models of Decaborane ion (B 10 H 14 ) implantation into Si and the following rapid thermal annealing (RTA) have been developed

  2. An interactive beam position monitor system simulator

    International Nuclear Information System (INIS)

    Ryan, W.A.; Shea, T.J.

    1993-03-01

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well

  3. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    Science.gov (United States)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  4. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering

    International Nuclear Information System (INIS)

    Ziberi, B; Cornejo, M; Frost, F; Rauschenbach, B

    2009-01-01

    The bombardment of surfaces with low-energy ion beams leads to material erosion and can be accompanied by changes in the topography. Under certain conditions this surface erosion can result in well-ordered nanostructures. Here an overview of the pattern formation on Si and Ge surfaces under low-energy ion beam erosion at room temperature will be given. In particular, the formation of ripple and dot patterns, and the influence of different process parameters on their formation, ordering, shape and type will be discussed. Furthermore, the internal ion beam parameters inherent to broad beam ion sources are considered as an additional degree of freedom for controlling the pattern formation process. In this context: (i) formation of ripples at near-normal ion incidence, (ii) formation of dots at oblique ion incidence without sample rotation, (iii) transition between patterns, (iv) formation of ripples with different orientations and (v) long range ordered dot patterns will be presented and discussed.

  5. Molecular dynamics simulation of temperature effects on deposition of Cu film on Si by magnetron sputtering

    Science.gov (United States)

    Zhu, Guo; Sun, Jiangping; Zhang, Libin; Gan, Zhiyin

    2018-06-01

    The temperature effects on the growth of Cu thin film on Si (0 0 1) in the context of magnetron sputtering deposition were systematically studied using molecular dynamics (MD) method. To improve the comparability of simulation results at varying temperatures, the initial status data of incident Cu atoms used in all simulations were read from an identical file via LAMMPS-Python interface. In particular, crystalline microstructure, interface mixing and internal stress of Cu thin film deposited at different temperatures were investigated in detail. With raising the substrate temperature, the interspecies mixed volume and the proportion of face-centered cubic (fcc) structure in the deposited film both increased, while the internal compressive stress decreased. It was found that the fcc structure in the deposited Cu thin films was 〈1 1 1〉 oriented, which was reasonably explained by surface energy minimization and the selectivity of bombardment energy to the crystalline planes. The quantified analysis of interface mixing revealed that the diffusion of Cu atoms dominated the interface mixing, and the injection of incident Cu atoms resulted in the densification of phase near the film-substrate interface. More important, the distribution of atomic stress indicated that the compressive stress was mainly originated from the film-substrate interface, which might be attributed to the densification of interfacial phase at the initial stage of film deposition.

  6. Simulations of multistage intense ion beam acceleration

    International Nuclear Information System (INIS)

    Slutz, S.A.; Poukey, J.W.

    1992-01-01

    An analytic theory for magnetically insulated, multistage acceleration of high intensity ion beams, where the diamagnetic effect due to electron flow is important, has been presented by Slutz and Desjarlais. The theory predicts the existence of two limiting voltages called V 1 (W) and V 2 (W), which are both functions of the injection energy qW of ions entering the accelerating gap. As the voltage approaches V 1 (W), unlimited beam-current density can penetrate the gap without the formation of a virtual anode because the dynamic gap goes to zero. Unlimited beam current density can penetrate an accelerating gap above V 2 (W), although a virtual anode is formed. It was found that the behavior of these limiting voltages is strongly dependent on the electron density profile. The authors have investigated the behavior of these limiting voltages numerically using the 2-D particle-in-cell (PIC) code MAGIC. Results of these simulations are consistent with the superinsulated analytic results. This is not surprising, since the ignored coordinate eliminates instabilities known to be important from studies of single stage magnetically insulated ion diodes. To investigate the effect of these instabilities the authors have simulated the problem with the 3-D PIC code QUICKSILVER, which indicates behavior that is consistent with the saturated model

  7. Beam Delivery Simulation: BDSIM - Development & Optimization

    CERN Document Server

    Nevay, Laurence James; Garcia-Morales, H; Gibson, S M; Kwee-Hinzmann, R; Snuverink, J; Deacon, L C

    2014-01-01

    Beam Delivery Simulation (BDSIM) is a Geant4 and C++ based particle tracking code that seamlessly tracks particles through accelerators and detectors, including the full range of particle interaction physics processes from Geant4. BDSIM has been successfully used to model beam loss and background conditions for many current and future linear accelerators such as the Accelerator Test Facility 2 (ATF2) and the International Linear Collider (ILC). Current developments extend its application for use with storage rings, in particular for the Large Hadron Collider (LHC) and the High Luminosity upgrade project (HL-LHC). This paper presents the latest results from using BDSIM to model the LHC as well as the developments underway to improve performance.

  8. Development of an ion-beam sputtering system for depositing thin films and multilayers of alloys and compounds

    International Nuclear Information System (INIS)

    Gupta, Mukul; Gupta, Ajay; Phase, D.M.; Chaudhari, S.M.; Dasannacharya, B.A.

    2002-01-01

    An ion-beam sputtering (IBS) system has been designed and developed for preparing thin films and multilayers of various elements, alloys and compounds. The ion source used is a 3 cm diameter, hot-cathode Kaufman type 1.5 kV ion source. The system has been successfully tested with the deposition of various materials, and the deposition parameters were optimised for achieving good quality of thin films and multilayers. A systematic illustration of the versatility of the system to produce a variety of structures is done by depositing thin film of pure iron, an alloy film of Fe-Zr, a compound thin film of FeN, a multilayer of Fe-Ag and an isotopic multilayer of 57 FeZr/FeZr. Microstructural measurements on these films using X-ray and neutron reflectivity, atomic force microscopy (AFM), and X-ray diffraction are presented and discussed to reveal the quality of the microstructures obtained with the system. It is found that in general, the surface roughnesses of the film deposited by IBS are significantly smaller as compared to those for films deposited by e-beam evaporation. Further, the grain size of the IBS crystalline films is significantly refined as compared to the films deposited by e-beam evaporation. Grain refinement may be one of the reasons for reduced surface roughness. In the case of amorphous films, the roughness of the films does not increase appreciably beyond that of the substrate even after depositing thicknesses of several hundred angstroms

  9. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CN{sub x} multilayer grown by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Alemón, B.; Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, Mexico, DF 07738 (Mexico); Broitman, E. [Thin Films Physics Division, IFM, Linköping University, SE-58183 Linköping (Sweden)

    2014-07-15

    A novel TiAlCN/CN{sub x} multilayer coating, consisting of nine TiAlCN/CN{sub x} periods with a top layer 0.5 μm of CN{sub x}, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti{sub 0.5}Al{sub 0.5} and C targets respectively in a N{sub 2}/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  10. Macrofilament simulation of high current beam transport

    International Nuclear Information System (INIS)

    Hayden, R.J.; Jakobson, M.J.

    1985-01-01

    Macrofilament simulation of high current beam transport through a series of solenoids has been used to investigate the sensitivity of such calculations to the initial beam distribution and to the number of filaments used in the simulation. The transport line was tuned to approximately 105 0 phase advance per cell at zero current with a tune depression of 65 0 due to the space charge. Input distributions with the filaments randomly uniform throughout a four dimensional ellipsoid and K-V input distributions have been studied. The behavior of the emittance is similar to that published for quadrupoles with like tune depression. The emittance demonstrated little growth in the first twelve solenoids, a rapid rate of growth for the next twenty, and a subsequent slow rate of growth. A few hundred filaments were sufficient to show the character of the instability. The number of filaments utilized is an order of magnitude fewer than has been utilized previously for similar instabilities. The previously published curves for simulations with less than a thousand particles show a rather constant emittance growth. If the solenoid transport line magnetic field is increased a few percent, emittance growth curves are obtained not unlike those curves. Collision growth effects are less important than indicated in the previously published results for quadrupoles

  11. A cellular automata simulation study of surface roughening resulting from multi-atom etch pit generation during sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Toh, Y S; Nobes, M J; Carter, G [Dept. of Electronic and Electrical Engineering, Univ. of Salford (United Kingdom)

    1992-04-01

    A two-dimensional square matrix of pseudo-atomic positions is erected and atom removal from the ''surface'' is effected randomly. Either single atoms or groups of atoms (to simulate multi-atom pit generation) are removed. The characteristics of the evolving roughened, terraced ''surface'' are evaluated as a function of the total number of atoms, or equivalent numbers of atomic layers, removed. These characteristics include the ''mean'' position of the sputtered surface, the standard deviation of terrace length about the mean and the form of the terrace length distributions. The results of the single-atom removal mode compare exactly with theoretical predictions in that, for large numbers of atoms removed the depth position of the mean of the terrace length distribution is identical to the mean sputtered depth and the standard deviation increases as the square root of this depth. For multi-atom removal modes (which cannot be predicted theoretically) the standard deviation also increases as the square root of the mean sputtered depth but with a larger proportionality constant. The implications of these observations for the evolution of surface morphology during high yield sputtering is discussed. (orig.).

  12. Spectral artefacts post sputter-etching and how to cope with them - A case study of XPS on nitride-based coatings using monoatomic and cluster ion beams

    Science.gov (United States)

    Lewin, Erik; Counsell, Jonathan; Patscheider, Jörg

    2018-06-01

    The issue of artefacts due to sputter-etching has been investigated for a group of AlN-based thin film materials with varying thermodynamical stability. Stability of the materials was controlled by alloying AlN with the group 14 elements Si, Ge or Sn in two different concentrations. The coatings were sputter-etched with monoatomic Ar+ with energies between 0.2 and 4.0 keV to study the sensitivity of the materials for sputter damage. The use of Arn+ clusters to remove an oxidised surface layer was also evaluated for a selected sample. The spectra were compared to pristine spectra obtained after in-vacuo sample transfer from the synthesis chamber to the analysis instrument. It was found that the all samples were affected by high energy (4 keV) Ar+ ions to varying degrees. The determining factors for the amount of observed damage were found to be the materials' enthalpy of formation, where a threshold value seems to exist at approximately -1.25 eV/atom (∼-120 kJ/mol atoms). For each sample, the observed amount of damage was found to have a linear dependence to the energy deposited by the ion beam per volume removed material. Despite the occurrence of sputter-damage in all samples, etching settings that result in almost artefact-free spectral data were found; using either very low energy (i.e. 200 eV) monoatomic ions, or an appropriate combination of ion cluster size and energy. The present study underlines that analysis post sputter-etching must be carried out with an awareness of possible sputter-induced artefacts.

  13. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    Science.gov (United States)

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  14. Spin pumping in ion-beam sputtered C o2FeAl /Mo bilayers: Interfacial Gilbert damping

    Science.gov (United States)

    Husain, Sajid; Kumar, Ankit; Barwal, Vineet; Behera, Nilamani; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2018-02-01

    The spin-pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered C o2FeAl (CFA)/Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin-current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data have been analyzed using spin-pumping theory in terms of spin current pumped through the ferromagnet/nonmagnetic metal interface to deduce the real spin-mixing conductance and the spin-diffusion length, which are estimated to be 1.56 (±0.30 ) ×1019m-2 and 2.61 (±0.15 )nm , respectively. The damping constant is found to be 8.8 (±0.2 ) ×10-3 in the Mo(3.5 nm)-capped CFA(8 nm) sample corresponding to an ˜69 % enhancement of the original Gilbert damping 5.2 (±0.6 ) ×10-3 in the Al-capped CFA thin film. This is further confirmed by inserting the Cu dusting layer which reduces the spin transport across the CFA/Mo interface. The Mo layer thickness-dependent net spin-current density is found to lie in the range of 1 -4 MA m-2 , which also provides additional quantitative evidence of spin pumping in this bilayer thin-film system.

  15. Effect of heat treatment on properties of HfO2 film deposited by ion-beam sputtering

    Science.gov (United States)

    Liu, Huasong; Jiang, Yugang; Wang, Lishuan; Li, Shida; Yang, Xiao; Jiang, Chenghui; Liu, Dandan; Ji, Yiqin; Zhang, Feng; Chen, Deying

    2017-11-01

    The effects of atmosphere heat treatment on optical, stress, and microstructure properties of an HfO2 film deposited by ion-beam sputtering were systematically researched. The relationships among annealing temperature and refractive index, extinction coefficient, physical thickness, forbidden-band width, tape trailer width, Urbach energy, crystal phase structure, and stress were assessed. The results showed that 400 °C is the transformation point, and the microstructure of the HfO2 film changed from an amorphous into mixed-phase structure. Multistage phonons appeared on the HfO2 film, and the trends of the refractive index, extinction coefficient, forbidden-band width change, and Urbach energy shifted from decrease to increase. With the elevation of the annealing temperature, the film thickness increased monotonously, the compressive stress gradually turned to tensile stress, and the transformation temperature point for the stress was between 200 °C and 300 °C. Therefore, the change in the stress is the primary cause for the shifts in thin-film thickness.

  16. Sputtering of copper (110) by 3 keV argon - a computer simulation

    International Nuclear Information System (INIS)

    Weygandt, A.; King, B.V.

    1998-01-01

    The aims of this study are to investigate the angular distribution of atoms sputtered from {110} surface of a copper monocrystal due to normal incidence 3 keV Argon impact as well as to examine the change of sputtering behaviour with temperature from 0 K to 670 K. We have used the Molecular Dynamics (MD) code SPUT93 to study sputtering. In MD codes Newton's equations of motion are solved simultanously for all atoms of a crystal. The forces acting on a particle are found from derivatives of a model potential function. For the present study an embedded atom method (EAM) potential was used. It was found that the total sputter yield for the warm crystal (670K) of 3.13 ± 0.03 is in agreement with experimental results and indicate that the temperature of the target has generally no direct influence on the sputtering yield. It was estimated that heating the crystal only causes more uniform emission. It was also found that ejection due to the collisions between atoms in the top layers along closed-packed directions become important. The mechanisms which determine the angular distributions of atoms sputtered from a copper crystal were identified

  17. Simulator for beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  18. Thermoelectric properties of bismuth antimony tellurium thin films through bilayer annealing prepared by ion beam sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhuang-hao [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Fan, Ping, E-mail: fanping308@126.com [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Luo, Jing-ting [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Cai, Xing-min; Liang, Guang-xing; Zhang, Dong-ping [College of Physics Science and Technology, Shenzhen University, 518060 (China); Ye, Fan [Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China)

    2014-07-01

    Bismuth antimony tellurium is one of the most important tellurium-based materials for high-efficient thermoelectric application. In this paper, ion beam sputtering was used to deposit Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} bilayer thin films on borosilicate substrates at room-temperature. Then the bismuth antimony tellurium thin films were synthesized via post thermal treatment of the Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} bilayer thin films. The effect of annealing temperature and compositions on the thermoelectric properties of the thin films was investigated. After the thin films were annealed from 150 °C to 350 °C for 1 h in the high vacuum condition, the Seebeck coefficient changed from a negative sign to a positive sign. The X-ray diffraction results showed that the synthesized tellurium-based thermoelectric thin film exhibited various alloys phases, which contributed different thermoelectricity conductivity to the synthesized thin film. The overall Seebeck coefficient of the synthesized thin film changed from negative sign to positive sign, which was due to the change of the primary phase of the tellurium-based materials at different annealing conditions. Similarly, the thermoelectric properties of the films were also associated with the grown phase. High-quality thin film with the Seebeck coefficient of 240 μV K{sup −1} and the power factor of 2.67 × 10{sup −3} Wm{sup −1} K{sup −2} showed a single Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} phase when the Sb/Te thin film sputtering time was 40 min. - Highlights: • Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} thermoelectric thin films synthesized via bilayer annealing • The film has single Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} phase with best thermoelectric performance. • The film has high thermoelectric properties comparable with other best results.

  19. Directed ion beam sputter etching of polytetrafluorethylene (teflon) using an argon ion source

    Energy Technology Data Exchange (ETDEWEB)

    Garner, C E; Gabriel, S B; Kuo, Y S

    1982-09-24

    Polytetrafluoroethylene (Teflon) tubes of outside diameter 375-625 ..mu..m were perforated by bombarding the tubes with an argon ion beam. Holes of diameter 18 ..mu..m and 40 ..mu..m on a side and open-are ratios of 55% and 65% respectively were formed using electroformed nickel mesh masks. Scanning electron micrographs of the hole walls reveal that they are relatively smooth and that the holes go completely through the tubing walls. Holes with the smoothest walls and the sharpest definition were obtained by using low beam power densities and a tubing target temperature of less than 50/sup 0/C. Volumetric flow rate measurements show that the flow rate through the perforated tubules is 0.2-0.5 cm/sup 3/ min/sup -1/ for a pressure drop across the tubes of 2.2 Torr. The perforated microtubules have an important application in medicine for sufferers of hydrocephalus, a malady which results in the build-up of cerebrospinal fluid in the brain. The perforated tubing is inserted into the ventricle and serves as a shunt by draining off the excess cerebrospinal fluid into another part of the brain, where the fluid is absorbed by normal processes.

  20. Simulation of beam-beam effects in tevatron

    International Nuclear Information System (INIS)

    Mishra, C.S.; Assadi, S.; Talman, R.

    1995-08-01

    The Fermilab accelerator complex is in the middle of an upgrade plan Fermilab III. In the last phase of this upgrade the luminosity of the Tevatron will increase by at least one order of magnitude. In order to keep the number of interactions per crossing manageable for experiments, the number of bunches will be increased from 6 x 6 to 36 x 36 and finally to ∼100 x 100 bunches. The beam dynamics of the Tevatron has been studied from Beam-Beam effect point of view in a ''Strong-Weak'' representation with a single particle being tracked in presence of other beam. This paper describes the beam-beam effect in 6 x 6 operation of Tevatron

  1. High-Performance Beam Simulator for the LANSCE Linac

    International Nuclear Information System (INIS)

    Pang, Xiaoying; Rybarcyk, Lawrence J.; Baily, Scott A.

    2012-01-01

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  2. Beam Simulations for IRE and Driver-Status and Strategy

    International Nuclear Information System (INIS)

    Friedman, A.; Grote, D.P.; Lee, E.P.; Sonnendrucker, E.

    2000-01-01

    The methods and codes employed in the U.S. Heavy Ion Fusion program to simulate the beams in an Integrated Research Experiments (IRE) facility and a fusion driver are presented in overview. A new family of models incorporating accelerating module impedance, multi-beam, and self-magnetic effects is described, and initial WARP3d particle simulations of beams using these models are presented. Finally, plans for streamlining the machine-design simulation sequence, and for simulating beam dynamics from the source to the target in a consistent and comprehensive manner, are described

  3. The influence of target structure on topographical features produced by ion beam sputtering

    International Nuclear Information System (INIS)

    Whitton, J.L.; Grant, W.A.

    1981-01-01

    Ion beam erosion of solid surfaces often results in the development of distinctive topographical features. The relationship between the type of features formed by ion erosion and target structure has been investigated. Single crystals of copper and nickel and the amorphous alloy Metglas have been bombarded to high doses (approx. >=10 19 ions cm -2 ) with 40 keV Ar + and P + . Topography changes were monitored using SEM and structural changes by TEM. Targets that retain their long range crystallinity show sharply defined, regular features that are related to the target structure. Targets that are highly disordered, either intrinsically or as a result of the ion bombardment, produce diffuse, smaller features. Those differences are observed at all stages in topographical evolution. (orig.)

  4. Ultrasonic Beam Propagation in Highly Anisotropic Materials Simulated by Multi-Gaussian Beams

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo; Schmerr, Lester W.

    2007-01-01

    The necessity of nondestructively inspecting fiber-reinforced composites, austenitic steels, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface play key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasi longitudinal (qL) beam propagates in the symmetry plane of a transversely isotropic gr/ep composite. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions

  5. Simulation of wire-compensation of long range beam beam interaction in high energy accelerators

    International Nuclear Information System (INIS)

    Dorda, U.; )

    2006-01-01

    Full text: We present weak-strong simulation results for the effect of long-range beam-beam (LRBB) interaction in LHC as well as for proposed wire compensation schemes or wire experiments, respectively. In particular, we discuss details of the simulation model, instability indicators, the effectiveness of compensation, the difference between nominal and PACMAN bunches for the LHC, beam experiments, and wire tolerances. The simulations are performed with the new code BBTrack. (author)

  6. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Liedke, Bartosz

    2011-01-01

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general

  7. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, Bartosz

    2011-03-24

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In

  8. Preparation and characterization of nanocrystalline ITO thin films on glass and clay substrates by ion-beam sputter deposition method

    International Nuclear Information System (INIS)

    Venkatachalam, S.; Nanjo, H.; Kawasaki, K.; Wakui, Y.; Hayashi, H.; Ebina, T.

    2011-01-01

    Nanocrystalline indium tin oxide (ITO) thin films were prepared on clay-1 (Clay-TPP-LP-SA), clay-2 (Clay-TPP-SA) and glass substrates using ion-beam sputter deposition method. X-ray diffraction (XRD) patterns showed that the as-deposited ITO films on both clay-1 and clay-2 substrates were a mixture of amorphous and polycrystalline. But the as-deposited ITO films on glass substrates were polycrystalline. The surface morphologies of as-deposited ITO/glass has smooth surface; in contrast, ITO/clay-1 has rough surface. The surface roughnesses of ITO thin films on glass and clay-1 substrate were calculated as 4.3 and 83 nm, respectively. From the AFM and SEM analyses, the particle sizes of nanocrystalline ITO for a film thickness of 712 nm were calculated as 19.5 and 20 nm, respectively. Optical study showed that the optical transmittance of ITO/clay-2 was higher than that of ITO/clay-1. The sheet resistances of as-deposited ITO/clay-1 and ITO/clay-2 were calculated as 76.0 and 63.0 Ω/□, respectively. The figure of merit value for as-deposited ITO/clay-2 (12.70 x 10 -3 /Ω) was also higher than that of ITO/clay-1 (9.6 x 10 -3 /Ω), respectively. The flexibilities of ITO/clay-1 and ITO/clay-2 were evaluated as 13 and 12 mm, respectively. However, the ITO-coated clay-2 substrate showed much better optical and electrical properties as well as flexibility as compared to clay-1.

  9. Depth profile investigation of the incorporated iron atoms during Kr{sup +} ion beam sputtering on Si (001)

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Arezki, B.; Biermanns, A. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Cornejo, M.; Hirsch, D. [Leibniz-Institut für Oberflächenmodifizierung e. V. (IOM), Permoserstraße 15, D-04318 Leipzig (Germany); Lützenkirchen-Hecht, D. [Abteilung Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Frost, F. [Leibniz-Institut für Oberflächenmodifizierung e. V. (IOM), Permoserstraße 15, D-04318 Leipzig (Germany); Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany)

    2013-01-01

    We investigate the incorporation of iron atoms during nano-patterning of Si surfaces induced by 2 keV Kr{sup +} ion beam erosion under an off-normal incidence angle of 15°. Considering the low penetration depth of the ions, we have used X-ray reflectivity (XRR) and X-ray absorption near edge spectroscopy (XANES) under grazing-incidence angles in order to determine the depth profile and phase composition of the incorporated iron atoms in the near surface region, complemented by secondary ion mass spectrometry and atomic force microscopy. XRR analysis shows the accumulation of metallic atoms within a near surface layer of a few nanometer thickness. We verify that surface pattern formation takes place only when the co-sputtered Fe concentration exceeds a certain limit. For high Fe concentration, the ripple formation is accompanied by the enhancement of Fe close to the surface, whereas no Fe enhancement is found for low Fe concentration at samples with smooth surfaces. Modeling of the measured XANES spectra reveals the appearance of different silicide phases with decreasing Fe content from the top towards the volume. - Highlights: ► We investigate the incorporation of iron atoms during nano-patterning of Si surfaces. ► Pattern formation occurs when the areal density of Fe exceeds a certain threshold. ► X-ray reflectivity shows a layering at near surface due to incorporated Fe atoms. ► It is shown that the patterning is accompanied with the appearance of Fe-rich silicide.

  10. Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness

    Science.gov (United States)

    Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti

    2018-01-01

    The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.

  11. Mitigation of numerical noise for beam loss simulations

    CERN Document Server

    Kesting, Frederik

    2017-01-01

    Numerical noise emerges in self-consistent simulations of charged particles, and its mitigation is investigated since the first numerical studies in plasma physics. In accelerator physics, recent studies find an artificial diffusion of the particle beam due to numerical noise in particle-in-cell tracking, which is of particular importance for high intensity machines with a long storage time, as the SIS100 at FAIR or in context of the LIU upgrade at CERN. In beam loss simulations for these projects artificial effects must be distinguished from physical beam loss. Therefore, it is important to relate artificial diffusion to artificial beam loss, and to choose simulation parameters such that physical beam loss is well resolved. As a practical tool, we therefore suggest a scaling law to find optimal simulation parameters for a given maximum percentage of acceptable artificial beam loss.

  12. Characterization of leached surface layers on simulated high-level waste glasses by sputter-induced optical emission

    International Nuclear Information System (INIS)

    Houser, C.; Tsong, I.S.T.; White, W.B.

    1979-01-01

    The leaching process in simulated waste encapsulant glasses was studied by measuring the compositional depth-profiles of H (from water), the glass framework formers Si and B, the alkalis Na and Cs, the alkaline earths Ca and Sr, the transition metals Mo and Fe, the rare-earths La, Ce, and Nd, using the technique of sputter-induced optical emission. The leaching process of these glasses is highly complex. In addition to alkali/hydrogen exchange, there is breakdown of the glass framework, build-up of barrier layers on the surface, and formation of layered reaction zones of distinctly different chemistry all within the outer micrometer of the glass

  13. Beam simulation tools for GEANT4 (and neutrino source applications)

    International Nuclear Information System (INIS)

    V.Daniel Elvira, Paul Lebrun and Panagiotis Spentzouris email daniel@fnal.gov

    2002-01-01

    Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the High Energy Physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. Although there are many computer programs for beam physics simulations, Geant4 is ideal to model a beam going through material or a system with a beam line integrated to a complex detector. There are many examples in the current international High Energy Physics programs, such as studies related to a future Neutrino Factory, a Linear Collider, and a very Large Hadron Collider

  14. Stress, microstructure and evolution under ion irradiation in thin films grown by ion beam sputtering: modelling and application to interfacial effects in metallic multilayers

    International Nuclear Information System (INIS)

    Debelle, A.

    2006-09-01

    We have investigated the formation of the interfacial chemical mixing in Mo/Ni multilayers, and particularly the influence of ballistic effects during the growth. For this purpose, hetero-epitaxial b.c.c./f.c.c. Mo(110)/Ni(111) multilayers were grown by two deposition methods: thermal evaporation and direct ion beam sputtering. As a preliminary, an accurate description of the stress state in pure sputtered Mo thin films was required. Microstructural and stress state analyses were essentially carried out by X-ray diffraction, and ion irradiation was used as a powerful tool to control the stress level. We showed that thermal evaporated thin films exhibit a weak tensile growth stress (∼ 0.6 GPa) that can be accounted for by the grain boundary relaxation model, whereas sputtered thin films develop large compressive growth stress (- 2 to - 4 GPa). This latter results from the bombardment of the growing film by the energetic particles involved during the sputtering process (atomic peening phenomenon), which induces the formation of defects in the layers, generating volume distortions. We thus developed a stress model that includes a hydrostatic stress component to account for these volume strains. This model allowed us to determine the 'unstressed and free of defects lattice parameter' a 0 , solely linked to chemical effects. For epitaxial Mo layers, it was possible to separate coherency stress from growth stress due to their distinct kinetic evolution during ion irradiation. Therefore, the stress analysis enabled us to determine the a 0 values in Mo sub-layers of Mo/Ni superlattices. A tendency to the formation of an interfacial alloy is observed independently of the growth conditions, which suggests that thermodynamic forces favour the exchange mechanism. However, the extent of the intermixing effect is clearly enhanced by ballistic effects. (author)

  15. Sputtering from swift-ion trails in LiF: A hybrid PIC/MD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Yaroslav; Sun, Si Neng; Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de

    2013-11-15

    We model the sputtering of a LiF crystal induced by swift-ion impact. The impinging ion creates a trail of doubly ionized F{sup +} ions, while simultaneously the corresponding electrons are set free. Ions move according to molecular dynamics, while excited electrons are treated by a particle-in-cell scheme. We treat the recombination time of electrons as a free parameter in our model. We find that the energy distribution of sputtered ions consists of 2 groups: a low-energy group centered at <1 eV, and a high-energy group at 7–8 eV. Fast ions (mainly Li{sup +}) are emitted early; these charge the surface negatively. Later, larger cluster ions and also neutral LiF molecules are emitted. Emission occurs at low angles to the surface normal. A jet along the normal direction can be observed, which is due to the electric field building up at the track surface. With increasing recombination time, processes are colder; sputtering decreases and the non-thermal jet structure becomes stronger.

  16. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Rao, T.V. Chandrasekhar; Bhushan, K.G.; Ali, Kawsar; Debnath, A.; Singh, S.; Arya, A.; Bhattacharya, S.; Basu, S.

    2015-01-01

    Monophasic and homogeneous Ni 10 Zr 7 nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni 10 Zr 7 alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize. • Quantitative

  17. Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation

    International Nuclear Information System (INIS)

    Matyash, K; Froehlich, M; Kersten, H; Thieme, G; Schneider, R; Hannemann, M; Hippler, R

    2004-01-01

    During an experiment involving coating of dust grains trapped in an RF discharge using a sputtering dc-magnetron source, a rotating dust ring was observed and investigated. After the magnetron was switched on, the dust cloud levitating above the RF electrode formed a ring rotating as a rigid body. Langmuir probe diagnostics were used for the measurement of plasma density and potential. It was discovered that the coupling of the dc-magnetron source to the RF discharge causes steep radial gradients in electron density and plasma potential. The rotation of the dust ring is attributed to the azimuthal component of the ion drag force, which appears due to the azimuthal drift of the ions caused by crossed radial electric and axial magnetic fields. In order to get more insight into the mechanism of dust ring rotation, a Particle-in-Cell simulation of a rotating dust cloud was performed. The results of the experiment and simulation are presented and discussed

  18. Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matyash, K [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Froehlich, M [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany); Kersten, H [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Thieme, G [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany); Schneider, R [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17489 Greifswald (Germany); Hannemann, M [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Hippler, R [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany)

    2004-10-07

    During an experiment involving coating of dust grains trapped in an RF discharge using a sputtering dc-magnetron source, a rotating dust ring was observed and investigated. After the magnetron was switched on, the dust cloud levitating above the RF electrode formed a ring rotating as a rigid body. Langmuir probe diagnostics were used for the measurement of plasma density and potential. It was discovered that the coupling of the dc-magnetron source to the RF discharge causes steep radial gradients in electron density and plasma potential. The rotation of the dust ring is attributed to the azimuthal component of the ion drag force, which appears due to the azimuthal drift of the ions caused by crossed radial electric and axial magnetic fields. In order to get more insight into the mechanism of dust ring rotation, a Particle-in-Cell simulation of a rotating dust cloud was performed. The results of the experiment and simulation are presented and discussed.

  19. Numerical simulation on beam breakup unstability of linear induction accelerator

    International Nuclear Information System (INIS)

    Zhang Kaizhi; Wang Huacen; Lin Yuzheng

    2003-01-01

    A code is written to simulate BBU in induction linac according to theoretical analysis. The general form of evolution of BBU in induction linac is investigated at first, then the effect of related parameters on BBU is analyzed, for example, the alignment error, oscillation frequency of beam centroid, beam pulse shape and acceleration gradient. At last measures are put forward to damp beam breakup unstability (BBU)

  20. Simulations of the LEDA LEBT H+ beam

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.

    1997-01-01

    The computer codes TRACE and SCHAR model the Low-Energy Demonstration Accelerator (LEDA) Low-Energy Beam Transport (LEBT) for 75-keV, 110-mA, dc H + beams. Solenoid-lens location studies verify that the proposed LEBT design gives a near-optimum match to the LEDA RFQ. The desired RFQ transmission (≥ 90%) and output emittance (≤ 0.22 π mm mrad, transverse) are obtained when PARMTEQM transports the file for the SCHAR-generated optimum beam through the RFQ

  1. Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2006-01-01

    TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (T s ) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low T s (50 deg. C) have shown lower resistivity than those at high T s (250 deg. C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 deg. C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films

  2. The Monte Carlo simulation of the Ladon photon beam facility

    International Nuclear Information System (INIS)

    Strangio, C.

    1976-01-01

    The backward compton scattering of laser light against high energy electrons has been simulated with a Monte Carlo method. The main features of the produced photon beam are reported as well as a careful description of the numerical calculation

  3. Two Methods For Simulating the Strong-Strong Beam-Beam Interaction in Hadron Colliders

    International Nuclear Information System (INIS)

    Warnock, Robert L.

    2002-01-01

    We present and compare the method of weighted macro particle tracking and the Perron-Frobenius operator technique for simulating the time evolution of two beams coupled via the collective beam-beam interaction in 2-D and 4-D (transverse) phase space. The coherent dipole modes, with and without lattice nonlinearities and external excitation, are studied by means of the Vlasov-Poisson system

  4. Beam-Beam Simulation of Crab Cavity White Noise for LHC Upgrade

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    High luminosity LHC upgrade will improve the luminosity of the current LHC operation by an order of magnitude. Crab cavity as a critical component for compensating luminosity loss from large crossing angle collision and also providing luminosity leveling for the LHC upgrade is being actively pursued. In this paper, we will report on the study of potential effects of the crab cavity white noise errors on the beam luminosity lifetime based on strong-strong beam-beam simulations.

  5. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  6. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  7. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  8. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  9. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  10. Simulation studies of macroparticles falling into the LHC Proton Beam

    CERN Document Server

    Fuster Martinez, N; Zimmermann, F; Baer, T; Giovannozzi, M; Holzer, E B; Nebot Del Busto, E; Nordt, A; Sapinski, M; Yang, Z

    2011-01-01

    We report updated simulations on the interaction of macroparticles falling from the top of the vacuum chamber into the circulating LHC proton beam. The path and charge state of micron size micro-particles are computed together with the resulting beam losses, which — if high enough — can lead to the local quench of superconducting (SC) magnets. The simulated time evolution of the beam loss is compared with observations in order to constrain some macroparticle parameters. We also discuss the possibility of a “multiple crossing” by the same macroparticle, the effect of a strong dipole field, and the dependence of peak loss rate and loss duration on beam current and on beam size.

  11. A Hardware transverse beam frequency response simulator

    International Nuclear Information System (INIS)

    Ning, J.; Tan, C.Y.

    2005-01-01

    We built an electronic instrument that can mimic the transverse beam frequency response. The instrument consists of (1) a time delay circuit with an analog-to-digital converter (ADC) which contains a first-in-first-out random assess memory (FIFO RAM) and a digital-to-analog converter (DAC); (2) a variable phase shifter circuit which is based on an all pass filter with a bandwidth of 25kHz to 30kHz and (3) a commutating filter which is a nonlinear band pass filter. With this instrument, we can dynamically adjust the betatron tune, the synchrotron tune, and the chromaticity. Using this instrument, we are able to test other beam systems without using actual beam

  12. Special relativity in beam trajectory simulation in small accelerators

    International Nuclear Information System (INIS)

    Pramudita Anggraita; Budi Santosa; Taufik; Emy Mulyani; Frida Iswinning Diah

    2012-01-01

    Calculation for trajectory simulation of particle beam in small accelerators should account special relativity effect in the beam motion, which differs between parallel and perpendicular direction to the beam velocity. For small electron beam machine of 300 keV, the effect shows up as the rest mass of electron is only 511 keV. Neglecting the effect yields wrong kinetic energy after 300 kV of dc acceleration. For a 13 MeV PET (positron emission tomography) baby cyclotron accelerating proton beam, the effect increases the proton mass by about 1.4% at the final energy. To keep the beam isochronous with the accelerating radiofrequency, a radial increase of the average magnetic field must be designed accordingly. (author)

  13. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  14. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  15. Simulation of ion beam scattering in a gas stripper

    Energy Technology Data Exchange (ETDEWEB)

    Maxeiner, Sascha, E-mail: maxeiner@phys.ethz.ch; Suter, Martin; Christl, Marcus; Synal, Hans-Arno

    2015-10-15

    Ion beam scattering in the gas stripper of an accelerator mass spectrometer (AMS) enlarges the beam phase space and broadens its energy distribution. As the size of the injected beam depends on the acceleration voltage through phase space compression, the stripper becomes a limiting factor of the overall system transmission especially for low energy AMS system in the sub MV region. The spatial beam broadening and collisions with the accelerator tube walls are a possible source for machine background and energy loss fluctuations influence the mass resolution and thus isotope separation. To investigate the physical processes responsible for these effects, a computer simulation approach was chosen. Monte Carlo simulation methods are applied to simulate elastic two body scattering processes in screened Coulomb potentials in a (gas) stripper and formulas are derived to correctly determine random collision parameters and free path lengths for arbitrary (and non-homogeneous) gas densities. A simple parametric form for the underlying scattering cross sections is discussed which features important scaling behaviors. An implementation of the simulation was able to correctly model the data gained with the TANDY AMS system at ETH Zurich. The experiment covered transmission measurements of uranium ions in helium and beam profile measurements after the ion beam passed through the He-stripper. Beam profiles measured up to very high stripper densities could be understood in full system simulations including the relevant ion optics. The presented model therefore simulates the fundamental physics of the interaction between an ion beam and a gas stripper reliably. It provides a powerful and flexible tool for optimizing existing AMS stripper geometries and for designing new, state of the art low energy AMS systems.

  16. Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.

    Science.gov (United States)

    Mathew, Jose V; Bhattacharjee, Sudeep

    2011-01-01

    Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.

  17. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  18. Online external beam radiation treatment simulator

    International Nuclear Information System (INIS)

    Hamza-Lup, Felix G.; Sopin, Ivan; Zeidan, Omar

    2008-01-01

    Radiation therapy is an effective and widely accepted form of treatment for many types of cancer that requires extensive computerized planning. Unfortunately, current treatment planning systems have limited or no visual aid that combines patient volumetric models extracted from patient-specific CT data with the treatment device geometry in a 3D interactive simulation. We illustrate the potential of 3D simulation in radiation therapy with a web-based interactive system that combines novel standards and technologies. We discuss related research efforts in this area and present in detail several components of the simulator. An objective assessment of the accuracy of the simulator and a usability study prove the potential of such a system for simulation and training. (orig.)

  19. The rf-power dependences of the deposition rate, the hardness and the corrosion-resistance of the chromium nitride film deposited by using a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Lim, Jongmin; Lee, Chongmu

    2006-01-01

    The hexavalent chromium used in chromium plating is so toxic that it is very hazardous to human body and possibly causes cancer in humans. Therefore, it is indispensable to develop an alternative deposition technique. Dependences of the deposition rate, the phases, the hardness, the surface roughness and the corrosion-resistance of CrN x deposited on the high speed steel substrate by using a dual ion beam sputtering system on the rf-power were investigated to see the feasibility of sputtering as an alternative technique for chromium plating. The dual ion beam sputtering system used in this study was designed in such a way as the primary argon ion beam and the secondary nitrogen ion beam are injected toward the target and the substrate, respectively so that the chromium atoms at the chromium target surface may not nearly react with nitrogen atoms. The hardness and the surface roughness were measured by a micro-Vicker's hardness tester and an atomic force microscope (AFM), respectively. X-ray diffraction analyses were performed to identify phases in the films. The deposition rate of CrN x depends more strongly upon the rf-power for argon ion beam than that for nitrogen ion beam. The hardness of the CrN x film is highest when the volume percent of the Cr 2 N phase in the film is highest. Amorphous films are obtained when the rf-power for nitrogen ion beam is much higher than that for argon ion beam. The CrN x film deposited by using the sputtering technique under the optimal condition provides corrosion-resistance comparable to that of the electroplated chromium

  20. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rao, T.V. Chandrasekhar; Bhushan, K.G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ali, Kawsar [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Debnath, A. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Arya, A. [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhattacharya, S. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Basu, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Monophasic and homogeneous Ni{sub 10}Zr{sub 7} nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni{sub 10}Zr{sub 7} alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize.

  1. Low-temperature growth of (2 1-bar 1-bar 0) ZnO nanofilm on NaCl (0 0 1) surface by ion beam sputtering

    International Nuclear Information System (INIS)

    Shen, Jung-Hsiung; Yeh, Sung-Wei; Huang, Hsing-Lu; Gan, Dershin

    2009-01-01

    ZnO nanofilm of the (2 1 -bar 1 -bar 0) surface was prepared by ion beam sputtering deposition. The nanofilm was prepared on NaCl (0 0 1) surface at 200 o C to produce nearly pure (2 1 -bar 1 -bar 0) ZnO texture and the orientation relationship was determined and the interface discussed. Transmission electron microscopy lattice images were used to find the interface formed between ZnO nanocrystals. The ZnO nanocrystals coalesced to form a straight (0 1 -bar 1 -bar 2) interface. The photoluminescence spectrum from the (2 1 -bar 1 -bar 0) ZnO surface showed only a near-band-edge UV emission peak.

  2. Effect of Annealing Temperature and Oxygen Flow in the Properties of Ion Beam Sputtered SnO-₂x Thin Films.

    Science.gov (United States)

    Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Sahu, Dipti Ranjan; Huang, Jow-Lay

    2015-08-14

    Tin oxide (SnO 2-x ) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM). Auger electron spectroscopy (AES) analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.

  3. Realization of synaptic learning and memory functions in Y2O3 based memristive device fabricated by dual ion beam sputtering

    Science.gov (United States)

    Das, Mangal; Kumar, Amitesh; Singh, Rohit; Than Htay, Myo; Mukherjee, Shaibal

    2018-02-01

    Single synaptic device with inherent learning and memory functions is demonstrated based on a forming-free amorphous Y2O3 (yttria) memristor fabricated by dual ion beam sputtering system. Synaptic functions such as nonlinear transmission characteristics, long-term plasticity, short-term plasticity and ‘learning behavior (LB)’ are achieved using a single synaptic device based on cost-effective metal-insulator-semiconductor (MIS) structure. An ‘LB’ function is demonstrated, for the first time in the literature, for a yttria based memristor, which bears a resemblance to certain memory functions of biological systems. The realization of key synaptic functions in a cost-effective MIS structure would promote much cheaper synapse for artificial neural network.

  4. X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition

    International Nuclear Information System (INIS)

    Nelson, A.J.; Aharoni, H.

    1987-01-01

    X-ray photoelectron spectroscopy analysis was performed on ion beam sputter deposited films of indium tin oxide as a function of O 2 partial pressure during deposition. The oxygen partial pressure was varied over the range of 2.5 x 10 -6 --4.0 x 10 -5 Torr. Changes in composition as well as in the deconvoluted In 3d 5 /sub // 2 , Sn 3d 5 /sub // 2 , and O 1s core level spectra were observed and correlated with the variation of the oxygen partial pressure during deposition. Results show that the films become increasingly stoichiometric as P/sub =/ is increased and that the excess oxygen introduced during deposition is bound predominantly to the Sn and has little or no effect on the In--O bonding

  5. Effect of Annealing Temperature and Oxygen Flow in the Properties of Ion Beam Sputtered SnO—2x Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Min Wang

    2015-08-01

    Full Text Available Tin oxide (SnO2—x thin films were prepared under various flow ratios of O2/(O2 + Ar on unheated glass substrate using the ion beam sputtering (IBS deposition technique. This work studied the effects of the flow ratio of O2/(O2 + Ar, chamber pressures and post-annealing treatment on the physical properties of SnO2 thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD and transmission electron microscopy (TEM analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM. Auger electron spectroscopy (AES analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.

  6. Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion

    International Nuclear Information System (INIS)

    Miller, D.A.C.

    1994-12-01

    The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted

  7. Simulation studies of emittance growth in RMS mismatched beams

    International Nuclear Information System (INIS)

    Cucchetti, A.; Wangler, T.; Reiser, M.

    1991-01-01

    As shown in a separate paper, a charged-particle beam, whose rms size is not matched when injected into a transport channel or accelerator, has excess energy compared with that of a matched beam. If nonlinear space-charge forces are present and the mismatched beam transforms to a matched equilibrium state, rms-emittance growth will occur. The theory yields formulas for the possible rms-emittance growth, but not for the time it takes to achieve this growth. In this paper we present the results of systematic simulation studies for a mismatched 2-D round beam in an ideal transport channel with continuous linear focusing. Emittance growth rates obtained from the simulations for different amounts of mismatch and initial charge will be presented and the emittance growth will be compared with the theory. 6 refs., 7 figs

  8. Measurements and simulations of focused beam for orthovoltage therapy

    International Nuclear Information System (INIS)

    Abbas, Hassan; Mahato, Dip N.; Satti, Jahangir; MacDonald, C. A.

    2014-01-01

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface

  9. Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking

    CERN Document Server

    Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria

    One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...

  10. Simulation, fabrication and characterization of ZnO based thin film transistors grown by radio frequency magnetron sputtering.

    Science.gov (United States)

    Singh, Shaivalini; Chakrabarti, P

    2012-03-01

    We report the performance of the thin film transistors (TFTs) using ZnO as an active channel layer grown by radio frequency (RF) magnetron sputtering technique. The bottom gate type TFT, consists of a conventional thermally grown SiO2 as gate insulator onto p-type Si substrates. The X-ray diffraction patterns reveal that the ZnO films are preferentially orientated in the (002) plane, with the c-axis perpendicular to the substrate. A typical ZnO TFT fabricated by this method exhibits saturation field effect mobility of about 0.6134 cm2/V s, an on to off ratio of 102, an off current of 2.0 x 10(-7) A, and a threshold voltage of 3.1 V at room temperature. Simulation of this TFT is also carried out by using the commercial software modeling tool ATLAS from Silvaco-International. The simulated global characteristics of the device were compared and contrasted with those measured experimentally. The experimental results are in fairly good agreement with those obtained from simulation.

  11. Physics of ion sputtering

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1984-04-01

    The ejection of atoms by the ion bombardment of solids is discussed in terms of linear collision cascade theory. A simple argument describes the energies of the ejecta, but elaborate models are required to obtain accurate sputtering yields and related quantities. These include transport theoretical models based on linearized Boltzmann equations, computer simulation models based on the binary collision approximation, and classical many-body dynamical models. The role of each kind of model is discussed. Several aspects of sputtering are illustrated by results from the simulation code MARLOWE. 20 references, 6 figures

  12. Identification and roles of nonstoichiometric oxygen in amorphous Ta{sub 2}O{sub 5} thin films deposited by electron beam and sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Mannequin, Cedric, E-mail: MANNEQUIN.Cedricromuald@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Tsuruoka, Tohru [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Hasegawa, Tsuyoshi [Department of Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Aono, Masakazu [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2016-11-01

    Highlights: • A detail study of the composition and morphology of amorphous tantalum oxide films obtained by electron-beam evaporation and radio-frequency sputtering is carried out. • The mechanisms for moisture absorption by tantalum oxides are proposed. • Deposition-dependent high oxygen stoichiometry of the films is revealed. • Formations of dangling bonds, hydroxyls groups and bidendate water bridges are identified to support the moisture absorption. - Abstract: The morphology and composition of tantalum oxide (Ta{sub 2}O{sub 5}) thin films prepared by electron-beam (EB) evaporation and radio-frequency sputtering (SP) were investigated by grazing incidence X-ray diffraction (GIXRD), X-ray reflectometry (XRR), atomic force microscopy, Fourier transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). GIXRD revealed an amorphous nature for both films, and XRR showed that the density of the Ta{sub 2}O{sub 5}-EB films was lower than that of the Ta{sub 2}O{sub 5}-SP films; both films have lower density than the bulk value. A larger amount of molecular water and peroxo species were detected for the Ta{sub 2}O{sub 5}-EB films by FTIR performed in ambient atmosphere. XPS analyses performed in vacuum confirmed the presence of hydroxyl groups, but no trace of chemisorbed molecular water was detected. In addition, a higher oxygen nonstoichiometry (higher O/Ta ratio) was found for the EB films. From these results, we conclude that the oxygen nonstoichiometry of the EB film accounted for its lower density and higher amount of absorbed molecular water. The results also suggest the importance of understanding the dependence of the structural and chemical properties of thin amorphous oxide films on the deposition process.

  13. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  14. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    Science.gov (United States)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  15. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    International Nuclear Information System (INIS)

    Terzic, Balsa; Zhang, Yuhong

    2010-01-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  16. Simulation on a limited angle beam gamma ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Jung, Sung Hee; Moon, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Limited angle beam tomography was introduced in the medical field more than two decades ago, where it was mainly used for cardiovascular diagnostics. Later, it was also used to trace multiphase flows. In these studies, the detection systems were fixed and a scanning electron beam was rapidly swept across an xray target using deflection coils. Thus very fast scanning was possible in these studies, but their geometry resulted in a heavy and bulky system because of a complex control system and vacuum tube. Because of its heavy hardware, limited angle beam tomography has remained as indoor equipment. If the source section is replaced by a gamma ray source, limited angle beam tomography will have a very light source device. In addition, limited angle beam tomography with a gamma ray source can be designed using an open type portable gantry because it does not need a vacuum guide for an electron beam. There is a lot of need for a portable tomographic system but so far no definitive solution has been created. The inspection of industrial on-line pipes, wood telephone poles, and cultural assets are some application areas. This study introduces limited angle beam gamma ray tomography, its simulation, and image reconstruction results. Image reconstruction was performed on the virtual experimental data from a Monte Carlo simulation. Image reconstruction algorithms that are known to be useful for limited angle data were applied and their results compared

  17. Long-range beam-beam interactions in the Tevatron: Comparing simulation to tune shift data

    International Nuclear Information System (INIS)

    Saritepe, S.; Michelotti, L.; Peggs, S.

    1990-07-01

    Fermilab upgrade plans for the collider operation include a separation scheme in the Tevatron, in which protons and antiprotons are placed on separate helical orbits. The average separation distance between the closed orbits will be 5σ (σ of the proton bunch) except at the interaction regions, B0 and D0, where they collide head-on. The maximum beam-beam total tune shift in the Tevatron is approximately 0.024 (the workable tune space between 5th and 7th order resonances), which was reached in the 1988--1989 collider tun. Helical separation scheme allows us to increase the luminosity by reducing the total beam-beam tune shift. The number of bunches per beam will be 6 in the 1991 collider tun, to be increased to 36 in the following collider runs. To test the viability of this scenario, helical orbit studies are being conducted. The most recent studies concentrated on the injection of 36 proton bunches, procedures related to opening and closing of the helix, the feed-down circuits and the beam-beam interaction. In this paper, we present the results of the beam-beam interaction studies only. Our emphasis is on the tune shift measurements and the comparison to simulation. 4 refs., 9 figs., 2 tabs

  18. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  19. Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing

    CERN Document Server

    Herr, Werner; McIntosh, E; Schmidt, F

    2006-01-01

    We report on a large scale simulation of beam-beam effects for the CERN Large Hadron Collider (LHC). The stability of particles which experience head-on and long-range beam-beam effects was investigated for different optical configurations and machine imperfections. To cover the interesting parameter space required computing resources not available at CERN. The necessary resources were available in the LHC@home project, based on the BOINC platform. At present, this project makes more than 60000 hosts available for distributed computing. We shall discuss our experience using this system during a simulation campaign of more than six months and describe the tools and procedures necessary to ensure consistent results. The results from this extended study are presented and future plans are discussed.

  20. Evaluation of the BEAM--BEAM effect in PEP using Myer's simulation program

    International Nuclear Information System (INIS)

    Hutton, A.

    1982-09-01

    The program BEAM BEAM written by Steve Myers for the LEP machine at CERN has given encouraging results in the simulation of the beam-beam effect in electron-positron storage rings. It therefore seemed worthwhile to apply the program to PEP with two main intentions. Firstly, to confirm the validity of the program by comparison with experimental data from previous PEP runs and secondly, to search for an improvement in the operating conditions of PEP. Clearly a successful prediction would also enhance the credibility of the program. The program itself has been extensively described in the literature and will not be repeated here, except for some comments of direct relevance to the present simulation. 14 refs., 15 figs., 4 tabs

  1. Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation

    International Nuclear Information System (INIS)

    Polášek, J.; Mašek, K.; Marek, A.; Vyskočil, J.

    2015-01-01

    In this work, we investigated the possibilities of tungsten and tungsten oxide nanoclusters generation by means of non-reactive and reactive magnetron sputtering with gas aggregation. It was found that in pure argon atmosphere, cluster aggregation proceeded in two regimes depending on argon pressure in the aggregation chamber. At the lower pressure, cluster generation was dominated by two-body collisions yielding larger clusters (about 5.5 nm in diameter) at lower rate. At higher pressures, cluster generation was dominated by three-body collisions yielding smaller clusters (3–4 nm in diameter) at higher rate. The small amount of oxygen admixture in the aggregation chamber had considerable influence on cluster aggregation process. At certain critical pressure, the presence of oxygen led to the raise of deposition rate and cluster size. Resulting clusters were composed mostly of tungsten trioxide. The oxygen pressure higher than critical led to the target poisoning and the decrease in the sputtering rate. Critical oxygen pressure decreased with increasing argon pressure, suggesting that cluster aggregation process was influenced by atomic oxygen species (namely, O"− ion) generated by oxygen–argon collisions in the magnetron plasma. - Highlights: • Formation of tungsten and tungsten oxide clusters was observed. • Two modes of cluster aggregation in pure argon atmosphere were found. • Dependence of cluster deposition speed and size on oxygen admixture was observed. • Changes of dependence on oxygen with changing argon pressure were described.

  2. Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Polášek, J., E-mail: xpolasekj@seznam.cz [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Mašek, K. [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Marek, A.; Vyskočil, J. [HVM Plasma Ltd., Na Hutmance 2, Prague 5, CZ-158 00 (Czech Republic)

    2015-09-30

    In this work, we investigated the possibilities of tungsten and tungsten oxide nanoclusters generation by means of non-reactive and reactive magnetron sputtering with gas aggregation. It was found that in pure argon atmosphere, cluster aggregation proceeded in two regimes depending on argon pressure in the aggregation chamber. At the lower pressure, cluster generation was dominated by two-body collisions yielding larger clusters (about 5.5 nm in diameter) at lower rate. At higher pressures, cluster generation was dominated by three-body collisions yielding smaller clusters (3–4 nm in diameter) at higher rate. The small amount of oxygen admixture in the aggregation chamber had considerable influence on cluster aggregation process. At certain critical pressure, the presence of oxygen led to the raise of deposition rate and cluster size. Resulting clusters were composed mostly of tungsten trioxide. The oxygen pressure higher than critical led to the target poisoning and the decrease in the sputtering rate. Critical oxygen pressure decreased with increasing argon pressure, suggesting that cluster aggregation process was influenced by atomic oxygen species (namely, O{sup −} ion) generated by oxygen–argon collisions in the magnetron plasma. - Highlights: • Formation of tungsten and tungsten oxide clusters was observed. • Two modes of cluster aggregation in pure argon atmosphere were found. • Dependence of cluster deposition speed and size on oxygen admixture was observed. • Changes of dependence on oxygen with changing argon pressure were described.

  3. DART: a simulation code for charged particle beams

    International Nuclear Information System (INIS)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-01-01

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs

  4. Optimisation of electron beam characteristics by simulated annealing

    International Nuclear Information System (INIS)

    Ebert, M.A.; University of Adelaide, SA; Hoban, P.W.

    1996-01-01

    Full text: With the development of technology in the field of treatment beam delivery, the possibility of tailoring radiation beams (via manipulation of the beam's phase space) is foreseeable. This investigation involved evaluating a method for determining the characteristics of pure electron beams which provided dose distributions that best approximated desired distributions. The aim is to determine which degrees of freedom are advantageous and worth pursuing in a clinical setting. A simulated annealing routine was developed to determine optimum electron beam characteristics. A set of beam elements are defined at the surface of a homogeneous water equivalent phantom defining discrete positions and angles of incidence, and electron energies. The optimal weighting of these elements is determined by the (generally approximate) solution to the linear equation, Dw = d, where d represents the dose distribution calculated over the phantom, w the vector of (50 - 2x10 4 ) beam element relative weights, and D a normalised matrix of dose deposition kernels. In the iterative annealing procedure, beam elements are randomly selected and beam weighting distributions are sampled and used to perturb the selected elements. Perturbations are accepted or rejected according to standard simulated annealing criteria. The result (after the algorithm has terminated due to meeting an iteration or optimisation specification) is an approximate solution for the beam weight vector (w) specified by the above equation. This technique has been applied for several sample dose distributions and phase space restrictions. An example is given of the phase space obtained when endeavouring to conform to a rectangular 100% dose region with polyenergetic though normally incident electrons. For regular distributions, intuitive conclusions regarding the benefits of energy/angular manipulation may be made, whereas for complex distributions, variations in intensity over beam elements of varying energy and

  5. Measurement and simulation of the TRR BNCT beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bavarnegin, Elham [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Sadremomtaz, Alireza [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khalafi, Hossein [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-09-11

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  6. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  7. FEM simulation of static loading test of the Omega beam

    Science.gov (United States)

    Bílý, Petr; Kohoutková, Alena; Jedlinský, Petr

    2017-09-01

    The paper deals with a FEM simulation of static loading test of the Omega beam. Omega beam is a precast prestressed high-performance concrete element with the shape of Greek letter omega. Omega beam was designed as a self-supporting permanent formwork member for construction of girder bridges. FEM program ATENA Science was exploited for simulation of load-bearing test of the beam. The numerical model was calibrated using the data from both static loading test and tests of material properties. Comparison of load-displacement diagrams obtained from the experiment and the model was conducted. Development of cracks and crack patterns were compared. Very good agreement of experimental data and the FEM model was reached. The calibrated model can be used for design of optimized Omega beams in the future without the need of expensive loading tests. The calibrated material model can be also exploited in other types of FEM analyses of bridges constructed with the use of Omega beams, such as limit state analysis, optimization of shear connectors, prediction of long-term deflections or prediction of crack development.

  8. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  9. Process of cracking in reinforced concrete beams (simulation and experiment

    Directory of Open Access Journals (Sweden)

    I. N. Shardakov

    2016-10-01

    Full Text Available The paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and solved using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. A series of sequential quasi-static 4-point bend tests leading to the formation of cracks in a reinforced concrete beam were performed. At each loading step, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. During the first stage the nonconservative process of deformation begins to develope, but has not visible signs. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the ordinary concrete beams and the beams strengthened with a carbon-fiber polymer. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring crack formation and assessing the quality of measures aimed at strengthening concrete structures

  10. Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.

  11. DART: A simulation code for charged particle beams

    International Nuclear Information System (INIS)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1989-01-01

    This paper presents a recently modified version of the 2-D code, DART, which can simulate the behavior of a beam of charged particles whose trajectories are determined by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation includes space charge, secondary electrons, and the ionization of neutral gas. A beam can contain up to nine superimposed beamlets of different energy and species. The calculation of energy conversion efficiency and the method of specifying the electrode geometry are described. Basic procedures for using the code are given, and sample input and output fields are shown. 7 refs., 18 figs

  12. Beam dynamics simulation of W-band photo injector

    International Nuclear Information System (INIS)

    Zhu Xiongwei

    2002-01-01

    The authors present a beam dynamics simulation study on 1.6 cell, high gradient W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz travelling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. The authors study the beam dynamics in high frequency and high gradient; due to the high gradient, the ponderomotive effect plays an important role in beam dynamics; the authors found the ponderomotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion

  13. Earth Model with Laser Beam Simulating Seismic Ray Paths.

    Science.gov (United States)

    Ryan, John Arthur; Handzus, Thomas Jay, Jr.

    1988-01-01

    Described is a simple device, that uses a laser beam to simulate P waves. It allows students to follow ray paths, reflections and refractions within the earth. Included is a set of exercises that lead students through the steps by which the presence of the outer and inner cores can be recognized. (Author/CW)

  14. Two dimensional simulation of ion beam-plasm interaction | Echi ...

    African Journals Online (AJOL)

    Hybrid plasma simulation is a model in which different components of the plasma are treated differently. In this work the ions are treated as particles while the electrons are treated as a neutralizing background fluid through which electric signals may propagate. Deuterium ion beams incident on the tritium plasma interact ...

  15. Computer simulations of atomic collisions in solids with special emphasis on sputtering

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1986-01-01

    Computer simulations of atomic collisions in solids are traditionally divided into fully interacting or molecular dynamics (MD) simulations on the one side and simulations based on the binary collision approximation (BCA) on the other. The historical development of both branches is followed and other dichotomies viz. between static and dynamic target models and between models using crystalline and amorphous targets are introduced. The influence of the main input parameters, viz. interatomic potentials, surface- and bulk-binding energies and inelasticity is discussed before selected results are treated. Here, results for non-linear effects, clusters, fluctuations and for angular distributions are presented. The review is concluded with a discussion of the influence of computer developments on future simulations. With 392 refs

  16. Elemental thin film depth profiles by ion beam analysis using simulated annealing - a new tool

    International Nuclear Information System (INIS)

    Jeynes, C; Barradas, N P; Marriott, P K; Boudreault, G; Jenkin, M; Wendler, E; Webb, R P

    2003-01-01

    Rutherford backscattering spectrometry (RBS) and related techniques have long been used to determine the elemental depth profiles in films a few nanometres to a few microns thick. However, although obtaining spectra is very easy, solving the inverse problem of extracting the depth profiles from the spectra is not possible analytically except for special cases. It is because these special cases include important classes of samples, and because skilled analysts are adept at extracting useful qualitative information from the data, that ion beam analysis is still an important technique. We have recently solved this inverse problem using the simulated annealing algorithm. We have implemented the solution in the 'IBA DataFurnace' code, which has been developed into a very versatile and general new software tool that analysts can now use to rapidly extract quantitative accurate depth profiles from real samples on an industrial scale. We review the features, applicability and validation of this new code together with other approaches to handling IBA (ion beam analysis) data, with particular attention being given to determining both the absolute accuracy of the depth profiles and statistically accurate error estimates. We include examples of analyses using RBS, non-Rutherford elastic scattering, elastic recoil detection and non-resonant nuclear reactions. High depth resolution and the use of multiple techniques simultaneously are both discussed. There is usually systematic ambiguity in IBA data and Butler's example of ambiguity (1990 Nucl. Instrum. Methods B 45 160-5) is reanalysed. Analyses are shown: of evaporated, sputtered, oxidized, ion implanted, ion beam mixed and annealed materials; of semiconductors, optical and magnetic multilayers, superconductors, tribological films and metals; and of oxides on Si, mixed metal silicides, boron nitride, GaN, SiC, mixed metal oxides, YBCO and polymers. (topical review)

  17. Simulations relevant to the beam instability in the foreshock

    International Nuclear Information System (INIS)

    Cairns, I.H.; Nishikawa, K.I.

    1989-01-01

    Electrons backstreaming into Earth's foreshock generate waves near the plasma frequency f p by the beam instability. Tow versions of the beam instability exist: the reactive version, in which narrow-band waves grow by bunching the electrons in space, and the kinetic version, in which broadband growth occurs by a maser mechanism. Recently, it has been suggested that (1) the backstreaming electrons have steep-sided cutoff distributions which are initially unstable to the reactive instability, (2) the back reaction to the wave growth causes the instability to pass into its kinetic phase, and (3) the kinetic instability saturates by quasi-linear relaxation. In this paper the authors present two-dimensional simulations of the reactive instability for Maxwellian beams and cutoff distributions. They demonstrate that the reactive instability is a bunching instability and that the reactive instability saturates and passes over into the kinetic phase by particle trapping.A reactive/kinetic transition is shown to most likely occur within 1 km and 50 km of the bow shock. They suggest that the frequency of the intense narrow-band waves decrease from above f p to perhaps 0.9f p (dependent on the beam density) with increasing penetration into the high beam speed region of the foreshock, before the wave frequency rises again as the waves become broadband deeper in the foreshock. Both the simulation results and numerical solutions of the dispersion equation indicate that for the observed beam parameters the center frequency of the waves near the foreshock boundary should be between 0.9f p and 0.98f p , rather than above f p as previously believed. The simulation results indicate that the effects of spatial inhomogeneity are vital for a quantitative understanding of the foreshock waves

  18. Calculation of beam quality correction factor using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kawachi, T.; Saitoh, H.; Myojoyama, A.; Katayose, T.; Kojima, T.; Fukuda, K.; Inoue, M.

    2005-01-01

    In recent years, a number of the CyberKnife systems (Accuray C., U.S.) have been increasing significantly. However, the CyberKnife has unique treatment head structure and beam collimating system. Therefore, the global standard protocols can not be adopted for absolute absorbed dose dosimetry in CyberKnife beam. In this work, the energy spectrum of photon and electron from CyberKnife treatment head at 80 cm SSD and several depths in water are simulated with conscientious geometry using by the EGS Monte Carlo method. Furthermore, for calculation of the beam quality correction factor k Q , the mean restricted mass stopping power and the mass energy absorption coefficient of air, water and several chamber wall and waterproofing sleeve materials are calculated. As a result, the factors k Q CyberKnife beam for several ionization chambers are determined. And the relationship between the beam quality index PDD(10) x in CyberKnife beam and k Q is described in this report. (author)

  19. Impurity Dynamics under Neutral Beam Injection at TJ-II (simulation); Dinamica de Impurezas durante la Inyeccion de Haces Neutros en el TJ-II (simulacion)

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-07-01

    In this study the simulations of plasma transport under NBI for TJ-II, previously performed, are extended. Since than a considerable number of important modifications have been introduced in the model: change of magnetic configuration, use of experimental initial profiles, expansion of the Data base from NBI calculations and, mainly, a detailed handling of impurities with inclusion of sputtering effects. Moreover there is now a particular emphasis on the analysis of the conditions for discharge collapse and on the possible effects of single beam injection. This analysis of impurity behaviour with sputtering shows that in the expected usual cases there is no radioactive collapse and that if the recycling coefficients remain lower the unity it is always possible to find a strategy for external gas puffing leading to a stationary state, with densities below the limit and efficient NBI absorption (>50%). The radioactive collapse can appear either at high densities (central value higher than 1.4x10''20 m''3), excessive influx of impurities (i. e. with sputtering rates higher than twice the expected values) o for insufficient injected beam power (less than 45 kW). The present study analyses only the 100{sub 4}4{sub 6}4 configuration of TJ-II, but future works will start a systematic scan of configuration using this same model. (Author) 12 Refs.

  20. High energy (MeV) ion beam modifications of sputtered MoS2 coatings on sapphire

    International Nuclear Information System (INIS)

    Bhattacharya, R.S.; Rai, A.K.; Erdemir, A.

    1991-01-01

    The present article reports on the results of our investigations of high-energy (MeV) ion irradiation on the microstructural and tribological properties of dc magnetron sputtered MoS 2 films. Films of thicknesses 500-7500 A were deposited on NaCl, Si and sapphire substrates and subsequently ion irradiated by 2 MeV Ag + ions at a dose of 5x10 15 cm -2 . Scanning and transmission electron microscopy. Rutherford backscattering and X-ray diffraction techniques were utilized to study the structural, morphological and compositional changes of the film due to ion irradiation. The friction coefficient and sliding life were determined by pin-on-disc tests. Both as-deposited and ion-irradiated films were found to be amorphous having a stoichiometry of MoS 1.8 . A low friction coefficient in the range 0.03-0.04 was measured for both as-deposited and ion-irradiated films. However, the sliding life of ion-irradiated film was found to increase more than tenfold compared to as-deposited films indicating improved bonding at the interface. (orig.)

  1. Electrostatic mechanism of shaping the wave micro-relief on the surface of a semiconductor, sputtered by an ion beam

    International Nuclear Information System (INIS)

    Grigor'ev, A.I.

    2000-01-01

    The effect of the electric field formed due to the surface charging, is not accounted for in the weakly-developed theoretical models for the ordered micro-relief formation on the surface of a semiconductor under the impact of an ion beam. It is shown, that the problem on modeling the physical mechanism of forming the ordered wave micro-relief on the semiconductor surface under the impact of a high-energy ion beam may be interpreted as an electrostatic one [ru

  2. Effects of ion sputtering on semiconductor surfaces

    International Nuclear Information System (INIS)

    McGuire, G.E.

    1978-01-01

    Ion beam sputtering has been combined with Auger spectroscopy to study the effects of ion beams on semiconductor surfaces. Observations on the mass dependence of ion selective sputtering of two component systems are presented. The effects of ion implantation are explained in terms of atomic dilution. Experimental data are presented that illustrate the super-position of selective sputtering and implantation effects on the surface composition. Sample reduction from electron and ion beam interaction is illustrated. Apparent sample changes which one might observe from the effects of residual gas contamination and electric fields are also discussed. (Auth.)

  3. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations

  4. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    Science.gov (United States)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.

  5. Issues and opportunities: beam simulations for heavy ion fusion

    International Nuclear Information System (INIS)

    Friedman, A

    1999-01-01

    UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high- current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to

  6. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-06-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behaviour. We also suggest some other tests that could be used as bench-marks

  7. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-01-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behavior. We also suggest some other tests that could be used as bench-marks

  8. An interactive beam line simulator module for RHIC

    International Nuclear Information System (INIS)

    MacKay, W.W.

    1997-01-01

    This paper describes the interactive simulation engine, bl, designed for the RHIC project. The program tracks as output to shared memory the central orbit, Twiss and dispersion functions, as well as the 6 x 6 beam hyperellipsoid. Transfer matrices between elements are available via interactive requests. Using a 6-d model, optical elements are modeled with a linear transfer matrix and a vector. The vector allows simulation of misalignments, shifts in field strengths, and beam rigidity. Currently only a linear model is used for elements. In addition to the usual magnets, a foil element is included which can shift the beam's rigidity (resulting from a change of charge and energy loss), as well as increase the momentum spread and emittance. Running as a Glish client, bl can be interfaced to other programs, such as an orbit plotter and a power supply application to give a quick prediction of the beam orbit from actual operating currents in the accelerator. Various strengths and offsets may be changed by sending Glish events to bl

  9. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  10. Simulation of instabilities in the presence of beam feedback

    International Nuclear Information System (INIS)

    Myers, S.; Vancraeynest, J.

    1985-01-01

    The effect of longitudinal and transverse instabilities in electron storage rings is simulated by tracking many superparticles for many turns through a model of a machine lattice. This lattice model is defined by a series of machine elements such as RF stations (including longitudinal and transverse wake fields), beam pick-ups, feedback kicker magnets, etc. The machine elements may be interconnected in any specified way so as to produce for example feedback on the longitudinal or transverse beam motion. Each superparticle is treated in six-dimensional phase space and the effects of quantum excitation and radiation damping are included. Insofar as possible the program has been structured to allow study of all known single-beam effects (such as synchro-betatron resonances, transverse mode coupling etc.) in the presence or the absence of some form of beam feedback. The primary goal of the program was to study the effect of a reactive beam feedback system on the threshold for transverse mode coupling. (orig.)

  11. Beam-based Feedback Simulations for the NLC Linac

    International Nuclear Information System (INIS)

    Hendrickson, Linda

    2000-01-01

    Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Studies are in progress to assure the optimal selection of devices and to refine and confirm the algorithms for the system design. The authors show the results of initial simulations, along with evaluations of system response for various conditions of ground motion and other operational disturbances

  12. Thermally induced formation of SiC nanoparticles from Si/C/Si multilayers deposited by ultra-high-vacuum ion beam sputtering

    International Nuclear Information System (INIS)

    Chung, C-K; Wu, B-H

    2006-01-01

    A novel approach for the formation of SiC nanoparticles (np-SiC) is reported. Deposition of Si/C/Si multilayers on Si(100) wafers by ultra-high-vacuum ion beam sputtering was followed by thermal annealing in vacuum for conversion into SiC nanoparticles. The annealing temperature significantly affected the size, density, and distribution of np-SiC. No nanoparticles were formed for multilayers annealed at 500 0 C, while a few particles started to appear when the annealing temperature was increased to 700 0 C. At an annealing temperature of 900 0 C, many small SiC nanoparticles, of several tens of nanometres, surrounding larger submicron ones appeared with a particle density approximately 16 times higher than that observed at 700 0 C. The higher the annealing temperature was, the larger the nanoparticle size, and the higher the density. The higher superheating at 900 0 C increased the amount of stable nuclei, and resulted in a higher particle density compared to that at 700 0 C. These particles grew larger at 900 0 C to reduce the total surface energy of smaller particles due to the higher atomic mobility and growth rate. The increased free energy of stacking defects during particle growth will limit the size of large particles, leaving many smaller particles surrounding the large ones. A mechanism for the np-SiC formation is proposed in this paper

  13. Low temperature growth of Co{sub 2}MnSi films on diamond semiconductors by ion-beam assisted sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, M.; Ueda, K., E-mail: k-ueda@numse.nagoya-u.ac.jp; Asano, H. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-05-07

    High quality Schottky junctions using Co{sub 2}MnSi/diamond heterostructures were fabricated. Low temperature growth at ∼300–400 °C by using ion-beam assisted sputtering (IBAS) was necessary to obtain abrupt Co{sub 2}MnSi/diamond interfaces. Only the Co{sub 2}MnSi films formed at ∼300–400 °C showed both saturation magnetization comparable to the bulk values and large negative anisotropic magnetoresistance, which suggests half-metallic nature of the Co{sub 2}MnSi films, of ∼0.3% at 10 K. Schottky junctions formed using the Co{sub 2}MnSi films showed clear rectification properties with rectification ratio of more than 10{sup 7} with Schottky barrier heights of ∼0.8 eV and ideality factors (n) of ∼1.2. These results indicate that Co{sub 2}MnSi films formed at ∼300–400 °C by IBAS are a promising spin source for spin injection into diamond semiconductors.

  14. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO{sub 3} capacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-Y. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China); Wang, S.-C. [Department of Mechanical Engineering, Southern Taiwan University of Technology, No. 1, Nantai St, Yung-Kang City, Tainan, Taiwan (China); Chen, J.-S. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China); Huang, J.-L. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China)], E-mail: jlh888@mail.ncku.edu.tw

    2008-09-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO{sub 3} (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of {+-} 2.5 MV/cm and a leakage current density of about 1 x 10{sup -5} A/cm{sup 2} at an applied field of {+-} 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO{sub 2}/Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors.

  15. ITO films realized at room-temperature by ion beam sputtering for high-performance flexible organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, B.; Rammal, W.; Moliton, A. [Limoges Univ., Faculte des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Dept. MINACOM, 87 - Limoges (France)

    2006-06-15

    Indium-tin oxide (ITO) thin layers are obtained by an IBS (Ion Beam Sputtering) deposition process. We elaborated ITO films on flexible substrates of polyethylene terephthalate (PET), under soft conditions of low temperatures and fulfilling the requirements of fabrication processes of the organic optoelectronic components. With a non thermally activated (20 Celsius degrees) ITO deposition assisted by an oxygen flow (1 cm{sup 3}/min), we got an optical transmittance of 90% in the visible range, a resistivity around 10{sup -3} {omega}.cm and a surface roughness lower than 1.5 mm. Thus we realized flexible organic light-emitting diodes (FOLEDs) with good performances: a maximum luminance of 12000 cd/m{sup 2} at a voltage of 19 V and a maximum luminous power efficiency around 1 lm/W at a voltage of 10 V (or a maximum current efficiency of 4 cd/A at 14 V) for the (PET(50 {mu}m) / ITO(200 nm) / TPD(40 nm) / Alq3(60 nm) / Ca / Al) structure. (authors)

  16. Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering

    Science.gov (United States)

    Singh, Rohit; Arif Khan, Md; Sharma, Pankaj; Than Htay, Myo; Kranti, Abhinav; Mukherjee, Shaibal

    2018-04-01

    This work reports on the formation of high-density (~1013-1014 cm-2) two-dimensional electron gas (2DEG) in ZnO-based heterostructures, grown by a dual ion beam sputtering system. We probe 2DEG in bilayer MgZnO/ZnO and capped ZnO/MgZnO/ZnO heterostructures utilizing MgZnO barrier layers with varying thickness and Mg content. The effect of the ZnO cap layer thickness on the ZnO/MgZnO/ZnO heterostructure is also studied. Hall measurements demonstrate that the addition of a 5 nm ZnO cap layer results in an enhancement of the 2DEG density by about 1.5 times compared to 1.11 × 1014 cm-2 for the uncapped bilayer heterostructure with the same 30 nm barrier thickness and 30 at.% Mg composition in the barrier layer. From the low-temperature Hall measurement, the sheet carrier concentration and mobility are both found to be independent of the temperature. The capacitance-voltage measurement suggests a carrier density of ~1020 cm-3, confined in 2DEG at the MgZnO/ZnO heterointerface. The results presented are significant for the optimization of 2DEG for the eventual realization of cost-effective and large-area MgZnO/ZnO-based high-electron-mobility transistors.

  17. The effect of substrate bias voltages on impact resistance of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering

    Science.gov (United States)

    Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu

    2009-01-01

    CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.

  18. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO3 capacitor application

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2008-01-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO 3 (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of ± 2.5 MV/cm and a leakage current density of about 1 x 10 -5 A/cm 2 at an applied field of ± 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO 2 /Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors

  19. The preparation of Zn-ferrite epitaxial thin film from epitaxial Fe3O4:ZnO multilayers by ion beam sputtering deposition

    International Nuclear Information System (INIS)

    Su, Hui-Chia; Dai, Jeng-Yi; Liao, Yen-Fa; Wu, Yu-Han; Huang, J.C.A.; Lee, Chih-Hao

    2010-01-01

    A new method to grow a well-ordered epitaxial ZnFe 2 O 4 thin film on Al 2 O 3 (0001) substrate is described in this work. The samples were made by annealing the ZnO/Fe 3 O 4 multilayer which was grown with low energy ion beam sputtering deposition. Both the Fe 3 O 4 and ZnO layers were found grown epitaxially at low temperature and an epitaxial ZnFe 2 O 4 thin film was formed after annealing at 1000 o C. X-ray diffraction shows the ZnFe 2 O 4 film is grown with an orientation of ZnFe 2 O 4 (111)//Al 2 O 3 (0001) and ZnFe 2 O 4 (1-10)//Al 2 O 3 (11-20). X-ray absorption spectroscopy studies show that Zn 2+ atoms replace the tetrahedral Fe 2+ atoms in Fe 3 O 4 during the annealing. The magnetic properties measured by vibrating sample magnetometer show that the saturation magnetization of ZnFe 2 O 4 grown from ZnO/Fe 3 O 4 multilayer reaches the bulk value after the annealing process.

  20. Domain structure and magnetic properties of epitaxial SrRuO sub 3 films grown on SrTiO sub 3 (100) substrates by ion beam sputtering

    CERN Document Server

    Oh, S H

    2000-01-01

    The domain structure of epitaxial SrRuO sub 3 thin films grown on SrTiO sub 3 (100) substrates by using ion beam sputtering has been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SrRuO sub 3 films grown in the present study revealed a unique cube-on-cube epitaxial relationship, i.e., (100) sub S sub R sub O ll (100) sub S sub T sub O , [010] sub S sub R sub O ll [101] sub S sub T sub O , prevailing with a cubic single-domain structure. The cubic SrRuO sub 3 thin films that were inherently with free from RuO sub 6 octahedron tilting exhibited higher resistivity with suppressed magnetic properties. The Curie temperature of the thin films was suppressed by 60 K from 160 K for the bulk specimen, and the saturation magnetic moment was reduced by a significant amount. The tetragonal distortion of the SrRuO sub 3 thin films due to coherent growth with the substrate seemed to result in a strong magnetic anisotropy.

  1. Open boundaries for particle beams within fit-simulations

    Energy Technology Data Exchange (ETDEWEB)

    Balk, M.C. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)]. E-mail: balk@temf.tu-darmstadt.de; Schuhmann, R. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany); Weiland, T. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)

    2006-03-01

    A method is proposed to simulate open boundary conditions for charged particle beams with vsimulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations.

  2. Open boundaries for particle beams within fit-simulations

    International Nuclear Information System (INIS)

    Balk, M.C.; Schuhmann, R.; Weiland, T.

    2006-01-01

    A method is proposed to simulate open boundary conditions for charged particle beams with v< c in time domain or frequency domain within the Finite Integration Technique (FIT). Inside the calculation domain the moving charged particles are represented by a line current. Further, the simulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations

  3. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    International Nuclear Information System (INIS)

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, G.; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-01-01

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  4. Automated analysis for detecting beams in laser wakefield simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-01-01

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets

  5. Simulations of Large-Area Electron Beam Diodes

    Science.gov (United States)

    Swanekamp, S. B.; Friedman, M.; Ludeking, L.; Smithe, D.; Obenschain, S. P.

    1999-11-01

    Large area electron beam diodes are typically used to pump the amplifiers of KrF lasers. Simulations of large-area electron beam diodes using the particle-in-cell code MAGIC3D have shown the electron flow in the diode to be unstable. Since this instability can potentially produce a non-uniform current and energy distribution in the hibachi structure and lasing medium it can be detrimental to laser efficiency. These results are similar to simulations performed using the ISIS code.(M.E. Jones and V.A. Thomas, Proceedings of the 8^th) International Conference on High-Power Particle Beams, 665 (1990). We have identified the instability as the so called ``transit-time" instability(C.K. Birdsall and W.B. Bridges, Electrodynamics of Diode Regions), (Academic Press, New York, 1966).^,(T.M. Antonsen, W.H. Miner, E. Ott, and A.T. Drobot, Phys. Fluids 27), 1257 (1984). and have investigated the role of the applied magnetic field and diode geometry. Experiments are underway to characterize the instability on the Nike KrF laser system and will be compared to simulation. Also some possible ways to mitigate the instability will be presented.

  6. Electronic sputtering

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1989-01-01

    Electronic sputtering covers a range of phenomena from electron and photon stimulated desorption from multilayers to fast heavy ion-induced desorption (sputtering) of biomolecules. In this talk the author attempted. Therefore, to connect the detailed studies of argon ejection from solid argon by MeV ions and keV electrons to the sputtering of low temperatures molecular ices by MeV ions then to biomolecule ejection from organic solids. These are related via changing (dE/dx) e , molecular size, and transport processes occurring in materials. In this regard three distinct regions of (dE/dx) e have been identified. Since the talk this picture has been made explicit using a simple spike model for individual impulsive events in which spike interactions are combined linearly. Since that time also the molecular dynamics programs (at Virginia and Uppsala) have quantified both single atom and dimer processes in solid Ar and the momentum transport in large biomolecule sputtering. 5 refs

  7. Simulation of Particle Fluxes at the DESY-II Test Beam Facility

    International Nuclear Information System (INIS)

    Schuetz, Anne

    2015-05-01

    In the course of this Master's thesis ''Simulation of Particle Fluxes at the DESY-II Test Beam Facility'' the test beam generation for the DESY test beam line was studied in detail and simulated with the simulation software SLIC. SLIC uses the Geant4 toolkit for realistic Monte Carlo simulations of particles passing through detector material.After discussing the physics processes relevant for the test beam generation and the principles of the beam generation itself, the software used is introduced together with a description of the functionality of the Geant4 Monte Carlo simulation. The simulation of the test beam line follows the sequence of the test beam generation. Therefore, it starts with the simulation of the beam bunch of the synchrotron accelerator DESY-II, and proceeds step by step with the single test beam line components. An additional benefit of this thesis is the provision of particle flux and trajectory maps, which make fluxes directly visible by following the particle tracks through the simulated beam line. These maps allow us to see each of the test beam line components, because flux rates and directions change rapidly at these points. They will also guide the decision for placements of future test beam line components and measurement equipment.In the end, the beam energy and its spread, and the beam rate of the final test beam in the test beam area were studied in the simulation, so that the results can be compared to the measured beam parameters. The test beam simulation of this Master's thesis will serve as a key input for future test beam line improvements.

  8. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation

    Science.gov (United States)

    Ristau, Detlev; Gunster, Stefan; Bosch, Salvador; Duparre, Angela; Masetti, Enrico; Ferre-Borrull, Josep; Kiriakidis, George; Peiro, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approx1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

  9. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B V; Clarke, M; Hu, H; Betz, [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  10. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  11. Alkali metal adsorbate sputtering by molecular impact

    International Nuclear Information System (INIS)

    Moran, J.P.; Wachman, H.Y.; Trilling, L.

    1974-01-01

    An exploratory study of the sputtering by a krypton molecular beam of rubidium adsorbed at low coverage on a tungsten substrate has been described in a previous paper. An extension of this work is reported now

  12. Formation and stability of sputtered clusters

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1989-01-01

    Current theory for the formation of sputtered clusters states that either atoms are sputtered individually and aggregate after having left the surface or they are sputtered as complete clusters. There is no totally sharp boundary between the two interpretations, but experimental evidence is mainly thought to favour the latter model. Both theories demand a criterion for the stability of the clusters. In computer simulations of sputtering, the idea has been to use the same interaction potential as in the lattice computations to judge the stability. More qualitatively, simple geometrical shapes have also been looked for. It is found here, that evidence for 'magic numbers' and electron parity effects in clusters have existed in the sputtering literature for a long time, making more sophisticated stability criteria necessary. The breakdown of originally sputtered metastable clusters into stable clusters gives strong support to the 'sputtered as clusters' hypothesis. (author)

  13. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  14. Beam dynamics simulation of the S-DALINAC injector section

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Darmstadt (Germany)

    2013-07-01

    In order to extend the experimental possibilities at the superconducting electron linear accelerator S-DALINAC a new polarized gun has recently been installed in addition to the well-established thermionic electron source. Beside the two electron sources the injector section consists of several short quadrupole triplets, an alpha magnet, a Wien filter and a chopper/prebuncher system. The setup of these components differs depending on whether bunched polarized electrons with kinetic energy in the 100 keV range are supplied by the polarized source or whether a continuous unpolarized 250 keV electron beam is extracted from the thermionic gun. The electrons pass through the injector at a relatively low energy and therefore are very sensitive to the beam forming elements in this section. Thus, a proper knowledge of the particle distribution at the exit of the injector section is essential for the quality of any simulation of the subsequent accelerator parts. In this contribution first numerical beam dynamics simulation results of the S-DALINAC injector setup are discussed.

  15. Beam dynamics simulations using a parallel version of PARMILA

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1996-01-01

    The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code

  16. Beam dynamics simulations using a parallel version of PARMILA

    International Nuclear Information System (INIS)

    Ryne, Robert

    1996-01-01

    The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code. (author)

  17. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  18. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  19. Alpha-particle simulation using NBI beam and ICRF wave

    International Nuclear Information System (INIS)

    Ogawa, Y.; Hamada, Y.

    1984-07-01

    A new idea to produce the distribution function similar to that of alpha-particles in an ignited plasma has been proposed. This concept is attributed to the acceleration of the injected beam up to about 1 MeV/nucleon by the ICRF wave with cyclotron higher harmonics. This new method makes it possible to perform the simulation experiments for alpha-particles under the condition of moderate plasma parameters (e.g., Tsub(e) = 4 keV, nsub(e) = 3.5x10 19 m -3 and B sub(T) = 3 T). And it is found that 3ωsub(ci) ICRF wave is preferable compared with other cyclotron harmonics, from the viewpoints of the effective tail formation with smaller bulk ion heating and lower amplitude of the applied electric field. The formula for the maximum energy of the extended beam is also derived. (author)

  20. Beam optics simulation of rare-RI ring at RI beam factory in RIKEN

    International Nuclear Information System (INIS)

    Arai, I.; Ozawa, A.; Yasuda, Y.

    2009-01-01

    The cyclotron-like storage ring dedicated to Rare-RI Ring project consists of 6 magnetic sectors and 6 straight sections, having a circumference of 56.13 m. The magnetic sector works for both bending and focusing. The total circulation is assumed to be 1,000 turns. Over the momentum range from -1% to +1% in ∆p/p, the required isochronicity is 10 -6 while the beam emittance is several tens of π mm-mrad. To examine the design of cyclotron-like storage ring and fix its parameters, we have developed a high precision beam optics simulation. To achieve the precision as high as possible within a feasible computational time, we have adopted a geometrical tracking assuming a circular orbit for a small spatial segment. For that purpose, it is enough that the magnetic sector is divided into 150 sub-sectors in calculation. In each sub-sector, the magnetic field is given as a function of radial position but uniform around the vicinity of beam trajectory. The beam trajectory is evaluated in 4th order Runge-Kutta algorithm. Finally, we have achieved a precision of 10 -9 in ∆T/T and a computational time of 1.8 sec on a typical PC server for ray tracing of single particle undergoing a circulation of 1,000 turns. (author)

  1. Parallel Beam-Beam Simulation Incorporating Multiple Bunches and Multiple Interaction Regions

    CERN Document Server

    Jones, F W; Pieloni, T

    2007-01-01

    The simulation code COMBI has been developed to enable the study of coherent beam-beam effects in the full collision scenario of the LHC, with multiple bunches interacting at multiple crossing points over many turns. The program structure and input are conceived in a general way which allows arbitrary numbers and placements of bunches and interaction points (IP's), together with procedural options for head-on and parasitic collisions (in the strong-strong sense), beam transport, statistics gathering, harmonic analysis, and periodic output of simulation data. The scale of this problem, once we go beyond the simplest case of a pair of bunches interacting once per turn, quickly escalates into the parallel computing arena, and herein we will describe the construction of an MPI-based version of COMBI able to utilize arbitrary numbers of processors to support efficient calculation of multi-bunch multi-IP interactions and transport. Implementing the parallel version did not require extensive disruption of the basic ...

  2. Numerical Simulations for the Beam-Induced Electron Cloud in the LHC Beam Screen

    CERN Document Server

    Brüning, Oliver Sim

    1998-01-01

    The following work summarises simulation results obtained at CERN for the beam-induced electron cloud and looks at possible cures for the heat load in the LHC beam screen. The synchrotron radiation in the LHC creates a continuous flow of photoelectrons. These electrons are accelerated by the electric field of the bunch and hit the vacuum chamber on the opposite side of the beam pipe where they crea te secondary electrons which are again accelerated by the next bunch. For a large secondary emission yield the above mechanism leads to an exponential growth of the electron cloud which is limited by space charge forces. The simulations use a two-dimensional mesh for the space charge calculations and include the effect of image charges on the vacuum chamber wall. Depending on the quantum yield for the production of photoelectrons, the secondary emission yield and the reflectivity, the heat load can vary from 0.1 W/m to more than 15 W/m.

  3. Simulations relevant to the beam instability in the foreshock

    Science.gov (United States)

    Cairns, I. H.; Nishikawa, K.-I.

    1989-01-01

    The results presently obtained from two-dimensional simulations of the reactive instability for Maxwellian beams and cutoff distributions are noted to be consistent with recent suggestions that electrons backstreaming into earth's foreshock have steep-sided cutoff distributions, which are initially unstable to the reactive instability, and that the back-reaction to the wave growth causes the instability to pass into its kinetic phase. It is demonstrated that the reactive instability is a bunching instability, and that the reactive instability saturates and passes over into the kinetic phase by particle trapping.

  4. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  5. Monte Carlo simulation and experimental verification of radiotherapy electron beams

    International Nuclear Information System (INIS)

    Griffin, J.; Deloar, H. M.

    2007-01-01

    Full text: Based on fundamental physics and statistics, the Monte Carlo technique is generally accepted as the accurate method for modelling radiation therapy treatments. A Monte Carlo simulation system has been installed, and models of linear accelerators in the more commonly used electron beam modes have been built and commissioned. A novel technique for radiation dosimetry is also being investigated. Combining the advantages of both water tank and solid phantom dosimetry, a hollow, thin walled shell or mask is filled with water and then raised above the natural water surface to produce a volume of water with the desired irregular shape.

  6. Effects of nitrogen gas ratio on the structural and corrosion properties of ZrN thin films grown on biodegradable magnesium alloy by ion-beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kiahosseini, Seyed Rahim [Islamic Azad University, Department of Engineering, Damghan Branch, Damghan (Iran, Islamic Republic of); Mojtahedzadeh Larijani, Majid [Nuclear Sciences and Technology Institute, Radiation Application Research School, Tehran (Iran, Islamic Republic of)

    2017-12-15

    Studies on the corrosion resistance of magnesium alloys, which are widely applied as biomaterials, have increased in recent years. In this work, zirconium nitride (ZrN) coatings were deposited on AZ91 magnesium alloy through ion-beam sputtering at 473 K with 0.3, 0.4, 0.5, and 0.6 nitrogen proportions [F(N{sub 2})] in ionized gas. X-ray diffraction, profilometry, hardness tests, scanning electron microscopy, and potentiodynamic polarization techniques were used to analyze the structure, thickness, adhesion, microstructure, and corrosion resistance of coated samples, respectively. Results showed that the (111) crystalline orientation dominated in all coatings. Williamson-Hall technique revealed that the crystallite size of ZrN films decreased from 73 to 20 nm with increasing F(N{sub 2}), and compressive microstrain increased from 0.004 to 0.030. Film thicknesses were inversely correlated with N{sub 2} amount and significantly decreased from 1.7 to 0.8 μm. The maximum dP/dr ratio, a dependent factor of adhesion, was 0.04 kg/cm for the film deposited under the F(N{sub 2}) value of 0.5. The corrosion potential of coated samples was not significantly different from that of uncoated AZ91. Under the F(N{sub 2}) value of 0.6, corrosion current density slightly decreased from 14 to 9.7 μA/cm{sup 2} and significantly increased to 13.5 μA/cm{sup 2}. Results indicated that ZrN film deposited under the F(N{sub 2}) value of 0.5 showed high adhesion and corrosion resistance. (orig.)

  7. Effects of nitrogen gas ratio on the structural and corrosion properties of ZrN thin films grown on biodegradable magnesium alloy by ion-beam sputtering

    Science.gov (United States)

    Kiahosseini, Seyed Rahim; Mojtahedzadeh Larijani, Majid

    2017-12-01

    Studies on the corrosion resistance of magnesium alloys, which are widely applied as biomaterials, have increased in recent years. In this work, zirconium nitride (ZrN) coatings were deposited on AZ91 magnesium alloy through ion-beam sputtering at 473 K with 0.3, 0.4, 0.5, and 0.6 nitrogen proportions [F(N2)] in ionized gas. X-ray diffraction, profilometry, hardness tests, scanning electron microscopy, and potentiodynamic polarization techniques were used to analyze the structure, thickness, adhesion, microstructure, and corrosion resistance of coated samples, respectively. Results showed that the (111) crystalline orientation dominated in all coatings. Williamson-Hall technique revealed that the crystallite size of ZrN films decreased from 73 to 20 nm with increasing F(N2), and compressive microstrain increased from 0.004 to 0.030. Film thicknesses were inversely correlated with N2 amount and significantly decreased from 1.7 to 0.8 µm. The maximum d P/d r ratio, a dependent factor of adhesion, was 0.04 kg/cm for the film deposited under the F(N2) value of 0.5. The corrosion potential of coated samples was not significantly different from that of uncoated AZ91. Under the F(N2) value of 0.6, corrosion current density slightly decreased from 14 to 9.7 µA/cm2 and significantly increased to 13.5 µA/cm2. Results indicated that ZrN film deposited under the F(N2) value of 0.5 showed high adhesion and corrosion resistance.

  8. Simulations of Bunch Merging in a Beta Beam Decay Ring

    CERN Document Server

    Heinrich, Daniel Christopher; Chance, Antoine

    2011-01-01

    To further study neutrino oscillation properties a Beta Beam facility has been proposed. Beta decaying ions with high kinetic energy are stored in a storage ring ("Decay Ring") with straight sections to create pure focused (anti) electron neutrino beams. However to reach high sensitivity to neutrino oscillation parameters in the experiment the bunched beam intensity and duty cycle in the DR have to be optimized. The first CERN-based scenario, using 6He and 18Ne as neutrino sources, has been studied using a bunch merging RF scheme. Two RF cavities at different frequencies are used to capture newly injected bunches and then merge them into the stored bunches. It was shown that this scheme could satisfy the requirements on intensity and duty cycle set by the experiment. This merging scheme has now been revised with new simulation software providing new results for 6He and 18Ne. Furthermore bunch merging has been studied for the second CERN-based scenario using 8Li and 8B.

  9. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  10. Study of magnetic properties and relaxation in amorphous Fe73.9Nb3.1Cu0.9Si13.2B8.9 thin films produced by ion beam sputtering

    International Nuclear Information System (INIS)

    Celegato, F.; Coiesson, M.; Magni, A.; Tiberto, P.; Vinai, F.; Kane, S. N.; Modak, S. S.; Gupta, A.; Sharma, P.

    2007-01-01

    Amorphous Fe 73.9 Nb 3.1 Cu 0.9 Si 13.2 B 8.9 thin films have been produced by ion beam sputtering with two different beam energies (500 and 1000 eV). Magnetic measurements indicate that the samples display a uniaxial magnetic anisotropy, especially for samples prepared with the lower beam energy. Magnetization relaxation has been measured on both films with an alternating gradient force magnetometer and magneto-optical Kerr effect. Magnetization relaxation occurs on time scales of tens of seconds and can be described with a single stretched exponential function. Relaxation intensity turns out to be higher when measured along the easy magnetization axis

  11. Simulating the Long-Distance Propagation of Intense Beams in the Paul Trap Simulator Experiment

    CERN Document Server

    Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip; Majeski, Richard; Startsev, Edward

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) makes use of a compact Paul trap configuration with quadrupolar oscillating wall voltages to simulate the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient transport systems. The simulation is possible because of the similarity between the transverse dynamics of particles in the two systems. One-component pure cesium ion plasmas have been trapped that correspond to normalized intensity parameters s < 0.8, where s is the ratio of the square of the plasma frequency to twice the square of the average transverse focusing frequency. The PTSX device confines the plasma for hundreds of milliseconds, which is equivalent to beam propagation over tens of kilometers. Results are presented for experiments in which the amplitude of the oscillating confining voltage waveform has been modified as a function of time. A comparison is made between abrupt changes in amplitude and adiabatic changes in amplitude. T...

  12. Endotaxially stabilized B2-FeSi nanodots in Si (100) via ion beam co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Cathal, E-mail: c.cassidy@oist.jp; Singh, Vidyadhar; Grammatikopoulos, Panagiotis [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Onna-Son, Okinawa 904-0495 (Japan); Kioseoglou, Joseph [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Lal, Chhagan [Department of Physics, University of Rajasthan, Jaipur, Rajasthan 302005 (India); Sowwan, Mukhles, E-mail: mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Onna-Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, East Jerusalem, P.O. Box 51000, Palestine (Country Unknown)

    2014-04-21

    We report on the formation of embedded B2-FeSi nanodots in [100]-oriented Si substrates, and investigate the crystallographic mechanism underlying the stabilization of this uncommon, bulk-unstable, phase. The nanodots were approximately 10 nm in size, and were formed by iron thin film deposition and subsequent annealing. Cross-sectional transmission electron microscopy, energy loss spectroscopy mapping, and quantitative image simulation and analysis were utilized to identify the phase, strain, and orientational relationship of the nanodots to the host silicon lattice. X-ray photoelectron spectroscopy was utilized to analyze the surface composition and local bonding. Elasticity calculations yielded a nanodot residual strain value of −18%. Geometrical phase analysis graphically pinpointed the positions of misfit dislocations, and clearly showed the presence of pinned (11{sup ¯}1{sup ¯}){sub Si}//(100){sub FeSi}, and unpinned (2{sup ¯}42){sub Si}//(010){sub FeSi}, interfaces. This partial endotaxy in the host silicon lattice was the mechanism that stabilized the B2-FeSi phase.

  13. Improvement of the homogeneity of high mobility In{sub 2}O{sub 3}:H films by sputtering through a mesh electrode studied by Monte Carlo simulation and thin film analysis

    Energy Technology Data Exchange (ETDEWEB)

    Scherg-Kurmes, Harald; Hafez, Ahmad; Szyszka, Bernd [Technische Universitaet Berlin, Einsteinufer 25, 10587, Berlin (Germany); Siemers, Michael; Pflug, Andreas [Fraunhofer IST, Bienroder Weg 54E, 38108, Braunschweig (Germany); Schlatmann, Rutger [Helmholtz Zentrum Berlin, PVcomB, Schwarzschildstr. 3, 12489, Berlin (Germany); Rech, Bernd [Helmholtz Zentrum Berlin, Institute for Silicon Photovoltaics, Kekulestrasse 5, 12489, Berlin (Germany)

    2016-09-15

    Hydrogen-doped indium oxide (IOH) is a transparent conductive oxide offering great potential to optoelectronic applications because of its high mobility of over 100 cm{sup 2} V{sup -1}s{sup -1}. In films deposited statically by RF magnetron sputtering, a small area directly opposing the target center with a higher resistivity and lower crystallinity than the rest of the film has been found via hall- and XRD-measurements, which we attribute to plasma damage. In order to investigate the distribution of particle energies during the sputtering process we have simulated the RF-sputtering deposition process of IOH by particle-in-cell Monte Carlo (PICMC) simulation. At the surface of ceramic sputtering targets, negatively charged oxygen ions are created. These ions are accelerated toward the substrate in the plasma sheath with energies up to 150 eV. They damage the growing film and reduce its crystallinity. The influence of a negatively biased mesh inside the sputtering chamber on particle energies and distributions has been simulated and investigated. We found that the mesh decreased the high-energetic oxygen ion density at the substrate, thus enabling a more homogeneous IOH film growth. The theoretical results have been verified by XRD X-ray diffractometry (XRD), 4-point probe, and hall measurements of statically deposited IOH films on glass. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' AccelerateurLineaire (LAL), Universite Paris SudOrsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Kovalenko, A.D.; Taratin, A.M. [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2017-03-11

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  15. Tests of a new axial sputtering technique in an ECRIS

    International Nuclear Information System (INIS)

    Scott, R.; Pardo, R.; Vondrasek, R.

    2012-01-01

    Axial and radial sputtering techniques have been used over the years to create beams from an ECRIS at multiple accelerator facilities. Operational experience has shown greater beam production when using the radial sputtering method versus axial sputtering. At Argonne National Laboratory, previous work with radial sputtering has demonstrated that the position of the sputter sample relative to the plasma chamber wall influences sample drain current, beam production and charge state distribution. The possibility of the chamber wall acting as a ground plane which influences the sputtering of material has been considered, and an attempt has been made to mimic this possible ground plane effect with a coaxial sample introduced from the injection end. Results of these tests will be shown as well as comparisons of outputs using the two methods. The paper is followed by the associated poster. (authors)

  16. Fast Monte Carlo for ion beam analysis simulations

    International Nuclear Information System (INIS)

    Schiettekatte, Francois

    2008-01-01

    A Monte Carlo program for the simulation of ion beam analysis data is presented. It combines mainly four features: (i) ion slowdown is computed separately from the main scattering/recoil event, which is directed towards the detector. (ii) A virtual detector, that is, a detector larger than the actual one can be used, followed by trajectory correction. (iii) For each collision during ion slowdown, scattering angle components are extracted form tables. (iv) Tables of scattering angle components, stopping power and energy straggling are indexed using the binary representation of floating point numbers, which allows logarithmic distribution of these tables without the computation of logarithms to access them. Tables are sufficiently fine-grained that interpolation is not necessary. Ion slowdown computation thus avoids trigonometric, inverse and transcendental function calls and, as much as possible, divisions. All these improvements make possible the computation of 10 7 collisions/s on current PCs. Results for transmitted ions of several masses in various substrates are well comparable to those obtained using SRIM-2006 in terms of both angular and energy distributions, as long as a sufficiently large number of collisions is considered for each ion. Examples of simulated spectrum show good agreement with experimental data, although a large detector rather than the virtual detector has to be used to properly simulate background signals that are due to plural collisions. The program, written in standard C, is open-source and distributed under the terms of the GNU General Public License

  17. Sputtering calculations with the discrete ordinated method

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1977-01-01

    The purpose of this work is to investigate the applicability of the discrete ordinates (S/sub N/) method to light ion sputtering problems. In particular, the neutral particle discrete ordinates computer code, ANISN, was used to calculate sputtering yields. No modifications to this code were necessary to treat charged particle transport. However, a cross section processing code was written for the generation of multigroup cross sections; these cross sections include a modification to the total macroscopic cross section to account for electronic interactions and small-scattering-angle elastic interactions. The discrete ordinates approach enables calculation of the sputtering yield as functions of incident energy and angle and of many related quantities such as ion reflection coefficients, angular and energy distributions of sputtering particles, the behavior of beams penetrating thin foils, etc. The results of several sputtering problems as calculated with ANISN are presented

  18. Novel magnetic controlled plasma sputtering method

    International Nuclear Information System (INIS)

    Axelevich, A.; Rabinovich, E.; Golan, G.

    1996-01-01

    A novel method to improve thin film vacuum sputtering is presented. This method is capable of controlling the sputtering plasma via an external set of magnets, in a similar fashion to the tetrode sputtering method. The main advantage of the Magnetic Controlled Plasma Sputtering (MCPS) is its ability to independently control all deposition parameters without any interference or cross-talk. Deposition rate, using the MCPS, is found to be almost twice the rate of triode and tetrode sputtering techniques. Experimental results using the MCPS to deposit Ni layers are described. It was demonstrated that using the MCPS method the ion beam intensity at the target is a result of the interaction of a homogeneous external magnetic field and the controlling magnetic fields. The MCPS method was therefore found to be beneficial for the production of pure stoichiometric thin solid films with high reproducibility. This method could be used for the production of compound thin films as well. (authors)

  19. Deuterium sputtering of Li and Li-O films

    Science.gov (United States)

    Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce

    2017-10-01

    Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.

  20. Fluid simulation for two laser beams co-propagating in underdense plasma

    International Nuclear Information System (INIS)

    Mahdy, A.I.

    2004-09-01

    2D simulations code was constructed in order simulate the interactions of two co-propagating laser beams with underdense plasma. Simulations results at different laser intensities and separation-distances between the beams centroids were presented. In the results the effects of the laser intensities on the self-focusing and merging of the propagating beams were shown. In addition, the influence of increasing the separation-distance on the beams stability and trajectories were studied. A comparison with previous simulations at similar conditions was carried out in order to evaluate the numerical technique used to solve the basic equations. (author)

  1. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  2. Particle beam dynamics simulations using the POOMA framework

    International Nuclear Information System (INIS)

    Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang

    1998-01-01

    A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code

  3. Numerical simulation of impact tests on reinforced concrete beams

    International Nuclear Information System (INIS)

    Jiang, Hua; Wang, Xiaowo; He, Shuanhai

    2012-01-01

    Highlights: ► Predictions using advanced concrete model compare well with the impact test results. ► Several important behavior of concrete is discussed. ► Two mesh ways incorporating rebar into concrete mesh is also discussed. ► Gives a example of using EPDC model and references to develop new constitutive models. -- Abstract: This paper focuses on numerical simulation of impact tests of reinforced concrete (RC) beams by the LS-DYNA finite element (FE) code. In the FE model, the elasto-plastic damage cap (EPDC) model, which is based on continuum damage mechanics in combination with plasticity theory, is used for concrete, and the reinforcement is assumed to be elasto-plastic. The numerical results compares well with the experimental values reported in the literature, in terms of impact force history, mid-span deflection history and crack patterns of RC beams. By comparing the numerical and experimental results, several important behavior of concrete material is investigated, which includes: damage variable to describe the strain softening section of stress–strain curve; the cap surface to describe the plastic volume change; the shape of the meridian and deviatoric plane to describe the yield surface as well as two methods of incorporating rebar into concrete mesh. This study gives a good example of using EPDC model and can be utilized for the development new constitutive models for concrete in future.

  4. Isotope puzzle in sputtering

    International Nuclear Information System (INIS)

    Zheng Liping

    1998-01-01

    Mechanisms affecting multicomponent material sputtering are complex. Isotope sputtering is the simplest in the multicomponent materials sputtering. Although only mass effect plays a dominant role in the isotope sputtering, there is still an isotope puzzle in sputtering by ion bombardment. The major arguments are as follows: (1) At the zero fluence, is the isotope enrichment ejection-angle-independent or ejection-angle-dependent? (2) Is the isotope angular effect the primary or the secondary sputter effect? (3) How to understand the action of momentum asymmetry in collision cascade on the isotope sputtering?

  5. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  6. Beam Simulation Studies of Plasma-Surface Interactions in Fluorocarbon Etching of Silicon and Silicon Dioxide

    Science.gov (United States)

    Gray, David C.

    1992-01-01

    A molecular beam apparatus has been constructed which allows the synthesis of dominant species fluxes to a wafer surface during fluorocarbon plasma etching. These species include atomic F as the primary etchant, CF _2 as a potential polymer forming precursor, and Ar^{+} or CF _{rm x}^{+} type ions. Ionic and neutral fluxes employed are within an order of magnitude of those typical of fluorocarbon plasmas and are well characterized through the use of in -situ probes. Etching yields and product distributions have been measured through the use of in-situ laser interferometry and line-of-sight mass spectrometry. XPS studies of etched surfaces were performed to assess surface chemical bonding states and average surface stoichiometry. A useful design guide was developed which allows optimal design of straight -tube molecular beam dosers in the collisionally-opaque regime. Ion-enhanced surface reaction kinetics have been studied as a function of the independently variable fluxes of free radicals and ions, as well as ion energy and substrate temperature. We have investigated the role of Ar ^{+} ions in enhancing the chemistries of F and CF_2 separately, and in combination on undoped silicon and silicon dioxide surfaces. We have employed both reactive and inert ions in the energy range most relevant to plasma etching processes, 20-500 eV, through the use of Kaufman and ECR type ion sources. The effect of increasing ion energy on the etching of fluorine saturated silicon and silicon dioxide surfaces was quantified through extensions of available low energy physical sputtering theory. Simple "site"-occupation models were developed for the quantification of the ion-enhanced fluorine etching kinetics in these systems. These models are suitable for use in topography evolution simulators (e.g. SAMPLE) for the predictive modeling of profile evolution in non-depositing fluorine-based plasmas such as NF_3 and SF_6. (Copies available exclusively from MIT Libraries, Rm. 14

  7. Simulations of ion beams for NDCX-II

    Energy Technology Data Exchange (ETDEWEB)

    Grote, D.P., E-mail: dpgrote@lbl.gov [LBNL MS47-112, 1 Cyclotron Rd, Bekerley, CA 94720 (United States); Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Friedman, A., E-mail: afriedman@lbl.gov [Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Sharp, W.M. [Lawrence Livermore National Lab, Livermore, CA 94550 (United States)

    2014-01-01

    NDCX-II, the second neutralized drift compression experiment, is a moderate energy, high current accelerator designed to drive targets for warm dense matter and IFE-relevant energy coupling studies, and to serve as a testbed for high current accelerator physics. As part of the design process, studies were carried out to assess the sensitivities of the accelerator to errors, and to further optimize the design in concert with the evolving pulsed power engineering. The Warp code was used to carry out detailed simulations in both axisymmetric and full 3-D geometry. Ensembles of simulations were carried out to characterize the effects of errors, such as timing jitter and noise on the accelerator waveforms, noise on the source waveform, and solenoid and source offsets. In some cases, the ensemble studies resulted in better designs, revealing operating points with improved performance and showing possible means for further improvement. These studies also revealed a new non-paraxial effect of the final focus solenoid on the beam, which must be taken into account in designing an optimal final focusing system.

  8. Simulation of the electron acoustic instability for a finite-size electron beam system

    International Nuclear Information System (INIS)

    Lin, C.S.; Winske, D.

    1987-01-01

    Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation

  9. Simulation of effects of incident beam condition in p-p elastic scattering

    International Nuclear Information System (INIS)

    Yu Lei; Zhang Gaolong; Le Xiaoyun; Tanihata, I.

    2014-01-01

    The simulation is performed for the monitors of beam direction and beam position for p-p elastic scattering. We set several variables to simulate the monitors of incident beam condition changes: beam positions at the quadrupole magnet and target in beam line polarimeter (BLP2), distance between quadrupole magnet and target, size of plastic scintillators, distance between the target in BLP2 and the centers of plastic scintillators, and beam polarization. Through the rotation of the coordinate system, the distributions of scattered and recoiled protons in the laboratory system were obtained. By analyzing the count yields in plastic scintillators at different beam positions, we found that the beam incident angular change (0.35°) could be detected when the asymmetry of geometries of left and right scintillators in BLP2 was changed by 6%. Therefore, the scattering angle measured in the experiment can be tracked by these monitors. (authors)

  10. Monte Carlo simulation of beam characteristics from small fields based on TrueBeam flattening-filter-free mode

    International Nuclear Information System (INIS)

    Feng, Zhongsu; Yue, Haizhen; Zhang, Yibao; Wu, Hao; Cheng, Jinsheng; Su, Xu

    2016-01-01

    Through the Monte Carlo (MC) simulation of 6 and 10 MV flattening-filter-free (FFF) beams from Varian TrueBeam accelerator, this study aims to find the best incident electron distribution for further studying the small field characteristics of these beams. By incorporating the training materials of Varian on the geometry and material parameters of TrueBeam Linac head, the 6 and 10 MV FFF beams were modelled using the BEAMnrc and DOSXYZnrc codes, where the percentage depth doses (PDDs) and the off-axis ratios (OARs) curves of fields ranging from 4 × 4 to 40 × 40 cm 2 were simulated for both energies by adjusting the incident beam energy, radial intensity distribution and angular spread, respectively. The beam quality and relative output factor (ROF) were calculated. The simulations and measurements were compared using Gamma analysis method provided by Verisoft program (PTW, Freiburg, Germany), based on which the optimal MC model input parameters were selected and were further used to investigate the beam characteristics of small fields. The Full Width Half Maximum (FWHM), mono-energetic energy and angular spread of the resultant incident Gaussian radial intensity electron distribution were 0.75 mm, 6.1 MeV and 0.9° for the nominal 6 MV FFF beam, and 0.7 mm, 10.8 MeV and 0.3° for the nominal 10 MV FFF beam respectively. The simulation was mostly comparable to the measurement. Gamma criteria of 1 mm/1 % (local dose) can be met by all PDDs of fields larger than 1 × 1 cm 2 , and by all OARs of no larger than 20 × 20 cm 2 , otherwise criteria of 1 mm/2 % can be fulfilled. Our MC simulated ROFs agreed well with the measured ROFs of various field sizes (the discrepancies were less than 1 %), except for the 1 × 1 cm 2 field. The MC simulation agrees well with the measurement and the proposed model parameters can be clinically used for further dosimetric studies of 6 and 10 MV FFF beams

  11. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    International Nuclear Information System (INIS)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan; Park, Jozeph; Ahn, Byung Du; Kim, Hyun-Suk

    2015-01-01

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping

  12. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [School of Electrical Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Park, Jozeph [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Ahn, Byung Du [School of Electrical and Electronic Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Hyun-Suk, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-03-23

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  13. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    Science.gov (United States)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  14. Guiding center simulations of strong ion beams with applications to the Counterstreaming Ion Torus

    International Nuclear Information System (INIS)

    Tull, C.

    1978-03-01

    In the proposed Counterstreaming Ion Torus (CIT) steady state rather than pulsed operation may be possible if all of the plasma power density is provided by neutral beam injection. After the neutral beams have penetrated the magnetic field, strong ion beam currents are produced. A major concern with the relatively strong counterstreaming ion currents is the effect of the beam self-magnetic fields on the macroscopic equilibrium of the system. Pinching and self focusing of the individual beams may occur, or the repulsive interaction of the two oppositely directed beam currents may destroy the equilibrium entirely. We investigate this macroscopic behavior of the ion beams with a guiding center plasma particle simulation model and we describe a model we have developed to simulate steady state behavior in an ideal CIT configuration

  15. Ion-induced sputtering

    International Nuclear Information System (INIS)

    Yamamura, Yasumichi; Shimizu, Ryuichi; Shimizu, Hazime; Ito, Noriaki.

    1983-01-01

    The research on ion-induced sputtering has been continued for a long time, since a hundred or more years ago. However, it was only in 1969 by Sigmund that the sputtering phenomena were theoretically arranged into the present form. The reason why the importance of sputtering phenomena have been given a new look recently is the application over wide range. This paper is a review centering around the mechanism of causing sputtering and its characteristics. Sputtering is such a phenomenon that the atoms in the vicinity of a solid surface are emitted into vacuum by receiving a part of ion energy, or in other words, it is a kind of irradiation damage in the vicinity of a solid surface. In this meaning, it can be considered that the sputtering based on the ions located on the clean surface of a single element metal is simple, and has already been basically understood. On the contrary, the phenomena can not be considered to be fully understood in the case of alloys and compounds, because these surface conditions under irradiation are not always clear due to segregation and others. In the paper, the physical of sputtering, single element sputtering, the sputtering in alloys and compounds, and the behaviour of emitted particles are explained. Finally, some recent topics of the sputtering measurement by laser resonant excitation, the sputtering by electron excitation, chemical sputtering, and the sputtering in nuclear fusion reactors are described. (Wakatsuki, Y.)

  16. Beam Loss Simulation Studies for ALS Top-Off Operation

    CERN Document Server

    Nishimura, Hiroshi; Robin, David; Steier, Christoph

    2005-01-01

    The ALS is planning to operate with top-off injection at higher beam currents and smaller vertical beam size. As part of a radiation safety study for top-off, we carried out two kinds of tracking studies: (1) to confirm that the injected beam cannot go into users' photon beam lines, and (2) to control the location of beam dump when the storage ring RF is tripped. (1) is done by tracking electrons from a photon beam line to the injection sector inversely by including the magnetic field profiles, varying the field strength with geometric aperture limits to conclude that it is impossible. (2) is done by tracking an electron with radiation in the 6-dim space for different combinations of vertical scrapers for the realistic lattice with errors.

  17. Progress on Beam-Plasma Effect Simulations in Muon Ionization Cooling Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James [IIT, Chicago; Snopok, Pavel [Fermilab

    2017-05-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerators. One of the crucial physics processes specific to muon accelerators that has not yet been simulated in detail is beam-induced plasma effect in liquid, solid, and gaseous absorbers. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  18. Ion beam sputtering and depth profiling: on the characteristics of the induced roughness and the means to cure it at best

    International Nuclear Information System (INIS)

    Limoge, Y.; Maurice, F.; Zemskoff, A.

    1987-01-01

    The purpose of the present communication is to report the first results of a study devoted to the understanding of the surface roughness due either to statistical fluctuations in sputtering or sample microstructural inhomogeneities. In a second part, we shall propose a new method to correct the experimental profiles from the blurring effect of the sample roughness in typical cases of in-depth analysis

  19. Ion beam analysis of rubies and their simulants

    Energy Technology Data Exchange (ETDEWEB)

    Juncomma, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50202 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Bootkul, D. [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Tippawan, U., E-mail: beary1001@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-07-15

    Ion beam analysis (IBA) is a set of well known powerful analytical techniques which use energetic particle beam as a probe. Among them, two techniques are suitable for gemological analysis, i.e., Particle Induced X-rays Emission (PIXE) and Ionoluminescence (IL). We combine these two techniques for the investigations of rubies and their simulants. The main objective is to find a reference fingerprint of these gemstones. The data are collected from several natural rubies, synthetic rubies, red spinels, almandine garnets and rubellite which very much resemble and are difficult to distinguish with the gemologist loupe. From our measurements, due to their different crystal structures and compositions, can be clearly distinguished by the IL and PIXE techniques. The results show that the PIXE spectra consist of a few dominant lines of the host matrix elements of each gemstone and some weaker lines due to trace elements of transition metals. PIXE can easily differentiate rubies from other stones by evaluating their chemical compositions. It is noticed that synthetic rubies generally contain fewer impurities, lower iron and higher chromium than the natural ones. Moreover, the IL spectrum of ruby is unique and different from those of others stones. The typical spectrum of ruby is centered at 694 nm, with small sidebands that can be ascribed to a Cr{sup 3+} emission spectrum which is dominated by an R-line at the extreme red end of the visible part of the electromagnetic spectrum. Although the spectrum of synthetic ruby is centered at the same wavelength, the peak is stronger due to higher concentration of Cr and lower concentration of Fe than for natural rubies. For spinel, the IL spectrum shows strong deformation where the R-line is split due to the presence of MgO. For rubellite, the peak center is shifted to 692 nm which might be caused by the replacement of Mn{sup 3+} at the Al{sup 3+} site of the host structure. It is noticed that almandine garnet is not luminescent due

  20. A novel approach for the characterization of a bilayer of phenyl-c71-butyric-acid-methyl ester and pentacene using ultraviolet photoemission spectroscopy and argon gas cluster ion beam sputtering process

    International Nuclear Information System (INIS)

    Yun, Dong-Jin; Chung, JaeGwan; Jung, Changhoon; Chung, Yeonji; Kim, SeongHeon; Lee, Seunghyup; Kim, Ki-Hong; Han, Hyouksoo; Park, Gyeong-Su; Park, SungHoon

    2013-01-01

    The material arrangement and energy level alignment of an organic bilayer comprising of phenyl-c71-butyric-acid-methyl ester (PCBM-71) and pentacene were studied using ultraviolet photoelectron spectroscopy (UPS) and the argon gas cluster ion beam (GCIB) sputtering process. Although there is a small difference in the full width at half maximum of the carbon C 1s core level peaks and differences in the oxygen O 1s core levels of an X-ray photoemission spectroscopy spectra, these differences are insufficient to clearly distinguish between PCBM-71 and pentacene layers and to classify the interface and bulk regions. On the other hand, the valence band structures in the UPS spectra contain completely distinct configurations for the PCBM-71 and pentacene layers, even when they have similar atomic compositions. According to the valence band structures of the PCBM-71/pentacene/electrodes, the highest unoccupied molecular orbital (HOMO) region of pentacene is at least 0.8 eV closer to the Fermi level than that of PCBM-71 and it does not overlap with any of the chemical states in the valence band structure of PCBM-71. Therefore, by just following the variations in the area of the HOMO region of pentacene, the interface/bulk regions of the PCBM/pentacene layers were distinctly categorized. Besides, the variation of valence band structures as a function of the Ar GCIB sputtering time fully corroborated with the surface morphologies observed in the atomic force microscope images. In summary, we believe that the novel approach, which involves UPS analysis in conjunction with Ar GCIB sputtering, can be one of the best methods to characterize the material distribution and energy level alignments of stacks of organic layers

  1. A novel approach for the characterization of a bilayer of phenyl-c71-butyric-acid-methyl ester and pentacene using ultraviolet photoemission spectroscopy and argon gas cluster ion beam sputtering process

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Dong-Jin; Chung, JaeGwan; Jung, Changhoon; Chung, Yeonji; Kim, SeongHeon; Lee, Seunghyup; Kim, Ki-Hong; Han, Hyouksoo; Park, Gyeong-Su; Park, SungHoon [Analytical Science Laboratory of Samsung Advanced Institute of Technology, P.O. Box 14-1, Yongin 446-712 (Korea, Republic of)

    2013-09-07

    The material arrangement and energy level alignment of an organic bilayer comprising of phenyl-c71-butyric-acid-methyl ester (PCBM-71) and pentacene were studied using ultraviolet photoelectron spectroscopy (UPS) and the argon gas cluster ion beam (GCIB) sputtering process. Although there is a small difference in the full width at half maximum of the carbon C 1s core level peaks and differences in the oxygen O 1s core levels of an X-ray photoemission spectroscopy spectra, these differences are insufficient to clearly distinguish between PCBM-71 and pentacene layers and to classify the interface and bulk regions. On the other hand, the valence band structures in the UPS spectra contain completely distinct configurations for the PCBM-71 and pentacene layers, even when they have similar atomic compositions. According to the valence band structures of the PCBM-71/pentacene/electrodes, the highest unoccupied molecular orbital (HOMO) region of pentacene is at least 0.8 eV closer to the Fermi level than that of PCBM-71 and it does not overlap with any of the chemical states in the valence band structure of PCBM-71. Therefore, by just following the variations in the area of the HOMO region of pentacene, the interface/bulk regions of the PCBM/pentacene layers were distinctly categorized. Besides, the variation of valence band structures as a function of the Ar GCIB sputtering time fully corroborated with the surface morphologies observed in the atomic force microscope images. In summary, we believe that the novel approach, which involves UPS analysis in conjunction with Ar GCIB sputtering, can be one of the best methods to characterize the material distribution and energy level alignments of stacks of organic layers.

  2. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    International Nuclear Information System (INIS)

    Batygin, Y.

    2004-01-01

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented

  3. Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Bolme, G.O.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.; Zaugg, T.J.

    1998-01-01

    The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current

  4. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  5. Sputtering of water ice

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.; Schou, J.; Shi, M.; Bahr, D.A.; Atteberrry, C.L.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from the decay of H(2p) atoms sputtered by heavy ion impact, but not bulk ice luminescence. Radiolyzed ice does not sputter under 3.7 eV laser irradiation

  6. Simulation of long-distance beam propagation in the Paul trap simulator experiment

    International Nuclear Information System (INIS)

    Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. One-component pure ion plasmas have been trapped that correspond to normalized intensity parameter s-coret=ω p 2 (0)/2ω q 2 = p (r) is the plasma frequency and ω q is the average transverse focusing frequency in the smooth-focusing approximation. The PTSX device confines one-component cesium ion plasmas for hundreds of milliseconds, which is equivalent to beam propagation over 10km. Results are presented for experiments in which the amplitude of the confining voltage waveform has been modified as a function of time. Recent modifications to the device are described, and both the change from a cesium ion source to a barium ion source, and the development of a laser-induced fluorescence diagnostic system are discussed

  7. Expected damage to accelerator equipment due to the impact of the full LHC beam: beam instrumentation, experiments and simulations

    CERN Document Server

    Burkart, Florian

    The Large Hadron Collider (LHC) is the biggest and most powerful particle accelerator in the world, designed to collide two proton beams with particle momentum of 7 TeV/c each. The stored energy of 362MJ in each beam is sufficient to melt 500 kg of copper or to evaporate about 300 liter of water. An accidental release of even a small fraction of the beam energy can cause severe damage to accelerator equipment. Reliable machine protection systems are necessary to safely operate the accelerator complex. To design a machine protection system, it is essential to know the damage potential of the stored beam and the consequences in case of a failure. One (catastrophic) failure would be, if the entire beam is lost in the aperture due to a problem with the beam dumping system. This thesis presents the simulation studies, results of a benchmarking experiment, and detailed target investigation, for this failure case. In the experiment, solid copper cylinders were irradiated with the 440GeV proton beam delivered by the ...

  8. Full simulation of the beam-related backgrounds at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Anne [DESY (Germany); KIT (Germany)

    2016-07-01

    The ILC has been proposed as the next machine at the energy frontier and a Technical Design Report was presented in 2012. As part of the site-specific studies to prepare the hosting of the ILC in Japan, the final focus region of the ILC had to be adapted. In this contribution, updated results for the beam-related background as well as new results for the backgrounds originating from the beam dump are presented. The beam-related backgrounds are simulated using GuineaPig and are then propagated through the full simulation of the SiD detector. The impact of various modifications in the final-focus region on the detector occupancies are then evaluated. For the neutron background from the beam dump, the FLUKA simulation suite is used, which is well established for dosimetry and shielding studies. With this program, the effect of the neutrons from the ILC beam dumps on the ILC detectors are studied.

  9. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  10. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    Directory of Open Access Journals (Sweden)

    T. J. Barton

    2012-12-01

    Full Text Available Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K. R. Samokhvalova, J. Zhou, and C. Chen, Phys. Plasmas 14, 103102 (2007PHPAEN1070-664X10.1063/1.2779281; J. Zhou, K. R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102 (2008PHPAEN1070-664X10.1063/1.2837891]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  11. Theory and Simulation of the Physics of Space Charge Dominated Beams

    International Nuclear Information System (INIS)

    Haber, Irving

    2002-01-01

    This report describes modeling of intense electron and ion beams in the space charge dominated regime. Space charge collective modes play an important role in the transport of intense beams over long distances. These modes were first observed in particle-in-cell simulations. The work presented here is closely tied to the University of Maryland Electron Ring (UMER) experiment and has application to accelerators for heavy ion beam fusion

  12. Computer simulation of electron beams. II. Low-cost beam-current reconstruction

    International Nuclear Information System (INIS)

    de Wolf, D.A.

    1985-01-01

    Reconstruction of current density in electron beams is complicated by distortion of phase space which can require very fine discretization of the beam into trajectories. An efficient discretization of phase space is exploited, using conservation of charge and current in hypertriangle patches, to reconstruct the current density by fitting Gaussians through the distorted hypertriangles. Advantages and limitations are discussed

  13. Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures

    International Nuclear Information System (INIS)

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.

    2010-01-01

    A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.

  14. Numerical simulation research of 300 kV, 5 electrodes negative ion beam system

    International Nuclear Information System (INIS)

    Wang Huisan; Jian Guangde

    2001-01-01

    According to the characteristic of high current negative ion beam extraction and acceleration system for negative ion-based neutral beam injector, a numerical simulation model and a calculation code of the negative ion beam system are established in order to assist the design of the system. The movement behavior of the negative ion beam and accompanying electron beam in joint effect of the electric and magnetic field of the system is calculated. The effect of relative parameters on the negative ion beam optics characteristic is investigated, such as beam density, negative ion initial temperature and stripping losses, final electrode aperture displacement. The electromagnetic configuration in the system is optimized. The initial optimized results for the 300 kV, 5 electrodes negative ion beam system show that the magnetic field of this system can deflect the electron beam to the extraction electrode as electron acceptor at lower energy and that assuming 20% stripping losses of the H - ion in extraction region and 21 mA ·cm -2 extracted H - beam density, the r.m.s. divergence angle of all output beam lets and divergence angle of 85% output beam lets are 0.327 deg. and 0.460 deg., respectively

  15. Injector and beam transport simulation study of proton dielectric wall accelerator

    International Nuclear Information System (INIS)

    Zhao, Quantang; Yuan, P.; Zhang, Z.M.; Cao, S.C; Shen, X.K.; Jing, Y.; Ma, Y.Y.; Yu, C.S.; Li, Z.P.; Liu, M.; Xiao, R.Q.; Zhao, H.W.

    2012-01-01

    A simulation study of a short-pulsed proton injector for, and beam transport in, a dielectric wall accelerator (DWA) has been carried out using the particle-in-cell (PIC) code Warp. It was shown that applying “tilt pulse” voltage waveforms on three electrodes enables the production of a shorter bunch by the injector. The fields in the DWA beam tube were simulated using Computer Simulation Technology’s Microwave Studio (CST MWS) package, with various choices for the boundary conditions. For acceleration in the DWA, the beam transport was simulated with Warp, using applied fields obtained by running CST MWS. Our simulations showed that the electric field at the entrance to the DWA represents a challenging issue for the beam transport. We thus simulated a configuration with a mesh at the entrance of the DWA, intended to improve the entrance field. In these latter simulations, a proton bunch was successfully accelerated from 130 keV to about 36 MeV in a DWA with a length of 36.75 cm. As the beam bunch progresses, its transverse dimensions diminish from (roughly) 0.5×0.5 cm to 0.2×0.4 cm. The beam pulse lengthens from 1 cm to 2 cm due to lack of longitudinal compression fields. -- Highlights: ► A pulse proton injector with tilt voltages on the three electrodes was simulated. ► The fields in different part of the DWA were simulated with CST and analyzed. ► The proton beam transport in DWA was simulated with Warp successfully. ► The simulation can help for designing a real DWA.

  16. One-dimensional theory and simulation of acceleration in relativistic electron beam Raman scattering

    International Nuclear Information System (INIS)

    Abe, T.

    1986-01-01

    Raman scattering by a parallel relativistic electron beam was examined analytically and by using the numerical simulation. Incident wave energy can be transferred not only to the scattered electromagnetic wave but also to the beam. That is, the beam can be accelerated by the Doppler-shifted plasma oscillation accompanied by the scattered wave. The energy conversion rates for them were obtained. They increase with the γ value of the electron beam. For the larger γ values of the beam, the energy of the incident wave is mainly transferred to the beam, while in smaller γ, the energy conversion rate to the scattered wave is about 0.2 times that to the beam. Even in smaller γ, the total energy conversion rate is about 0.1

  17. Research and simulation of intense pulsed beam transfer in electrostatic accelerate tube

    International Nuclear Information System (INIS)

    Li Chaolong; Shi Haiquan; Lu Jianqin

    2012-01-01

    To study intense pulsed beam transfer in electrostatic accelerate tube, the matrix method was applied to analyze the transport matrixes in electrostatic accelerate tube of non-intense pulsed beam and intense pulsed beam, and a computer code was written for the intense pulsed beam transporting in electrostatic accelerate tube. Optimization techniques were used to attain the given optical conditions and iteration procedures were adopted to compute intense pulsed beam for obtaining self-consistent solutions in this computer code. The calculations were carried out by using ACCT, TRACE-3D and TRANSPORT for different beam currents, respectively. The simulation results show that improvement of the accelerating voltage ratio can enhance focusing power of electrostatic accelerate tube, reduce beam loss and increase the transferring efficiency. (authors)

  18. In situ study of interface reactions of ion beam sputter deposited (Ba0.5Sr0.5)TiO3 films on Si, SiO2, and Ir

    International Nuclear Information System (INIS)

    Gao, Y.; Mueller, A.H.; Irene, E.A.; Auciello, O.; Krauss, A.; Schultz, J.A.

    1999-01-01

    (Ba 0.5 ,Sr 0.5 )TiO 3 (BST) thin films were deposited on MgO, Si, SiO 2 and Ir surfaces by ion beam sputter deposition in oxygen at 700 degree C. In situ spectroscopic ellipsometry (SE) has been used to investigate the evolution of the BST films on different surfaces during both deposition and postannealing processes. First, the optical constants of the BST films in the photon energy range of 1.5 - 4.5 eV were determined by SE analysis on crystallized BST films deposited on MgO single crystal substrates. The interfaces in BST/Si and BST/SiO 2 /Si structure were examined by SE and Auger electron spectroscopy depth profiles. Subcutaneous oxidation in the BST/Ir structure was observed by in situ SE during both ion beam sputter deposition and postdeposition annealing in oxygen at 700 degree C. A study of the thermal stability of the Ir/TiN/SiO 2 /Si structure in oxygen at 700 degree C was carried out using in situ SE. The oxidation of Ir was confirmed by x-ray diffraction. The surface composition and morphology evolution after oxidation were investigated by time of flight mass spectroscopy of recoiled ions (TOF-MSRI) and atomic force microscopy. It has been found that Ti from the underlying TiN barrier layer diffused through the Ir layer onto the surface and thereupon became oxidized. It was also shown that the surface roughness increases with increasing oxidation time. The implications of the instability of Ir/TiN/SiO 2 /Si structure on the performance of capacitor devices based on this substrate are discussed. It has been shown that a combination of in situ SE and TOF-MSRI provides a powerful methodology for in situ monitoring of complex oxide film growth and postannealing processes. copyright 1999 American Vacuum Society

  19. Multi-grid Beam and Warming scheme for the simulation of unsteady ...

    African Journals Online (AJOL)

    In this paper, a multi-grid algorithm is applied to a large-scale block matrix that is produced from a Beam and Warming scheme. The Beam and Warming scheme is used in the simulation of unsteady flow in an open channel. The Gauss-Seidel block-wise iteration method is used for a smoothing process with a few iterations.

  20. Spatial dose and microdose distribution in tissues. Ionization, nuclear reactions, multiple scattering simulation of beam transport

    International Nuclear Information System (INIS)

    Jacquot, C.

    1976-01-01

    Computer simulation and nuclear emulsion and gelatin techniques enabled to give the total elastic and inelastic cross sections and to forecast the spatial microdose distributions in cells, nuclei and molecules. For this purpose, the transport of a beam into tissues having a given composition is calculated, the nuclear reactions are generated and the energy depositions in standard planes perpendicular to the beam are recorded

  1. A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams

    DEFF Research Database (Denmark)

    Prodi, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2011-01-01

    Advances at SR sources in the generation of nanofocused beams with a high degree of transverse coherence call for effective techniques to simulate the propagation of partially coherent X-ray beams through complex optical systems in order to characterize how coherence properties such as the mutual...

  2. Study of SiO2 surface sputtering by a 250-550 keV He+ ion beam during high-resolution Rutherford backscattering measurements

    International Nuclear Information System (INIS)

    Kusanagi, Susumu; Kobayashi, Hajime

    2006-01-01

    Decreases in oxygen signal intensities in spectra of high-resolution Rutherford backscattering spectrometry (HRBS) were observed during measurements on a 5-nm thick SiO 2 layer on a Si substrate when irradiated by 250-550 keV He + ions. Shifts in an implanted arsenic profile in a 5-nm thick SiO 2 /Si substrate were also observed as a result of He + ion irradiation. These results lead to the conclusion that the SiO 2 surface was sputtered by He + ions in this energy range

  3. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Philipp, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  4. Modeling and computer simulation of ion beam synthesis of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, M.

    1999-11-01

    The following topics were dealt with: ion beam synthesis of nanoclusters, kinetic three dimensional lattice Monte Carlo method, Ostwald ripening, redistribution of implanted impurities, buried layer formation, comparisation to experimental results.

  5. Numerical simulation of crystalline ion beams in storage ring

    CERN Document Server

    Meshkov, I N; Katayama, T; Sidorin, A; Smirnov, A Yu; Syresin, E M; Trubnikov, G; Tsutsui, H

    2004-01-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (Munchen). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numeric...

  6. Status of LHC crab activity simulations and beam studies

    International Nuclear Information System (INIS)

    Calaga, R.; Assman, R.; Barranco, J.; Barranco, J.; Calaga, R.; Caspers, F.; Ciapala, E.; De-Maria, R.; Koutchouk, J. P.; Linnecar, T.; Metral, E.; Morita, A.; Solyak, N.; Sun, Y.; Tomas, R.; Tuckmantel, J.; Weiler, T.; Zimmermann, F.

    2009-01-01

    The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. The general project status and some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects. beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here

  7. Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.R.

    1988-01-01

    A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current

  8. Sputtering as a means of depth profiling

    International Nuclear Information System (INIS)

    Whitton, J.L.

    1978-01-01

    Probably the most common technique for determination of depth profiles by sputtering is that of secondary ion mass spectrometry. Many problems occur in the important step of converting the time (of sputtering) scale to a depth scale and these problems arise before the secondary ions are ejected. An attempt is made to present a comprehensive list of the effects that should be taken into consideration in the use of sputtering as a means of depth profiling. The various parameters liable to affect the depth profile measurements are listed in four sections: beam conditions; target conditions; experimental environment; and beam-target interactions. The effects are discussed and where interplay occurs, cross-reference is made and examples are provided where possible. (B.R.H.)

  9. Simulations of beam trajectory for position target optimization of extraction system output beams cyclotron proton Decy-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik

    2015-01-01

    Positioning and track simulation beam the cyclotron Decy-13 for laying optimization the target system have been done using lorentz force function and scilab 5.4.1 simulation. Magnetic field and electric field is calculated using Opera3D/Tosca as a simulation input. Used radio frequency is 77.66 MHz with the amplitude voltage is 40 kV is obtained energy 13 MeV. The result showed that the coordinates of the laying of the target system in a vacuum chamber is located at x = -389 mm and y = 445 mm with the width of the output beam is 10 mm. The laying stripper position for the output in center target is located at x = -76 mm and y =416 mm from the center coordinate on the center of dee with the energy of proton is 13 MeV at the point of beam extraction carbon foil. The changes position laying is carried out on range x = -70; y = 424 mm until x = - 118; y = 374 mm result for shifting area stripper which is still capable of deflection the electron beam. (author)

  10. X-ray convergent beam pattern simulation using the Moodie-Wagenfeld equations: 3-beam Laue case

    International Nuclear Information System (INIS)

    Liu, L.; Goodman, P.

    1998-01-01

    Pattern simulations for 3-beam X-ray diffraction are presented, by multi-slice calculations based on Moodie and Wagenfeld's formulation of the X-ray equations, which factorise Maxwell's equations into Dirac format, using circular-polarisation bases. The results are presented in the form of convergent-beam patterns for each diffraction order, using experience gained from CBED (convergent beam electron diffraction) and LACBED (large-angle CBED), since this displays the results in the most compact form. The acronym CBXRAD (convergent-beam X-ray-diffraction) is used for these patterns. Although optics required for the complete patterns is not currently available, capillary focussing is undergoing rapid development, and our simulations define critical angular ranges within reach of current designs. Simulations for light and heavy-atoms structures belonging to the enantiomorphic space-group pair P3 1 21 and P3 2 21, provide clear evidence of chiral interaction between radiation and structure, highlighting divergences from the well studied CBED pattern symmetries. MoKα 1 and TaKα 1 wavelengths were used to minimise absorption for the two structures respectively, although 'anomalous absorption' is always important due to the large thicknesses required (up to 20 mm)

  11. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    M. Füllekrug; C. Hanuise; M. Parrot

    2010-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...

  12. Hydrodynamic simulations of light ion beam-matter interactions: ablative acceleration of thin foils

    International Nuclear Information System (INIS)

    Devore, C.R.; Gardner, J.H.; Boris, J.P.; Mosher, D.

    1984-01-01

    A one-dimensional model is used to study the hydrodynamic response of thin foils to bombardment by an intense proton beam. The beam targets are single- and multilayer planar foils of gold and polystyrene. The main conclusion is that the efficiency of conversion of incident beam energy to directed kinetic energy of the target is maximized by using a multilayer design. For beam parameters associated with the Gamble II device at the Naval Research Laboratory, the simulations yield payload velocities of over 5 cm/μs and energy conversion efficiencies of over 30%. The implications of these results for inertial confinement fusion research are discussed. (author)

  13. Developing models for simulation of pinched-beam dynamics in heavy ion fusion. Revision 1

    International Nuclear Information System (INIS)

    Boyd, J.K.; Mark, J.W.K.; Sharp, W.M.; Yu, S.S.

    1984-01-01

    For heavy-ion fusion energy applications, Mark and Yu have derived hydrodynamic models for numerical simulation of energetic pinched-beams including self-pinches and external-current pinches. These pinched-beams are applicable to beam propagation in fusion chambers and to the US High Temperature Experiment. The closure of the Mark-Yu model is obtained with adiabatic assumptions mathematically analogous to those of Chew, Goldberger, and Low for MHD. Features of this hydrodynamic beam model are compared with a kinetic treatment

  14. Modeling and simulation performance of sucker rod beam pump

    Energy Technology Data Exchange (ETDEWEB)

    Aditsania, Annisa, E-mail: annisaaditsania@gmail.com [Department of Computational Sciences, Institut Teknologi Bandung (Indonesia); Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com [Department of Petroleum Engineering, Institut Teknologi Bandung (Indonesia); Soewono, Edy, E-mail: esoewono@math.itb.ac.id [Department of Mathematics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  15. Modeling and simulation performance of sucker rod beam pump

    International Nuclear Information System (INIS)

    Aditsania, Annisa; Rahmawati, Silvy Dewi; Sukarno, Pudjo; Soewono, Edy

    2015-01-01

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research

  16. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    International Nuclear Information System (INIS)

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-01-01

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient

  17. Monte Carlo based simulation of LIAC intraoperative radiotherapy accelerator along with beam shaper applicator

    Directory of Open Access Journals (Sweden)

    N Heidarloo

    2017-08-01

    Full Text Available Intraoperative electron radiotherapy is one of the radiotherapy methods that delivers a high single fraction of radiation dose to the patient in one session during the surgery. Beam shaper applicator is one of the applicators that is recently employed with this radiotherapy method. This applicator has a considerable application in treatment of large tumors. In this study, the dosimetric characteristics of the electron beam produced by LIAC intraoperative radiotherapy accelerator in conjunction with this applicator have been evaluated through Monte Carlo simulation by MCNP code. The results showed that the electron beam produced by the beam shaper applicator would have the desirable dosimetric characteristics, so that the mentioned applicator can be considered for clinical purposes. Furthermore, the good agreement between the results of simulation and practical dosimetry, confirms the applicability of Monte Carlo method in determining the dosimetric parameters of electron beam  intraoperative radiotherapy

  18. Ion beam texturing

    Science.gov (United States)

    Hudson, W. R.

    1977-01-01

    A microscopic surface texture was created by sputter-etching a surface while simultaneously sputter-depositing a lower sputter yield material onto the surface. A xenon ion-beam source was used to perform the texturing process on samples as large as 3-cm diameter. Textured surfaces have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, stainless steel, Au, and Ag. A number of texturing parameters are studied including the variation of texture with ion-beam powder, surface temperature, and the rate of texture growth with sputter etching time.

  19. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  20. Simulation of Electron Beam Trajectory of Thermionic Electron Gun Type with Pierce Electrode

    International Nuclear Information System (INIS)

    Suprapto; Djoko-SP; Djasiman

    2000-01-01

    The simulation of electron beam trajectory for electron gun of electron beam machine has been done. The simulation is carried out according to mechanical design of the electron gun. The simulation is carried out by using the software made by Andrzej Soltan Institute for Nuclear Studies, Swierk-Poland. The result obtained from simulation is approximately parallel electron beam trajectory of 20 mA beam current at 0.66 kV anode voltage, 15 mm cathode-anode distance and 67.5 o cathode angle. Arrangement of electron gun and accelerating tube with 15 kV voltage between anode and the first electrode of accelerating tube yields focus distance of 34 mm from the to cathode. To obtain the approximately parallel beam trajectory which has -0.03 o entrance angles to accelerating tube, the suitable cathode-anode voltage is 12.66 kV. With the entrance angle of -0.03 o it is expected that the electron beam can be accelerated and the beam profile has a small divergence after passing the accelerating tube. (author)

  1. SNOW: a digital computer program for the simulation of ion beam devices

    International Nuclear Information System (INIS)

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented

  2. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R.; Leiva, J.; Moncada, R.; Rojas, L.; Santibanez, M.; Valente, M.; Young, H. [Universidad de la Frontera, Centro de Fisica e Ingenieria en Medicina, Av. Francisco Salazar 1145, Casilla 54-D, Temuco (Chile); Velasquez, J. [Universidad de la Frontera, Departamento de Ciencias Fisicas, Av. Francisco Salazar 1145, Casilla 54-D, Temuco (Chile); Zelada, G. [Clinica Alemana de Santiago, Av. Vitacura 5951, 13132 Vitacura, Santiago (Chile); Astudillo, R., E-mail: rodolfo.figueroa@ufrontera.cl [Hospital Base de Valdivia, C. Simpson 850, XIV Region de los Rios, Valdivia (Chile)

    2017-10-15

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing devices components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used for predict megavoltage electron beam control. (Author)

  3. Simulation and experimental study on transportation of dual-beam guided by confining magnetic-field

    International Nuclear Information System (INIS)

    Bai Xianchen; Zhang Jiande; Yang Jianhua

    2008-01-01

    Using external longitudinal magnetic-field to guide dual-beam out of the dual-shift tubes is a key step for the practicality of synchronizing dual-beam produced by a single accelerator. On the basis of the simulation of the confining magnetic-field for the solid dual-beam, the experiment of magnetic-field guiding annular dual-beam was presented. When the diode voltage was 380 kV, dual-beam currents of 5.10 kA and 4.92 kA were obtained. The experimental results indicate that the designed magnetic-field system could confine the annular dual-beam effectively, and the critical confining magnetic-field is about 0.5 T. (authors)

  4. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams

    International Nuclear Information System (INIS)

    Figueroa, R.; Leiva, J.; Moncada, R.; Rojas, L.; Santibanez, M.; Valente, M.; Young, H.; Velasquez, J.; Zelada, G.; Astudillo, R.

    2017-10-01

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing devices components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used for predict megavoltage electron beam control. (Author)

  5. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-10-20

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders of magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.

  6. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    International Nuclear Information System (INIS)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip; Pfrommer, Christoph; Lamberts, Astrid; Puchwein, Ewald

    2017-01-01

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders of magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.

  7. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    Science.gov (United States)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  8. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    International Nuclear Information System (INIS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz

  9. Heavy particle transport in sputtering systems

    Science.gov (United States)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  10. Simulation of the beam guiding of the SAPHIR experiment by means of a differential-equation model

    International Nuclear Information System (INIS)

    Greve, T.

    1991-08-01

    This paper shows the numerical simulation of a beam line by means of a model of differential equations simulating the beam line from the Bonn Electron Stretcher Accelerator ELSA to the SAPHIR spectrometer. Furthermore a method for calculating the initial values based on measurements of beam profiles is being discussed. (orig.) [de

  11. Fast Poisson Solvers for Self-Consistent Beam-Beam and Space-Charge Field Computation in Multiparticle Tracking Simulations

    CERN Document Server

    Florio, Adrien; Pieloni, Tatiana; CERN. Geneva. ATS Department

    2015-01-01

    We present two different approaches to solve the 2-dimensional electrostatic problem with open boundary conditions to be used in fast tracking codes for beam-beam and space charge simulations in high energy accelerators. We compare a fast multipoles method with a hybrid Poisson solver based on the fast Fourier transform and finite differences in polar coordinates. We show that the latter outperforms the first in terms of execution time and precision, allowing for a reduction of the noise in the tracking simulation. Furthermore the new algorithm is shown to scale linearly on parallel architectures with shared memory. We conclude by effectively replacing the HFMM by the new Poisson solver in the COMBI code.

  12. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    International Nuclear Information System (INIS)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-01-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented. copyright 1998 American Institute of Physics

  13. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    Science.gov (United States)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-02-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.

  14. Beam dynamics simulations for linacs driving short-wavelength FELs

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1999-01-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)

  15. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  16. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  17. MONOTONIC AND CYCLIC LOADING SIMULATION OF STRUCTURAL STEELWORK BEAM TO COLUMN BOLTED CONNECTIONS WITH CASTELLATED BEAM

    Directory of Open Access Journals (Sweden)

    SAEID ZAHEDI VAHID

    2013-08-01

    Full Text Available Recently steel extended end plate connections are commonly used in rigid steel frame due to its good ductility and ability for energy dissipation. This connection system is recommended to be widely used in special moment-resisting frame subjected to vertical monotonic and cyclic loads. However improper design of beam to column connection can leads to collapses and fatalities. Therefore extensive study of beam to column connection design must be carried out, particularly when the connection is exposed to cyclic loadings. This paper presents a Finite Element Analysis (FEA approach as an alternative method in studying the behavior of such connections. The performance of castellated beam-column end plate connections up to failure was investigated subjected to monotonic and cyclic loading in vertical and horizontal direction. The study was carried out through a finite element analysis using the multi-purpose software package LUSAS. The effect of arranging the geometry and location of openings were also been investigated.

  18. SU-D-BRC-01: An Automatic Beam Model Commissioning Method for Monte Carlo Simulations in Pencil-Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, N; Shen, C; Tian, Z; Jiang, S; Jia, X [UT Southwestern Medical Ctr, Dallas, TX (United States)

    2016-06-15

    Purpose: Monte Carlo (MC) simulation is typically regarded as the most accurate dose calculation method for proton therapy. Yet for real clinical cases, the overall accuracy also depends on that of the MC beam model. Commissioning a beam model to faithfully represent a real beam requires finely tuning a set of model parameters, which could be tedious given the large number of pencil beams to commmission. This abstract reports an automatic beam-model commissioning method for pencil-beam scanning proton therapy via an optimization approach. Methods: We modeled a real pencil beam with energy and spatial spread following Gaussian distributions. Mean energy, and energy and spatial spread are model parameters. To commission against a real beam, we first performed MC simulations to calculate dose distributions of a set of ideal (monoenergetic, zero-size) pencil beams. Dose distribution for a real pencil beam is hence linear superposition of doses for those ideal pencil beams with weights in the Gaussian form. We formulated the commissioning task as an optimization problem, such that the calculated central axis depth dose and lateral profiles at several depths match corresponding measurements. An iterative algorithm combining conjugate gradient method and parameter fitting was employed to solve the optimization problem. We validated our method in simulation studies. Results: We calculated dose distributions for three real pencil beams with nominal energies 83, 147 and 199 MeV using realistic beam parameters. These data were regarded as measurements and used for commission. After commissioning, average difference in energy and beam spread between determined values and ground truth were 4.6% and 0.2%. With the commissioned model, we recomputed dose. Mean dose differences from measurements were 0.64%, 0.20% and 0.25%. Conclusion: The developed automatic MC beam-model commissioning method for pencil-beam scanning proton therapy can determine beam model parameters with

  19. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  20. Processing of La/sub 1.8/Sr/sub 0.2/CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    International Nuclear Information System (INIS)

    Madakson, P.; Cuomo, J.J.; Yee, D.S.; Roy, R.A.; Scilla, G.

    1988-01-01

    High quality La/sub 1.8/Sr/sub 0.2/CuO 4 and YBa 2 Cu 3 O 7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 μm thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF 2 , Si, CaF 2 , ZrO 2 -9% Y 2 O 3 , BaF 2 , Al 2 O 3 , and SrTiO 3 . Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, transmission electron microscopy, x-ray diffraction, and secondary ion mass spectroscopy. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa 2 Cu 2 O 7 structure, in the case of SrTiO 3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film. In general, the superconducting transition temperature is found to depend on substrate temperature and ion beam energy, film composition, annealing conditions, and the nature and the magnitude of the substrate/film interaction

  1. Simulation of the magnetic mirror effect on a beam of positrons

    CERN Document Server

    Boursette, Delphine

    2014-01-01

    I simulated a beam of positrons at the entrance of a 5 Tesla magnet for the Aegis experiment. The goal was to show how many positrons are lost because of the magnetic mirror effect. To do my simulation, I used Comsol to create the magnetic field map and Geant4 to draw the trajectories of the positrons in this field map.

  2. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  3. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  4. An analytical simulation technique for cone-beam CT and pinhole SPECT

    International Nuclear Information System (INIS)

    Zhang Xuezhu; Qi Yujin

    2011-01-01

    This study was aimed at developing an efficient simulation technique with an ordinary PC. The work involved derivation of mathematical operators, analytic phantom generations, and effective analytical projectors developing for cone-beam CT and pinhole SPECT imaging. The computer simulations based on the analytical projectors were developed by ray-tracing method for cone-beam CT and voxel-driven method for pinhole SPECT of degrading blurring. The 3D Shepp-Logan, Jaszczak and Defrise phantoms were used for simulation evaluations and image reconstructions. The reconstructed phantom images were of good accuracy with the phantoms. The results showed that the analytical simulation technique is an efficient tool for studying cone-beam CT and pinhole SPECT imaging. (authors)

  5. Status of ion beam data analysis and simulation software

    Energy Technology Data Exchange (ETDEWEB)

    Rauhala, E. [Accelerator Laboratory, Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland)]. E-mail: eero.rauhala@helsinki.fi; Barradas, N.P. [Instituto Tecnologico e Nuclear, Estrada Nacional No. 10, Apartado 21, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Fazinic, S. [Rudjer Boskovic Institute, Bijenicka c.54, 10000 Zagreb (Croatia); Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Thompson, M. [Department of MS and E/Bard Hall 328, Cornell University, Ithaca, NY 14853 (United States)

    2006-03-15

    The status of ion beam data analysis codes dedicated to Rutherford backscattering, elastic recoil detection analysis and non-resonant nuclear reaction analysis, is reviewed. The most important methods and approaches employed are discussed. The stopping power and scattering cross-section databases used, the ion-target interaction physics, the experimental and detection system characteristics and the structure of samples all have a strong impact on the analytical results. The models and algorithms used by different codes are reviewed and discussed in detail. Limitations in existing codes and perspectives for further developments are presented. The importance of ascertaining the correctness and accuracy of different methods and codes used in ion beam data analysis is stressed.

  6. Nonlinear hybrid simulation of internal kink with beam ion effects in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei; Sheng, Zheng-Mao [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Fu, G. Y.; Tobias, Benjamin [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Zeeland, Michael Van [General Atomics, San Diego, California 92186-5608 (United States); Wang, Feng [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-04-15

    In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a fishbone-like mode with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of the n = 1 mode with effects of energetic beam ions for a typical DIII-D discharge where both saturated kink mode and fishbone were observed. Linear simulation results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is excited with mode frequency about a few kHz depending on beam pressure profile. The mode frequency is higher at higher beam power and/or narrower radial profile consistent with the experimental observation. Nonlinear simulations have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam ion effects, the fishbone-like mode can also transit to a saturated kink mode with a small but finite mode frequency. These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.

  7. The determination of beam quality correction factors: Monte Carlo simulations and measurements.

    Science.gov (United States)

    González-Castaño, D M; Hartmann, G H; Sánchez-Doblado, F; Gómez, F; Kapsch, R-P; Pena, J; Capote, R

    2009-08-07

    Modern dosimetry protocols are based on the use of ionization chambers provided with a calibration factor in terms of absorbed dose to water. The basic formula to determine the absorbed dose at a user's beam contains the well-known beam quality correction factor that is required whenever the quality of radiation used at calibration differs from that of the user's radiation. The dosimetry protocols describe the whole ionization chamber calibration procedure and include tabulated beam quality correction factors which refer to 60Co gamma radiation used as calibration quality. They have been calculated for a series of ionization chambers and radiation qualities based on formulae, which are also described in the protocols. In the case of high-energy photon beams, the relative standard uncertainty of the beam quality correction factor is estimated to amount to 1%. In the present work, two alternative methods to determine beam quality correction factors are prescribed-Monte Carlo simulation using the EGSnrc system and an experimental method based on a comparison with a reference chamber. Both Monte Carlo calculations and ratio measurements were carried out for nine chambers at several radiation beams. Four chamber types are not included in the current dosimetry protocols. Beam quality corrections for the reference chamber at two beam qualities were also measured using a calorimeter at a PTB Primary Standards Dosimetry Laboratory. Good agreement between the Monte Carlo calculated (1% uncertainty) and measured (0.5% uncertainty) beam quality correction factors was obtained. Based on these results we propose that beam quality correction factors can be generated both by measurements and by the Monte Carlo simulations with an uncertainty at least comparable to that given in current dosimetry protocols.

  8. ICOOL: A Simulation Code for Ionization Cooling of Muon Beams

    International Nuclear Information System (INIS)

    Fernow, R. C.

    1999-01-01

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of ∼50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user

  9. Geant4 simulations of NIST beam neutron lifetime experiment

    Science.gov (United States)

    Valete, Daniel; Crawford, Bret; BL2 Collaboration Collaboration

    2017-09-01

    A free neutron is unstable and its decay is described by the Standard Model as the transformation of a down quark into an up quark through the weak interaction. Precise measurements of the neutron lifetime test the validity of the theory of the weak interaction and provide useful information for the predictions of the theory of Big Bang nucleosynthesis of the primordial helium abundance in the universe and the number of different types of light neutrinos Nν. The predominant experimental methods for determination of the neutron lifetime are commonly called `beam' and `bottle' methods, and the most recent uses of each method do not agree with each other within their stated uncertainties. An improved experiment of the beam technique, which uses magnetic and electric fields to trap and guide the decay protons of a beam of cold neutrons to a detector, is in progress at the National Institute of Standards and Technology, Gaithersburg, MD with a precision goal of 0.1. I acknowledge the support of the Cross-Diciplinary Institute at Gettysburg College.

  10. Simulating non-Kolmogorov turbulence phase screens based on equivalent structure constant and its influence on simulations of beam propagation

    Directory of Open Access Journals (Sweden)

    Ming Chen

    Full Text Available Gaussian distribution is used to describe the power law along the propagation path and phase screen of the non-Kolmogorov turbulence is proposed based on the equivalent refractive-index structure constants. Various simulations of Gaussian beam propagation in Kolmogorov and non-Kolmogorov turbulence are used for telling the difference between isotropic and anisotropic turbulence. The results imply that the non-Kolmogorov turbulence makes a great influence on the simulations via power law in spectrum and the number of phase screens. Furthermore, the influence is mainly reflected in light intensity and beam drift. Statistics suggest that when Gaussian beam propagate through single phase screen of non-Kolmogorov, maximum and uniformity of light intensity increase first and then decrease with power law, and beam drift firstly increases and then to stabilize. When Gaussian beam propagate through multiple phase screens, relative errors of beam drift decrease with the number of phase screens. And scintillation indices in non-Kolmogorov turbulence is larger than that in Kolmogorov turbulence when the number is small. When the number is big, the scintillation indices in non-Kolmogorov turbulence is smaller than that in Kolmogorov turbulence. The results shown in this paper demonstrate the effect of the non-Kolmogorov turbulence on laser atmospheric transmissions. Thus, this paper suggests a possible direction of the improvement of the laser transmission accuracy over a long distance through the atmosphere.

  11. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-01-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed

  12. Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams

    Directory of Open Access Journals (Sweden)

    D. R. Welch

    2008-06-01

    Full Text Available Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K^{+} ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005PRLTAO0031-900710.1103/PhysRevLett.95.234801] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression.

  13. Ion beam trajectory simulation of carbon isotopes in cyclotron DECY-13

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2014-01-01

    A simulation on the ion beam trajectories of various carbon isotopes "1"2C, "1"3C, and "1"4C in DECY-13 cyclotron has been carried out using Scilab 5.4.1 software. Calculations in the simulation were carried out in 3 dimensions. The simulation shows trajectory separations, which provide possibility for "1"4C measurement such as in carbon dating at accelerating voltage frequency of about 72 MHz. (author)

  14. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    International Nuclear Information System (INIS)

    Pena, J; Franco, L; Gomez, F; Iglesias, A; Lobato, R; Mosquera, J; Pazos, A; Pardo, J; Pombar, M; RodrIguez, A; Sendon, J

    2004-01-01

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data

  15. On Start to End Simulation and Modeling Issues of the Megawatt Proton Beam Facility at PSI

    CERN Document Server

    Adelmann, Andreas; Fitze, Hansruedi; Geus, Roman; Humbel, Martin; Stingelin, Lukas

    2005-01-01

    At the Paul Scherrer Institut (PSI) we routinely extract a one megawatt (CW) proton beam out of our 590 MeV Ring Cyclotron. In the frame of the ongoing upgrade program, large scale simulations have been undertaken in order to provide a sound basis to assess the behaviour of very intense beams in cyclotrons. The challenges and attempts towards massive parallel three dimensional start-to- end simulations will be discussed. The used state of the art numerical tools (mapping techniques, time integration, parallel FFT and finite element based multigrid Poisson solver) and their parallel implementation will be discussed. Results will be presented in the area of: space charge dominated beam transport including neighbouring turns, eigenmode analysis to obtain accurate electromagnetic fields in large the rf cavities and higher order mode interaction between the electromagnetic fields and the particle beam. For the problems investigated so far a good agreement between theory i.e. calculations and measurements is obtain...

  16. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    Energy Technology Data Exchange (ETDEWEB)

    Pena, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Franco, L [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Gomez, F [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Iglesias, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Lobato, R [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Mosquera, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Pazos, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pardo, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pombar, M [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); RodrIguez, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Sendon, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain)

    2004-11-07

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  17. End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Korostelev, Maxim [Cockcroft Inst. Accel. Sci. Tech.; Bailey, Ian [Lancaster U.; Herrod, Alexander [Liverpool U.; Morgan, James [Fermilab; Morse, William [RIKEN BNL; Stratakis, Diktys [RIKEN BNL; Tishchenko, Vladimir [RIKEN BNL; Wolski, Andrzej [Cockcroft Inst. Accel. Sci. Tech.

    2016-06-01

    The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay, collimation (with accurate representation of all apertures) and spin tracking.

  18. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    Science.gov (United States)

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated

  19. Sputtering induced surface composition changes in copper-palladium alloys

    International Nuclear Information System (INIS)

    Sundararaman, M.; Sharma, S.K.; Kumar, L.; Krishnan, R.

    1981-01-01

    It has been observed that, in general, surface composition is different from bulk composition in multicomponent materials as a result of ion beam sputtering. This compositional difference arises from factors like preferential sputtering, radiation induced concentration gradients and the knock-in effect. In the present work, changes in the surface composition of copper-palladium alloys, brought about by argon ion sputtering, have been studied using Auger electron spectroscopy. Argon ion energy has been varied from 500 eV to 5 keV. Enrichment of palladium has been observed in the sputter-altered layer. The palladium enrichment at the surface has been found to be higher for 500 eV argon ion sputtering compared with argon ion sputtering at higher energies. Above 500 eV, the surface composition has been observed to remain the same irrespective of the sputter ion energy for each alloy composition. The bulk composition ratio of palladium to copper has been found to be linearly related to the sputter altered surface composition ratio of palladium to copper. These results are discussed on the basis of recent theories of alloy sputtering. (orig.)

  20. Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: niedermayer@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Eidam, L. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); GSI Helmholzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-03-11

    First, a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare beam and wire impedances. The conversion formulas for TEM scattering parameters from measurements to impedances are thoroughly analyzed and compared to the analytical beam impedance solution. A proof of validity for the distributed impedance formula is given. The interaction of the beam or the TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam impedance on the relativistic velocity β is investigated and found as material property dependent. Second, numerical simulations of wakefields and scattering parameters are compared. The applicability of scattering parameter conversion formulas for finite device length is investigated. Laboratory measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to analytic and numeric models. The optimization of the measurement process and error reduction strategies are discussed.

  1. Simulating the influence of scatter and beam hardening in dimensional computed tomography

    Science.gov (United States)

    Lifton, J. J.; Carmignato, S.

    2017-10-01

    Cone-beam x-ray computed tomography (XCT) is a radiographic scanning technique that allows the non-destructive dimensional measurement of an object’s internal and external features. XCT measurements are influenced by a number of different factors that are poorly understood. This work investigates how non-linear x-ray attenuation caused by beam hardening and scatter influences XCT-based dimensional measurements through the use of simulated data. For the measurement task considered, both scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, only beam hardening is found to influence dimensional measurements when evaluated using an advanced surface determination method. Based on the results presented, recommendations on the use of beam hardening and scatter correction for dimensional XCT are given.

  2. Nonlinear δf Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2002-01-01

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T perpendicularb >> T parallelb ). The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with ∂/∂θ = 0

  3. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  4. Electron beam disruption simulation of first wall material

    International Nuclear Information System (INIS)

    Quataert, D.; Brossa, F.; Moretto, P.; Rigon, G.

    1984-01-01

    The destructive effect of plasma disruptions on first wall material and limiters has been predicted and models have been made to study their behaviour under intensive pulsed energy deposition. The results presented here give a full description of qualitative and semi-quantitative results obtained for several materials (Mo, stainless steel, Cu, Al, Inconel, etc.) under various experimental conditions. Examples are given of specific defects such as: evaporation, melting, void and crack formation and recrystallization of the underlying material. Methods for the evaluation of deposited energy and beam dimensions are also presented. (author)

  5. Numerical simulation of the PEP-II beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, N; Martin, D; Ng, C -K; Smith, S [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T

    1996-08-01

    We use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, we find that internal resonant modes are a major source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given. (author)

  6. Numerical simulation of the PEP-II beam position monitor

    International Nuclear Information System (INIS)

    Kurita, N.; Martin, D.; Ng, C.K.; Smith, S.; Weiland, T.

    1995-09-01

    The authors use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, they find that internal resonant modes are a major-source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given

  7. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  8. Simulations of ultrasonic examination using focused beams properties

    International Nuclear Information System (INIS)

    Calmon, P.; Gondard, C.; Lobjois, D.

    1992-01-01

    A simulation software based on a simplified model has been developed by the C.E.A. in order to predict the results of ultrasonic examinations. The algorithm account for the response of a crack close to the outer surface of a block examined with a focusing probe. It is based on a model described in this paper. This model allows to explain the main features observed on the echodynamic curves. Comparisons between experimental and simulated results show a quite good agreement

  9. Particle-in-cell simulations of electron beam control using an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.

  10. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    Waldschmidt, G. J.

    1998-01-01

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  11. Calibration of Monte Carlo simulation code to low voltage electron beams through radiachromic dosimetry

    International Nuclear Information System (INIS)

    Weiss, D.E.; Kalweit, H.W.; Kensek, R.P.

    1994-01-01

    A simple multilayer slab model of an electron beam using the ITS/TIGER code can consistently account for about 80% of the actual dose delivered by a low voltage electron beam. The difference in calculated values is principally due to the 3D hibachi structure which blocks 22% of the beam. A 3D model was constructed using the ITS/ACCEPT code to improve upon the TIGER simulations. A rectangular source description update to the code and reproduction of all key geometric elements involved, including the hibachi, accounted for 90-95% of the dose received by routine dosimetry

  12. The calculation, simulation, and measurement of longitudinal beam dynamics in electron injectors

    International Nuclear Information System (INIS)

    Dunham, B.; Liu, H.; Kazimi, R.

    1997-01-01

    Polarized electrons are a valuable commodity for nuclear physics research and every effort must be made to preserve them during transport Measurements of the beam emitted from the polarized source at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) have shown a considerable bunch lengthening with increasing beam current. This lengthening leads to unacceptable loss as the beam passes through the injector chopping system. We present an application of the longitudinal envelope equation to describe the bunch lengthening and compare the results to measurements and simulations using PARMELA. In addition, a possible solution to the problem by adding a low power buncher to the beamline is described and initial results are shown

  13. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  14. Sputtering and reflection of self-bombardment of tungsten material

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Guo-jian [University of Science and Technology of China, Hefei (China); Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Luo, Guang-nan, E-mail: gnluo@ipp.ac.cn [University of Science and Technology of China, Hefei (China); Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of CAS, Hefei (China)

    2015-04-15

    In present research, the sputtering and reflection yield of self-bombardment of tungsten are investigated with the aid of molecular dynamics simulations. The source of sputtered and reflected atoms is detected by traced the original locations of sputtered and reflected atoms. Results show that for the reflected atoms no specific region exists which means cluster atoms are randomly reflected. But almost all of sputtered atoms are from a conical region under the landing point of cluster. So we can determine the sputtering yield by study the dimension of the sputtering region. Molecular dynamics shows the depth and radius of the conical are power functions of impacting energy. The effects of cluster size and temperature of target on sputtering and reflection rate are also preformed in present study. Both sputtering and reflection yield are proportion to cluster size in present cluster size, i.e. 66–2647 atoms. Higher target temperature can increase sputtering yield and deduce sputtering threshold energy, but little effect on reflection rate.

  15. Sputtering and reflection of self-bombardment of tungsten material

    International Nuclear Information System (INIS)

    Niu, Guo-jian; Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi; Luo, Guang-nan

    2015-01-01

    In present research, the sputtering and reflection yield of self-bombardment of tungsten are investigated with the aid of molecular dynamics simulations. The source of sputtered and reflected atoms is detected by traced the original locations of sputtered and reflected atoms. Results show that for the reflected atoms no specific region exists which means cluster atoms are randomly reflected. But almost all of sputtered atoms are from a conical region under the landing point of cluster. So we can determine the sputtering yield by study the dimension of the sputtering region. Molecular dynamics shows the depth and radius of the conical are power functions of impacting energy. The effects of cluster size and temperature of target on sputtering and reflection rate are also preformed in present study. Both sputtering and reflection yield are proportion to cluster size in present cluster size, i.e. 66–2647 atoms. Higher target temperature can increase sputtering yield and deduce sputtering threshold energy, but little effect on reflection rate

  16. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, N. [Institute for Transuranium Elements, European Commission Joint Research Centre, Karlsruhe (Germany); Kratz, J.V.; Trautmann, N. [Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Passler, G. [Johannes Gutenberg-University Mainz, Institute of Physics, Mainz (Germany)

    2009-11-15

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., {sup 238}U/{sup 238}Pu, {sup 241}Am/{sup 241}Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. (orig.)

  17. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  18. Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations

    Directory of Open Access Journals (Sweden)

    J. Xu

    2007-01-01

    Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.

  19. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  20. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2014-08-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010–2013, the LHC was routinely storing protons at 3.5–4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  1. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  2. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    International Nuclear Information System (INIS)

    Dugar-Zhabon, V D; Orozco, E A; González, J D

    2016-01-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread. (paper)

  3. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    Science.gov (United States)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-12-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  4. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    Energy Technology Data Exchange (ETDEWEB)

    Tecimer, M. E-mail: tecimer@post.tau.ac.il; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J

    2001-12-21

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 {pi} mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  5. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    International Nuclear Information System (INIS)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-01-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design

  6. Single side damage simulations and detection in beam-like structures

    International Nuclear Information System (INIS)

    Zhou, Yun-Lai; Perera, R; Wahab, M Abdel; Maia, N; Sampaio, R; Figueiredo, E

    2015-01-01

    Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performance. (paper)

  7. Dwell time dependent morphological transition and sputtering yield of ion sputtered Sn

    International Nuclear Information System (INIS)

    Qian, H X; Zeng, X R; Zhou, W

    2010-01-01

    Self-organized nano-scale patterns may appear on a wide variety of materials irradiated with an ion beam. Good manipulation of these structures is important for application in nanostructure fabrication. In this paper, dwell time has been demonstrated to be able to control the ripple formation and sputtering yield on Sn surface. Ripples with a wavelength of 1.7 μm were observed for a dwell time in the range 3-20 μs, whereas much finer ripples with a wavelength of 540 nm and a different orientation were observed for a shorter dwell time in the range 0.1-2 μs. The sputtering yield increases with dwell time significantly. The results provide a new basis for further steps in the theoretical description of morphology evolution during ion beam sputtering.

  8. Simulation of an antiprotons beam applied to the radiotherapy

    International Nuclear Information System (INIS)

    Prata, Leonardo de Almeida

    2006-07-01

    Results for the interaction of a antiproton beam with constituent nuclei of the organic matter are presented. This method regards of the application of an computational algorithm to determine quantitatively the differential cross sections for the scattered particles, starting from the interaction of these antiprotons with the nuclei, what will allow in the future to draw the isodose curve for antiproton therapy, once these beams are expected to be used in cancer treatment soon. The calculation will be done through the application of the concepts of the method of intranuclear cascade, providing yield and differential cross sections of the scattered particles, present in the software MCMC. Th algorithm was developed based on Monte Carlo's method, already taking into account a validate code. The following physical quantities are presented: the yield of secondary particles, their spectral and angular distributions for these interactions. For the energy range taken into account the more important emitted particles are protons, neutrons and pions. Results shown that emitted secondary particles can modify the isodose curves, because they present high yield and energy for transverse directions. (author)

  9. Computer simulation and data compilation of sputtering yield by hydrogen isotopes ({sup 1}H{sup +}, {sup 2}D{sup +}, {sup 3}T{sup +}) and helium ({sup 4}He{sup +}) ion impact from monatomic solids at normal incidence

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Yasunori; Sakaoka, Kazuho; Tawara, Hiro

    1995-10-01

    The ion-induced sputtering yields from monatomic solids at normal incidence are presented graphically for light-ion ({sup 1}H{sup +}, {sup 2}D{sup +}, {sup 3}T{sup +}, {sup 4}He{sup +}) bombardment on various target materials as a function of the incident ion energy. To supplement the experimental data, the sputtering yields are calculated by the Monte Carlo simulation code ACAT for all possible light ion-target combinations. Each graph shows the available experimental and ACAT data points, together with the sputtering yield calculated by the Yamamura and Tawara empirical formula. (author).

  10. Beam simulations with initial bunch noise in superconducting RF proton linacs

    CERN Document Server

    Tückmantel, J

    2010-01-01

    Circular machines are plagued by coupled bunch instabilities (CBI), driven by impedance peaks, where then all cavity higher order modes (HOMs) are possible drivers. Limiting the CBI growth rate is the fundamental reason that all superconducting rf cavities in circular machines are equipped with HOM dampers. The question arises if for similar reasons HOM damping would not be imperative also in high current superconducting rf proton linacs. Therefore we have simulated the longitudinal bunched beam dynamics in such machines, also including charge and position noise on the injected bunches. Simulations were executed for a generic linac with properties close to the planned SPL at CERN, SNS, or Project X at FNAL. It was found that with strong bunch noise and monopole HOMs with high Qext large beam scatter, possibly exceeding the admittance of a receiving machine, cannot be excluded. A transverse simulation shows similar requirements. Therefore including initial bunch noise in any beam dynamic study on superconducti...

  11. Numerical simulation for the accelerator of the KSTAR neutral beam ion source

    International Nuclear Information System (INIS)

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang Ryul

    2010-01-01

    Recent experiments with a prototype long-pulse, high-current ion source being developed for the neutral beam injection system of the Korea Superconducting Tokamak Advanced Research have shown that the accelerator grid assembly needs a further upgrade to achieve the final goal of 120keV/65A for the deuterium ion beam. The accelerator upgrade concept was determined theoretically by simulations using the IGUN code. The simulation study was focused on finding parameter sets that raise the optimum perveance as large as possible and reduce the beam divergence as low as possible. From the simulation results, it was concluded that it is possible to achieve this goal by sliming the plasma grid (G1), shortening the second gap (G2-G3), and adjusting the G2 voltage ratio.

  12. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    Science.gov (United States)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  13. Numerical simulations of self-pinched transport of intense ion beams in low-pressure gases

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Welch, D.R.; Oliver, B.V.; Olson, C.L.

    1999-01-01

    The self-pinched transport of intense ion beams in low-pressure background gases is studied using numerical simulations and theoretical analysis. The simulations are carried out in a parameter regime that is similar to proton beam experiments being fielded on the Gamble II pulsed power generator [J. D. Shipman, Jr., IEEE Trans. Nucl. Sci. NS-18, 243 (1971)] at the Naval Research Laboratory. Simulation parameter variations provide information on scaling with background gas species, gas pressure, beam current, beam energy, injection angles, and boundaries. The simulation results compare well with simple analytic scaling arguments for the gas pressure at which the effective net current should peak and with estimates for the required confinement current. The analysis indicates that the self-pinched transport of intense proton beams produced on Gamble II (1.5 MeV, 100 kA, 3 cm radius) is expected to occur at gas pressures between 30 and 80 mTorr of He or between 3 and 10 mTorr of Ar. The significance of these results to ion-driven inertial confinement fusion is discussed. copyright 1999 American Institute of Physics

  14. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  15. Monte Carlo simulation of small field electron beams for small animal irradiation

    International Nuclear Information System (INIS)

    Lee, Chung-Chi; Chen, Ai-Mei; Tung, Chuan-Jong; Chao, Tsi-Chian

    2011-01-01

    The volume effect of detectors in the dosimetry of small fields for photon beams has been well studied due to interests in radiosurgery and small beamlets used in IMRT treatments; but there is still an unexplored research field for small electron beams used in small animal irradiation. This study proposes to use the BEAM Monte Carlo (MC) simulation to assess characteristics of small electron beams (4, 6, 14, 30 mm in diameter) with the kinetic energies of 6 and 18 MeV. Three factors influencing beam characteristics were studied (1) AE and ECUT settings, (2) photon jaw settings and (3) simulation pixel sizes. Study results reveal that AE/ECUT settings at 0.7 MeV are adequate for linear accelerator treatment head simulation, while 0.521 MeV is more favorable to be used for the phantom study. It is also demonstrated that voxel size setting at 1/4 of the simulation field width in all directions is sufficient to achieve accurate results. As for the photon jaw setting, it has great impact on the absolute output of different field size setting (i.e. output factor) but with minimum effect on the relative lateral distribution.

  16. Tabulated square-shaped source model for linear accelerator electron beam simulation.

    Science.gov (United States)

    Khaledi, Navid; Aghamiri, Mahmood Reza; Aslian, Hossein; Ameri, Ahmad

    2017-01-01

    Using this source model, the Monte Carlo (MC) computation becomes much faster for electron beams. The aim of this study was to present a source model that makes linear accelerator (LINAC) electron beam geometry simulation less complex. In this study, a tabulated square-shaped source with transversal and axial distribution biasing and semi-Gaussian spectrum was investigated. A low energy photon spectrum was added to the semi-Gaussian beam to correct the bremsstrahlung X-ray contamination. After running the MC code multiple times and optimizing all spectrums for four electron energies in three different medical LINACs (Elekta, Siemens, and Varian), the characteristics of a beam passing through a 10 cm × 10 cm applicator were obtained. The percentage depth dose and dose profiles at two different depths were measured and simulated. The maximum difference between simulated and measured percentage of depth doses and dose profiles was 1.8% and 4%, respectively. The low energy electron and photon spectrum and the Gaussian spectrum peak energy and associated full width at half of maximum and transversal distribution weightings were obtained for each electron beam. The proposed method yielded a maximum computation time 702 times faster than a complete head simulation. Our study demonstrates that there was an excellent agreement between the results of our proposed model and measured data; furthermore, an optimum calculation speed was achieved because there was no need to define geometry and materials in the LINAC head.

  17. Systematic comparison of position and time dependent macroparticle simulations in beam dynamics studies

    Directory of Open Access Journals (Sweden)

    Ji Qiang

    2002-06-01

    Full Text Available Macroparticle simulation plays an important role in modern accelerator design and operation. Most linear rf accelerators have been designed based on macroparticle simulations using longitudinal position as the independent variable. In this paper, we have done a systematic comparison between using longitudinal position as the independent variable and using time as the independent variable in macroparticle simulations. We have found that, for an rms-matched beam, the maximum relative moment difference for second, fourth moments and beam maximum amplitudes between these two types of simulations is 0.25% in a 10 m reference transport system with physical parameters similar to the Spallation Neutron Source linac design. The maximum z-to- t transform error in the space-charge force calculation of the position dependent simulation is about 0.1% in such a system. This might cause a several percent error in a complete simulation of a linac with a length of hundreds of meters. Furthermore, the error may be several times larger in simulations of mismatched beams. However, if such errors are acceptable to the linac designer, then one is justified in using position dependent macroparticle simulations in this type of linac design application.

  18. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  19. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    Adelmann, A.

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 10 9 protons/cm 3 ) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  20. Simulation of beam instabilities in a superconducting linear collider

    International Nuclear Information System (INIS)

    Aune, B.; Mosnier, A.; Napoly, O.

    1992-01-01

    Some results on the short range and long range wakefields effects due to the SC cavities on a beam emerging from a TESLA linac are presented. First, the intrabunch energy spread is estimated after the usual linac phase optimisation. Next, multibunch transverse instability is studied with several schemes of constant beta FODO focusing. In both cases, the parameters of a realistic 1.3 Ghz TESLA cavity and the parameters of the two machines 'Top-Factory' and '1/2 TESLA' are considered. It is concluded that the longitudinal wake effect is not a problem in both machines and that a rather weak focusing scheme is sufficient to keep the emittance at the 10 -6 m rad design value. (author) 6 refs.; 9 figs.; 3 tabs

  1. Monte Carlo simulation of spectrum changes in a photon beam due to a brass compensator

    Energy Technology Data Exchange (ETDEWEB)

    Custidiano, E.R., E-mail: ernesto7661@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina); Valenzuela, M.R., E-mail: meraqval@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina); Dumont, J.L., E-mail: Joseluis.Dumont@elekta.com [Elekta CMS Software, St.Louis, MO (United States); McDonnell, J., E-mail: josemc@express.com.ar [Cumbres Institute, Riobamba 1745, C.P.2000, Rosario, Santa Fe (Argentina); Rene, L, E-mail: luismrene@gmail.com [Radiotherapy Center, Crespo 953, C.P.2000, Rosario, Santa Fe (Argentina); Rodriguez Aguirre, J.M., E-mail: juakcho@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina)

    2011-06-15

    Monte Carlo simulations were used to study the changes in the incident spectrum when a poly-energetic photon beam passes through a static brass compensator. The simulated photon beam spectrum was evaluated by comparing it against the incident spectra. We also discriminated the changes in the transmitted spectrum produced by each of the microscopic processes. (i.e. Rayleigh scattering, photoelectric effect, Compton scattering, and pair production). The results show that the relevant process in the energy range considered is the Compton Effect, as expected for composite materials of intermediate atomic number and energy range considered.

  2. Monte Carlo simulation of spectrum changes in a photon beam due to a brass compensator

    International Nuclear Information System (INIS)

    Custidiano, E.R.; Valenzuela, M.R.; Dumont, J.L.; McDonnell, J.; Rene, L; Rodriguez Aguirre, J.M.

    2011-01-01

    Monte Carlo simulations were used to study the changes in the incident spectrum when a poly-energetic photon beam passes through a static brass compensator. The simulated photon beam spectrum was evaluated by comparing it against the incident spectra. We also discriminated the changes in the transmitted spectrum produced by each of the microscopic processes. (i.e. Rayleigh scattering, photoelectric effect, Compton scattering, and pair production). The results show that the relevant process in the energy range considered is the Compton Effect, as expected for composite materials of intermediate atomic number and energy range considered.

  3. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom

    International Nuclear Information System (INIS)

    Garcia-Garduno, Olivia A.; Larraga-Gutierrez, Jose M.; Rodriguez-Villafuerte, Mercedes; Martinez-Davalos, Arnulfo; Celis, Miguel A.

    2010-01-01

    This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis (registered) , BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.

  4. Simulation of 10 A electron beam formation and collection for a high current EBIS

    International Nuclear Information System (INIS)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1997-01-01

    Development of an Electron Beam Ion Source (EBIS) for the Relativistic Heavy Ion Collider (RHIC) at BNL requires operating with a 10 A electron beam, which is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be twisted. It will be reported in a separate paper at this Conference. The design of the 10 A electron gun, drift tubes and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented

  5. BEAMPATH: a program library for beam dynamics simulation in linear accelerators

    International Nuclear Information System (INIS)

    Batygin, Y.K.

    1992-01-01

    A structured programming technique was used to develop software for space charge dominated beams investigation in linear accelerators. The method includes hierarchical program design using program independent modules and a flexible combination of modules to provide a most effective version of structure for every specific case of simulation. A modular program BEAMPATH was developed for 2D and 3D particle-in-cell simulation of beam dynamics in a structure containing RF gaps, radio-frequency quadrupoles (RFQ), multipole lenses, waveguides, bending magnets and solenoids. (author) 5 refs.; 2 figs

  6. Beam dynamics simulation of injector for high power CW electron linac in PNC

    International Nuclear Information System (INIS)

    Nomura, Masahiro; Yamazaki, Yoshio; Toyama, Shin-ichi

    1994-01-01

    The injector consists of a 200 kV DC gun, a RF chopper, a chopper slit, a prebuncher and a buncher. Solenoid coils covered from the exit of gun to accelerating tube 1 except between the RF chopper and chopper slit. Beam trajectories are simulated by PARMELA in order to design the injector. In this report, two simulation results are shown. One is for a beam trajectory from gun to solenoid coils. There is thick concrete wall between gun to RF chopper. Low energy electrons are transported through long solenoid coil area. The other is for a chopper part. The novel chopper system is designed to reduce the emittance growth. (author)

  7. Beam dynamics simulations of the injector for a compact THz source

    International Nuclear Information System (INIS)

    Li Ji; Pei Yuanji; Shang Lei; Li Chenglong; Feng Guangyao; Hu Tongning; Chen Qushan

    2014-01-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed. (authors)

  8. Beam dynamics simulations of the injector for a compact THz source

    Science.gov (United States)

    Li, Ji; Pei, Yuan-Ji; Shang, Lei; Feng, Guang-Yao; Hu, Tong-Ning; Chen, Qu-Shan; Li, Cheng-Long

    2014-08-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed.

  9. Reanimation of the RICH Test Beam Simulation in GEANT4

    CERN Document Server

    Arzymatov, Kenenbek

    2017-01-01

    This test was originally developed by Sajan Easo (LHCb) ten years ago mostly for the purpose of testing the behavior of photomultipliers, but it wasn’t used in regression testing in Gauss/Geant4 famework. The goal of project is to revive simulation of cherenkov radiaton test by completing.

  10. Simulation of the Production of Secondary Particles from a Neutron Beam on Polyethylene Targets using the GEANT4 Simulation Tool

    CERN Document Server

    Ilgner, C

    2003-01-01

    In view of a beam test of RadFET semiconductor detectors and optically stimulated luminescence (OSL) detectors as on-line dosimeters for radiation monitoring purposes in the caverns of the Large Hadron Collider (LHC) experiments, a simulation on the production of secondary particles from a neutron beam on a polyethylene target was carried out. We describe the yield of recoil protons, scattered neutrons as well as electrons, positrons and photons, when neutrons of an average energy of 20 MeV hit polyethylene targets of several thicknesses. The simulation was carried out using the latest release 5.2 of the GEANT4 detector description and simulation tool, including advanced hadron interaction models.

  11. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    Science.gov (United States)

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-06

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  12. Low-damage high-throughput grazing-angle sputter deposition on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-T.; Gajek, M.; Raoux, S. [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Casu, E. A. [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Politecnico di Torino, Turin 10129 (Italy)

    2013-07-15

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  13. Low-damage high-throughput grazing-angle sputter deposition on graphene

    International Nuclear Information System (INIS)

    Chen, C.-T.; Gajek, M.; Raoux, S.; Casu, E. A.

    2013-01-01

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications

  14. Low-damage high-throughput grazing-angle sputter deposition on graphene

    Science.gov (United States)

    Chen, C.-T.; Casu, E. A.; Gajek, M.; Raoux, S.

    2013-07-01

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  15. Monte Carlo simulation of electron beams from an accelerator head using PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Sempau, J. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain). E-mail: josep.sempau@upc.es; Sanchez-Reyes, A. [Servei d' Oncologia Radioterapica, Hospital Clinic de Barcelona, Villarroel 170, 08036 Barcelona (Spain); Institut d' Investigaciones Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (Spain); Salvat, F.; Oulad ben Tahar, H.; Fernandez-Varea, J.M. [Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain); Jiang, S.B. [Department of Radiation Oncology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5304 (United States)

    2001-04-01

    The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the 'latent' variance in the phase-space file, are discussed in detail. (author)

  16. Three dimensional simulations of space charge dominated heavy ion beams with applications to inertial fusion energy

    International Nuclear Information System (INIS)

    Grote, D.P.

    1994-01-01

    Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator's lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement

  17. Ion Beam Analysis, structure and corrosion studies of nc-TiN/a-Si{sub 3}N{sub 4} nanocomposite coatings deposited by sputtering on AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    García, J. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C.E. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Rodríguez, E.; Jiménez, O. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Solis, C.; Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, México, D.F. 07738 (Mexico)

    2014-07-15

    In this work, nanocomposite coatings of nc-TiN/a-Si{sub 3}N{sub 4}, were deposited on AISI 316L stainless steel substrate by a DC and RF reactive magnetron co-sputtering technique using an Ar–N{sub 2} plasma. The structure of the coatings was characterized by means of XRD (X-ray Diffraction). The substrate and coating corrosion resistance were evaluated by potentiodynamic polarization using a Ringer solution as electrolyte. Corrosion tests were conducted with the purpose to evaluate the potential of this coating to be used on biomedical alloys. IBA (Ion Beam Analysis) techniques were applied to measure the elemental composition profiles of the films and, XPS (X-ray Photoelectron Spectroscopy) were used as a complementary technique to obtain information about the compounds present in the films. The nanocomposite coatings of nc-TiN/a-Si{sub 3}N{sub 4} show crystalline (TiN) and amorphous (Si{sub 3}N{sub 4}) phases which confer a better protection against the corrosion effects compared with that of the AISI 316L.

  18. Low temperature perovskite crystallization of highly tunable dielectric Ba0.7Sr0.3TiO3 thick films deposited by ion beam sputtering on platinized silicon substrates

    Science.gov (United States)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-02-01

    Ba0.7Sr0.3TiO3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 °C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (˜0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.

  19. Processing of La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    Science.gov (United States)

    Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.

    1988-03-01

    High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.

  20. Low temperature perovskite crystallization of highly tunable dielectric Ba0.7Sr0.3TiO3 thick films deposited by ion beam sputtering on platinized silicon substrates

    International Nuclear Information System (INIS)

    Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.

    2009-01-01

    Ba 0.7 Sr 0.3 TiO 3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 deg. C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (∼0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness

  1. (Ba+Sr)/Ti ratio dependence of the dielectric properties for (Ba0.5Sr0.5)TiO3 thin films prepared by ion beam sputtering

    Science.gov (United States)

    Yamamichi, Shintaro; Yabuta, Hisato; Sakuma, Toshiyuki; Miyasaka, Yoichi

    1994-03-01

    (Ba0.5Sr0.5)TiO3 thin films were prepared by ion beam sputtering from powder targets with (Ba+Sr)/Ti ratios ranging from 0.80 to 1.50. All of the perovskite (Ba,Sr)TiO3 films were single phase except for the film with a (Ba+Sr)/Ti ratio of 1.41. The dielectric constant values notably depended on the (Ba+Sr)/Ti ratio for films thicker than 70 nm. The highest dielectric constant of 580 was achieved for the 5% (Ba+Sr) rich film. This (Ba+Sr)/Ti ratio dependence was diminished by the thickness dependence for thinner films. The grain sizes for the 9% (Ba+Sr) rich film and for the 6% (Ba+Sr) poor film ranged from 70 to 100 nm and from 30 to 60 nm, respectively. This grain size difference could explain why slightly A-site rich (Ba,Sr)TiO3 films have a larger dielectric constant than A-site poor films.

  2. Proton beam characterization by proton-induced acoustic emission: simulation studies

    International Nuclear Information System (INIS)

    Jones, K C; Witztum, A; Avery, S; Sehgal, C M

    2014-01-01

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ∼1 mm. (paper)

  3. The theory and simulation of relativistic electron beam transport in the ion-focused regime

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Holloway, J.P.; Kammash, T.; Gilgenbach, R.M.

    1992-01-01

    Several recent experiments involving relativistic electron beam (REB) transport in plasma channels show two density regimes for efficient transport; a low-density regime known as the ion-focused regime (IFR) and a high-pressure regime. The results obtained in this paper use three separate models to explain the dependency of REB transport efficiency on the plasma density in the IFR. Conditions for efficient beam transport are determined by examining equilibrium solutions of the Vlasov--Maxwell equations under conditions relevant to IFR transport. The dynamic force balance required for efficient IFR transport is studied using the particle-in-cell (PIC) method. These simulations provide new insight into the transient beam front physics as well as the dynamic approach to IFR equilibrium. Nonlinear solutions to the beam envelope are constructed to explain oscillations in the beam envelope observed in the PIC simulations but not contained in the Vlasov equilibrium analysis. A test particle analysis is also developed as a method to visualize equilibrium solutions of the Vlasov equation. This not only provides further insight into the transport mechanism but also illustrates the connections between the three theories used to describe IFR transport. Separately these models provide valuable information about transverse beam confinement; together they provide a clear physical understanding of REB transport in the IFR

  4. Sputtering and mixing of supported nanoparticles

    International Nuclear Information System (INIS)

    Jiménez-Sáez, J.C.; Pérez-Martín, A.M.C.; Jiménez-Rodríguez, J.J.

    2013-01-01

    Sputtering and mixing of Co nanoparticles supported in Cu(0 0 1) under 1-keV argon bombardment are studied using molecular-dynamics simulations. Particles of different initial size have been considered. The cluster height decreases exponentially with increasing fluence. In nanoparticles, sputtering yield is significantly enhanced compared to bulk. In fact, the value of this magnitude depends on the cluster height. A theoretical model for sputtering is introduced with acceptable results compared to those obtained by simulation. Discrepancies happen mainly for very small particles. Mixing rate at the interface is quantified; and besides, the influence of border effects for clusters of different initial size is assessed. Mixing rate and border length–surface area ratio for the initial interface show a proportionality relation. The phenomenon of ion-induced burrowing of metallic nanoparticles is analysed

  5. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    Science.gov (United States)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  6. Computer simulation of the beam-beam interaction at a crossing angle

    International Nuclear Information System (INIS)

    Piwinski, A.

    1985-01-01

    The simulation is done for protons in HERA which was first designed with a crossing angle. Although the assumed space charge parameter is relatively small many resonances can be seen after 50000 revolutions, i.e. about 1 second of storage time. The dependence on the crossing angle and on the order of the satellite resonances is investigated

  7. Simulation study on beam loss in the alpha bucket regime during SIS-100 proton operation

    Science.gov (United States)

    Sorge, S.

    2018-02-01

    Crossing the transition energy γt in synchrotrons for high intensity proton beams requires well tuned jump schemes and is usually accompanied by longitudinal emittance growth. In order to avoid γt crossing during proton operation in the projected SIS-100 synchrotron special high-γt lattice settings have been developed, in order to keep γt above the beam extraction energy. A further advantage of this scheme is the formation of alpha buckets which naturally lead to short proton bunches, required for the foreseen production and storage of antiprotons for the FAIR facility. Special attention is turned on the imperfections of the superconducting SIS-100 magnets because together with the high-γt lattice settings, they could potentially lead to enhanced beam loss. The aim of the present work is to estimate the beam loss by means of particle tracking simulations.

  8. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  9. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Computer simulations for intense continuous beam transport in electrostatic lens systems

    International Nuclear Information System (INIS)

    Zhao Xiaosong; Lv Jianqin

    2008-01-01

    A code LEADS based on the Lie algebraic analysis for the continuous beam dynamics with space charge effect in beam transport has been developed. The program is used for the simulations of axial-symmetric and unsymmetrical intense continuous beam in the channels including drift spaces, electrostatic lenses and DC electrostatic accelerating tubes. In order to get the accuracy required, all elements are divided into many small segments, and the electric field in the segments is regarded as uniform field, and the dividing points are treated as thin lenses. Iteration procedures are adopted in the program to obtain self-consistent solutions. The code can be used in the designs of low energy beam transport systems, electrostatic accelerators and ion implantation machines. (authors)

  11. Simulation and interpretation of ion beam diagnostics on PBFA-II

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Nelson, W.E.; Maenchen, J.E.; Stygar, W.A.; Ruiz, C.L.; Lockner, T.R.; Johnson, D.J.

    1988-03-01

    Ion diode and beam focusing experiments are in progress on PBFA-II working towards an ultimate goal of significant burn of an ICF pellet. Beam diagnostics on these experiments include a Thomson parabola, K/sub alpha/ x-ray pinhole cameras, filtered ion pinhole cameras, and a magnetic spectrometer. We are developing two new computer programs to simulate and interpret the data obtained from these diagnostics. VIDA is a VAX-based program that manipulates and unfolds data from digitized particle and x-ray diagnostic images. VIDA operations include: image display, background substraction, relative-to-absolute coordinate transformations, and image projection into the beam reference frame. PICDIAG allows us to study the effects of time-dependent ion focusing on the performance of ion beam diagnostics. 10 refs., 5 figs

  12. 3D simulations of axially confined heavy ion beams in round and square pipes

    International Nuclear Information System (INIS)

    Grote, D.P.; Friedman, A.; Haber, I.

    1990-01-01

    We have been using the 3d PIC code WARP6 to model the behavior of beams in a heavy ion induction accelerator; such linacs are candidates for an ICF driver. Improvements have been added to the code to model an axially confined beam using comoving axial electric fields to simulate the confining ''ears'' applied to the accelerating pulses in a real system. We have also added a facility for modeling a beam in a round pipe, applying a capacity matrix to each axial Fourier mode in turn. These additions are described along with results, such as the effect of pipe shape on the beam quality degradation from quadrupole misalignments. 4 refs., 6 figs., 1 tab

  13. 3D simulations of axially confined heavy ion beams in round and square pipes

    International Nuclear Information System (INIS)

    Grote, D.P.; Friedman, A.; Haber, I.

    1991-01-01

    We have been using the 3d PIC code WARP6 to model the behavior of beams in a heavy ion induction accelerator; such linacs are candidates for an ICF driver. Improvements have been added to the code to model an axially confined beam using comoving axial electric fields to simulate the confining ''ears'' applied to the accelerating pulses in a real system. We have also added a facility for modeling a beam in a round pipe, applying a capacity matrix to each axial Fourier mode in turn. These additions are described along with results, such as the effect of pipe shape on the beam quality degradation from quadrupole misalignments. 5 refs., 6 figs., 1 tab

  14. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Sun, X; Lu, W; Jia, X; Wang, J; Shao, Y [The University of Texas Southwestern Medical Ctr., Dallas, TX (United States)

    2016-06-15

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separated positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further improved

  15. The use of micro-computers in the simulation of ion beam optics

    International Nuclear Information System (INIS)

    Spaedtke, P.; Ivens, D.

    1989-01-01

    With computer simulation codes specific problems of the ion beam optics can be studied, which is useful in the design as in optimization of existing systems. Several such codes have been developed, unfortunately requiring substantial computer resources. Recent advances of mini- and micro-computers have now made it possible to develop simulation codes which can be run on these small computers also. In this paper, some of these codes will be presented and their computing time discussed. (author)

  16. M.C. simulation of GEM neutron beam monitor with 10B

    International Nuclear Information System (INIS)

    Wang Yanfeng; Sun Zhijia; Liu Ben; Zhou Jianrong; Yang Guian; Dong Jing; Xu Hong; Zhou Liang; Huang Guangming; Yang Lei; Li Yi

    2010-01-01

    The neutron beam monitor based on GEM detector has been carefully studied with the Monte-Carlo method in this article. The simulation framework is including the ANSYS and the Garfield, which was used to compute the electric field of GEM foils and simulate the movement of electrons in gas mixture respectively. The GEM foils' focus and extract coefficients have been obtained. According to the primary results, the performing of the monitor is improved. (authors)

  17. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank

    2014-01-01

    are mutually correlated, it remains challenging to interpret measurement results and to identify the distinct error sources. Since simulations allow isolating the different affecting factors, they form a useful complement to experimental investigations. Dewulf et al (2012 CIRP Ann. Manuf. Technol. 61 495......–8) investigated the influence of beam hardening correction parameters on the diameter of a calibrated steel pin in different experimental set-ups. It was clearly shown that an inappropriate beam hardening correction can result in significant dimensional errors. This paper confirms these results using simulations...... of a pin surrounded by a stepped cylinder: a clear discontinuity in the measured diameter of the inner pin is observed where it enters the surrounding material. The results are expanded with an investigation of the beam hardening effect on the measurement results for both inner and outer diameters...

  18. Heavy ion beam fusion theory and simulation: Annual report, October 1985 to 31 January 1987

    International Nuclear Information System (INIS)

    Haber, I.

    1987-01-01

    A large number of simulations have been performed to establish a database of simulations for use in accelerator designs, and to compare the simulated emittance growths with the threshold for emittance growth actually measured in the Single Beam Transport Experiment (SBTE) at LBL. These simulations show substantial agreement with the experiment. They also extend into the parameter regime, where emittance growths are slower than could be measured in SBTE, but which may still be important to a driver system several times longer. Also demonstrated by these simulations, is that, even for beams which are not in detailed space-charge equilibrium and can therefore be subject to substantial nonlinear space-charge forces, emittance growths are restricted to what is consistent with energy conservation provided that the instability threshold is not crossed. This occurs even though energy need not be conserved in alternating gradient systems. Major modifications have been made to the two dimensional SHIFT-XY (Simulation of Heavy Ion Fusion Transport) code to add some of the three-dimensional physics associated with the transverse variation of the longitudinal fields in a long beam. Enhancements to the code have also been implemented which can decrease running times as much as 30% for typical parameters. 13 refs., 7 figs

  19. Simulation of ion-beam induced defects in cuprate superconductors

    International Nuclear Information System (INIS)

    Dineva, M.; Marksteiner, M.; Lang, W.

    2005-01-01

    Full text: Heavy-ion irradiation of cuprate superconductors is well known to produce columnar defect tracks along which magnetic vortices can be pinned. Hence, this effect has a large potential for practical applications and can enhance the critical current of the high-temperature superconducting materials. On the other hand, little work has been devoted to light-ion irradiation of the new superconductors. Our previous experimental results have indicated a systematic change of electric transport properties when irradiating YBa 2 Cu 3 O 7 (YBCO) with 75 KEXV He + ions. The purpose of the present study is the investigation of the ion-target interactions with computer simulation programs based on the binary collision approximation. The program package SRIM (Stopping and Range of Ions in Matter) is widely used to simulate the impact of energetic ions (10 eV to 2 GeV) on a solid target using a quantum mechanical treatment of ion-atom collisions under the assumption of an unstructured target material. A similar program, MARLOWE, includes the exact crystalline structure of the target and, thus, is able to calculate ion channeling effects and angle dependences. Detailed results of the penetration range of ions into YBCO, scattering cascades, creation of vacancies and interstitials, are reported for various kinds of ions. One of the central results is that light ions with energy of about 80 KEXV can penetrate through thin films of the cuprate superconductors and create point defects, mainly by oxygen displacement. (author)

  20. Simulation, Experimental and Analitical Study of Deflection at End Curved Beam Affected by Single Concentrated Load

    Directory of Open Access Journals (Sweden)

    Dewa Ngakan Ketut Putra Negara

    2012-11-01

    Full Text Available Deflection has an important role in order to design structure or machine component, beside consideration of stresscalculation. This is due to although stress is still smaller then stress allowed by material strength, but probably happen thatdeflection exceeds limit allowed. That condition affects serious hazard on machine elements or structure due to it can affectof component deviate from its main function. One of element which is often experience of deflection is beam. Beams playsignificant roles in many engineering applications, including buildings, bridges, automobiles, and airplane structures. In thisresearch, material to be used was Steel ASTM 1060, with specimen in the form of curved beam. Physical condition of beamwas modeled use of BEAM3 2D. Variation of loads to be applied were W = 100, 150, 200, 250, 300, 350, 400, 450, 500, and550 gr in vertical direction. The result of simulation was verificated by analytical and experimental data. Evaluation wascarried out by statistical test (t-test. The result of simulation is categorized to be good if the result of simulation is samewith analytical and experimental data. The result of research shows that loading has a significant effect on the deflection.The higher load affect the higher of deflection Modeling use of BEAM3 2D gave good result of deflection. This is showedfrom t-test have done, where the result of simulation was same with analytical and experimental data. Other advantage ofsimulation was deflection result obtained was not limited only at the end of beam, but it can predict of deflection at eachnode or point desired

  1. Formation of large clusters during sputtering of silver

    International Nuclear Information System (INIS)

    Staudt, C.; Heinrich, R.; Wucher, A.

    2000-01-01

    We have studied the formation of polyatomic clusters during sputtering of metal surfaces by keV ion bombardment. Both positively charged (secondary cluster ions) and neutral clusters have been detected in a time-of-flight mass spectrometer under otherwise identical experimental conditions, the sputtered neutrals being post-ionized by single photon absorption using a pulsed 157 nm VUV laser beam. Due to the high achievable laser intensity, the photoionization of all clusters could be saturated, thus enabling a quantitative determination of the respective partial sputtering yields. We find that the relative yield distributions of sputtered clusters are strongly correlated with the total sputtering yield in a way that higher yields lead to higher abundances of large clusters. By using heavy projectile ions (Xe + ) in connection with bombarding energies up to 15 keV, we have been able to detect sputtered neutral silver clusters containing up to about 60 atoms. For cluster sizes above 40 atoms, doubly charged species are shown to be produced in the photoionization process with non-negligible efficiency. From a direct comparison of secondary neutral and ion yields, the ionization probability of sputtered clusters is determined as a function of the cluster size. It is demonstrated that even the largest silver clusters are still predominantly sputtered as neutrals

  2. The statistics of sputtering

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1993-01-01

    The MARLOWE program was used to study the statistics of sputtering on the example of 1- to 100-keV Au atoms normally incident on static (001) and (111) Au crystals. The yield of sputtered atoms was examined as a function of the impact point of the incident particles (''ions'') on the target surfaces. There were variations on two scales. The effects of the axial and planar channeling of the ions could be traced, the details depending on the orientation of the target and the energies of the ions. Locally, the sputtering yield was very sensitive to the impact point, small changes in position often producing large changes yield. Results indicate strongly that the sputtering yield is a random (''chaotic'') function of the impact point

  3. The influence of beam divergence on ion-beam induced surface patterns

    International Nuclear Information System (INIS)

    Kree, R.; Yasseri, T.; Hartmann, A.K.

    2009-01-01

    We present a continuum theory and a Monte Carlo model of self-organized surface pattern formation by ion-beam sputtering including effects of beam profiles. Recently, it has turned out that such secondary ion-beam parameters may have a strong influence on the types of emerging patterns. We first discuss several cases, for which beam profiles lead to random parameters in the theory of pattern formation. Subsequently we study the evolution of the averaged height profile in continuum theory and find that the typical Bradley-Harper scenario of dependence of ripple patterns on the angle of incidence can be changed qualitatively. Beam profiles are implemented in Monte Carlo simulations, where we find generic effects on pattern formation. Finally, we demonstrate that realistic beam profiles, taken from experiments, may lead to qualitative changes of surface patterns.

  4. Simulations of intense heavy ion beams propagating through a gaseous fusion target chamber

    International Nuclear Information System (INIS)

    Welch, D.R.; Rose, D.V.; Oliver, B.V.; Genoni, T.C.; Clark, R.E.; Olson, C.L.; Yu, S.S.

    2002-01-01

    In heavy-ion inertial confinement fusion (HIF), an ion beam is transported several meters through the reactor chamber to the target. This standoff distance mitigates damage to the accelerator from the target explosion. For the high perveance beams and millimeter-scale targets under consideration, the transport method is largely determined by the degree of ion charge and current neutralization in the chamber. This neutralization becomes increasingly difficult as the beam interacts with the ambient chamber environment and strips to higher charge states. Nearly complete neutralization permits neutralized-ballistic transport (main-line HIF transport method), where the ion beam enters the chamber at roughly 3-cm radius and focuses onto the target. In the backup pinched-transport schemes, the beam is first focused outside the chamber before propagating at small radius to the target. With nearly complete charge neutralization, the large beam divergence is contained by a strong magnetic field resulting from roughly 50-kA net current. In assisted-pinched transport, a preformed discharge channel provides the net current and the discharge plasma provides nearly complete charge and current neutralization of the beam. In self-pinched transport, the residual net current results solely from the beam-driven breakdown of the ambient gas. Using hybrid particle-in-cell simulation codes, the behavior of HIF driver-scale beams in these three transport modes is examined. Simulations of neutralized ballistic transport, at a few-mTorr flibe pressure, show excellent neutralization given a preformed or photoionized (from the heated target) plasma. Two- and three-dimensional simulations of assisted-pinch transport in roughly 1-Torr Xe show the importance of attaining >1-μs magnetic diffusion time to limit self-field effects and achieve good transport efficiency. For Xe gas pressures ranging from 10-150 mTorr, calculations predict a robust self-magnetic force sufficient for self

  5. Cavity design and beam simulations for the APS rf gun

    International Nuclear Information System (INIS)

    Borland, M.

    1991-01-01

    An earlier note discussed the preliminary design of the 1-1/2 cell RF cavity for the APS RF gun. This note describes the final design, including cavity properties and simulation results from the program rf gun. The basic idea for the new design was that the successful SSRL design could be improved upon by reducing fields that had nonlinear dependence on radius. As discussed previously, this would reduce the emittance and produce tighter momentum and time distributions. In addition, it was desirable to increase the fields in the first half-cell relative to the fields in the second half-cell, in order to allow more rapid initial acceleration, which would reduce the effects of space charge. Both of these goals were accomplished in the new design

  6. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Wirth, Brian; Motta, Athur; Morgan, Dane; Kaoumi, Djamel; Hosemann, Peter; Odette, Robert

    2018-04-30

    Project Objective: The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiated microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations

  7. Sputtering and inelastic processes

    International Nuclear Information System (INIS)

    Baranov, I.A.; Tsepelevic, S.O.

    1987-01-01

    Experimental data and models of a new type of material sputtering with ions of relatively high energies due to inelastic (electron) processes are reviewed. This area of investigations began to develop intensively during the latest years. New experimental data of the authors on differential characteristics of ultradisperse gold and americium dioxide layers with fission fragments are given as well. Practical applications of the new sputtering type are considered as well as setup of possibl experiments at heavy multiply charged ion accelerators

  8. Three-dimensional simulation of the electromagnetic ion/ion beam instability: cross field diffusion

    Directory of Open Access Journals (Sweden)

    H. Kucharek

    2000-01-01

    Full Text Available In a system with at least one ignorable spatial dimension charged particles moving in fluctuating fields are tied to the magnetic field lines. Thus, in one-and two-dimensional simulations cross-field diffusion is inhibited and important physics may be lost. We have investigated cross-field diffusion in self-consistent 3-D magnetic turbulence by fully 3-dimensional hybrid simulation (macro-particle ions, massless electron fluid. The turbulence is generated by the electromagnetic ion/ion beam instability. A cold, low density, ion beam with a high velocity stream relative to the background plasma excites the right-hand resonant instability. Such ion beams may be important in the region of the Earth's foreshock. The field turbulence scatters the beam ions parallel as well as perpendicular to the magnetic field. We have determined the parallel and perpendicular diffusion coefficient for the beam ions in the turbulent wave field. The result compares favourably well (within a factor 2 with hard-sphere scattering theory for the cross-field diffusion coefficient. The cross-field diffusion coefficient is larger than that obtained in a static field with a Kolmogorov type spectrum and similar total fluctuation power. This is attributed to the resonant behaviour of the particles in the fluctuating field.

  9. Monte Carlo Simulation of a Linear Accelerator and Electron Beam Parameters Used in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2009-06-01

    Full Text Available Introduction: In recent decades, several Monte Carlo codes have been introduced for research and medical applications. These methods provide both accurate and detailed calculation of particle transport from linear accelerators. The main drawback of Monte Carlo techniques is the extremely long computing time that is required in order to obtain a dose distribution with good statistical accuracy. Material and Methods: In this study, the MCNP-4C Monte Carlo code was used to simulate the electron beams generated by a Neptun 10 PC linear accelerator. The depth dose curves and related parameters to depth dose and beam profiles were calculated for 6, 8 and 10 MeV electron beams with different field sizes and these data were compared with the corresponding measured values. The actual dosimetry was performed by employing a Welhofer-Scanditronix dose scanning system, semiconductor detectors and ionization chambers. Results: The result showed good agreement (better than 2% between calculated and measured depth doses and lateral dose profiles for all energies in different field sizes. Also good agreements were achieved between calculated and measured related electron beam parameters such as E0, Rq, Rp and R50. Conclusion: The simulated model of the linac developed in this study is capable of computing electron beam data in a water phantom for different field sizes and the resulting data can be used to predict the dose distributions in other complex geometries.

  10. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    CERN Document Server

    Tecimer, M; Efimov, S; Gover, A; Sokolowski, J

    2001-01-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 pi mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic i...

  11. Sub-impacts of simply supported beam struck by steel sphere—part II: Numerical simulations

    Directory of Open Access Journals (Sweden)

    Xiaoli Qi

    2016-12-01

    Full Text Available This part of the article describes numerical simulations of the problem investigated experimentally. A three-dimensional finite element model of elastic–plastic for sphere falling on beam has been implemented using the nonlinear dynamic finite element software LS-DYNA. From the numerical simulations, it was found that the LS-DYNA is suitable to study complex sub-impact phenomenon, and good agreement is in general obtained between the simulation and experimental results. The numerical simulations show that the initial impact velocity, equivalent elasticity modulus, contact curvature radius of the sphere, and equivalent mass have great influence on the contact–impact time of the sub-impact, and an applicable range of the theoretical expression of contact–impact time of the sub-impact was determined. In addition, the numerical simulations demonstrate the ratios of maximum amplitudes of the first-, second-, and third-order vibrations to the maximum amplitudes of the beam vibrations, and the phase angle of the first-order vibration will change suddenly when the sub-impacts occur. Furthermore, the occurrence conditions of the sub-impacts were clarified numerically. It was found that the occurrence conditions of the sub-impacts can be represented by a mass ratio threshold, and the thickness or length of the beam has also a great influence on the occurrence of the sub-impacts. Once the sub-impacts occur, which would result in an uncertain behavior of the apparent coefficient of restitution.

  12. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Wee, D.; Parish, G.; Nener, B. [Microelectronics Research Group, The University of Western Australia, 35 Stirling Highway, 6009 Crawley (Perth) (Australia)

    2010-10-15

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys {sup registered} Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    International Nuclear Information System (INIS)

    Wee, D.; Parish, G.; Nener, B.

    2010-01-01

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys registered Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Simulation of beam pointing stability on targeting plane of high power excimer laser system

    International Nuclear Information System (INIS)

    Wang Dahui; Zhao Xueqing; Zhang Yongsheng; Zheng Guoxin; Hu Yun; Zhao Jun

    2011-01-01

    Based on characteristics of image-relaying structure in high power excimer MOPA laser system, simulation and analysis software of targeting beam's barycenter stability was designed by using LABVIEW and MATLAB. Simulation was made to measured results of every optical component in laboratory environment. Simulation and validation of budget values for optical components was and optimization of error budget of system was accomplished via post-allocation for several times. It is shown that targeting beam's barycenter stability in the condition of current laboratory environment can't satisfy needs and index of high demand optical components can be allotted to 1.7 μrad when index of low demand optical components have some stability margin. These results can provide a guide to construction of system and design and machining of optical components and optimization of system. Optical components of laboratory on work can satisfy optimized distributed index, which reduce the demand of structure to some extent. (authors)

  15. Simulations of X-ray synchrotron beams using the EGS4 code system in medical applications

    International Nuclear Information System (INIS)

    Orion, I.; Henn, A.; Sagi, I.; Dilmanian, F.A.; Pena, L.; Rosenfeld, A.B.

    2001-01-01

    X-ray synchrotron beams are commonly used in biological and medical research. The availability of intense, polarized low-energy photons from the synchrotron beams provides a high dose transfer to biological materials. The EGS4 code system, which includes the photoelectron angular distribution, electron motion inside a magnetic field, and the LSCAT package, found to be the appropriate Monte Carlo code for synchrotron-produced X-ray simulations. The LSCAT package was developed in 1995 for the EGS4 code to contain the routines to simulate the linear polarization, the bound Compton, and the incoherent scattering functions. Three medical applications were demonstrated using the EGS4 Monte Carlo code as a proficient simulation code system for the synchrotron low-energy X-ray source. (orig.)

  16. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Boytsov A. Yu.

    2018-01-01

    Full Text Available Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  17. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Science.gov (United States)

    Boytsov, A. Yu.; Bulychev, A. A.

    2018-04-01

    Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  18. Modeling and Simulation of the Longitudinal Beam Dynamics - RF Station Interaction in the LHC Rings

    International Nuclear Information System (INIS)

    Mastorides, T

    2008-01-01

    A non-linear time-domain simulation has been developed to study the interaction between longitudinal beam dynamics and RF stations in the LHC rings. The motivation for this tool is to determine optimal LLRF configurations, to study system sensitivity on various parameters, and to define the operational and technology limits. It will be also used to study the effect of RF station noise, impedance, and perturbations on the beam life time and longitudinal emittance. It allows the study of alternative LLRF implementations and control algorithms. The insight and experience gained from our PEP-II simulation is important for this work. In this paper we discuss properties of the simulation tool that will be helpful in analyzing the LHC RF system and its initial results. Partial verification of the model with data taken during the LHC RF station commissioning is presented

  19. Electron-Cloud Simulation and Theory for High-Current Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Cohen, R; Friedman, A; Lund, S; Molvik, A; Lee, E; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-01-01

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize the distinguishing features of electron cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds. We also present results from several ingredients in this capability: (1) We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2) We simulate of the effect of specified electron cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics

  20. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.